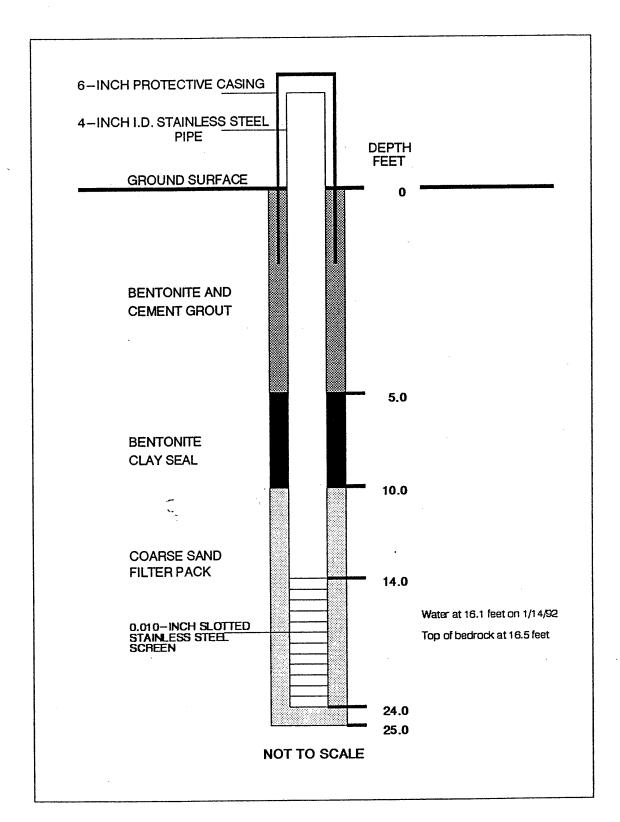
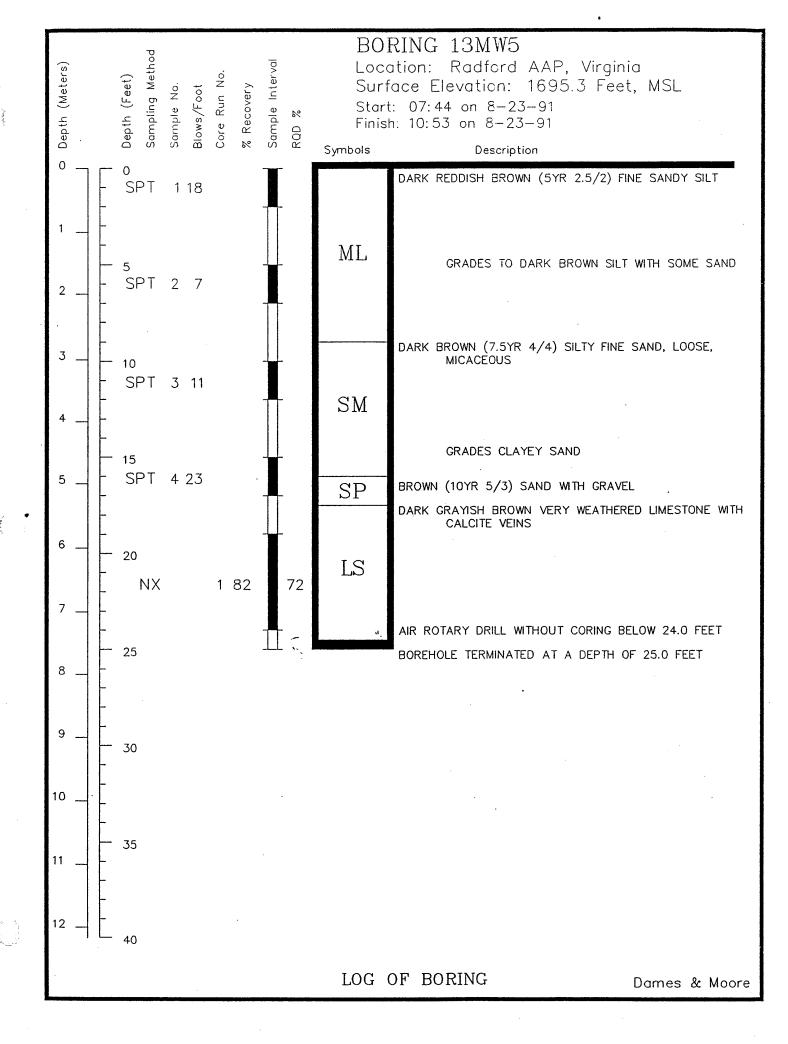
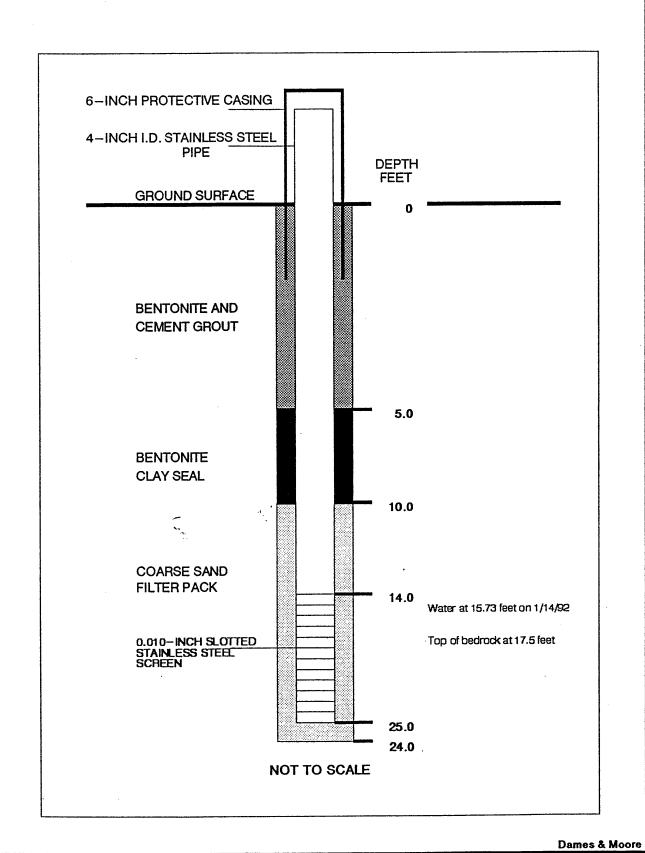

Location: 13MW2
Installation Date: 8/29/91
Surface Elevation: 1701.2 Feet
Top of SS Elevation: 1702.62 Feet




Location: 13MW3 Installation Date: 8/27/91 Surface Elevation: 1693.4 Feet Top of SS Elevation: 1694.47 Feet



Location: 13MW4 Installation Date: 8/28/91 Surface Elevation: 1695.2 Feet Top of SS Elevation: 1696.40 Feet

Location: 13MW5 Installation Date: 8/23/91 Surface Elevation: 1695.3 Feet Top of SS Elevation: 1696.40 Feet

CONTRACTOR: CT & E BORING NO: 48MW1 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 NW OF LOWER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: DAMP, 45' F DTW FROM TOC: 122 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/17/94 1545 CLIENT: US AEC DATE/TIME: 12/19/94 1200 PROJECT NO.: 722843 DATE/TIME FINISH: 12/19/94 1255 (FT) SAMPLE TYPE COUNT AT (FT) SAMPLE 1D RECOVERY (mad) READING SSS DEPTH DEPTH LITHOLOGY/REMARKS LITHOLOGIC WELL BLOW PIO **COLUMN** COMPLETION SILT, SOME CLAY, SOME SAND, TOC ORANGE-BROWN 2-1819.95 -2 3-2.2' -3 STICK UP 4--4 5-**-**5 6-1 100 11,9 SS 3.4 SS ML -6 5'-7' 7-7,14 -7 8-. -8 9-. -0 SILT AND SAND, GRAVEL, 10--10 ORANGE-BROWN, SLIGHT ODOR 11-2 100 3.5 HS GM/SM 3,3 SS -11 10'-12' 12-4,6 12 SILT AND CLAY, ORANGE-BROWN TO 13--13 YELLOW-BROWN 14-44 15-45 16--16 17-**-17** 18-48 SILT BECOMING MORE COMPETENT. 19~ MORE RED, WEATHERED, LAYERED . 19 20--20 3× 95 11.8 4.0 HS SS ML 21--21 22-7,10 20'-22 -22 23--23 24 -24 **GROUT** 25 -25 TO 95 HS 26-4 8,7 1.1 SS SURFACE -26 27-8,10 25'-27 -27 28--28 29--29 30--30 31-5 80 13,9 0.0 HS SS -31 30'-32 32-10,11 -32 33--33 34--34 35~ -35 36-6 75 9,12 4.0 HS SS -36 37-35'-37 9,9 -37 38--38 39--39 40-40 41-7 95 7,9 0.0 HS SS -41 40'-42 42-10,9 -42 43--43 44--44 45 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE Y = WATER LEVEL 0.01 INCH SLOT SCREEN

CONTRACTOR: CT & E BORING NO: 48MW1 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE. INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: DAMP, 45' F DTW FROM TOC: 122 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/17/94 1545 CLIENT: US AEC DATE/TIME: 12/19/94 1200 PROJECT NO .: 722843 DATE/TIME FINISH: 12/19/94 1255 (FT) COUNT (FT) RECOVERY (mdd) READING SAMPLE 1 **NSCS** DEPTH щ DEPTH LITHOLOGIC LITHOLOGY/REMARKS BLOW WELL ᄗ **COLUMN** COMPLETION CLAY AND SILT, TRACE SAND, 8 100 46-9.70 2.8 HS SS -46 BROWN, SLIGHTLY DAMP AT 52 FEET, 47-17,16 45'-47 -47 WEATHERED 48-48 49--49 50--50 9 75 9,9 HS SS 51-6.0 CL -51 9,9 50'-52 52 . -52 53-10× 75 16.8 6.0 HS SS . -53 52'-54 54 9,8 . -54 55 . -55 56 . -56 57 -57 GROUT 58--58 TO SURFACE 59--59 60--60 SWITCHED TO AIR ROTARY DRILLING 61-11 60 10,10 4.5 HS SS AT 60 FEET -61 60'-62 62-10,10 -62 63--63 SILTSTONE, GREEN-BROWN, 64 -64 **WEATHERED, VERY DAMP AT 66** 65 -65 **FEET** 100 66-12 12,28 3.9 HS SS SLSN -66 31,75 67-65'-67 67 68--68 69--69 70--70 71--71 DISTINCT CHANGE AT 72 FEET 72--72 LIMESTONE, DARK BROWN CUTTINGS. 73-BENTONITE -73 **ARGILLACEOUS** 74-SEAL -74 75--75 | 76 76-77-77 78--78 79-. -79 80-LMSN 80 81-TOP OF -81 SAND PACK 82--82 AT 76'. 83-83 SCREEN 84-84 **FROM 110'** 85--85 TO 140' 86--86 87--87 88--88 89--89 90-7 -90 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN ¥ = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW1 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE. INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: DAMP, 45' F DTW FROM TOC: 122 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/17/94 1545 CLIENT: US AEC DATE/TIME: 12/19/94 1200 PROJECT NO.: 722843 DATE/TIME FINISH: 12/19/94 1255 F **BLOW COUNT** READING AT (FT) RECOVERY (mdd) SAMPLE 1 SAMPLE JSCS **DEPTH** DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL P10 COLUMN COMPLETION 91-91 LIMESTONE, DARK BROWN CUTTINGS, 92--92 **ARGILLACEOUS** 93--93 94-**LMSN** STOPPED OVERNIGHT AT 94 FEET, 94 95-. -95 **NO WATER IN HOLE 12-19-94** 96--96 97-. -97 98--98 DRILLING RATE IS APPROXIMATELY 1 99--99 FOOT/1.5 MINUTES 100-100 DOLOMITE, GRAY, WEATHERED, SOFT 101-H01 102--102 103-103 104 -104 105 -105 106 -106 107 -107 108-408 DRILLING RATE IS APPROXIMATELY 1 109-H09 FOOT/2.5 MINUTES 110--110 TOP OF 111--111 SAND PACK 112-AT 76', 112 113-**SCREEN H**13 **FROM 110'** 114-H14 TO 140' 115--115 116--116 117-417 118-418 119--119 120-DLMT 120 121-121 122-122 123-123 124-124 125 -125 126-126 127 -127 128--128 129-129 130--130 131--131 132-**-132** 133-**-133** 134 HSA = HOLLOW STEM AUGER BH = BORE HOLE SS = SPLIT SPOON HS = HEADSPACE **COMMENTS:** CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE **▼** = WATER LEVEL 0.01 INCH SLOT SCREEN

CON	TRACT	ror: <u>C</u>	T&E			-		PARSONS	BORING N	IO: 48MW1	
GEO	LOGIS	T: BA	сночсн	IN/GLE	NNIE	- EI	NGIN	NEERING-SCIENCE, INC.	LOCATION:	SWMU 48	
DRIL	LING	METH0	D: HSA	/AIR RO	DTARY	_		DRILLING RECORD			
חדש	EDOM	TOC.	122 FT	(FROM	SURFACE	PRO	IECT N	NAME: RAAP	WEATHER: D	AMP, 45' F	
"	INOM	100				1		US AEC	DATE/TIME S	START: 12/17/94 154	45
DAT	E/TIM	E: 12/1	19/94 12	200				10.: 722843	1	12/10/04 12	EE
	r				,		JECT N	10	UATE/TIME F	INISH: 12/19/94 12	
ОЕРТН (FT)	SAMPLE ID	RECOVERY %	BLOW COUNT	PIO (ppm)	READING AT	SAMPLE TYPE	SOSO	LITHOLOGY/REMARKS	COLUMN	WELL COMPLETION	DEPTH (FT)
136-137-138-139-140-141-142-143-144-145-151-151-151-151-151-151-151-151			TEM AUG	T. C.		20	DLMT	DOLOMITE, GRAY, WEATHERED, SOFT BECOMES HARDER AT 148 FEET, NO WATER TO END OF BORING, THEN WATER TO 122 FEET AFTER 1.5 HOURS END OF BORING AT 154 FEET POON BH = BORE HOLE HS = HEADSPA			136 137 138 139 140 141 142 143 144 145 146 147 148 149 151 152 153 154 156 157 160 161 162 163 164 166 167 168 169 170 171 172 173 174 175 177 178 179 179 179 179 179 179 179 179 179 179
CAL =	= CALI	BRATI				A = AU(TTINGS GS = GRAB SAMPLE	4 INC	ENTS: CH ID PVC, SCH 40 NCH SLOT SCREEN	

CONTRACTOR: CT & E BORING NO: 48MW2 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 SW OF LOWER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: CLEAR, 25' F DTW FROM TOC: 126 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/19/94 1630 CLIENT: US AEC DATE/TIME: 1/07/95 0830 PROJECT NO.: 722843 DATE/TIME FINISH: 1/07/95 1200 (FT) BLOW COUNT (FT) RECOVERY (mdd) READING SAMPLE SCS DEPTH SAMPLE DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL ä COLUMN COMPLETION SILT, SOME SAND AND CLAY, TOC RED-BROWN 2-1818.88 3-1.3' 4 STICK UP 56 5-6-1 60 8,12 0.0 HS SS ML 7-15,16 5'-7' 8--8 -0 Ω-10--10 SILT AND SAND, BROWN 11-2 75 0.0 HS SS SM 7,5 -11 12-5.4 10'-12' -12 13--13 14-44 15--15 16--16 17-47 **VERY HARD DRILLING AT 17 FEET** 18-. -18 (GRAVEL) 19--19 20--20 SILT AND CLAY, SOME SAND, LIGHT 5 100/ 0.0 HS SS GM/ML 21--21 BROWN, GRAVEL 22-2.5 20'-22' -22 23--23 24--24 **GROUT** 25 -25 TO 26--26 SURFACE 27 <u>-</u>27 28 -28 29 . -29 30--30 31-30 10,8 0.0 HS SS 4 -31 30'-32 32-5,4 . -32 33--33 34-. -34 35-. -35 36--36 37--37 38--38 39--39 40 -40 90 41-5× 18.25 SS 41 DOLOMITE, WEATHERED, LIGHT 40'-42 DLMT 25,28 42--42 GRAY, ARGILLACEOUS, 43--43 INTERBEDDED SILTSTONE 44 44 5 100/1 45 45 6× SS SWITCHED TO AIR HAMMER AT 44 FT 46-44'-46 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: A = AUGER CUTTINGS GS = GRAB SAMPLE CAL = CALIBRATION 2 INCH ID PVC. SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN **▼** = WATER LEVEL

CON	TRACT	OR:_C	T & E			-		PARSONS	BORING N	NO: 48MW2	
GEO	LOGIS	T:BA	CHOVCH:	IN/GLE	NNIE	_ F	NGIN	NEERING-SCIENCE, INC.	LOCATION:_		_
D011	LTNIC	METUO	D: HSA	/ATR RO	TARY			DRILLING RECORD	LUCATION:_	51110 TO	_
						_		_	WEATHER:	CLEAR, 25° F	
WTD	FROM	TOC:_	126 FT	(FROM	SURFACE	- I		IAME: RAAP	DATE/TIME	START: 12/19/94 1630	
DATI	E/TIM	E: 1/0	7/95 08	30			ENT: U	0.: 722843	1	FINISH: 1/07/95 1200	
		×	 -	1	 -	1	1		DATE/TIME	T	_
DEPTH (FT)	SAMPLE 1D	RECOVERY	BLOW COUNT	PID (ppm)	READING AT	SAMPLE TYPE	SOSA	LITHOLOGY/REMARKS	COLUMN	WELL E	
47- 48- 49-				,				DOLOMITE, WEATHERED, LIGHT GRAY			18
50- 51- 52- 53- 54-							SLSN	SILTSTONE, LIGHT BROWN, WEATHERED, INTERBEDDED GRAY DOLOMITE DRILLING RATE (1 FOOT/3 MINUTES)		7.6.6.6.6.6.6	
55- 56- 57- 58- 59- 60-								SHIZZING HATZ (IT GOT/S MINOTES)		55 56 57 58 58	678
61- 62- 63- 64-							DLMT	DOLOMITE, WEATHERED, LIGHT GRAY, ARGILLACEOUS			1 2 3 4
65- 66- 67- 68- 69-								DRILLING RATE (1 FOOT/2.3 MINUTES)		GROUT -69	6 7 8
70- 71- 72- 73- 74- 75-			-	•				NOTE: SOFT FORMATION NOT RETURNING CUTTINGS UP HOLE. MUST SET TEMPORARY CASING. HOLE IS STOPPED AT 80 FEET OVER HOLIDAY, RESUME DRILLING ON 1-5-95.		SURFACE -70 -71 -72 -73 -74	0 1 2 3 4
76- 77- 78- 79-										-76 -77 -78 -79	6 7 8
80- 81- 82- 83- 84-							LMSN	LIMESTONE, WEATHERED, GRAY-BROWN		-80 -81 -82 -63	0 I 2 3
85- 86- 87- 88- 89-			·					·		-84 -85 -86 -87 -68 -69	5 7 3
90- 91- 92-)
CAL =	CALI	BRATI	EM AUGI ON SOIL CL			A = AU(PLIT SPO GER CUT B SAMPL	TINGS GS = GRAB SAMPLE	2 INC	IENTS: CH ID PVC, SCH 40 INCH SLOT SCREEN	

CONTRACTOR: CT & E BORING NO: 48MW2 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: CLEAR, 25° F DTW FROM TOC: 126 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/19/94 1630 CLIENT: US AEC DATE/TIME: 1/07/95 0830 PROJECT NO.: 722843 DATE/TIME FINISH: 1/07/95 1200 COUNT (FT) (FT RECOVERY (mdd) READING USCS SAMPLE DEPTH SAMPLE DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL BLOW P10 COLUMN COMPLETION LIMESTONE, WEATHERED, 93--93 GRAY-BROWN 94--94 GROUT 95-LMSN -95 DRILLING RATE (1 FOOT/1.7 TO 96--96 MINUTES) SURFACE 97-97 98--08 99--99 100-100 101-BENTONITE 101 102-SEAL 102 103-103 104-104 105--105 106-106 107-107 108-408 109-109 110--110 DOLOMITE, LIGHT GRAY, 111--111 WEATHERED, ALTERNATING HARD 112--112 AND SOFT, GRAY AND BROWN, 113-413 **LAYERS** 114--114 DLMT 115-415 116--116 TOP OF 117--117 SAND PACK 118-H18 AT 104'. 119--119 SCREEN 120-FROM 113.7' -120 121-TO 133.7' -121 122-122 123-123 124-124 125-DRILLING RATE (1 FOOT/3.3 125 126-MINUTES) 126 127--127 128-128 129-129 130-430 131-431 132-132 133-433 134-134 **END OF BORING AT 133.7 FEET** 135--135 136-**-136** 137--137 138-438 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 2 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN Y = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW3 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 SE OF LOWER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: WET, COLD, 40° F DTW FROM TOC: 119 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 1/07/95 1237 CLIENT: US AEC DATE/TIME: 1/08/95 1430 PROJECT NO.: 722843 DATE/TIME FINISH: 1/08/95 1430 COUNT A (FT) RECOVERY (mdd) READING SOSO SAMPLE DEPTH SAMPLE DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL BLOW P10 COLUMN COMPLETION SILT AND CLAY, LITTLE SAND, TOC ORANGE-BROWN 2-1812.17" 3--2.2' 3 STICK UP 4-ML 5--5 6--6 7-8--8 9-9 10-10 SILT, LITTLE SAND AND CLAY, 1 95 2,5 HS SS 11-2.0 -11 ORANGE-BROWN 12-8,6 -12 13--13 14--14 ML/SM 15-**-1**5 16--16 17--17 18--18 19--19 20--20 SILT AND SAND, LITTLE CLAY, 21-2× 95 2,6 3.5 SS SS SM -21 **ORANGE** 22--22 23--23 24--24 **GROUT** GRAVEL, SILTY 25--25 TO SURFACE GM 26--26 27--27 28--28 29--29 30--30 CLAY AND SILT, YELLOW-BROWN. 3× 90 8.26 HS SS 31-1.1 CL -31 SWITCHED TO AIR HAMMER AT 32 50/2" 32--32 **FEET** 33-DLMT -33 34-DOLOMITE, WEATHERED, LIGHT GRAY -34 35--35 SILTSTONE, BROWN, INTERBEDDED 36--36 WITH GRAY DOLOSTONE 37--37 38--38 39--39 40-SLSN -40 DOLOMITE, WEATHERED, GRAY, 41-41 **ARGILLACEOUS** 42--42 43-DLMT -43 44-45-HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN ¥ = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW3 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: WET, COLD, 40' F DTW FROM TOC: 119 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 1/07/95 1237 CLIENT: US AEC DATE/TIME: 1/08/95 1430 PROJECT NO.: 722843 DATE/TIME FINISH: 1/08/95 1430 (FT) COUNT (FT) RECOVERY (mdd) READING SAMPLE 1 USCS SAMPLE DEPTH DEPTH BLOW . LITHOLOGY/REMARKS LITHOLOGIC WELL **P1**0 COLUMN COMPLETION 46-DOLOMITE, WEATHERED, GRAY. -46 47-**ARGILLACEOUS** -47 48-48 DRILLING RATE FROM 40-60 FEET 49-49 (1 FOOT/1.8 MINUTES) 50--50 51--51 52--52 53--53 54-DLMT -54 55--55 56--56 57-. -57 58--58 59--59 60--60 61--61 LESS CLAY, LESS WEATHERING 62--62 63--63 64-64 DRILLING RATE FROM 60-90 FEET **GROUT** 65-(1 F00T/6.3 MINUTES) TO -65 66-SURFACE -66 67--67 68--68 69--69 70--70 71--71 72--72 73--73 74--74 75--75 76-**-7**6 77 78--78 79--79 80--80 81--81 DOLOMITE, LIGHT GRAY 82--82 83--**8**3 84--84 85-. -85 86-. -86 87-BENTONITE -87 88-SEAL -88 89-E89 90-] HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40-USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE ¥ = WATER LEVEL 0.01 INCH SLOT SCREEN

CON	TDAC	ror:_C	TRF			i -			T T	
1						-		PARSONS	BORING N	NO: 48MW3
GEO	LOGIS	T: BAC	CHOVCH	IN/GLE	NNIE	- E	NGI	NEERING-SCIENCE, INC.	LOCATION:_	SWMU 48
DRIL	LING	METHO	D: HSA	/AIR R	OTARY	_		DRILLING RECORD		
ntw	FROM	TOC:	119 FT +	(FROM S	SURFACE) PRO	JECTA	NAME: RAAP	WEATHER:_M	NET, COLD, 40° F
1								S AEC	DATE/TIME	START: 1/07/95 1237
DATE	E/TIM	E:_1/08	3/95 14	30		- PRO	JECT N	NO.: 722843	DATE/TIME	FINISH: 1/08/95 1430
ытетн (FT)	SAMPLE ID	RECOVERY X	BLOW COUNT	PID (ppm)	READING AT	SAMPLE TYPE	SOSO	LITHOLOGY/REMARKS	LITHOLOGIC COLUMN	MELL COMPLETION THE
91- 92- 93- 93- 94- 95- 97- 98- 99- 100- 102- 103- 105- 106- 107- 108- 109- 111- 115- 116- 121- 121- 121- 121- 121- 121- 121							DLMT	DOLOMITE, LIGHT GRAY, POSSIBLE WET ZONE AT 112 FEET DRILLING RATE (1 FOOT/3.5 MINUTES) END OF BORING AT 122 FEET		TOP OF SAND PACK AT 90'. SCREEN FROM 100' TO 120' 111 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
HSA = CAL =	CALI	BRATIC	EM AUGE ON SOIL CLA			A = AUG	PLIT SPO SER CUT S SAMPL	TINGS GS = GRAB SAMPLE	4 INC	

CONTRACTOR: CT & E BORING NO: 48MW4 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION:_SWMU 48 CENTER OF UPPER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: RAIN, 85' F DTW FROM TOC: 78.19 FT PROJECT NAME: RAAP DATE/TIME START: 7/18/95 1100 CLIENT: US AEC DATE/TIME: 7/22/95 1200 PROJECT NO .: 722843 DATE/TIME FINISH: 7/20/95 1830 COUNT (FT READING AT 7 (FT) RECOVERY (mdd) SAMPLE 1 **NSCS** SAMPLE DEPTH LITHOLOGIC BLOW (LITHOLOGY/REMARKS WELL ᄗ COLUMN COMPLETION CLAY AND SILT, LITTLE SAND, TOC 2-RED-BROWN <u> ጕኯ</u>፞፞፟፟፟፟ኯኯኯኯኯ 1832.6 3-2.06' 0.1 BH CL STICK UP 5-6-8-SILT AND GRAVEL, LITTLE SAND, 9-10-ORANGE-BROWN 0.0 BH GM 11--11 12-12 CLAY AND SILT, LITTLE SAND. 13-. ⊣3 RED-BROWN, MOIST 14-. -14 15--15 16 -16 17 . -17 18-0.0 BH CL -18 19 49 20--20 21 -21 22--22 23--23 24. -24 25--25 26--26 GROUT 27-0.0 BH TO -27 28-SURFACE -28 29--29 30-F-30 SILT AND CLAY, ORANGE-BROWN, 31--31 MOIST ZONE AT 40-41 FEET 32--32 0.0 BH ML 33--33 34 -34 35--35 36--36 37--37 38--38 39--39 40--40 41-41 SAND AND GRAVEL, SOME SILT. 42--42 BROWN, MOIST, GRAVEL LAYER AT 43-43 49 FEET 44-44 45-0.0 BH GM 45 46-46 47-47 48-48 لـ49 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN ¥ = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW4 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: RAIN, 85' F DTW FROM TOC: 78.19 FT PROJECT NAME: RAAP DATE/TIME START: 7/18/95 1100 CLIENT: US AEC DATE/TIME: 7/22/95 1200 PROJECT NO .: 722843 DATE/TIME FINISH: 7/20/95 1830 (FT) COUNT READING AT (FT) RECOVERY (mad) SCS SAMPLE SAMPLE DEPTH DEPTH LITHOLOGY/REMARKS LITHOLOGIC BLOW WELL P10 COLUMN COMPLETION SILT, BROWN, BECOMING MORE 50 -50 51-COMPETENT, SWITCHED TO AIR -51 52-0.0 BH ML ROTARY DRILLING AT 55 FEET .52 53--53 54 -54 55. -55 GROUT SILTSTONE, WEATHERED, 56. -56 TO 57-ALTERNATING RED AND GREEN -57 SURFACE LAYERS, INTERBEDDED DOLOMITE 58--58 59-(SLIGHT HCL FIZZ) -59 60-0.0 BH SLSN -60 61--61 62--62 63--63 64-64 65--65 66-BENTONITE -66 67-SEAL 67 68--68 69-69 70-70 71-0.0 BH 72--72 73-73 74--74 75--75 76--76 77--77 78-78 79-TOP OF -79 80-SAND PACK 80 81-AT 69', -81 82-SCREEN 82 83-**FROM 74'** 83 84-0.0 BH TO 94' 84 85--85 86--86 87-87 88--88 89--89 90--90 DOLOMITE, GREEN-GRAY, AND 91~ -91 92-INTERBEDDED DARK GRAY -92 93-SILTSTONE, SOFT ZONE AT 100-108 93 94-0.0 BH DLMT FEET (WATER?) 94 95--95 SAND PACK 96--96 TO 120' -97 98--98 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE ¥ = WATER LEVEL 0.01 INCH SLOT SCREEN

CON	TRACT	OR:_C	T&E		· · · · · · ·	_		DADCONC	BOBING A	10: 48MW4	
GEO	LOGIS	T: BA	СНОУСН	IN/GLE	NNIE	_	NICTA	PARSONS	ļ		
1								NEERING-SCIENCE, INC. DRILLING RECORD	LOCATION:_	5WMU 48	
DRI	LING	METHO	D: HSA	/AIR RO	DTARY	-	· · <u> · · · · · · · · · · · · · · ·</u>	חטורוואם עברמעם	WEATHER:_R	AIN. 85° F	
DTW	FROM	TOC:_	78.19 F	<u> </u>				IAME: RAAP			·—.
DAT	E/TIM	F: 7/2	2/95 12	200			NT:_U		1	START: 7/18/95 1100	
L		.					JECT N	0.:_722843	DATE/TIME	FINISH: 7/20/95 183	30
ОЕРТН (FT)	SAMPLE 1D	RECOVERY X	BLOW COUNT	PIO (ppm)	READING AT	SAMPLE TYPE	SOSN	LITHOLOGY/REMARKS	LITHOLOGIC COLUMN	WELL COMPLETION	DEPTH (FT)
	≠ HOL		TEM AUG	0.0	ВН	SS = S	DLMT	DOLOMITE, GREEN-GRAY, AND INTERBEDDED DARK GRAY SILTSTONE, SOFT ZONE AT 100-108 FEET (WATER?) END OF BORING AT 120 FEET COON BH = BORE HOLE HS = HEADSPA	ACE COMM		99 100 102 103 103 103 103 103 103 103 103 103 103
CAL	= CAL	IBRAT				A = AU		TTINGS GS = GRAB SAMPLE	4 INC	NENTS: CH ID PVC, SCH 40 INCH SLOT SCREEN	

DRILL HOLE LOG DRILL HOLE NO.: 48MW06

PROJECT: WPA 019 Groundwater Investigation **CLIENT/OWNER:** RFAAP

HOLE LOCATION: RFAAP Radford, VA

DRILLER: Bedford Well Drilling
DRILL RIG: T3 Air Rotary

PROJECT NO.: 123461

DATE: 8/08/07 **TOC ELEV.:** 1822.8 **GS ELEV.:** 1820.6

LOGGED BY: J. Choynowski

		ER: 66.65	HO	LE DIAMETER: 6 Inch HOLE NO.	: 48MV	V06	Г
CL Red brown clay, low plasticity, little silt. 2° PVC well pipe. Same as above with some coarse gravel. CL-Yellowish brown clay & silt, some coarse sand and gravel. SW Strong brown fine to medium sand, little gravel. SW SW Yellowish brown gravel & sand w/ some silt and some olive saprolite, very weathered. ROCK Olive & yellow brown saprolite, very weathered. ROCK 2.5yr 6/6 olive yellow dolomite. Top of sand filter layer. Top of well screen, 0.010" slot.		SAMPLER SYMBOLS	uscs	DESCRIPTION	Sample Number	Recovery	Water Content
GC Same as above with some coarse gravel. 1804	- - - - -		CL	Red brown clay, low plasticity, little silt. 2" PVC well pipe.			
CL-ML Yellowish brown clay & silt, some coarse sand and gravel. SW Strong brown fine to medium sand, little gravel. GW-Yellowish brown gravel & sand w/ some silt and some olive saprolite. ROCK Olive & yellow brown saprolite, very weathered. ROCK 2.5yr 6/6 olive yellow dolomite. Top of sand filter layer. Top of well screen, 0.010° slot.	- - - - 11 - - -		GC				
CL-ML SW Strong brown fine to medium sand, little gravel. 30 Sw Yellowish brown gravel & sand w/ some silt and some olive saprolite. ROCK Olive & yellow brown saprolite, very weathered. ROCK 2.5yr 6/6 olive yellow dolomite. Top of sand filter layer. Top of well screen, 0.010" slot.	1804 —			20			
SW Strong brown fine to medium sand, little gravel. Yellowish brown gravel & sand w/ some silt and some olive saprolite. ROCK Olive & yellow brown saprolite, very weathered. **ROCK Olive & yellow dolomite.** Top of sand filter layer. Top of well screen, 0.010" slot. **Top of well screen, 0.010" slot.	22			Yellowish brown clay & silt, some coarse sand and gravel.			
ROCK Olive & yellow brown saprolite, very weathered. ROCK Olive & yellow brown saprolite, very weathered. ROCK Olive & yellow dolomite. Top of sand filter layer. Top of well screen, 0.010" slot.	1793 —		SW	Strong brown fine to medium sand, little gravel.			
ROCK Olive & yellow brown saprolite, very weathered. ROCK 2.5yr 6/6 olive yellow dolomite. Top of sand filter layer. Top of well screen, 0.010" slot.	_ _ _ _ 33			Yellowish brown gravel & sand w/ some silt and			
ROCK 2.5yr 6/6 olive yellow dolomite. Top of sand filter layer. Top of well screen, 0.010" slot.	-		ROCK	Olive & yellow brown saprolite, very weathered.			
Top of sand filter layer. Top of well screen, 0.010" slot.	-		BOCK				
1749	1760 —			Top of sand filter layer. 58			
77	-						
ROCK Bottom of screen and well.	- 77 - -		ROCK				

FIGURE NO.

Shaw Environmental, Inc. -

DRILL HOLE LOG DRILL HOLE NO.: 48MW07

PROJECT: WPA 019 Groundwater Investigation

CLIENT/OWNER: RFAAP

HOLE LOCATION: RFAAP Radford, VA

DRILLER: Bedford Well Drilling
DRILL RIG: T3 Air Rotary
DEPTH TO WATER: 48.24

PROJECT NO.: 123461

DATE: 8/07/07 **TOC ELEV.:** 1833.7 **GS ELEV.:** 1830.7

LOGGED BY: J. Choynowski

DEPTH 7	TO WAT	TER: 48.24	НО	LE DIAMETER: 6 Inch HOLE NO.	: 48MW	707	
ELEVATION /		SOIL SYMBOLS, SAMPLER SYMBOLS	USCS	DESCRIPTION	Sample Number	Recovery	Water Content
DEPTH 0 1828.5		AND FIELD TEST DATA	CL- ML	4" Protective case. Yellowish red clay & silt. 2" PVC well pipe.	Trainis s		
1817 —	.5		SM SW- SC	Red brown silt & fine sand. 15 Yellow brown fine sand, little silt, little coarse			
1805.5			ML CL- ML	gravel. 20 Strong brown silt, little weathered saprolite. 25 Pale olive clay & silt. 30			
1794	5		ROCK ROCK ROCK	Competent saprolite, olive. 35 Redish brown shale. 40 Green shale.			
1782.5			ROCK	Yellowish brown shale. Pale brown. Top of sand filter layer.			
1771 —	.5			Olive. Red brown. Top of well screen, 0.010" slot.			
1759.5				Olive brown, dust stopped. Pale olive. Dark olive.			
	.5			Bottom of screen and well.			

FIGURE NO.

Shaw Environmental, Inc.

DRILL HOLE LOG DRILL HOLE NO.: 49MW01

PROJECT: WPA 019 Groundwater Investigation **CLIENT/OWNER:** RFAAP

HOLE LOCATION: RFAAP Radford, VA

DRILLER: Bedford Well Drilling
DRILL RIG: T3 Air Rotary
DEPTH TO WATER:

PROJECT NO.: 123461

DATE: 8/09/07 **TOC ELEV.:** 1826.4 **GS ELEV.:** 1823.98

LOGGED BY: J. Choynowski

ELEVATI	21. /							
		WELL	SOIL SYMBOLS, SAMPLER SYMBOLS	USCS	DESCRIPTION	Sample Number	Recovery	Water Content
DEPT	Ή	DETAILS	AND FIELD TEST DATA			Number		Content
1819 —	— 0 - -			ML ML CH- MH CL-	4" Protective case. 0 10yr 5/4 yellow-brown silt with roots. 1 2" PVC well pipe. 4 10yr 5/6 yellow-brown silt, little rock. 8 2.5yr 5/8 red clay & silt, trace(+)fine sand.	A B		
1802 —	- 17 - -			GW- GW- GW- GM ML	No splitspoon. 2.5yr 5/8 red clay & silt, little(-) very fine sand. 2.5yr 7/6 Reddish yellow gravel, some sand & silt w/ little 2-3" diameter cobbles. Same as above No splitspoon. 2.5yr 6/7 Olive yellow silt, soft, little(-) clay.	С		
1785 — - -	- 34 - -			ML CL- ML	2.5yr 6/8 olive yellow silt with some clay, little(-) cobble, some very fine sand. 40 Yellowish brown silt & clay.			
1768 —	51 -							
1751 — - -	68 -			ROCK	Competent rock, bedrock, pale brown to olive brown.			
1734 — -	85 -				Top of sand filter layer. Top of well screen, 0.010" slot.			
1717 — - -	- 102 - - -			ROCK	Olive yellow, damp.			
1700 —	- 119 - - -			ROCK	Bottom of screen and well.			

FIGURE NO.

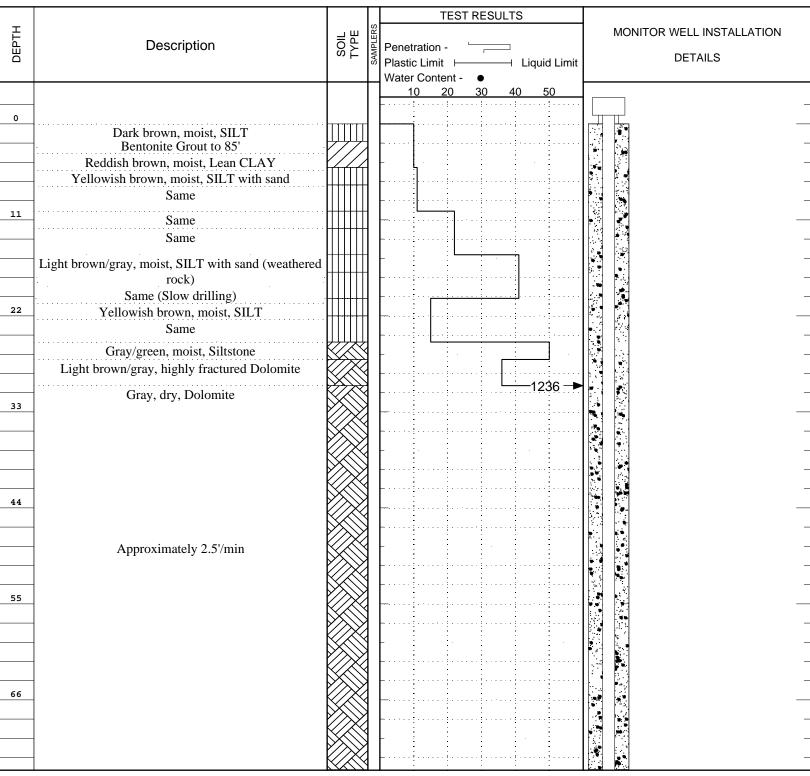
Shaw Environmental, Inc.

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel


DRILLING METHOD: Track Mounted Rig DEPTH TO WATER> INITIAL: 99

PROJECT NO.: 123461 **DATE:** 4/16-4/17/13

ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 89

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

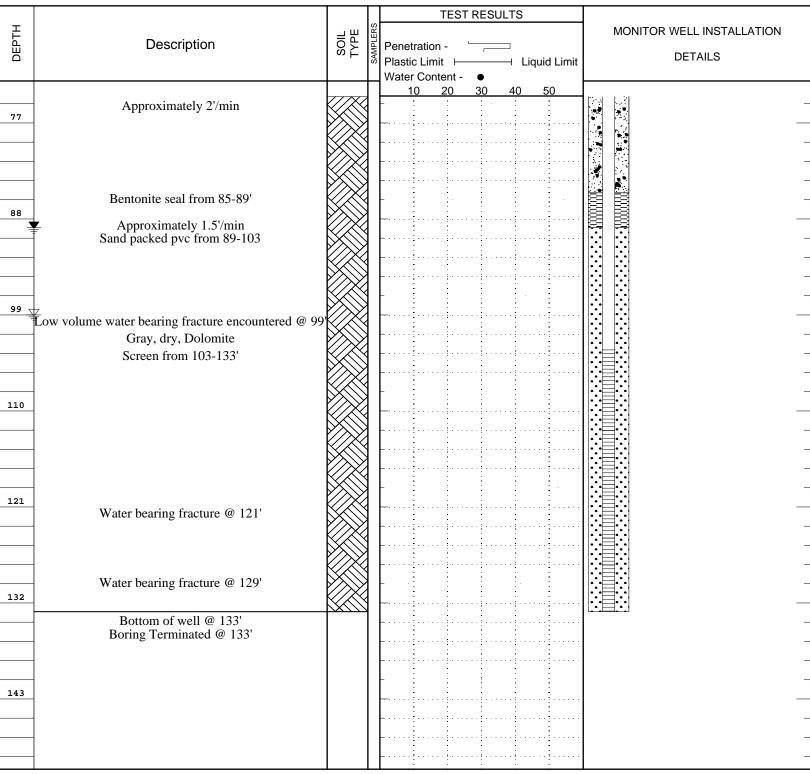
Figure PAGE 1 of 2 Shaw Group

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel


DRILLING METHOD: Track Mounted Rig **DEPTH TO WATER> INITIAL:** 99

PROJECT NO.: 123461 **DATE:** 4/16-4/17/13

ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 89

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

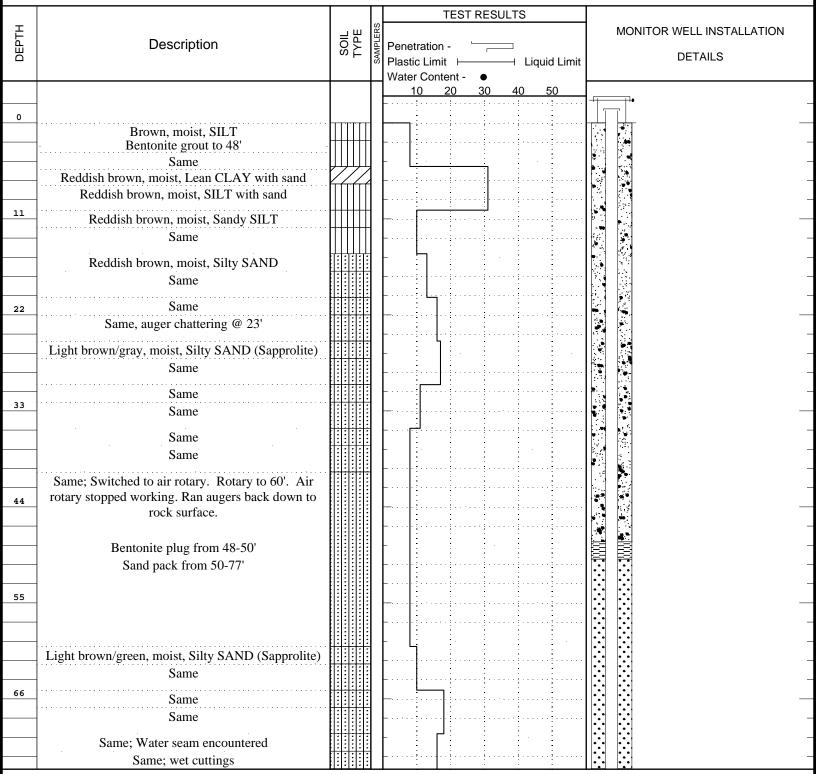
Figure PAGE 2 of 2 Shaw Grou

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel


DRILLING METHOD: Track Mounted Rig **DEPTH TO WATER> INITIAL:** 100

PROJECT NO.: 123461 **DATE:** 4/12-4/15/13

ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 96

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

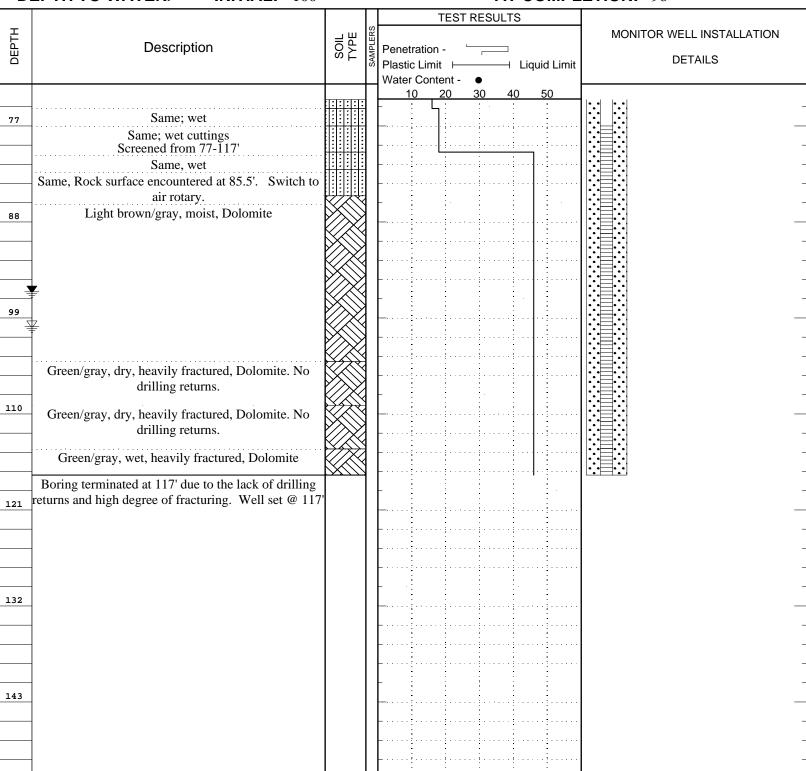
Figure PAGE 1 of 2 Shaw Group

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel


DRILLING METHOD: Track Mounted Rig **DEPTH TO WATER> INITIAL:** 100

PROJECT NO.: 123461 **DATE:** 4/12-4/15/13

ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 96

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

Figure PAGE 2 of 2 Shaw Group

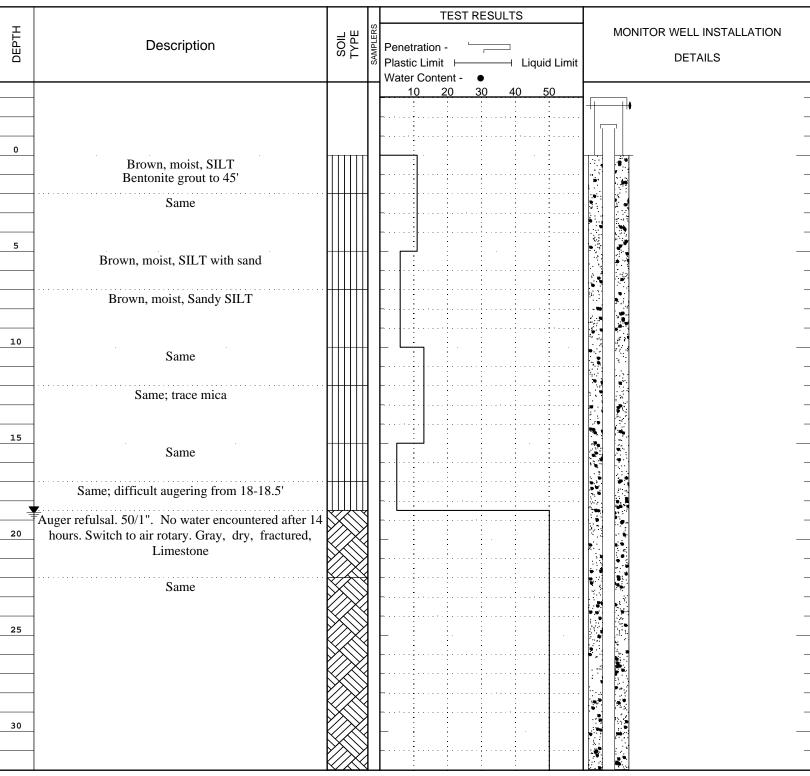
PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel

DRILLING METHOD: Truck Mounted Rig **DEPTH TO WATER> INITIAL:** 57


PROJECT NO.: 123461

DATE: 4/8-4/9/13

ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 18.6

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

PAGE 1 of 3 Figure Shaw Group

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel

DRILLING METHOD: Truck Mounted Rig DEPTH TO WATER> INITIAL: 57

PROJECT NO.: 123461

DATE: 4/8-4/9/13

ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 18.6

	LI III IO WAILK INIIIAL. 37				<i></i>			LIION. 16.0
_			S	TEST RESI	ULTS	S		MONITOD WELL INOTALLATION
DEPTH	Description	SOIL	PLER	Penetration -	_			MONITOR WELL INSTALLATION
DE		ς Έ	SAMPLE	Plastic Limit	\equiv	Liquid	Limit	DETAILS
			Ц	Water Content -				
		V/AV	, 1	10 20 30	4(50	0	I Waliner I
	Same, competent (no fractures)							
		\mathbb{K}						
35					•	1		
					:	1	*	
								저 [4]
				F:				
40		\mathbb{K}		<u> </u>	• • • • • •			
				 i	:			
				 -		.		
	Same, competent (no fractures)			_	:			
		\mathbb{K}		L	:			
45				<u>L</u>				
	Bentonite seal from 45-48'				:	İ		
					:	İ		
	Sand pack around PVC riser from 48-50'				• • • • •			
				:				∴ ∴
50	Screened from 50-70'	\mathbb{K}			:			
								:: ::
	Same I am adam a material basis of fractions at 52.5!	\times		- ! !				:: ::
	Same, Low volume water bearing fracture at 52.5'. No significant water accumulation after 1 hour.				:]		
	140 significant water accumulation after 1 nour.							
55								
7					•	. 1		
-	-							
		\mathbb{K}/\mathbb{X}		[: : : : : : : : : : : : : : : : : : :				:: ::
60				<u> </u>	:			:: ::
				<u></u>				
				<u> </u>				::: :::
	Gray, dry, competent (no fractures) Limestone. Water	 		}	•			:: ::
	bearing fracture encountered @ 60'			 				:: ::
	The state of the s			- iii	:			:: ::
65				<u> </u>	:			
		XXXX		L iiii	:			<u>::</u> ::
		\mathbb{Z}	Ш					<u> -:-</u> =::
1								

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

Figure PAGE 2 of 3 Shaw Group

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel

DRILLING METHOD: Truck Mounted Rig DEPTH TO WATER> INITIAL: 57

PROJECT NO.: 123461

DATE: 4/8-4/9/13 **ELEVATION:**

LOGGED BY: J. Hillebrand

AT COMPLETION: 18.6

וט	EPINIO WATER> INITIAL: 3/		AT COMPLETION: 18.0
			TEST RESULTS
рертн		I I	
F	Description	SOIL	Penetration -
	•	° ←	Plastic Limit DETAILS
			Water Content - •
			10 20 30 40 50
		XXX	
			₹
		\mathbb{K}	₹L
70		KKK	
70	Well set @ 70'	\mathbb{K}/\mathbb{K}	₹ :
	Well set @ 70' Borehole backfilled from 70-72' with sand.		}
		\mathbb{Z}	
	Boring terminated at 72'.		
			-
75			
			-
80			
			-
85			
85			
			-
90			
			-
95			<u> </u>
			-
			<u>-</u>
100			
100			<u> </u>
			* *

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

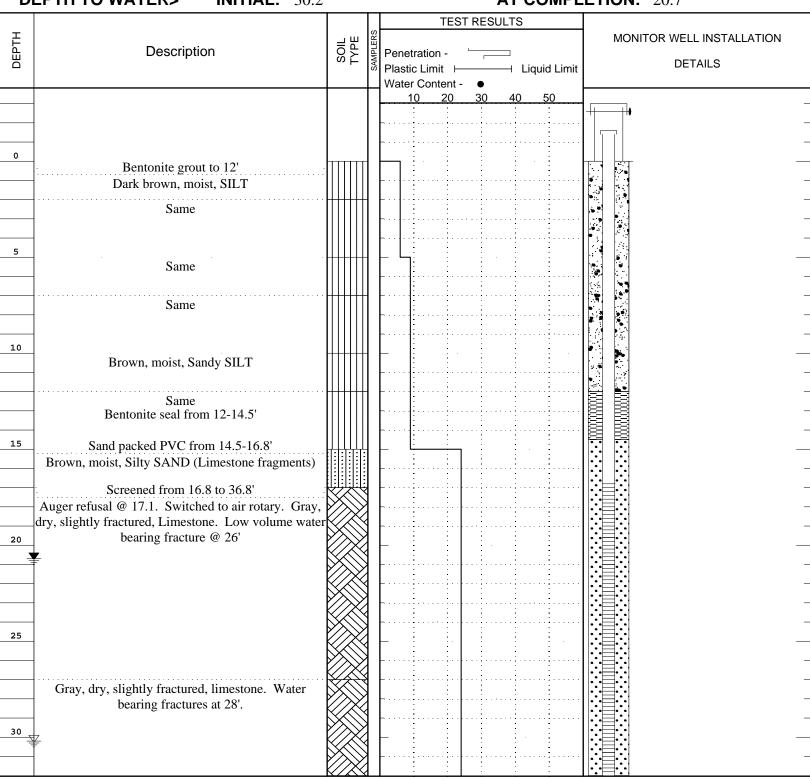
Figure PAGE 3 of 3 Shaw Group

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel


DRILLING METHOD: Truck Mounted Rig **DEPTH TO WATER> INITIAL:** 30.2

PROJECT NO.: 123461

DATE: 4/10/13 ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 20.7

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

Figure PAGE 1 of 2 Shaw Group

PROJECT: SWMU 48/49 MNA

CLIENT:

LOCATION: SWMU 48/49 MNA

DRILLER: Arnold Chapel

DRILLING METHOD: Truck Mounted Rig **DEPTH TO WATER> INITIAL:** 30.2

PROJECT NO.: 123461

DATE: 4/10/13 ELEVATION:

LOGGED BY: J. Hillebrand

AT COMPLETION: 20.7

ט ן	EPTH TO WATER> INITIAL: 30.2	2	AT COMPL	ETION: 20.7
рертн	Description	SOIL	TEST RESULTS Penetration -	MONITOR WELL INSTALLATION DETAILS
35	Boring terminated @ 37'. Well set @ 36.8'		Water Content - ● 10 20 30 40 50	
40				
50				- - - - -
55				- - - - - -
65				- - - -

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

Figure PAGE 2 of 2 Shaw Group

DRILL HOLE LOG DRILL HOLE NO.: 50MW02

PROJECT: WPA 019 Groundwater Investigation **CLIENT/OWNER:** RFAAP

HOLE LOCATION: RFAAP Radford, VA

DRILLER: Bedford Well Drilling
DRILL RIG: T3 Air Rotary

PROJECT NO.: 123461

DATE: 8/09/07 **TOC ELEV.:** 1809.6 **GS ELEV.:** 1807.2

LOGGED BY: J. Choynowski

DEPTH T	TO WAT	ER: 115.9	НО	LE DIAMETER: 6 Inch HOLE NO.		/02	
ELEVATION / DEPTH		SOIL SYMBOLS, SAMPLER SYMBOLS	USCS	DESCRIPTION	Sample Number	Recovery	Water Content
1802	DETAILS	AND FIELD TEST DATA	CL- ML	4" Protective case. 0 Red brown silt & clay. 2" PVC well pipe.			
1785			ML CL- ML	Red brown silt, trace coarse gravel. Red brown silt, little (-) clay.			
1768			CL- ML CL- ML	Brown silt, some (-) clay, low plasticity. Yellow brown silt & clay, low plasticity. 30			
1751			ROCK	Pale brown to olive brown. Competent rock.			
1734 —							
1717 —		/X///	ROCK ROCK				
1700 —	2						
1683			ROCK	Bottom of screen and well.			
+							

FIGURE NO.

Shaw Environmental, Inc. -

KEY TO SYMBOLS

Symbol Description

Strata symbols

Silt

Inorganic silts and clays

Silty low plasticity clay

Well graded gravel with silt

Generic rock

Low plasticity organic silts

Well graded gravel and sand

Variable gravel and silty sand mix

Clayey sand

Silty gravel

Low plasticity clay

Silty sand

Clayey gravel

Well graded sand

Dolomite

Notes:

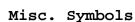
- Borings were drilled on 8/10/07 using a 6-inch diameter air rotary T3 drill rig.
- These logs are subject to the limitations, conclusions, and recommendations in this report.

Symbol Description

Well graded sand with clay

Shale

Clayey sand and gravel


Shale and dolostone.

Limestone

Limestone and dolostone.

Boring continues

Water table at boring completion

Monitor Well Details

Capped riser with locking cover

Bentonite pellets

Silica sand, blank PVC

Slotted pipe w/ sand

M. W. C. S. M. C. C. D. S. C.	0. CS & 15 / 15 / 15 / 15 / 15 / 15 / 15 / 15	6:30 Per Baber Softel	bde + KiMp Salely)			DS.67	2 0 2 0	2,99	47.86	195.41 105.94	20 00 00 00 00 00 00 00 00 00 00 00 00 0	57.3(1	
		1 1	75 3	and property		3 3	USW (VSW)	45 MM 2	اندا	9950000	49mmo2	49mmol	2 COMW	

and the same	33
to Pist is the alless the	2
2 pms chart Call 22d . Orall parameter	This temp card Do ON They are
4	رة - تو
Second Second	4,63 6.90 5.9 -13
i	4,60 6,90 62 -13
A SS. 100 2017	(الآلا)
The second with the contraction of the contraction	1271 -809 4.48 6.90 4.5 -17-
25 130 684 5.36 7.39 29	12.69 .8N
240 . 689 5.25	
120 690 4.02 7.46 3.8	1813 4.44
19.00 147 583 APS 0.01	.813 4.64
12.39 639 371 7.96 6.1 -44	well Stolds @ 110. Gleded savoles
12.40 .689 3.65	, c's
12.0 629 3.64 7.46 00 -44	Personned During & mob to 40 40 most
12 50 . 689.	64211 purpos 1 8 32. Rup started @ 12:15.
Chell Stolle @ 9:35	1000 my Jaim
Calenda Sounder 935. Te = 6.2	Thing keep couch Do ply this one of
Actual on or mone to 13mms.	254 S. 61 7.05 804 376
	5
S. S. Shwa. Standown	
8. C. Sel @ 25' . Box	899 2. 13
	1240 13.23 .698 2.18 7.04 264 235 ""
8000	1245 13, 21 .67 2.15 7.04 17.6 230 "
	2.16 7.04
	7,021
	60
	Decen pung remote.

35	Single State of the G. Csemes		7-toiloge M	Radland Passed Security @ 7:30, 50 kg on	49 MINUS Calibrated how by 1-ATO BOTH	price of gament possed to evance, provided	7974	20 0 V	Set (2) (2) (2) (3) (4) (4) (4)	Pro- Blacked @ 8:45.	Think Temp of Care Our Analy DO 4	10.85 7.57 141 083 72.7 83.01	,580 90 327	9:00 B.15 7.43 .574 90 317 & 09:94	9:10 9:49 7.48 575 101 237 GA 100 52	8.55 7.43 .568 107 20 0	9.4 180	Ø	7,44 564 90 129 8	570 80 IOI 0	8.57 7.54 ,563 78 869	7.54 .568 6 798 Q.3	ø.	
34 Dople to down Stonesse avea	to obposit & 18 gallows purse worker	to the Samples	S. B. S.																					

This Thing ply could onto think 00 &	Time Town
78 45.2 Ø 10	7.05
10:30 8:57 7.53 .567 78 45.1 0 101.8	5 15.67 7:06 ,737 339 38.9
10:35 8.59 7.52 1567 77 45.0 \$ 101.67	1240 15,8 7105 .737 238 21,3 3.07 18,18
101.69	1245 5.68 7.05 .737 238 20,1 3.06 16,18
10:45 8.60 7.52 .567 17 45.2 \$ 101.69	- 621
10:50 8.59 7.52 ,567 77 45.2 0 101.69	j
After 2hr, well stabilize which) lected
0	@ 1355 : Collete 497moli.
Action and the second s	8
Morb to SOMWORD	- 3 - 3
Primo Set 0 118" 100ml/linin	S
Rup Ca @ 1135 Nally Autord	1 SMW2 h
PH CENTER CO	The Tene pl Cond one think to A
7,07 ,768 ;	6 7 55 SF 6
1145 502 7.05 .765 857 503 3,23 116,17	13.50 11,78 7,28 0.750 2851 33,5 5.05 98.06
1150 14,85 7.05 . 759 REI 387 3.25 116.12	752 285 23.1
1155 15.22 7.04 754 361 261 3.21 116,12	7,24 ,752 285
1900 1547 7.04 .751 255 208 3.15.116.14	1405 11.63 71.24 .753 284 20,1 4.35 78.06
1205 15.70 7.04 , 74/1 950 251 3.12 16.11	11/16 11.60 7.23 e754 282 160 4.25 98.07
7.03 Tyla, 183 349 135	11.57 724, 380 15.2 4,19 98.07
7.03 ,738	1400 11.54 7.24 .753 281 13.4 3.19 88.07
1312 15 63 700 737 233 969 3.01 1617	11,54 7.23 ,752 280 11.3
	11.54 7.83 .72 280 11.0 378 98.00
	82.89 YT.S 3.11 USZ 12T. 85.17 42.11 25.11

68	57	\$7 \\ \frac{1}{2} \\	7	Actal Tollage machine	intile standandis is	GEENAMENT CONTRACTORY OF CONTRACTORY	mo(8 do 1/49www33)	Purp 8 0 15! Our @ 100-1/min.	Arable dissipation of the	7070	10.36 7.63 .378 261 7800 9.81	13.36 7.67 379	7.75 ,385 279	8:30 1246 71.73 .385 293 841 9.77 106.25	7,73 3385 295	286 299	7,67 365 300	র	,386	302	3 SO.	GED BUMP OF MODELLE	
38		Wenter Calotte MX/MXV Law Sander	1e=0	After Sander Ware collected, Rusebank	REDIATION Was collected @ 1510																		

43	7/57/	702	V	MOB TO SHE CALLINGTON PTO a ULTIM	Bell perces of comments of the contraction of the c		Selection Hamaring & 800		Started @ 8:05 MIDEO		1	11,29 8:37 ,321 244 7800 1102	7800	7860	12120 8.26 126 251 7800 11.38	8.17 .213 264 344	8.13 1212 271	8.0% , 212 278 62.2	13.10 8.02 .212 279 54.0	 1211 278 28.	13.13 8.02 .21 278 14.5 10.9	12.3 802 -311 280 14.7 1018	ै इ	CLOSI stocke @ 9:25, Collected Sample, Fe- B
42		PANO (2) 110	State @ 1350		live temp pill cond one thus DO &	1 739 588 220 780	7.41 2586 809 56.3	7.43 .586 206 34.2	130, 17.	11.95 (.18 .581 195 17.68 2.10	1.49 .580 194 17.8 2.7	i	7.K 1580 1991	1580	well stable P 1430. Samples collected &		Whip & Mab Fran	Brummer 2 2000 Bay @ Oner 3 de						

Dear pure & Mobile Yearwork.

EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD

Name Kar Malante Sen. Company CBI Fed Sen. Address 4696 Milemium Dr. City Belcamp State, Zip MD AICH Phone Fax E-mail Kar, Malante SCBIFTNER Project No./Name:	Send Results to:
Name Company Address . City State. Zip Phone Fax Fax Sampler's (Signature):	Send Invoice to:
VOC (HCL) Anion Toc (HCL)	Aṇalysis Requirements:
VOA Headspace Y N Field Filtered Y N Correct Containers Y N Discrepancies Y N Cust Seals Intact Y N Containers Intact Y N Arrbill#	b Use Only:

25440

EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD SHIP TO: 621 Mainstream Drive, Suite 270 • Nashville, TN 37228 • 877-345-1113 • (fax) 866-417-0548

_								٦						,	<u> </u>					_	.
Distribution Original and ye	Received for Laboratory by 13		Reimoushed by (Signature)	Relinquished by (Signature)				T OCE		2	1, 50	1, 20		Lab Use Only Lab #	Project No /Name.	E-mail	те	State 7m 20 3	Address 4696 Milkmum		Send Results to:
low copies a	- (>ignature)			-3			<i>কি</i>)শ35	काटा प्य	ļ.,	1/27 Jass	1/25 1825	(Sec) (4)	167 8:00	Date/Time Sampled				221	AUM OF	1	
ple sh:pm	p.() (h%)	ļ	Date/Time Received B	Date/Time Received By	l		497moz	RBOIRTIN	45MWS	49mo	SOMWOS	اده	True Blanc 14-0842	Sample Description	Sampler's (Signal for	E-mail	Phone	City	Address	Name	Send Invoice to:
laboratory,	d		Received Bv (Signature)	y (Signature)			- ام اح اح		3	30	SW	Sw	6W	Sample Matrix	, i						
Pink retains						_	\(\frac{\gamma}{p}\)	3 2 1	963	3 2 1	321	3 2	2		V R	٥	- (I	اري اري)		
Pink retained by samplers				REMARKS:					W	~	_					- - -		hsc	 \(\frac{\chi}{\chi}\)		Analysis Require
į				- - - -		· 			-								- 		 		Requirements:
									Ms/ms0	-				Comments	CAR #	Airbili#	Containers intact	Discrepancies	Correct Containers	VOA Headspace	Lab
	Shipped By Turnaround	Date Shipped	Page _/			-	† 		<u></u>	7	7	7	رم	No of Bottles			≺ ~	< ~	~ ~	: ~	ab Use Only:
	Shipped By ON Turnaround Howard	12/1 mg/	_ ˈ. _ g	Details	·									Lab Use Only Containers/Pres			Z Z	zz	zz	Z	
	7_	17 17	_		ĺi			,			ĺ	- 1		ã 🛬			ZZ	Z Z	Z Z	¥	, 1

EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD

25453

11

SHIP TO: 621 Mainstream Drive, Suite 270 + Nashville, TN 37228 + 877-345-1113 + (fax) 866-417-0548

Distributiony Original and yellow co	Of les	Received for Laboratory by: (Signature)	•	Refination by: (Signature)	Sall Sall Sall Sall Sall Sall Sall Sall	Relinquished by: (Signature)	•			05 hs 1	<u>L</u>	006184 ED	1/2	0 hs c	Lab Use Only Date/Time Lab # Sampled	Project No./Name: SwMU 48/99	E-mail	Fax	State, Zip MU &iqi4		Address 4696 Millemium Dr	Company Cost fol Sev.	ᆝᅎ
opies acc¢mpa ň y sample shipment≀		re) Date/Time: Temperature:		Date/Time: Received	1/28 4,00	Date/Time: Received				ے ا	320 49MWOI	l	100 This Black 140840	895 49MWO3	Time Sample Description	Sampler's (Signature):	E-mail	Fax Fax			اج	Company	
to laboratory; Pink V:∖Star	<u>د</u> -			Received By: (Signature)		Received By: (Signature)				w	GW 3	w	0 Gw 2	Sw3	Sample Matrix	Vc	<u>ا</u> کد_		<u>N</u> <	رخر 			
; Pink retained by samplers. 5 V:\Standard Operating Procedures\Current SOP File Directory\Forms\QS10_R19_20120907_Chain of Custody.do\overline{\text{V}}.						REMARKS:				82		2 -				Rs An To	0		THC THC) 			Analysis Requirements:
P File Directory\Forms\QS10_R19_20	ī	S	0	ç	פ						•		1		Comments	CAR #:	Airbill #:	Containers intact	Cust. Seals Intact	Discrepancies	Correct Containers	Field Filtered	Lab Us
0120907_Chain of Custody.doδ	urnaround Stownbyrd	hipped By N	ate Shipped 1/28/15	coler No of	age of	Details:				7	1	7	,	3	No. Lab Use Only of Containers/Pres.				z	Z	Z :	× ×	;; :

|SOUS | EMPIRICAL LABORATORIES, LLC - CHAIN OF CUSTODY RECORD

	>
C)
C.)
	ر
\circ	7

11

Received for Laboratory by; (Sighature)	Relinduished by: (Signature)	Sulf	Relinquished by (Signature)			- M	SH21 19/1 HO	U5 1/2 1/30	ے ا	7	Lab# Sampled	Lab Use Only Date/Time	No./Name:	Fax	Phone	Com a	Address 4696 Millerman Dr	any COIL fed. Je	Name Eng Malayets	Send Results to:
Date/Time: Temperature: 83 S	Date/Time: Received By: (Signature)	0	Date/Time: Received By: (Signature)				ADWOI	A Survivor	(ICM)	Kwashland	0	Sample Description	Sampler's (Signature)	E-mail	Phone	State Zin	Address	Company	Name	Send Invoice to:
Temperature: / / Pink retained by samplers.	(Signature)		(Signature) REMARKS:				0	2 (Sample	VC RS Ani TO TA CC		(N. (N.	EL))			Analysis Requirements:
Turn	Date Ship	Page					C	7	7	V	0	No. Comments of Bottles	CAR #:	Airbill #:	Containers Intact	Cust. Seals Intact	Discrepancies	Correct Containers	VOA Headspace	Lab Use Only:
Turnaround Standard 1501134	N.C. 1/19	of of	Details:									Lab Use Only Containers/Pres.			z	Z	z	Z Z	z z	2

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017

Tel: +1 (410) 273-7100 Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Empirical Laboratories, LLC; SDG 1501102

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 26, 2015. Samples were analyzed for the chloride, nitrate, and sulfate using USEPA SW-846 9056A. A total of four aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
13MW3	1501102-01	13MW2	1501102-04
49MW04	1501102-02	13MW4	1501102-05

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 1501102

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/26/15, the cooler was received by the laboratory (Empirical) on 01/27/15 at 3.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: Samples were collected on 01/26/15. The samples were prepped and analyzed on 01/27/15 for sulfate and nitrate analysis and on 01/27/15 and 02/03/15 for chloride analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 – blank 5 – standards (r≥0.995 or r²≥0.99) ICV/CCV (90-110%) Method Reporting Limit (MRL) (50-150%)

• Chloride, sulfate, and nitrate analysis was calibrated on 12/16/14 using linear equation techniques. All correlation coefficients were ≥0.995 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
01/27/15	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/27/15	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/27/15	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/03/15	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/27/15	Chloride	5A27016-BLK1	0.384	1.92	None
01/27/15	Sulfate	5A27016-BLK1	<½MRL	NA NA	None
01/27/15	Nitrate	5A27016-BLK1	<½MRL	NA NA	None
02/03/15	Chloride	5B03415-BLK1	<½MRL	NA	None
01/28/15	Chloride	RB012715	<½MRL	NA	None
01/28/15	Sulfate	RB012715	<1/2MRL	NA	None
01/28/15	Nitrate	RB012715	<½MRL	NA	None

J = Estimated Value >MDL and <MRL

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits: 80-120%

- Sample 5A27016-BS1 was used as the aqueous LCS for chloride, sulfate, and nitrate analysis on 01/27/15. All criteria were met. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) [excluding chloride for sample 13MW2 (1501102-04)] apply to this LCS.
- Sample 5B03415-BS1 was used as the aqueous LCS for chloride analysis on 02/03/15. All criteria
 were met. No qualifiers were applied. Sample 13MW2 (1501102-04) applies to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤25%RPD).

• No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions: 80-120%; RPD≤20%

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No site field groundwater sample duplicate pair was analyzed for chloride, sulfate, and nitrate analysis in this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 13MW3 (1501102-01), sulfate

```
Y = mX + b

Y = Sample Area
m = slope of curve
X = Concentration (mg/L)
b = Y-intercept
DF = Dilution Factor

Given:
m = 0.202746
b = 0.0
Y = Area = 25.5384561
DF = 1

X = 126 mg/L * DF = 126 mg/L * 1 = 126 mg/L

Reported concentration = 126 mg/L
%D = 0.0%
```

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation – Total Organic Carbon Empirical Laboratories, LLC; SDG 1501102

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 26, 2015. Samples were analyzed for Total Organic Carbon (TOC) using USEPA SW-846 9060A. A total of four aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
13MW3	1501102-01	13MW2	1501102-04
49MVV04	1501102-02	13MW4	1501102-05

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
·	Х	Field Duplicate
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

2 / 17 / 15

Date

RFAAP VALIDATION REPORT TOC REVIEW SDG 1501102

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/26/15, the cooler was received by the laboratory (Empirical) on 01/27/15 at 3.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The samples were collected on 01/26/15. The TOC analysis was run on 01/27/15. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC: 1 - blank

5 - standards (r≥0.995) ICV/CCV (80-120%)

• The TOC analysis was run on 01/27/15. The initial calibration for TOC was analyzed on 01/19/15 with a coefficient of determination of 0.9996. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
01/27/15	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/27/15	TOC	5A27017-BLK1	<1⁄₂MRL	NA	None
02/05/15	TOC	RB012714	<½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (80-120%).

 Sample 5A27017-BS1 was used as the aqueous LCS for TOC analysis on 01/27/15. All criteria were met. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) apply to this LCS.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (75-125%; RPD≤20%).

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤20%RPD).

 No aqueous laboratory duplicate was analyzed for TOC with this SDG; therefore, it was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No site field groundwater sample duplicate pair was analyzed for TOC analysis in this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

• Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 5A27017-BS1, TOC

TOC: Y = m*X (mg/L) + b m = 11.56 b = 0.00 Y = 311.6 DF = 1

TOC (mg/L) = X = (26.96 mg/L) * 1 = 26.96 mg/L

Reported Value = 26.96 mg/L % Difference = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
1	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Poim I Copy

ANALYSIS DATA SHEET

13MW3

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501102</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID:

<u>1501102-01</u>

Sampled: <u>01/26/15 09:25</u>

Received:

01/27/15 08:45

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	3.88	0.170	0.330	0.500	1		SW9056A	5A27016	01/27/15 19:14
14797-55-8	Nitrate as N	1,66	0,0330	0.100	0.250	1	Andrews Co.	SW9056A	5A27016	01/27/15 19:14
14808-79-8	Sulfate as SO4	126	0,330	1,00	2.50	1		SW9056A	5A27016	01/27/15 19:14
7440-44-0	Total Organic Carbon AVG		1,25	2.50	3.00	1	U	SW9060A	5A27017	01/27/15 17:41

ANALYSIS DATA SHEET

49MW04

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501102</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID:

<u>1501102-02</u>

Sampled: <u>01/26/15 09:35</u>

Received:

01/27/15 08:45

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	5,16	0.170	0,330	0.500	1		SW9056A	5A27016	01/27/15 19:32
14797-55-8	Nitrate as N	0.249	0.0330	0,100	0.250	1	J	J SW9056A	5A27016	01/27/15 19:32
14808-79-8	Sulfate as SO4	53,6	0,330	1,00	2.50	1		SW9056A	5A27016	01/27/15 19:32
7440-44-0	Total Organic Carbon AVG		1,25	2.50	3.00	1	U	SW9060A	5A27017	01/27/15 18:03

ANALYSIS DATA SHEET

13MW2

Laboratory: <u>Empirical Laboratories, LLC</u>

SDG: <u>1501102</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID:

1501102-04

Sampled: <u>01/26/15 11:10</u>

.

.....

Received: 01/27/15 08:45

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	2,75	0.170	0.330	0.500	1		SW9056A	5B03415	02/03/15 15:42
14797-55-8	Nitrate as N	0,0715	0.0330	0.100	0.250	1	J	J SW9056A	5A27016	01/27/15 19:50
14808-79-8	Sulfate as SO4	45.9	0,330	1.00	2.50	1	***************************************	SW9056A	5A27016	01/27/15 19:50
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5A27017	01/27/15 18:26

ANALYSIS DATA SHEET

13MW4

Laboratory: Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client: <u>CB&I</u>

Project:

 $\underline{Radford\,AAP}$

Matrix: Water

Laboratory ID:

<u>1501102-05</u>

Sampled: <u>01/26/15 11:20</u>

Received:

01/27/15 08:45

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	11.5	0.170	0.330	0,500	1		SW9056A	5A27016	01/27/15 20:07
14797-55-8	Nitrate as N		0.0330	0.100	0.250	1	U	SW9056A	5A27016	01/27/15 20:07
14808-79-8	Sulfate as SO4	23.8	0,330	1.00	2.50	1		SW9056A	5A27016	01/27/15 20:07
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5A27017	01/27/15 18:49

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Methane, Ethane, and Ethene

Empirical Laboratories, LLC; SDG 1501102

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 26, 2015. The samples were analyzed for methane, ethane, and ethene using laboratory method RSK-175. A total of four aqueous samples were validated. The sample lds are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
13MW3	1501102-01	13MW2	1501102-04
49MW04	1501102-02	13MW4	1501102-05

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified Data		Parameter				
Yes	No					
	Х	Holding Times and Preservation				
X		Initial Calibration				
		Continuing Calibration				
	Х	Blank Analysis				
	Х	Laboratory Control Sample				
	Х	Matrix Spike and Spike Duplicate				
	Х	Field Duplicate				
	Х	Quantitation Verification and Data Review				

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

2/17/15

Date

RFAAP VALIDATION REPORT DISSOLVED GASES REVIEW SDG 1501102

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For methane, ethane, and ethene, aqueous samples are cooled @ 4° C \pm 2° C; the maximum holding time is 7 days un-preserved and 14 days preserved to pH<2 with HCI from sample collection to analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/26/15, the cooler was received by the laboratory (Empirical) on 01/27/15 at 3.7°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The aqueous samples were collected on 01/26/15. They were prepped and analyzed for the dissolved gases on 02/04/15. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the calibration factors on which the quantitations are based. If linear regression is used for quantification, the correlation coefficient must be \geq 0.995 for linearity fit (DoD QSM). If calibration factor method is used, the %RSD should be \leq 20% (DoD QSM). All ICVs should be within 80-120% recovery limits (DoD QSM).

• For initial calibration performed on 11/30/14 on instrument GL-GCVOA, all target compounds were within criteria (%RSD≤20%%; RRF≥0.05) except for the following. Target compound methane (27.9%) was outside criteria. Methane (r²=0.9991; quadratic) was quantified using second order regression with coefficient of determination r²≥0.99; therefore, no qualifiers were applied based upon this outlier. All other target compounds were quantified using calibration factor method. All criteria were met. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) apply to this initial calibration.

III-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. If calibration factor method is used, the percent difference (%D) should all fall within the control criteria of $\leq 20\%$ (DoD QSM). All CCVs should be within 80-120% recovery limits (DoD QSM).

- For initial calibration verification for methane, ethane, and ethene performed on 12/01/14 @00:44 on instrument GL-GCVOA, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this initial calibration verification.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @11:47 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) apply to this continuing calibration.

• For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @15:11 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this continuing calibration.

IV-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L.	Action Level μg/L	B qualified samples (For this SDG)
02/04/15	5B04002-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	All target <1/2MRL	NA	NA	None

MRL = Method Reporting Limit

NA = Not Applicable

V-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. DoD LCS aqueous recovery limits are specified in the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. Percent recoveries (%Rs) should be within the specified control limits.

Sample 5B04002-BS1 was used as LCS for methane, ethane, and ethene analysis performed on 02/04/15. All criteria were met. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), 13MW2 (1501102-04), and 13MW4 (1501102-05) apply to this LCS.

VI-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. DoD QSM MS and MSD recovery limits use the LCS criteria, which currently is the use of in-house specified limits (DoD, 2010).

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established in the Groundwater Monitored Natural Attenuation (GWMNA) QAPP at 50% RPD for the aqueous samples.

 No field groundwater sample duplicate pair was collected within this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results was verified and data results reviewed. The following was determined:

- The percent difference (%D) between the calculated and the reported values should be within 10% through the calculation from the raw data provided. The calculation verification was confirmed within 10% difference.
- Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 5B04002-BS1, ethane

Conc. $\mu g/L = (((Vhs*(Ax/CF))/Vs*Density)+((Ax/CF)/HLC)*55.5/1.137*(MW*1000))*DF$

Where:

Ax = Area of characteristic ion for compound being measured.

CF = Average relative calibration factor for compound being measured (from ICAL)

MW = molecular weight of analyte = 30.0 ug/umol

DF = dilution factor 1

Vhs = Volume of headspace = 5.5 mL Vs = Volume of sample = 0.015 L Density = 0.64356M,1.1262Ee,or 1.2067Ea

HLC = Henry's Law Constant = 44900M,12700Ee, or 34200Ea

Conc. μ g/L = $(((5.5*(561935/550513.3))/0.015*1.2067)+((561935/550513.3)/34200)*55.5/1.137*(30*1000))*1 = 495.3 <math>\mu$ g/L

Reported Value = 495.3 μg/L

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition				
Laboratory Qualifiers ¹					
No Code	Confirmed identification.				
U	Undetected at the limit of detection: The associated data value				
	is the limit of detection, adjusted by any dilution factor used in the analysis.				
J	Estimated: The analyte was positively identified; the quantitation				
	is estimation.				
В	Blank contamination: The analyte was detected above one-half				
	the reporting limit in an associated blank.				
N	Non-target analyte: The analyte is a tentatively identified				
	compound (using mass spectroscopy).				
Q One or more quality control criteria failed.					
USEPA Region III Data Validation Qualifiers ²					
R	Unreliable result. Analyte may or may not be present in the				
	sample. Supporting data necessary to confirm result.				
В	Not detected substantially above the level of the reported in				
	laboratory or field blanks.				
J	Analyte present. Reported value may not be accurate or precise.				
UJ	Not detected, quantitation limit may be inaccurate or imprecise.				
N	Tentative Identification. Consider present. Special methods may				
	be to confirm its presence or absence in future sampling efforts.				
NJ	Qualitative identification questionable due to poor resolution.				
	Presumptively present at approximate quantity.				
K	Analyte present. Reported value may be biased high. Actual				
	value is expected to be lower.				
L	Analyte present. Reported value may be biased low. Actual				
	value is expected to be higher.				
UL Not detected, quantitation limit is probably higher.					

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

13MW3

Laboratory:

Empirical Laboratories, LLC

SDG:

1501102

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-01

File ID:

 $\underline{005F0501.D} \\ \\ Report.TXT$

GL-GCVOA

Sampled:

Prepared:

02/04/15 07:09

02/04/15 12:28

Solids:

01/26/15 09:25

Preparation:

RSK175

Analyzed: Dilution:

1

Calibration: <u>4335002</u> Instrument: Batch: 5B04002 Sequence: <u>5B03704</u>

CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane		1.00	2.00	4.00	U
74-84-0	Ethane		1.00	2.00	4.00	U
74-85-1	Ethene		1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

49MW04

Laboratory:

Empirical Laboratories, LLC

SDG: Project: 1501102

Client:

<u>CB&I</u>

Radford AAP

Matrix:

Water

Laboratory ID:

<u>1501102-02</u>

File ID:

006F0601.D\Report.TXT

Sampled:

01/26/15 09:35

Prepared:

02/04/15 07:09

Analyzed:

02/04/15 12:41

Solids:

Preparation:

RSK175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500)2	Instrument:	<u>GL-GCVOA</u>
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

13MW2

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-04

File ID:

 $\underline{007F0701.D \backslash Report.TXT}$

Sampled:

01/26/15 11:10

Prepared:

02/04/15 07:09

Analyzed:

02/04/15 12:55

Solids:

Preparation:

RSK175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500	<u>2</u>	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U_
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

13MW4

Laboratory:

Empirical Laboratories, LLC

SDG:

1501102

Client:

<u>CB&I</u>

<u>Water</u>

Laboratory ID:

Project: <u>1501102-05</u>

Radford AAP File ID:

008F0801.D\Report.TXT

Matrix: Sampled:

Prepared:

02/04/15 07:09

Analyzed:

01/26/15 11:20

02/04/15 13:09

Solids:

Preparation:

RSK175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	<u>433500</u>	2	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Volatiles

Empirical Laboratories, LLC; SDG 1501102

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 26, 2015. The samples were analyzed for volatile organic compounds (VOCs) using USEPA SW846 method 5030B/8260B for aqueous matrices. A total of seven aqueous samples (includes one trip blank) were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
13MW3	1501102-01	13MW4	1501102-05
49MVV04	1501102-02	49MW05	1501102-06
Trip Blank #14-0841	1501102-03	13MW5	1501102-07
13MW2	1501102-04		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, *Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Organic Data Review* (September 1994). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualif	ied Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Instrument Performance Results
	Х	Initial Calibration
	Х	Continuing Calibration
Х		Blank Analysis
	Χ	Laboratory Control Sample and Laboratory Control Sample Duplicate
	Х	Matrix Spike / Spike Duplicate Sample
	Χ	System Monitoring Compounds
	Χ	Internal Standards
	Х	Field Sample Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Data

RFAAP VALIDATION REPORT VOLATILES REVIEW SDG 1501102

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For aqueous samples, VOC compounds are shipped cooled (@4°C \pm 2°C) and preserved pH \leq 2 HCl with a maximum holding time of 14 days (7 days if no HCl) from sample collection to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/26/15, the cooler was received by the laboratory (Empirical) on 01/27/15 at 3.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: For the samples collected on 01/26/15, the aqueous VOCs were prepped and analyzed on 02/03/15. Sample collection and analysis dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check

The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, bromofluorobenzene (BFB), met the ion abundance criteria. No qualification was applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the relative response factors on which the quantitations are based. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be ≥ 0.05 for all other compounds. The DoD QSM specifies that the percent relative standard deviation (%RSD) must be $\leq 15\%$ for each target compound and must be $\leq 30\%$ for each calibration check compound. For compounds analyzed using linear regression or second order, correlation coefficients must be > 0.995 and coefficients of determination > 0.99.

• For initial calibration performed on 02/02/15 on instrument MS-VOA6, target compounds bromoform (19.7%), bromomethane (23.9%), 2-butanone (21.1%), and carbon tetrachloride (19.8%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Bromoform, bromomethane, 2-butanone, and carbon tetrachloride were quantified using second order quadratic equation with coefficients of determination >0.99. All criteria were met. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), Trip Blank #14-0841 (1501102-03), 13MW2 (1501102-04), 13MW4 (1501102-05), 49MW05 (1501102-06), and 13MW5 (1501102-07) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. The DoD QSM specifies that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF must be within 20% for all target compounds. The initial calibration verification should be between 80-120% recoveries.

- For initial calibration verification for the VOC analysis performed on 02/02/15 @15:40 on instrument MS-VOA6, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No samples reported were analyzed using this initial calibration verification.
- For continuing calibration for the VOC analysis performed on 02/03/15 @09:48 on instrument MS-VOA6, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). Samples 13MW3 (1501102-01), 49MW04 (1501102-02), Trip Blank #14-0841 (1501102-03), 13MW2 (1501102-04), 13MW4 (1501102-05), 49MW05 (1501102-06), and 13MW5 (1501102-07) were analyzed using this continuing calibration.

V-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. A method blank analysis must be performed after the calibration standards and once every 12-hour time period beginning with the injection of BFB. No contaminants should be detected in any of the associated blanks > the MDL. The DoD QSM criteria specifies all concentrations should be less than one-half MRL (<MRL for common laboratory contaminants methylene chloride, acetone, and 2-butanone). Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, and 2-butanone (MEK), or 5 times (5X) the maximum amount for other volatile target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG. Trip blank sample Trip Blank #14-0841 (1501102-03) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (for this SDG)
02/03/15	5B03424-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	Acetone	9.32J	93.2	49MW05
02/03/15	Trip Blank #14-0841	All target <1/2MRL	NA	NA	None

J = Estimated value <MRL and >MDL.

NA = Not Applicable

MRL = Method Reporting Limit

MDL = Method Detection Limit

LOD = Level of Detection

VI-Laboratory Control Sample and Laboratory Control Sample Duplicate

Data for laboratory control samples (LCS) and LCSD are evaluated to determine long-term precision and accuracy of the analytical method on various matrices. Percent recoveries (%Rs) should be within the specified control limits. DoD LCS aqueous recovery limits are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The LCS/LCSD RPD should be ≤30%.

Samples 5B03424-BS1 and 5B03424-BSD1 were used as the aqueous LCS/LCSD for the VOC analysis on 02/03/15. All criteria were met. No qualifiers were applied. Samples 13MW3 (1501102-01), 49MW04 (1501102-02), Trip Blank #14-0841 (1501102-03), 13MW2 (1501102-04), 13MW4 (1501102-05), 49MW05 (1501102-06), and 13MW5 (1501102-07) apply to this LCS/LCSD.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. The DoD MS/MSD aqueous recovery limits follow the LCS criteria and are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The MS/MSD RPD should be ≤30%.

No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VIII-System Monitoring Compounds (Surrogates)

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Recoveries for system monitoring compounds in volatile samples and blanks must be within the specified control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria: 4-Bromofluorobenzene (75-120%; RT±1.000)

Dibromofluoromethane (85-115%; RT±1.000) 1,2-Dichloroethane-d4 (70-120%; RT±1.000)

Toluene-d8 (85-120%; RT±1.000)

• All criteria were met. No qualifiers were applied.

IX-Internal Standards (IS)

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: area counts (-50% to +100%) of the associated calibration standard, and retention time (\pm 30 seconds) from that of the associated calibration standard.

• All criteria were met. No qualifiers were applied.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

No field groundwater sample duplicate pair was collected within this SDG; therefore, was not
evaluated.

XI-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%.

Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 13MW3 (1501102-01), trichloroethene

Conc. $(\mu g/L) = (Ax)*(Is)*(DF) / (Ais)*(RRF)$

where: Ax is the compound area

Ais is the corresponding internal standard area

Is is the corresponding internal standard concentration (μg/L)

DF is the dilution factor

RRF is the relative response factor.

Conc. $\mu g/L = (7820 * 30 \mu g/L * 1) / (812690 * 0.327063) = 0.883 \mu g/L$

Reported Conc. = $0.883 \mu g/L$

 $\%\dot{D} = 0.0\%$

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
USE	PA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

2The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines

for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

13MW3

Laboratory: Empirical Laboratories, LLC SDG: 1501102

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501102-01 File ID: 0110201B.D

Sampled: <u>01/26/15 09:25</u> Prepared: <u>02/03/15 14:52</u> Analyzed: <u>02/03/15 14:52</u>

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

Batch:	5B03424 Sequence	: <u>5B03707</u>	Calibration:	503500	<u>13</u>	Instrument:	MS-VOA6
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone			2.50	5.00	10.0	U
71-43-2	Benzene			0.250	0.500	1.00	U
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U
75-25-2	Bromoform			0.250	0.500	1.00	U
74-83-9	Bromomethane			0.500	1.00	2.00	U
78-93-3	2-Butanone			2.50	5.00	10.0	U
75-15-0	Carbon disulfide			0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride		4.62	0.250	0.500	1.00	
108-90-7	Chlorobenzene			0.250	0.500	1.00	U
75-00-3	Chloroethane			0.500	1.00	2.00	U
67-66-3	Chloroform		0.470	0.250	0.500	1.00	J
74-87-3	Chloromethane -			0.250	0.500	1.00	U
124-48-1	Dibromochloromethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.250	0.500	1.00	U
591-78-6	2-Hexanone			1.25	2.50	5.00	U
75-09-2	Methylene chloride			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone			1.25	2.50	5.00	U
100-42-5	Styrene			0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene			0.250	0.500	1.00	U
108-88-3	Toluene			0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1,00	U
79-01-6	Trichloroethene		0.883	0.250	0.500	1.00	J
75-01-4	Vinyl chloride			0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene			0.500	1.00	2.00	U
95-47-6	o-Xylene			0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.44	98.1	75 - 120	
Dibromofluoromethane	30.00	29.79	99.3	85 - 115	
1,2-Dichloroethane-d4	30.00	29.09	97.0	70 - 120	

J

ANALYSIS DATA SHEET

13MW3

Laboratory:

Empirical Laboratories, LLC

SDG:

1501102

Client:

<u>CB&I</u>

Project:

 $\underline{Radford\ AAP}$

Matrix:

<u>Water</u>

Laboratory ID:

1501102-01

File ID:

Prepared:

02/03/15 14:52

<u>0110201B.D</u> 02/03/15 14:52

Instrument:

Sampled:

01/26/15 09:25

Preparation:

<u>5030B</u>

Analyzed:

5035003

Solids:

5B03424

Sequence:

Dilution: 1

MS-VOA6

Q

21

Batch: 5B03707 Calibration: SYSTEM MONITORING COMPOUND ADDED (ug/L) CONC (ug/L) Toluene-d8 30.00 29.20

% REC QC LIMITS 97.3 85 - 120

ANALYSIS DATA SHEET

Laboratory: <u>Empirical Laboratories, LLC</u>

SDG:

Pom I Co. /

1501102

Client:

CB&I

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-02

File ID:

0110202B.D

Sampled:

01/26/15 09:35

Prepared:

02/03/15 15:19

Analyzed:

02/03/15 15:19

Solids:

Preparation:

<u>5030B</u>

Dilution:

1

Dorius.	110	P. II. III. II. II. II. II. II. II. II.	20303		_		
Batch:	<u>5B03424</u> Sequence:	<u>5B03707</u>	Calibration:	<u>5035003</u>	3	Instrument:	MS-VOA6
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone			2.50	5.00	10.0	U
71-43-2	Benzene			0.250	0.500	1.00	U
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U
75-25-2	Bromoform			0.250	0.500	1.00	U
74-83-9	Bromomethane			0.500	1.00	2.00	U
78-93-3	2-Butanone			2.50	5.00	10.0	U
75-15-0	Carbon disulfide			0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride		0.662	0.250	0.500	1.00	J
108-90-7	Chlorobenzene			0.250	0.500	1.00	U
75-00-3	Chloroethane			0.500	1.00	2.00	U
67-66-3	Chloroform		1.46	0.250	0.500	1.00	
74-87-3	Chloromethane			0.250	0.500	1.00	U
124-48-1	Dibromochloromethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.250	0.500	1.00	U
591-78-6	2-Hexanone			1.25	2.50	5.00	U
75-09-2	Methylene chloride			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone			1.25	2.50	5.00	U
100-42-5	Styrene			0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene			0.250	0.500	1.00	U
108-88-3	Toluene			0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1.00	U
79-01-6	Trichloroethene			0.250	0.500	1.00	U
75-01-4	Vinyl chloride			0.250	0.500	1.00	U
108-38-3/106-42	- m,p-Xylene			0.500	1.00	2.00	U
95-47-6	o-Xylene			0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.31	97.7	75 - 120	
Dibromofluoromethane	30.00	29.92	99.7	85 - 115	
1,2-Dichloroethane-d4	30.00	28.79	96.0	70 - 120	

J

ANALYSIS DATA SHEET

49MW04

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client:

<u>CB&I</u>

Matrix:

<u>Water</u>

Laboratory ID:

Project:

 $\underline{Radford\ AAP}$

<u>1501102-02</u>

File ID:

0110202B.D

Sampled:

01/26/15 09:35

Prepared:

02/03/15 15:19

Analyzed:

02/03/15 15:19

Solids:

Preparation:

<u>5030B</u>

Dilution:

1

Batch:	<u>5B03424</u> Sequence: <u>5B0</u>		<u>5B03707</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM MONITORING COMPOUND		ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
Toluene-d8	Toluene-d8		30.00	29.56	98.5	85 - 120	

02/03/15 13:02

ANALYSIS DATA SHEET

Trip Blank #14-0841

02/03/15 13:02

Analyzed:

Laboratory: Empirical Laboratories, LLC SDG: 1501102

Prepared:

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501102-03 File ID: 0110203A.D

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

Batch:	5B03424 Sequence	: <u>5B03707</u>	Calibration:	503500	3	Instrument:	MS-VOA6
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone			2.50	5.00	10.0	U
71-43-2	Benzene			0.250	0.500	1.00	U
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U
75-25-2	Bromoform			0.250	0.500	1.00	U
74-83-9	Bromomethane			0.500	1.00	2.00	U
78-93-3	2-Butanone			2.50	5.00	10.0	U
75-15-0	Carbon disulfide			0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride			0.250	0.500	1.00	U
108-90-7	Chlorobenzene			0.250	0.500	1.00	U
75-00-3	Chloroethane			0.500	1.00	2.00	U
67-66-3	Chloroform			0.250	0.500	1.00	U
74-87-3	Chloromethane			0.250	0.500	1.00	U
124-48-1	Dibromochloromethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.250	0.500	1.00	U
591-78-6	2-Hexanone			1.25	2.50	5.00	U
75-09-2	Methylene chloride			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone			1,25	2.50	5.00	U
100-42-5	Styrene			0.250	0.500	1,00	U
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene			0.250	0.500	1.00	U
108-88-3	Toluene			0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1.00	U
79-01-6	Trichloroethene	-		0.250	0.500	1.00	U
75-01-4	Vinyl chloride			0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene			0.500	1.00	2.00	U
95-47-6	o-Xylene	Later 25		0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	30.27	101	75 - 120	
Dibromofluoromethane	30.00	28.98	96.6	85 - 115	
1,2-Dichloroethane-d4	30.00	28.75	95.8	70 - 120	

Sampled:

01/26/15 09:35

ANALYSIS DATA SHEET

Trip Blank #14-0841

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-03

File ID:

Sampled:

Prepared:

02/03/15 13:02

Analyzed:

0110203A.D 02/03/15 13:02

Solids:

01/26/15 09:35

Preparation:

1

Batch:

<u>5030B</u>

Dilution:

MS-VOA6

Batch:	<u>5B03424</u>	Sequence:	<u>5B03707</u>	Calibration:	5035003	Instrument:	MS-VOA6
SYSTEM	MONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8		30.00	29.70	99.0	85 - 120		

ANALYSIS DATA SHEET

13MW2

Laboratory:

Empirical Laboratories, LLC

SDG:

1501102

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID: <u>1501102-04</u> File ID:

<u>0110204B.D</u>

Sampled:

01/26/15 11:10

Prepared: Preparation: 02/03/15 15:47

Analyzed:

02/03/15 15:47

Solids:

5030B

Dilution:

1

Dollas.			<u>5050B</u>		_	-	
Batch:	5B03424 Sequence	e: <u>5B03707</u>	Calibration:	<u>503500</u>	3	Instrument:	MS-VOA6
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone			2.50	5.00	10.0	U
71-43-2	Benzene	***************************************		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U
75-25-2	Bromoform			0.250	0.500	1.00	U
74-83-9	Bromomethane			0.500	1.00	2.00	U
78-93-3	2-Butanone			2.50	5.00	10.0	U
75-15-0	Carbon disulfide			0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride			0.250	0.500	1.00	U
108-90-7	Chlorobenzene			0.250	0.500	1.00	U
75-00-3	Chloroethane			0.500	1.00	2.00	U
67-66-3	Chloroform			0.250	0.500	1.00	U
74-87-3	Chloromethane			0.250	0.500	1.00	U
124-48-1	Dibromochloromethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.250	0.500	1.00	U
591-78-6	2-Hexanone			1.25	2.50	5.00	U
75-09-2	Methylene chloride			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone			1.25	2.50	5.00	U
100-42-5	Styrene			0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene			0.250	0.500	1.00	U
108-88-3	Toluene			0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1.00	U
79-01-6	Trichloroethene			0,250	0.500	1.00	U
75-01-4	Vinyl chloride			0.250	0.500	1.00	U
108-38-3/106-42	m,p-Xylene			0.500	1.00	2.00	U
95-47-6	o-Xylene			0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.69	99.0	75 - 120	
Dibromofluoromethane	30.00	29.80	99.3	85 - 115	
1,2-Dichloroethane-d4	30.00	29.23	97.4	70 - 120	

ANALYSIS DATA SHEET

13MW2

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-04

File ID:

<u>0110204B.D</u>

Sampled:

Prepared:

02/03/15 15:47

Analyzed:

02/03/15 15:47

Solids:

01/26/15 11:10

Preparation:

5030B

Dilution:

1

Batch:	<u>5B03424</u>	Sequence:	<u>5B03707</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM	MONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d	8		30.00	29.45	98.2	85 - 120	

1501102

27

ANALYSIS DATA SHEET

13MW4

Laboratory: Empirical Laboratories, LLC SDG:

1501102

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-05 File ID: <u>0110205B.D</u>

Sampled:

01/26/15 11:20

Prepared:

02/03/15 16:14

Analyzed:

02/03/15 16:14

Preparation:

<u>5030B</u>

Dilution: 1

J	Instrument:	MS-VOA6
_	1.00	

Batch:	<u>5B03424</u>	Sequence:	<u>5B03707</u>	Calibration:	<u>503500</u>	<u>13</u>	Instrument:	MS-VOA6
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone				2.50	5.00	10.0	U
71-43-2	Benzene				0.250	0.500	1.00	U
75-27-4	Bromodichlorome	thane			0.250	0.500	1.00	U
75-25-2	Bromoform				0.250	0.500	1.00	U
74-83-9	Bromomethane				0.500	1.00	2.00	U
78-93-3	2-Butanone				2.50	5.00	10.0	U
75-15-0	Carbon disulfide				0.250	0.500	1.00	U
56-23-5	Carbon tetrachlori	de		0.592	0.250	0.500	1.00	J
108-90-7	Chlorobenzene				0.250	0.500	1.00	U
75-00-3	Chloroethane				0.500	1.00	2.00	U
67-66-3	Chloroform				0.250	0.500	1,00	U
74-87-3	Chloromethane				0.250	0.500	1.00	U
124-48-1	Dibromochlorome	thane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethan	e			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethan	e			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethen	e			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroet	hene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloro	ethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropa	ine			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropr	ropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloro	propene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene				0.250	0.500	1.00	U
591-78-6	2-Hexanone				1.25	2.50	5.00	U
75-09-2	Methylene chlorid	e			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentar	none			1.25	2.50	5.00	U
100-42-5	Styrene				0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloro	oethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene				0.250	0.500	1.00	U
108-88-3	Toluene				0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroeth	ane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroeth	ane			0.250	0.500	1.00	U
79-01-6	Trichloroethene				0.250	0.500	1.00	U
75-01-4	Vinyl chloride				0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene				0.500	1.00	2.00	U
95-47-6	o-Xylene				0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.26	97.5	75 - 120	
Dibromofluoromethane	30.00	29.88	99.6	85 - 115	
1,2-Dichloroethane-d4	30.00	29.95	99.8	70 - 120	

ANALYSIS DATA SHEET

13MW4

Laboratory:

Empirical Laboratories, LLC

SDG:

1501102

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501102-05

File ID:

0110205B.D

1

Sampled:

01/26/15 11:20

Prepared:

02/03/15 16:14

Analyzed:

02/03/15 16:14

Solids:

Preparation:

<u>5030B</u>

Dilution:

Batch:	<u>5B03424</u>	Sequence:	<u>5B03707</u>	Calibration:	5035003	Instrument:	MS-VOA6
SYSTEM M	ONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.45	98.2	85 - 120	

ANALYSIS DATA SHEET COPY

Laboratory:

Empirical Laboratories, LLC

SDG:

1501102

Client:

CB&I

Project:

Radford AAP

Matrix:

<u>Water</u>

Laboratory ID:

<u>1501102-06</u>

File ID:

<u>0110206B.D</u>

Sampled:

Prepared:

02/03/15 16:42

Analyzed:

02/03/15 16:42

Solids:

01/26/15 12:55

Preparation:

<u>5030B</u>

Dilution:

<u>2</u>

Batch:	<u>5B03424</u> Sequence: <u>5B037</u>	07 Calibration:	503500	<u>3</u>	Instrument:	MS-VOA6
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone	18.6	5.00	10.0	20.0	Љ
71-43-2	Benzene		0.500	1.00	2.00	U
75-27-4	Bromodichloromethane		0.500	1.00	2.00	U
75-25-2	Bromoform		0.500	1.00	2.00	U
74-83-9	Bromomethane		1.00	2.00	4.00	U
78-93-3	2-Butanone		5.00	10.0	20.0	U
75-15-0	Carbon disulfide		0.500	1.00	2.00	U
56-23-5	Carbon tetrachloride	·	0.500	1.00	2.00	U
108-90-7	Chlorobenzene		0.500	1.00	2.00	U
75-00-3	Chloroethane		1.00	2.00	4.00	U
67-66-3	Chloroform		0.500	1.00	2.00	U
74-87-3	Chloromethane		0.500	1.00	2.00	U
124-48-1	Dibromochloromethane		0.500	1.00	2.00	U
75-34-3	1,1-Dichloroethane		0.500	1.00	2.00	U
107-06-2	1,2-Dichloroethane		0.500	1.00	2.00	U
75-35-4	1,1-Dichloroethene		0.500	1.00	2.00	U
156-59-2	cis-1,2-Dichloroethene		0.500	1.00	2.00	U
156-60-5	trans-1,2-Dichloroethene		0.500	1.00	2.00	U
78-87-5	1,2-Dichloropropane		0.500	1.00	2.00	U
10061-01-5	cis-1,3-Dichloropropene		0.500	1.00	2.00	U
10061-02-6	trans-1,3-Dichloropropene		0.500	1.00	2.00	U
100-41-4	Ethylbenzene		0.500	1.00	2.00	U
591-78-6	2-Hexanone		2.50	5.00	10.0	U
75-09-2	Methylene chloride		1.00	2.00	4.00	U
108-10-1	4-Methyl-2-pentanone		2.50	5.00	10.0	U
100-42-5	Styrene		0.500	1.00	2.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.500	1.00	2.00	U
127-18-4	Tetrachloroethene		0.500	1.00	2.00	U
108-88-3	Toluene		0.500	1.00	2.00	U
79-00-5	1,1,2-Trichloroethane		0.500	1.00	2.00	U
71-55-6	1,1,1-Trichloroethane		0.500	1.00	2.00	U
79-01-6	Trichloroethene		0.500	1.00	2.00	U
75-01-4	Vinyl chloride		0.500	1.00	2.00	U
108-38-3/106-42-	m,p-Xylene		1.00	2.00	4.00	U
95-47-6	o-Xylene		0.500	1.00	2.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.24	97.5	75 - 120	
Dibromofluoromethane	30.00	30.49	102	85 - 115	
1,2-Dichloroethane-d4	30.00	28.40	94.7	70 - 120	

B

ANALYSIS DATA SHEET

49MW05

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client:

<u>CB&I</u>

Project:

 $\underline{Radford\ AAP}$

Matrix:

Water

Laboratory ID:

<u>1501102-06</u>

File ID:

 $\underline{0110206\mathrm{B.D}}$

Sampled:

01/26/15 12:55

Prepared:

02/03/15 16:42

Analyzed:

02/03/15 16:42

Solids:

Preparation:

5030B

Dilution:

1

MS-VOA6

Batch:	<u>5B03424</u>	Sequence:	<u>5B03707</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM M	ONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.01	96.7	85 - 120	

ANALYSIS DATA SHEET

13MW5

Laboratory: Empirical Laboratories, LLC SDG:

1501102

Client:

<u>CB&I</u>

Project:

 $\underline{Radford\,AAP}$

Matrix:

<u>1501102-07</u>

File ID:

0110207B.D

Sampled:

Water

Laboratory ID:

02/03/15 17:09

Analyzed:

02/03/15 17:09

Solids:

01/26/15 13:10

Prepared: Preparation:

5030B

Dilution:

1

				_		
Batch:	<u>5B03424</u> Sequence: <u>5B03707</u>	Calibration:	5035003	<u>3</u>	Instrument:	MS-VOA6
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		2.50	5.00	10.0	U
71-43-2	Benzene		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U
75-25-2	Bromoform		0.250	0.500	1.00	U
74-83-9	Bromomethane		0.500	1.00	2.00	U
78-93-3	2-Butanone		2.50	5.00	10.0	U
75-15-0	Carbon disulfide		0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride		0.250	0.500	1.00	U
108-90-7	Chlorobenzene		0.250	0.500	1.00	U
75-00-3	Chloroethane		0.500	1.00	2.00	U
67-66-3	Chloroform		0.250	0.500	1.00	U
74-87-3	Chloromethane		0.250	0.500	1.00	U
124-48-1	Dibromochloromethane		0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane		0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene		0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U
100-41-4	Ethylbenzene		0.250	0.500	1.00	U
591-78-6	2-Hexanone		1.25	2.50	5.00	U
75-09-2	Methylene chloride		0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U
100-42-5	Styrene		0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U
127-18-4	Tetrachloroethene		0.250	0.500	1.00	U
108-88-3	Toluene		0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane		0.250	0.500	1.00	U
79-01-6	Trichloroethene	1.42	0.250	0.500	1.00	
75-01-4	Vinyl chloride		0.250	0.500	1.00	U
108-38-3/106-4	2- m,p-Xylene		0.500	1.00	2.00	U
95-47-6	o-Xylene		0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.74	99.1	75 - 120	
Dibromofluoromethane	30.00	29.99	100	85 - 115	
1,2-Dichloroethane-d4	30.00	29.78	99.3	70 - 120	

1501102 32

ANALYSIS DATA SHEET

13MW5

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501102</u>

Client:

<u>CB&I</u>

Project:

 $\underline{Radford\ AAP}$

Matrix:

Water

Laboratory ID:

<u>1501102-07</u>

File ID:

 $\underline{0110207\mathrm{B.D}}$

Sampled:

01/26/15 13:10

Prepared:

02/03/15 17:09

Analyzed:

02/03/15 17:09

Solids:

Preparation:

<u>5030B</u>

Dilution:

1

Batch:	<u>5B03424</u>	Sequence:	<u>5B03707</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM MON	ITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.50	98.3	85 - 120	

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Empirical Laboratories, LLC; SDG 1501116

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 27, 2015. Samples were analyzed for the chloride, nitrate, and sulfate using USEPA SW-846 9056A. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
49MW02	1501116-02	48MW3	1501116-05
50MW02	1501116-03	RB012714	1501116-06
49TM01	1501116-04	49TM02	1501116-07

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes	No	
	X	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 1501116

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/27/15, the cooler was received by the laboratory (Empirical) on 01/28/15 at 0.4°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- <u>Holding Time Review</u>: Samples were collected on 01/27/15. The samples were prepped and analyzed on 01/28/15 for sulfate, chloride, and nitrate analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 – blank

5 – standards (r \geq 0.995 or r $^2\geq$ 0.99) ICV/CCV (90-110%) Method Reporting Limit (MRL) (50-150%)

• Chloride, sulfate, and nitrate analysis was calibrated on 12/16/14 using linear equation techniques. All correlation coefficients were ≥0.995 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
01/28/15	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/28/15	Sulfate	ICB/CCBs	<lod< td=""><td>NA NA</td><td>None</td></lod<>	NA NA	None
01/28/15	Nitrate	ICB/CCBs	<lod< td=""><td>NA NA</td><td>None</td></lod<>	NA NA	None
01/28/15	Chloride	5A28014-BLK1	<1/2MRL	NA	None
01/28/15	Sulfate	5A28014-BLK1	<1/2MRL	NA NA	None
01/28/15	Nitrate	5A28014-BLK1	<1/2MRL	NA NA	None
01/28/15	Chloride	RB012715	<1/2MRL	NA	None
01/28/15	Sulfate	RB012715	<1/2MRL	NA NA	None
01/28/15	Nitrate	RB012715	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits: 80-120%

Sample 5A28014-BS1 was used as the aqueous LCS for chloride, sulfate, and nitrate analysis on 01/28/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤25%RPD).

Sample 48MW3 (1501116-05) was used as the aqueous lab duplicate for chloride, sulfate, and nitrate analysis on 01/28/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this lab duplicate.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions: 80-120%; RPD≤20%

Sample 48MW3 (1501116-05) was used as the aqueous MS/MSD for chloride, sulfate, and nitrate analysis on 01/28/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this MS/MSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

• Field groundwater sample duplicate pair 50MW02 (1501116-03) and 49TM01 (1501116-04) was analyzed for chloride, sulfate, and nitrate analysis in this SDG. All detected chloride, sulfate, and nitrate found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Summary for Anions for Duplicate Pair 50MW02 (1501116-03) and 49TM01 (1501116-04)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Chloride	7.27	6.99	3.9
Nitrate	2.06	2.05	0.5
Sulfate	73.2	73.0	0.3

• Field groundwater sample duplicate pair 48MW3 (1501116-05) and 49TM02 (1501116-07) was analyzed for chloride, sulfate, and nitrate analysis in this SDG. All detected chloride, sulfate, and nitrate found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All criteria were met. No qualifiers were applied.

Table 4 Field Precision Analysis Summary for Anions for Duplicate Pair 48MW3 (1501116-05) and 49TM02 (1501116-07)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Chloride	2.22	2.25	1.3
Nitrate	6.40	6.44	0.6
Sulfate	29.8	30.0	0.7

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 49MW02 (1501116-02), sulfate

Y = mX + b

Y = Sample Area m = slope of curve X = Concentration (mg/L) b = Y-intercept DF = Dilution Factor

Given:

m = 0.202746 b = 0.0 Y = Area = 5.3982647 DF = 1

X = 26.6 mg/L * DF = 26.6 mg/L * 1 = 26.6 mg/L

Reported concentration = 26.6 mg/L %D = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
	USEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation – Total Organic Carbon Empirical Laboratories, LLC; SDG 1501116

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 27, 2015. Samples were analyzed for Total Organic Carbon (TOC) using USEPA SW-846 9060A. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
49MW02	1501116-02	48MW3	1501116-05
50MW02	1501116-03	RB012714	1501116-06
49TM01	1501116-04	49TM02	1501116-07

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualific	ed Data	Parameter		
Yes No				
	Х	Holding Times and Preservation		
	Х	Initial and Continuing Calibration		
	Х	Blank Analysis		
	X Laboratory Control Sample			
	Х	Matrix Spike and Spike Duplicate		
	Х	Laboratory Duplicate		
	Х	Field Duplicate		
	Х	Quantitation Verification and Data Review		

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

2/17/15

Date

RFAAP VALIDATION REPORT TOC REVIEW SDG 1501116

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/27/15, the cooler was received by the laboratory (Empirical) on 01/28/15 at 0.4°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The samples were collected on 01/27/15. The TOC analysis was run on 02/05/15. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC:

1 - blank

5 - standards (r≥0.995) ICV/CCV (80-120%)

• The TOC analysis was run on 02/05/15. The initial calibration for TOC was analyzed on 01/19/15 with a coefficient of determination of 0.9996. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
02/05/15	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/05/15	TOC	5B05019-BLK1	<1/2MRL	NA	None
02/05/15	TOC	RB012714	<½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (80-120%).

Sample 5B05019-BS1 was used as the aqueous LCS for TOC analysis on 02/05/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this LCS.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (75-125%; RPD≤20%).

Sample 48MW3 (1501116-05) was used as the aqueous MS/MSD for TOC analysis on 02/05/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this MS/MSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤20%RPD).

Sample 48MW3 (1501116-05) was used as the aqueous lab duplicate for TOC analysis on 02/05/15.
 All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this lab duplicate.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

- Field groundwater sample duplicate pair 50MW02 (1501116-03) and 49TM01 (1501116-04) was analyzed for TOC analysis in this SDG. TOC was non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 48MW3 (1501116-05) and 49TM02 (1501116-07) was analyzed for TOC analysis in this SDG. TOC was non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 5B05019-BS1, TOC

TOC: Y = m*X (mg/L) + b m = 11.56 b = 0.00 Y = 322.2 DF = 1

TOC (mg/L) = X = (27.87 mg/L) * 1 = 27.87 mg/L

Reported Value = 27.87 mg/L % Difference = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition			
Laboratory Qualifiers ¹				
No Code				
U	Undetected at the limit of detection: The associated data value is the			
	limit of detection, adjusted by any dilution factor used in the analysis.			
J	Estimated: The analyte was positively identified; the quantitation is			
	estimation.			
В	Blank contamination: The analyte was detected above one-half the			
•	reporting limit in an associated blank.			
N	Non-target analyte: The analyte is a tentatively identified compound			
	(using mass spectroscopy).			
Q	One or more quality control criteria failed.			
USEPA Region III Data Validation Qualifiers ²				
R	Unreliable result. Analyte may or may not be present in the sample.			
	Supporting data necessary to confirm result.			
В	Not detected substantially above the level of the reported in laboratory			
1	or field blanks.			
J	Analyte present. Reported value may not be accurate or precise.			
UJ	Not detected, quantitation limit may be inaccurate or imprecise.			
N	Tentative Identification. Consider present. Special methods may be to			
	confirm its presence or absence in future sampling efforts.			
NJ	Qualitative identification questionable due to poor resolution.			
	Presumptively present at approximate quantity.			
К	Analyte present. Reported value may be biased high. Actual value is			
	expected to be lower.			
L	Analyte present. Reported value may be biased low. Actual value is			
	expected to be higher.			
UL	Not detected, quantitation limit is probably higher.			

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

ANALYSIS DATA SHEET

49MW02

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501116</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID:

<u>1501116-02</u>

Sampled: 01/27/15 10:55

Received:

01/28/15 08:40

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	3.45	0.170	0,330	0.500	1		SW9056A	5A28014	01/28/15 13:14
14797-55-8	Nitrate as N	0.0476	0.0330	0.100	0.250	1	J	J SW9056A	5A28014	01/28/15 13:14
	Sulfate as SO4	26.6	0,330	1.00	2,50	1		SW9056A	5A28014	01/28/15 13:14
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 17:48

ANALYSIS DATA SHEET

50MW02

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501116</u>

Client: CB&I

Project: $\underline{Radford\ AAP}$

Matrix: Water

Sampled: <u>01/27/15 12:55</u>

Laboratory ID:

<u>1501116-03</u>

Received:

01/28/15 08:40

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	7.27	0.170	0.330	0.500	1		SW9056A	5A28014	01/28/15 13:32
14797-55-8	Nitrate as N	2.06	0,0330	0.100	0.250	1		SW9056A	5A28014	01/28/15 13:32
14808-79-8	Sulfate as SO4	73,2	0,330	1.00	2.50	1		SW9056A	5A28014	01/28/15 13:32
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 18:11

ANALYSIS DATA SHEET

49TM01

Laboratory: Empirical Laboratories, LLC

<u>1501116</u> SDG:

Client: CB&I

Project: $\underline{Radford\ AAP}$

Matrix: Water

Laboratory ID:

<u>1501116-04</u>

Sampled: <u>01/27/15 12:55</u>

Received:

01/28/15 08:40

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	rod	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	6,99	0.170	0,330	0.500	1		SW9056A	5A28014	01/28/15 13:50
14797-55-8	Nitrate as N	2.05	0.0330	0.100	0.250	1		SW9056A	5A28014	01/28/15 13:50
14808-79-8	Sulfate as SO4	73.0	0,330	1.00	2.50	1		SW9056A	5A28014	01/28/15 13:50
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 18:33

307 1501116

Mam I Copy

ANALYSIS DATA SHEET

48MW3

Laboratory: Empirical Laboratories, LLC SDG: 1501116

Client: <u>CB&I</u> Project: <u>Radford AAP</u>

Matrix: Water Laboratory ID: 1501116-05

Sampled: 01/27/15 14:35 Received: 01/28/15 08:40

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	2,22	0.170	0.330	0.500	1		SW9056A	5A28014	01/28/15 14:08
14797-55-8	Nitrate as N	6.40	0.0330	0.100	0.250	1		SW9056A	5A28014	01/28/15 14:08
14808-79-8	Sulfate as SO4	29.8	0.330	1.00	2.50	1		SW9056A	5A28014	01/28/15 14:08
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 18:56

1501116 308

ANALYSIS DATA SHEET

RB012714

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501116</u>

Client: <u>CB&I</u>

Project: Radford AAP

Matrix: Water

Laboratory ID: <u>1501116-06</u>

Sampled: <u>01/27/15 15:15</u>

Received: <u>01/28/15 08:40</u>

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride		0.170	0.330	0.500	1	U	SW9056A	5A28014	01/28/15 15:19
14797-55-8	Nitrate as N		0.0330	0.100	0.250	1	U	SW9056A	5A28014	01/28/15 15:19
14808-79-8	Sulfate as SO4		0.330	1.00	2.50	1	U	SW9056A	5A28014	01/28/15 15:19
7440-44-0	Total Organic Carbon AVG	The state of the s	1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 20:19

ANALYSIS DATA SHEET

49TM02

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501116</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID: <u>1501116-07</u>

Sampled: <u>01/27/15 14:35</u>

Received: <u>01/28/15 08:40</u>

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	2.25	0.170	0.330	0.500	1		SW9056A	5A28014	01/28/15 15:37
14797-55-8	Nitrate as N	6.44	0.0330	0.100	0,250	1		SW9056A	5A28014	01/28/15 15:37
14808-79-8	Sulfate as SO4	30.0	0,330	1.00	2.50	1		SW9056A	5A28014	01/28/15 15:37
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 20:41

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Methane, Ethane, and Ethene

Empirical Laboratories, LLC; SDG 1501116

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 27, 2015. The samples were analyzed for methane, ethane, and ethene using laboratory method RSK-175. A total of six aqueous samples (includes one rinse blank) were validated. The sample lds are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
49MW02	1501116-02	48MW3	1501116-05
50MW02	1501116-03	RB012714	1501116-06
49TM01	1501116-04	49TM02	1501116-07

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial Calibration
	Х	Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT DISSOLVED GASES REVIEW SDG 1501116

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For methane, ethane, and ethene, aqueous samples are cooled @ 4° C \pm 2° C; the maximum holding time is 7 days un-preserved and 14 days preserved to pH<2 with HCI from sample collection to analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/27/15, the cooler was received by the laboratory (Empirical) on 01/28/15 at 0.4°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The aqueous samples were collected on 01/27/15. They were
 prepped and analyzed for the dissolved gases on 02/04/15. Sample collection dates may be
 found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the calibration factors on which the quantitations are based. If linear regression is used for quantification, the correlation coefficient must be ≥ 0.995 for linearity fit (DoD QSM). If calibration factor method is used, the %RSD should be $\leq 20\%$ (DoD QSM). All ICVs should be within 80-120% recovery limits (DoD QSM).

• For initial calibration performed on 11/30/14 on instrument GL-GCVOA, all target compounds were within criteria (%RSD≤20%%; RRF≥0.05) except for the following. Target compound methane (27.9%) was outside criteria. Methane (r²=0.9991; quadratic) was quantified using second order regression with coefficient of determination r²≥0.99; therefore, no qualifiers were applied based upon this outlier. All other target compounds were quantified using calibration factor method. All criteria were met. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this initial calibration.

III-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. If calibration factor method is used, the percent difference (%D) should all fall within the control criteria of ≤20% (DoD QSM). All CCVs should be within 80-120% recovery limits (DoD QSM).

- For initial calibration verification for methane, ethane, and ethene performed on 12/01/14 @00:44 on instrument GL-GCVOA, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this initial calibration verification.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @11:47 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. Sample 49MW02 (1501116-02) applies to this continuing calibration.

- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @15:11 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. Samples 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this continuing calibration.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @17:54 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this continuing calibration.

IV-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
02/04/15	5B04002-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	All target <1/2MRL	NA	NA	None

MRL = Method Reporting Limit

NA = Not Applicable

V-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. DoD LCS aqueous recovery limits are specified in the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. Percent recoveries (%Rs) should be within the specified control limits.

Sample 5B04002-BS1 was used as LCS for methane, ethane, and ethene analysis performed on 02/04/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this LCS.

VI-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. DoD QSM MS and MSD recovery limits use the LCS criteria, which currently is the use of in-house specified limits (DoD, 2010).

Sample 48MW3 (1501116-05) was used as the aqueous MS/MSD for the methane, ethane, and ethene analysis on 02/04/15. All criteria were met. No qualifiers were applied. Samples 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this MS/MSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established in the Groundwater Monitored Natural Attenuation (GWMNA) QAPP at 50% RPD for the aqueous samples.

- Field groundwater sample duplicate pair 50MW02 (1501116-03) and 49TM01 (1501116-04) was analyzed for methane, ethane, and ethene analysis in this SDG. All dissolved gases were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 48MW3 (1501116-05) and 49TM02 (1501116-07) was analyzed for methane, ethane, and ethene analysis in this SDG. All dissolved gases were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results was verified and data results reviewed. The following was determined:

- The percent difference (%D) between the calculated and the reported values should be within 10% through the calculation from the raw data provided. The calculation verification was confirmed within 10% difference.
- Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 5B04002-BS1, ethane

Conc. $\mu g/L = (((Vhs*(Ax/CF))/Vs*Density)+((Ax/CF)/HLC)*55.5/1.137*(MW*1000))*DF$

Where:

Ax = Area of characteristic ion for compound being measured.

CF = Average relative calibration factor for compound being measured (from ICAL)

MW = molecular weight of analyte = 30.0 ug/umol

DF = dilution factor 1

Vhs = Volume of headspace = 5.5 mL Vs = Volume of sample = 0.015 L Density = 0.64356M,1.1262Ee,or 1.2067Ea

HLC = Henry's Law Constant = 44900M,12700Ee, or 34200Ea

Conc. $\mu a/L =$

 $(((5.5*(561935/550513.3))/0.015*1.2067)+((561935/550513.3)/34200)*55.5/1.137*(30*1000))*1 = 495.3 \mu g/L$

Reported Value = 495.3 μg/L

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition							
	Laboratory Qualifiers ¹							
No Code	Confirmed identification.							
U	Undetected at the limit of detection: The associated data value							
	is the limit of detection, adjusted by any dilution factor used in							
	the analysis.							
J	Estimated: The analyte was positively identified; the quantitation							
	is estimation.							
В	Blank contamination: The analyte was detected above one-half							
	the reporting limit in an associated blank.							
N	Non-target analyte: The analyte is a tentatively identified							
	compound (using mass spectroscopy).							
Q	One or more quality control criteria failed.							
USE	USEPA Region III Data Validation Qualifiers ²							
R	Unreliable result. Analyte may or may not be present in the							
	sample. Supporting data necessary to confirm result.							
В	Not detected substantially above the level of the reported in							
	laboratory or field blanks.							
. J	Analyte present. Reported value may not be accurate or precise.							
UJ	Not detected, quantitation limit may be inaccurate or imprecise.							
N	Tentative Identification. Consider present. Special methods may							
	be to confirm its presence or absence in future sampling efforts.							
NJ	Qualitative identification questionable due to poor resolution.							
	Presumptively present at approximate quantity.							
K	Analyte present. Reported value may be biased high. Actual							
	value is expected to be lower.							
L	Analyte present. Reported value may be biased low. Actual							
	value is expected to be higher.							
UL	Not detected, quantitation limit is probably higher.							

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

49MW02

Laboratory: Empirical Laboratories, LLC SDG: 1501116

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501116-02 File ID: 016F1601.D\Report.TXT

Sampled: 01/27/15 10:55 Prepared: 02/04/15 07:09 Analyzed: 02/04/15 14:57

Solids: Preparation: <u>RSK175</u> Dilution: <u>1</u>

Batch:	5B04002	Sequence:	<u>5B03704</u>	Calibration:	433500	02	Instrument:	<u>GL-GCVOA</u>
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane			1.54	1.00	2.00	4.00	J
74-84-0	Ethane				1.00	2.00	4.00	U
74.85-1	Ethene			1.40	1.00	2.00	4.00	J

Total Target Analytes Reported 3 Project Analytes: 3

50MW02

Laboratory:

Empirical Laboratories, LLC

SDG:

1501116

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

<u>1501116-03</u>

File ID:

018F1801.D\Report.TXT

Sampled:

Prepared:

02/04/15 07:09

Analyzed:

02/04/15 15:24

Solids:

01/27/15 12:55

Preparation:

RSK175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	<u>433500</u>	2	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

49TM01

Laboratory: Empirical Laboratories, LLC SDG:

<u>1501116</u>

Client:

<u>CB&I</u>

Matrix:

Laboratory ID:

Project:

Radford AAP

Water

<u>1501116-04</u>

File ID:

019F1901.D\Report.TXT

Sampled:

01/27/15 12:55

Prepared:

02/04/15 07:09

Analyzed:

02/04/15 15:38

Solids:

Preparation:

RSK175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	<u>433500</u>	<u>)2</u>	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

48MW3

Laboratory:	Empirical Labora	itories, LL	<u>.C</u>	SDG:	<u>1501116</u>		
Client:	CB&I			Project:	Radford AAP		
Matrix:	Water		Laboratory ID:	<u>1501116-05</u>	File ID:	020F2001.D\Rep	ort.TXT
Sampled:	01/27/15 14:35		Prepared:	02/04/15 07:09	Analyzed:	02/04/15 15:51	
Solids:			Preparation:	<u>RSK175</u>	Dilution:	1	
Batch:	5B04002	Sequence	- 5R03704	Calibration:	4335002	Instrument	GL-GCVOA

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500	<u>2</u>	Instrument:	<u>GL-GCVOA</u>
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

1501116 240

ANALYSIS DATA SHEET

RB012714

Laboratory: Empirical Laboratories, LLC SDG: 1501116

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501116-06 File ID: 023F2301.D\Report.TXT

Sampled: <u>01/27/15 15:15</u> Prepared: <u>02/04/15 07:09</u> Analyzed: <u>02/04/15 16:32</u>

Solids: Preparation: RSK175 Dilution: $\underline{1}$

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500	<u>12</u>	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

1501116 241

ANALYSIS DATA SHEET

49TM02

02/04/15 16:46

Laboratory: <u>Empirical Laboratories, LLC</u> SDG:

6: <u>1501116</u>

Analyzed:

 $\begin{array}{ccc} \text{Client:} & \underline{\text{CB\&I}} & \text{Project:} & \underline{\text{Radford AAP}} \\ \end{array}$

Prepared:

Matrix: Water Laboratory ID: 1501116-07 File ID: 024F2401.D\Report.TXT

Solids: Preparation: RSK175 Dilution: 1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	<u>433500</u>	2	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

02/04/15 07:09

Total Target Analytes Reported 3 Project Analytes: 3

01/27/15 14:35

Sampled:

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Volatiles

Empirical Laboratories, LLC; SDG 1501116

DATE:

February 17, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 27, 2015. The samples were analyzed for volatile organic compounds (VOCs) using USEPA SW846 method 5030B/8260B for aqueous matrices. A total of seven aqueous samples (includes one trip blank and one rinse blank) were validated. The sample lds are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
Trip Blank #14-0842	1501116-01	48MW3	1501116-05
49MW02	1501116-02	RB012714	1501116-06
50MW02	1501116-03	49TM02	1501116-07
49TM01	1501116-04		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes No		
	Χ.	Holding Times and Preservation
	Х	Instrument Performance Results
	Х	Initial Calibration
Х		Continuing Calibration
Х		Blank Analysis
	Х	Laboratory Control Sample
	Х	Matrix Spike / Spike Duplicate Sample
***	Х	System Monitoring Compounds
	Х	Internal Standards
	Х	Field Sample Duplicate
Х	,	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT VOLATILES REVIEW SDG 1501116

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For aqueous samples, VOC compounds are shipped cooled (@4°C \pm 2°C) and preserved pH \leq 2 HCl with a maximum holding time of 14 days (7 days if no HCl) from sample collection to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/27/15, the cooler was received by the laboratory (Empirical) on 01/28/15 at 0.4°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- <u>Holding Time Review</u>: For the samples collected on 01/27/15, the aqueous VOCs were prepped and analyzed on 02/04/15. Sample collection and analysis dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check

The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, bromofluorobenzene (BFB), met the ion abundance criteria. No qualification was applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the relative response factors on which the quantitations are based. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. The DoD QSM specifies that the percent relative standard deviation (%RSD) must be \leq 15% for each target compound and must be \leq 30% for each calibration check compound. For compounds analyzed using linear regression or second order, correlation coefficients must be >0.995 and coefficients of determination >0.99.

• For initial calibration performed on 02/02/15 on instrument MS-VOA6, target compounds bromoform (19.7%), bromomethane (23.9%), 2-butanone (21.1%), and carbon tetrachloride (19.8%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Bromoform, bromomethane, 2-butanone, and carbon tetrachloride were quantified using second order quadratic equation with coefficients of determination >0.99. All criteria were met. No qualifiers were applied. Samples Trip Blank #14-0842 (1501116-01), 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. The DoD QSM specifies that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF must be within 20% for all target compounds. The initial calibration verification should be between 80-120% recoveries.

- For initial calibration verification for the VOC analysis performed on 02/02/15 @15:40 on instrument MS-VOA6, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No samples reported were analyzed using this initial calibration verification.
- For continuing calibration for the VOC analysis performed on 02/04/15 @09:48 on instrument MS-VOA6, acetone (29.3%Drift) and dibromochloromethane (21.4%D) were outside criteria (%D≤20%; %Drift≤20%; RRF≥0.05). All other target compounds were within criteria. Acetone and dibromochloromethane were qualified estimated "J" for detections and no qualification for non-detections based upon the high %D/Drifts. Samples Trip Blank #14-0842 (1501116-01), 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) were analyzed using this continuing calibration.

V-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. A method blank analysis must be performed after the calibration standards and once every 12-hour time period beginning with the injection of BFB. No contaminants should be detected in any of the associated blanks > the MDL. The DoD QSM criteria specifies all concentrations should be less than one-half MRL (<MRL for common laboratory contaminants methylene chloride, acetone, and 2-butanone). Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, and 2-butanone (MEK), or 5 times (5X) the maximum amount for other volatile target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG. Trip blank sample Trip Blank #14-0842 (1501116-01) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (for this SDG)
02/04/15	5B04008-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	Acetone	9.32J	93.2	49MW02
02/04/15	Trip Blank #14-0842	All target <1/2MRL	NA	NA	None

J = Estimated value <MRL and >MDL.

NA = Not Applicable

MRL = Method Reporting Limit MDL = Method Detection Limit

LOD = Level of Detection

VI-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. Percent recoveries (%Rs) should be within the specified control limits. DoD LCS aqueous recovery limits are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

Sample 5B04008-BS1 was used as the aqueous LCS for the VOC analysis on 02/04/15. All criteria were met. No qualifiers were applied. Samples Trip Blank #14-0842 (1501116-01), 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. The DoD MS/MSD aqueous recovery limits follow the LCS criteria and are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The MS/MSD RPD should be ≤30%.

Sample 48MW3 (1501116-05) was used as the aqueous MS/MSD for the VOC analysis on 02/04/15. Bromomethane (RPD=54.3%) was outside criteria for RPD; however both MS and MSD were within criteria. For all other target compounds, all criteria were met. Bromomethane was non-detect for the spiked sample; therefore, no qualifiers were applied based upon the high RPD. Samples Trip Blank #14-0842 (1501116-01), 49MW02 (1501116-02), 50MW02 (1501116-03), 49TM01 (1501116-04), 48MW3 (1501116-05), RB012714 (1501116-06), and 49TM02 (1501116-07) apply to this MS/MSD.

VIII-System Monitoring Compounds (Surrogates)

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Recoveries for system monitoring compounds in volatile samples and blanks must be within the specified control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

4-Bromofluorobenzene (75-120%; RT±1.000) Dibromofluoromethane (85-115%; RT±1.000) 1,2-Dichloroethane-d4 (70-120%; RT±1.000) Toluene-d8 (85-120%; RT±1.000)

All criteria were met. No qualifiers were applied.

IX-Internal Standards (IS)

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: area counts (-50% to +100%) of the associated calibration standard, and retention time (\pm 30 seconds) from that of the associated calibration standard.

All criteria were met. No qualifiers were applied.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

Field groundwater sample duplicate pair 50MW02 (1501116-03) and 49TM01 (1501116-04) was analyzed for TCL VOC analysis in this SDG. All detected VOCs found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other target analytes were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Summary for TCL VOCs for Duplicate Pair 50MW02 (1501116-03) and 49TM01 (1501116-04)

Compound	Original Sample (µg/L)	Duplicate Pair (µg/L)	%RPD
1.1.1-Trichloroethane	0.500U	0.251J	NA
1,1-Dichloroethane	0.313J	0.305J	2.6
Carbon tetrachloride	1.62	1.50	7.7
cis-1,2-Dichloroethene	0.384J	0.398J	3.6
m- and p-Xylene	0.804J	0.715J	11.7
o-Xvlene	0.542J	0.514J	5.3
Tetrachloroethene	0.311J	0.299J	3.9
Trichloroethene	2,08	2.02	2.9

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

• Field groundwater sample duplicate pair 48MW3 (1501116-05) and 49TM02 (1501116-07) was analyzed for TCL VOC analysis in this SDG. All detected VOCs found in the sample and its duplicate pair and associated %RPD are noted in **Table 4**. All other target analytes were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

Table 4 Field Precision Analysis Summary for TCL VOCs for Duplicate Pair 48MW3 (1501116-05) and 49TM02 (1501116-07)

Compound	Original Sample (µg/L)	Duplicate Pair (µg/L)	%RPD
Carbon tetrachloride	77.4	77.2	0.3
Chloroform	8.37	8.51	1.7
Ethylbenzene	0.500U	0.252J	NA
m- and p-Xylene	0,736J	0.705J	4.3
o-Xylene	0.495J	0.547J	10.0
Trichloroethene	12.4	12.7	2.4

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

U = Analyte non-detect as <LOD.

MDL = Method Detection Limit.

MRL = Method Reporting Limit.

LOD = Level of Detection.

NA = Not Applicable.

U = Analyte non-detect as <LOD.

MDL = Method Detection Limit.

MRL = Method Reporting Limit.

LOD = Level of Detection.

NA = Not Applicable.

XI-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%.

Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 49MW02 (1501116-02), trichloroethene

Conc. $(\mu g/L) = (Ax)*(Is)*(DF) / (Ais)*(RRF)$

where: Ax is the compound area

Ais is the corresponding internal standard area

Is is the corresponding internal standard concentration ($\mu g/L$)

DF is the dilution factor

RRF is the relative response factor.

Conc. $\mu g/L = (2440 * 30 \mu g/L * 2) / (893289 * 0.327063) = 0.501 \mu g/L$

Reported Conc. = $0.501 \mu g/L$ %D = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
USEI	PA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

Trip Blank 14-0842

Laboratory Empirical Laboratories, LLC SDG: 1501116

Client: CB&I Project: Radford AAP

 Matrix:
 Water
 Laboratory ID:
 1501116-01
 File ID:
 0111601A.D

 Sampled:
 01/27/15 08:00
 Prepared:
 02/04/15 10:42
 Analyzed:
 02/04/15 10:42

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

Batch:	<u>5B04008</u> Sequence: <u>5B03708</u>	Calibration:	<u>50350</u>	<u>03</u>	Instrument:	MS-VOA6
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		2.50	5.00	10.0	UX
71-43-2	Benzene		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U
75-25-2	Bromoform		0.250	0.500	1.00	U
74-83-9	Bromomethane		0.500	1.00	2.00	U
78-93-3	2-Butanone		2.50	5.00	10.0	U
75-15-0	Carbon disulfide		0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride		0.250	0.500	1.00	U
108-90-7	Chlorobenzene		0.250	0.500	1.00	U
75-00-3	Chloroethane		0.500	1.00	2.00	U
67-66-3	Chloroform		0.250	0.500	1.00	U
74-87-3	Chloromethane		0.250	0.500	1.00	U
124-48-1	Dibromochloromethane		0.250	0.500	1.00	UX
75-34-3	1,1-Dichloroethane		0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene		0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U
100-41-4	Ethylbenzene		0.250	0.500	1.00	U
591-78-6	2-Hexanone		1.25	2.50	5.00	U
75-09-2	Methylene chloride		0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U
100-42-5	Styrene		0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U
127-18-4	Tetrachloroethene		0.250	0.500	1.00	U
108-88-3	Toluene		0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane		0.250	0.500	1.00	U
79-01-6	Trichloroethene		0.250	0.500	1.00	U
75-01-4	Vinyl chloride		0.250	0.500	1.00	U
108-38-3/106-42	m,p-Xylene		0.500	1.00	2.00	U
95-47-6	o-Xylene		0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.69	99.0	75 - 120	
Dibromofluoromethane	30.00	29.37	97.9	85 - 115	
1,2-Dichloroethane-d4	30.00	29.61	98.7	70 - 120	

Trip Blank 14-0842

Laboratory:

Empirical Laboratories, LLC

SDG:

1501116

Client:

<u>CB&I</u>

Project:

29.83

Radford AAP

99.4

Matrix:

Water

Laboratory 1D:

Preparation:

<u>1501116-01</u>

File ID:

<u>0111601A.D</u>

85 - 120

Sampled:

01/27/15 08:00

Prepared:

02/04/15 10:42

Analyzed:

02/04/15 10:42

Solids:

5030B

Dilution:

1

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM MON	ITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.83	99.4	85 - 120	

30.00

ANALYSIS DATA SHEET

49MW02

Laboratory:

Empirical Laboratories, LLC

SDG:

Project:

<u>1501116</u>

Radford AAP

Client:
Matrix:

<u>CB&I</u>

Laboratory ID:

<u>1501116-02</u>

File ID:

0111602B.D

Sampled:

Water

Prepared:

02/04/15 13:27

Analyzed:

02/04/15 13:27

Solids:

01/27/15 10:55

Preparation:

5030B

Dilution:

2

		<u> </u>	500			=		
Batch:	<u>5B04008</u> Sequence: <u>5</u>	5B03708	Calibration:	<u>503500</u> .	3	Instrument:	MS-VOA6	
CAS NO.	COMPOUND	(CONC. (ug/L)	DL	LOD	LOQ	Q	
67-64-1	Acetone		14.0	5.00	10.0	20.0	XJD	70
71-43-2	Benzene			0.500	1.00	2.00	U	
75-27-4	Bromodichloromethane			0.500	1.00	2.00	U	
75-25-2	Bromoform			0.500	1.00	2.00	U	
74-83-9	Bromomethane			1.00	2.00	4.00	U	_
78-93-3	2-Butanone			5.00	10.0	20.0	U	
75-15-0	Carbon disulfide			0.500	1.00	2.00	U	
56-23-5	Carbon tetrachloride		5.05	0.500	1.00	2.00	D	
108-90-7	Chlorobenzene			0.500	1.00	2.00	U	
75-00-3	Chloroethane			1.00	2.00	4.00	U	
67-66-3	Chloroform		1.55	0.500	1.00	2.00	JD	-
74-87-3	Chloromethane			0.500	1.00	2.00	U	
124-48-1	Dibromochloromethane			0.500	1.00	2.00	UX	
75-34-3	1,1-Dichloroethane			0.500	1.00	2.00	U	
107-06-2	1,2-Dichloroethane			0.500	1.00	2.00	U	
75-35-4	1,1-Dichloroethene			0.500	1.00	2.00	U	
156-59-2	cis-1,2-Dichloroethene			0.500	1.00	2.00	U	
156-60-5	trans-1,2-Dichloroethene			0.500	1.00	2.00	U	
78-87-5	1,2-Dichloropropane			0.500	1.00	2.00	U	
10061-01-5	cis-1,3-Dichloropropene		}	0.500	1.00	2.00	U	
10061-02-6	trans-1,3-Dichloropropene			0.500	1.00	2.00	U	
100-41-4	Ethylbenzene		1.13	0.500	1.00	2.00	JD	J
591-78-6	2-Hexanone			2.50	5.00	10.0	U	
75-09-2	Methylene chloride			1.00	2.00	4.00	U]
108-10-1	4-Methyl-2-pentanone			2.50	5.00	10.0	U	
100-42-5	Styrene			0.500	1.00	2.00	U	
79-34-5	1,1,2,2-Tetrachloroethane			0.500	1.00	2.00	U	
127-18-4	Tetrachloroethene			0.500	1.00	2.00	U	:
108-88-3	Toluene			0.500	1.00	2.00	U	
79-00-5	1,1,2-Trichloroethane			0.500	1.00	2.00	U	
71-55-6	1,1,1-Trichloroethane			0.500	1.00	2.00	U	
79-01-6	Trichloroethene		0.501	0.500	1.00	2.00	JD	J
75-01-4	Vinyl chloride			0.500	1.00	2.00	U	
108-38-3/106-42	m,p-Xylene		4.06	1.00	2.00	4.00	D	
95-47-6	o-Xylene		2.91	0.500	1.00	2.00	D	

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.73	99.1	75 - 120	
Dibromofluoromethane	30.00	30.56	102	85 - 115	
1,2-Dichloroethane-d4	30.00	29.14	97.1	70 - 120	

ANALYSIS DATA SHEET

49MW02

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501116</u>

Client:

<u>CB&I</u>

Project:

30.05

Radford AAP

Matrix:

Water

Laboratory ID:

<u>1501116-02</u>

File ID:

<u>0111602B.D</u>

Sampled:

Toluene-d8

01/27/15 10:55

Prepared:

02/04/15 13:27

Analyzed:

02/04/15 13:27

85 - 120

Solids:

31/27/13 10:33

Preparation:

<u>5030B</u>

Dilution:

100

1

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM MONI	TORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q

30.00

1501116 23

ANALYSIS DATA SHEET

50MW02

Laboratory: Empirical Laboratories, LLC SDG: 1501116

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501116-03 File ID: 0111603B.D

Sampled: <u>01/27/15 12:55</u> Prepared: <u>02/04/15 13:54</u> Analyzed: <u>02/04/15 13:54</u>

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

Batch:	<u>5B04008</u> Sequence: <u>5B03708</u>	Calibration	<u>50350</u>	03	Instrument:	MS-VOA6	
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q	7
67-64-1	Acetone		2.50	5.00	10.0	UX	7
71-43-2	Benzene	·	0.250	0.500	1.00	U	
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U	
75-25-2	Bromoform		0.250	0.500	1.00	U	
74-83-9	Bromomethane		0.500	1.00	2.00	U	
78-93-3	2-Butanone		2.50	5.00	10.0	U	
75-15-0	Carbon disulfide		0.250	0.500	1.00	U	
56-23-5	Carbon tetrachloride	1.62	0.250	0.500	1.00		
108-90-7	Chlorobenzene		0.250	0.500	1.00	U	
75-00-3	Chloroethane		0.500	1.00	2.00	U	
67-66-3	Chloroform		0.250	0.500	1.00	U	
74-87-3	Chloromethane		0.250	0.500	1.00	U	
124-48-1	Dibromochloromethane		0.250	0.500	1.00	UX	
75-34-3	1,1-Dichloroethane	0.313	0.250	0.500	1.00	J	」サ
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U	
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U	
156-59-2	cis-1,2-Dichloroethene	0.384	0.250	0.500	1.00	J	」 ブ
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U	
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U	
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U	
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U	
100-41-4	Ethylbenzene		0.250	0.500	1.00	U	
591-78-6	2-Hexanone		1.25	2.50	5.00	U	
75-09-2	Methylene chloride		0.500	1.00	2.00	U	
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U	
100-42-5	Styrene		0.250	0.500	1.00	U	
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U	
127-18-4	Tetrachloroethene	0.311	0.250	0.500	1.00	J	ブ
108-88-3	Toluene		0.250	0.500	1.00	U	
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U	
71-55-6	1,1,1-Trichloroethane		0.250	0.500	1.00	U	
79-01-6	Trichloroethene	2.08	0.250	0.500	1.00]
75-01-4	Vinyl chloride		0.250	0.500	1.00	U	
108-38-3/106-42	- m,p-Xylene	0.804	0.500	1.00	2.00	J	1
95-47-6	o-Xylene	0.542	0.250	0.500	1.00	J	7

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	30.37	101	75 - 120	
Dibromofluoromethane	30.00	31.36	105	85 - 115	
1,2-Dichloroethane-d4	30.00	29.84	99.5	70 - 120	

ANALYSIS DATA SHEET

50MW02

Laboratory

Empirical Laboratories, LLC

SDG:

1501116

Client

<u>CB&I</u>

Project:

Radford AAP

Matrix:

<u>Water</u>

Laboratory ID:

1501116-03

File ID:

0111603B.D

Sampled:

01/27/15 12:55

Prepared:

02/04/15 13:54

Analyzed:

02/04/15 13:54

Solids:

Preparation:

5030B

Dilution:

<u>1</u>

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	5035003	Instrument:	MS-VOA6
SYSTEM MONITORING COMPOUND		ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
Toluene-d8		30.00	30.63	102	85 - 120		

49TM01

Laboratory: Empirical Laboratories. LLC SDG: 1501116

Client: CB&1 Project: Radford AAP

 Matrix:
 Water
 Laboratory ID:
 1501116-04
 File ID:
 0111604B.D

 Sampled:
 01/27/15 12:55
 Prepared:
 02/04/15 14:22
 Analyzed:
 02/04/15 14:22

 Solids:
 Preparation:
 5030B
 Dilution:
 1

Batch:	<u>5B04008</u> Sequence: <u>5B03708</u>	Calibration:	50350	03	Instrument:	MS-VOA6
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		2.50	5.00	10.0	UX
71-43-2	Benzene		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U
75-25-2	Bromoform		0.250	0.500	1.00	U
74-83-9	Bromomethane		0.500	1.00	2.00	U
78-93-3	2-Butanone		2.50	5.00	10.0	U
75-15-0	Carbon disulfide		0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride	1.50	0.250	0.500	1.00	
108-90-7	Chlorobenzene		0.250	0.500	1.00	U
75-00-3	Chloroethane		0.500	1.00	2.00	U
67-66-3	Chloroform		0.250	0.500	1.00	U
74-87-3	Chloromethane		0.250	0.500	1.00	U
124-48-1	Dibromochloromethane		0.250	0.500	1.00	UX
75-34-3	1,1-Dichloroethane	0.305	0.250	0.500	1.00	J
107-06-2	1,2-Dichloroethane	50.00	0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.398	0.250	0.500	1.00	J
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U
100-41-4	Ethylbenzene		0.250	0.500	1.00	U
591-78-6	2-Hexanone		1.25	2.50	5.00	U
75-09-2	Methylene chloride		0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U
100-42-5	Styrene		0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U
127-18-4	Tetrachloroethene	0.299	0.250	0.500	1.00	J
108-88-3	Toluene		0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane	0.251	0.250	0.500	1.00	J
79-01-6	Trichloroethene	2.02	0.250	0.500	1.00	
75-01-4	Vinyl chloride		0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene	0.715	0.500	1.00	2.00	J
95-47-6	o-Xylene	0.514	0.250	0.500	1.00	J

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.85	99.5	75 - 120	
Dibromofluoromethane	30.00	30.49	102	85 - 115	
1,2-Dichloroethane-d4	30.00	29.21	97.4	70 - 120	

49T M01

Laboratory:

Empirical Laboratories, LLC

SDG:

1501116

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501116-04

File ID:

0111604B.D

Sampled:

01/27/15 12:55

Prepared:

02/04/15 14:22

Analyzed:

02/04/15 14 22

Solids:

Preparation:

5030B

Dilution:

1

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM M	ONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.92	99.7	85 - 120	

48MW3

Laboratory:

Empirical Laboratories, LLC

SDG:

Project:

1501116

Radford AAP

Client: Matrix: CB&I Water

Laboratory ID:

1501116-05

File ID:

0111605B.D

Sampled:

Analyzed:

Solids:

01/27/15 14:35

Prepared:

02/04/15 12:32

02/04/15 12:32

Preparation:

<u>5030B</u>

Dilution:

1

Batch:	<u>5B04008</u> Sequence: <u>5B03708</u>	Calibration:	<u>503500</u>	<u>)3</u>	Instrument:	MS-VOA6
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		2.50	5.00	10.0	UX
71-43-2	Benzene .		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U
75-25-2	Bromoform		0.250	0.500	1.00	U
74-83-9	Bromomethane		0.500	1.00	2.00	NU
78-93-3	2-Butanone		2.50	5.00	10.0	U
75-15-0	Carbon disulfide		0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride	77.4	0.250	0.500	1.00	
108-90-7	Chlorobenzene		0.250	0.500	1.00	U
75-00-3	Chloroethane		0.500	1.00	2.00	U
67-66-3	Chloroform	8.37	0.250	0.500	1.00	
74-87-3	Chloromethane		0.250	0.500	1.00	U
124-48-1	Dibromochloromethane		0.250	0.500	1.00	UX
75-34-3	1,1-Dichloroethane		0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene		0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U
100-41-4	Ethylbenzene		0.250	0.500	1.00	U
591-78-6	2-Hexanone		1.25	2.50	5.00	U
75-09-2	Methylene chloride		0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U
100-42-5	Styrene	6	0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U
127-18-4	Tetrachloroethene		0.250	0.500	1.00	U
108-88-3	Toluene		0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane		0.250	0.500	1.00	U
79-01-6	Trichloroethene	12.4	0.250	0.500	1.00	
75-01-4	Vinyl chloride		0.250	0.500	1.00	U
108-38-3/106-42	m,p-Xylene	0.736	0.500	1.00	2.00	J
95-47-6	o-Xylene	0.495	0.250	0.500	1.00	J

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND ADDED (ug/L) CONC (ug/L) % REC QC LIMITS Q Bromofluorobenzene 30.00 30.31 101 75 - 120 Dibromofluoromethane 30.00 103 85 - 115 30.81 1,2-Dichloroethane-d4 70 - 120 30.00 29.34 97.8

ANALYSIS DATA SHEET

48MW3

Laboratory

Empirical Laboratories, LLC

SDG:

1501116

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501116-05

File ID:

0111605B,D

Sampled:

01/27/15 14:35

Prepared:

02/04/15 12:32

02/04/15 12:32

Solids:

Preparation:

Analyzed:

5030B

Dilution:

1

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6	
SYSTEM M	YSTEM MONITORING COMPOUND		ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
Toluene-d8			30.00	29.37	97.9	85 - 120		

1501116 29

Horm I Cop

ANALYSIS DATA SHEET

Laboratory: Empirical Laboratories, LLC SDG: 1501116

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501116-06 File ID: 0111606A.D

Sampled: 01/27/15 15:15 Prepared: 02/04/15 11:37 Analyzed: 02/04/15 11:37

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

DOILGD.	7.76/741	ution.	<u>3030D</u>	Dituti	on. <u>-</u>	<u> </u>	
Batch:	5B04008 Sequence:	<u>5B03708</u>	Calibration	: <u>50350</u>	03	Instrument:	MS-VOA6
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		9.32	2.50	5.00	10.0	XJ
71-43-2	Benzene			0.250	0.500	1.00	U
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U
75-25-2	Bromoform			0.250	0.500	1.00	U
74-83-9	Bromomethane			0.500	1.00	2.00	U
78-93-3	2-Butanone			2.50	5.00	10.0	U
75-15-0	Carbon disulfide			0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride			0.250	0.500	1.00	U
108-90-7	Chlorobenzene			0.250	0.500	1.00	U
75-00-3	Chloroethane			0.500	1.00	2.00	U
67-66-3	Chloroform			0.250	0.500	1.00	U
74-87-3	Chloromethane			0.250	0.500	1.00	U
124-48-1	Dibromochloromethane			0.250	0.500	1.00	UX
75-34-3	1,1-Dichloroethane			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		000	0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.250	0.500	1.00	U
591-78-6	2-Hexanone			1.25	2.50	5.00	U
75-09-2	Methylene chloride			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone			1.25	2.50	5.00	U
100-42-5	Styrene			0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene			0.250	0.500	1.00	U
108-88-3	Toluene			0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1.00	U
79-01-6	Trichloroethene			0.250	0.500	1.00	U
75-01-4	Vinyl chloride			0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene			0.500	1.00	2.00	U
95-47-6	o-Xylene			0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.95	99.8	75 - 120	
Dibromofluoromethane	30.00	30.48	102	85 - 115	
1,2-Dichloroethane-d4	30.00	29.46	98.2	70 - 120	

1501116

ANALYSIS DATA SHEET

RB012714

Laboratory:

Empirical Laboratories, LLC

SDG:

1501116

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

<u>Water</u>

Laboratory ID:

1501116-06

File ID:

0111606A.D

Sampled:

Prepared:

Solids:

01/27/15 15:15

02/04/15 11:37

Analyzed:

02/04/15 11:37

5B04008

Preparation:

<u>5030B</u>

Dilution:

1

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM M	ONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.01	96.7	85 - 120	

ANALYSIS DATA SHEET

49TM02

Laboratory:

Empirical Laboratories, LLC

SDG:

1501116

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501116-07

File ID:

<u>0111607B.D</u>

Sampled:

01/27/15 14:35

Prepared:

02/04/15 14:49

Analyzed:

Solids:

02/04/15 14:49

Preparation:

<u>5030B</u>

Dilution:

1

Batch:	<u>5B04008</u> Sequence: <u>5B03708</u>		Calibration:	<u>50350</u>	03	Instrument:	MS-VOA6	
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q	
67-64-1	Acetone			2.50	5.00	10.0	UX	
71-43-2	Benzene			0.250	0.500	1.00	U	
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U	
75-25-2	Bromoform			0.250	0.500	1.00	U	
74-83-9	Bromomethane			0.500	1.00	2.00	Ü	
78-93-3	2-Butanone			2.50	5.00	10.0	U	
75-15-0	Carbon disulfide			0.250	0.500	1.00	U	
56-23-5	Carbon tetrachloride		77.2	0.250	0.500	1.00		
108-90-7	Chlorobenzene			0.250	0.500	1.00	U	
75-00-3	Chloroethane			0.500	1.00	2.00	U	
67-66-3	Chloroform		8.51	0.250	0.500	1.00		
74-87-3	Chloromethane			0.250	0.500	1.00	U	
124-48-1	Dibromochloromethane			0.250	0.500	1.00	UX	
75-34-3	1,1-Dichloroethane	1		0.250	0.500	1.00	U	
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U	
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U	
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U	
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U	
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U	
10061-01-5	cis-1,3-Dichloropropene			0.250	0.500	1.00	U	
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U	
100-41-4	Ethylbenzene		0.252	0.250	0.500	1.00	J	
591-78-6	2-Hexanone			1.25	2.50	5.00	U	
75-09-2	Methylene chloride			0.500	1.00	2.00	U	
108-10-1	4-Methyl-2-pentanone			1.25	2.50	5.00	U	
100-42-5	Styrene			0.250	0.500	1.00	U	
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U	
127-18-4	Tetrachloroethene			0.250	0.500	1.00	U	
108-88-3	Toluene			0.250	0.500	1.00	U	
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U	
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1.00	U	
79-01-6	Trichloroethene		12.7	0.250	0.500	1.00		
75-01-4	Vinyl chloride			0.250	0.500	1.00	U	
108-38-3/106-42	m,p-Xylene		0.705	0.500	1.00	2.00	J	
95-47-6	o-Xylene		0.547	0.250	0.500	1.00	J	
Total Target Ana	lytes Reported 35 Project Analytes: 33	5						

	1		1"		
SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.82	99.4	75 - 120	
Dibromofluoromethane	30.00	31.34	104	85 - 115	
1,2-Dichloroethane-d4	30.00	29.48	98.3	70 - 120	

7

ANALYSIS DATA SHEET

49TM02

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501116</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501116-07

File ID:

0111607B.D

Sampled:

01/27/15 14:35

Prepared:

02/04/15 14:49

Analyzed:

02/04/15 14:49

Solids:

Preparation:

5030B

Dilution:

1

Batch:

Sequence:

Calibration:

Instrument: MS-VOA6

Batch:	<u>5B04008</u>	Sequence:	<u>5B03708</u>	Calibration:	<u>5035003</u>	Instrument:	MS-VOA6
SYSTEM N	MONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	29.48	98.3	85 - 120	

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017

Tel: +1 (410) 273-7100 Fax: +1 (225) 952-3016

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Empirical Laboratories, LLC; SDG 1501124

DATE:

February 20, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 28, 2015. Samples were analyzed for the chloride, nitrate, and sulfate using USEPA SW-846 9056A. A total of three aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
48MW2	1501124-03	48MW1	1501124-05
49MW01	1501124-04		

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualif	ied Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 1501124

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/28/15, the cooler was received by the laboratory (Empirical) on 01/29/15 at 4.1°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: Samples were collected on 01/28/15. The samples were prepped and analyzed on 01/29/15 for sulfate, chloride, and nitrate analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 - blank

5 – standards (r≥0.995 or r²≥0.99) ICV/CCV (90-110%) Method Reporting Limit (MRL) (50-150%)

• Chloride, sulfate, and nitrate analysis was calibrated on 12/16/14 using linear equation techniques. All correlation coefficients were ≥0.995 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. Table 2 summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
01/29/15	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/29/15	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/29/15	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/29/15	Chloride	5A29009-BLK1	<1/2MRL	NA	None
01/29/15	Sulfate	5A29009-BLK1	<½MRL	NA	None
01/29/15	Nitrate	5A29009-BLK1	<½MRL	NA	None
01/28/15	Chloride	RB012715	<½MRL	NA	None
01/28/15	Sulfate	RB012715	<½MRL	NA	None
01/28/15	Nitrate	RB012715	<½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits: 80-120%

 Sample 5A29009-BS1 was used as the aqueous LCS for chloride, sulfate, and nitrate analysis on 01/29/15. All criteria were met. No qualifiers were applied. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤25%RPD).

No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions:

80-120%; RPD≤20%

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

• No site field groundwater sample duplicate pair was analyzed for chloride, sulfate, and nitrate analysis in this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 48MW2 (1501124-03), sulfate

Y = mX + b

Y = Sample Area m = slope of curve X = Concentration (mg/L) b = Y-intercept DF = Dilution Factor

Given:

m = 0.202746 b = 0.0 Y = Area = 3.4142961 DF = 1

X = 16.8 mg/L * DF = 16.8 mg/L * 1 = 16.8 mg/L

Reported concentration = 16.8 mg/L %D = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
	JSEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Total Organic Carbon

Empirical Laboratories, LLC; SDG 1501124

DATE:

February 20, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 28, 2015. Samples were analyzed for Total Organic Carbon (TOC) using USEPA SW-846 9060A. A total of three aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
48MW2	1501124-03	48MW1	1501124-05
49MW01	1501124-04		

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
	Х	Field Duplicate
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC REVIEW SDG 1501124

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/28/15, the cooler was received by the laboratory (Empirical) on 01/29/15 at 4.1°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The samples were collected on 01/28/15. The TOC analysis was run on 02/05/15. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC: 1 - blank

5 - standards (r≥0.995) ICV/CCV (80-120%)

The TOC analysis was run on 02/05/15. The initial calibration for TOC was analyzed on 01/19/15 with a coefficient of determination of 0.9996. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
02/05/15	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/05/15	TOC	5B05019-BLK1	<½MRL	NA	None
02/05/15	TOC	RB012714	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (80-120%).

• Sample 5B05019-BS1 was used as the aqueous LCS for TOC analysis on 02/05/15. All criteria were met. No qualifiers were applied. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to this LCS.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (75-125%; RPD≤20%).

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤20%RPD).

 No aqueous laboratory duplicate was analyzed for TOC with this SDG; therefore, it was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No site field groundwater sample duplicate pair was analyzed for TOC analysis in this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

• Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 5B05019-BS1, TOC

TOC: Y = m*X (mg/L) + b m = 11.56 b = 0.00 Y = 322.2 DF = 1

TOC (mg/L) = X = (27.87 mg/L) * 1 = 27.87 mg/L

Reported Value = 27.87 mg/L % Difference = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition						
	Laboratory Qualifiers ¹						
No Code	Confirmed identification.						
U	Undetected at the limit of detection: The associated data value is the						
	limit of detection, adjusted by any dilution factor used in the analysis.						
J	Estimated: The analyte was positively identified; the quantitation is estimation.						
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.						
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).						
Q	One or more quality control criteria failed.						
USEPA Region III Data Validation Qualifiers ²							
R	Unreliable result. Analyte may or may not be present in the sample.						
	Supporting data necessary to confirm result.						
В	Not detected substantially above the level of the reported in laboratory or field blanks.						
J	Analyte present. Reported value may not be accurate or precise.						
UJ	Not detected, quantitation limit may be inaccurate or imprecise.						
N N	Tentative Identification. Consider present. Special methods may be to						
1	confirm its presence or absence in future sampling efforts.						
NJ	Qualitative identification questionable due to poor resolution.						
1	Presumptively present at approximate quantity.						
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.						
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.						
UL	Not detected, quantitation limit is probably higher.						

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

ANALYSIS DATA SHEET

48MW2

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501124</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID: <u>1501124-03</u>

Sampled: <u>01/28/15 12:00</u>

Received: <u>01/29/15 09:45</u>

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6		2,65	0.170	0.330	0.500	1	· Same of Same of the same	SW9056A	5A29009	01/29/15 14:18
14797-55-8	Nitrate as N	0,754	0.0330	0.100	0.250	1		SW9056A	5A29009	01/29/15 14:18
14808-79-8	Sulfate as SO4	16.8	0.330	1.00	2.50	1		SW9056A	5A29009	01/29/15 14:18
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 21:03

ANALYSIS DATA SHEET

49MW01

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501124</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID: 1

1501124-04

Sampled: <u>01/28/15 13:20</u>

Received:

01/29/15 09:45

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	6.03	0.170	0,330	0.500	1		SW9056A	5A29009	01/29/15 14:35
14797-55-8	Nitrate as N	0,303	0,0330	0.100	0.250	1		SW9056A	5A29009	01/29/15 14:35
14808-79-8	Sulfate as SO4		0.330	1.00	2.50	1	U	SW9056A	5A29009	01/29/15 14:35
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 21:26

1501124 256

ANALYSIS DATA SHEET

48MW1

Laboratory: Empirical Laboratories, LLC

SDG: <u>1501124</u>

Client: CB&I

Project: Radford AAP

Matrix: Water

Laboratory ID:

1501124-05

Sampled: <u>01/28/15 14:30</u>

Received:

01/29/15 09:45

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6	Chloride	3.10	0.170	0.330	0.500	1		SW9056A	5A29009	01/29/15 14:53
14797-55-8	Nitrate as N	1,35	0.0330	0.100	0.250	1		SW9056A	5A29009	01/29/15 14:53
14808-79-8	Sulfate as SO4	58.0	0,330	1.00	2.50	1		SW9056A	5A29009	01/29/15 14:53
7440-44-0	Total Organic Carbon AVG		1.25	2.50	3.00	1	U	SW9060A	5B05019	02/05/15 21:48

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Methane, Ethane, and Ethene

Empirical Laboratories, LLC; SDG 1501124

DATE:

February 20, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 28, 2015. The samples were analyzed for methane; ethane, and ethene using laboratory method RSK-175. A total of three aqueous samples were validated. The sample lds are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
48MW2	1501124-03	48MW1	1501124-05
49MW01	1501124-04		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter				
Yes	No					
	Х	Holding Times and Preservation				
	Х	Initial Calibration				
	X Continuing Calibration					
	Х	Blank Analysis				
	Х	Laboratory Control Sample				
	Х	Matrix Spike and Spike Duplicate				
	X Field Duplicate					
	Х	Quantitation Verification and Data Review				

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT DISSOLVED GASES REVIEW SDG 1501124

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For methane, ethane, and ethene, aqueous samples are cooled @ 4° C \pm 2° C; the maximum holding time is 7 days un-preserved and 14 days preserved to pH<2 with HCl from sample collection to analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/28/15, the cooler was received by the laboratory (Empirical) on 01/29/15 at 4.1°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 01/28/15. They were
 prepped and analyzed for the dissolved gases on 02/04/15. Sample collection dates may be
 found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the calibration factors on which the quantitations are based. If linear regression is used for quantification, the correlation coefficient must be ≥ 0.995 for linearity fit (DoD QSM). If calibration factor method is used, the %RSD should be $\leq 20\%$ (DoD QSM). All ICVs should be within 80-120% recovery limits (DoD QSM).

• For initial calibration performed on 11/30/14 on instrument GL-GCVOA, all target compounds were within criteria (%RSD≤20%%; RRF≥0.05) except for the following. Target compound methane (27.9%) was outside criteria. Methane (r²=0.9991; quadratic) was quantified using second order regression with coefficient of determination r²≥0.99; therefore, no qualifiers were applied based upon this outlier. All other target compounds were quantified using calibration factor method. All criteria were met. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to this initial calibration.

III-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. If calibration factor method is used, the percent difference (%D) should all fall within the control criteria of $\leq 20\%$ (DoD QSM). All CCVs should be within 80-120% recovery limits (DoD QSM).

- For initial calibration verification for methane, ethane, and ethene performed on 12/01/14 @00:44 on instrument GL-GCVOA, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this initial calibration verification.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @11:47 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this continuing calibration.

- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @15:11 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to this continuing calibration.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @17:54 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this continuing calibration.

IV-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
02/04/15	5B04002-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	All target <1/2MRL	NA	NA	None

MRL = Method Reporting Limit

NA = Not Applicable

V-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. DoD LCS aqueous recovery limits are specified in the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. Percent recoveries (%Rs) should be within the specified control limits.

• Sample 5B04002-BS1 was used as LCS for methane, ethane, and ethene analysis performed on 02/04/15. All criteria were met. No qualifiers were applied. Samples 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to this LCS.

VI-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. DoD QSM MS and MSD recovery limits use the LCS criteria, which currently is the use of in-house specified limits (DoD, 2010).

No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established in the Groundwater Monitored Natural Attenuation (GWMNA) QAPP at 50% RPD for the aqueous samples.

 No field groundwater sample duplicate pair was collected within this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results was verified and data results reviewed. The following was determined:

- The percent difference (%D) between the calculated and the reported values should be within 10% through the calculation from the raw data provided. The calculation verification was confirmed within 10% difference.
- Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 5B04002-BS1, ethane

```
Conc. \mu g/L = (((Vhs*(Ax/CF))/Vs*Density)+((Ax/CF)/HLC)*55.5/1.137*(MW*1000))*DF
```

Where:

Ax = Area of characteristic ion for compound being measured.

CF = Average relative calibration factor for compound being measured (from ICAL)

MW = molecular weight of analyte = 30.0 ug/umol

DF = dilution factor 1

Vhs = Volume of headspace = 5.5 mL Vs = Volume of sample = 0.015 L Density = 0.64356M,1.1262Ee,or 1.2067Ea

HLC = Henry's Law Constant = 44900M,12700Ee, or 34200Ea

Conc. ug/L =

 $(((5.5*(561935/550513.3))/0.015*1.2067)+((561935/550513.3)/34200)*55.5/1.137*(30*1000))*1 = 495.3 \,\mu\text{g/L}$

Reported Value = 495.3 μg/L

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
USE	PA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines

for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

48MW2

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501124</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501124-03

File ID:

025F2501.D\Report.TXT

Sampled:

01/28/15 12:00

Prepared:

02/04/15 07:09

Analyzed:

02/04/15 16:59

Solids:

Preparation:

RSK175

Dilution:

<u>1</u>

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500	12	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

49MW01

Laboratory:

Empirical Laboratories, LLC

SDG:

1501124

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501124-04

Sampled:

Prepared:

02/04/15 07:09

File ID:

026F2601.D\Report.TXT

01/28/15 13:20

Analyzed:

02/04/15 17:13

Solids:

Preparation:

RSK 175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	<u>433500</u>	<u>12</u>	Instrument:	<u>GL-GCVOA</u>
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

ANALYSIS DATA SHEET

48MW1

 Laboratory:
 Empirical Laboratories, LLC
 SDG:
 1501124

 Client:
 CB&I
 Project:
 Radford AAP

Matrix: Water Laboratory ID: 1501124-05 File ID: 027F2701.D\Report.TXT

Sampled: <u>01/28/15 14:30</u> Prepared: <u>02/04/15 07:09</u> Analyzed: <u>02/04/15 17:27</u>

Solids: Preparation: RSK175 Dilution: 1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500	2	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

1501124

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (225) 952-3016

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Volatiles

Empirical Laboratories, LLC; SDG 1501124

DATE:

February 19, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 28, 2015. The samples were analyzed for volatile organic compounds (VOCs) using USEPA SW846 method 5030B/8260B for aqueous matrices. A total of five aqueous samples (includes one trip blank) were validated. The sample lds are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
49MW03	1501124-01	49MW01	1501124-04
Trip Blank #14-0840	1501124-02	48MW1	1501124-05
48MW2	1501124-03		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified Data		Parameter		
Yes	No			
	Х	Holding Times and Preservation		
	Х	Instrument Performance Results		
	Х	Initial Calibration		
Х		Continuing Calibration		
	Х	Blank Analysis		
	Х	Laboratory Control Sample		
	Х	Matrix Spike / Spike Duplicate Sample		
	Х	System Monitoring Compounds		
	Х	Internal Standards		
	Х	Field Sample Duplicate		
X		Quantitation Verification and Data Review		

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT VOLATILES REVIEW SDG 1501124

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For aqueous samples, VOC compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) and preserved pH≤2 HCl with a maximum holding time of 14 days (7 days if no HCl) from sample collection to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/28/15, the cooler was received by the laboratory (Empirical) on 01/29/15 at 4.1°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: For the samples collected on 01/28/15, the aqueous VOCs were prepped and analyzed on 02/06/15. Sample collection and analysis dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check

The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, bromofluorobenzene (BFB), met the ion abundance criteria. No qualification was applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the relative response factors on which the quantitations are based. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. The DoD QSM specifies that the percent relative standard deviation (%RSD) must be \leq 15% for each target compound and must be \leq 30% for each calibration check compound. For compounds analyzed using linear regression or second order, correlation coefficients must be >0.995 and coefficients of determination >0.99.

• For initial calibration performed on 10/16/14 on instrument MS-VOA3, target compounds bromomethane (22.4%), chloroethane (21.6%), and methylene chloride (23.9%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Bromomethane, chloroethane, and methylene chloride were quantified using linear equation with correlation coefficients >0.995. All criteria were met. No qualifiers were applied. Samples 49MW03 (1501124-01), Trip Blank #14-0840 (1501124-02), 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be ≥0.05 for all other compounds. The DoD QSM specifies that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF must be within 20% for all target compounds. The initial calibration verification should be between 80-120% recoveries.

- For initial calibration verification for the VOC analysis performed on 10/16/14 @17:56 on instrument MS-VOA3, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No samples reported were analyzed using this initial calibration verification.
- For continuing calibration for the VOC analysis performed on 02/06/15 @07:50 on instrument MS-VOA3, carbon tetrachloride (20.7%) was outside criteria (%D≤20%; %Drift≤20%; RRF≥0.05). All other target compounds were within criteria. Carbon tetrachloride was qualified estimated "J" for detections and no qualification for non-detections based upon the high %D. Samples 49MW03 (1501124-01), Trip Blank #14-0840 (1501124-02), 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) were analyzed using this continuing calibration.

V-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. A method blank analysis must be performed after the calibration standards and once every 12-hour time period beginning with the injection of BFB. No contaminants should be detected in any of the associated blanks > the MDL. The DoD QSM criteria specifies all concentrations should be less than one-half MRL (<MRL for common laboratory contaminants methylene chloride, acetone, and 2-butanone). Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, and 2-butanone (MEK), or 5 times (5X) the maximum amount for other volatile target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG. Trip blank sample Trip Blank #14-0840 (1501124-02) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (for this SDG)
02/06/15	5B06004-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	Acetone	9.32J	93.2	None
02/06/15	Trip Blank #14-0840	All target <1/2MRL	NA	NA	None

J = Estimated value <MRL and >MDL.

NA = Not Applicable

MRL = Method Reporting Limit

MDL = Method Detection Limit

LOD = Level of Detection

VI-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. Percent recoveries (%Rs) should be within the specified control limits. DoD LCS aqueous recovery limits are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

Sample 5B06004-BS1 was used as the aqueous LCS for the VOC analysis on 02/06/15. All criteria were met. No qualifiers were applied. Samples 49MW03 (1501124-01), Trip Blank #14-0840 (1501124-02), 48MW2 (1501124-03), 49MW01 (1501124-04), and 48MW1 (1501124-05) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. The DoD MS/MSD aqueous recovery limits follow the LCS criteria and are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The MS/MSD RPD should be ≤30%.

No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VIII-System Monitoring Compounds (Surrogates)

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Recoveries for system monitoring compounds in volatile samples and blanks must be within the specified control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

4-Bromofluorobenzene (75-120%; RT±1.000) Dibromofluoromethane (85-115%; RT±1.000) 1,2-Dichloroethane-d4 (70-120%; RT±1.000) Toluene-d8 (85-120%; RT±1.000)

All criteria were met. No qualifiers were applied.

IX-Internal Standards (IS)

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: area counts (-50% to +100%) of the associated calibration standard, and retention time (\pm 30 seconds) from that of the associated calibration standard.

All criteria were met. No qualifiers were applied.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

 No field groundwater sample duplicate pair was collected within this SDG; therefore, was not evaluated.

XI-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%.

Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 48MW2 (1501124-03), trichloroethene

Conc. $(\mu g/L) = (Ax)*(Is)*(DF) / (Ais)*(RRF)$

where: Ax is the compound area

Ais is the corresponding internal standard area

Is is the corresponding internal standard concentration (µg/L)

DF is the dilution factor

RRF is the relative response factor.

Conc. $\mu g/L = (103545 * 30 \mu g/L * 1) / (997636 * 0.2957519) = 10.5 \mu g/L$

Reported Conc. = $10.5 \mu g/L$

%D = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition					
Laboratory Qualifiers ¹						
No Code	Confirmed identification.					
Ü	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.					
J	Estimated: The analyte was positively identified; the quantitation is estimation.					
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.					
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).					
Q	One or more quality control criteria failed.					
USEI	PA Region III Data Validation Qualifiers ²					
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.					
В	Not detected substantially above the level of the reported in laboratory or field blanks.					
J	Analyte present. Reported value may not be accurate or precise.					
UJ	Not detected, quantitation limit may be inaccurate or imprecise.					
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.					
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.					
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.					
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.					
UL	Not detected, quantitation limit is probably higher.					

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

49MW03

Empirical Laboratories, LLC Laboratory:

SDG:

1501124

Client:

CB&I

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501124-01

File ID:

 $\underline{0112401\mathrm{B.D}}$

Sampled:

01/28/15 08:55

Prepared:

02/06/15 14:09

Analyzed:

02/06/15 14:09

Solids:

Preparation:

5030B

Dilution:

1

Batch:	<u>5B06004</u> Sequence:	<u>5B04025</u>	Calibration:	429500	<u>1</u>	Instrument:	MS-VOA3
CAS NO.	COMPOUND		CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone			2.50	5.00	10.0	U
71-43-2	Benzene			0.250	0.500	1.00	U
75-27-4	Bromodichloromethane			0.250	0.500	1.00	U
75-25-2	Bromoform			0.250	0.500	1.00	U
74-83-9	Bromomethane			0.500	1.00	2.00	U
78-93-3	2-Butanone			2.50	5.00	10.0	U
75-15-0	Carbon disulfide			0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride			0.250	0.500	1.00	UX
108-90-7	Chlorobenzene			0.250	0.500	1.00	U
75-00-3	Chloroethane			0.500	1.00	2.00	U
67-66-3	Chloroform			0.250	0.500	1.00	U
74-87-3	Chloromethane			0.250	0.500	1.00	U
124-48-1	Dibromochloromethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.250	0.500	1.00	U
591-78-6	2-Hexanone			1.25	2.50	5.00	U
75-09-2	Methylene chloride			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone			1.25	2.50	5.00	U
100-42-5	Styrene			0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene			0.250	0,500	1.00	U
108-88-3	Toluene			0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane			0.250	0.500	1.00	U
79-01-6	Trichloroethene			0.250	0.500	1.00	U
75-01-4	Vinyl chloride			0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene			0.500	1.00	2.00	U
95-47-6	o-Xylene		0.296	0.250	0.500	1.00	J

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.06	96.9	75 - 120	
Dibromofluoromethane	30.00	31.10	104	85 - 115	
1,2-Dichloroethane-d4	30.00	29.72	99.1	70 - 120	

ANALYSIS DATA SHEET

49MW03

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501124</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

<u>1501124-01</u>

File ID:

<u>0112401B.D</u>

Sampled:

04 100 14 5 00

Prepared:

02/06/15 14:09

Analyzed:

02/06/15 14:09

Solids:

01/28/15 08:55

Preparation:

5030B

Dilution:

<u>1</u>

Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	<u>4295001</u>	Instrument:	MS-VOA3
SYSTEM N	YSTEM MONITORING COMPOUND		ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	28.93	96.4	85 - 120	

Trip Blank 14-0840

Laboratory: Empirical Laboratories, LLC SDG:

1501124

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501124-02

<u>0112402A.D</u>

Sampled:

File ID:

01/28/15 08:00

Prepared:

02/06/15 10:48

Analyzed:

02/06/15 10:48

Solids:

5030B Preparation:

Dilution:

Bollas.	11epaiation.	<u>50505</u>		_		
Batch:	<u>5B06004</u> Sequence: <u>5B0</u>	4025 Calibration:	429500	<u>1</u>	Instrument:	MS-VOA3
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		2.50	5.00	10.0	U
71-43-2	Benzene		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U
75-25-2	Bromoform		0.250	0.500	1.00	U
74-83-9	Bromomethane		0.500	1.00	2.00	U
78-93-3	2-Butanone		2.50	5.00	10.0	U
75-15-0	Carbon disulfide		0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride		0.250	0.500	1.00	UX
108-90-7	Chlorobenzene		0.250	0.500	1.00	U
75-00-3	Chloroethane		0.500	1.00	2.00	U
67-66-3	Chloroform		0.250	0.500	1.00	U
74-87-3	Chloromethane		0.250	0.500	1.00	U
124-48-1	Dibromochloromethane		0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane		0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene		0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U
100-41-4	Ethylbenzene		0.250	0.500	1.00	U
591-78-6	2-Hexanone		1.25	2.50	5.00	U
75-09-2	Methylene chloride		0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U
100-42-5	Styrene		0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U
127-18-4	Tetrachloroethene		0.250	0.500	1.00	U
108-88-3	Toluene		0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane		0.250	0.500	1.00	U
79-01-6	Trichloroethene		0.250	0.500	1.00	U
75-01-4	Vinyl chloride		0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene		0.500	1.00	2.00	U
95-47-6	o-Xylene		0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30,00	28.29	94.3	75 - 120	
Dibromofluoromethane	30.00	30.14	100	85 - 115	
1,2-Dichloroethane-d4	30.00	30.21	101	70 - 120	

Trip Blank 14-0840

Laboratory:

Empirical Laboratories, LLC

SDG:

1501124

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501124-02

File ID:

<u>0112402A.D</u>

Sampled:

Prepared:

02/06/15 10:48

02/06/15 10:48

Solids:

01/28/15 08:00

Preparation:

Analyzed:

<u>5030B</u>

Dilution:

1

Instrument:	MS-VOA3
OCIDATE	

Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	<u>4295001</u>	Instrument:	MS-VOA3
SYSTEM N	MONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	27.81	92.7	85 - 120	
L							I

48MW2

Laboratory: Empirical Laboratories, LLC SDG: <u>1501124</u>

Prepared:

Client: <u>CB&I</u> Project: Radford AAP

Laboratory ID: 1501124-03 File ID: <u>0112403B.D</u> Matrix: Water Analyzed: 02/06/15 14:34

02/06/15 14:34

Dilution: Preparation: Solids: 5030B 1

Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	<u>429500</u>	1	Instrument:	MS-VOA3
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone				2.50	5.00	10.0	U
71-43-2	Benzene				0.250	0.500	1.00	U
75-27-4	Bromodichlorome	ethane			0.250	0.500	1.00	U
75-25-2	Bromoform				0.250	0.500	1.00	U
74-83-9	Bromomethane				0.500	1.00	2.00	U
78-93-3	2-Butanone				2.50	5.00	10.0	U
75-15-0	Carbon disulfide				0.250	0.500	1.00	U
56-23-5	Carbon tetrachlor	ide		118	0.250	0.500	1,00	X
108-90-7	Chlorobenzene				0.250	0.500	1.00	U
75-00-3	Chloroethane				0.500	1.00	2.00	U
67-66-3	Chloroform			7.46	0.250	0.500	1.00	
74-87-3	Chloromethane				0.250	0.500	1.00	U
124-48-1	Dibromochlorome	ethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethan	ne			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethar	ne			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroether	ne			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroe	thene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloro	oethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropa	ane	:		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichlorop	ropene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloro	opropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene			0.469	0.250	0.500	1.00	J
591-78-6	2-Hexanone				1.25	2.50	5.00	U
75-09-2	Methylene chloric	le			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentar	none			1.25	2.50	5.00	U
100-42-5	Styrene				0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachlor	oethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene				0.250	0.500	1.00	U
108-88-3	Toluene				0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroeth	ane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroeth	ane			0.250	0.500	1.00	U
79-01-6	Trichloroethene			10.5	0.250	0.500	1.00	
75-01-4	Vinyl chloride				0.250	0.500	1.00	U
108-38-3/106-42	2- m,p-Xylene			1.32	0.500	1.00	2.00	J
95-47-6	o-Xylene			0.919	0.250	0.500	1.00	J

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.65	98.8	75 - 120	
Dibromofluoromethane	30.00	30.75	102	85 - 115	
1,2-Dichloroethane-d4	30.00	30.47	102	70 - 120	

J

7

Sampled:

01/28/15 12:00

ANALYSIS DATA SHEET

48MW2

Laboratory:

Empirical Laboratories, LLC

SDG:

1501124

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

Preparation:

<u>1501124-03</u>

File ID:

<u>0112403B.D</u>

Sampled:

Prepared:

02/06/15 14:34

Analyzed:

02/06/15 14:34

Solids:

01/28/15 12:00

<u>5030B</u>

Dilution:

<u>1</u>

Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	<u>4295001</u>	Instrument:	MS-VOA3	
SYSTEM N	MONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
Toluene-d8			30.00	29.01	96.7	85 - 120		

ANALYSIS DATA SHEET

49MW01

Laboratory: Empirical Laboratories, LLC SDG: 1501124

Client: CB&I Project: Radford AAP

Matrix: Water Laboratory ID: 1501124-04 File ID: 0112404B.D

Sampled: 01/28/15 13:20 Prepared: 02/06/15 14:59 Analyzed: 02/06/15 14:59

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

Batch:	<u>5B06004</u> Sequence: <u>5B04025</u>	Calibration:	429500	<u>1</u>	Instrument:	MS-VOA3	_
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q	
67-64-1	Acetone		2.50	5.00	10.0	U	
71-43-2	Benzene		0.250	0.500	1.00	U	
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U	
75-25-2	Bromoform		0.250	0.500	1.00	U	
74-83-9	Bromomethane		0.500	1.00	2.00	U	
78-93-3	2-Butanone		2,50	5.00	10.0	U	
75-15-0	Carbon disulfide		0.250	0.500	1.00	U	
56-23-5	Carbon tetrachloride	4.97	0.250	0.500	1.00	X	」フ
108-90-7	Chlorobenzene		0.250	0.500	1.00	U	
75-00-3	Chloroethane		0.500	1.00	2.00	U	
67-66-3	Chloroform	0.404	0.250	0.500	1.00	J	J
74-87-3	Chloromethane		0.250	0.500	1.00	U	
124-48-1	Dibromochloromethane		0.250	0.500	1.00	U	
75-34-3	1,1-Dichloroethane		0.250	0.500	1.00	U	
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U	
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U	
156-59-2	cis-1,2-Dichloroethene		0.250	0.500	1.00	U	
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U	
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U	
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U	
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U	
100-41-4	Ethylbenzene	0.262	0.250	0.500	1.00	J	」ブ
591-78-6	2-Hexanone		1.25	2.50	5.00	U	_
75-09-2	Methylene chloride		0.500	1.00	2.00	U	
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U	
100-42-5	Styrene		0.250	0.500	1.00	U	
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U	
127-18-4	Tetrachloroethene		0.250	0.500	1.00	U	
108-88-3	Toluene		0.250	0.500	1.00	U	_
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U	╡.
71-55-6	1,1,1-Trichloroethane	0.262	0.250	0.500	1.00	J	」ブ
79-01-6	Trichloroethene		0.250	0,500	1.00	U	
75-01-4	Vinyl chloride		0.250	0.500	1.00	U] _
108-38-3/106-42	- m,p-Xylene	0.690	0.500	1.00	2.00	J	プ
95-47-6	o-Xylene	0.544	0.250	0.500	1.00	J	J. "

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.07	96.9	75 - 120	
Dibromofluoromethane	30.00	30.83	103	85 - 115	
1,2-Dichloroethane-d4	30.00	29.13	97.1	70 - 120	

ANALYSIS DATA SHEET

49MW01

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501124</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

File ID:

<u>0112404B.D</u>

Sampled:

Prepared:

1501124-04 02/06/15 14:59

01/28/15 13:20

Preparation:

Analyzed:

02/06/15 14:59

1

Solids:

<u>5030B</u>

Dilution:

Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	<u>4295001</u>	Instrument:	MS-VOA3	
SYSTEM N	MONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	LIMITS Q	
Toluene-d8			30.00	29.35	97.8	85 - 120		

ANALYSIS DATA SHEET

48MW1

Laboratory: Empirical Laboratories, LLC SDG: 1501124

Client: CB&I Project: Radford AAP

 Matrix:
 Water
 Laboratory ID:
 1501124-05
 File ID:
 0112405B.D

 Sampled:
 01/28/15 14:30
 Prepared:
 02/06/15 15:24
 Analyzed:
 02/06/15 15:24

Solids: Preparation: <u>5030B</u> Dilution: <u>1</u>

Solius.		ı rep	aration.	<u>505015</u>	Director			
Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	429500	<u> </u>	Instrument:	MS-VOA3
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone				2.50	5.00	10.0	U
71-43-2	Benzene				0.250	0.500	1.00	U
75-27-4	Bromodichlorome	ethane	****		0.250	0.500	1.00	U
75-25-2	Bromoform				0.250	0.500	1.00	U
74-83-9	Bromomethane				0.500	1.00	2.00	U
78-93-3	2-Butanone				2.50	5.00	10.0	U
75-15-0	Carbon disulfide				0.250	0.500	1.00	U
56-23-5	Carbon tetrachlor	ride			0.250	0.500	1.00	UX
108-90-7	Chlorobenzene				0.250	0.500	1.00	U
75-00-3	Chloroethane				0.500	1.00	2.00	U
67-66-3	Chloroform				0.250	0.500	1.00	U
74-87-3	Chloromethane				0.250	0.500	1.00	U
124-48-1	Dibromochlorome	ethane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethar	ne		0.908	0.250	0.500	1.00	Ј
107-06-2	1,2-Dichloroethar	ne			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroether	ne			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroe	thene		0.914	0.250	0.500	1.00	J
156-60-5	trans-1,2-Dichlore	oethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloroprop	ane			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichlorop	propene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichlore	opropene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene				0.250	0.500	1.00	U
591-78-6	2-Hexanone				1.25	2.50	5.00	U
75-09-2	Methylene chloric	de			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-penta	none			1.25	2.50	5.00	U
100-42-5	Styrene				0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachlor	roethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene	e			0.250	0.500	1.00	U
108-88-3	Toluene				0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroeth	hane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroeth	hane		0.454	0.250	0.500	1.00	J
79-01-6	Trichloroethene			1.91	0.250	0.500	1.00	
75-01-4	Vinyl chloride				0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene			0.535	0.500	1.00	2.00	J
95-47-6	o-Xylene			0.285	0.250	0.500	1.00	J

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	28,55	95.2	75 - 120	
Dibromofluoromethane	30.00	30.89	103	85 - 115	
1,2-Dichloroethane-d4	30.00	30.15	100	70 - 120	

ANALYSIS DATA SHEET

48MW1

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501124</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501124-05

File ID:

0112405B.D

Sampled:

Prepared:

02/06/15 15:24

Analyzed:

02/06/15 15:24

Solids:

01/28/15 14:30

Preparation:

<u>5030B</u>

Dilution:

1

Batch:	<u>5B06004</u>	Sequence:	<u>5B04025</u>	Calibration:	4295001	Instrument:	MS-VOA3
SYSTEM M	IONITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8			30.00	27.91	93.0	85 - 120	

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Empirical Laboratories, LLC; SDG 1501134

DATE:

February 24, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 29, 2015. Samples were analyzed for the chloride, nitrate, and sulfate using USEPA SW-846 9056A. A total of one aqueous sample was validated. The sample Id is:

Field Sample ID	Lab Sample ID
48MW06	1501134-03

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualif	ied Data	Parameter			
Yes	No				
	X	Holding Times and Preservation			
	Х	Initial and Continuing Calibration			
	Х	Blank Analysis			
	Х	Laboratory Control Sample			
	Х	Laboratory Duplicate Sample			
	Х	Matrix Spike and Spike Duplicate			
	Х	Field Duplicate Sample			
	Х	Quantitation Verification and Data Review			

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

2/24/15

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 1501134

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/29/15, the cooler was received by the laboratory (Empirical) on 01/30/15 at 1.9°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: Samples were collected on 01/29/15. The samples were prepped and analyzed on 01/30/15 for nitrate analysis and on 02/10/15 for sulfate and chloride analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 – blank 5 – standards (r≥0.995 or r²≥0.99) ICV/CCV (90-110%) Method Reporting Limit (MRL) (50-150%)

• Chloride, sulfate, and nitrate analysis was calibrated on 12/16/14 using linear equation techniques. All correlation coefficients were ≥0.995 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Sample 48MW06 (1501134-03) applies to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
02/10/15	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/10/15	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
01/30/15	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/10/15	Chloride	5B10010-BLK1	<½MRL	NA NA	None
02/10/15	Sulfate	5B10010-BLK1	<1/2MRL	NA	None
01/30/15	Nitrate	5A30002-BLK1	<½MRL	NA NA	None
01/28/15	Chloride	RB012715	<½MRL	NA	None
01/28/15	Sulfate	RB012715	<½MRL	NA NA	None
01/28/15	Nitrate	RB012715	<½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits: 80-120%

- Sample 5A30002-BS1 was used as the aqueous LCS for nitrate analysis on 01/29/15. All criteria were met. No qualifiers were applied. Sample 48MW06 (1501134-03) applies to this LCS.
- Sample 5B10010-BS1 was used as the aqueous LCS for chloride and sulfate analysis on 02/10/15.
 All criteria were met. No qualifiers were applied. Sample 48MW06 (1501134-03) applies to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤25%RPD).

No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions:

80-120%; RPD≤20%

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No site field groundwater sample duplicate pair was analyzed for chloride, sulfate, and nitrate analysis in this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 48MW06 (1501134-03), sulfate

Y = mX + b

Y = Sample Area m = slope of curve X = Concentration (mg/L) b = Y-intercept DF = Dilution Factor

Given:

m = 0.202746 b = 0.0 Y = Area = 27.8491022 DF = 2

X = 137.57 mg/L * DF = 136.57 mg/L * 1 = 275 mg/L

Reported concentration = 275 mg/L %D = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
į į	JSEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Tel: +1 (410) 273-7100 Fax: +1 (225) 952-3016

Eric.malarek@CBlfederalservices.com

MEMORANDUM

To: Tim Leahy, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM: Eric Malarek, Shaw E&I Project Chemist

SUBJECT: RFAAP Data Validation – Total Organic Carbon

Empirical Laboratories, LLC; SDG 1501134

DATE: February 24, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 29, 2015. Samples were analyzed for Total Organic Carbon (TOC) using USEPA SW-846 9060A. A total of one aqueous sample was validated. The sample Id is:

Field Sample ID	Lab Sample ID
48MW06	1501134-03

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter			
Yes	No				
	Х	Holding Times and Preservation			
	Х	Initial and Continuing Calibration			
	Х	Blank Analysis			
	Х	Laboratory Control Sample			
	Х	Matrix Spike and Spike Duplicate			
	Х	Laboratory Duplicate			
	Х	Field Duplicate			
Х		Quantitation Verification and Data Review			

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Data

RFAAP VALIDATION REPORT TOC REVIEW SDG 1501134

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/29/15, the cooler was received by the laboratory (Empirical) on 01/30/15 at 1.9°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The samples were collected on 01/29/15. The TOC analysis was run on 02/05/15. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC: 1 - blank

5 - standards (r≥0.995) ICV/CCV (80-120%)

The TOC analysis was run on 02/05/15. The initial calibration for TOC was analyzed on 01/19/15 with a coefficient of determination of 0.9996. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Sample 48MW06 (1501134-03) applies to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
02/05/15	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/05/15	TOC	5B05019-BLK1	<½MRL	NA	None
02/05/15	TOC	RB012714	<½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (80-120%).

Sample 5B05019-BS1 was used as the aqueous LCS for TOC analysis on 02/05/15. All criteria were
met. No qualifiers were applied. Sample 48MW06 (1501134-03) applies to this LCS.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (75-125%; RPD≤20%).

• No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤20%RPD).

 No aqueous laboratory duplicate was analyzed for TOC with this SDG; therefore, it was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No site field groundwater sample duplicate pair was analyzed for TOC analysis in this SDG; therefore, was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

• Any sample value >MDL and <MRL was qualified as estimated, "J."

Sample: 48MW06 (1501134-03), TOC

```
TOC: Y = m*X (mg/L) + b

m = 11.56

b = 0.00

Y = 18.94

DF = 1

TOC (mg/L) = X = (1.64 mg/L) * 1 = 1.64 mg/L
```

Reported Value = 1.64 mg/L % Difference = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
	USEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).
²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

ANALYSIS DATA SHEET

48MW06

Laboratory: Empirical Laboratories, LLC

Client: CB&I

SDG:

<u>1501134</u>

Project:

Radford AAP

Matrix: Water

Laboratory ID:

<u>1501134-03</u>

Sampled: <u>01/29/15 11:35</u>

Received:

01/30/15 08:35

CAS NO.	Analyte	Conc. (mg/L)	DL	LOD	LOQ	D.F.	Q	Method	Batch	Analyzed
16887-00-6		9,36	0.340	0.660	1.00	2	D	SW9056A	5B10010	02/10/15 14:17
	Nitrate as N	5.88	0,0330	0.100	0.250	1		SW9056A	5A30002	01/30/15 12:24
	Sulfate as SO4	275	0,660	2.00	5.00	2	D	SW9056A	5B10010	02/10/15 14:17
7440-44-0	Total Organic Carbon AVG	1.64	1,25	2.50	3.00	1	J	J SW9060A	5B05019	02/05/15 23:11

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (225) 952-3016

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Methane, Ethane, and Ethene

Empirical Laboratories, LLC; SDG 1501134

DATE:

February 23, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 29, 2015. The samples were analyzed for methane, ethane, and ethene using laboratory method RSK-175. A total of one aqueous sample was validated. The sample Id is:

Field Sample ID	Lab Sample ID
48MW06	1501134-03

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualif	ied Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial Calibration
	Х	Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT DISSOLVED GASES REVIEW SDG 1501134

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For methane, ethane, and ethene, aqueous samples are cooled @ 4° C \pm 2° C; the maximum holding time is 7 days un-preserved and 14 days preserved to pH<2 with HCI from sample collection to analysis.

- Temperature Review: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/29/15, the cooler was received by the laboratory (Empirical) on 01/30/15 at 1.9°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The aqueous sample was collected on 01/29/15. It was prepped and analyzed for the dissolved gases on 02/04/15. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the calibration factors on which the quantitations are based. If linear regression is used for quantification, the correlation coefficient must be ≥ 0.995 for linearity fit (DoD QSM). If calibration factor method is used, the %RSD should be $\leq 20\%$ (DoD QSM). All ICVs should be within 80-120% recovery limits (DoD QSM).

• For initial calibration performed on 11/30/14 on instrument GL-GCVOA, all target compounds were within criteria (%RSD≤20%%; RRF≥0.05) except for the following. Target compound methane (27.9%) was outside criteria. Methane (r²=0.9991; quadratic) was quantified using second order regression with coefficient of determination r²≥0.99; therefore, no qualifiers were applied based upon this outlier. All other target compounds were quantified using calibration factor method. All criteria were met. Sample 48MW06 (1501134-03) applies to this initial calibration.

III-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. If calibration factor method is used, the percent difference (%D) should all fall within the control criteria of $\leq 20\%$ (DoD QSM). All CCVs should be within 80-120% recovery limits (DoD QSM).

- For initial calibration verification for methane, ethane, and ethene performed on 12/01/14 @00:44 on instrument GL-GCVOA, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this initial calibration verification.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @11:47 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this continuing calibration.

- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @15:11 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. Sample 48MW06 (1501134-03) applies to this continuing calibration.
- For continuing calibration for methane, ethane, and ethene performed on 02/04/15 @17:54 on instrument GL-GCVOA, all criteria were met (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No groundwater samples were reported using this continuing calibration.

IV-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. Action Level μg/L μg/L		B qualified samples (For this SDG)	
02/04/15	5B04002-BLK1	All target <1∕₂MRL	NA	NA	None	
02/04/15	RB012714	All target <1/2MRL	NA	NA	None	

MRL = Method Reporting Limit

NA = Not Applicable

V-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. DoD LCS aqueous recovery limits are specified in the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. Percent recoveries (%Rs) should be within the specified control limits.

 Sample 5B04002-BS1 was used as LCS for methane, ethane, and ethene analysis performed on 02/04/15. All criteria were met. No qualifiers were applied. Sample 48MW06 (1501134-03) applies to this LCS.

VI-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. DoD QSM MS and MSD recovery limits use the LCS criteria, which currently is the use of in-house specified limits (DoD, 2010).

No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established in the Groundwater Monitored Natural Attenuation (GWMNA) QAPP at 50% RPD for the aqueous samples.

No field groundwater sample duplicate pair was collected within this SDG; therefore, was not
evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results was verified and data results reviewed. The following was determined:

- The percent difference (%D) between the calculated and the reported values should be within 10% through the calculation from the raw data provided. The calculation verification was confirmed within 10% difference.
- Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 5B04002-BS1, ethane

```
Conc. \mu g/L = (((Vhs*(Ax/CF))/Vs*Density)+((Ax/CF)/HLC)*55.5/1.137*(MW*1000))*DF
```

Where:

Ax = Area of characteristic ion for compound being measured.

CF = Average relative calibration factor for compound being measured (from ICAL)

MW = molecular weight of analyte = 30.0 ug/umol

DF = dilution factor 1

Vhs = Volume of headspace = 5.5 mL Vs = Volume of sample = 0.015 L Density = 0.64356M,1.1262Ee,or 1.2067Ea

HLC = Henry's Law Constant = 44900M,12700Ee, or 34200Ea

Conc. µg/L =

 $(((5.5*(561935/550513.3))/0.015*1.2067)+((561935/550513.3)/34200)*55.5/1.137*(30*1000))*1 = 495.3 \mu g/L$

Reported Value = 495.3 μg/L

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
USEI	PA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

48MW06

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501134</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501134-03

File ID:

028F2801.D\Report.TXT

Sampled:

01/29/15 11:35

Prepared:

02/04/15 07:09

Analyzed:

02/04/15 17:40

Solids:

Preparation:

RSK175

Dilution:

1

Batch:	<u>5B04002</u>	Sequence:	<u>5B03704</u>	Calibration:	433500	<u>)2</u>	Instrument:	GL-GCVOA
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
74-82-8	Methane				1.00	2.00	4.00	U
74-84-0	Ethane				1.00	2.00	4.00	U
74-85-1	Ethene				1.00	2.00	4.00	U

Total Target Analytes Reported 3 Project Analytes: 3

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (225) 952-3016 Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CB&I RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Volatiles

Empirical Laboratories, LLC; SDG 1501134

DATE:

February 24, 2015

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU48/49 RFI/MNA on January 29, 2015. The samples were analyzed for volatile organic compounds (VOCs) using USEPA SW846 method 5030B/8260B for aqueous matrices. A total of three aqueous samples (includes one trip blank) were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
Trip Blank	1501134-01	48MW06	1501134-03
48MW07	1501134-02		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualif	ied Data	Parameter				
Yes	No					
	Х	Holding Times and Preservation				
	Х	Instrument Performance Results				
	Х	Initial Calibration				
	Х	Continuing Calibration				
Х		Blank Analysis				
	Х	Laboratory Control Sample				
	Х	Matrix Spike / Spike Duplicate Sample				
	X	System Monitoring Compounds				
	Х	Internal Standards				
	Х	Field Sample Duplicate				
Х		Quantitation Verification and Data Review				

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT VOLATILES REVIEW SDG 1501134

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For aqueous samples, VOC compounds are shipped cooled (@4°C ± 2°C) and preserved pH≤2 HCl with a maximum holding time of 14 days (7 days if no HCl) from sample collection to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 01/29/15, the cooler was received by the laboratory (Empirical) on 01/30/15 at 1.9°C. The cooler receipt was below criteria; however, there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- <u>Holding Time Review</u>: For the samples collected on 01/29/15, the aqueous VOCs were prepped and analyzed on 02/11/15. Sample collection and analysis dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check

The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, bromofluorobenzene (BFB), met the ion abundance criteria. No qualification was applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve and establishes the relative response factors on which the quantitations are based. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. The DoD QSM specifies that the percent relative standard deviation (%RSD) must be \leq 15% for each target compound and must be \leq 30% for each calibration check compound. For compounds analyzed using linear regression or second order, correlation coefficients must be >0.995 and coefficients of determination >0.99.

• For initial calibration performed on 10/16/14 on instrument MS-VOA3, target compounds bromomethane (22.4%), chloroethane (21.6%), and methylene chloride (23.9%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Bromomethane, chloroethane, and methylene chloride were quantified using linear equation with correlation coefficients >0.995. All criteria were met. No qualifiers were applied. Samples Trip Blank (1501134-01), 48MW07 (1501134-02), and 48MW06 (1501134-03) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Continuing calibration checks satisfactory performance of the instrument on a day-to-day basis. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. The DoD QSM specifies that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF must be within 20% for all target compounds. The initial calibration verification should be between 80-120% recoveries.

- For initial calibration verification for the VOC analysis performed on 10/16/14 @17:56 on instrument MS-VOA3, all target compounds were within criteria (%D≤20%; %Drift≤20%; RRF≥0.05). No qualifiers were applied. No samples reported were analyzed using this initial calibration verification.
- For continuing calibration for the VOC analysis performed on 02/11/15 @08:42 on instrument MS-VOA3, bromoform (20.3%) and carbon tetrachloride (23.9%) were outside criteria (%D≤20%; %Drift≤20%; RRF≥0.05). All other target compounds were within criteria. Bromoform and carbon tetrachloride were non-detect for all associated samples; therefore, no qualification was required based upon the high %Ds. Samples Trip Blank (1501134-01), 48MW07 (1501134-02), and 48MW06 (1501134-03) were analyzed using this continuing calibration.

V-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. A method blank analysis must be performed after the calibration standards and once every 12-hour time period beginning with the injection of BFB. No contaminants should be detected in any of the associated blanks > the MDL. The DoD QSM criteria specifies all concentrations should be less than one-half MRL (<MRL for common laboratory contaminants methylene chloride, acetone, and 2-butanone). Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, and 2-butanone (MEK), or 5 times (5X) the maximum amount for other volatile target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. Rinse blank sample RB012714 (1501116-06) applies to all groundwater samples collected in this SDG. Trip blank sample Trip Blank (1501134-01) applies to all groundwater samples collected in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (for this SDG)
02/11/15	5B11007-BLK1	All target <1/2MRL	NA	NA	None
02/04/15	RB012714	Acetone	9.32J	93.2	48MW06
02/11/15	Trip Blank	All target <1/2MRL	NA	NA	None

J = Estimated value <MRL and >MDL.

NA = Not Applicable

MRL = Method Reporting Limit

MDL = Method Detection Limit

LOD = Level of Detection

VI-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. Percent recoveries (%Rs) should be within the specified control limits. DoD LCS aqueous recovery limits are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

Sample 5B11007-BS1 was used as the aqueous LCS for the VOC analysis on 02/11/15. All criteria were met. No qualifiers were applied. Samples Trip Blank (1501134-01), 48MW07 (1501134-02), and 48MW06 (1501134-03) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. The DoD MS/MSD aqueous recovery limits follow the LCS criteria and are specified in Table G-4 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The MS/MSD RPD should be ≤30%.

No project specific MS/MSD was collected within this SDG; therefore, was not evaluated.

VIII-System Monitoring Compounds (Surrogates)

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Recoveries for system monitoring compounds in volatile samples and blanks must be within the specified control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

4-Bromofluorobenzene (75-120%; RT±1.000) Dibromofluoromethane (85-115%; RT±1.000) 1,2-Dichloroethane-d4 (70-120%; RT±1.000) Toluene-d8 (85-120%; RT±1.000)

All criteria were met. No qualifiers were applied.

IX-Internal Standards (IS)

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: area counts (-50% to +100%) of the associated calibration standard, and retention time (\pm 30 seconds) from that of the associated calibration standard.

All criteria were met. No qualifiers were applied.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

 No field groundwater sample duplicate pair was collected within this SDG; therefore, was not evaluated.

XI-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%.

Any sample value >MDL and <MRL was qualified as estimated, "J".

Sample: 48MW06 (1501134-03), trichloroethene

Conc. $(\mu g/L) = (Ax)*(Is)*(DF) / (Ais)*(RRF)$

where: Ax is the compound area

Ais is the corresponding internal standard area

Is is the corresponding internal standard concentration (µg/L)

DF is the dilution factor

RRF is the relative response factor.

Conc. $\mu g/L = (13200 * 30 \mu g/L * 2) / (815038 * 0.2957519) = 3.29 \mu g/L$

Reported Conc. = 3.29 µg/L

%D = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
USEI	PA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

ANALYSIS DATA SHEET

Trip Blank

Laboratory: Empirical Laboratories, LLC SDG:

<u>1501134</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Laboratory ID:

1501134-01RE1 · File ID:

Water

<u>0113401B.D</u>

Sampled:

01/29/15 08:00

Prepared:

02/11/15 12:36

Analyzed:

02/11/15 12:36

Solids:

Preparation:

<u>5030B</u>

Dilution:

1

S G T G S		<u>5050D</u> .		-	•	
Batch:	<u>5B11007</u> Sequence: <u>5B04309</u>	Calibration:	4295001	•	Instrument:	MS-VOA3
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone		2.50	5.00	10.0	U
71-43-2	Benzene		0.250	0.500	1.00	U
75-27-4	Bromodichloromethane		0.250	0.500	1.00	U
75-25-2	Bromoform		0.250	0.500	1.00	UX
74-83-9	Bromomethane		0.500	1.00	2.00	U
78-93-3	2-Butanone		2.50	5.00	10.0	U
75-15-0	Carbon disulfide		0.250	0.500	1.00	U
56-23-5	Carbon tetrachloride		0.250	0.500	1.00	UX
108-90-7	Chlorobenzene		0.250	0.500	1.00	U
75-00-3	Chloroethane		0.500	1.00	2.00	U
67-66-3	Chloroform		0.250	0.500	1.00	U
74-87-3	Chloromethane		0.250	0.500	1.00	U
124-48-1	Dibromochloromethane		0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane		0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane		0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene		0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroethene		0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloroethene		0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropane		0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloropropene		0.250	0.500	1.00	U
100-41-4	Ethylbenzene		0.250	0.500	1.00	U
591-78-6	2-Hexanone		1.25	2.50	5.00	U
75-09-2	Methylene chloride		0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentanone		1.25	2.50	5.00	U
100-42-5	Styrene		0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.250	0.500	1.00	U
127-18-4	Tetrachloroethene		0.250	0.500	1.00	U
108-88-3	Toluene		0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroethane		0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroethane		0.250	0.500	1.00	U
79-01-6	Trichloroethene		0.250	0.500	1.00	U
75-01-4	Vinyl chloride		0.250	0.500	1.00	U
108-38-3/106-42	m,p-Xylene		0.500	1.00	2.00	U
95-47-6	o-Xylene		0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	29.40	98.0	75 - 120	
Dibromofluoromethane	30.00	30.64	102	85 - 115	
1,2-Dichloroethane-d4	30.00	28.68	95.6	70 - 120	

ANALYSIS DATA SHEET

Trip Blank

Laboratory:

Empirical Laboratories, LLC

SDG:

1501134

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501134-01RE1

Sampled:

File ID:

0113401B.D

01/29/15 08:00

Prepared:

Preparation:

02/11/15 12:36

Analyzed:

02/11/15 12:36

Solids:

5030B

Dilution:

1

Batch:		<u>5B11007</u>	<u>5B11007</u> Sequence:		Calibration:	<u>4295001</u>	Instrument:	MS-VOA3	
	SYSTEM MO	NITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
	Toluene-d8			30.00	28.67	95.6	85 - 120		

ANALYSIS DATA SHEET

48MW07

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501134</u>

Client:

<u>CB&I</u>

Project:

Radford AAP

Matrix:

Water

Laboratory ID:

1501134-02RE1

File ID:

0113402C.D

Sampled:

01/29/15 09:25

Prepared:

02/11/15 13:26

Analyzed:

02/11/15 13:26

Solids:

Preparation:

<u>5030B</u>

Dilution:

<u>1</u>

Batch:	<u>5B11007</u>	Sequence:	<u>5B04309</u>	Calibration:	429500	<u>1</u>	Instrument:	MS-VOA3
CAS NO.	COMPOUND			CONC. (ug/L)	DL	LOD	LOQ	Q
67-64-1	Acetone				2.50	5.00	10.0	U
71-43-2	Benzene				0.250	0.500	1.00	U
75-27-4	Bromodichlorome	thane			0.250	0.500	1.00	U
75-25-2	Bromoform				0.250	0.500	1.00	UX
74-83-9	Bromomethane				0.500	1.00	2.00	U
78-93-3	2-Butanone				2.50	5.00	10.0	U
75-15-0	Carbon disulfide				0.250	0.500	1.00	U
56-23-5	Carbon tetrachloric	de			0.250	0.500	1.00	UX
108-90-7	Chlorobenzene				0.250	0.500	1.00	U
75-00-3	Chloroethane				0.500	1.00	2.00	U
67-66-3	Chloroform				0.250	0.500	1.00	U
74-87-3	Chloromethane				0.250	0.500	1.00	U
124-48-1	Dibromochlorome	thane			0.250	0.500	1.00	U
75-34-3	1,1-Dichloroethane	e			0.250	0.500	1.00	U
107-06-2	1,2-Dichloroethane	e			0.250	0.500	1.00	U
75-35-4	1,1-Dichloroethene	e			0.250	0.500	1.00	U
156-59-2	cis-1,2-Dichloroetl	hene			0.250	0.500	1.00	U
156-60-5	trans-1,2-Dichloro	ethene			0.250	0.500	1.00	U
78-87-5	1,2-Dichloropropa	ne			0.250	0.500	1.00	U
10061-01-5	cis-1,3-Dichloropro	opene			0.250	0.500	1.00	U
10061-02-6	trans-1,3-Dichloro	propene			0.250	0.500	1.00	U
100-41-4	Ethylbenzene				0.250	0.500	1.00	U
591-78-6	2-Hexanone				1.25	2.50	5.00	U
75-09-2	Methylene chloride	e			0.500	1.00	2.00	U
108-10-1	4-Methyl-2-pentan	ione			1.25	2.50	5.00	U
100-42-5	Styrene				0.250	0.500	1.00	U
79-34-5	1,1,2,2-Tetrachloro	oethane			0.250	0.500	1.00	U
127-18-4	Tetrachloroethene				0.250	0.500	1.00	U
108-88-3	Toluene				0.250	0.500	1.00	U
79-00-5	1,1,2-Trichloroetha	ane			0.250	0.500	1.00	U
71-55-6	1,1,1-Trichloroetha	ane			0.250	0.500	1.00	U
79-01-6	Trichloroethene				0.250	0.500	1.00	U
75-01-4	Vinyl chloride				0.250	0.500	1.00	U
108-38-3/106-42-	m,p-Xylene				0.500	1.00	2.00	U
95-47-6	o-Xylene				0.250	0.500	1.00	U

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (va/L)	CONC (ng/L)	% REC	OC LIMITS	0
5151EM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	70 KEC	QC LIMITS	Ų
Bromofluorobenzene	30.00	28.49	95.0	75 - 120	
Dibromofluoromethane	30.00	31.45	105	85 - 115	
1,2-Dichloroethane-d4	30.00	28.59	95.3	70 - 120	

48MW07

Laboratory:

Empirical Laboratories, LLC

SDG:

1501134

Client:

<u>CB&I</u>

Project:

 $\underline{Radford\,AAP}$

Matrix:

Water

Laboratory ID:

1501134-02RE1

File ID:

0113402C.D

Sampled:

Prepared:

02/11/15 13:26

Analyzed:

Solids:

01/29/15 09:25

02/11/15 13:26

1

Preparation:

5030B

Dilution:

Batch:	<u>5B11007</u>	Sequence:	<u>5B04309</u>	Calibration:	<u>4295001</u>	Instrument:	MS-VOA3
SYSTEM MONITORING COMPOUND		ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
Toluene-d8		30.00	27.66	92.2	85 - 120		

ANALYSIS DATA SHEET

48MW06

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501134</u>

Client:

CB&I

Project:

Radford AAP File ID:

<u>0113403C.D</u>

Matrix: Sampled: Water

Laboratory ID:

1501134-03RE1 02/11/15 13:51

Analyzed:

02/11/15 13:51

Solids:

01/29/15 11:35

Prepared: Preparation:

5030B

Dilution:

2

Batch:	<u>5B11007</u> Sequence: <u>5B04309</u>	Calibration:	429500	1	Instrument:	MS-VOA3	_
CAS NO.	COMPOUND	CONC. (ug/L)	DL	LOD	LOQ	Q]
67-64-1	Acetone	27.8	5.00	10.0	20.0	D]B
71-43-2	Benzene		0.500	1.00	2.00	U	
75-27-4	Bromodichloromethane		0.500	1.00	2.00	U	
75-25-2	Bromoform		0.500	1.00	2.00	UX	
74-83-9	Bromomethane		1.00	2.00	4.00	U	
78-93-3	2-Butanone		5.00	10.0	20.0	U	
75-15-0	Carbon disulfide		0.500	1.00	2.00	U	
56-23-5	Carbon tetrachloride		0.500	1.00	2.00	UX	
108-90-7	Chlorobenzene		0.500	1.00	2.00	U	
75-00-3	Chloroethane		1.00	2.00	4.00	U]
67-66-3	Chloroform		0.500	1.00	2.00	Ú	7
74-87-3	Chloromethane		0.500	1.00	2.00	U	1
124-48-1	Dibromochloromethane		0.500	1.00	2.00	U	
75-34-3	1,1-Dichloroethane	4.28	0.500	1.00	2.00	D	1
107-06-2	1,2-Dichloroethane		0.500	1.00	2.00	U	7
75-35-4	1,1-Dichloroethene		0.500	1.00	2.00	U	7
156-59-2	cis-1,2-Dichloroethene	4.86	0.500	1.00	2.00	D	1
156-60-5	trans-1,2-Dichloroethene		0.500	1.00	2.00	U	1
78-87-5	1,2-Dichloropropane		0.500	1.00	2.00	U	7
10061-01-5	cis-1,3-Dichloropropene		0.500	1.00	2.00	U	
10061-02-6	trans-1,3-Dichloropropene		0.500	1.00	2.00	U	
100-41-4	Ethylbenzene		0.500	1.00	2.00	U	1
591-78-6	2-Hexanone		2.50	5.00	10.0	U	7
75-09-2	Methylene chloride		1.00	2.00	4.00	U	
108-10-1	4-Methyl-2-pentanone		2.50	5.00	10.0	U	
100-42-5	Styrene		0.500	1.00	2.00	U	
79-34-5	1,1,2,2-Tetrachloroethane		0.500	1.00	2.00	U	1
127-18-4	Tetrachloroethene	0.709	0.500	1.00	2.00	JD	כו
108-88-3	Toluene		0.500	1.00	2.00	U	1
79-00-5	1,1,2-Trichloroethane		0.500	1.00	2.00	U	
71-55-6	1,1,1-Trichloroethane	0.691	0.500	1.00	2.00	JD] ブ
79-01-6	Trichloroethene	3.29	0.500	1.00	2.00	D	1
75-01-4	Vinyl chloride		0.500	1.00	2.00	U	1
108-38-3/106-42	1 -		1.00	2.00	4.00	U	1
95-47-6	o-Xylene		0.500	1.00	2.00	U	1

Total Target Analytes Reported 35 Project Analytes: 35

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Bromofluorobenzene	30.00	28.66	95.5	75 - 120	
Dibromofluoromethane	30.00	31.14	104	85 - 115	
1,2-Dichloroethane-d4	30.00	30.44	101	70 - 120	

ANALYSIS DATA SHEET

48MW06

Laboratory:

Empirical Laboratories, LLC

SDG:

<u>1501134</u>

Client:

<u>CB&I</u>

Project:

29.48

Radford AAP

98.3

Matrix:

Water

Laboratory ID:

1501134-03RE1

File ID:

0113403C.D

Sampled:

01/29/15 11:35

Prepared:

02/11/15 13:51

Analyzed:

02/11/15 13:51

85 - 120

Solids:

Preparation:

5030B

Dilution:

1

Batch:	Batch: <u>5B11007</u> Sequence:		<u>5B04309</u>	5B04309 Calibration:		Instrument:	MS-VOA3	
SYSTEM	MONITORING COM	IPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q	
Toluene-d8	3		30.00	29.48	98.3	85 - 120		

30.00