ANNUAL GROUNDWATER MONITORING REPORT

(INCLUDES FOURTH QUARTER 2012 SEMIANNUAL GROUNDWATER MONITORING REPORT)

Hazardous Waste Management Units 5, 7, 10 and 16 CALENDAR YEAR 2012

RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

Submitted to:

Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219 (800) 592-5482

Prepared for:

BAE Systems, Ordnance Systems Inc. Radford Army Ammunition Plant Route 114 Radford, Virginia 24141-0100

FEBRUARY 2013

DAA PROJECT No. B03204-10

DRAPER ADEN ASSOCIATES PREPARED THIS DOCUMENT (WHICH MAY INCLUDE DRAWINGS, SPECIFICATIONS, REPORTS, STUDIES AND ATTACHMENTS) IN ACCORDANCE WITH THE AGREEMENT BETWEEN DRAPER ADEN ASSOCIATES AND BAE SYSTEMS, ORDNANCE SYSTEMS INC.

THE STANDARD OF CARE FOR ALL PROFESSIONAL ENGINEERING, ENVIRONMENTAL AND SURVEYING AND RELATED SERVICES PERFORMED OR FURNISHED BY DRAPER ADEN ASSOCIATES UNDER THIS AGREEMENT ARE THE CARE AND SKILL ORDINARILY USED BY MEMBERS OF THESE PROFESSIONS PRACTICING UNDER SIMILAR CIRCUMSTANCES AT THE SAME TIME AND IN THE SAME LOCALITY. DRAPER ADEN ASSOCIATES MAKES NO WARRANTIES, EXPRESS OR IMPLIED, UNDER THIS AGREEMENT IN CONNECTION WITH DRAPER ADEN ASSOCIATES SERVICES.

CONCLUSIONS PRESENTED ARE BASED UPON A REVIEW OF AVAILABLE INFORMATION, THE RESULTS OF OUR FIELD STUDIES, AND/OR PROFESSIONAL JUDGMENT. TO THE BEST OF OUR KNOWLEDGE, INFORMATION PROVIDED BY OTHERS IS TRUE AND ACCURATE, UNLESS OTHERWISE NOTED.

DRAPER ADEN ASSOCIATES' LIABILITY, HEREUNDER, SHALL BE LIMITED TO AMOUNTS DUE DRAPER ADEN ASSOCIATES FOR SERVICES ACTUALLY RENDERED, OR

ANY REUSE OR MODIFICATION OF ANY OF THE AFOREMENTIONED DOCUMENTS (WHETHER HARD COPIES OR ELECTRONIC TRANSMITTALS) PREPARED BY DRAPER ADEN ASSOCIATES WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY DRAPER ADEN ASSOCIATES WILL BE AT THE SOLE RISK OF THE INDIVIDUAL OR ENTITY UTILIZING SAID DOCUMENTS AND SUCH USE IS WITHOUT THE AUTHORIZATION OF DRAPER ADEN ASSOCIATES. DRAPER ADEN ASSOCIATES SHALL HAVE NO LEGAL LIABILITY RESULTING FROM ANY AND ALL CLAIMS, DAMAGES, LOSSES, AND EXPENSES, INCLUDING ATTORNEY'S FEES ARISING OUT OF THE UNAUTHORIZED REUSE OR MODIFICATION OF THESE DOCUMENTS. CLIENT SHALL INDEMNIFY DRAPER ADEN ASSOCIATES FROM ANY CLAIMS ARISING OUT OF UNAUTHORIZED USE OR MODIFICATION OF THE DOCUMENTS WHETHER HARD COPY OR ELECTRONIC.

CONCLUSIONS PRESENTED BY DRAPER ADEN ASSOCIATES DO NOT REFLECT VARIATIONS IN SUBSURFACE GROUNDWATER QUALITY THAT MIGHT EXIST BETWEEN OR BEYOND SAMPLING POINTS OR BETWEEN SPECIFIC SAMPLE COLLECTIONS EVENTS. DRAPER ADEN ASSOCIATES SHALL INCUR NO LIABILITY RESULTING FROM INFORMATION SUPPLIED BY OTHERS.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
HWMU-5	1
HWMU-7	
HWMU-10	
HWMU-16	3
1.0 INTRODUCTION	4
1.1 HWMU-5	4
1.2 HWMU-7	
1.3 HWMU-10	
1.4 HWMU-16	5
2.0 HWMU-5 ANNUAL GROUNDWATER MONITORING REPORT	6
2.1 WASTE MANAGEMENT UNIT INFORMATION	6
2.2 GROUNDWATER MONITORING PLAN	6
2.3 GROUNDWATER MOVEMENT	6
2.4 GROUNDWATER ANALYTICAL DATA EVALUATION	
2.4.1 Semiannual Monitoring for Corrective Action Targeted Constituents	8
2.4.2 Annual Monitoring List - Comparison to Groundwater Protection Standards	
2.4.3 Annual Monitoring List – Verification of Estimated Values	
2.5 ANNUAL EVALUATION OF EFFECTIVENESS OF CORRECTIVE ACTION	
2.6 RECOMMENDATIONS	11
3.0 HWMU-7 ANNUAL GROUNDWATER MONITORING REPORT	12
3.1 WASTE MANAGEMENT UNIT INFORMATION	12
3.2 GROUNDWATER MONITORING PLAN	12
3.3 GROUNDWATER MOVEMENT	12
3.4 GROUNDWATER ANALYTICAL DATA EVALUATION	
3.4.1 Comparison to Groundwater Protection Standards	
3.4.2 Comparison to Background Concentrations	
3.4.3 Annual Monitoring for Constituents Listed in Permit Attachment 1, Appendix I	
3.5 RECOMMENDATIONS	
4.0 HWMU-10 ANNUAL GROUNDWATER MONITORING REPORT	17
4.1 WASTE MANAGEMENT UNIT INFORMATION	17
4.2 GROUNDWATER MONITORING PLAN	
4.3 GROUNDWATER MOVEMENT	
4.4 GROUNDWATER ANALYTICAL DATA EVALUATION	
4.4.1 Comparison to Groundwater Protection Standards	
4.4.2 Comparison to Background Concentrations	
4.4.3 Annual Monitoring for Constituents Listed in Permit Attachment 1, Appendix I	
4.5 RECOMMENDATIONS	20
5.0 HWMU-16 ANNUAL GROUNDWATER MONITORING REPORT	21
5.1 WASTE MANAGEMENT UNIT INFORMATION	21
5.2 GROUNDWATER MONITORING PLAN	
5.3 GROUNDWATER MOVEMENT	21
5.4 GROUNDWATER ANALYTICAL DATA EVALUATION	22

i

TABLE OF CONTENTS

	.,122,12
5.4.1 Com	parison to Groundwater Protection Standards2
5.4.2 Com	parison to Background Concentrations2
	ual Monitoring for Constituents Listed in Permit Attachment 1, Appendix I 2 ENDATIONS
	ERTIFICATION2
LIST OF TABL	ES
Table 1 HWM	U-5 Groundwater Elevations - 2012
	U-7 Groundwater Elevations - 2011
	IU-10 Groundwater Elevations - 2012
Table 4 HWM	IU-16 Groundwater Elevations - 2012
LIST OF APPE	NDICES
Appendix A H	WMU-5
Appendix A-1	HWMU-5 Potentiometric Surface Maps (Second and Fourth Quarters 2012)
	HWMU-5 Year 2012 Laboratory Analytical Results – Groundwater Action Targeted Constituents - GPS and Semiannual Monitoring List
	HWMU-5 Year 2012 Laboratory Analytical Results – Groundwater Action Annual Monitoring List
* *	MNA Effectiveness Evaluation (Concentration Trend Graph, Point Rate Calculation, Data Trend Graphs, TCE Isoconcentration Map)
Appendix B H	WMU-7
Appendix B-1	HWMU-7 Potentiometric Surface Maps (Second and Fourth Quarters 2012)
Appendix B-2 Wells	HWMU-7 Year 2012 Laboratory Analytical Results – Point of Compliance
Appendix B-3 Wells	HWMU-7 Year 2012 Laboratory Analytical Results – Plume Monitoring
Appendix B-4	Established Background Values and Computations for HWMU-7
Appendix C H	WMU-10
Appendix C-1	HWMU-10 Potentiometric Surface Maps (Second and Fourth Quarters 2012)
Appendix C-2	HWMU-10 Year 2012 Laboratory Analytical Results
Appendix D H	WMU-16
Appendix D-1	HWMU-16 Potentiometric Surface Maps (Second and Fourth Quarters 2012)
Appendix D-2 Wells	HWMU-16 Year 2012 Laboratory Analytical Results – Point of Compliance
Appendix D-3 Wells	HWMU-16 Year 2012 Laboratory Analytical Results – Plume Monitoring
Appendix D-4	Established Background Values and Computations for HWMU-16
Appendix E La	boratory Analytical Results – Year 2012 (CD-ROM)
Appendix F Fi	eld Notes (CD-ROM)
Appendix G Co	orrespondence (CD-ROM)

DAA JN: B03204-10 ii February 2013

EXECUTIVE SUMMARY

This document presents the Annual Groundwater Monitoring Report for calendar year 2012 for Hazardous Waste Management Units (HWMUs) 5, 7, 10, and 16 located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. The Annual Groundwater Monitoring Report was compiled in accordance with the requirements specified in the Final Hazardous Waste Post-Closure Care Permit dated October 4, 2002, for HWMUs 5, 7, 10, and 16. This Annual Groundwater Monitoring Report evaluates the analytical data from Second Quarter 2011 and Fourth Quarter 2011 for each Unit.

HWMU-5

The calendar year 2012 groundwater monitoring events served as the fifth and sixth semiannual Corrective Action (CA) groundwater monitoring events for HWMU-5 conducted in accordance with Permit Module VI – *Groundwater Corrective Action & Monitoring Program for Unit 5*, which was approved by the Virginia Department of Environmental Quality (VDEQ) in the *Final Class 3 Hazardous Waste Permit Modification* dated November 5, 2009.

During Second Quarter 2012 and Fourth Quarter 2012, TCE was detected in point of compliance well 5WC21 at concentrations greater than the GPS of 5 µg/l, and in point of compliance wells 5W5B, 5WC22, and 5WC23 at concentrations less than the GPS of 5 µg/l. However, no daughter products of TCE were detected in any of the wells comprising the CA monitoring network during the 2012 monitoring events. The TCE concentrations observed in the point of compliance wells during calendar year 2012 are consistent with historical TCE concentrations observed in those wells. TCE was not detected at concentrations greater than the QL in any other wells comprising the CA monitoring network during the calendar year 2012 monitoring events, and no daughter products of TCE were detected in the wells comprising the CA monitoring network. In accordance with the Permit, a long-term concentration plot of the natural-log concentrations of TCE in well 5WC21 versus time was constructed. A linear regression line shows a decreasing trend in TCE concentration in well 5WC21over time. Based on the data collected to date, the current calculated compliance timeframe for corrective action (monitored natural attenuation [MNA]) is late-2013, which is less than the MNA remedial timeframe goal of 2019 as presented in the Permit, and less than the 2026 MNA ineffective date as specified in the Permit. Therefore, the current remedial measure (MNA) is performing effectively in addressing the TCE concentrations in groundwater at the Unit, and no additional action is required.

Total cobalt was detected at concentrations greater than the revised GPS of 7 μ g/l in point of compliance well 5WC21 during Second Quarter 2012 and Fourth Quarter 2012, and in point of compliance wells 5W7B and 5WC22 during Fourth Quarter 2012. However, total cobalt was not detected at concentrations greater than the GPS in the other wells comprising the CA monitoring network.

Overall, evaluation of calendar year 2012 data for the CA Targeted Constituents and comparison with historical data indicates effective progress of groundwater CA through natural attenuation. No changes to the continuation of the groundwater CA program are anticipated at this time.

DAA JN: B03204-10 1 February 2013

HWMU-7

Based on an evaluation of the groundwater analytical data and additional information for HWMU-7, no constituents were detected in the point of compliance wells at concentrations greater than their respective GPSs during calendar year 2012. Therefore, no further action is recommended at this time.

The additional Permit Attachment 1, Appendix I constituent diethyl ether was verified at a concentration greater than the detection limit in point of compliance well 7MW6; therefore, diethyl ether was added to the Groundwater Compliance Monitoring List for the Unit beginning with the Fourth Quarter 2012 monitoring event. The VDEQ established the background value (13 μ g/l) and GPS for diethyl ether (3,100 μ g/l) at HWMU-7 in correspondence dated November 15, 2012. No other additional Permit Attachment 1, Appendix I constituents were confirmed in the point of compliance wells during Second Quarter 2012.

An evaluation of the plume monitoring well data indicates that the concentrations of total barium in plume monitoring wells 7W10B and 7W10C were greater than the site-specific background concentration. Higher total barium concentrations in downgradient plume monitoring wells relative to background at HWMU-7 may be the result of natural variations in trace element distribution in groundwater. In addition, these concentrations are consistent with previous barium concentrations detected these wells. Therefore, no further action regarding the total barium concentrations detected in plume monitoring wells 7W10B and 7W10C is recommended at this time.

Total cobalt was detected in plume monitoring well 7W13 during both 2012 monitoring events at concentrations greater than the site-specific background concentration of 5 μ g/l (and the revised GPS of 5 μ g/l). On December 15, 2011, Radford AAP submitted an ASD for total cobalt in groundwater at HWMU-7 as recommended by the VDEQ. The results of the ASD concluded that the total cobalt concentrations observed in groundwater at HWMU-7 are derived from ambient, naturally-occurring and naturally variable sources. The VDEQ approved the ASD in correspondence dated January 5, 2012, stating that the facility is not required to remediate cobalt in groundwater at HWMU-7. Therefore, no further action regarding total cobalt in plume monitoring well 7W13 is recommended at this time.

HWMU-10

Based on an evaluation of the groundwater analytical data and additional information for HWMU-10, acetone was detected in point of compliance well 10D3D at a concentration greater than the GPS during Second Quarter 2012, and 2-propanol were detected in point of compliance well 10D3D at concentrations greater than the GPS during Second Quarter 2012 and Fourth Quarter 2012. In accordance with the Permit, Radford AAP submitted an ASD for acetone and 2-propanol to the VDEQ on July 9, 2012. The results of the ASD concluded that acetone and 2-propanol concentrations observed in groundwater at HWMU-10 are derived from propellant production wastewater flowing through the Bioplant lift station and associated pressurized sewer lines located upgradient from point of compliance well 10D3D. The VDEQ approved the ASD in correspondence dated September 10, 2012, stating that the facility is not required to remediate acetone and 2-propanol in groundwater at HWMU-10. Therefore, no further action regarding the

acetone and 2-propanol concentrations detected in point of compliance well 10D3D is required at this time.

No additional Permit Attachment 1, Appendix I constituents were confirmed in the point of compliance wells during Second Quarter 2012; therefore, no changes to the Groundwater Compliance Monitoring List for the Unit are required.

HWMU-16

Based on an evaluation of the groundwater analytical data and additional information for HWMU-16, no constituents were detected at concentrations greater than their respective GPS during calendar year 2012. Therefore, no further action is recommended at this time.

No additional Permit Attachment 1, Appendix I constituents were confirmed in the point of compliance wells during Second Quarter 2012; therefore, no changes to the Groundwater Compliance Monitoring List for the Unit are required.

Evaluation of the plume monitoring well data indicated that the concentrations of total barium in upgradient well 16C1 and in plume monitoring wells 16-1, 16-2, 16-3, and 16-5 and in spring sampling location 16SPRING were greater than the site-specific background concentration. As stated previously, higher total barium concentrations in downgradient plume monitoring wells relative to background are likely due to natural variations in trace element distribution in groundwater. Upgradient well 16C1 is screened in limestone while downgradient plume monitoring wells 16-1, 16-2, 16-3, and 16-5 are screened in shale and fault breccia. Such differing lithologic formations would be expected to contain very different trace element distributions. Therefore, no further action regarding the 2012 total barium concentrations detected in plume monitoring wells 16-1, 16-2, and 16-3 and in spring sampling location 16SPRING is recommended at this time.

1.0 INTRODUCTION

This document presents the Annual Groundwater Monitoring Report for calendar year 2012 for Hazardous Waste Management Units (HWMUs) 5, 7, 10, and 16 located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. The Annual Groundwater Monitoring Report was compiled in accordance with the requirements specified in the Final Hazardous Waste Post-Closure Care Permit dated October 4, 2002, for HWMUs 5, 7, 10, and 16.

The Annual Groundwater Monitoring Report presents the following set of information for each Unit: basic information and unit identification, a description of the groundwater monitoring plan, a discussion of groundwater movement, potentiometric surface maps, a table of groundwater elevations, and detailed statistical evaluations of the analytical data.

Please note that the sampling frequency for HWMUs 5, 7, 10, and 16 was changed from quarterly to semiannual in the VDEQ-approved Class 1 Permit Modification dated June 14, 2007. Therefore, this Annual Groundwater Monitoring Report evaluates the analytical data from Second Quarter 2012 and Fourth Quarter 2012 for each Unit. Additionally, the Compliance Monitoring Constituent Lists and Groundwater Protection Standards (GPS) for HWMUs 7, 10, and 16 were revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. The groundwater samples collected at HWMUs 7, 10, and 16 during the calendar year 2012 semiannual monitoring events were analyzed and evaluated in accordance with the VDEQ-approved Class 3 Permit Modification. Copies of correspondence relating to groundwater monitoring activities conducted at HWMUs 5, 7, 10, and 16 during calendar year 2012 are included (on CD-ROM) in **Appendix G**.

1.1 HWMU-5

HWMU-5 is a closed lined neutralization pond. The Unit received certification for closure in 1989. As stated in Permit Condition I.K.1 of the Final Post-Closure Care Permit, the Compliance Period during which the Groundwater Protection Standard applies to HWMU-5 is 19 years, beginning on the effective date of the original Post-Closure Care Permit for HWMU-5 (October 28, 2001) and continuing until October 28, 2020. The Second Quarter 2010 groundwater monitoring event served as the first semiannual Corrective Action (CA) groundwater Corrective Action & Monitoring Program for Unit 5, which was approved by the VDEQ in the Final Class 3 Hazardous Waste Permit Modification dated November 5, 2009. This report is the eleventh complete Annual Groundwater Monitoring Report submitted to the Virginia Department of Environmental Quality (VDEQ) for this Unit during the Compliance Period, and the third complete Annual Groundwater Monitoring Report submitted to the VDEQ under the Groundwater Corrective Action & Monitoring Program.

1.2 HWMU-7

HWMU-7 is a closed unlined holding and neutralization basin. The Unit received certification for closure in 1990. As stated in Permit Condition I.K.2, the Compliance Period during which the Groundwater Protection Standard applies to HWMU-7 is 18 years, beginning on the effective date of the original Post-Closure Care Permit for HWMU-7 (October 30, 1999)

and continuing until October 30, 2017. This report is the thirteenth complete Annual Groundwater Monitoring Report submitted to the VDEQ for this Unit during the Compliance Period.

1.3 HWMU-10

HWMU-10 is a closed equalization basin for the biological treatment system. The Unit received certification for closure in 1998. As stated in Permit Condition I.K.3, the Compliance Period during which the Groundwater Protection Standard applies to HWMU-10 is 18 years, beginning on the effective date of the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Management Units 5, 7, 10, and 16 (October 4, 2002) and continuing until October 4, 2020. This report is the eleventh Annual Groundwater Monitoring Report submitted to the VDEQ for this Unit during the Compliance Period.

1.4 HWMU-16

HWMU-16 is a closed hazardous waste landfill. The Unit received certification for closure in 1993. As stated in Permit Condition I.K.4, the Compliance Period during which the Groundwater Protection Standard applies to HWMU-16 is 13 years, beginning on the effective date of the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Management Units 5, 7, 10, and 16 (October 4, 2002) and continuing until October 4, 2015. This report is the eleventh Annual Groundwater Monitoring Report submitted to the VDEQ for this Unit during the Compliance Period.

2.0 HWMU-5 ANNUAL GROUNDWATER MONITORING REPORT

2.1 Waste Management Unit Information

Unit Name: Hazardous Waste Management Unit 5 (HWMU-5)

Owner/Operator: United States Army/BAE Systems, Ordnance Systems Inc.

Unit Location: Radford AAP Main Plant Area, Radford, Virginia

Class: Hazardous Waste Management Unit Type: Closed Lined Neutralization Pond

2.2 Groundwater Monitoring Plan

Monitoring Network:

Upgradient Well: 5W8B

Point of Compliance Wells: 5W5B, 5W7B, 5WC21, 5WC22, 5WC23

Plume Monitoring Wells: 5W12A

Observation Wells: S5W5, S5W7, 5W9A, 5W10A, 5W11A, 5WCA, S5W6,

S5W8, 5WC11, 5WC22

Monitoring Status: Corrective Action Monitoring Program

CY 2012 Monitoring Events:

Second Quarter 2012: April 24-25, 2012 Fourth Quarter 2012: October 29, 2012

The calendar year 2012 groundwater monitoring events served as the fifth and sixth semiannual Corrective Action (CA) groundwater monitoring events for HWMU-5 conducted in accordance with Permit Module VI – *Groundwater Corrective Action & Monitoring Program for Unit 5*, which was approved by the Virginia Department of Environmental Quality (VDEQ) in the *Final Class 3 Hazardous Waste Permit Modification* dated November 5, 2009.

2.3 Groundwater Movement

The monitoring wells at HWMU-5 are screened entirely within either weathered carbonate bedrock residuum or alluvium or across the weathered residuum/carbonate bedrock interface. The static water level measurements gathered during the 2012 semiannual monitoring events are summarized in **Table 1**. Groundwater fluctuations ranged from 0.10 to 3.31 feet during the 2012 groundwater monitoring events. As shown on the HWMU-5 Potentiometric Surface Maps (**Appendix A-1**), groundwater movement beneath the site is generally to the northeast.

Darcian flow conditions were assumed for the alluvium, residuum, and carbonate bedrock beneath HWMU-5. As a result, the groundwater velocities were calculated by multiplying the hydraulic conductivity (determined from previously conducted slug tests) by the

average hydraulic gradient across the site and dividing by an assumed effective porosity for the aquifer. The average hydraulic gradient was determined by superimposing three evenly spaced flow line vectors over the potentiometric surface map, measuring their lengths, calculating the head differential over the distances measured, and dividing the head differential by the length of the flow line vectors. The three calculated gradients were then averaged to a single value. Using this method, the average groundwater hydraulic gradient across the site based on Fourth Quarter 2012 groundwater elevations was calculated to be 0.032 ft/ft. Historical slug test data for the site yielded an average hydraulic conductivity of 5.25 x 10⁻⁵ ft/second. This value is consistent with literature values for carbonate rock and for clayey, silty sand and gravel alluvium and residuum (Domenico and Schwartz, 1990).

The estimated groundwater velocity across the site was calculated to be approximately 0.36 ft/day or 131 ft/year based on the following:

- Average hydraulic conductivity of 5.25 x 10⁻⁵ ft/second.
- Average hydraulic gradient of 0.032 ft/ft.
- Assumed effective porosity of 0.40, based on a representative range of porosities for carbonate rock, weathered residuum, and clayey, silty sand and gravel alluvium (Domenico and Schwartz, 1990).

The actual groundwater flow velocities in the carbonate bedrock may vary as much as one to two orders of magnitude from the velocity presented above depending on water level conditions and the distribution of solution features.

2.4 Groundwater Analytical Data Evaluation

The calendar year 2012 groundwater monitoring events served as the fifth and sixth semiannual Corrective Action (CA) groundwater monitoring events for HWMU-5 conducted in accordance with Permit Module VI – *Groundwater Corrective Action & Monitoring Program for Unit 5*, which was approved by the VDEQ in the *Final Class 3 Hazardous Waste Permit Modification* dated November 5, 2009. Specifically, the Second Quarter 2012 and Fourth Quarter 2012 events served as the fifth and sixth semiannual monitoring events in which all of the wells in the CA groundwater monitoring network were sampled for the constituents listed in Appendix J to Permit Attachment 2 (Groundwater Corrective Action Targeted Constituents - GPS and Semiannual Monitoring List for HWMU-5). The Second Quarter 2012 event also served as the annual monitoring event in which the point of compliance wells at HWMU-5 were sampled for the constituents listed in Appendix K to Permit Attachment 2 (Groundwater Corrective Action Annual Monitoring List).

The laboratory analytical results for the 2012 monitoring events are summarized in **Appendix A-2** (Groundwater Corrective Action Targeted Constituents - GPS and Semiannual Monitoring List) and in **Appendix A-3** (Groundwater Corrective Action Annual Monitoring List). The laboratory analytical results for the 2012 monitoring events are included on CD-ROM in **Appendix E**. The analytical data were validated in accordance with SW-846, *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*, and *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*.

Data validation reports are included in **Appendix E**. Copies of field notes recorded during sample collection are included on CD-ROM in **Appendix F**.

2.4.1 Semiannual Monitoring for Corrective Action Targeted Constituents

During the Second Quarter 2012 and Fourth Quarter 2011 monitoring events, groundwater samples collected from all of the wells in the CA groundwater monitoring network were analyzed for the CA Targeted Constituents listed in Appendix J to Permit Attachment 2. The CA Targeted Constituents consist of TCE and its daughter products: 1,1-dichloroethene (1,1-DCE), *cis*-1,2-dichloroethene (*c*DCE), *trans*-1,2-dichloroethene (*t*DCE), and vinyl chloride (VC). In addition, the VDEQ added total cobalt to the list of CA Targeted Constituents during a meeting with Radford AAP on May 4, 2011. The laboratory analytical results for the CA Targeted Constituents are summarized in **Appendix A-2**.

During Second Quarter 2012, TCE was detected in point of compliance wells 5W5B, 5WC22, and 5WC23 at concentrations of 0.3 μ g/l, 4.3 μ g/l, and 4.6 μ g/l, respectively, which are less than the GPS of 5 μ g/l (**Appendix A-2**). However, TCE was detected in point of compliance well 5WC21 at a concentration of 5.8 μ g/l, which is greater than the GPS of 5 μ g/l (**Appendix A-2**). TCE was not detected in any of the other wells in the CA groundwater monitoring network. Additionally, the TCE daughter products were not detected in any of the wells comprising the CA groundwater monitoring network.

During Fourth Quarter 2011, TCE was detected in point of compliance wells 5W5B, 5WC22, and 5WC23 at concentrations of 2.4 μ g/l, 3.7 μ g/l, and 3.8 μ g/l, respectively, which are less than the GPS of 5 μ g/l (**Appendix A-2**). However, TCE was detected in point of compliance well 5WC21 at a concentration of 6.2 μ g/l, which is greater than the GPS of 5 μ g/l (**Appendix A-2**). TCE was not detected in any of the other wells in the CA groundwater monitoring network. Additionally, the TCE daughter products were not detected in any of the wells comprising the CA groundwater monitoring network.

During Second Quarter 2012, total cobalt was detected in point of compliance well 5WC21 at a concentration of 80.3 μ g/l, which is greater than the GPS of 7 μ g/l (**Appendix A-2**). Total cobalt was not detected at concentrations greater than the GPS in the other wells comprising the CA monitoring network during Second Quarter 2012.

During Fourth Quarter 2012, total cobalt was detected in point of compliance wells 5W7B, 5WC21, and 5WC22 at concentrations of 9.32 μ g/l, 69.9 μ g/l, and 9.63 μ g/l, respectively, which are greater than the GPS of 7 μ g/l (**Appendix A-2**). Total cobalt was not detected at concentrations greater than the GPS in the other wells comprising the CA monitoring network during Fourth Quarter 2012.

2.4.2 Annual Monitoring List - Comparison to Groundwater Protection Standards

During Second Quarter 2012, groundwater samples collected from the point of compliance wells for HWMU-5 were analyzed for the constituents listed in Appendix K to Permit Attachment 2 (Groundwater Corrective Action Annual Monitoring List). Annual

monitoring for the constituents listed in Appendix K is required in order to evaluate whether additional hazardous constituents that are not the targets for the current Corrective Action (e.g., TCE and its daughter products, total cobalt) are present at concentrations greater than the Groundwater Protection Standards (GPS) for the Unit. No additional hazardous constituents that are not targets for the current Corrective Action for the Unit were detected at concentrations greater than their respective GPS during Second Quarter 2012 (Appendix A-3).

2.4.3 Annual Monitoring List – Verification of Estimated Values

A footnote presented in Appendix K to Permit Attachment 2 indicates that verification is required for constituents detected at concentrations less than the Quantitation Limit (QL) if their associated GPS are 1) based on background values equal to the QL, and 2) are greater than the applicable risk-based concentrations (i.e., ACL or RBC). In these instances, verification must be conducted using an alternate low-level analytical method in order to confirm or refute the observed initial detections. If a concentration greater than the low-level analytical method QL is observed, then the GPS for that constituent will be updated, if warranted.

During Second Quarter 2012, no constituents with GPSs based on background values equal to their respective QLs and greater than the applicable risk-based concentrations were detected at concentrations less than their respective QLs; therefore, no further action is warranted.

2.5 Annual Evaluation of Effectiveness of Corrective Action

In accordance with Sections VI.B.6, VI.J.4.f and VI.J.4.g and other applicable sections of the *Final Class 3 Hazardous Waste Permit Modification* dated November 5, 2009, Radford AAP performed an annual evaluation of the effectiveness of the Corrective Action Program (CAP) (monitored natural attenuation [MNA] program) for calendar year 2012. MNA is the current remedial measure implemented at the Unit to address TCE in groundwater at concentrations greater than the GPS. In accordance with the applicable sections of the Permit, the evaluation includes the following:

- Construction of long-term concentration plots of constituents of concern (COCs) detected at concentrations greater than their respective GPS.
- Calculation of a Point Attenuation Rate for each detected COC and determination of an updated compliance (MNA remedial) timeframe prediction based on revised point attenuation rates determined from concentration versus time graphs using the principles and methods presented in Section 7.4 of Permit Attachment 2, Appendix I (CAP).
- Comparison of updated MNA remedial timeframe to the 2019 MNA remedial timeframe (MNA goal per CAP).
- Determination of the effectiveness of the Current Remedial Measure.

2.5.1 Construction of Long-term Concentration Plots of COCs

In accordance with the Permit, graphs of natural-log concentration versus time for monitoring wells exhibiting current detections of TCE and degradation products at concentrations greater than their respective GPS values were constructed (**Appendix A-4**).

During Second Quarter 2012, TCE was detected in point of compliance well 5WC21 at concentrations greater than the GPS of 5 µg/l. TCE was not detected at concentrations greater than the GPS in any other wells comprising the CA monitoring network during the calendar year 2012 monitoring events. The TCE concentrations observed in point of compliance well 5WC21 are consistent with historical TCE concentrations observed in that well. In accordance with the Permit, a long-term concentration plot of the natural-log concentrations of TCE in well 5WC21 versus time was constructed. A linear regression line shows a decreasing trend in TCE concentration in well 5WC21 over time (**Appendix A-4**). An isoconcentration map illustrating TCE concentrations detected in groundwater during the Fourth Quarter 2012 event is included in **Appendix A-4**.

TCE was detected in point of compliance wells 5W5B, 5WC22, and 5WC23 during both 2012 monitoring events at concentrations less than the GPS of 5 μ g/l. Therefore, concentration plots were not required for TCE in those wells. The TCE concentrations in 5W5B, 5WC22, and 5WC23 continue to show a consistent decreases in comparison with historical data (**Appendix A-4**).

To date no daughter products of TCE (i.e., other COCs) have been detected in the groundwater samples collected at from the wells comprising the CA monitoring network at HWMU-5.

Overall, the above evaluation shows that concentrations of TCE are decreasing in the groundwater at the Unit. Therefore, the current remedial measure (MNA) is performing effectively in addressing the TCE concentrations in groundwater at the Unit.

2.5.2 Calculation of Point Attenuation Rates and Updated Compliance (MNA Remedial) Timeframe

TCE is the only current COC detected at concentrations greater than its GPS at the Unit (specifically, in well 5WC21). Therefore an updated point attenuation rate was calculated for TCE concentration in well 5WC21. The updated point attenuation rate is 0.0006, which is based on a linear regression, where the slope of the regression represents the attenuation rate, k_{point} (see attached MNA Effectiveness Evaluation Concentration Trend Graph and Point Attenuation Rate Constant Calculation for TCE in Well 5WC21; **Appendix A-4**). The data set used to calculate the point attenuation rate encompasses TCE concentrations detected in well 5WC21 from the last 18 monitoring events beginning with April 18, 2005 to the present (October 29, 2012).

The updated MNA Compliance timeframe was calculated using the following equation:

$$t = -[\ln(C_{goal}/C_{start})]/k_{point}$$

whereas:

t = predicted GPS remedial time frame

 $C_{goal} = GPS$ concentration (5 μ g/l)

 C_{start} = current constituent concentration (6.2 µg/l)

 k_{point} = natural attenuation rate (0.0006)

 $t = -[\ln(5/6.2)]/0.0006$ t = 0.98 years

The calculated current MNA timeframe (date) is late-2013.

The current MNA timeframe is less than the 2019 MNA goal (MNA remedial timeframe presented in the CAP) and less than the 2026 MNA ineffective date (as specified in the CAP). Therefore, the current remedy is considered effective and no additional action is required.

2.6 Recommendations

During Second Quarter 2012 and Fourth Quarter 2012, TCE was detected in point of compliance well 5WC21 at concentrations greater than the GPS of 5 µg/l, and in point of compliance wells 5W5B, 5WC22, and 5WC23 at concentrations less than the GPS of 5 µg/l. However, no daughter products of TCE were detected in any of the wells comprising the CA monitoring network during the 2012 monitoring events. The TCE concentrations observed in the point of compliance wells during calendar year 2012 are consistent with historical TCE concentrations observed in those wells. TCE was not detected at concentrations greater than the QL in any other wells comprising the CA monitoring network during the calendar year 2012 monitoring events, and no daughter products of TCE were detected in the wells comprising the CA monitoring network. In accordance with the Permit, a long-term concentration plot of the natural-log concentrations of TCE in well 5WC21 versus time was constructed. A linear regression line shows a decreasing trend in TCE concentration in well 5WC21over time. Based on the data collected to date, the current calculated compliance timeframe for corrective action (monitored natural attenuation [MNA]) is late-2013, which is less than the MNA remedial timeframe goal of 2019 as presented in the Permit, and less than the 2026 MNA ineffective date as specified in the Permit. Therefore, the current remedial measure (MNA) is performing effectively in addressing the TCE concentrations in groundwater at the Unit, and no additional action is required.

Total cobalt was detected at concentrations greater than the revised GPS of 7 μ g/l in point of compliance well 5WC21 during Second Quarter 2012 and Fourth Quarter 2012, and in point of compliance wells 5W7B and 5WC22 during Fourth Quarter 2012. However, total cobalt was not detected at concentrations greater than the GPS in the other wells comprising the CA monitoring network.

Overall, evaluation of calendar year 2012 data for the CA Targeted Constituents and comparison with historical data indicates effective progress of groundwater CA through natural attenuation. No changes to the continuation of the groundwater CA program are anticipated at this time.

3.0 HWMU-7 ANNUAL GROUNDWATER MONITORING REPORT

3.1 Waste Management Unit Information

Unit Name: Hazardous Waste Management Unit 7 (HWMU-7)

Owner/Operator: United States Army/BAE Systems, Ordnance Systems Inc.

Unit Location: Radford AAP Main Plant Area, Radford, Virginia

Class: Hazardous Waste Management Unit

Type: Closed Unlined Holding and Neutralization Basin

3.2 Groundwater Monitoring Plan

Monitoring Network:

Upgradient Well: 7W12B

Point of Compliance Wells: 7WCA, 7MW6, 7W11B

Plume Monitoring Wells: 7W9C, 7W10B, 7W10C, 7W13

Observation Wells: 7MW5, 7W9B, 7W11

Monitoring Status: Compliance Monitoring Program

CY 2012 Monitoring Events:

Second Quarter 2012: May 2-3, 2012

Fourth Quarter 2012: October 31-November 1, 2012

The Compliance Monitoring Constituent List and Groundwater Protection Standards (GPS) for HWMU-7 were revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. Therefore, the groundwater samples collected at HWMU-7 during the calendar year 2012 semiannual monitoring events were analyzed and evaluated in accordance with the VDEQ-approved Class 3 Permit Modification.

3.3 Groundwater Movement

The monitoring wells at HWMU-7 are screened entirely within alluvium, weathered carbonate bedrock residuum, or carbonate bedrock or across the interfaces between two of the listed strata. The static water level measurements gathered during the 2012 semiannual monitoring events are summarized in **Table 2**. Groundwater fluctuations ranged from 0.56 to 3.14 feet annually. As shown on the HWMU-7 Potentiometric Surface Maps (**Appendix B-1**), groundwater movement beneath the site is generally to the west towards the New River and to the northeast and southwest toward the unnamed intermittent drainages that flow into the New River north and south of the site.

Darcian flow conditions were assumed for the alluvium, residuum, and carbonate bedrock beneath HWMU-7. As a result, the groundwater velocities were calculated by multiplying the hydraulic conductivity (determined from previously conducted slug tests) by the

average hydraulic gradient across the site, and dividing by an assumed effective porosity for the aquifer materials. The average hydraulic gradient was determined by superimposing three evenly spaced flow line vectors over the potentiometric surface map, measuring their lengths, calculating the head differential over the distances measured, and dividing the head differential by the length of the flow line vectors. The three calculated gradients were then averaged to a single value. Using this method, the average groundwater hydraulic gradient across the site based on the Fourth Quarter 2012 groundwater elevations was calculated to be 0.008 ft/ft. Historical slug test data for the site yielded an average hydraulic conductivity of 5.1 x 10⁻⁶ ft/second. This value is consistent with literature values for carbonate rock and for clayey, silty sand and gravel alluvium and residuum (Domenico and Schwartz, 1990).

The estimated groundwater velocity across the site was calculated to be approximately 8.81×10^{-3} ft/day or 3.2 ft/year, based on the following:

- Average hydraulic conductivity of 5.1 x 10⁻⁶ ft/second.
- Average hydraulic gradient of 0.008 ft/ft.
- Assumed effective porosity of 0.40, based on a representative range of porosities for carbonate rock, weathered residuum, and clayey, silty sand and gravel alluvium (Domenico and Schwartz, 1990).

The actual groundwater flow velocities in the carbonate bedrock may vary as much as one to two orders of magnitude from the velocity presented above depending on water level conditions and the distribution of solution features.

3.4 Groundwater Analytical Data Evaluation

The groundwater samples collected from the compliance monitoring network during the 2012 semiannual monitoring events were analyzed for the constituents listed in Appendix E to Attachment 3 of the Final Post-Closure Care Permit, as revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. In addition, during Second Quarter 2012 groundwater samples were collected from the upgradient well and the point of compliance wells for the annual monitoring for the constituents listed in Permit Attachment 1, Appendix I. During the Second Quarter 2012 annual monitoring for the constituents listed in Permit Attachment 1, Appendix I, a new constituent not included on the semiannual Groundwater Compliance Monitoring List for HWMU-7 (diethyl ether) was detected and confirmed in point of compliance well 7MW6 at a concentration greater than the laboratory MDL. As a result, diethyl ether was added to the semiannual Groundwater Compliance Monitoring List for HWMU-7 beginning with the Fourth Quarter 2012 monitoring event. In correspondence dated November 15, 2012, the VDEQ established the background value (13 µg/l) and GPS for diethyl ether (3,100 µg/l) at HWMU-7; a copy of the November 15, 2012 correspondence is included in **Appendix G**.

The laboratory analytical results for the 2012 monitoring events are included in **Appendix B-2** (point of compliance wells) and in **Appendix B-3** (plume monitoring wells). The laboratory analytical results for the 2012 monitoring events also are included in electronic format in **Appendix E**. The analytical data were validated in accordance with SW-846, *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*, and

USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Data validation reports are included in **Appendix E**. Copies of field notes recorded during sample collection are included on CD-ROM in **Appendix F**.

3.4.1 Comparison to Groundwater Protection Standards

As specified in Permit Condition V.J.2.i, the Second Quarter 2012 and Fourth Quarter 2012groundwater analytical data for the upgradient well and the point of compliance wells were compared to the GPSs for HWMU-7 listed in Appendix G of Permit Attachment 3, as revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. In accordance with Permit Condition V.I.2, Radford AAP performed a simple empirical comparison of the upgradient well and the point of compliance well data to the GPSs (**Appendix B-2**).

As shown in **Appendix B-2**, no constituents were detected at concentrations greater than their respective GPS in the upgradient well and in the point of compliance wells during the 2012 monitoring events.

3.4.2 Comparison to Background Concentrations

As specified in Permit Condition V.O, the 2012 groundwater analytical data for the plume monitoring wells were compared to the background concentrations for HWMU-7 listed in Appendix F of Permit Attachment 3. In accordance with Permit Condition V.I.2, Radford AAP performed a simple empirical comparison of the plume monitoring well data to the background concentrations (**Appendix B-3**).

As shown in **Appendix B-3**, total barium concentrations detected in plume monitoring wells 7W10B and 7W10C during both 2012 semiannual monitoring events were greater than the site-specific background concentration of 41 μ g/l. However, the total barium concentrations detected in wells 7W10B and 7W10C were more than an order of magnitude below the USEPA MCL for barium of 2,000 μ g/l. Higher total barium concentrations in downgradient plume monitoring wells relative to background at HWMU-7 may be the result of natural variations in trace element distribution in groundwater. In addition, these concentrations are consistent with previous barium concentrations detected these wells.

As also shown in **Appendix B-3**, total cobalt was detected in plume monitoring well 7W13 during both 2012 monitoring events at concentrations greater than the site-specific background concentration of 5 μ g/l (and the revised GPS of 5 μ g/l). However, the total cobalt concentrations detected in plume monitoring well 7W13 are consistent with previous concentrations detected in this well. Radford AAP submitted an Alternate Source Demonstration (ASD) for total cobalt in groundwater at HWMU-7 to the VDEQ on December 15, 2011. The results of the ASD concluded that the total cobalt concentrations observed in groundwater at HWMU-7 are derived from ambient, naturally-occurring and naturally variable sources. The VDEQ approved the ASD in correspondence dated January 5, 2012, stating that the facility is not required to remediate cobalt in groundwater at HWMU-7 (**Appendix G**).

No other constituent concentrations detected in the plume monitoring wells were greater than their respective background concentrations.

In accordance with the requirements of Permit Condition V.K.3, the established background values and the computations used to determine the background values are included in **Appendix B-4**. The background values and associated computations are taken from the VDEQ-approved revised background values presented in the February 2012 Closure Report for HWMU-7.

3.4.3 Annual Monitoring for Constituents Listed in Permit Attachment 1, Appendix I

Upon receipt of the Second Quarter 2012 analytical data, Radford AAP notified the VDEQ of the detection of four additional Appendix IX constituents (chloroform, diethyl ether, beta-BHC, and delta-BHC) that were not listed in Appendix E of Permit Attachment 3 (Unit 7 – Groundwater Compliance Monitoring Constituent List). As shown on **Appendix B-2**, chloroform was detected in upgradient well 7W12B and in point of compliance wells 7WCA and 7W11B. However, Radford AAP did not verify the chloroform concentrations detected in wells 7W12B, 7WCA, and 7W11B based on the June 14, 2007 concurrence by the VDEQ with the ASD for chloroform at HWMU-7 submitted on January 31, 2007, which identified an upgradient off-site source for chloroform in groundwater. Therefore, chloroform will not be added to the Groundwater Monitoring List for the Unit.

Diethyl ether was initially detected in point of compliance well 7MW6, and beta-BHC and delta-BHC were initially detected in point of compliance well 7W11B. In accordance with the Permit, Radford AAP resampled well 7MW6 for diethyl ether and well 7W11B for beta-BHC and delta-BHC in order to confirm or refute the additional Appendix IX constituent detections in the point of compliance wells. Beta-BHC and delta-BHC were not confirmed in point of compliance well 7W11B at concentrations greater than their respective detection limits; as a result, beta-BHC and delta-BHC will not be added to the Groundwater Monitoring List for the Unit.

Diethyl ether was detected in the verification sample collected from point of compliance well 7MW6 at an estimated concentration of 1.2 μ g/l, which is just above the detection limit of 1.1 μ g/l and less than the quantitation limit of 13 μ g/l. As a result, diethyl ether was added to the semiannual Groundwater Compliance Monitoring List for HWMU-7 beginning with the Fourth Quarter 2012 monitoring event. The VDEQ established the background value (13 μ g/l) and GPS for diethyl ether (3,100 μ g/l) at HWMU-7 in correspondence dated November 15, 2012 (**Appendix G**).

3.5 Recommendations

Based on an evaluation of the groundwater analytical data and additional information for HWMU-7, no constituents were detected in the point of compliance wells at concentrations greater than their respective GPSs during calendar year 2012. Therefore, no further action is recommended at this time.

The additional Permit Attachment 1, Appendix I constituent diethyl ether was verified at a concentration greater than the detection limit in point of compliance well 7MW6; therefore, diethyl ether was added to the Groundwater Compliance Monitoring List for the Unit beginning

with the Fourth Quarter 2012 monitoring event. The VDEQ established the background value (13 μ g/l) and GPS for diethyl ether (3,100 μ g/l) at HWMU-7 in correspondence dated November 15, 2012. No other additional Permit Attachment 1, Appendix I constituents were confirmed in the point of compliance wells during Second Quarter 2012.

An evaluation of the plume monitoring well data indicates that the concentrations of total barium in plume monitoring wells 7W10B and 7W10C were greater than the site-specific background concentration. As stated previously, higher total barium concentrations in downgradient plume monitoring wells relative to background at HWMU-7 may be the result of natural variations in trace element distribution in groundwater. In addition, these concentrations are consistent with previous barium and zinc concentrations detected these wells. Therefore, no further action regarding the total barium concentrations detected in plume monitoring wells 7W10B and 7W10C is recommended at this time.

Total cobalt was detected in plume monitoring well 7W13 during both 2012 monitoring events at concentrations greater than the site-specific background concentration of 5 μ g/l (and the revised GPS of 5 μ g/l). On December 15, 2011, Radford AAP submitted an ASD for total cobalt in groundwater at HWMU-7 as recommended by the VDEQ. The results of the ASD concluded that the total cobalt concentrations observed in groundwater at HWMU-7 are derived from ambient, naturally-occurring and naturally variable sources. The VDEQ approved the ASD in correspondence dated January 5, 2012, stating that the facility is not required to remediate cobalt in groundwater at HWMU-7. Therefore, no further action regarding total cobalt in plume monitoring well 7W13 is recommended at this time.

4.0 HWMU-10 ANNUAL GROUNDWATER MONITORING REPORT

4.1 Waste Management Unit Information

Unit Name: Hazardous Waste Management Unit 10 (HWMU-10) **Owner/Operator:** United States Army/BAE Systems, Ordnance Systems Inc.

Unit Location: Radford AAP Main Plant Area, Radford, Virginia

Class: Hazardous Waste Management Unit

Type: Closed Equalization Basin for the Biological Treatment System

4.2 Groundwater Monitoring Plan

Monitoring Network:

Upgradient Well: 10D4

Point of Compliance Wells: 10MW1, 10DDH2R, 10D3, 10D3D

Plume Monitoring Wells: none Observation Wells: none

Monitoring Status: Compliance Monitoring Program

CY 2012 Monitoring Events:

Second Quarter 2012: April 25-26, 2012 Fourth Quarter 2012: October 25, 2012

The Compliance Monitoring Constituent List and Groundwater Protection Standards (GPS) for HWMU-10 were revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. Therefore, the groundwater samples collected at HWMU-10 during the calendar year 2012 semiannual monitoring events were analyzed and evaluated in accordance with the VDEQ-approved Class 3 Permit Modification.

4.3 Groundwater Movement

The monitoring wells at HWMU-10 are screened either across the alluvium/limestone bedrock interface or entirely within bedrock. The static water level measurements gathered during the 2011 semiannual monitoring events are summarized in **Table 3**. Groundwater fluctuations ranged from 0.01 to 2.89 feet annually. As shown on the HWMU-10 Potentiometric Surface Maps (**Appendix C-1**), groundwater movement beneath the site is generally to the north towards the New River.

Darcian flow conditions were assumed for the alluvium and limestone bedrock beneath HWMU-10. As a result, the groundwater velocities were calculated by multiplying the hydraulic conductivity (determined from previously conducted slug tests) by the average hydraulic gradient across the site and dividing by an assumed effective porosity for the aquifer materials. The average hydraulic gradient was determined by superimposing three evenly spaced flow line

vectors over the potentiometric surface map, measuring their lengths, calculating the head differential over the distances measured, and dividing the head differential by the length of the flow line vectors. The three calculated gradients were then averaged to a single value. Using this method, the average groundwater hydraulic gradient across the site based on Fourth Quarter 2012 groundwater elevations was calculated to be 0.016 ft/ft. Historical slug test data for the site yielded an average hydraulic conductivity of 4.9 x 10⁻⁴ ft/second. This value is consistent with literature values for limestone and for clayey, silty sand and gravel alluvium (Domenico and Schwartz, 1990).

The estimated groundwater velocity across the site was calculated to be approximately 1.69 ft/day or 617 ft/year, based on the following:

- Average hydraulic conductivity of 4.9 x 10⁻⁴ ft/second.
- Average hydraulic gradient of 0.016 ft/ft.
- Assumed effective porosity of 0.40, based on a representative range of porosities for limestone and for clayey, silty sand and gravel alluvium (Domenico and Schwartz, 1990).

The actual groundwater flow velocities in the carbonate bedrock may vary as much as one to two orders of magnitude from the velocity presented above depending on water level conditions and the distribution of solution features.

4.4 Groundwater Analytical Data Evaluation

The groundwater samples collected from the compliance monitoring network during the 2012 semiannual monitoring events were analyzed for the constituents listed in Appendix E to Attachment 4 of the Final Post-Closure Care Permit, as revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. In addition, groundwater samples were collected from the upgradient well and the point of compliance wells for the annual monitoring for the constituents listed in Permit Attachment 1, Appendix I. The laboratory analytical results for the 2012 monitoring events are included in **Appendix C-2**. The laboratory analytical results for the 2012 monitoring events also are included in electronic format in **Appendix E**. The analytical data were validated in accordance with SW-846, *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*, and *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*. Data validation reports are included in **Appendix E**. Copies of field notes recorded during sample collection are included on CD-ROM in **Appendix F**.

4.4.1 Comparison to Groundwater Protection Standards

As specified in Permit Condition V.J.3.i, the 2012 groundwater analytical data for the upgradient well and the point of compliance wells were compared to GPS for HWMU-10 listed in Appendix G of Permit Attachment 4, as revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. In accordance with Permit Condition V.I.2, Radford AAP performed a simple empirical comparison of the upgradient well and the point of compliance well data to the GPS (**Appendix C-2**).

As shown in **Appendix C-2**, acetone was detected in point of compliance well 10D3D at a concentration greater than the revised GPS of 8,750.2 μ g/l during Second Quarter 2012. Additionally, 2-propanol was detected in point of compliance well 10D3D during Second Quarter 2012 and Fourth Quarter 2012 at concentrations greater than the revised GPS of 100 μ g/l. No other constituents were detected in the upgradient well or in the point of compliance wells at concentrations greater than their respective GPSs.

The acetone and 2-propanol concentrations detected in point of compliance well 10D3D are consistent with previous concentrations detected in this well. On July 6, 2012, Radford AAP submitted an ASD for acetone and 2-propanol in groundwater at HWMU-10 to the VDEQ. The results of the ASD concluded that acetone and 2-propanol concentrations observed in groundwater at HWMU-10 are derived from propellant production wastewater flowing through the Bioplant lift station and associated pressurized sewer lines located upgradient from point of compliance well 10D3D. The VDEQ approved the ASD in correspondence dated September 10, 2012, stating that the facility is not required to remediate acetone and 2-propanol in groundwater at HWMU-10 (**Appendix G**).

4.4.2 Comparison to Background Concentrations

Only the analytical data from plume monitoring wells are compared to background concentrations. However, the compliance monitoring network at HWMU-10 is composed entirely of point of compliance wells. Therefore, the analytical data from HWMU-10 is not compared to background concentrations.

4.4.3 Annual Monitoring for Constituents Listed in Permit Attachment 1, Appendix I

Upon receipt of the Second Quarter 2012 analytical data, Radford AAP notified the VDEQ of the detection of three additional Appendix IX constituents (benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene) that were not listed in Appendix E of Permit Attachment 4 (Unit 10 – Groundwater Compliance Monitoring Constituent List). As shown on **Appendix C-2**, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene were detected in upgradient well 10D4. Additionally, benzo[ghi]perylene was initially detected in point of compliance well 10MW1. In accordance with the Permit, Radford AAP resampled point of compliance well 10MW1 for benzo[ghi]perylene in order to confirm or refute the additional Appendix IX constituent detection in the point of compliance well.

Benzo[ghi]perylene was not confirmed in point of compliance well 10MW1 at a concentration greater than the detection limit; as a result, benzo[ghi]perylene will not be added to the Groundwater Monitoring List for the Unit. Furthermore, sampling of upgradient well 10D4 for Appendix IX constituents is not required per the Post-Closure Care Permit for the Unit; therefore, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene will not be added to the Groundwater Monitoring List for the Unit.

4.5 Recommendations

Based on an evaluation of the groundwater analytical data and additional information for HWMU-10, acetone was detected in point of compliance well 10D3D at a concentration greater than the GPS during Second Quarter 2012, and 2-propanol were detected in point of compliance well 10D3D at concentrations greater than the GPS during Second Quarter 2012 and Fourth Quarter 2012. In accordance with the Permit, Radford AAP submitted an ASD for acetone and 2-propanol to the VDEQ on July 9, 2012. The results of the ASD concluded that acetone and 2-propanol concentrations observed in groundwater at HWMU-10 are derived from propellant production wastewater flowing through the Bioplant lift station and associated pressurized sewer lines located upgradient from point of compliance well 10D3D. The VDEQ approved the ASD in correspondence dated September 10, 2012, stating that the facility is not required to remediate acetone and 2-propanol in groundwater at HWMU-10. Therefore, no further action regarding the acetone and 2-propanol concentrations detected in point of compliance well 10D3D is required at this time.

No additional Permit Attachment 1, Appendix I constituents were confirmed in the point of compliance wells during Second Quarter 2012; therefore, no changes to the Groundwater Compliance Monitoring List for the Unit are required.

5.0 HWMU-16 ANNUAL GROUNDWATER MONITORING REPORT

5.1 Waste Management Unit Information

Unit Name: Hazardous Waste Management Unit 16 (HWMU-16)
Owner/Operator: United States Army/BAE Systems, Ordnance Systems Inc.

Unit Location: Radford AAP Main Plant Area, Radford, Virginia

Class: Hazardous Waste Management Unit Type: Closed Hazardous Waste Landfill

5.2 Groundwater Monitoring Plan

Monitoring Network:

Upgradient Well: 16C1

Point of Compliance Wells: 16WC1A, 16WC1B, 16MW8, 16MW9

Plume Monitoring Wells: 16-1, 16-2, 16-3, 16-5, 16WC2B, 16SPRING

Observation Wells: 16WC2A, 16C3, 16CDH3

Monitoring Status: Compliance Monitoring Program

CY 2012 Monitoring Events:

Second Quarter 2012: April 30 – May 1, 2012 Fourth Quarter 2012: October 22-24, 2012

The Compliance Monitoring Constituent List and Groundwater Protection Standards (GPS) for HWMU-16 were revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. Therefore, the groundwater samples collected at HWMU-16 during the calendar year 2012 semiannual monitoring events were analyzed and evaluated in accordance with the VDEQ-approved Class 3 Permit Modification.

5.3 Groundwater Movement

The monitoring wells at HWMU-16 are screened entirely within either carbonate bedrock or weathered carbonate bedrock residuum, or across the residuum/bedrock interface. The static water level measurements gathered during the 2012 semiannual monitoring events are summarized in **Table 4**. Groundwater fluctuations ranged from 0.02 to 3.39 feet annually. As shown on the HWMU-16 Potentiometric Surface Maps (**Appendix D-1**), groundwater movement beneath the site is generally to the northeast.

Darcian flow conditions were assumed for the weathered residuum and carbonate bedrock beneath HWMU-16. As a result, the groundwater velocities were calculated by multiplying the hydraulic conductivity (determined from previously conducted slug tests) by the average hydraulic gradient across the site and dividing by an assumed effective porosity for the aquifer materials. The average hydraulic gradient was determined by superimposing three

evenly spaced flow line vectors over the potentiometric surface map, measuring their lengths, calculating the head differential over the distances measured, and dividing the head differential by the length of the flow line vectors. The three calculated gradients were then averaged to a single value. Using this method, the average groundwater hydraulic gradient across the site based on Fourth Quarter 2012 groundwater elevations was calculated to be 0.088 ft/ft. Historical slug test data for the site yielded an average hydraulic conductivity of 7.87 x 10⁻⁵ ft/second. This value is consistent with literature values for carbonate rock and for clay and silt residuum (Domenico and Schwartz, 1990).

The estimated groundwater velocity across the site was calculated to be approximately 1.5 ft/day or 548 ft/year based on the following:

- Average hydraulic conductivity of 7.87 x 10⁻⁵ ft/second.
- Average hydraulic gradient of 0.088 ft/ft.
- Assumed effective porosity of 0.40, based on a representative range of porosities for carbonate rock and clay and silt residuum (Domenico and Schwartz, 1990).

The actual groundwater flow velocities in the carbonate bedrock may vary as much as one to two orders of magnitude from the velocity presented above depending on water level conditions and the distribution of solution features.

5.4 Groundwater Analytical Data Evaluation

The groundwater samples collected from the compliance monitoring network during the 2012 semiannual monitoring events were analyzed for the constituents listed in Appendix E to Attachment 5 of the Final Post-Closure Care Permit, as revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. In addition, groundwater samples were collected from the upgradient well and the point of compliance wells for the annual monitoring for the constituents listed in Permit Attachment 1, Appendix I. The laboratory analytical results for the 2012 monitoring events are included in **Appendix D-2** (point of compliance wells) and in **Appendix D-3** (plume monitoring wells). The laboratory analytical results for the 2012 monitoring events also are included in electronic format in **Appendix E**. The analytical data were validated in accordance with SW-846, *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*, and *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*. Data validation reports are included in **Appendix E**. Copies of field notes recorded during sample collection are included on CD-ROM in **Appendix F**.

5.4.1 Comparison to Groundwater Protection Standards

As specified in Permit Condition V.J.4.i, the 2012 groundwater analytical data for the upgradient well and the point of compliance wells were compared to GPS for HWMU-16 listed in Appendix G of Permit Attachment 5, as revised in the VDEQ-approved Class 3 Permit Modification dated September 27, 2011. In accordance with Permit Condition V.I.2, Radford

AAP performed a simple empirical comparison of the upgradient well and the point of compliance well data to the GPS (**Appendix D-2**).

As shown in **Appendix D-2**, no constituents were detected at concentrations greater than their respective GPS in the upgradient well and in the point of compliance wells during the 2012 monitoring events.

5.4.2 Comparison to Background Concentrations

As specified in Permit Condition V.O, the 2012 groundwater analytical data for the plume monitoring wells were compared to the background concentrations for HWMU-16 listed in Appendix F of Permit Attachment 5. In accordance with Permit Condition V.I.2, Radford AAP performed a simple empirical comparison of the plume monitoring well data to the background concentrations (**Appendix D-3**).

As shown in **Appendix D-3**, total barium concentrations detected in upgradient well 16C1 and plume monitoring wells 16-1, 16-2, 16-3, and 16-5 and in spring sampling location 16SPRING during both 2012 semiannual monitoring events were greater than the background concentration of 175.4 µg/l. However, all of the total barium concentrations detected in the plume monitoring wells were well below the USEPA MCL for barium of 2,000 µg/l. Furthermore, higher barium concentrations in downgradient plume monitoring wells relative to background may be the result of natural variations in trace element distribution in groundwater. As illustrated in the boring logs for the compliance network monitoring wells (Appendix H of Permit Attachment 5), upgradient well 16C1 is screened in limestone while downgradient plume monitoring wells 16-1, 16-2, 16-3, and 16-5 are screened in shale and fault breccia. Such differing lithologic formations would be expected to contain very different trace element distributions.

No other constituent concentrations detected in the plume monitoring wells were greater than their respective background concentrations. In accordance with the requirements of Permit Condition V.K.3, the established background values and the computations used to determine the background values are included in **Appendix D-4**. The background values and associated computations are taken from the Groundwater Quality Assessment Report for HWMU-16 dated August 1999.

5.4.3 Annual Monitoring for Constituents Listed in Permit Attachment 1, Appendix I

Upon receipt of the Second Quarter 2012 analytical data, Radford AAP notified the VDEQ of the detection of three additional Appendix IX constituents (1,1-dichloroethene, alpha-BHC, and tetrahydrofuran) that were not listed in Appendix E of Permit Attachment 5 (Unit 16 – Groundwater Compliance Monitoring Constituent List). As shown in **Appendix D-2**, 1,1-Dichloroethene, alpha-BHC, and tetrahydrofuran were detected in upgradient well 16C1. Additionally, 1,1-dichloroethene was initially detected in point of compliance well 16MW9. In accordance with the Permit, Radford AAP resampled well 16MW9 for 1,1-dichloroethene in order to confirm or refute the additional Appendix IX constituent detections in the point of compliance well.

1,1-Dichloroethene was not confirmed in point of compliance well 16MW9 at a concentration greater than the detection limit; as a result, 1,1-dichloroethene will not be added to the Groundwater Monitoring List for the Unit. Furthermore, sampling of upgradient well 16C1 for Appendix IX constituents is not required per the Post-Closure Care Permit for the Unit; therefore, 1,1-dichloroethene, alpha-BHC, and tetrahydrofuran will not be added to the Groundwater Monitoring List for the Unit.

5.5 Recommendations

Based on an evaluation of the groundwater analytical data and additional information for HWMU-16, no constituents were detected at concentrations greater than their respective GPS during calendar year 2012. Therefore, no further action is recommended at this time.

No additional Permit Attachment 1, Appendix I constituents were confirmed in the point of compliance wells during Second Quarter 2012; therefore, no changes to the Groundwater Compliance Monitoring List for the Unit are required.

Evaluation of the plume monitoring well data indicated that the concentrations of total barium in upgradient well 16C1 and in plume monitoring wells 16-1, 16-2, 16-3, and 16-5 and in spring sampling location 16SPRING were greater than the site-specific background concentration. As stated previously, higher total barium concentrations in downgradient plume monitoring wells relative to background are likely due to natural variations in trace element distribution in groundwater. Upgradient well 16C1 is screened in limestone while downgradient plume monitoring wells 16-1, 16-2, 16-3, and 16-5 are screened in shale and fault breccia. Such differing lithologic formations would be expected to contain very different trace element distributions. Therefore, no further action regarding the 2012 total barium concentrations detected in plume monitoring wells 16-1, 16-2, and 16-3 and in spring sampling location 16SPRING is recommended at this time.

SIGNATURE/CERTIFICATION

Prepared by:	
Name:	Ross G. Miller, Senior Project Geologist
Signature:	For I mill
Company:	Draper Aden Associates
Address:	2206 South Main Street
City/State/Zip:	Blacksburg, Virginia 24060-6600
prepared in accordance	Certification: orepared or supervised preparation of the attached report, that it has been e with industry standards and practices, and that the information contained accurate to the best of my knowledge.
Name:	Michael D. Lawless, Environmental Program Manager
Signature: for	N Sel
	Certification Type and Number: PG 832
	Draper Aden Associates
Address:	2206 South Main Street
City/State/Zip:	Blacksburg, Virginia 24060-6600

TABLE 1 HWMU-5 GROUNDWATER ELEVATIONS - 2012 RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

MONITORING	ELEVATION	SECOND QUARTER 2012 FOURTH QUARTER 20		JARTER 2012	
WELL ID	TOP OF WELL	DTW	GW ELEV	DTW	GW ELEV
5W8B	1789.58	14.65	1774.93	13.87	1775.71
5W5B	1775.13	9.51	1765.62	9.96	1765.17
5W7B	1774.78	9.69	1765.09	9.79	1764.99
5WC21	1774.43	9.72	1764.71	9.92	1764.51
5WC22	1774.45	9.66	1764.79	9.94	1764.51
5WC23	1773.84	9.05	1764.79	9.38	1764.46
5W12A	1772.46	11.55	1760.91	11.45	1761.01
S5W5	1772.31	8.40	1763.91	7.65	1764.66
S5W7	1776.08	11.41	1764.67	11.23	1764.85
5W9A	1762.20	2.28	1759.92	2.93	1759.27
5W10A	1771.40	14.01	1757.39	15.52	1755.88
5W11A	1766.20	10.59	1755.61	13.90	1752.30
5WC11	1788.92	16.16	1772.76	14.99	1773.93
5WC12	1788.96	15.84	1773.12	14.61	1774.35
5WCA	1779.05	13.37	1765.68	13.84	1765.21
S5W6	1771.43	7.24	1764.19	nm	nm
S5W8	1783.68	12.10	1771.58	11.78	1771.90

NOTES:

DTW: Depth to water from top of casing.

GW ELEV: Groundwater elevation.

All elevations in feet above mean sea level.

nm: Not measured during this event.

TABLE 2 HWMU-7 GROUNDWATER ELEVATIONS - 2012 RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

MONITORING	ELEVATION	SECOND QUARTER 2012		FOURTH QU	JARTER 2012
WELL ID	TOP OF WELL	DTW	GW ELEV	DTW	GW ELEV
7W12B	1717.31	24.13	1693.18	24.87	1692.44
7WCA	1715.40	24.45	1690.95	25.05	1690.35
7MW6	1715.30	25.22	1690.08	26.64	1688.66
7W11B	1715.90	24.54	1691.36	25.21	1690.69
7W9C	1704.45	13.34	1691.11	14.35	1690.10
7W10B	1706.65	14.89	1691.76	15.66	1690.99
7W10C	1709.30	18.38	1690.92	21.02	1688.28
7W13	1705.42	18.11	1687.31	19.37	1686.05
7W9B	1712.49	19.68	1692.81	22.82	1689.67
7MW5	1716.20	24.50	1691.70	25.06	1691.14
7W11	1714.82	DRY	DRY	DRY	DRY

NOTES:

DTW: Depth to water from top of casing.

GW ELEV: Groundwater elevation.

All elevations in feet above mean sea level.

TABLE 3 HWMU-10 GROUNDWATER ELEVATIONS - 2012 RADFORD ARMY AMMUNITION PLANT

RADFORD, VIRGINIA

MONITORING	ELEVATION	SECOND QUARTER 2012		FOURTH QU	JARTER 2012
WELL ID	TOP OF WELL	DTW	GW ELEV	DTW	GW ELEV
10D4	1714.38	22.77	1691.61	22.78	1691.60
10DDH2R	1704.38	18.25	1686.13	20.85	1683.53
10D3	1702.95	16.44	1686.51	19.33	1683.62
10D3D	1702.64	16.58	1686.06	19.17	1683.47
10MW1	1703.62	16.55	1687.07	19.32	1684.30

NOTES:

DTW: Depth to water from top of casing. GW ELEV: Groundwater elevation.

All elevations in feet above mean sea level.

TABLE 4 HWMU-16 GROUNDWATER ELEVATIONS - 2012 RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

MONITORING	ELEVATION SECOND QUARTER 2012 FOURTH QU		SECOND QUARTER 2012		JARTER 2012
WELL ID	TOP OF WELL	DTW	GW ELEV	DTW	GW ELEV
16C1	1840.14	48.61	1791.53	50.08	1790.06
16MW8	1815.82	72.31	1743.51	74.13	1741.69
16MW9	1808.88	63.68	1745.20	66.84	1742.04
16WC1A	1812.61	66.50	1746.11	69.84	1742.77
16WC1B	1812.95	66.75	1746.20	70.14	1742.81
16-1	1815.82	49.01	1766.81	48.17	1767.65
16-2	1810.99	55.82	1755.17	55.80	1755.19
16-3	1824.77	56.49	1768.28	57.23	1767.54
16-5	1742.60	3.09	1739.51	5.02	1737.58
16WC2B	1818.71	52.92	1765.79	54.81	1763.90
16WC2A	1820.05	DRY	DRY	DRY	DRY
16C3	1822.22	67.14	1755.08	DRY	DRY
16CDH3	1825.60	DRY	DRY	DRY	DRY
SPRING	na	na	na	na	na

NOTES:

DTW: Depth to water from top of casing. GW ELEV: Groundwater elevation.

All elevations in feet above mean sea level.

na: Not applicable.

APPENDIX A

HWMU-5

APPENDIX A-1

HWMU-5 POTENTIOMETRIC SURFACE MAPS SECOND QUARTER 2012 FOURTH QUARTER 2012

aper Aden Associates

Engineering * Surveying * Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA DESIGNED **DRAWN** CHECKED DATE

SN DLD MDL 07-31-12 **FIGURE**

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291

Richmond, VA Charlottesville, VA Hampton Roads, VA **DESIGNED DRAWN** CHECKED DATE

RGM DLD MDL 01/08/13 **FIGURE**

APPENDIX A-2

HWMU-5 2012 LABORATORY ANALYTICAL RESULTS GROUNDWATER CORRECTIVE ACTION TARGETED CONSTITUENTS GPS AND SEMIANNUAL MONITORING LIST

Summary of Semiannual Target Analyte Monitoring Results Appendix J Corrective Action Monitoring Plan - Targeted Constituents

Hazardous Waste Management Unit 5 Radford Army Ammunition Plant, Radford, Virginia

 $Upgradient \ well = 5W8B$

Analyte/Quarter	5W8B Q	5W5B Q	5W7B Q	5WC21 Q	5WC22 Q	5WC23 Q	5W12A Q	QL	Permit QL	GPS	DL	Permit DL	UNIT	Method
Cobalt						CAS # 7440-48	-4				•			
Second Quarter 2012	U	U	6.81	80.3	5.08	2 J	U	5	5	7	1	1	UG/L	6020A
Fourth Quarter 2012	U	U	9.32	69.9	9.63	2.9 J	U	5	5	7	1	1	UG/L	6020A
1,1-Dichloroethene						CAS # 75-35-4								
Second Quarter 2012	U	U	U	U	U	U	U	1	1	7	0.1	0.44	ug/l	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	1	7	0.1	0.44	ug/l	8260B
cis-1,2-Dichloroethene		1		1	l	CAS # 156-59-2	?							
Second Quarter 2012	U	U	U	U	U	U	U	1	1	70	0.1	0.1	ug/l	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	1	70	0.1	0.1	ug/l	8260E
trans-1,2-Dichloroethene						CAS # 156-60-5	5							
Second Quarter 2012	U	U	U	U	U	U	U	1	1	100	0.1	0.8	ug/l	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	1	100	0.1	0.8	ug/l	8260B
Trichloroethene						CAS # 79-01-6								<u>'</u>
Second Quarter 2012	U	0.3 J	U	5.8	4.3	4.6	U	1	1	5	0.1	0.177	ug/l	8260B
Fourth Quarter 2012	U	2.4	U	6.2	3.7	3.8	U	1	1	5	0.1	0.177	ug/l	8260B
Vinyl chloride						CAS # 75-01-4								<u>'</u>
Second Quarter 2012	U	U	U	U	U	U	U	1	1	2	0.1	0.1	ug/l	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	1	2	0.1	0.1	ug/l	8260B

Summary of Semiannual Target Analyte Monitoring Results Appendix J Corrective Action Monitoring Plan - Targeted Constituents

Hazardous Waste Management Unit 5 Radford Army Ammunition Plant, Radford, Virginia

 $Upgradient \ well = 5W8B$

Definitions:

Results are reported to the permit detection limit.

QL Denotes laboratory quantitation limit.

Permit QL Denotes permit quantitation limit.

DL Denotes laboratory detection limit.

Permit DL Denotes permit detection limit.

U denotes not detected at or above the permit detection limit or QL.

UA denotes not detected at or above the adjusted detection limit or adjusted QL.

J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above the detection limit or QL and detection limit and QL are estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted detection limit and adjusted detection limit and OL are estimated.

UN Denotes analyte concentration is less than the QL and/or five times the blank concentration.

Not reliably detected due to blank contamination.

R Denotes result rejected.

Q Denotes data validation qualifier. X Denotes mass spectral confirmation not obtained-result suspect.

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes Groundwater Protection Standards listed in Appendix J of Module VI-Groundwater

Corrective Action & Monitoring Program for Unit 5 (approved by the VDEQ in the

Final Class 3 Hazardous Waste Permit Modification dated November 5, 2009 and modified Sept 27, 2011) which was incorporated into the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002). The first Corrective Action Monitoring Event occurred Second Quarter 2010.

"-" denotes not sampled.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-5 Monitoring Event: Fourth Quarter 2012

•	L	aboratory Result	Validated Result	QL	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A					
Laboratory: CompuC	Chem, a Division of	Liberty Anal	ytical, Cary, NC	EAPARD DECIDENTIAL BASED SANCTIONS	
Cobalt	5WC21	69.9	69.9	5	No action taken. Field duplicate result was 72.7 ug/l. RPD <10.
	5WDUP	72.7	72.7	5	No action taken. Field duplicate of 5WC21. RPD <10.
Method: 8260B		10 (0) (0) (0) 10 (0) (0) (0)		i Si Bulante Si a	
Laboratory: Eurofins	s Lancaster Labora	tories, Lanca	ster, PA		
Trichloroethene	5WC21	6.2	6.2	1	No action taken. Field duplicate result was 6.3 ug/l. RPD <10.
	5WDUP	6.3	6.3	1	No action taken. Field duplicate of 5WC21. RPD <10.

Definitions:

Data Validation Qualifiers:

QL Denotes permit quantitation limit. Q Denotes data qualifier.

J Denotes analyte reported at or above quantitation limit and associated result is estimated.

APPENDIX A-3

HWMU-5 2012 LABORATORY ANALYTICAL RESULTS GROUNDWATER CORRECTIVE ACTION ANNUAL MONITORING LIST

Summary of Annual Target Analyte Monitoring Results - Appendix K Corrective Action Monitoring Plan - Targeted Constituents Hazardous Waste Management Unit 5

Radford Army Ammunition Plant, Radford, Virginia

$Upgradient \ well = 5W8B$

				4									
Analyte/Quarter	5W8B Q	5W5B Q	5W7B Q	5WC21 Q	5WC22 Q	5WC23 Q	QL	Permit QL	GPS	DL	Permit DL	UNIT	Method
Antimony				•		CAS # 7440-36	-0	•			•		•
Second Quarter 2012	-	U	U	U	U	U	2	1	6	0.4	0.4	UG/L	6020A
Arsenic	·				•	CAS # 7440-38	-2						·
Second Quarter 2012	-	U	U	U	U	U	10	10	10	2	2	UG/L	6020A
Barium					'	CAS # 7440-39	-3						
Second Quarter 2012	-	40	42.8	15.6	32.6	23.5	10	10	2,000	1	1	UG/L	6020A
Beryllium					'	CAS # 7440-41	-7		•				
Second Quarter 2012	-	U	0.298 J	1.47	U	U	1	1	4	0.2	0.2	UG/L	6020A
Cadmium				1		CAS # 7440-43	-9	1					
Second Quarter 2012	-	U	U	0.634 J	0.362 J	U	1	1	5	0.2	0.2	UG/L	6020A
Chromium				1		CAS # 7440-47	-3	1					
Second Quarter 2012	-	U	1.67 J	5.19	U	U	5	5	100	1	1	UG/L	6020A
Cobalt				1		CAS # 7440-48	-4						
Second Quarter 2012	U	U	6.81	80.3	5.08	2 J	5	5	7	1	1	UG/L	6020A
Copper				1		CAS # 7440-50	-8	1					
Second Quarter 2012	-	U	3.33 J	5.52	U	1.12 J	5	5	1,300	1	1	UG/L	6020A
Lead					'	CAS # 7439-92	-1						
Second Quarter 2012	-	U	1.58	U	U	U	1	1	15	0.2	0.2	UG/L	6020A
Mercury						CAS # 7439-97	-6						
Second Quarter 2012	-	U	U	U	U	U	2	2	2	0.2	0.2	UG/L	7470A
Nickel	-1		1	1	I	CAS # 7440-02	-0	1					'
Second Quarter 2012	-	3.1 J	5.33 J	35.8	6.29 J	3.83 J	10	10	313	2	2	UG/L	6020A
Selenium				1		CAS # 7782-49	-2	1					
Second Quarter 2012	-	5.23 J	U	U	U	U	10	10	50	3	3	UG/L	6020A
Silver				1		CAS # 7440-22	-4	1					
Second Quarter 2012	-	U	U	U	U	U	2	2	78.25	0.2	0.2	UG/L	6020A
Thallium						CAS # 7440-28	-0						
Second Quarter 2012	-	U	U	U	U	U	1	1	2	0.2	0.2	UG/L	6020A
Vanadium						CAS # 7440-62	-2		•				
Second Quarter 2012	-	U	U	U	U	U	10	10	109.55	1	1	UG/L	6020A

Summary of Annual Target Analyte Monitoring Results - Appendix K Corrective Action Monitoring Plan - Targeted Constituents Hazardous Waste Management Unit 5

Radford Army Ammunition Plant, Radford, Virginia

$Upgradient \ well = 5W8B$

Analyte/Quarter	5W8B Q	5W5B Q	5W7B Q	5WC21 Q	5WC22 (ϱ	5WC23 Q	QL	Permit QL	GPS	DL	Permit DL	UNIT	Method
Zinc						С	AS# 7440-66	-6						
Second Quarter 2012	-	U	16.3	36.2	U		U	10	10	4,695	3	3	UG/L	6020A
Acetone		,	,			C	'AS# 67-64-1							
Second Quarter 2012	-	U J	U J	UJ	U	J	U J	10	10	8,750.2	3	3	ug/l	8260B
bis(2-Ethylhexyl)phthalate)	,	,			C	'AS# 117-81-7	,						
Second Quarter 2012	-	U	U	U	U		U	6	6	10	2.7	1.5	UG/L	8270D
2-Butanone			,			C	'AS # 78-93-3			,				
Second Quarter 2012	-	U J	U J	UJ	U	J	U J	10	10	2,667.6	1	1	ug/l	8260B
Chloroform		,	,			C	AS# 67-66-3							
Second Quarter 2012	-	0.6 J	2	2.4	0.7	J	0.8 J	1	1	80	0.1	0.1	ug/l	8260B
Dichlorodifluoromethane			,			C	'AS# 75-71-8			,				
Second Quarter 2012	-	U	U	0.1 J	0.2	J	0.2 J	1	1	142.27	0.1	0.28	ug/l	8260B
1,2-Dichloroethane		,	,			C	AS# 107-06-2	2						
Second Quarter 2012	-	U	U	U	U		U	1	1	5	0.1	0.147	ug/l	8260B
Diethyl ether		,	,			C	AS# 60-29-7							
Second Quarter 2012	-	U	0.4 J	2.2 J	5	J	9.2 J	12	12	7,300	0.1	0.39	ug/l	8260B
Diethyl phthalate		,	,			C	AS# 84-66-2							
Second Quarter 2012	-	U	U	U	U		U	10	10	12,520	0.62	0.5	UG/L	8270D
2,4-Dinitrotoluene						C	'AS# 121-14-2							
Second Quarter 2012	-	U	U	-	U		U	10	10	31.3	0.84	0.6	UG/L	8270D
2,6-Dinitrotoluene			•	'		C	AS# 606-20-2	,				1		1
Second Quarter 2012	-	U	U	U	U		U	10	10	15.65	0.89	0.7	UG/L	8270D
Methylene chloride			,			C	AS# 75-09-2			,				
Second Quarter 2012	-	U	U	U	U	N	U	1	1	5	0.2	0.182	ug/l	8260B
o-Nitroaniline		,	,			C	'AS# 88-74-4							
Second Quarter 2012	-	U	U	U	1.2	J	1 J	10	10	110	0.99	0.7	UG/L	8270D
p-Nitroaniline		,	,			C	'AS # 100-01-6	;						
Second Quarter 2012	-	U	U	U	U		U	20	20	20	1.3	1.3	UG/L	8270D
Nitrobenzene						C	'AS# 98-95-3				•			
Second Quarter 2012	-	U	U	U	U		U	10	10	10	1.1	0.8	UG/L	8270D

Summary of Annual Target Analyte Monitoring Results - Appendix K Corrective Action Monitoring Plan - Targeted Constituents

Hazardous Waste Management Unit 5

Radford Army Ammunition Plant, Radford, Virginia

$Upgradient \ well = 5W8B$

Analyte/Quarter	5W8B Q	5W5B Q	5W7B Q	5WC21 Q	5WC22 Q	5WC23 Q	QL	Permit QL	GPS	DL	Permit DL	UNIT	Method
Toluene					1	CAS # 108-88-3	3						
Second Quarter 2012	-	U	U	U	U	U	1	1	1,000	0.1	0.1	ug/l	8260B
Xylenes (Total)			,		1	CAS # 1330-20	-7				,		
Second Quarter 2012	-	U	U	U	U	U	3	3	10,000	0.1	0.208	ug/l	8260B

Definitions:

Results are reported to the Permit Detection Limit.

First Corrective Action Monitoring Event Second Quarter 2010:

QL: Denotes laboratory quantitation limit.

Permit QL: Denotes permit quantitation limit.

DL: Denotes laboratory detection limit.

Permit DL: Denotes permit detection limit.

U: Denotes not detected at or above the permit detection limit or QL.

UA: Denotes not detected at or above the adjusted detection limit or adjusted QL.

J: Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above the detection limit or QL and detection limit and QL are estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted detection limit and adjusted detection limit and QL are estimated.

UN: Denotes analyte concentration is less than the QL and/or five times the blank concentration. Not reliably detected due to blank contamination.

R: Denotes result rejected.

O: Denotes data validation qualifier.

X: Denotes mass spectral confirmation not obtained - result suspect.

CAS#: Denotes Chemical Abstract Services registration number.

GPS: Denotes Groundwater Protection Standards listed in Appendix K of Module VI-Groundwater Corrective Action & Monitoring Program for Unit 5 (approved by the VDEQ in the Final Class 3 Hazardous Waste Permit Modification dated November 5, 2009) which was incorporated into the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002).

"-": Denotes not sampled.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-5 Monitoring Event: Second Quarter 2012

	1	Laboratory Result	Validated Result	QL	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A					
Laboratory: Compu	Chem, a Division oj	f Liberty Anal	ytical, Cary, NC		
Barium	5WC21	15.6	15.6	10	No action taken. Field duplicate RPD <10.
	5WDUP	15.2	15.2	10	No action taken. Field duplicate of 5WC21. RPD < 10.
Beryllium	5WC21	1.47	1.47	1	No action taken, Field duplicate RPD <20 (17.8)
	5WDUP	1.23	1.23	1	No action taken. Field duplicate of 5WC21. RPD <20 (17.8)
Chromium	5WC21	5.19	5.19	5	No action taken, Field duplicate RPD < 10.
	5WDUP	5.09	5.09	5	No action taken. Field duplicate of 5WC21. RPD < 10.
Cobalt	5WC21	80.3	80.3	5	No action taken. Field duplicate RPD <10.
	5WDUP	77.1	77.1	5	No action taken. Field duplicate of 5WC21. RPD <10.
Copper	5WC21	5.52	5.52	5	No action taken. Field duplicate RPD <10.
	5WDUP	5.15	5.15	5	No action taken. Field duplicate of 5WC21, RPD <10.
Nickel	5WC21	35.8	35.8	10	No action taken. Field duplicate RPD <10.
	5WDUP	34.5	34.5	10	No action taken. Field duplicate of 5WC21, RPD < 10.
Zinc	5WC21	36.2	36.2	10	No action taken. Field duplicate RPD <10.
	5WDUP	34.7	34.7	10	No action taken. Field duplicate of 5WC21. RPD < 10.
Method: 8260B					
Laboratory: Lancas	ter Laboratories, La	ıncaster, PA			
Chloroform	5WC21	2.4	2.4	1	No action taken. Field duplicate RPD <10.
	5WDUP	2.4	2.4	1	No action taken. Field duplicate of 5WC21. RPD <10.
Trichloroethene	5WC21	5.8	5.8	1	No action taken. Field duplicate RPD <10.
	5WDUP	5.8	5.8	1	No action taken. Field duplicate of 5WC21. RPD <10.

Definitions:

Data Validation Qualifiers:

QL Denotes permit quantitation limit. Q Denotes data qualifier.

J Denotes analyte reported at or above quantitation limit and associated result is estimated.

APPENDIX A-4

MNA EFFECTIVENESS EVALUATION
(CONCENTRATION TREND GRAPH, POINT ATTENUATION RATE
CALCULATION, DATA TREND GRAPHS, TCE ISOCONCENTRATION MAP)

TCE Detections in Groundwater, Radford Army Ammunition Plant HWMU 5 (RAAP-042)

Date	5W8B	5W5B	5WC21	5WC22	5WC23	5W7B	S5WS	S5W7	5W9A	5W10A	5W11A
1st Qtr 1996	~	2.3	~	2.2	2.9	~	~	~	0.6 J	~	~
2nd Qtr 1996	~	5.7	0.4 J	3.8	4.5	~	~	~	0.7 J	~	~
3rd Qtr 1996	TC	4.3	0.4 J	5	5.8	~	~	~	0.8 J	~	~
4th Qtr 1996	~	2.4	0.9J	6.2	5.3	~	~	~	0.6 J	~	~
1st Qtr 1997	~	2.5	1.8	7.4	6.6	0.2 J	~	0.1 J	0.3 J	~	~
2nd Qtr 1997	0.3 J	7.8	2.7	7.4	6.8	0.1 J	0.4 J	~	0.8 J	0.1 J	~
3rd Qtr 1997	~	6	2.4	8.4	8.7	~	0.2 J	~	0.5 J	~	~
4th Qtr 1997	0.8 J	9.4	1.2	8.9	2.8	0.3 J	0.3 J	~	0.3 J	~	~
1st Qtr 1998	~	3.2	0.5	4.5	5.6	~	~	~	0.2 J	~	~
2nd Qtr 1998	~	12.8	1.3	4.7	4.7	~	0.2 J	~	0.2 J	~	~
3rd Qtr 1998	~	12.8	2	4.7	5.1	~	~	~	0.5 J	~	~
4di Qtr 1998	~	7.5	4.6	5.4	5.6	~	~	~	~	~	~
1st Qtr 1999	~	9.5	6.7	7.5	7.5	~	~	~	~	7.4	~
2nd Qtr 1999	~	15.9	5.6	6.7	6	~	~	~	0.2 J	~	~
3rd Qtr 1999	~	20.5	7.8	9.9	7.8	~	~	~	0.5 J	~	~
4th Qtr 1999	~	19.5	4.06	6.68	6.98	~	~	~	~	~	~
1st Qtr 2000	~	15.8	3.1	6.3	6.3	~	~	~	~	~	~
2nd Qtr 2000	~	13.2	3.9	5.7	5.5	~	~	~	~	~	~
3rd Qtr 2000	~	16.3	5.42	DRY	DRY	~	~	~	~	~	~
4th Qtr 2000	~	14.9	6.55	5.33	5.41	~	~	~	~	~	~
1st Qtr 2001	~	18.8	7.32	5.81	4.98	~	~	~	~	~	~
2nd Qtr 2001	~	1.67	12.1	9.33	9.11	~	~	~	~	~	~
3rd Qtr 2001	~	6.06	20.4	13.2	11.8	~	~	~	~	~	~
4th Qtr 2001	~	9.91	19.2	7.78	7.83	~	~	~	~	~	~
1st Qtr 2002	9.13	~	19.1	6.63	6.33	~	~	~	~	~	~
2nd Qtr 2002	ə.10 ~	9.84	16.6	7.03	6.25	~	~	~	~	~	~
3rd Qtr 2002	~	6.36	8.46	1.94	2.13	~	~	~	~	~	~
4th Qtr 2002	~	5.84	11.3	2.54	2.69	~	~	~	~	~	~
2nd Qtr 2003	~	4.2	26	7.4	7.6	~	~	~	~	~	~
3rd Qtr 2003	~	1.9	22	8	7.9	~	~	~	~	~	~
4th Qtr 2003	~	6	23	7.1	7.1	~	~	~	~	~	~
1st Qtr 2004	~	7.4	23	7.1	6.8	~	~	~	~	~	~
2nd Qtr 2004	~	8	22	6.2	6.8	~	~	~	~	~	~
3rd Qtr 2004	~	7	17	4.8	4.9	~	~	~	~	~	~
4st Qtr 2004	~	9.4	20	6.2	6.6	~	~	~	~	~	~
1st Qtr 2005	~	7.9	24	5.9	5.9	~	~	~	~	~	~
2nd Qtr 2005	~	13	16	5.5	5.8	~	~	~	~	~	~
3rd Qtr 2005	~	12	10	4.2	5.1	~	~	~	~	~	~
4th Qtr 2005	~	12	6.8	4.4	4.3	~	~	~	~	~	~
1st Qtr 2006	~	8.5	3.9	3.7	4.5	~	~	~	~	~	~
2nd Qtr 2006	~	17	4	4	4	~	~	~	~	~	~
3rd Qtr 2006	~	11	3.7	3.3	3.7	~	~	~	~	~	~
4th Qtr 2006	~	9.4	3.5	4.7	3.5	~	~	~	~	~	~
1st Qtr 2007	~	9	5.6	3.3	3.6	~	~	~	~	~	~
2nd Qtr 2007	~	10	5.5	3.5	3.5	~	~	~	~	~	~
4th Qtr 2007	~	8.9	2.5	3.4	3.5	~	~	~	~	~	~
2nd Qtr 2008	~	7.8	~	~	2.9	~	~	~	~	~	~
4th Qtr 2008	~	14	1.3	3	3	~	~	~	~	~	~
2nd Qtr 2009	~	1.3	~	2.5	2.5	~	~	~	~	~	~
4th Qtr 2009	~	7	1.9	3.3	3.3	~	~	~	~	~	~
2nd Qtr 2010	~	2.6	4.2	4.4	4.3	~	· ·				·
4th Qtr 2010	~	7.3	4.2	4.4	3.9	~					
2nd Qtr 2011	~	0.9 J	4.9	5.2	5.3	~					
2nd Qtr 2011 4th Qtr 2011	~			4.9	4.9	~					
	~	0.9 J	7.3			~					
2nd Qtr 2012 4th Qtr 2012	~	0.3 J 2.4	5.8 6.2	4.3 3.7	4.6 3.8	~					
7111 WII 2012	L ~	۷.4	0.۷	٥./	٥.٥	.~	l		l	l .	

Notes:

^{~ -} TCE not detected above laboratory detection limit

J - Trichloroethene was detected at a concentration greater than the detection limit but less than the quantitation limit. These results are estimates only. DRY - Monitoring wells 5WC22 and 5WC23 were dry during 3rd Quarter 2000. No samples were collected.

MNA Effectiveness Evaluation - Concentration Trend Graph and Point Attenuation Rate Calculation

Sample Date	TCE (ug/L)	In TCE (ug/L)
4/18/2005	16.00	2.77
8/15/2005	10.00	2.30
11/18/2005	6.80	1.92
2/14/2006	3.90	1.36
4/18/2006	4.00	1.39
8/18/2006	3.70	1.31
11/18/2006	3.50	1.25
2/14/2007	5.60	1.72
4/18/2007	5.50	1.70
10/30/2007	2.50	0.92
4/28/2008	0.50	-0.69
10/27/2008	1.30	0.26
4/20/2009	0.50	-0.69
10/26/2009	1.90	0.64
4/21/2010	4.20	1.44
10/26/2010	4.00	1.39
5/4/2011	4.90	1.59
11/1/2011	7.30	1.99
4/24/2012	5.80	1.76
10/29/2012	6.20	1.82
		#NUM!

Last 16	rounds	TCE GPS	Estima	ted Rate and T	ime Required	Current MNA Timeframe	MNA Goal (per CAP)	MNA Ineffective Date
First Event	Last Event		Rate	Rate	Time	Prediction	WINA Goal (per CAF)	(per CAP)
First Event	Last Event	ug/L	(per day)	(per year)	(years)	Frediction		
4/18/2005	10/29/2012	5.000	0.0006	0.219	0.98	October-2013	October-2019	December-2026

Effectiveness Evaluation for MNA Remedy

- 1) Is the current MNA remedial timeframe prediction less than the 2019 MNA Goal?
- 2) Is the current MNA remedial timeframe prediction less than the 2026 MNA ineffective date?

Status Condition

yes

yes

If 'yes', then the remedy is considered effective and no additional action is required. If 'no' for three consecutive years, then contingency measures will be implemented as defined in the CAP.

If 'yes', the remedy will be considered effective. If 'no' for three consecutive monitoring years, then an alternate remedial approach will be implemented as defined in the CAP.

Hampton Roads, VA

.B03\200\B03204\B03204-10\CAD\B03204-10_4TH QUARTER 2012 FIG1.dwg Jan 08, 2013 10:38am

Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 APPENDIX B

HWMU-7

APPENDIX B-1

HWMU-7 POTENTIOMETRIC SURFACE MAPS SECOND QUARTER 2012 FOURTH QUARTER 2012

APPENDIX B-2

HWMU-7 2012 LABORATORY ANALYTICAL RESULTS POINT OF COMPLIANCE WELLS

 $Upgradient \ well = 7W12B$

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Antimony						C	AS#	7440-36-0
Second Quarter 2012	U	U	U	U	1	-	1	6020
Arsenic						C	AS#	7440-38-2
Second Quarter 2012	U	U	U	U	10	10	10	6020
Fourth Quarter 2012	U	U	U	U	10	10	10	6020
Barium						C	AS#	7440-39-3
Second Quarter 2012	36.8	19.1	27	48.7	10	2000	41	6020
Fourth Quarter 2012	31.6	15.1	21.9	45.1	10	2000	41	6020
Beryllium						C	AS#	7440-41-7
Second Quarter 2012	U	U	U	U	1	-		6020/
Cadmium						C	AS#	7440-43-9
Second Quarter 2012	U	U	U	U	1	5	1	6020
Fourth Quarter 2012	U	U	U	U	1	5	1	6020
Chromium						C	AS#	7440-47-3
Second Quarter 2012	5.3	U	U	U	5	100	9.9	6020
Fourth Quarter 2012	5.55	U	U	U	5	100	9.9	6020
Cobalt						C	AS#	7440-48-4
Second Quarter 2012	U	U	2.79 J	U	5	5	5	6020
Fourth Quarter 2012	U	U	U	U	5	5	5	6020
Copper						C	AS#	7440-50-8
Second Quarter 2012	3.06J	1.12 J	2.46 J	1.49 J	5	1300	5	6020
Fourth Quarter 2012	U	U	U	U	5	1300	5	6020
Lead						C	AS#	7439-92-1
Second Quarter 2012	U	U	U	U	1	15	1	6020
Fourth Quarter 2012	U	U	U	U	1	15	1	6020
Mercury						C	AS#	7439-97-6
Second Quarter 2012	U	U	U	U	2	-	2	7470
Nickel		1				C	AS#	7440-02-0
Second Quarter 2012	U	U	9.49 J	U	10	313	10	6020
Fourth Quarter 2012	U	U	11.8	U	10	313	10	6020
Selenium		1				C	AS#	7782-49-2
Second Quarter 2012	U	U	U	U	10	50	10	6020
Fourth Quarter 2012	U	U	U	U	10	50	10	6020
Silver		1				C	AS#	7440-22-4
Second Quarter 2012	U	U	U	U	2	78.25	2	6020
Fourth Quarter 2012	U	U	U	U	2	78.25	2	6020
Thallium		1	<u> </u>	l .		C	AS#	7440-28-0
Second Quarter 2012	U	U	U	U	1	2	1	6020
Fourth Quarter 2012	U	U	U	U	1	2	1	6020
Tin		1		<u>I</u>		C	AS#	7440-31-5
Second Quarter 2012	U	U	U	U	50	-		60100
Vanadium						•	CAS#	7440-62-2
Second Quarter 2012	U	U	U	U	5	-		6020
Zinc					_	- 0	AS#	7440-66-6
Second Quarter 2012	6.14J	5 J	5.31 J	U	10	4695	10.9	6020
	1			1 -				

 $Upgradient \ well = 7W12B$

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Cyanide						C	'AS#	57-12-5
Second Quarter 2012	U	U	U	U	20	200	20	9012B
Fourth Quarter 2012	U	U	U	U	20	200	20	9012B
Sulfide						C	'AS#	18496-25-8
Second Quarter 2012	UJ	U J	U J	U J	3000	-		9034
Total Recoverable Pheno	lics					C	'AS#	TOTPHEN
Second Quarter 2012	U	U	U	U	40	-		9066
Aroclor 1254						C	AS#	11097-69-1
November 28, 2012	U	U	U	U	0.5			8082A
Acenaphthene						C	AS#	83-32-9
Second Quarter 2012	U	U	U	U	5	-		8270D
Acenaphthylene			_		ŭ	(AS#	208-96-8
Second Quarter 2012	U	U	U	U	5	_		8270D
Acetone			_		3		'AS#	67-64-1
Second Quarter 2012	UJ	U J	UJ	UJ	10		AS #	8260B
Acetonitrile	- 0		0 0	0 0	10		CAS#	75-05-8
Second Quarter 2012	UJ	U J	UJ	UJ	100		A3 #	8260B
	0 3	0 3	0 3	0 3	100		CAS#	98-86-2
Acetophenone	11.1	I 11 1					A3 #	1
Second Quarter 2012	UJ	U J	U J	U J	5	-	140.#	8270D 53-96-3
2-Acetylaminofluorene	1	1		1	I _	ı	AS#	
Second Quarter 2012	U	U	U	U	5	-		8270D
Acrolein	1	1	1	T.	1	ı	AS#	107-02-8
Second Quarter 2012	U J	U J	U J	U J	25	-		8260B
Acrylonitrile	1	1	T.	II.	ı	C	AS#	107-13-1
Second Quarter 2012	UJ	U J	UJ	UJ	10	-		8260B
Aldrin			•	1	1	C	'AS#	309-00-2
Second Quarter 2012	U	U	U	U	0.025	-		8081B
Allyl chloride						C	AS#	107-05-1
Second Quarter 2012	UJ	U J	U J	U J	10	-		8260B
4-Aminobiphenyl						C	'AS#	92-67-1
Second Quarter 2012	U	U	U	U	5	-		8270D
Aniline					•	C	AS#	62-53-3
Second Quarter 2012	U	U	U	U	5	-		8270D
Anthracene						C	'AS#	120-12-7
Second Quarter 2012	U	U	U	U	5	-		8270D
Aramite						C	AS#	140-57-8
Second Quarter 2012	U	U	U	U	5	-		8270D
Benzene	1	1	1	II.	1	C	AS#	71-43-2
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Benzo[a]anthracene	1	1	<u> </u>	<u>I</u>	1	C	AS#	56-55-3
Second Quarter 2012	U	U	U	U	5	-		8270D
Benzo[b]fluoranthene					1	•	AS#	205-99-2
Second Quarter 2012	U	U	U	U	5	-		8270D
Benzo[k]fluoranthene		I					AS#	207-08-9
Second Quarter 2012	U	U	U	U	5			8270D
2220.10 Quartor 2012	ı Ü		Ŭ	ı -	J		14.6.#	191-24-2
Benzo[ghi]perylene						- 1	AS#	191-24-2

 $Upgradient \ well = 7W12B$

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Benzo(a)pyrene						(CAS#	50-32-8
Second Quarter 2012	U	U	U	U	5	-		8270E
1,4-Benzenediamine						(CAS#	106-50-3
Second Quarter 2012	U J	U J	U J	U J	7.5	-		8270E
Benzyl alcohol						(CAS#	100-51-6
Second Quarter 2012	U	U	U	U	5	_		8270E
alpha-BHC						(CAS#	319-84-6
Second Quarter 2012	U	U	U	U	0.025	_		8081E
beta-BHC					0.020		CAS#	319-85-7
Second Quarter 2012	U	U	U	U	0.025		115 "	8081E
delta-BHC	<u> </u>		ŭ	ŭ	0.023		CAS#	319-86-8
Second Quarter 2012	U	U	U	U	0.025		Α5 π	8081E
	U	U	U	U	0.025		CAS#	58-89-9
gamma-BHC	U	Lu	11	11	0.005		A5 #	T
Second Quarter 2012	_	U	U	U	0.025	-	746 #	8081E
bis(2-Chloroethoxy)metha	1	Lu		I 11	l -	(CAS#	T.
Second Quarter 2012	U	U	U	U	5	-	14.G.#	82700
bis(2-Chloroethyl)ether	T	T		I		(CAS#	111-44-4
Second Quarter 2012	U	U	U	U	5	-		82700
bis(2-Chloro-1-methylethy	T	1	1	Ti .		(CAS#	108-60-1
Second Quarter 2012	U	U	U	U	5	-		8270D
bis(2-Ethylhexyl)phthalate	•		1	1		(CAS#	117-81-7
Second Quarter 2012	U	U	U	U	6	6	6	8270D
Fourth Quarter 2012	U	U	U	U	6	6	6	8270D
Bromobenzene						C	CAS#	108-86-1
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
Bromochloromethane						(CAS#	74-97-5
Second Quarter 2012	UJ	U J	UJ	U J	1	-		8260E
Bromodichloromethane						(CAS#	75-27-4
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
Bromoform			•		•	(CAS#	75-25-2
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
4-Bromophenyl phenyl et	her	"				(CAS#	101-55-3
Second Quarter 2012	U	U	U	U	5	-		8270D
n-Butyl alcohol						(CAS#	71-36-3
Second Quarter 2012	U J	U J	U J	U J	50	-		8260B
tert-Butyl alcohol						(CAS#	75-65-0
Second Quarter 2012	UJ	U J	U J	U J	200	-		8260E
n-Butylbenzene	1	1			I	(CAS#	104-51-8
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
sec-Butylbenzene	1	1					CAS#	135-98-8
Second Quarter 2012	UJ	U J	U J	U J	1			8260E
tert-Butylbenzene	1						CAS#	98-06-6
Second Quarter 2012	UJ	U J	UJ	U J	1	_		8260E
	- 0			, , ,			CAS#	85-68-7
Butyl benzyl phthalate Second Quarter 2012	U	U	U	U			7.1.J II	82700
Carbon disulfide			J	J	5		CAS#	75-15-0
						·	AD#	10-10-0

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Carbon tetrachloride						C	AS#	56-23-5
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Chlordane	1	1	1	1	1	C	'AS#	57-74-9
Second Quarter 2012	U	U	U	U	0.8	-		8081B
p-Chloroaniline	-	1		-		C	'AS#	106-47-8
Second Quarter 2012	U	U	U	U	10	-		8270D
Chlorobenzene						C	'AS#	108-90-7
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Chlorobenzilate						C	'AS#	510-15-6
Second Quarter 2012	U	U	U	U	5	-		8270D
p-Chloro-m-cresol						C	'AS#	59-50-7
Second Quarter 2012	U	U	U	U	10	-		8270D
Chloroethane						C	'AS#	75-00-3
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Chloroform	1	1	1	-I	1	C	'AS#	67-66-3
Second Quarter 2012	3.9 J	U J	0.5 J	2.2 J	1	-		8260B
2-Chloroethyl vinyl ether						C	'AS#	110-75-8
Second Quarter 2012	UJ	U J	U J	U J	20	-		8260B
2-Chloronaphthalene						C	'AS#	91-58-7
Second Quarter 2012	U	U	U	U	5	-		8270D
2-Chlorophenol					•	C	'AS#	95-57-8
Second Quarter 2012	U	U	U	U	10	-		8270D
4-Chlorophenyl phenyl et	her					C	'AS#	7005-72-3
Second Quarter 2012	U	U	U	U	5	-		8270D
Chloroprene						C	'AS#	126-99-8
Second Quarter 2012	UJ	U J	U J	U J	10	-		8260B
2-Chlorotoluene						C	'AS#	95-49-8
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
4-Chlorotoluene						C	'AS#	106-43-4
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Chrysene						C	'AS#	218-01-9
Second Quarter 2012	U	U	U	U	5	-		8270D
Cyclohexane	T	1	T	Ti Ti	1	C	'AS#	110-82-7
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
2,4-Dichlorophenoxyacet	1	T	1	T	1	1	'AS#	94-75-7
Second Quarter 2012	U	U	U	U	5	-		8151A
4,4'-DDD	T	T	1	T	1	1	'AS#	72-54-8
Second Quarter 2012	U	U	U	U	0.05	-		8081B
4,4'-DDE	1	T	T	1	ı	1	'AS#	72-55-9
Second Quarter 2012	U	U	U	U	0.05	-		8081B
4,4'-DDT		T	1	1	1	1	'AS#	50-29-3
	U	U	U	U	0.05	-		8081B
Second Quarter 2012								0000 40 :
Diallate	1	l		1	1	1	'AS#	2303-16-4
Diallate Second Quarter 2012	U	U	U	U	10	-		8270D
Diallate	U	U	U	U	10	-	AS#	T.

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Dibenzofuran						(CAS#	132-64-9
Second Quarter 2012	U	U	U	U	5	-		8270D
Dibromochloromethane	1	1	1	1	1	•	CAS#	124-48-1
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
1,2-Dibromo-3-chloroprop	pane						CAS#	96-12-8
Second Quarter 2012	UJ	U J	U J	U J	1	_		8260E
1,2-Dibromoethane						(CAS#	106-93-4
Second Quarter 2012	UJ	U J	U J	U J	1	_		8260E
Di-n-butyl phthalate							CAS#	84-74-2
Second Quarter 2012	U	U	U	U	5	T -		82700
	1				Ū		CAS#	95-50-1
1,2-Dichlorobenzene Second Quarter 2012	UJ	U J	UJ	U J		-	λAS π	8260E
	0 0	0 0	0 0	0 0	1		CAS#	541-73-1
1,3-Dichlorobenzene	11.1	I 11 1	11 1	111 1		T	A3#	T
Second Quarter 2012	U J	U J	U J	U J	1	-	746#	8260E
1,4-Dichlorobenzene	1	I		l		T	CAS#	106-46-7
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
3,3'-Dichlorobenzidine	T	T	I	1			CAS#	91-94-1
Second Quarter 2012	U	U	U	U	5	-		8270D
trans-1,4-Dichloro-2-bute	ne		1			(CAS#	110-57-6
Second Quarter 2012	UJ	U J	U J	U J	10	-		8260E
Dichlorodifluoromethane						(CAS#	75-71-8
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
1,1-Dichloroethane						(CAS#	75-34-3
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
1,2-Dichloroethane						(CAS#	107-06-2
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
1,1-Dichloroethene						(CAS#	75-35-4
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
trans-1,2-Dichloroethene						(CAS#	156-60-5
Second Quarter 2012	U J	U J	U J	U J	1	-		8260E
2,4-Dichlorophenol						(CAS#	120-83-2
Second Quarter 2012	U	U	U	U	10	-		8270D
2,6-Dichlorophenol						(CAS#	87-65-0
Second Quarter 2012	U	U	U	U	10	-		8270D
1,2-Dichloropropane						(CAS#	78-87-5
Second Quarter 2012	UJ	U J	U J	UJ	1	_		8260B
1,3-Dichloropropane							CAS#	142-28-9
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
					'		CAS#	594-20-7
2,2-Dichloropropane Second Quarter 2012	UJ	UJ	UJ	UJ	4	-	7.1.13 II	8260E
	5 5	5 3	J	J	1		7A C #	563-58-6
1,1-Dichloropropene	1 11 1	I 11 1	11 1	1 11 1		1	CAS#	1
Second Quarter 2012	UJ	U J	U J	U J	1	-	740#	8260E
cis-1,3-Dichloropropene	1	I		I			CAS# 1	0061-01-5
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
trans-1,3-Dichloropropen	1	1		T.			CAS# 1	0061-02-6
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B

 $Upgradient \ well = 7W12B$

7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
					С	'AS#	60-57-1
U	U	U	U	0.05	-		8081E
					C	'AS#	60-29-7
UJ	1.2 J	U J	U J	13	3100	13	8260E
U	U	U	U			13	8260E
				.0			84-66-2
U	U	U	U	5	1		82700
				Ū		'AS#	297-97-2
T	U	Ш	U	5	1	115 "	8270
<u> </u>		ŭ		Ū		'AS#	60-51-5
11	Lu	11	l II	_	1		82700
· ·	0	- O	· ·	J		'A C #	115-10-6
11.1	11 1	11 1	11 1	40	1	A3 #	8260E
	0 3	0 0	0 3	13		A C #	60-11-7
	1		1	l _	1	AS#	TI.
	U	U	U	5			82700
	T		1	I		AS#	57-97-6
U	U	U	U	5	-		8270
T	1		ı	ı	<u> </u>	'AS#	119-93-7
	U J	U J	U J	5	-		8270
1	1				С	'AS#	122-09-8
UJ	U J	UJ	U J	15	-		8270E
					C	'AS#	105-67-9
U	U	U	U	10	-		8270E
					C	'AS#	131-11-3
U	U	U	U	5	-		8270E
					C	'AS#	99-65-0
U	U	U	U	5	-		8270D
				•	C	'AS#	534-52-1
UJ	U J	U J	U J	10	-		8270E
				ļ.	C	'AS#	51-28-5
UJ	U J	U J	U J	10	-		8270E
					С	'AS#	121-14-2
U	U	U	U	10	31.3	10	8270E
U	U	U	U	10	31.3	10	8270E
					C	'AS#	606-20-2
U	U	U	U	10	15.65	10	8270E
U	U	U	U	10	15.65	10	8270E
1	1		<u>I</u>		C	'AS#	88-85-7
U	U	U	U	2.5	-		8151
1			1			'AS#	117-84-0
U	U	U	U	5	_		82700
				_		'AS#	123-91-1
U J	U J	U J	U J	200	1		8260E
		- 0		200		'AS#	122-39-4
П	П	Ш	Ш	_		110 "	82700
U	U	U	U	5	-		
					_	'AS#	298-04-4
	U	U	U	U	U	U	CAS# U U U U U U U 13 13 3100 13 U U U U U U 13 3100 13 U U U U U U 5 C CAS# U U U U U U 5 C CAS# U U U U U U 5 C CAS# U U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U 5 C CAS# UU U U U U U U 5 C CAS# UU U U U U U U 5 C CAS# UU U U U U U U IIO 31.3 IO UU U U U U U IIO 31.3 IO UU U U U U U IIO 31.3 IO UU U U U U U IIO 31.3 IO UU U U U U U IIO 31.3 IO UU U U U U U IIO 31.3 IO UU U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U IIO 31.5 C CAS# UU U U U U U U U IIO 31.5 C CAS#

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Endosulfan I						C	CAS#	959-98-8
Second Quarter 2012	U	U	U	U	0.025	-		8081E
Endosulfan II						C	CAS# 3	3213-65-9
Second Quarter 2012	U	U	U	U	0.05	-		8081E
Endosulfan sulfate						C	CAS#	1031-07-8
Second Quarter 2012	U	U	U	U	0.05	-		8081E
Endrin		I .				C	CAS#	72-20-8
Second Quarter 2012	U	U	U	U	0.05	-		8081E
Ethyl acetate		1				C	CAS#	141-78-6
Second Quarter 2012	UJ	U J	U J	U J	10	-		8260E
Endrin aldehyde						C	CAS#	7421-93-4
Second Quarter 2012	U	U	U	U	0.05	-		8081E
Ethanol						C	CAS#	64-17-5
Second Quarter 2012	UJ	U J	U J	U J	250	-		8260E
Ethylbenzene	1	<u>I</u>	<u> </u>	I .	<u> </u>	•	CAS#	100-41-4
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260E
Ethyl methacrylate						C	CAS#	97-63-2
Second Quarter 2012	UJ	U J	U J	U J	10	_		8260E
Ethyl methanesulfonate						(CAS#	62-50-0
Second Quarter 2012	U	U	U	U	5			8270E
Ethylene oxide						(CAS#	75-21-8
Second Quarter 2012	UJ	U J	U J	U J	100	_		8260E
Famphur					.00		CAS#	52-85-7
Second Quarter 2012	U	U	U	U	5			8270E
Fluoranthene				_	Ŭ		CAS#	206-44-0
Second Quarter 2012	U	U	U	U	5		115 "	8270D
Fluorene					Ü		CAS#	86-73-7
Second Quarter 2012	U	U	U	U	5		115 "	82700
Heptachlor				J	3		CAS#	76-44-8
Second Quarter 2012	U	U	U	U	0.025		115 "	8081E
Heptachlor epoxide				· ·	0.023		CAS#	1024-57-3
Second Quarter 2012	U	U	U	U	0.025			8081E
Hexachlorobenzene	Ŭ	Ŭ	Ü	Ü	0.023		CAS#	118-74-1
Second Quarter 2012	U	U	U	U	5			8270D
	0	U	0	O	3		CAS#	87-68-3
Hexachlorobutadiene Second Quarter 2012	UJ	U J	U J	U J		·	A3#	8260E
		0 3	0 3	0 3	1		7A C #	77-47-4
Hexachlorocyclopentadie Second Quarter 2012	ene U	U	Ш	11	-		CAS#	8270E
	U	U	U	U	5	-	CAS#	67-72-1
Hexachloroethane	11.1	11	Ш	11	-		A3#	1
Second Quarter 2012	UJ	U	U	U	5	-		8270[
Second Quarter 2012	UJ	U	U	U	10		146#	8260E
Hexachlorophene	1	1					CAS#	70-30-4
Second Quarter 2012	U	U	U	U	200	-	, , , , , , , , , , , , , , , , , , ,	82700
Hexachloropropene	1	I			1		CAS#	1888-71-7
Second Quarter 2012	UJ	U J	U J	U J	5	-		8270D 591-78-6
2-Hexanone							CAS#	

Second Quarier 2012	ve/Quarter 7W12B	Q 7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
Sebuty alcohol	2,3-cd]pyrene					C	'AS#	193-39-5
Second Quarter 2012	arter 2012 U	U	U	U	5	-		8270D
Second Quarter 2012	Icohol					C	'AS#	78-83-1
Second Quarter 2012	arter 2012 U J	U J	U J	U J	200	-		8260B
Second Quarter 2012						C	'AS#	465-73-6
Second Quarier 2012	arter 2012 U	U	U	U	5	-		8270D
Second Quarter 2012	ne					C	'AS#	78-59-1
Second Quarier 2012	arter 2012 U	U	U	U	5	-		8270D
Second Quarter 2012	benzene					C	'AS#	98-82-8
Second Quarter 2012		U J	U J	U J	1	-		8260B
Second Quarter 2012	ether					C	'AS#	108-20-3
Second Quarter 2012		UJ	UJ	U J	10	_		8260B
Second Quarter 2012	vitoluene					C	'AS#	99-87-6
Second Quarter 2012	1	UJ	UJ	UJ	1			8260B
Second Quarter 2012					•		'AS#	120-58-1
CAS # 143-56 Second Quarter 2012		U	U	U	5			8270D
Methacrylonitrile				_			'AS#	143-50-0
Methacrylonitrile Second Quarter 2012 U J U J U J U J 100 Second Quarter 2012 U J U J U J U J 100 Second Quarter 2012 U U U U U U 5 Second Quarter 2012 U U U U U U 0.25 Second Quarter 2012 U J U J U J U J 1 Second Quarter 2012 U J U J U J U J U J 1 Second Quarter 2012 U J U J U J U J U J 1 Second Quarter 2012 U J U J U J U J U J 1 Second Quarter 2012 U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J I Second Quarter 2012 U J U U U U U Second Quarter 2012 U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J I Second Quarter 2012 U J U J U J U J U J U J I Second Quarter 2012 U J U U U U U U Second Quarter 2012 U J U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U Second Quarter 2012 U U U U U U U U Second Quarter 2012 U U U U U U U U Second Quarter 2012 U U U U U U U U Second Quarter 2012 U U U U U U U U Second Quarter 2012 U U U U U U U U Second Quarter 2012 U U U U U U U U U Second Quarter 2012 U U U U U U U U U U Second Quarter 2012 U U U U U U U U U Second Quarter 2012 U U U U U U U U U Second Quarter 2012 U U U U U U U U U U U Second Quarter 2012 U U U U U U U U U U U U U U U U U U	arter 2012	П	Ш	U	5		115 "	8270D
Methapyrilene				Ü	3		'A S #	126-98-7
Methapyrilene		111 1	11 1	11 1	100	1	AD #	8260B
Methoxychlor		0 0		0 0	100		'A C #	91-80-5
Methoxychlor Second Quarter 2012 U U U U U 0.25 .	1	111		11	-	1	AS#	8270D
Second Quarter 2012		0		U	5		A C #	
Second Quarter 2012		11		11	0.05		A3 #	8081B
Second Quarter 2012		U		U	0.25		14 C #	
Chloromethane	T. Control of the Con						AS#	T
Second Quarter 2012		0 0	U J	U J	1		14.0.#	8260B
Second Quarter 2012	T.						AS#	1
Second Quarter 2012		0 0	U J	U J	1			8260B
CAS # 78-93							AS#	1
Second Quarter 2012		U	U	U	5			8270D
Second Quarter 2012							AS#	1
Second Quarter 2012		U J	U J	U J	10			8260B
Methyl methacrylate CAS # 80-62 Second Quarter 2012 U J U J U J U J 10 - Methyl methane sulfonate CAS # 66-27 Second Quarter 2012 U U U U U 5 - - 2-Methylnaphthalene CAS # 91-57 Second Quarter 2012 U U U U U 5 - - Methyl parathion CAS # 298-00 Second Quarter 2012 U U U U U 5 - - 4-Methyl-2-pentanone CAS # 108-10	T.					C	'AS#	74-88-4
Second Quarter 2012		U J	U J	U J	10			8260B
Methyl methane sulfonate CAS # 66-27 Second Quarter 2012 U U U U 5 -							'AS#	80-62-6
Second Quarter 2012 U U U U 5 -		U J	U J	U J	10			8260B
2-Methylnaphthalene CAS # 91-57 Second Quarter 2012 U U U U 5 -						C	'AS#	66-27-3
Second Quarter 2012 U U U U 5 -	arter 2012 U	U	U	U	5			8270D
Methyl parathion CAS # 298-00 Second Quarter 2012 U U U U 5 - - 4-Methyl-2-pentanone CAS # 108-10	•					C	'AS#	91-57-6
Second Quarter 2012 U U U U 5 -	arter 2012 U	U	U	U	5	-		8270D
4-Methyl-2-pentanone CAS# 108-10						C	'AS#	298-00-0
	arter 2012 U	U	U	U	5	-		8270D
Second Quarter 2012	2-pentanone					<i>c</i>	'AS#	108-10-1
	arter 2012 U J	U J	U J	U J	10	-		8260B
2-Methylphenol CAS# 95-48	henol					C	'AS#	95-48-7
Second Quarter 2012 U U U U 10 -	arter 2012 U	U	U	U	10	-		8270D

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
3 & 4-Methylphenol						(CAS#	106-44-5
Second Quarter 2012	U	U	U	U	10	-		8270E
Methyl tert-butyl ether						(CAS#	1634-04-4
Second Quarter 2012	UJ	U J	U J	U J	10	-		8260B
Dibromomethane						(CAS#	74-95-3
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Methylene chloride						(CAS#	75-09-2
Second Quarter 2012	UJ	U J	U J	U J	1			8260E
Naphthalene						(CAS#	91-20-3
Second Quarter 2012	UJ	U J	U J	UJ	1	_		8260E
1,4-Naphthoquinone					·		CAS#	130-15-4
Second Quarter 2012	UJ	U J	U J	UJ	5	-	115 "	8270D
	0 0	0 0	0 0		3		CAS#	134-32-7
1-Naphthylamine Second Quarter 2012	U	U	U	U	5		/11.J II	8270D
	U	U	U	U	5		CAS#	91-59-8
2-Naphthylamine Second Quarter 2012	U	U	U	U	-	<u> </u>	A3#	91-59-8 8270D
	U	U	U	U	5		7 A G #	
o-Nitroaniline	1			1		1	CAS#	88-74-4
Second Quarter 2012	U	U	U	U	10	-	74.0.#	82700
m-Nitroaniline	1	T	I	T	II.		CAS#	99-09-2
Second Quarter 2012	U	U	U	U	10			8270D
p-Nitroaniline	1	1	1	1	1	(CAS#	100-01-6
Second Quarter 2012	U	U	U	U	10	-		8270D
Nitrobenzene						(CAS#	98-95-3
Second Quarter 2012	U	U	U	U	5	-		8270D
o-Nitrophenol						(CAS#	88-75-5
Second Quarter 2012	U	U	U	U	10	-		8270E
p-Nitrophenol						(CAS#	100-02-7
Second Quarter 2012	U	U	U	U	10	-	20	8270D
4-Nitroquinoline-1-oxide					•	(CAS#	56-57-5
Second Quarter 2012	U	U	U	U	5	-		8270E
N-Nitrosodi-n-butylamine	1					(CAS#	924-16-3
Second Quarter 2012	U	U	U	U	5	-		8270D
N-Nitrosodiethylamine						(CAS#	55-18-5
Second Quarter 2012	U	U	U	U	5	-		8270D
N-Nitrosodimethylamine						(CAS#	62-75-9
Second Quarter 2012	U	U	U	U	5	-		8270D
N-Nitrosodiphenylamine	1	1		1		(CAS#	86-30-6
Second Quarter 2012	U	U	U	U	5	-		8270D
N-Nitrosodipropylamine	1	1		1	-		CAS#	621-64-7
Second Quarter 2012	U	U	U	U	5		-	8270D
N-Nitrosomethylethylamir		_	-	_	J		CAS # 1	0595-95-6
Second Quarter 2012	U	U	U	U	5		· <i>»</i> "	8270
					J		CAS#	59-89-2
N-Nitrosomorpholine Second Quarter 2012	U	U	U	U	-		.Δ1.3 π	8270E
	U	U	U	U	5	- (7A C #	100-75-4
N-Nitrosopiperidine	1				_		CAS#	1
Second Quarter 2012	U	U	U	U	5	-		8270D

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
N-Nitrosopyrrolidine						C	'AS#	930-55-2
Second Quarter 2012	U	U	U	U	5	-		8270D
5-Nitroso-o-toluidine						C	'AS#	99-55-8
Second Quarter 2012	U	U	U	U	5	-		8270D
Parathion						C	AS#	56-38-2
Second Quarter 2012	U	U	U	U	5	-		8270D
Pentachlorobenzene					l .	C	AS#	608-93-5
Second Quarter 2012	U	U	U	U	5	-		8270D
Pentachloroethane						C	AS#	76-01-7
Second Quarter 2012	UJ	U J	U J	U J	10	-		8260B
Pentachloronitrobenzen	9					C	AS#	82-68-8
Second Quarter 2012	U	U	U	U	5	-		8270D
Pentachlorophenol						C	'AS#	87-86-5
Second Quarter 2012	UJ	U J	U J	U J	10	-		8270D
Phenacetin		<u> </u>		<u> </u>		•	AS#	62-44-2
Second Quarter 2012	U	U	U	U	5	-		8270D
Phenanthrene						C	AS#	85-01-8
Second Quarter 2012	U	U	U	U	5	-		8270D
Phenol						C	AS#	108-95-2
Second Quarter 2012	U	U	U	U	10			8270D
Phorate						(AS#	298-02-2
Second Quarter 2012	U	U	U	U	5	-		8270D
2-Picoline						('AS#	109-06-8
Second Quarter 2012	U	U	U	U	5	_		8270D
Pronamide						('AS# 2	3950-58-5
Second Quarter 2012	U	U	U	U	5	l .		8270D
1-Propanol						('AS#	71-23-8
Second Quarter 2012	UJ	U J	U J	U J	100	_		8260B
2-Propanol						('AS#	67-63-0
Second Quarter 2012	UJ	U J	U J	U J	100	_		8260B
Propionitrile						('AS#	107-12-0
Second Quarter 2012	UJ	U J	U J	U J	100	_		8260B
n-Propylbenzene						('AS#	103-65-1
Second Quarter 2012	UJ	U J	U J	U J	1	_		8260B
Pyrene						C	AS#	129-00-0
Second Quarter 2012	U	U	U	U	5	_		8270D
Pyridine						- 0	AS#	110-86-1
Second Quarter 2012	U	U	U	U	5	-		8270D
Safrole							AS#	94-59-7
Second Quarter 2012	U	U	U	U	5		· .	8270D
Silvex		<u> </u>		<u> </u>			AS#	93-72-1
Second Quarter 2012	U	U	U	U	2.5	-		8151A
Styrene	-	-	-	-	0		AS#	100-42-5
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Sulfotep		- 0			'		AS#	3689-24-5
Second Quarter 2012	U	U	U	U	5		11.511	8270D
Gecond Quarter 2012	J		U		5	-	I	02/00

 $Upgradient \ well = 7W12B$

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
2,4,5-Trichlorophenoxyace	etic acid					(CAS#	93-76-5
Second Quarter 2012	U	U	U	U	2.5	-		8151A
1,2,4,5-Tetrachlorobenzen	е					(CAS#	95-94-3
Second Quarter 2012	U	U	U	U	5	-		8270D
1,1,1,2-Tetrachloroethane		I .				(CAS#	630-20-6
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
1,1,2,2-Tetrachloroethane		I .				(CAS#	79-34-5
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
Tetrachloroethene		I .				(CAS#	127-18-4
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
Tetrahydrofuran						(CAS#	109-99-9
Second Quarter 2012	U J	U J	U J	U J	25	-		8260B
2,3,4,6-Tetrachlorophenol						(CAS#	58-90-2
Second Quarter 2012	U	U	U	U	10	-		8270D
Toluene	II.	1	II.	1	1	•	CAS#	108-88-3
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
o-Toluidine		I .				(CAS#	95-53-4
Second Quarter 2012	U	U	U	U	5	-		8270D
Toxaphene						(CAS#	8001-35-2
Second Quarter 2012	U	U	U	U	2.5	-		8081B
1,2,3-Trichlorobenzene						(CAS#	87-61-6
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
1,2,4-Trichlorobenzene						(CAS#	120-82-1
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
1,1,1-Trichloroethane						(CAS#	71-55-6
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
1,1,2-Trichloroethane		I .				(CAS#	79-00-5
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Trichloroethene						(CAS#	79-01-6
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
Trichlorofluoromethane		I .				(CAS#	75-69-4
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
2,4,5-Trichlorophenol		I .				(CAS#	95-95-4
Second Quarter 2012	U	U	U	U	10	-		8270D
2,4,6-Trichlorophenol						(CAS#	88-06-2
Second Quarter 2012	U	U	U	U	10	-		8270D
1,2,3-Trichloropropane						(CAS#	96-18-4
Second Quarter 2012	U J	U J	U J	U J	1	-		8260B
1,1,2-Trichloro-1,2,2-Triflu	oroethane	9				(CAS#	76-13-1
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
O,O,O-Triethyl phosphoro	thioate	l .	1	l .		(CAS#	126-68-1
Second Quarter 2012	U	U	U	U	5	-		8270D
1,2,4-Trimethylbenzene	I .	<u>I</u>	<u> </u>	<u>I</u>		•	CAS#	95-63-6
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
		1	l	1		1	1	1
1,3,5-Trimethylbenzene						(CAS#	108-67-8

Analtye/Quarter	7W12B Q	7MW6 Q	7WCA Q	7W11B Q	QL	GPS	Background	Method
sym-Trinitrobenzene						C	'AS#	99-35-4
Second Quarter 2012	U	U	U	U	5	-		8270D
Vinyl acetate		1				C	'AS#	108-05-4
Second Quarter 2012	UJ	U J	UJ	U J	10	-		8260B
Vinyl chloride		1				C	AS#	75-01-4
Second Quarter 2012	UJ	U J	U J	U J	1	-		8260B
Xylenes (Total)						C	AS#	1330-20-7
Second Quarter 2012	UJ	U J	U J	U J	3	-		8260B

 $Upgradient \ well = 7W12B$

All Results in ug/L.

Analtye/Quarter 7W12B Q 7MW6 Q 7WCA Q 7W11B Q QL GPS Background Method

Definitions:

The following definitions apply to results reported for Appendix IX monitoring events.

All Appendix IX monitoring results for compliance wells are reported to the detection limit.

QL Denotes permit required quantitation limit.

U denotes not detected at or above the detection limit.

UA denotes not detected at or above the adjusted detection limit.

J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above the detection limit and detection limit and QL are estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted detection limit and adjusted detection limit and QL are estimated.

UN Denotes analyte concentration is less than the quantitation limit and/or five times the blank concentration. Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when compliance well results are reported to at or above the project detection limit.

R Denotes result rejected.

Q Denotes data validation qualifier.

Background Denotes background concentrations listed in the VDEQ-approved Class 3 Permit Modification for the Post-Closure Care Permit for HWMUs 5, 7, 10 and 16; dated September 27, 2011.

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes groundwater protection standard.

The following definitions apply to results reported for non-Appendix IX monitoring events. All non-Appendix IX monitoring results for compliance wells are reported to at or above the quantitation limit.

QL Denotes permit required quantitation limit.

U Denotes analyte not detected at or above QL.

UA Denotes analyte not detected at or above adjusted sample QL.

J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted OL and adjusted OL is estimated.

R Denotes result rejected.

Q Denotes data validation qualifier.

Background Denotes background concentrations listed in the VDEQ-approved Class 3 Permit Modification for the Post-Closure Care Permit for HWMUs 5, 7, 10 and 16; dated September 27, 2011

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes groundwater protection standard.

Notes

-Appendix IX Groundwater Monitoring Events:

Third Quarter 2003, Second Quarter 2004, Second Quarter 2005, Third Quarter 2006, Second Quarter 2007, Second Quarter 2008, Second Quarter 2009, Second Quarter 2010, Second Quarter 2011, Second Quarter 2012

All Appendix IX results evaluated and reported to detection limit.

-9/29/2003: Verification sampling event for 7MW6, 7W11B, 7W12B, 7WCA (copper and zinc).

Verification results reported in this table for copper and zinc.

-6/21-22/2004: Verification sampling event for 7MW6, 7W11B, 7W12B, 7WCA.

Verification results reported in this table for chloroform (7W12B).

-3/23/2005: Verification sampling event for 7MW6. Verification results reported in this table for bis(2-ethylhexyl)phthalate).

-7/26/2005: Verification sampling event for 7MW6, 7W11B, 7W12B, 7WCA (ethyl acetate), 7W11B (beta-BHC), and 7MW6 (alpha-BHC). All verification results reported as not detected. Verification results reported.

-Sept 2006: Verification sampling event for 7W12B & 7W11B for chloroform; initial results reported in table for chloroform (7W11B, 7W12B).

-July 17, 2008: Verification sampling event for 7W13 arsenic and cobalt. 7W9C cobalt

-June 11, 2009, Verification sampling event for 7MW6 Diethyl ether. Analyte not detected. Verification results reported.

-June 2012 – Verification event for 7MW6 diethyl ether and 7W11B delta-BHC and beta-BHC - Verification results reported.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-7 Monitoring Event: Second Quarter 2012

	L	aboratory Result	Validated Result	QL	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A					
Laboratory: CompuChe	m, a Division of	Liberty Anal	ytical, Cary, NC		
Barium	7WCA	27	27	10	No action taken. Field duplicate RPD <10.
	7WDUP	27	27	10	No action taken. Field duplicate of 7WCA. RPD <10.
Definitions: QL Denotes	s permit quantitatio	on limit. Q De	notes data qualifier	. J Denotes ar	nalyte reported at or above QL limit and associated result is estimated.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-7 Monitoring Event: Fourth Quarter 2012

	l.	aboratory Result	Validated Result	QL	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A					
Laboratory: CompuChe	em, a Division o	f Liberty Ana	lytical, Cary, NC	elementario esta en elementario esta el el fulla franci	
Barium	7WCA	21.9	21.9	10	No action taken. Field duplicate result was 21.9 ug/l. RPD <10.
	7WDUP	21.9	21.9	10	No action taken. Field duplicate of 7WCA.
Nickel	7WCA	11.8	11.8	10	No action taken. Field duplicate result was 11.8 ug/l. RPD <10.
	7WDUP	11.8	11.8	10	No action taken. Field duplicate of 7WCA.

Definitions: QL Denotes permit quantitation limit. Q Denotes data qualifier. J Denotes analyte reported at or above QL limit and associated result is estimated.

APPENDIX B-3

HWMU-7 2012 LABORATORY ANALYTICAL RESULTS PLUME MONITORING WELLS

Target Analyte Monitoring Results At or Above Permit Quantitation Limit HWMU 7 Plume Monitoring Wells

Radford Army Ammunition Plant, Radford, Virginia

All Results in ug/L.

 $Upgradient \ well = 7W12B$

Analyte/Quarter	7W12B Q	7W9C Q	7W10B Q	7W10C Q	7W13 Q	QL	Background	GPS	Method	CAS#
Arsenic						•	,		•	
Second Quarter 2012	U	U	U	U	U	10	10	10	6020A	7440-38-
Fourth Quarter 2012	U	U	U	U	U	10	10	10	6020A	7440-38-
Barium										
Second Quarter 2012	36.8	23.7	64	59.4	17.3	10	41	2000	6020A	7440-39
Fourth Quarter 2012	31.6	23.6	61.8	46.6	14.3	10	41	2000	6020A	7440-39
	31.0	20.0	01.0	40.0	14.0	10	71	2000	00207	7440-03
Cadmium			1 1				1 4 1		00004	7440.40
Second Quarter 2012	U	U	U	U	U	1	1	5	6020A	7440-43
Fourth Quarter 2012	U	U	U	U	U	1	1	5	6020A	7440-43
Chromium						I			1	1
Second Quarter 2012	5.3	U	U	U	U	5	9.9	100	6020A	7440-47
Fourth Quarter 2012	5.55	U	U	U	U	5	9.9	100	6020A	7440-47
Cobalt										
Second Quarter 2012	U	U	U	U	13.5	5	5	5	6020A	7440-48
Fourth Quarter 2012	U	U	U	U	13.3	5	5	5	6020A	7440-48
Copper										
Second Quarter 2012	3.06 J	U	U	U	U	5	5	1300	6020A	7440-50
Fourth Quarter 2012	U	U	U	U	U	5	5	1300	6020A	7440-50
Lead										
Second Quarter 2012	U	U	U	U	U	1	1	15	6020A	7439-92
Fourth Quarter 2012	U	U	U	U	U	1	1	15	6020A	7439-92
	J		J		Ü	'	·		002071	7400 02
Nickel	U	U	U	U	U	10	10	212	60204	7440-02
Second Quarter 2012						10	10	313	6020A	
Fourth Quarter 2012	U	U	U	U	U	10	10	313	6020A	7440-02
Selenium							1		T	I
Second Quarter 2012	U	U	U	U	U	10	10	50	6020A	7782-49
Fourth Quarter 2012	U	U	U	U	U	10	10	50	6020A	7782-49
Silver										
Second Quarter 2012	U	U	U	U	U	2	2	78.25	6020A	7440-22
Fourth Quarter 2012	U	U	U	U	U	2	2	78.25	6020A	7440-22
Thallium										
Second Quarter 2012	U	U	U	U	U	1	1	2	6020A	7440-28
Fourth Quarter 2012	U	U	U	U	U	1	1	2	6020A	7440-28
Zinc										
Second Quarter 2012	6.14 J	U	U	U	U	10	10.9	4695	6020A	7440-66
Fourth Quarter 2012	U	U	U	U	U	10	10.9	4695	6020A	7440-66
Cyanide										
Second Quarter 2012	U	U	U	U	U	20	20	200	9012B	57-12-5
Fourth Quarter 2012	U	U	U	U	U	20	20	200	9012B	57-12-5
			O	-	0	20	20	200	30120	37-12-0
bis(2-Ethylhexyl)pht									0070D	447.04
Second Quarter 2012	U	U	U	U	U	6	6	6	8270D	117-81-
Fourth Quarter 2012	U	U	U	U	U	6	6	6	8270D	117-81-
Diethyl ether	I I		1 1			I.	1		1	
Second Quarter 2012	U J	-	-	-	-	13	13	3100	8260B	60-29-
Fourth Quarter 2012	U	U	U	U	U	13	13	3100	8260B	60-29-
2,4-Dinitrotoluene										
Second Quarter 2012	U	U	U	U	U	10	10	31.3	8270D	121-14-
Fourth Quarter 2012	U	U	U	U	U	10	10	31.3	8270D	121-14-
2,6-Dinitrotoluene									1	
Second Quarter 2012	U	U	U	U	U	10	10	15.65	8270D	606-20-
	U	U	U			I .	1		1	1

Target Analyte Monitoring Results At or Above Permit Quantitation Limit HWMU 7 Plume Monitoring Wells

Radford Army Ammunition Plant, Radford, Virginia

All Results in ug/L. Upgradient well = 7W12B

Analyte/Quarter 7W12B Q 7W9C Q 7W10B Q 7W10C Q 7W13 Q QL Background GPS Method	CAS#
--	------

Definitions:

All plume monitoring well results reported to at or above the permit quantitation limit except for the upgradient well during the Appendix IX monitoring Event. During the Appendix IX monitoring event, results for the upgradient well are reported to the detection limit.

- Q Denotes data validation qualifier.
- QL Denotes permit required quantitation limit.
- U Denotes analyte not detected at or above QL.
- UA Denotes analyte not detected at or above adjusted sample QL.
- J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated.
- UN Denotes analyte concentration is less than the quantiation limit and five times the blank concentration.
 Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when compliance well results are reported to at or above the project detection limit.
- R Denotes result rejected.
- **Background** Denotes background concentrations listed in the VDEQ-approved Class 3 Permit Modification for the Post-Closure Care Permit for HWMUs 5, 7, 10 and 16, dated September 27, 2011.
- CAS# Denotes Chemical Abstract Services registration number. GPS Denotes groundwater protection standard.
- -January 2005: Verification sampling event for 7MW13 4Q2004 arsenic. Verification results reported in this table for arsenic (7W13).
- -March 2006: Verification sampling event for 7MW13 1Q2006 arsenic. Verification results reported in this table for arsenic (7W13).
- -July 2006: Verification sampling event for 7MW13 2Q2006 arsenic. Verification results reported in this table for arsenic (7W13).
- -Sept 2006: Verification sampling event for 7W12B 3Q2006 chloroform. Initial results reported in this table for chloroform (7W12B).
- July 17, 2007: Verification sampling event for 7W13 arsenic-verification event result reported, highest of four quadruplicate results, 7W13 cobalt-original result reported.. 7W9C cobalt- Verification result reported.
- -Dec 17, 2008: Verification sampling event for 7W13-. cobalt- Original result reported.
- -June 28, 2010 Verification sampling event for 7W13 cobalt- Original result reported.
- Also, verification sampling event for 7W13 cobalt- verification result reported.
- -Dec 16, 2010 Verification sampling event for 7W13 . arsenic- Verification result reported.
- June 27, 2011 Verification sampling event for 7MW6 benzene and diethyl ether and 7W11B Benzene Verification result reported.
- June 2012 Verification event for 7MW6 diethyl ether and 7W11B delta-BHC and beta-BHC Verification results reported.

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

Douglas W. Domenech Secretary of Natural Resources Street address: 629 East Main Street, Richmond, Virginia 23219

Mailing address: P.O. Box 1105, Richmond, Virginia 23218

TDD (804) 698-4021

www.deq.virginia.gov

David K. Paylor Director

(804) 698-4000 1-800-592-5482

November 15, 2012

Mr. Jay Stewart BAE Systems Ordnance Systems Inc. 6580 Valley Center Drive, Suite 333 Radford, VA 24141 VIA ELECTRONIC MAIL

RE: Request to Establish Background and Groundwater Protection Standard for Diethyl Ether Post Closure Care Permit HWMU 5, 7, 10 & 16
Radford Army Ammunition Plant, Radford, VA
EPA ID# VA1210020730

Dear Mr. Stewart:

The Department of Environmental Quality (Department) has received your request, dated October 22, 2012, to establish the background value and Groundwater Protection Standard (GPS) for diethyl ether in groundwater. This document was submitted on behalf of Radford Army Ammunition Plant, by BAE Systems, Ordinance Systems Inc. The Department has reviewed this request and concurs as follows:

- The facility detected diethyl ether in HWMU-7 at point of compliance well 7MW6 at an estimated concentration of 1.2µg/l during the 2nd quarter of 2012. The post closure care permit requires the facility to conduct four quarters of monitoring and establish background for the detected constituent. However, the facility previously has collected ten independent samples from the upgradient well at HWMU-7 and none of these samples have detected diethyl ether. The Department concurs with the facility's recommendation for forgo additional quarterly sampling and establish the background value for diethyl ether at the quanitation limit (QL) of 13µg/l.
- The facility recommends that the GPS for diethyl ether be established at the April 2012 EPA Mid-Atlantic Risk Assessment Regional Screening Level (RSL) for

Request to Establish Background and Groundwater Protection Standard for Diethyl Ether Radford Army Ammunition Plant, Radford, VA November 15, 2012 Page 2 or 2

tap water of $3,100\mu g/l$. This recommendation is based on the absence a USEPA maximum contaminant level (MCL) and VDEQ alternate concentration limit (ACL) for diethyl ether. The Department concurs with this recommendation.

• The Department agrees with the facility's plan to add diethyl ether to the Groundwater Monitoring Constituent List for HWMU-7 beginning with the Fourth Quarter 2012 semi-annual monitoring event and to evaluate this constituent of concern further in the forthcoming Closure Report Addendum for HWMU-7.

If you have any questions or concerns, you may contact me at 276-676-4867 or by email at Vincent.Maiden@deq.virginia.gov.

Sincerely,

Vincent A. Maiden

Office of Remediation Programs

cc: Jutta Schneider, Russ McAvoy, File – DEQ CO Aziz Farahmand, DEQ-BRRO Andrea Barbieri, EPA Region II (3LC50) Jim McKenna, US Army Bob Winstead, Matt Alberts - BAE

CONSTITUENT BACKGROUND VALUES FOR THE COMPLIANCE GROUNDWATER MONITORING PROGRAM

HWMU-7 RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

Prepared for:

Alliant Techsystems Inc.
Radford Army Ammunition Plant
Route 114
Radford, Virginia 24141-0100

Prepared by:

Draper Aden Associates 2206 South Main Street Blacksburg, Virginia 24060 (540) 552-0444

February 2008 DAA Job No. B03204-122

DRAPER ADEN ASSOCIATES (DAA) PREPARED THIS DOCUMENT (WHICH MAY INCLUDE DRAWINGS, SPECIFICATIONS, REPORTS, STUDIES AND ATTACHMENTS) IN ACCORDANCE WITH THE AGREEMENT BETWEEN DAA AND ALLIANT TECHSYSTEMS INC.

THE STANDARD OF CARE FOR ALL PROFESSIONAL ENGINEERING, ENVIRONMENTAL AND SURVEYING AND RELATED SERVICES PERFORMED OR FURNISHED BY DAA UNDER THIS AGREEMENT ARE THE CARE AND SKILL ORDINARILY USED BY MEMBERS OF THESE PROFESSIONS PRACTICING UNDER SIMILAR CIRCUMSTANCES AT THE SAME TIME AND IN THE SAME LOCALITY. DAA MAKES NO WARRANTIES, EXPRESS OR IMPLIED, UNDER THIS AGREEMENT IN CONNECTION WITH DAA'S SERVICES.

CONCLUSIONS PRESENTED ARE BASED UPON A REVIEW OF AVAILABLE INFORMATION, THE RESULTS OF OUR FIELD STUDIES, AND/OR PROFESSIONAL JUDGMENT. TO THE BEST OF OUR KNOWLEDGE, INFORMATION PROVIDED BY OTHERS IS TRUE AND ACCURATE, UNLESS OTHERWISE NOTED.

DAA'S LIABILITY, HEREUNDER, SHALL BE LIMITED TO AMOUNTS DUE DAA FOR SERVICES ACTUALLY RENDERED, OR REIMBURSABLE EXPENSES ACTUALLY INCURRED.

ANY REUSE OR MODIFICATION OF ANY OF THE AFOREMENTIONED DOCUMENTS (WHETHER HARD COPIES OR ELECTRONIC TRANSMITTALS) PREPARED BY DAA WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY DAA WILL BE AT THE SOLE RISK OF THE INDIVIDUAL OR ENTITY UTILIZING SAID DOCUMENTS AND SUCH USE IS WITHOUT THE AUTHORIZATION OF DAA. DAA SHALL HAVE NO LEGAL LIABILITY RESULTING FROM ANY AND ALL CLAIMS, DAMAGES, LOSSES, AND EXPENSES, INCLUDING ATTORNEY'S FEES ARISING OUT OF THE UNAUTHORIZED REUSE OR MODIFICATION OF THESE DOCUMENTS. CLIENT SHALL INDEMNIFY DAA FROM ANY CLAIMS ARISING OUT OF UNAUTHORIZED USE OR MODIFICATION OF THE DOCUMENTS WHETHER HARD COPY OR ELECTRONIC.

CONCLUSIONS PRESENTED BY DAA DO NOT REFLECT VARIATIONS IN SUBSURFACE GROUNDWATER QUALITY THAT MIGHT EXIST BETWEEN OR BEYOND SAMPLING POINTS OR BETWEEN SPECIFIC SAMPLE COLLECTIONS EVENTS. DAA SHALL INCUR NO LIABILITY RESULTING FROM INFORMATION SUPPLIED BY OTHERS.

RADFORD ARMY AMMUNITION PLANT – HWMU-7 CALCULATION OF CONSTITUENT BACKGROUND VALUES

Draper Aden Associates recalculated background values for the plume monitoring well constituents of the groundwater monitoring program for Hazardous Waste Management Unit No. 7 (HWMU-7) located at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. Background values were calculated for all plume monitoring well constituents.

The background values for HWMU-7 plume monitoring well constituents were calculated using the analytical data for upgradient well 7W12B using data from Second Quarter 2003 through Second Quarter 2007 (available most recent data with one exception-cyanide includes 4th Quarter 2007 data). Inter-well upper prediction limits (UPL) were calculated on the background data for the target parameters in accordance with the facility permit and VHWMR (40 CFR 264.97(h)). Where applicable, the background value calculations were based on site-wide 95% confidence, 95% coverage upper prediction intervals. The calculated background values for all target constituents are listed on **Table 1**.

Background Data and Background Value Calculations

The constituents listed below were 100% non-detected (<LOQ) in the background well. The background values for these constituents were established as equal to their quantitation limits (QL).

Backgi	ound Value =	Quantitation Lin	nit (QL)	
Constituent	Sample Size	% Non-Detects	QL (µg/l)	Background Value (µg/l)
Antimony	17	100	1	1
Arsenic	17	100	10	10
Cadmium	17	100	1	1
Cobalt	17	100	5	5
Copper	16	100	5	5
Lead	17	100	1	1
Mercury	17	100	2	2
Nickel	17	100	10	10
Selenium	17	100	10	10
Silver	17	100	2	2
Thallium	17	100	1	1
Cyanide	18	100	20	20
Bis(2-ethylhexyl)phthalate	17	100	6	6
Butyl benzyl phthalate	17	100	10	10
2,4-Dinitrophenol	17	100	10	10
2,4-Dinitrotoluene	17	100	10	10
2,6-Dinitrotoluene	17	100	10	10
p-Nitrophenol	17	100	10	10

Non-parametric prediction intervals were computed for the constituents for which the data from upgradient well 7W-12B satisfied one of the following two criteria, per VDEQ regulations and guidance as well as USEPA guidance:

- Percentage of non-detects was greater than or equal to 50 and less than 100; or
- Percentage of non-detects was less than 50, but data was not normally distributed in original or log-transformed mode.

Only one result for zinc was reported above its LOQ. The reported result (10.9 μ g/l) is the NUPL for zinc. The non-parametric prediction limit computation for chromium is presented in **Appendix A**.

Ba	Background Value = UPL of Non-parametric Prediction Interval (NUPL)											
			QL	NUPL	Background Value							
Parameter	Sample Size	% Non-Detects	(µg/l)	(µg/l)	(μg/l)							
Chromium	17	12	5	9.9	9.9							
Zinc	14	93	10	10.9	10.9							

The following constituent (barium) exhibited normally distributed background data with less than 0% non-detects. One sided parametric prediction interval was computed on the background data for barium. The background value for barium was set as equal to its UPL. The background concentration calculations were based on a site wide 95% confidence, 95% coverage upper prediction intervals. The background and relevant statistical data for barium is summarized below. The prediction interval computation is presented in **Appendix A**.

	Background Value = UPL of one-sided Prediction Interval											
QL UPL Background Value												
Parameter	Parameter Sample Size % Non-Detects (μg/l) (μg/l) (μg/l)											
Barium	17	0	10	41.0	41.0							

TABLE 1

HWMU-7 CALCULATED BACKGROUND VALUES

Constituent	Background Value (µg/l unless otherwise noted)
Antimony	1
Arsenic	10
Barium	41.0
Cadmium	1
Chromium	9.9
Cobalt	5
Copper	5
Lead	1
Mercury	2
Nickel	10
Selenium	10
Silver	2
Thallium	1
Zinc	10.9
Cyanide	20
Bis(2-ethylhexyl)phthalate	6
Butyl benzyl phthalate	10
2,4-Dinitrophenol	10
2,4-Dinitrotoluene	10
2,6-Dinitrotoluene	10
p-Nitrophenol	10

APPENDIX A

HWMU-7
BACKGROUND VALUE CALCULATIONS
STATISTICAL COMPUTATIONS FOR BARIUM AND CHROMIUM

RAAP-HWMU-7 - Background Calculation - December 2007

17-Dec-07

Y2K Correction dates are as shown in table below.

Actual Event	Date Used in Stat Software
2003-Qtr2	8/1/1999
2003-Qtr3	8/2/1999
2003-Qtr4	8/3/1999
2004-Qtr1	8/4/1999
2004-Qtr2	8/5/1999
2004-Qtr3	8/6/1999
2004-Qtr4	8/7/1999
2005-Qtr1	8/8/1999
2005-Qtr2	8/9/1999
2005-Qtr3	8/10/1999
2005-Qtr4	8/11/1999
2006-Qtr1	8/12/1999
2006-Qtr2	8/13/1999
2006-Qtr3	8/14/1999
2006-Qtr4	8/15/1999
2007-Qtr1	8/16/1999
2007-Qtr2	8/17/1999

Notes:

1) Background data was computed for all target constituents using the 2Q 2003 - 2Q 2007 data for background well 7W12B. Background data was 100% <LOQ for all target parameters except barium, chromium and zinc. Zinc had only one reported result > LOQ.

Statistical computations using GRITS/STAT V5.0 performed only for barium and chromium, as applicable.

P:\B03\200\B03204\B03204\B03204-122\WORK\HWMU-7 Closure Rpt - Recalculation of Background(HWMU 7 StatiDate correction December 2007 background recalc.xls)Sheet1

Normality Tests

Report Printed: 12-17-2007 16:02

Facility: RAAPHWMU7 Haz. Waste Unit 7 - RAAP

Address:

City:Radford ST:VA Zip:24141

County: MONTGOMERY

Contact:

Phone: () -

Permit Type:Detection

Constituent:Ba Barium, total

CAS Number: 7440-39-3

MCL: 0.000 ppb

ACL: 0.000 ppb

Detect Limit: 2.000 ppb

Start Date:Aug 01 1999 End Date:Aug 17 1999

Normality Test on Observations for wells listed below:

Well:7W12B Position:Upgradient Observations:17

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 32.800
 39.800
 36.253
 1.875

 Log:
 3.490
 3.684
 3.589
 0.052

Pooled Statistics

Observations: 17

Statistic Original Log Scale Scale 36.253 Mean: 3.589 Std Dev: 1.875 0.052 Skewness: -0.019 -0.150 Kurtosis: -0.236 -0.251 Minimum: 32.800 3.490 Maximum: 39.800 3.684 CV: 0.052 0.014

Shapiro-Wilk Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.9602 0.8920 0.8510

Log: 0.9592

0.8920

0.8510

* Indicates statistically significant evidence of non-normality. $\ensuremath{\mathsf{GRIT}}/\ensuremath{\mathsf{STAT}}$ Version 5.0

Parametric Prediction Interval Report Printed December 17,2007

Page 1

```
Facility: Haz. Waste Unit 7 - RAAP
Parameter: Barium, total (CAS Number: 7440-39-3)
```

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

```
Observations (n): 17 Shapiro-Wilk (W): 0.9602 Critical W, \alpha=0.01: 0.8510 Mean: 36.253 ppb Std Dev: 1.875 ppb DF: 16 Conf. Level (1-\alpha): 0.9500 Future Samples (k): 4 t 1 - \alpha 2.4729 Kappa: 2.5446 UL: 41.024 ppb LL: -\infty
```

Normality Tests

Report Printed: 12-17-2007 16:05

Facility: RAAPHWMU7 Haz. Waste Unit 7 - RAAP

Address:

City:Radford ST:VA Zip:24141

County: MONTGOMERY

Contact:

Phone:() -

Permit Type:Detection

Constituent:Cr Chromium, total

CAS Number: 7440-47-3

MCL: 0.000 ppb ACL: 0.000 ppb

ACL: 0.000 ppb Detect Limit: 1.000 ppb

Start Date:Aug 01 1999 End Date:Aug 17 1999

Normality Test on Observations for wells listed below:

Well:7W12B Position:Upgradient Observations:17

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 0.500
 9.900
 6.612
 2.648

 Log:
 -0.693
 2.293
 1.672
 0.909

Pooled Statistics

Observations: 17

Statistic Original Log Scale Scale 6.612 Mean: 1.672 Std Dev: 2.648 0.909 Skewness: -1.317* -2.191* Kurtosis: 1.110 3.139 Minimum: 0.500 -0.693 Maximum: 9.900 2.293 CV: 0.401 0.543

Shapiro-Wilk Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.8293* 0.8920 0.8510

Log: 0.5707*

0.8920 0.8510

* Indicates statistically significant evidence of non-normality. $\ensuremath{\mathsf{GRIT}}/\ensuremath{\mathsf{STAT}}$ Version 5.0

Nonparametric Prediction Interval

Report Printed December 17,2007

Facility:Haz. Waste Unit 7 - RAAP

Parameter: Chromium, total (CAS Number: 7440-47-3)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n): 17

Conf. Level $(1-\alpha)$: 94.440% N/A

UL: 9.900 ppb

LL: 0.000

Report Produced by GRITS/STAT 5.01

Page 1

APPENDIX C

HWMU-10

APPENDIX C-1

HWMU-10 POTENTIOMETRIC SURFACE MAPS SECOND QUARTER 2012 FOURTH QUARTER 2012

Charlottesville, VA

Hampton Roads, VA

DATE

07-31-12

Blacksburg, VA 24060

540-552-0444 Fax: 540-552-0291

Hampton Roads, VA

540-552-0444 Fax: 540-552-0291

APPENDIX C-2

HWMU-10 2012 LABORATORY ANALYTICAL RESULTS POINT OF COMPLIANCE WELLS

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Antimony				CAS #	7440-36-0			
Second Quarter 2012	U	U	U	U	U	2	-	6020A
Arsenic				CAS #	7440-38-2			
Second Quarter 2012	U	U	U	U	U	10	10	6020A
Fourth Quarter 2012	U	U	U	U	U	10	10	6020A
Barium			1	CAS #	7440-39-3			
Second Quarter 2012	112	94.5	53.7	50.3	61.9	10	2000	6020A
Fourth Quarter 2012	114	120	56.9	92	81.6	10	2000	6020A
Beryllium				CAS #	7440-41-7			
Second Quarter 2012	U	U	U	U	U	1	-	6020A
Cadmium				CAS #	7440-43-9			
Second Quarter 2012	U	U	U	U	U	1	-	6020A
Chromium				CAS #	7440-47-3			
Second Quarter 2012	2.92 J	1.96 J	1.23 J	1.46 J	2.98 J	5	100	6020A
Fourth Quarter 2012	5.41	U	U	U	U	5	100	6020A
Cobalt	1		1	CAS #	7440-48-4	<u>I</u>		
Second Quarter 2012	U	U	U	U	U	5	5	6020A
Fourth Quarter 2012	U	U	U	U	U	5	5	6020A
Copper				CAS #	7440-50-8			
Second Quarter 2012	1.14 J	U	1.17 J	U	U	5	1300	6020A
Fourth Quarter 2012	U	U	U	U	U	5	1300	6020A
Lead				CAS #	7439-92-1			
Second Quarter 2012	0.526J	U	U	U	U	1	15	6020A
Fourth Quarter 2012	1.11	U	U	U	3.15	1	15	6020A
Mercury				CAS #	7439-97-6		_	
Second Quarter 2012	U	U	U	U	U	2	2	7470A
Fourth Quarter 2012	U	U	U	U	U	2	2	7470A
Nickel				=	7440-02-0	_	_	
Second Quarter 2012	U	U	U	U	U	10	313	6020A
Fourth Quarter 2012	U	U	U	U	U	10	313	6020A
Selenium				=	7782-49-2		0.0	002071
Second Quarter 2012	U	U	U	U	U	10	50	6020A
Fourth Quarter 2012	U	U	U	U	U	10	50	6020A
Silver			, ,		7440-22-4		00	002071
Second Quarter 2012	U	U	U	U	U	2	78.25	6020A
Thallium		Ü			7440-28-0	_	70.20	002071
Second Quarter 2012	U	U	U	U	U	1	_	6020A
	U	U	U	_	7440-31-5	ı ı	_	0020A
Tin Second Quarter 2012	- 11	11	- 11	1	U	FO	_	6010C
	U	U	U	U CAS#	7440-62-2	50	-	60100
Vanadium			1	ı	1	40	100 55	00004
Second Quarter 2012	1.1 J	U	U	U	U	10	109.55	6020A
Fourth Quarter 2012	U	U	U	U	U	10	109.55	6020A
Zinc			1	ı	7440-66-6			
Second Quarter 2012	4.53 J	U	9.82 J	4.31 J	U	10	4695	6020A
Fourth Quarter 2012	16.3	U	U	U	12.9	10	4695	6020A
Sulfide	1		1	II.	18496-25-8	1		
Second Quarter 2012	U	U	U	U	U	3000	-	9034
Cyanide				CAS #	57-12-5			

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Total Recoverable Phen	olics			CAS #	TOTPHEN			
Second Quarter 2012	U	U	U	U	U	40	-	9066
Acenaphthene				CAS #	83-32-9			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Acenaphthylene	-			CAS #	208-96-8		1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Acetone				CAS #	67-64-1			
Second Quarter 2012	U	U	15000	U	U	10	8750.2	8260B
Fourth Quarter 2012	U	U	3300	U	U	10	8750.2	8260B
Acetonitrile				CAS #	75-05-8			
Second Quarter 2012	U	U	U	U	U	100	-	8260B
Acetophenone					98-86-2			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
2-Acetylaminofluorene		- C			53-96-3	- C		02.02
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Acrolein					107-02-8			32,00
Second Quarter 2012	UJ	UJ	U J	U J	UJ	25	_	8260B
Acrylonitrile	0 0	0 0	0 0		107-13-1	25	_	02000
Second Quarter 2012	U	U	U	U U	U	10	_	8260B
	U	U	U		309-00-2	10	-	020UD
Aldrin	1		I	1	1	0.005	1	0004B
Second Quarter 2012	U	U	U	U CAS #	U 107-05-1	0.025	-	8081B
Allyl chloride			I	I	I			
Second Quarter 2012	U	U	U	U	U 92-67-1	10	-	8260B
4-Aminobiphenyl	1	l	1	I	I	<u> </u>	<u> </u>	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Aniline	T	I	1	ı	62-53-3	_		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Anthracene	1	I	1	1	120-12-7	I		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Aramite		1		1	140-57-8	1		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzene				CAS #	71-43-2			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Benzo[a]anthracene				CAS #	56-55-3			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo[b]fluoranthene				CAS #	205-99-2			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo[k]fluoranthene				CAS #	207-08-9			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo[ghi]perylene				CAS #	191-24-2			
Second Quarter 2012	1.1 J	U	U	U	U	5	-	8270D
Benzo(a)pyrene				CAS #	50-32-8			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1,4-Benzenediamine	1	I .	1	CAS #	106-50-3	<u> </u>		
Second Quarter 2012	UJ	U J	UJ	U J	UJ	7.5	-	8270D
Benzyl alcohol					100-51-6			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
	5	5			319-84-6	3		32700
alpha-BHC				CAS#	373 34-0			

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
beta-BHC				CAS #	319-85-7			
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
delta-BHC				CAS #	319-86-8		1	
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
gamma-BHC				CAS #	58-89-9			
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
bis(2-Chloroethoxy)metl	nane			CAS #	111-91-1			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
bis(2-Chloroethyl)ether				CAS #	111-44-4			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
bis(2-Chloro-1-methyletl	nyl)ether			CAS #	108-60-1			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
bis(2-Ethylhexyl)phthala	te			CAS #	117-81-7			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Bromobenzene	1	<u> </u>	1		108-86-1	1		
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Bromochloromethane		<u> </u>		_	74-97-5			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Bromodichloromethane				CAS #	75-27-4			
Second Quarter 2012	U	U	U	U	U	1	80	8260B
Fourth Quarter 2012	U	U	U	U	U	1	80	8260B
Bromoform	_			_	75-25-2	-		
Second Quarter 2012	U	U	U	U	U	1	_	8260B
4-Bromophenyl phenyl e	_			_	101-55-3	-		
Second Quarter 2012	U	U	U	U	U	5		8270D
2-Butanone		Ū			78-93-3			02.02
Second Quarter 2012	U	U	U	U	U	10	2667.6	8260B
Fourth Quarter 2012	U	U	U	U	U	10	2667.6	8260B
n-Butyl alcohol		J			71-36-3		2007.0	02002
Second Quarter 2012	U	U	U	U	U	50		8260B
tert-Butyl alcohol	U	U	U		75-65-0	30		02000
Second Quarter 2012	U	U	U	U	U	200	_	8260B
n-Butylbenzene	U	U	U		104-51-8	200		02000
Second Quarter 2012	U	U	U	U	U	1		8260B
sec-Butylbenzene	U	U	U		135-98-8	'		02000
Second Quarter 2012	U	U	U	U U	U	1	_	8260B
	U	U	U	_	98-06-6	'	_	02000
tert-Butylbenzene Second Quarter 2012	U	U	U	U U	U	1	_	8260B
	U	U	U	_	85-68-7	ı	-	02000
Butyl benzyl phthalate Second Quarter 2012	11	- 11	- 11	ı	1	F		9070D
	U	U	U	U CAS#	75-15-0	5	-	8270D
Carbon disulfide	11	11	- 11	ı	1	10		0000
Second Quarter 2012	U	U	U	U CAS #	U 56-23-5	10	-	8260B
Carbon tetrachloride	1		1	ı	T .			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Chlordane	1 .	I -	T	1	57-74-9	1	1 1	
Second Quarter 2012	U	U	U	U	U	8.0	-	8081B
p-Chloroaniline	T	II.	T	I	106-47-8	1		
Second Quarter 2012	U	U	U	U	U	10	-	8270D

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Chlorobenzene				CAS #	108-90-7			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Chlorobenzilate	1	II.	1	CAS #	510-15-6			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
p-Chloro-m-cresol				CAS #	59-50-7		<u> </u>	
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Chloroethane				CAS #	75-00-3			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Chloroform					67-66-3			
Second Quarter 2012	4.7	4.5	4.2	0.6 J	8.5	1	80	8260B
Fourth Quarter 2012	24	3.7	3.9 J	U	6	1	80	8260B
2-Chloroethyl vinyl ethe		0	0.0		110-75-8	•	00	02002
Second Quarter 2012	UJ	U J	UJ	UJ	UJ	20	-	8260B
2-Chloronaphthalene	0 0	0 0	0 0		91-58-7	20		02000
Second Quarter 2012	U	U	U	U U	U U	5	-	8270D
	J	J	J		95-57-8	3	-	02100
2-Chlorophenol Second Quarter 2012	U	U	U	U U	95-57-6 U	10	-	8270D
		U	U		7005-72-3	10	-	82700
4-Chlorophenyl phenyl	1			1		-		00705
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Chloroprene	1	I	1	1	126-99-8		I I	
Second Quarter 2012	U	U	U	U	U	10	-	8260B
2-Chlorotoluene		I .		I	95-49-8			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
4-Chlorotoluene		1		CAS #	106-43-4			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Chrysene				CAS #	218-01-9			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Cyclohexane				CAS #	110-82-7			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
2,4-Dichlorophenoxyaco	etic acid			CAS #	94-75-7			
Second Quarter 2012	U	U	U	U	U	5	-	8151A
4,4'-DDD				CAS #	72-54-8			
Second Quarter 2012	U	U	U	U	U	0.05	-	8081B
4,4'-DDE				CAS #	72-55-9			
Second Quarter 2012	U	U	U	U	U	0.05	-	8081B
4,4'-DDT		I .	1		50-29-3			
Second Quarter 2012	U	U	U	U	U	0.05	-	8081B
Diallate	-		-	_	2303-16-4			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Dibenz(a,h)anthracene		J	Ū	-	53-70-3			32,00
Second Quarter 2012	0.74 J	U	U	U	U	5	_	8270D
	0.740	U	J	_	132-64-9	5	-	02100
Dibenzofuran	U	U	U	U U	U	5	_	00700
Second Quarter 2012	_	U	U		124-48-1	υ	-	8270D
Dibromochloromethane	1	I	1	1			<u> </u>	
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,2-Dibromo-3-chloropr	'	1	1	1	96-12-8		<u> </u>	
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,2-Dibromoethane				CAS#	106-93-4			

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Di-n-butyl phthalate				CAS #	84-74-2			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1,2-Dichlorobenzene				CAS #	95-50-1			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,3-Dichlorobenzene				CAS #	541-73-1			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,4-Dichlorobenzene	-			CAS #	106-46-7			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
3,3'-Dichlorobenzidine				CAS #	91-94-1			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
trans-1,4-Dichloro-2-but	ene			CAS #	110-57-6			
Second Quarter 2012	U	U	U	U	U	10	_	8260B
Dichlorodifluoromethan		_			75-71-8			
Second Quarter 2012	U	U	U	U	U	1	_	8260B
1,1-Dichloroethane					75-34-3			
Second Quarter 2012	U	U	U	U	U	1		8260B
1,2-Dichloroethane					107-06-2			
Second Quarter 2012	U	U	U	U	U	1		8260B
1,1-Dichloroethene		Ū			75-35-4	•		02002
Second Quarter 2012	U	U	U	U	U	1		8260B
trans-1,2-Dichloroethen		J	J		156-60-5	•		02002
Second Quarter 2012	U	U	U	U	U	1	_	8260B
2,4-Dichlorophenol	J	U	U	_	120-83-2	'		02001
Second Quarter 2012	U	U	U	U	U	10	_	8270D
2,6-Dichlorophenol	U	U	U	_	87-65-0	10	_	02700
Second Quarter 2012	U	U	U	U	U	10	_	8270D
1,2-Dichloropropane		U	U		78-87-5	10		02700
Second Quarter 2012	U	U	U	U	U	1	_	8260B
	U	U	U		142-28-9	'	_	02000
1,3-Dichloropropane Second Quarter 2012	U	U	U	U	U	1	_	8260B
	U	U	U	_	594-20-7	!	-	0200B
2,2-Dichloropropane Second Quarter 2012	U	U	U	U U	U	1	-	8260B
	U	U	U		563-58-6	'	_	02000
1,1-Dichloropropene Second Quarter 2012	U	U	U	U U	U	1	_	8260B
		U	U		10061-01-5	1	-	0200B
cis-1,3-Dichloropropene Second Quarter 2012	U	U	U	U U	U	1	_	8260B
		U	U	_	10061-02-6	1	-	0200B
trans-1,3-Dichloroprope Second Quarter 2012	U	U	U	U U	U	4	_	0000B
	U	U	U	_	60-57-1	1	-	8260B
Dieldrin				1	U	0.05	1 1	0001D
Second Quarter 2012	U	U	U	U CAS #	60-29-7	0.05	-	8081B
Diethyl ether	T		11	ı	1	40		COCOD
Second Quarter 2012	U	U	U	U CAS #	U 94.66.2	13	-	8260B
Diethyl phthalate	1			1	84-66-2		<u> </u>	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
O,O-Diethyl O-2-pyrazin	1	I	T	Ti di	297-97-2		<u> </u>	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Dimethoate	1	II	T	ı	60-51-5			
Second Quarter 2012	U	U	U	U	U	5	-	8270D

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Dimethyl ether				CAS #	115-10-6			
Second Quarter 2012	U	U	U	U	U	13	-	8260B
p-(Dimethylamino)azob	enzene			CAS #	60-11-7			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
7,12-Dimethylbenz[a]an	thracene			CAS #	57-97-6		1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
3,3'-Dimethylbenzidine				CAS #	119-93-7			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
a,a-Dimethylphenethyla	mine			CAS #	122-09-8			
Second Quarter 2012	U J	U J	U J	UJ	UJ	15	-	8270D
2,4-Dimethylphenol				CAS #	105-67-9			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Dimethyl phthalate				CAS #	131-11-3		1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
m-Dinitrobenzene				CAS #	99-65-0		1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
4,6-Dinitro-o-cresol		1	1		534-52-1	<u> </u>		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
2,4-Dinitrophenol				CAS #	51-28-5			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
2,4-Dinitrotoluene				CAS #	121-14-2			
Second Quarter 2012	U	U	U	U	U	5	31.3	8270D
Fourth Quarter 2012	U	U	U	U	U	5	31.3	8270D
2,6-Dinitrotoluene				CAS #	606-20-2			
Second Quarter 2012	U	U	U	U	U	5	15.65	8270D
Fourth Quarter 2012	U	U	U	U	U	5	15.65	8270D
Dinoseb				CAS #	88-85-7			
Second Quarter 2012	UJ	UJ	UJ	UJ	UJ	2.5	-	8151A
Di-n-octyl phthalate				CAS #	117-84-0			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1,4-Dioxane			_	_	123-91-1	-		
Second Quarter 2012	U	U	U	U	U	200	-	8260B
Diphenylamine				_	122-39-4			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Disulfoton					298-04-4	- C		02.02
Second Quarter 2012	U	U	U	U	U	5		8270D
Endosulfan I					959-98-8	Ŭ		02702
Second Quarter 2012	U	U	U	U	U	0.025	_	8081B
Endosulfan II			- C		33213-65-9	0.020		00015
Second Quarter 2012	U	U	U	U	U	0.05	_	8081B
Endosulfan sulfate	U	U	U		1031-07-8	0.00	-	00010
Second Quarter 2012	U	U	U	U	U	0.05	-	8081B
	U	J	U	_	72-20-8	0.00	-	00010
Endrin Second Quarter 2012	1.1	11	11	U U	1	0.05		9001D
Second Quarter 2012	U	U	U	_	U 141-78-6	0.05	-	8081B
Ethyl acetate	11	10	11	T		10		00000
Second Quarter 2012 Endrin aldehyde	U	U	U	U CAS#	7421-93-4	10	-	8260B
-narin sidenyde				CAS#	1421-93-4			

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Ethanol				CAS #	64-17-5			
Second Quarter 2012	U	U	U	U	U	250	-	8260B
Ethylbenzene		"	1	CAS #	100-41-4			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Ethyl methacrylate				CAS #	97-63-2			
Second Quarter 2012	U	U	U	U	U	10	-	8260B
Ethyl methanesulfonate				CAS #	62-50-0			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Ethylene oxide				CAS #	75-21-8			
Second Quarter 2012	UJ	U J	U J	UJ	U J	100	-	8260B
Famphur				CAS #	52-85-7			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Fluoranthene	1			CAS #	206-44-0			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Fluorene	1	1	1	CAS #	86-73-7	I	1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Heptachlor	1	1	1	CAS #	76-44-8	<u> </u>		
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
Heptachlor epoxide	1	1	1	CAS #	1024-57-3	<u> </u>		
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
Hexachlorobenzene				CAS #	118-74-1			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Hexachlorobutadiene				CAS #	87-68-3			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Hexachlorocyclopentadi	ene			CAS #	77-47-4			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Hexachloroethane				CAS #	67-72-1			
Second Quarter 2012	U	U	U	U	U	10	-	8260B
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Hexachlorophene				CAS #	70-30-4			
Second Quarter 2012	UJ	U J	U J	U J	U J	100	-	8270D
Hexachloropropene				CAS #	1888-71-7			
Second Quarter 2012	UJ	UJ	U J	UJ	U J	5	-	8270D
2-Hexanone				CAS #	591-78-6			
Second Quarter 2012	U	U	U	U	U	10	-	8260B
Indeno[1,2,3-cd]pyrene					193-39-5			
Second Quarter 2012	0.79 J	U	U	U	U	5	-	8270D
Isobutyl alcohol	1		-		78-83-1	-		
Second Quarter 2012	U	U	U	U	U	200	-	8260B
Isodrin			_	_	465-73-6			
Second Quarter 2012	U	U	U	U	U	5	_	8270D
Isophorone				_	78-59-1			32,00
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Isopropylbenzene					98-82-8			32700
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Isopropylether			J		108-20-3	'	-	02000
Second Quarter 2012	U	U	U	U U	U	10	-	8260B
	U		U		99-87-6	10	-	02000
4-Isopropyltoluene				CAS#	JJ-07-0			

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Isosafrole				CAS #	120-58-1			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Kepone		I.		CAS #	143-50-0			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Methacrylonitrile				CAS #	126-98-7			
Second Quarter 2012	U	U	U	U	U	100	-	8260B
Methapyrilene	1			CAS #	91-80-5		1	
Second Quarter 2012	UJ	U J	U J	U J	UJ	5	-	8270D
Methoxychlor				CAS #	72-43-5		1	
Second Quarter 2012	U	U	U	U	U	0.25	-	8081B
Bromomethane				CAS #	74-83-9			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Chloromethane				CAS #	74-87-3			
Second Quarter 2012	U	U	U	U	U	1	- 1	8260B
3-Methylcholanthrene	_	_			56-49-5			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
lodomethane					74-88-4	-		
Second Quarter 2012	U	U	U	U	U	10	_	8260B
Methyl methacrylate	<u> </u>		<u> </u>		80-62-6			02000
Second Quarter 2012	U	U	U	U	U	10		8260B
Methyl methane sulfona	_	U	U	_	66-27-3	10	_	02000
Second Quarter 2012	U	U	U	U	U	5	_	8270D
	U	U	U	-	91-57-6	3	-	02700
2-Methylnaphthalene Second Quarter 2012	U	U	U	U	U	5	_	8270D
Methyl parathion	U	U	U	_	298-00-0	J	-	02/00
Second Quarter 2012		U		C/IS #	1	5		8270D
Second Quarter 2012	U	-	U	- U	U	5	-	8270D
	U	-	U	=	108-10-1	J		02700
4-Methyl-2-pentanone	11		U	I	1	10		0000
Second Quarter 2012	U	U	U	U CAS #	95-48-7	10	-	8260B
2-Methylphenol	11			1	1	10	1	0070D
Second Quarter 2012	U	U	U	U	U 106-44-5	10	-	8270D
3 & 4-Methylphenol	1			1	1	40		00700
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Methyl tert-butyl ether	1	1	1	1	1634-04-4			
Second Quarter 2012	U	U	U	U	U 74.05.0	10	-	8260B
Dibromomethane	1	1	1	1	74-95-3		1	
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Methylene chloride	T.	1		ı	75-09-2			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Naphthalene	1	1	1	ı	91-20-3		1 '	
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,4-Naphthoquinone	1	1		1	130-15-4			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1-Naphthylamine				CAS #	134-32-7			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
2-Naphthylamine				CAS #	91-59-8			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
o-Nitroaniline				CAS #	88-74-4		-	
Second Quarter 2012	U	U	U	U	U	10	-	8270D

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
m-Nitroaniline				CAS #	99-09-2			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
p-Nitroaniline				CAS #	100-01-6			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Nitrobenzene				CAS #	98-95-3			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
o-Nitrophenol				CAS #	88-75-5			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
p-Nitrophenol				CAS #	100-02-7			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
4-Nitroquinoline-1-oxide				CAS #	56-57-5			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodi-n-butylamin	9			CAS #	924-16-3			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodiethylamine				CAS #	55-18-5			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodimethylamine					62-75-9			
Second Quarter 2012	U	U	U	U	U	5		8270D
N-Nitrosodiphenylamine	_				86-30-6			
Second Quarter 2012	U	U	U	U	U	5	_	8270D
N-Nitrosodipropylamine	- C	J		_	621-64-7			02.02
Second Quarter 2012	U	U	U	U	U	5	_	8270D
N-Nitrosomethylethylam	_	U		_	10595-95-6			02702
Second Quarter 2012	U	U	U	U	U	5	_	8270D
N-Nitrosomorpholine	J	J	U	_	59-89-2	-		02700
Second Quarter 2012	U	U	U	U	U	5	_	8270D
N-Nitrosopiperidine	J	U	U	_	100-75-4			02700
Second Quarter 2012	U	U	U	U	U	5	_	8270D
	U	U	U		930-55-2	J	_	0270D
N-Nitrosopyrrolidine Second Quarter 2012	U	U	U	U	U	5	_	8270D
5-Nitroso-o-toluidine	U	U	U	_	99-55-8	5	-	6270D
Second Quarter 2012	U	U	U	U U	U	5	_	8270D
Parathion	U	U	U	-	56-38-2	J	_	0270D
Second Quarter 2012	U	U	U	U U	U	5	_	8270D
	U	U	U		608-93-5	5	-	6270D
Pentachlorobenzene Second Quarter 2012	U	U	U	U U	U	5	_	8270D
	U	U	U	-	76-01-7	5	-	6270D
Pentachloroethane Second Quarter 2012	U	U	U	U U	U	10	_	8260B
		U	U	_	82-68-8	10	-	02006
Pentachloronitrobenzen	e U			U U	U		1 1	00700
Second Quarter 2012	U	U	U	_	87-86-5	5	-	8270D
Pentachlorophenol		11	11	I		10		00705
Second Quarter 2012	U	U	U	U CAS #	U 62-44-2	10	-	8270D
Phenacetin	l	I		1	1 1			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Phenanthrene	I	I	T	1	85-01-8		<u> </u>	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Phenol	II.	II.	T	I	108-95-2			
Second Quarter 2012	U	U	U	U	U	10	-	8270D

Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
Phorate				CAS #	298-02-2			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
2-Picoline				CAS #	109-06-8			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Pronamide				CAS #	23950-58-5			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1-Propanol				CAS #	71-23-8			
Second Quarter 2012	UJ	UJ	UJ	UJ	UJ	100	_	8260B
2-Propanol				CAS #	67-63-0			
Second Quarter 2012	- J	- J	33000 J	- J	- J	100	100	8260B
Second Quarter 2012	UJ	UJ	- J	UJ	UJ	100	100	8260B
Fourth Quarter 2012	UJ	UJ	6200 J	UJ	UJ	100	100	8260B
Propionitrile					107-12-0		100	
Second Quarter 2012	U	U	U	U	U	100	_	8260B
n-Propylbenzene	J	J	J	_	103-65-1	100		02002
Second Quarter 2012	U	U	U	U	U	1	_	8260B
	U	U	U		129-00-0	'	_	0200B
Pyrene	U		11	U U	U	-	<u> </u>	8270D
Second Quarter 2012	U	U	U		110-86-1	5	-	82700
Pyridine	1		1	1	1 1			20725
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Safrole	1	1	1	1	94-59-7		1 1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Silvex	1	T.	1	1	93-72-1		1 1	
Second Quarter 2012	U	U	U	U	U	2.5	-	8151A
Styrene	T.	1			100-42-5			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Sulfotep				1	3689-24-5			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
2,4,5-Trichlorophenoxya	acetic acid			CAS #	93-76-5			
Second Quarter 2012	U	U	U	U	U	2.5	-	8151A
1,2,4,5-Tetrachlorobenz	ene			CAS #	95-94-3			
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1,1,1,2-Tetrachloroethai	ne			CAS #	630-20-6			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,1,2,2-Tetrachloroethai	пе			CAS #	79-34-5			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Tetrachloroethene	"			CAS #	127-18-4			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Tetrahydrofuran				CAS #	109-99-9			
Second Quarter 2012	U	U	U	U	U	25	-	8260B
2,3,4,6-Tetrachlorophen	ol			CAS #	58-90-2			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Toluene	1	1	1	CAS #	108-88-3			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
o-Toluidine		_	-	_	95-53-4			
Second Quarter 2012	U	U	U	U	U	5		8270D
Toxaphene					8001-35-2			32,02
: UNUPLIED				"				

Radford Army Ammunition Plant, Radford, Virginia
Upgradient well = 10D4

Analyte/Quarter	10D4 Q	10D3 Q	10D3D Q	10DDH2R Q	10MW1 Q	QL	GPS	Method
1,2,3-Trichlorobenzene				CAS #	87-61-6			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,2,4-Trichlorobenzene				CAS #	120-82-1	11		
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,1,1-Trichloroethane				CAS #	71-55-6	1		
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,1,2-Trichloroethane			-	CAS #	79-00-5			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Trichloroethene				CAS #	79-01-6	1		
Second Quarter 2012	U	U	U	U	U	1	5	8260B
Trichlorofluoromethane CAS # 75-69-4								
Second Quarter 2012	U	U	U	U	U	1	-	8260B
2,4,5-Trichlorophenol				CAS #	95-95-4		1	
Second Quarter 2012	U	U	U	U	U	10	-	8270D
2,4,6-Trichlorophenol			-	CAS #	88-06-2			
Second Quarter 2012	U	U	U	U	U	10	-	8270D
1,2,3-Trichloropropane			-	CAS #	96-18-4			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,1,2-Trichloro-1,2,2-Trif	luoroetha	ne		CAS #	76-13-1			
Second Quarter 2012	U	U	U	U	U	1	-	8260B
O,O,O-Triethyl phospho	rothioate			CAS #	126-68-1		1	
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1,2,4-Trimethylbenzene				CAS #	95-63-6	1		
Second Quarter 2012	U	U	U	U	U	1	-	8260B
1,3,5-Trimethylbenzene				CAS #	108-67-8	1		
Second Quarter 2012	U	U	U	U	U	1	-	8260B
sym-Trinitrobenzene				CAS #	99-35-4	1		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Vinyl acetate	II.	1	1	CAS #	108-05-4	1	- L	
Second Quarter 2012	U	U	U	U	U	10	-	8260B
Vinyl chloride	II.		1	CAS #	75-01-4	1	1	
Second Quarter 2012	U	U	U	U	U	1	-	8260B
Xylenes (Total)	II.		1	CAS #	1330-20-7	1	1	
Second Quarter 2012	U	U	U	U	U	3	10000	8260B

Radford Army Ammunition Plant, Radford, Virginia

 $Upgradient \ well = 10D4$

All Results in ug/L.

Analyte/Quarter 10D4 Q 10D3 Q 10D3D Q 10DDH2R Q 10MW1 Q QL GPS Method

Definitions:

QL Denotes permit required quantitation limit.

U Denotes analyte not detected at or above QL.

UA Denotes analyte not detected at or above adjusted sample QL.

J Denotes associated result is estimated. When used with "Û" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated.

UN Denotes analyte concentration is less than the quantiation limit and five times the blank concentration. Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when results are reported to at or above the detection limit.

R Denotes result rejected.

Q Denotes data validation qualifier.

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes Groundwater Protection Standards listed in Appendix G to Attachment 4 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002) (revised September 27, 2011) **NS** denotes not sampled.

NA denotes not analyzed.

"-" denotes not detected (pre-2nd Quarter 2003) or not available / not sampled (beginning 2nd Quarter 2003).

Appendix IX Monitoring Events:

First Quarter 2003,

Second Quarter: 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012

Third Quarter 2006

For Appendix IX monitoring, compliance well results reported/evaluated to detection limit. See data validation Qualifier definitions noted below.

The following definitions apply to results reported for Appendix IX monitoring events. All Appendix IX monitoring results for compliance wells are reported to the detection limit.

QL Denotes permit required quantitation limit.

U denotes not detected at or above the detection limit or QL.

UA denotes not detected at or above the adjusted detection limit or adjusted QL.

J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above the detection limit or QL and detection limit and QL are estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted detection limit or adjusted QL and adjusted detection limit and adjusted QL are estimated.

UN Denotes analyte concentration is less than the quantitation limit and/or five times the blank concentration. Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when compliance well results are reported to at or above the project detection limit.

Verification events: 12/12/03, 06/17/04, 7/25/2005.

6/17/04. Verification event. Acetone: 10D3D was not detected during verification event. Verification event result reported.

7/25/05. Verification event. All wells: ethyl acetate. 10D3D: alpha-BHC, acetone and 2-propanol. All verification results: Not detected except for acetone and 2-propanol. Verification results presented in table.

7/17/2008. Verification event. 10MW1. Technical chlordane, diethyl phthalate. Verification results reported-all not detected.

6/11/2009 – Verification event, 10DDH2R, Diethyl ether, Verification results reported in table-all not detected.

6/27/2012- Verification event, 10MW1, Benzo[ghi]perylene. Verification results reported in table-all not detected.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-10 Monitoring Event: Second Quarter 2012

		Laboratory Result	Validated Result	QL	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A					
Laboratory: CompuChen	n, a Division o	f Liberty Anal	ytical, Cary, NC		
Barium	10D3	94.5	94.5	10	No action taken. Field duplicate RPD <10.
	10DUP	91.9	91.9	10	No action taken, Field duplicate of 10D3, RPD <10.
Method: 8260B					
Laboratory: Lancaster L	aboratories, L	ancaster, PA	Arzen Armilia vrenkrininske hinologi	u katina wanaka waku na kasiu waku waku sa	
Chloroform	10D3	4.5	4.5	1	No action taken. Field duplicate RPD <10.
	10DUP	4.7	4.7	1	No action taken. Field duplicate of 10D3. RPD <10.
Definitions: QL Denotes permit quantitati Q Denotes data qualifier. J Denotes analyte reported at		id associated rest	ult is estimated.		

See last page of this report for definitions.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-10 Monitoring Event: Fourth Quarter 2012

		Laboratory Result	Validated Result	QL	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A		Bangaran dan salah Bangaran dan salah			
Laboratory: CompuCl	hem, a Division o	f Liberty Anal	vtical, Cary, NC		
Barium	10D3	120	120	10	No action taken. Field duplicate result was 117 ug/l (RPD <10).
	10DUP	117	117	10	No action taken. Field duplicate of 10D3. RPD <10.
Method: 8260B				G11520404 G1 15	
Laboratory: Eurofins	Lancaster Labor	atories, Lanca:	ster, PA	An a manufactur nom 1 s boom is as in see	
Chloroform	10D3	3.7	3.7	1	No action taken. Field duplicate result was 3.7 ug/l. RPD <10.
	10DUP	3.7	3.7	1	No action taken. Field duplicate of 10D3. RPD < 10.
Definitions: QL Denotes permit quanti Q Denotes data qualifier. J Denotes analyte reported		nd associated resu	ılt is estimated.		

APPENDIX D

HWMU-16

APPENDIX D-1

HWMU-16 POTENTIOMETRIC SURFACE MAPS SECOND QUARTER 2012 FOURTH QUARTER 2012

APPENDIX D-2

HWMU-16 2012 LABORATORY ANALYTICAL RESULTS POINT OF COMPLIANCE WELLS

Upgradient well = 16C1

Analtye/Quarter	16C1	16MW8	16MW9	16WC1A	16WC1B		GPS	Method
Antimony						7440-36-0		
Second Quarter 2012	U	U	U	U	U	2	6	6020
Arsenic					CAS#	7440-38-2		
Second Quarter 2012	U	U	U	U	U	10	10	6020
Fourth Quarter 2012	U	U	U	U	U	10	10	6020
Barium					CAS#	7440-39-3		
Second Quarter 2012	184	126	552	273	167	10	2000	6020
Fourth Quarter 2012	194	117	492	249	120	10	2000	6020
Beryllium					CAS#	7440-41-7		
Second Quarter 2012	U	0.37 J	U	U	U	1	4	6020
Fourth Quarter 2012	U	U	U	U	U	1	4	6020
Cadmium					CAS#	7440-43-9		
Second Quarter 2012	U	0.256 J	U	U	0.202 J	1	5	6020
Fourth Quarter 2012	U	U	U	U	U	1	5	6020
						7440-47-3		00207
Chromium Second Quarter 2012	U	U	U	U	1.56 J	5	100	6020
Fourth Quarter 2012	7.47	U	5.56	5.25	6.14	5	100	
	1.47	U	ე.ეზ	5.∠5			100	6020
Cobalt Second Quarter 2012	U	U	0.67	400 1		7440-48-4 5	5	0000
Second Quarter 2012			2.67 J	4.82 J	U			6020
Fourth Quarter 2012	U	U	U	U	U	5	5	6020
Copper						7440-50-8		
Second Quarter 2012	U	8.45	U	U	U	5	1300	6020
Fourth Quarter 2012	U	14.5	U	U	U	5	1300	6020
_ead					CAS#	7439-92-1		
Second Quarter 2012	U	0.626 J	U	U	U	1	15	6020
Fourth Quarter 2012	U	1.02	U	U	U	1	15	6020
Mercury					CAS#	7439-97-6		
Second Quarter 2012	U	U	U	U	0.711 J	2	2	7470
Fourth Quarter 2012	U	U	U	U	U	2	2	7470
Nickel					CAS#	7440-02-0		
Second Quarter 2012	3.51 J	3.94 J	11.1	7.23 J	U	10	313	6020
Fourth Quarter 2012	U	U	U	U	U	10	313	6020
Selenium					CAS#	7782-49-2		
Second Quarter 2012	U	U	U	U	U U	5	50	6020
Silver					CAS#			
Second Quarter 2012	U	UN	UN	U	U CAS#	1	78.25	6020
Thallium					CAS#	7440-28-0		
Second Quarter 2012	U	U	U	U	U CAS#	1	-	6020
Fin					CAS#			
Second Quarter 2012	U	U	U	U	U CAS#	50	_	6010
Vanadium Second Quarter 2012	U	U	U	U	CAS#	10	151	6020
	U	U	U	U	U			
Fourth Quarter 2012	U	U	U	U		10	151	6020
Zinc Second Quarter 2012	U	26	U	701	CAS#		4605	0000
		36		7.31 J	4.25 J	10	4695	6020
Fourth Quarter 2012	U	44.8	U	U	U	10	4695	6020
Sulfide					CAS#			
Second Quarter 2012	U	U	U	U	U	3000	-	9034
Cyanide						57-12-5		
Second Quarter 2012	U	U	U	U	U	20	-	9012
Acenaphthene					CAS#			-
Second Quarter 2012	U	U	U	U	U	5		8270
Acenaphthylene					CAS#	208-96-8		
Second Quarter 2012	U	U	U	U	U	5	-	8270
Nantaua.					CAS#	67-64-1		
Acetone					CAS#	07 04 1		

Upgradient well = 16C1

Analtye/Ouarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
Acetonitrile					CAS#	75-05-8		
Second Quarter 2012	UJ	U J	UJ	U J	U J	100	-	8260B
Acetophenone					CAS#	98-86-2		
Second Quarter 2012	U J	U J	U J	U J	U J	5	-	8270D
2-Acetylaminofluorene					CAS#	53-96-3		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Acrolein					CAS#	107-02-8		
Second Quarter 2012	UJ	U J	UJ	U J	U J	25	_	8260B
						107-13-1		02002
Acrylonitrile Second Quarter 2012	UJ	UJ	UJ	U J	CAS#	107-13-1		8260B
	0 0	0 0	0 0	0 0				82000
Aldrin			U		CAS#	309-00-2		20040
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
Allyl chloride					CAS#	107-05-1		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	10	-	8260B
4-Aminobiphenyl					CAS#	92-67-1		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Aniline					CAS#	62-53-3		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Anthracene					CAS#	120-12-7		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Aramite					CAS#	140-57-8		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzene					CAS#	71-43-2		
Second Quarter 2012	0.3 J	U J	0.2 J	U J	U J	1	5	8260B
Fourth Quarter 2012	U	U	U	U	U	1	5	8260B
								02000
Benzo[a]anthracene	- 11	U	U	U	CAS#	56-55-3		00700
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo[b]fluoranthene						205-99-2		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo[k]fluoranthene						207-08-9		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo[ghi]perylene					CAS#	191-24-2		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Benzo(a)pyrene					CAS#	50-32-8		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
1,4-Benzenediamine					CAS#	106-50-3		
Second Quarter 2012	U J	U J	U J	U J	U J	7.5	-	8270D
Benzyl alcohol					CAS#	100-51-6		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
alpha-BHC					CAS#	319-84-6		
Second Quarter 2012	0.0053J	U	U	U	CAS#	0.025	_	8081B
	0.00000							00015
beta-BHC					CAS#	319-85-7		0001B
Second Quarter 2012	U	u	U	U	U	0.025	_	8081B
delta-BHC					CAS#	319-86-8		00000
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
gamma-BHC					CAS#	58-89-9		
Second Quarter 2012	U	U	U	U	U	0.025	-	8081B
bis(2-Chloroethoxy)methane					CAS#	111-91-1		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
bis(2-Chloroethyl)ether					CAS#	111-44-4		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
bis(2-Chloro-1-methylethyl)et	her				CAS#	108-60-1		
Second Quarter 2012	U	U	U	U	U U	5	-	8270D
bis(2-Ethylhexyl)phthalate					CAS#	117-81-7		
Second Quarter 2012	U	U	U	U	U CAS#	5	10	8270D
							.0	02100
Bromobenzene Second Quarter 2012	UJ	U J	U J	U J	U J	108-86-1		00000
		11 .1	U J	UJ	UJ	1	-	8260B

Upgradient well = 16C1

Analtye/Quarter	160	C1	16M\	W8	16MW9	16W	C1A	16WC1B	OL	GPS	Method
Bromochloromethane								CAS#	74-97-5		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	-	8260
Bromodichloromethane								CAS#	75-27-4		
Second Quarter 2012	U	J	U .	J	U J	U	J	U J	1	=	8260
Bromoform								CAS#	75-25-2		
Second Quarter 2012	U	J	U	J	U J	U	J	U J	1	-	82601
4-Bromophenyl phenyl ether								CAS#	101-55-3		
Second Quarter 2012	U		U		U	U		U	5	_	82701
2-Butanone								CAS#	78-93-3		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	10	2667.6	8260
		U		U			U				
Fourth Quarter 2012	U		U		U	U		U	10	2667.6	8260
n-Butyl alcohol								CAS#	71-36-3		
Second Quarter 2012	U	J	U	J	U J	U	J	U J	50	-	8260
tert-Butyl alcohol								CAS#	75-65-0		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	200	-	8260
n-Butylbenzene								CAS#	104-51-8		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	-	8260
sec-Butylbenzene								CAS#	135-98-8		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	-	8260
tert-Butylbenzene					-			CAS#	98-06-6		
Second Quarter 2012	U	J	U	J	U J	U	J	U J	1	-	8260
		-	- 0	J			Ū			-	0200
Butyl benzyl phthalate	U		U		U	U		CAS#	<i>85-68-7</i> 5		0070
Second Quarter 2012	U		U		U	U				-	8270
Carbon disulfide								CAS#	75-15-0		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	10	-	8260
Carbon tetrachloride								CAS#	56-23-5		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	5	8260
Fourth Quarter 2012	U		U		U	U		U	1	5	8260
Chlordane								CAS#	57-74-9		
Second Quarter 2012	U		U		U	U		U	0.8	-	8081
p-Chloroaniline								CAS#	106-47-8		
Second Quarter 2012	U		U		U	U		U	10	_	8270
									108-90-7		
Chlorobenzene Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	_	8260
		U		U			-				0200
Chlorobenzilate					- 11	- 11			510-15-6		0070
Second Quarter 2012	U		U		U	U		U	5		8270
p-Chloro-m-cresol									59-50-7		
Second Quarter 2012	U		U		U	U		U	10	-	8270
Chloroethane								CAS#	75-00-3		
Second Quarter 2012	7	J	U	J	3.2 J	1.2	J	U J	1	1293.39	8260
Fourth Quarter 2012	6.4		U		3	1.5		U	1	1293.39	8260
Chloroform								CAS#	67-66-3		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	80	8260
		-					-		110-75-8		0230
2-Chloroethyl vinyl ether Second Quarter 2012	U	1	U	1	U J	U	J	<i>CAS #</i>	20		8260
	U	J	U	U	U J	U	J				8∠80
2-Chloronaphthalene								CAS#	91-58-7		
Second Quarter 2012	U		U		U	U		U	5	-	8270
2-Chlorophenol								CAS#	95-57-8		
Second Quarter 2012	U		U		U	U		U	10	-	8270
4-Chlorophenyl phenyl ether								CAS#	7005-72-3		
Second Quarter 2012	U		U		U	U		U	5	-	8270
Chloroprene								CAS#	126-99-8		
Second Quarter 2012	U	J	U	J	U J	U	J	U J	10	-	8260
2-Chlorotoluene								CAS#	95-49-8		
Second Quarter 2012	U	J	U	J	UJ	U	J	U J	1	-	8260
		J	5	,	5 0		-			-	0200
4-Chlorotoluene Second Quarter 2012	U		U		U J	U	J	U J	106-43-4 1		
										_	82601

Upgradient well = 16C1

Chrysene Second Quarter 2012										GPS	Method
Second Quester 2012								CAS#	218-01-9		
Second Quarter 2012	U	U		U		U		U	5	-	8270E
Cyclohexane								CAS#			
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	8260E
	!-								04.75.7		
2,4-Dichlorophenoxyacetic									94-75-7		0454
Second Quarter 2012	U	U		U		U		U	5		8151 <i>A</i>
1 <u>,4'-DDD</u>								CAS#	72-54-8		
Second Quarter 2012	U	U		U		U		U	0.05	-	8081E
4,4'-DDE								CAS#	72-55-9		
Second Quarter 2012	U	U		U		U		U	0.05	-	8081
4,4'-DDT								CAS#	50-29-3		
Second Quarter 2012	U	U		U		U		U	0.05		80811
											00011
Diallate								CAS#			
Second Quarter 2012	U	U		U		U		U	10	-	8270[
Dibenz(a,h)anthracene								CAS#	53-70-3		
Second Quarter 2012	U	U		U		U		U	5	-	8270[
Dibenzofuran								CAS#	132-64-9		
Second Quarter 2012	U	U		U		U		U	5		8270[
											02.00
Dibromochloromethane		1						CAS#	124-48-1		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	8260E
,2-Dibromo-3-chloropropa	ne							CAS#	96-12-8		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	8260E
,2-Dibromoethane								CAS#	106-93-4		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	82601
N: bt.db.tb.al.ata								G15 #	84-74-2		
Di-n-butyl phthalate	U	U		U		U		CAS#	5		0070
Second Quarter 2012	U	U		U		U				-	8270[
1,2-Dichlorobenzene								CAS#	95-50-1		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	8260E
1,3-Dichlorobenzene								CAS#	541-73-1		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	82601
1,4-Dichlorobenzene								CAS#	106-46-7		
Second Quarter 2012	U	J U	J	U	1	U	J	U J	1		8260
	U	J 0	J	0	J	U	J				02001
3,3'-Dichlorobenzidine									91-94-1		
Second Quarter 2012	U	U		U		U		U	5	-	8270[
rans-1,4-Dichloro-2-buten	9							CAS#	110-57-6		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	10	-	8260E
Dichlorodifluoromethane								CAS#	75-71-8		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	142.3	82601
					U		U				
Fourth Quarter 2012	U	U		U		U		U	1	142.3	8260E
I,1-Dichloroethane								CAS#	75-34-3		
Second Quarter 2012	8.5	0.3	3 J	8	J	2.9	J	U J	1	9.5	8260E
Fourth Quarter 2012	9.4	U		7.2		3.6		U	1	9.5	8260
	J			,		5.0					32001
1,2-Dichloroethane								CAS#	107-06-2		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	5	8260E
1,1-Dichloroethene								CAS#	75-35-4		
Second Quarter 2012	0.4	J U	J	U		U	J	U J	1	-	82601
rans-1,2-Dichloroethene								CAS#	156-60-5		
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1		82601
					-		-				32301
2,4-Dichlorophenol								CAS#	120-83-2		
Second Quarter 2012	U	U		U		U		U	10	-	82701
2,6-Dichlorophenol								CAS#	87-65-0		
Second Quarter 2012	U	U		U		U		U	10	-	82701
								CAS#	78-87-5		
1.2-Dichloropropage								CAD#			
1,2-Dichloropropane Second Quarter 2012	11	J 11	.l	- 11	J	Ш	J		1	_	8260
Second Quarter 2012	U	J U	J	U	J	U	J	U J	1	-	8260
	U		J	U		U	J		1 142-28-9 1	-	8260E 8260E

Upgradient well = 16C1

Analtye/Quarter	16	C1	16M	W8	16	MW9	16W	C1A	16W	C1B	QL	GPS	Method
2,2-Dichloropropane										1S#	594-20-7		
Second Quarter 2012	U	J	U	J	U	J	U	J	U	J	1	-	8260B
1,1-Dichloropropene										4S#	563-58-6		
Second Quarter 2012	U	J	U	J	U	J	U	J	U	J	1	-	8260B
cis-1,3-Dichloropropene									C	4 <i>S</i> #	10061-01-5		
Second Quarter 2012	U	J	U	J	U	J	U	J	U	J	1	-	8260B
trans-1,3-Dichloropropene									C	4S#	10061-02-6		
Second Quarter 2012	U	J	U	J	U	J	U	J	U	J	1	-	8260B
Dieldrin									C	4S#	60-57-1		
Second Quarter 2012	U		U		U		U		U		0.05	-	8081B
Diethyl ether									C	1S#	60-29-7		
Second Quarter 2012	48	J	5.3	J	36	J	11	J	U	J	13	7300	8260B
Fourth Quarter 2012	43		U		34		16		U		12.5	7300	8260B
													02002
Diethyl phthalate Second Quarter 2012	U		U		U	-	U			4S#	<i>84-66-2</i> 5	12,520	8270D
	-		- 0		U	J	- 0					12,320	02700
O,O-Diethyl O-2-pyrazinyl	1.1									4S#			00700
Second Quarter 2012	U		U		U		U		U		5	-	8270D
Dimethoate										4 <i>S</i> #	60-51-5		
Second Quarter 2012	U		U		U		U		U		5	-	8270D
Dimethyl ether										4 <i>S</i> #	115-10-6		
Second Quarter 2012	14	J	0.3	J	12	J	1.5	J	0.2	J	13	17	8260B
Fourth Quarter 2012	14	J	U	J	U	J	U	J	U	J	12.5	17	8260B
p-(Dimethylamino)azobenzene									C	1S#	60-11-7		
Second Quarter 2012	U		U		U		U		U		5	-	8270D
7,12-Dimethylbenz[a]anthracene									C	1S#	57-97-6		
Second Quarter 2012	U		U		U		U		U	10 #	5	_	8270D
	_										119-93-7		
3,3'-Dimethylbenzidine Second Quarter 2012	U		U		U		U		U	4S#	5		8270D
	U		- 0										02700
a,a-Dimethylphenethylamine	U	_	U		U	_	U	J		1S#	<i>122-09-8</i>		0070D
Second Quarter 2012	-	J	U	J	U	J	U	J		J		-	8270D
2,4-Dimethylphenol										4S#	105-67-9		
Second Quarter 2012	U		U		U		U		U		10	-	8270D
Dimethyl phthalate										4S#	131-11-3		
Second Quarter 2012	U		U		U		U		U		5	-	8270D
m-Dinitrobenzene									C	4S#	99-65-0		
Second Quarter 2012	U		U		U		U		U		5	-	8270D
4,6-Dinitro-o-cresol									C	4S#	534-52-1		
Second Quarter 2012	U		U		U		U		U		10	-	8270D
2,4-Dinitrophenol									C	4S#	51-28-5		
Second Quarter 2012	U		U		U		U		U		10	-	8270D
2,4-Dinitrotoluene										4S#	121-14-2		
Second Quarter 2012	U		U		U		U		U U	1.5 #	10	31.3	8270D
									-				
Fourth Quarter 2012	U		U		U		U		U		10	31.3	8270D
2,6-Dinitrotoluene										4S#	606-20-2	. .	_
Second Quarter 2012	U		U		U		U		U		10	15.65	8270D
Fourth Quarter 2012	U		U		U		U		U		10	15.65	8270D
Dinoseb									C.	4 <i>S</i> #	88-85-7		
Second Quarter 2012	U		U		U		U		U		2.5	-	8151A
Di-n-octyl phthalate									C	1S#	117-84-0		
Second Quarter 2012	U		U		U		U		U		5	-	8270D
1,4-Dioxane									C	4S#	123-91-1		
Second Quarter 2012	U	J	U	J	U	J	U	J	U	1.5 # J	200	_	8260B
	3	ŭ				•		-					02000
Diphenylamine			- 11		- 11		- 11			4S#	122-39-4		00705
Second Quarter 2012	U		U		U		U		U		5	-	8270D
Disulfoton									C	4S#	298-04-4		
Second Quarter 2012	U		U		U		U		IJ		5		8270D

Upgradient well = 16C1

Analtye/Ouarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
Endosulfan I					CAS#	959-98-8		
Second Quarter 2012	U	U	U	U	U	0.025	-	8081E
Endosulfan II					CAS#	33213-65-9		
Second Quarter 2012	U	U	U	U	U	0.05	-	8081
Endosulfan sulfate					CAS#	1031-07-8		
Second Quarter 2012	U	U	U	U	U CAS#	0.05	_	80811
								00011
Endrin	- 11				CAS#			00041
Second Quarter 2012	U	U	U	U	U	0.05	-	80811
Ethyl acetate					CAS#	141-78-6		
Second Quarter 2012	U J	UJ	UJ	UJ	U J	10	-	8260
Endrin aldehyde					CAS#	7421-93-4		
Second Quarter 2012	U	U	U	U	U	0.05	-	80811
Ethanol					CAS#	64-17-5		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	250	-	82601
Ethylhonzono					CAS#	100-41-4		
Ethylbenzene Second Quarter 2012	U J	UJ	U J	U J	U J	100-41-4	700	82601
						•		
Fourth Quarter 2012	U	U	U	U	U	1	700	8260
Ethyl methacrylate						97-63-2		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	10	-	8260
Ethyl methanesulfonate					CAS#	62-50-0		
Second Quarter 2012	U	U	U	U	U	5	-	8270
Ethylene oxide					CAS#	75-21-8		
Second Quarter 2012	UJ	U J	UJ	U J	U J	100	-	8260
Famphur Second Quarter 2012	U	U	U	U	CAS#	5		9270
	U	J	U	J			-	8270
Fluoranthene						206-44-0		
Second Quarter 2012	U	U	U	U	U	5	-	8270
Fluorene					CAS#	86-73-7		
Second Quarter 2012	U	U	U	U	U	5	-	8270
Heptachlor					CAS#	76-44-8		
Second Quarter 2012	U	U	U	U	U	0.025	-	8081
Heptachlor epoxide					CAS#	1024-57-3		
Second Quarter 2012	U	U	U	U	U	0.025	_	8081
					G+0."	118-74-1		
Hexachlorobenzene Second Quarter 2012	U	U	U	U	U CAS#	5		8270
	U		U	U				02701
Hexachlorobutadiene					CAS#			
Second Quarter 2012	U J	U J	U J	U J	U J	1	-	8260
Hexachlorocyclopentadiene					CAS#	77-47-4		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	5	-	8270
Hexachloroethane					CAS#	67-72-1		
Second Quarter 2012	U	U	U	U J	U J	5	-	8270
Second Quarter 2012	U	U	U	U J	U J	10	_	8260
Hexachlorophene	-	-						
			U J	U J	CAS#	<i>70-30-4</i>		0070
-	11 1	11 1		UJ	UJ	100	-	8270
Second Quarter 2012	UJ	U J	0 0					
Second Quarter 2012 Hexachloropropene					CAS#	1888-71-7		
Second Quarter 2012	N J	n 1	U J	U J	<i>CAS #</i> U J	<i>1888-71-7</i> 5		8270
Second Quarter 2012 Hexachloropropene Second Quarter 2012			U J	U J			-	8270
Second Quarter 2012 Hexachloropropene Second Quarter 2012				U J	U J	5	-	
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012	U J	U J	U J		U J	5 591-78-6	-	
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012	U J	U J	U J		U J CAS# U J	5 <i>591-78-6</i> 10	-	8260
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012 Indeno[1,2,3-cd]pyrene Second Quarter 2012	N 1	U J	N J	U J	U J CAS # U J CAS # U	5 591-78-6 10 193-39-5 5		8260
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012 Indeno[1,2,3-cd]pyrene Second Quarter 2012 sobutyl alcohol	n 1	n n	n 1	U J	U J CAS # U J CAS # U CAS #	5 591-78-6 10 193-39-5 5 78-83-1		8260 8270
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012 Indeno[1,2,3-cd]pyrene Second Quarter 2012 Isobutyl alcohol Second Quarter 2012	N 1	U J	N J	U J	U J CAS # U J CAS # U CAS # U	5 591-78-6 10 193-39-5 5 78-83-1 200		8260 8270
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012 Indeno[1,2,3-cd]pyrene Second Quarter 2012 sobutyl alcohol Second Quarter 2012 sodrin	n 1	n n	n 1	n n	U J CAS # U CAS # U CAS # U CAS #	5 591-78-6 10 193-39-5 5 78-83-1 200 465-73-6	-	8260 8270 8260
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012 Indeno[1,2,3-cd]pyrene Second Quarter 2012 Isobutyl alcohol Second Quarter 2012	n 1	n n	n 1	U J	U J CAS # U J CAS # U CAS # U	5 591-78-6 10 193-39-5 5 78-83-1 200		8260I 8270I 8260I
Second Quarter 2012 Hexachloropropene Second Quarter 2012 2-Hexanone Second Quarter 2012 Indeno[1,2,3-cd]pyrene Second Quarter 2012 Isobutyl alcohol Second Quarter 2012 Isodrin	n 1	n n	n 1	n n	U J CAS # U CAS # U CAS # U CAS #	5 591-78-6 10 193-39-5 5 78-83-1 200 465-73-6	-	8270I 8260I 8270I 8260I

Upgradient well = 16C1

Analtye/Ouarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
sopropylbenzene					CAS#	98-82-8		
Second Quarter 2012	U J	UJ	UJ	U J	U J	1	-	8260B
sopropylether					CAS#	108-20-3		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	10	-	8260B
1-Isopropyltoluene					CAS#	99-87-6		
Second Quarter 2012	U J	UJ	UJ	U J	U J	1	-	8260E
						120-58-1		
sosafrole Second Quarter 2012	U	U	U	U	CAS#	120-58-1		8270E
							-	02/UL
Kepone					CAS#	143-50-0		
Second Quarter 2012	U	U	U	U	U	5	-	8270E
Methacrylonitrile					CAS#	126-98-7		
Second Quarter 2012	UJ	UJ	UJ	UJ	U J	100	-	8260E
Methapyrilene					CAS#	91-80-5		
Second Quarter 2012	U J	UJ	UJ	U J	U J	5	-	8270E
Methoxychlor					CAS#	72-43-5		
Second Quarter 2012	U	U	U	U	U	0.25	-	8081E
		-	-	-		74-83-9		
Bromomethane Second Quarter 2012	UJ	U J	U J	U J	CAS#	74-83-9 1	-	8260E
	U J	U J	O J	U J			-	020UE
Chloromethane					CAS#	74-87-3		
Second Quarter 2012	U J	U J	UJ	U J	U J	1	1.4	8260E
Fourth Quarter 2012	U	U	U	U	U	1	1.4	8260E
3-Methylcholanthrene					CAS#	56-49-5		
Second Quarter 2012	U	U	U	U	U	5	-	8270E
odomethane					CAS#	74-88-4		
Second Quarter 2012	U J	UJ	UJ	U J	U J	10	-	8260E
Make day at he and at a					G+0."	80-62-6		
Methyl methacrylate Second Quarter 2012	UJ	U J	U J	U J	CAS#	10	-	8260E
								0200L
Methyl methane sulfonate					CAS#	66-27-3		
Second Quarter 2012	U	U	U	U	U	5	-	8270E
2-Methylnaphthalene					CAS#	91-57-6		
Second Quarter 2012	U	U	U	U	U	5	-	8270E
Methyl parathion					CAS#	298-00-0		
Second Quarter 2012	U	U	U	U	U	5	-	8270E
1-Methyl-2-pentanone					CAS#	108-10-1		
Second Quarter 2012	UJ	U J	UJ	U J	U J	10	-	8260E
2-Methylphenol					CAS#	95-48-7		
Second Quarter 2012	U	U	U	U	U CAS#	10		8270E
								02701
3 & 4-Methylphenol						m 108-39-4	p 106-44-5	00705
Second Quarter 2012	U	U	U	U	U	10		82700
Methyl tert-butyl ether						1634-04-4		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	10	-	8260E
Dibromomethane		-			CAS#	74-95-3		
Second Quarter 2012	U J	UJ	U J	U J	U J	1	-	8260E
Methylene chloride					CAS#	75-09-2		
Second Quarter 2012	6.1 J	U J	U J	U J	U J	1	13.95	8260E
Fourth Quarter 2012	5	U	U	U	U	1	13.95	8260E
				-			10.30	02000
Naphthalene					CAS#			2000
Second Quarter 2012	UJ	U J	UJ	U J	U J	1	-	8260E
1,4-Naphthoquinone					CAS#			
Second Quarter 2012	U	U	U	U	U	5	-	8270E
		-			CAS#	134-32-7		
I-Naphthylamine								
I-Naphthylamine Second Quarter 2012	U	U	U	U	U	5	-	8270[
Second Quarter 2012	U	U	U	U			-	8270E
Second Quarter 2012 2-Naphthylamine					CAS#	91-59-8	-	
Second Quarter 2012 2-Naphthylamine Second Quarter 2012	U	U	U	U	CAS#	<i>91-59-8</i> 5	-	8270D 8270D
Second Quarter 2012 2-Naphthylamine					CAS#	91-59-8	-	

Upgradient well = 16C1

Analtye/Quarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
m-Nitroaniline						99-09-2		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
p-Nitroaniline					CAS#	100-01-6		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Nitrohonzono					CAS#	98-95-3		
Nitrobenzene Second Quarter 2012	U	U	U	U	U CAS#	5		8270D
								02700
o-Nitrophenol					CAS#	88-75-5		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
p-Nitrophenol					CAS#	100-02-7		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
4-Nitroquinoline-1-oxide					CAS#	56-57-5		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodi-n-butylamine					CAS#	924-16-3		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodiethylamine					CAS#	55-18-5		
Second Quarter 2012	U	U	U	U	U CAS#	5		8270D
	J			<u> </u>				0210D
N-Nitrosodimethylamine		- 11			CAS#	62-75-9		20752
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodiphenylamine					CAS#	86-30-6		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosodipropylamine					CAS#	621-64-7		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosomethylethylamine					CAS#	10595-95-6		
Second Quarter 2012	U	U	U	U	U U	5	-	8270D
N Nitrocomorpholino					CAC#	59-89-2		
N-Nitrosomorpholine Second Quarter 2012	U	U	U	U	CAS#	5		8270D
	U	0	U	<u> </u>			-	82700
N-Nitrosopiperidine					CAS#	100-75-4		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
N-Nitrosopyrrolidine					CAS#	930-55-2		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
5-Nitroso-o-toluidine					CAS#	99-55-8		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Parathion					CAS#	56-38-2		
Second Quarter 2012	U	U	U	U	U	5	_	8270D
						608-93-5		
Pentachlorobenzene Second Quarter 2012	U	U	U	U	CAS#	5		8270D
	U	0	U	<u> </u>			-	82700
Pentachloroethane Pentachloroethane					CAS#	76-01-7		
Second Quarter 2012	U J	U J	UJ	U J	U J	10	-	8260B
Pentachloronitrobenzene					CAS#	82-68-8		
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Pentachlorophenol					CAS#	87-86-5		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Phenacetin					CAC#	62-44-2		
Second Quarter 2012	U	U	U	U	U CAS#	5	_	8270D
	5	U	3	5				0210D
Phenanthrene			- 11		CAS#			00700
Second Quarter 2012	U	U	U	U	U	5	-	8270D
Phenol						108-95-2		
Second Quarter 2012	U	U	U	U	U	10	-	8270D
Total Recoverable Phenolics					CAS#			
Second Quarter 2012	U	U	U	U	U	40	-	9066
Phorate					CAS#	298-02-2		
Second Quarter 2012	U	U	U	U	U CAS#	5	_	8270D
								02700
2-Picoline		- 11				931-19-1		20752
Second Quarter 2012	U	U	U	U	U	5		8270D
Pronamide	-		-		CAS#	23950-58-5		
Second Quarter 2012	U	U	U	U	U	5	-	8270D

Upgradient well = 16C1

Analtye/Ouarter	160	C1 1	6M	W8	16N	1W9	16W	C1A	16WC1B	OL	GPS	Method
1-Propanol									CAS#			
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	100	-	8260E
2-Propanol									CAS#	67-63-0		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	100	-	8260E
Propionitrile									CAS#	107-12-0		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	100	-	8260E
n-Propylbenzene									CAS#	103-65-1		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	-	8260
Pyrene									CAS#	129-00-0		
Second Quarter 2012	U		U		U		U		U	5	_	82701
			_									02.01
Pyridine Second Quarter 2012	U		U		U		U		CAS#	5		82701
	U		U		U		U				-	02/01
Safrole									CAS#			
Second Quarter 2012	U		U		U		U		U	5	-	82701
Silvex									CAS#	93-72-1		
Second Quarter 2012	U		U		U		U		U	2.5	-	8151/
Styrene									CAS#	100-42-5		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	-	8260E
Sulfotep									CAS#	3689-24-5		
Second Quarter 2012	U		U		U		U		U	5	-	82701
2,4,5-Trichlorophenoxyacetic							-		CAS#	93-76-5		-
Second Quarter 2012	U		U		U		U		U CAS#	2.5	-	8151
	-		_									01317
1,2,4,5-Tetrachlorobenzene									CAS#	95-94-3		0070
Second Quarter 2012	U		U		U		U		U	5	-	82701
I,1,1,2-Tetrachloroethane									CAS#	630-20-6		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	-	8260
I,1,2,2-Tetrachloroethane									CAS#	79-34-5		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	-	8260
Tetrachloroethene									CAS#	127-18-4		
Second Quarter 2012	0.4	J	U	J	U	J	U	J	U J	1	5	82601
Fourth Quarter 2012	U		U		U		U		U	1	5	82601
			_							109-99-9		
Tetrahydrofuran Second Quarter 2012	19	1	U	J	U	1	U	J	CAS#	25	_	82601
	13	-	U	0		0		0				02001
2,3,4,6-Tetrachlorophenol									CAS#	58-90-2		0070
Second Quarter 2012	U		U		U		U		U	10	-	82701
T <u>oluene</u>									CAS#	108-88-3		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	1000	8260E
Fourth Quarter 2012	U		U		U		U		U	1	1000	8260
o-Toluidine									CAS#	95-53-4		
Second Quarter 2012	U		U		U		U		U	5	_	82701
Toxaphene	-						-		CAS#	8001-35-2		
Second Quarter 2012	U		U		U		U		U CAS#	2.5	_	8081
	U		J		3							30011
1,2,3-Trichlorobenzene		1	12						CAS#	87-61-6		000-
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	-	82601
1,2,4-Trichlorobenzene									CAS#	120-82-1		
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	-	82601
1,1,1-Trichloroethane							•		CAS#	71-55-6	-	
Second Quarter 2012	0.9	J	U	J	U	J	U	J	U J	1	200	8260
Fourth Quarter 2012	U		U		U		U		U	1	200	8260
1,1,2-Trichloroethane									CAS#			
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	_	82601
	-		_	•		J						02001
Trichloroethene	^ ~								CAS#	79-01-6	-	200
Second Quarter 2012	0.3		U	J	U	J	U	J	U J	1	5	82601
Fourth Quarter 2012	U		U		U		U		U	1	5	8260
Trichlorofluoromethane									CAS#	75-69-4		
<u>riciliorolluoro</u> llietilalie			_									
Second Quarter 2012	U	J	U	J	U	J	U	J	U J	1	469.5	8260E

Upgradient well = 16C1

Analtye/Ouarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
2,4,5-Trichlorophenol					CAS#	95-95-4		
Second Quarter 2012	U	U	U	U	U	10	-	8270E
2,4,6-Trichlorophenol					CAS#	88-06-2		
Second Quarter 2012	U	U	U	U	U	10	-	8270E
1,2,3-Trichloropropane					CAS#	96-18-4		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	1	-	8260E
1,1,2-Trichloro-1,2,2-Trifluor	oethane				CAS#	76-13-1		
Second Quarter 2012	U J	UJ	UJ	U J	U J	1	59000	8260E
Fourth Quarter 2012	U	U	U	U	U	1	59000	8260E
O,O,O-Triethyl phosphoroth	ioate				CAS#	126-68-1		
Second Quarter 2012	U	U	U	U	U	5	=	82700
1,2,4-Trimethylbenzene					CAS#	95-63-6		
Second Quarter 2012	UJ	UJ	UJ	U J	U J	1	-	8260E
1,3,5-Trimethylbenzene					CAS#	108-67-8		
Second Quarter 2012	U J	UJ	UJ	U J	U J	1	-	8260E
sym-Trinitrobenzene					CAS#	99-35-4		
Second Quarter 2012	U	U	U	U	U	5	-	8270[
Vinyl acetate					CAS#	108-05-4		
Second Quarter 2012	UJ	UJ	U J	U J	U J	10	-	8260E
Vinyl chloride					CAS#	75-01-4		
Second Quarter 2012	U J	U J	U J	U J	U J	1	-	8260E
Xylenes (Total)					CAS#	1330-20-7		
Second Quarter 2012	UJ	UJ	U J	U J	U J	3	10000	8260
Fourth Quarter 2012	U	U	U	U	U	3	10000	8260E

Upgradient well = 16C1 All Results in ug/L.

Analtye/Ouarter 16C1 16MW8 16MW9 16WC1A 16WC1B OL GPS Method

Definitions:

The following definitions apply to results reported for Appendix IX monitoring events.

All Appendix IX monitoring results for compliance wells are reported to the detection limit.

Appendix IX Monitoring Events: 3Q2003, 2Q-2004, 2Q-2005, 3Q2006, 2Q2007, 2Q2008, 2Q2009, 2Q 2010, 2Q 2011, 2Q 2012

QL Denotes permit required quantitation limit.

U denotes not detected at or above the detection limit.

UA denotes not detected at or above the adjusted detection limit.

J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above the detection limit and detection limit and QL are estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted detection limit and adjusted detection limit and QL are estimated.

UN Denotes analyte concentration is less than the quantitation limit and/or five times the blank concentration. Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when compliance well results are reported to at or above the project detection limit.

R Denotes result rejected.

Q Denotes data validation qualifier. X Denotes mass spectral confirmation not obtained-result suspect.

Background Denotes background concentrations listed in Appendix F to Attachment 5 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002), where applicable.

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes Groundwater Protection Standards listed in Appendix G to Attachment 5 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002) (revised September 27, 2011). **NS** denotes not sampled. **NA** denotes not analyzed.

"-" denotes not detected (pre-2nd Quarter 2003) or not available / not sampled (beginning 2nd Quarter 2003).

The following definitions apply to results reported for non-Appendix IX monitoring events. All non-Appendix IX monitoring results for compliance wells are reported at or above the quantitation limit.

QL Denotes permit required quantitation limit.

U Denotes analyte not detected at or above QL.

UA Denotes analyte not detected at or above adjusted sample QL.

J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated.

R Denotes result rejected.

O Denotes data validation qualifier.

Background Denotes background concentrations listed in Appendix F to Attachment 5 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002), (revised September 27, 2011), where applicable.

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes Groundwater Protection Standards listed in Appendix G to Attachment 5 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002) (revised September 27, 2011).

NOTE:

Fourth Quarter 2008:

Due to laboratory error all HWMU 16 samples were analyzed using Method 8260B 5 ml purge instead of a 25 ml purge which resulted in a higher QL. For these samples, all results were evaluated to the detection limit, which is comparable to the permit QL. Results below the laboratory QL but at or above the permit QL are reported and qualified as estimated. Second Quarter 2009:

Verification event 6/11/2009 - 16MW8 for acetone. Verification result reported as not detected.

4/ 2010 event -Per DEQ, tin analyzed by Method 6010B instead of Method 6020. Verification event: 16MW9 1,1-

dichloroethene and benzene. 16WC1B 4,4-DDD. Verification result reported as not detected.

Verification event 6/27/2012 – 16WC1A for cobalt. Verification result reported.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-16 Monitoring Event: Second Quarter 2012

Analyte	Sample ID	Laboratory Result (ug/L) Q	Validated Result (ug/L)	QL Q (ug/L)	Validation Notes
Method: 6020A					
Laboratory: CompuC	hem, a Division o	f Liberty Ana	lytical, Cary, 1	v <i>C</i>	
Barium	16WC1A	273	273	10	No action taken. Field duplicate RPD <10.
	16WDUP	278	278	10	No action taken. Field duplicate of 16WC1A. RPD <10.
Method: 8260B					
Laboratory: Lancaste	r Laboratories, Lo	ancaster, PA			
Chloroethane	16WC1A	1.2	1.2	J l	Samples received at laboratory outside temperature criteria, Field duplicate RPD <10.
	16WDUP	1.2	1.2	J	Samples received at laboratory outside temperature criteria, Field duplicate of 16WC1A. RPD <10.
1,1-Dichloroethane	16WC1A	2.9	2.9	J l	Samples received at laboratory outside temperature criteria, Field duplicate RPD <10.
	16WDUP	2.9	2.9	J l	Samples received at laboratory outside temperature criteria. Field duplicate of 16WC1A. RPD <10.

Definitions:

Data Validation Qualifiers:

QL Denotes permit quantitation limit. Q Denotes data qualifier.

J Denotes analyte reported at or above quantitation limit and associated result is estimated.

Comprehensive Data Validation Report

Sample/Blind Field Duplicate Results Greater Than the Quantitation Limit

Facility: HWMU-16 Monitoring Event: Fourth Quarter 2012

	L	aboratory Result	Validated Result	QL.	
Analyte	Sample ID	(ug/L) Q	(ug/L) Q	(ug/L)	Validation Notes
Method: 6020A				a and the	
Laboratory: CompuChe	em, a Division of	Liberty Anal	ytical, Cary, NC	**************************************	
Barium	16WC1A	249	249	10	No action taken. Field duplicate result was 270 ug/l. RPD <10.
	16WDUP	270	270	10	No action taken. Field duplicate of 16WC1A. RPD <10.
Chromium	16WC1A	5.25	5.25	5	No action taken. Detected <permit (4.6="" calculated.<="" duplicate="" field="" in="" j="" l).="" not="" ql="" rpd="" td="" ug=""></permit>
Method: 8260B	ozer egyptologiste († 1905) 18. júníos – Paris Santon	ero Hastina delless Troche delless	2000 2000 000		
Laboratory: Eurofins L	ancaster Labora	tories, Lanca	ster, PA		
Chloroethane	16WC1A	1.5	1.5	1	No action taken. Field duplicate result was 1.6 ug/l. RPD <10.
	16WDUP	1.6	1.6	1	No action taken. Field duplicate of 16WC1A. RPD <10.
1,1-Dichloroethane	16WC1A	3.6	3.6	1	No action taken. Field duplicate result was 3.6 ug/l. RPD <10.
	16WDUP	3.6	3.6	1	No action taken. Field duplicate of 16WC1A. RPD <10.
Diethyl ether	16WC1A	16	16	12.5	No action taken. Field duplicate result was 17 ug/l. RPD <10.
	16WDUP	17	17	12.5	No action taken. Field duplicate of 16WC1A, RPD <10.

Definitions:

Data Validation Qualifiers:

OL Denotes permit quantitation limit. Q Denotes data qualifier.

J Denotes analyte reported at or above quantitation limit and associated result is estimated.

APPENDIX D-3

HWMU-16 2012 LABORATORY ANALYTICAL RESULTS PLUME MONITORING WELLS

Target Analyte Monitoring Results At Or Above Permit Quantitation Limit HWMU-16 Plume Monitoring Wells

Radford Army Ammunition Plant, Radford, Virginia

All Results in ug/L.

Upgradient well = 16C1

Analtye/Quarter	16C1 Q	16-1 Q	16-2 Q	16-3 Q	16-5 Q	16WC2B Q	16SPRING Q	QL	Background	Method
Arsenic						CAS # 7440	0-38-2			
Second Quarter 2012	U	U	U	U	U	U	U	10	1	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	10	1	6020A
Barium						CAS # 7440	0-39-3			
Second Quarter 2012	184	224 J	237 J	755 J	182 J	123 J	219 J	10	175.4	6020A
Fourth Quarter 2012	194	209	246	741	182	115	201	10	175.4	6020A
Beryllium						CAS # 7440	0-41-7			
Second Quarter 2012	U	U	U	U	U	U	U	1	0.7	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.7	6020A
Cadmium						CAS # 7440	0-43-9			
Second Quarter 2012	U	U	U	U	U	U	U	1	0.2	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.2	6020A
Chromium						CAS # 7440	0-47-3			
Second Quarter 2012	U	U	U	U	U	U	U	5	6.2	6020A
Fourth Quarter 2012	7.47	U	U	U	U	U	U	5	6.2	6020A
Cobalt						CAS # 7440	n-48-4			
Second Quarter 2012	U	U	U	U	U	U	U	5	5	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	5	5	6020A
Copper						CAS # 7440	n-50-8			
Second Quarter 2012	U	U	U	U	U	U	U	5	13	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	5	13	6020A
Lead				_		CAS # 7439				
Second Quarter 2012	U	U	U	U	U	U	U	1	10	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	1	10	6020A
Mercury				_		CAS # 7439				
Second Quarter 2012	U	U	U	U	U	U U	U	2	0.2	7470A
Fourth Quarter 2012	U	U	U	U	U	U	U	2	0.2	7470A
Nickel						CAS # 7440				
Second Quarter 2012	3.51 J	U	U	U	U	U	U	10	16	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	10	16	6020A
Vanadium				-		CAS # 7440				
Second Quarter 2012	U	U	U	U	U	U	U	10	151	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	10	151	6020A
Zinc						CAS # 7440				
Second Quarter 2012	U	U	U	U	U	U U	U	10	51	6020A
Fourth Quarter 2012	U	U	U	U	U	U	U	10	51	6020A
Benzene						CAS # 71-4				
Second Quarter 2012	0.3 J	UJ	UJ	UJ	UJ	U J	U J	1	1	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	1	8260B
2-Butanone	ŭ			Ŭ.	U			·	•	02000
Second Quarter 2012	UJ	UJ	UJ	U J	UJ	<i>CAS # 78-9</i>	U J	10	1.1	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	10	1.1	8260B
				Ŭ	3			10	1.1	02000
Carbon tetrachlorid	_	1 11 1	1 11 1	11 1	11 11	CAS # 56-2		4	0.0	00000
Second Quarter 2012	U J	UJ	U J	U J	UJ	U J	U J	1	0.2	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.2	8260B
Chloroethane		I	I	1 11 1	1 11 1	CAS # 75-0	1		00.7	00000
Second Quarter 2012	7 J	U J	U J	U J	U J	U J	U J	1	20.7	8260B
Fourth Quarter 2012	6.4	U	U	U	U	U	U	1	20.7	8260B

Target Analyte Monitoring Results At Or Above Permit Quantitation Limit HWMU-16 Plume Monitoring Wells

Radford Army Ammunition Plant, Radford, Virginia

All Results in ug/L.

Upgradient well = 16C1

Analtye/Quarter	16C1 Q	16-1 Q	16-2 Q	16-3 Q	16-5 Q	16WC2B Q	16SPRING Q	QL	Background	Method
Dichlorodifluorome	thane	<u> </u>				CAS # 75-7	1-8			
Second Quarter 2012	U J	U J	U J	U J	U J	U J	U J	1	46.5	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	46.5	8260B
1,1-Dichloroethane		1	"			CAS # 75-3	4-3			
Second Quarter 2012	8.5	U J	U J	U J	U J	U J	U J	1	9.5	8260B
Fourth Quarter 2012	9.4	U	U	U	U	U	U	1	9.5	8260B
Diethyl ether	I.					CAS # 60-2	9-7	1		
Second Quarter 2012	48 J	U J	U J	U J	U J	U J	U J	13	75.5	8260B
Fourth Quarter 2012	43	U	U	U	U	U	U	12.5	75.5	8260B
Dimethyl ether						CAS # 115-	10-6	<u> </u>		
Second Quarter 2012	14 J	U J	U J	U J	U J	U J	U J	13	17.0	8260B
Fourth Quarter 2012	14 J	U J	U J	U J	U J	U J	U J	12.5	17.0	8260B
2,4-Dinitrotoluene						CAS # 121-	14-2	1		
Second Quarter 2012	U	U	U	U	U	U	U	10	10	8270D
Fourth Quarter 2012	U	U	U	U	U	U	U	10	10	8270D
2,6-Dinitrotoluene	I	1	1	I	i	CAS # 606-	20-2		1	
Second Quarter 2012	U	U	U	U	U	U	U	10	10	8270D
Fourth Quarter 2012	U	U	U	U	U	U	U	10	10	8270D
Ethylbenzene			1			CAS # 100-	41-4			
Second Quarter 2012	U J	U J	U J	U J	U J	U J	U J	1	0.1	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.1	8260B
Chloromethane						CAS # 74-8	7-3			
Second Quarter 2012	UJ	U J	U J	UJ	U J	U J	UJ	1	0.3	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.3	8260E
Methylene chloride	I.					CAS # 75-0	9-2	1		
Second Quarter 2012	6.1 J	U J	U J	UJ	U J	U J	UJ	1	13.95	8260E
Fourth Quarter 2012	5	U	U	U	U	U	U	1	13.95	8260E
Tetrachloroethene						CAS # 127-	18-4			
Second Quarter 2012	0.4 J	U J	U J	U J	U J	U J	U J	1	0.7	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.7	8260B
Toluene						CAS # 108-	88-3			
Second Quarter 2012	UJ	U J	U J	UJ	U J	U J	UJ	1	0.1	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.1	8260B
1,1,1-Trichloroethar	ne	1	1	1		CAS # 71-5	5-6	I.		
Second Quarter 2012	0.9 J	U J	U J	U J	U J	U J	U J	1	9.2	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	9.2	8260E
Trichloroethene	1	1	1	1		CAS # 79-0	1-6	I.		
Second Quarter 2012	0.3 J	UJ	U J	UJ	U J	U J	UJ	1	0.1	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	0.1	8260B
Trichlorofluorometh	nane	1	1	l	I	CAS # 75-6	9-4			
Second Quarter 2012	U J	U J	U J	U J	U J	UJ	UJ	1	11.3	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	11.3	8260E
1,1,2-Trichloro-1,2,2	- -Trifluoro	ethane	1	<u> </u>		CAS # 76-1	3-1			
Second Quarter 2012	U J	UJ	U J	U J	U J	U J	U J	1	1.2	8260E
Fourth Quarter 2012	U	U	U	U	U	U	U	1	1.2	8260E
Xylenes (Total)	1			1		CAS # 1330)-20-7			
Second Quarter 2012	U J	U J	U J	U J	U J	U J	UJ	3	0.2	8260B
Fourth Quarter 2012	U	U	U	U	U	U	U	3	0.2	8260B

Target Analyte Monitoring Results At Or Above Permit Quantitation Limit HWMU-16 Plume Monitoring Wells

Radford Army Ammunition Plant, Radford, Virginia

All Results in ug/L.

Upgradient well = 16C1

Analtye/Quarter	16C1 Q	16-1 Q	16-2 Q	16-3 Q	16-5 Q	16WC2B Q	16SPRING Q	QL	Background 1	Method
-----------------	--------	--------	--------	--------	--------	----------	------------	----	--------------	--------

Definitions:

All plume monitoring well results reported to at or above the permit quantitation limit except for the upgradient well during the Appendix IX monitoring Event. During this event, results for the upgradient well are reported to the detection limit.

- Q Denotes data validation qualifier.
- QL Denotes permit required quantitation limit.
- U Denotes analyte not detected at or above QL.
- **UA** Denotes analyte not detected at or above adjusted sample QL.
- J Denotes result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated.
- UN Denotes analyte concentration is less than the quantiation limit and five times the blank concentration.
 Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when compliance well results are reported to at or above the project detection limit.
- R Denotes result rejected.

Background Denotes background concentrations listed in Appendix F to Attachment 5 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002), revised September 27, 2011.

CAS# Denotes Chemical Abstract Services registration number.

GPS Denotes groundwater protection standard.

NS denotes not sampled. NA denotes not analyzed. "—"denotes not detected (pre-2nd Quarter 2003) or not available / not sampled (beginning 2nd Quarter 2003).

Notes:

4Q2004. No data for 16-1 8270C-semivolatiles. Well dry-insufficient sample volume.

4Q2006 - No data for 16-1; well dry.

4Q2008- No data for 16-1; well dry.

2Q2009- No data for 16-1; well dry.

NOTE:

Fourth Quarter 2008

Due to laboratory error all HWMU 16 samples were analyzed using Method 8260B 5 ml purge instead of a 25 ml purge which resulted in a higher QL. For these samples, all results were evaluated to the detection limit, which is comparable to the permit QL. Results below the laboratory QL but at or above the permit QL are reported and qualified as estimated.

	APPENDIX D-4		
ESTABLISHED BACKGROUND	VALUES AND CO	MPUTATIONS FOR	HWMU-16

	APPENDIX D-4		
ESTABLISHED BACKGROUND	VALUES AND COM	MPUTATIONS FOR H	WMU-16

- It was not understood why the majority of fluorescein detections were considered false positive detections. The basis of this observation is unclear considering a lack of background and laboratory confirmation results.
- It was not apparent why certain samples were selected for laboratory confirmation and others were not. There was no apparent consistency in the selection of samples for laboratory confirmation.
- Samples were submitted for confirmation laboratory analyses three months or more following the collection of the samples in the field. No information was provided regarding the custody and/or storage of the samples. The samples were submitted to the analytical laboratory with incomplete chain-of-custody (COC), and the COC documentation was not completed by the laboratory.

In summary, the data from the study do not provide the basis for meaningful interpretation. Any attempt to formulate conclusions from the data as presented regarding the presence of preferred or predominant groundwater flow patterns is not warranted or recommended.

3.3 HWMU-16 GROUNDWATER MONITORING ANALYTE LIST

The groundwater monitoring analyte list for HWMU-16 is presented in Table 1 (Appendix B). The list represents the subset of the constituents listed in Appendix III of 40 CFR Part 261 that previously have been detected in the groundwater and/or that are reasonably expected to be in or derived from waste contained in HWMU-16. As discussed in Section 3.5.2 below, 12 inorganic constituents and two explosive/propellant constituents have been detected in the groundwater monitoring network for HWMU-16 at statistically significant concentrations above the Unit's calculated background concentrations. The inorganic constituents may be derived from the aquifer formation materials; however, the two explosive/propellant constituents (2,4-Dinitrotoluene and 2,6-Dinitrotoluene) are byproducts of wastes derived from explosives. Therefore, the two explosive/propellant constituents detected could only be from HWMU-16.

The concentration limits established for the hazardous constituents also are listed in Table 1. The concentration limits represent either background concentrations calculated for the constituents in this GWQAR, Maximum Concentrations of Constituents for Ground-water Protection listed in Table 1 of 40 CFR 264.94, USEPA Drinking Water Standard Maximum Contaminant Levels (MCLs), or alternate concentration limits (ACLs) established by the VDEQ (July 1998). Certain organic constituents on the list do not have USEPA MCLs or VDEQ ACLs; they also do not have calculated background concentrations because they have not been detected in the Unit's upgradient well. Therefore, the concentration limits for these constituents are equal to their respective method detection limits.

As Alliant discussed with the VDEQ in the past, the reliability of previous laboratory analytical data - particularly dissolved metals data - appeared to be questionable in some cases. In an April 9, 1996 letter to C. Jake (Alliant), the VDEQ agreed that only total metals concentrations in groundwater would be measured, as described in a USEPA Region III guidance on groundwater sampling in karst terrain. Therefore, all references to metals concentrations in this GWQAR refer to total metals concentrations.

3.4 HWMU-16 GROUNDWATER BACKGROUND CONCENTRATIONS

Background concentrations were calculated for each constituent in the groundwater monitoring program using the analytical data from 1996 through 1998 for upgradient well 16C1.

The background concentration calculations were based on site wide 95% confidence, 95% coverage upper prediction intervals. The calculated background concentrations are listed in Table 2 (Appendix B). The background concentrations were used to construct the outermost closing contours on the Isoconcentration Maps (Appendix A).

3.5 HWMU-16 STATISTICAL ANALYSIS

Statistical evaluations for HWMU-16 are performed annually and submitted to the VDEQ in accordance with the annual reporting requirements specified in 40 CFR 265.94. As part of this GWQAR, statistical evaluations were performed on Fourth Quarter 1998 analytical data in accordance with the procedures and guidance provided in the following documents:

- Title 40 of the Code of Federal Regulations, 40 CFR 264.97 and 264.98;
- VDEQ Guidance for statistical analysis titled "Data Analysis Plan," undated;
- Interim Final Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, USEPA, April 1989;
- Addendum to Interim Final Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, USEPA, July 1992; and
- Statistical Methods for Groundwater Monitoring, Gibbons, R.D., 1994.

Statistical threshold values were computed for the 54 constituents for which HWMU-16 is currently monitored based on the concentrations of those constituents in upgradient (background) well 16C1. All data starting with First Quarter 1996 to Fourth Quarter 1998 were used for this purpose. The 1996 through 1998 monitoring data have been submitted previously to the VDEQ by Alliant in quarterly monitoring reports; therefore, the data are not listed in this GWQAR. Statistical comparisons were performed for the Fourth Quarter 1998 data set. Comparison statistical analyses were performed for all constituents which were detected in any downgradient well during that event.

3.5.1 Background Data and Statistical Comparisons

Statistical analyses were performed using the analytical results from upgradient well 16C1 data as background data. Based on the percentage of non-detects and the distribution of the background data, methods of statistical comparisons varied. Background average, standard deviation and other descriptive statistical data were computed for all constituents and are presented in Appendix C.

The constituents listed below were 100% non-detected in the background data. The background threshold levels (BTLs) for these constituents were established as equal to their detection limits (DL). Detections of these constituents in the downgradient wells during Fourth Quarter 1998 were compared to these BTLs.

Backgro	und Threshold Leve	el (BTL) = Detecti	on Limit (DL)	<u> </u>
Parameter	Sample Size	% Non-Detects	DL (μg/l)	BTL (μg/l)
Antimony	12	100	3	3
Arsenic	12	100	1	1
Bromoform	12	100	0.3	0.3
Carbon tetrachloride	12	100	0.2	0.2
Chlorobenzene	12	100	0.1	0.1
Chloromethane	12	100	0.3	0.3
Cyanide	12	100	10	10

Background Threshold Level (BTL) = Detection Limit (DL)						
			. DL	BTL		
Parameter	Sample Size	% Non-Detects	(μ g/l)	(μg/l)		
Di-n-butyl phthalate	12	100	5	5		
1,2-Dichloroethane	12	100	0.1	0.1		
trans-1,2-Dichloroethene	12	100	0.1	0.1		
1,4-Dichlorobenzene	12	100	0.1	0.1		
Ethylbenzene	12	100	0.1	0.1		
Mercury	12	100	0.2	0.2		
Methyl ethyl ketone	12	100	1.1	1.1		
Selenium	12	100	1	1		
1,1,2,2-Tetrachloroethane	12	100	0.3	0.3		
1,1,2-Trichloroethane	12	100	0.5	0.5		
Trichloroethene	12	100	0.1	0.1		
Toluene	12	100	0.1	0.1		
2378-TCDF	12	100	0.0485 ppt	0.0485 ppt		
12378-PECDF	12	100	0.0439 ppt	0.0439 ppt		
23478-PECDF	12	100	0.0417 ppt	0.0417 ppt		
123478-HXCDF	12	100	0.0390 ppt	0.0390 ppt		
123678-HXCDF	12	100	0.0377 ppt	0.0377 ppt		
234678-HXCDF	12	100	0.0428 ppt	0.0428 ppt		
123789-HXCDF	12	100	0.0415 ppt	0.0415 ppt		
1234678-HPCDF	12	100	0.0615 ppt	0.0615 ppt		
1234789-HPCDF	12	100	0.0709 ppt	0.0709 ppt		
OCDF	12	100	0.1307 ppt	0.1307 ppt		

Non-parametric prediction intervals were computed for all of the constituents for which the data from background well 16C1 satisfied one of the following two criteria, per VDEQ regulations and guidance as well as USEPA guidance:

- Percentage of non-detects was greater than or equal to 50 and less than 100; or
- Percentage of non-detects was less than 50, but data was not normally distributed in original or log-transformed mode.

The background threshold levels for these constituents were set as equal to their upper prediction limits (UPLs). The background and relevant statistical data for these constituents are summarized below. The confidence level and false positive rate were calculated based on the number of background data points available and number of future comparisons. For all constituents, the confidence level was determined to be equal to 0.933, and the false positive rate was equal to 0.067. Since the upper control limit of a non-parametric interval cannot be adjusted for multiple comparisons and inadequate number of background data, the number of resampling events required was adjusted to account for the high error rates inherent in those situations. The number of confirmation resamples required for all constituents is 2. The background and relevant statistical data for these constituents are summarized below. Associated statistical computations are presented in Appendix C.

BTL = Upper Prediction Limit of Non-parametric Prediction Interval w/false positive rate=0.067							
Parameter	Sample Size	% Non-Detects	DL (μg/l)	BTL (μg/l)			
Beryllium	12	75	0.2	0.7			
Cadmium	12	75	2 0.1	0.2			
Cobalt	12	75	1	5			
Copper	12	50	1	13			
1,1-Dichloroethane	12	0	0.2	9.5			
2,4-Dinitrotoluene	12	92	0.08	0.10			

BTL = Upper Prediction Limit of Non-parametric Prediction Interval w/false positive rate=0.067							
Parameter	Sample Size	% Non-Detects	DL (μg/l)	. BTL (μg/l)			
2,6-Dinitrotoluene	12	75	0.08	0.11			
Lead	12	42	, 1	10			
Nickel	12	92	15	16			
Silver	12	75	0.2	0.5			
Thallium	12	67	: 1	6			
TOC	12	75	1000	7000			
1,1,1-Trichloroethane	12	17	. 0.3	9.2			
Vanadium	12	83	4	151			
Vinyl Chloride	12	92	0.1	0.1			
Xylene (total)	12	92	0.1	0.2			
Zinc	12	50	5	51			

Chromium exhibited normally distributed data (excluding non-detects) with between 25% and 50% non-detects in the background well. The mean and standard deviation of the background data for chromium were adjusted using Cohen's Maximum Likelihood Estimator Method (1959, 1961). A one-sided parametric prediction interval was then computed for chromium based on the adjusted mean and standard deviation. The Upper Prediction Limit was set as the BTL for chromium. The background and relevant statistical data for chromium are summarized below. Cohen's adjustment computations and prediction interval computations are presented in Appendix C.

BTL = Upper Prediction Limit of Prediction Interval w/false positive rate=0.05								
Original Mean = 3.54, Original SD = 1.933 Adjusted Mean = 3.642. Adjusted SD = 1.95								
AC	ijusteu Mean – 3.0	042. Adjusted SD	= 1.95					
Parameter	Parameter Sample Size % Non-Detects (µg/l) BTL (µg/l)							
Chromium	12	25	1	6.2				

The following constituents exhibited normally distributed background data with less than 25% non-detects. One sided parametric prediction intervals were computed on the background data for all of these constituents. The UPLs for these constituents were set as their respective BTLs, with one exception. For pH, a two-sided parametric prediction interval was computed; therefore, the BTL for pH consisted of a range between the lower prediction limit (LPL) and the upper prediction limit. The background concentration calculations were based on a site wide 95% confidence, 95% coverage upper prediction intervals. When adjusted for multiple comparisons of the background data, the minimum required false positive rate was below 1% (0.01). A 99% confidence level (0.01 false positive rate) was used for all individual comparisons, which with the most conservative assumptions provided a site-wide false positive rate of >0.05 for all constituents. The background and relevant statistical data for these constituents are summarized below. The prediction interval computations for these constituents are presented in Appendix C.

BTL = UPL of one-sided Prediction Interval (exception pH) w/site-wide false positive rate>0.05 (individual comparisons false positive rate=0.01) BTL for pH = LPL – UPL of two-sided Prediction Interval							
Parameter Sample Size % Non-Detects (µg/l) (µg/l)							
Barium	12	0	2	175.4			
Dichlorodifluoromethane	12	8	0.3	46.5			
Tetrachloroethene	12	17	0.1	0.7			
TOX	12	17	5	42.2			

BTL = UPL of one-sided Prediction Interval (exception pH) w/site-wide false positive rate>0.05 (individual comparisons false positive rate=0.01) BTL for pH = LPL – UPL of two-sided Prediction Interval					
Parameter Trichlorofluoromethane	Sample Size	% Non-Detects	DL : (μg/l) : 0.5	BTL (μg/l) 11.3	
Specific Conductivity	8	0	·1 μS/cm	672 μS/cm	
pH	8	0	0.1 pH units	5.7 to 7.9 pH units	

3.5.2 Results of Statistical Comparisons

The following table lists the constituents which were detected during the Fourth Quarter 1998 event at concentrations exceeding their respective background threshold levels (BTLs), and the downgradient wells in which they were detected.

Parameter	Monitoring Well(s)			
Arsenic	16-5, 16WC2B			
Barium	16-2, 16-3, 16-5, 16WC1A, 16WC1B, 16WC2B, 16SPRING			
Beryllium	16WC1B, 16WC2B			
Cadmium	16WC1B			
Chromium	16-3, 16-5, 16WC1B, 16WC2B			
Cobalt	16-5, 16WC1B, 16WC2B			
Copper	16-5, 16WC1B, 16WC2B			
Lead	16WC1B			
Mercury	16WC1B			
Nickel	16-5, 16WC1A, 16WC2B			
Selenium	16-5, 16WC1B, 16WC2B			
Zinc	16WC1B			
2,4-Dinitrotoluene	16-3, 16-5, 16WC1B, 16WC2B, 16SPRING			
2,6-Dinitrotoluene	16WC1A, 16WC1B			

Any HWMU-16 target constituents not listed above were not detected in the downgradient monitoring wells at concentrations exceeding their respective BTLs.

3.6 HWMU-16 PLUME DELINEATIONS

In accordance with VDEQ instructions presented during the May 19, 1999 meeting between Alliant and the VDEQ, Isoconcentration Maps were produced to depict constituent plumes in the groundwater beneath the site (Appendix A). In order to evaluate the shape and position of constituent plumes over time, historical Isoconcentration Maps were developed using the historical maximum concentrations for the constituents monitored at the site for the time periods of 1992 through 1995 and 1996 through 1998. The historical maximum concentrations for these time periods are listed in Tables 3 and 4, respectively (Appendix B).

Groundwater analytical data collected prior to 1992 were not included in the evaluation of historical maximum concentrations. The data collected prior to 1992 are considered unreliable due to "order-of-magnitude" variations in parameter concentrations from quarter to quarter, as well as a general lack of laboratory QA/QC. Additionally, the groundwater monitoring analyte lists prior to 1992 did not include many of the parameters on the current groundwater monitoring analyte list for HWMU-16.

TABLE 2 HWMU-16 Calculated Background Values

Constituent	Background Concentration		
	(μg/l unless otherwise noted)		
Antimony	3		
Arsenic	1		
Barium	175.4		
Beryllium	0.7		
Cadmium	0.2		
Chromium	6.2		
Cobalt	5		
Copper	13		
Lead	. 10		
Mercury	0.2		
Nickel	16		
Selenium	1		
Silver	0.5.		
Thallium	6 ,		
Vanadium	151		
Zinc	51		
Bromoform	0.3		
Carbon Tetrachloride	0.2		
Chlorobenzene	0.1		
Chloromethane	0.3		
1,4-Dichlorobenzene	0.1		
Dichlorodifluoromethane	46.5		
1,1-Dichloroethane	9.5		
1,2-Dichloroethane	0.1		
trans-1,2-Dichloroethene	0.1		
Ethylbenzene	0.1		
Methyl Ethyl Ketone	1.1		
1,1,2,2-Tetrachloroethane	0.3 ,		
Tetrachloroethene	0.7		
Toluene	0.1		
1,1,1-Trichloroethane	9.2		
1,1,2-Trichloroethane	0.5		
Trichloroethene	0.1		
Trichlorofluoromethane	11.3		
Vinyl Chloride	0.1		
Xylenes (total)	0.2		

TABLE 2 HWMU-16 Calculated Background Values

Constituent	Background Concentration (μg/l unless otherwise noted)
Di-n-butylphthalate	5
2,4-Dinitrotoluene	0.10
2,6-Dinitrotoluene	0.11
2378-TCDF	0.0485 ppt
12378-PECDF	0.0439 ppt
23478-PECDF	0.0417 ppt
123478-HXCDF	0.0390 ppt
123678-HXCDF	0.0377 ppt
234678-HXCDF	0.0428 ppt
123789-HXCDF	0.0415 ppt
1234678-HPCDF	0.0615 ppt
1234789-HPCDF	0.0709 ppt
OCDF	0.1307.ppt
Cyanide	10 3
Total Organic Carbon (x4)	7000
Total Organic Halides (x4)	42.2
Specific Conductivity	672 μS/cm
pН	5.7 to 7.9 pH units

Appendix IX Constituents Detected Since Permit Issuance HWMUs 5, 7, 10, and 16 Radford Army Ammunition Plant

Unit	Quarter Initially Detected	Constituent	Background Calculated or QL?	Background (ug/L)	GPS Required? (261 Appendix VIII)	Proposed GPS (ug/L)	Source
	Fourth Quarter 2003	Chromium	QL	5	yes	100	USEPA MCL
		Diethyl Ether	QL	12	no	NA	NA
HMWU-5		2-Nitroaniline	QL	20	no	NA	NA
HIVIVV U-3		4-Nitroaniline	QL	20	yes	20	Background/QL
		Nitrobenzene	QL	10	yes	10	Background/QL
	Third Quarter 2006	Dichlorodifluoromethane	QL	1	yes	125.2	VDEQ ACL
HWMU-7	Third Quarter 2003	Copper	Calculated	49	no	NA	NA
HVVIVIU-7	Second Quarter 2004	Zinc	Calculated	217	no	NA	NA
	First Quarter 2003	Cobalt	QL	5	no	NA	NA
HWMU-10	Second Quarter 2003	Vanadium	QL	10	no	NA	NA
	Second Quarter 2005	Acetone	QL	10	no	NA	NA
		2-Propanol	QL	50	no	NA	NA
	Second Quarter 2003	Chloroethane	Calculated	20.7	yes	20.7	Background/QL
HWMU-16		Diethyl Ether	Calculated	75.5	no	NA	NA
		Dimethyl Ether	Calculated	17.0	no	NA	NA
	Third Quarter 2003	Methylene Chloride	Calculated	13.95	no*	NA	NA
	Second Quarter 2004	1,1,2-Trichloro-1,2,2-trifluoroethane	Calculated	1.2	no*	NA	NA

- HWMU-5: The additional Appendix IX constituents detected in the downgradient point of compliance wells were not detected above their respective Quantitation Limits (QLs) in the upgradient well. As a result, background concentrations for those constituents were set as equal to their respective QLs. In accordance with the Permit (Condition V.J.1.g.), GPS are proposed for those additional Appendix IX constituents that are listed in Appendix VIII of 40 CFR Part 261 (chromium, 4-nitroaniline, nitrobenzene, and dichlorodifluoromethane). No GPS are proposed for the additional Appendix IX constituents that are not listed in Appendix VIII of 40 CFR Part 261 (diethyl ether and 2-nitroaniline).
- HWMU-7: Background concentrations for the additional Appendix IX constituents detected in the downgradient point of compliance wells (copper and zinc) were previously calculated and submitted to the VDEQ in the August 1998 *Groundwater Quality Assessment Report for HWMU-7* prepared by ERM, Inc. In accordance with the Permit (Condition V.J.2.g.), no GPS are proposed for the additional Appendix IX constituents (copper and zinc), as they are not listed in Appendix VIII of 40 CFR Part 261.
- HWMU-10: The additional Appendix IX constituents detected in the downgradient point of compliance wells were not detected above their respective Quantitation Limits (QLs) in the upgradient well. As a result, background concentrations for those constituents were set as equal to their respective QLs. In accordance with the Permit (Condition V.J.3.g.), no GPS are proposed for the additional Appendix IX constituents (cobalt, vanadium, acetone, and 2-propanol), as they are not listed in Appendix VIII of 40 CFR Part 261.
- HWMU-16: Background concentrations for additional Appendix IX constituents chloroethane, diethyl ether, dimethyl ether, and methylene chloride were calculated using data collected from upgradient well 16C1 during the period from Third Quarter 2003 through Third Quarter 2004. The background concentration for additional Appendix IX constituent 1,1,2-trichloro-1,2,2-trifluoroethane was calculated using data collected from upgradient well 16C1 during the period from Second Quarter 2004 through Third Quarter 2006. In accordance with the Permit (Condition V.J.4.g.), GPS are proposed for additional Appendix IX constituents that are listed in Appendix VIII of 40 CFR Part 261 (chloroethane). No GPS are proposed for the additional Appendix IX constituents that are not listed in Appendix VIII of 40 CFR Part 261 (diethyl ether and dimethyl ether).

 *Methylene chloride and 1,1,2-trichloro-1,2,2-trifluoroethane should not be added to the Groundwater Monitoring List for HWMU-16, as these constituents were only detected in the upgradient well for the Unit, and not in the downgradient point of compliance wells.

Statistical Computations – RAAP HWMU-16 – 1,1,2-Trichloro-1,2,2-Trifluoroethane

In accordance with the facility permit and VHWMR, statistical background concentration is being established for 1,1,1-Trichloro-1,2,2-Trifluoroethane. Inter-well upper prediction limits (UPL) were calculated on the background data for this target parameter in accordance with the facility permit and VHWMR (40 CFR 264.97(h)). Background data for this target parameter consisted of all data for the background well 16C1 collected from 2nd quarter 2004 through 3rd quarter 2006.

Discussion of Tests for Normality

The power of a statistical tool to account for false positive and false negative results, while accurately detecting true statistical variations for a facility under scrutiny depends on numerous factors, one of which is the distribution of the data. A great number of statistical tools are based on the assumption that data are normally distributed. Hence the distribution of the sample population for parameters evaluated under this statistical analysis is first determined. Sample populations are tested for normal distribution using several normality tests. "Groundwater Information Tracking System with Statistical Analysis Capability" (GRITS/STAT) v5.0 was the software used to run these statistical tests. GRITS/STAT is an analytical software package provided by the USEPA. The distributions of the data sets were verified in the original mode as well as in log-transformed mode. The normality of the data set was evaluated using the Shapiro-Wilk test for normality.

Discussion of Prediction Interval Tests

Normality tests are performed prior to running parametric tests (tests that require that the data be normal). Results of the normality tests show that the background data for 1,1,2-Trichloro-1,2,2-Trifluoroethane is non-normally distributed. Non-parametric UPL (NUPL) was constructed on the background data for this parameter. The confidence levels of NUPLs are typically approximate and estimated to be around 91%.

Summary of UPL

Parameter	Background Data Distribution	Type of UPL	Multiple Comparisons/year	UPL (μg/l)
1,1,2-Trichloro-1,2,2-	Non-Normal	NUPL	N/A	1.2
Trifluoroethane				

Statistical Computations – RAAP HWMU-16

In accordance with the facility permit and VHWMR, statistical background concentrations are being established for the four new target parameters chloroethane, diethyl ether, dimethyl ether and methylene chloride. These four target parameters were added to the facility monitoring program during the 3rd quarter 2003 monitoring event. Inter-well upper prediction limits (UPL) were calculated on the background data for the target parameters in accordance with the facility permit and VHWMR (40 CFR 264.97(h)). Background data for these target parameters consisted of all data for the background well 16C1 collected from 3rd quarter 2003 through 3rd quarter 2004.

Discussion of Tests for Normality

The power of a statistical tool to account for false positive and false negative results, while accurately detecting true statistical variations for a facility under scrutiny depends on numerous factors, one of which is the distribution of the data. A great number of statistical tools are based on the assumption that data are normally distributed. Hence the distribution of the sample population for parameters evaluated under this statistical analysis is first determined. Sample populations were tested for normal distribution using several normality tests. "Groundwater Information Tracking System with Statistical Analysis Capability" (GRITS/STAT) v5.0 was the software used to run these statistical tests. GRITS/STAT is an analytical software package provided by the USEPA. The distributions of the data sets were verified in the original mode as well as in log-transformed mode. The normality of the data sets was evaluated using the Shapiro-Wilk test for normality.

Discussion of Prediction Interval Tests

Normality tests are performed prior to running parametric tests (tests that require that the data be normal). A 99% confidence parametric inter-well UPL was computed for each of the four target parameters that showed normally distributed background data. Results of the normality tests show that the background data for chloroethane, diethyl ether and methylene chloride are normally distributed, and the background data for dimethyl ether is non-normally distributed. Non-parametric UPL (NUPL) was constructed on the background data for dimethyl ether, and parametric UPLs (PUPL) were constructed on the background data for chloroethane, diethyl ether and methylene chloride. No adjustments to the error rates were made to the NUPLs for multiple comparisons. Adjustment for 10 comparisons per year (considering 10 compliance monitoring wells at the facility and 4 quarters of data for each year, and considering historic detects, 10 is considered a representative number for multiple comparisons per year) was made to the PUPLs. The confidence levels of NUPLs are well less than 95%. Any statistically significant increase (SSI) must be confirmed by verification sampling.

Summary of UPLs

Parameter	Background	Type	Multiple	UPL (μg/l)
	Data Distribution	of UPL	Comparisons/year	
Chloroethane	Normal	PUPL	10	20.7
Diethyl ether	Normal	NUPL	10	75.5
Dimethyl ether	Non-normal	PUPL	N/A	17.0
Methylene Chloride	Normal	PUPL	10	13.95

RAAP-HWMU-16 - Statistical Analysis - Notes

1) Y2K Correction dates are as shown in table below.

Actual Event	Date Used in Stat Software	
2000-Qtr1	12/13/1999	
2000-Qtr2	12/14/1999	
2000-Qtr3	12/15/1999	
2000-Qtr4	12/16/1999	
2001-Qtr1	12/17/1999	
2003-Qtr3	12/18/1999	
2003-Qtr4	12/19/1999	
2004-Qtr1	12/20/1999	
2004-Qtr2	12/21/1999	
2004-Qtr3	12/22/1999	

Interwell Tests:

2) Background data for target parameters chloroethane, diethyl ether, dimethyl ether and methylene chloride were evaluated using Shapiro-Wilk test. Background data showed normal distribution for chloroethane, diethyl ether and methylene chloride. Parametric interwell 99% confidence upper prediction limits were computed for parameters with normally distributed background data. Dimethyl ether background data was non-normally distributed. Therefore non-parametric Upper Prediction Limit (UPL) was computed for dimethyl ether.

3) No adjustments for multiple comparisons could be made for non-parametric UPLs. Adjustments were made to the parametric UPLs for 10 future comparisons per year to account for multiple compliance monitoring wells and quarterly event data. Any Statistically significant increase (SSI) must be confirmed by verification sampling.

E:\Ross Work\Radford AAP Archives\HWMU-16\[HWMU16StatDate correction.xls]Sheet1

Normality Tests

Report Printed: 02-02-2005 13:49

Facility: RAAPHWMU16 Haz. Waste Unit 16 - RAAP

Address:

City:Radford

ST:VA Zip:24141

County: PULASKI

Contact:

Phone:() -

Permit Type:Detection

Constituent: ClEthane Chloroethane

CAS Number: 75-00-3

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

2.000 ppb

Start Date: Mar 31 1996 End Date:Dec 22 1999

Normality Test on Observations for wells listed below:

Well:16C1

Position: Upgradient Observations: 5

Scale Original: Minimum 1.000

Maximum 6.400

Mean 4.340

Std Dev

Log:

0.000

1.856

1.303

2.078 0.749

Pooled Statistics

Observations:

5

Statistic

Log Original Scale Scale

Mean: Std Dev: 4.340 2.078 1.303 0.749

Skewness: **Kurtosis:**

-0.810

-1.296* -0.011

Minimum: Maximum: -0.5551.000

0.000

CV:

6.400 0.479

1.856 0.575

Shapiro-Wilk Statistics

Test 5% Critical 1% Critical Scale Statistic

Value

Value

Original:

0.9037

0.7620

0.6860

Log: 0.7615* 0.7620 0.6860

* Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Facility:Haz. Waste Unit 16 - RAAP Parameter:Chloroethane(CAS Number:75-00-3)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

```
Observations (n):
  Shapiro-Wilk
                     (W):
                               0.9037
 Critical W,\alpha=0.01:
                               0.6860
                    Mean: 4.340 ppb
                             2.078 ppb
                Std Dev:
                       DF:
                             0000 0.99
 Conf. Level (1-\alpha):
                                   10
Future Samples (k):
           t - 1 - \alpha - \vdots
-\frac{1}{k}
                                7.1732
                                7.8579
                   Kappa:
                       UL: 20.669 ppb
                       LL: -∞
```

Normality Tests

Report Printed: 02-02-2005 13:49

Facility: RAAPHWMU16 Haz. Waste Unit 16 - RAAP

Address:

City:Radford

ST:VA Zip:24141

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: DEthEth Diethyl ether

CAS Number:

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

24.000 ppb

Start Date: Mar 31 1996 End Date: Dec 22 1999

Normality Test on Observations for wells listed below:

Well:16C1

Position: Upgradient Observations: 5

Scale Original: Minimum 12.000

Maximum 30.000

Mean 21.200

Std Dev 6.907

Log:

2.485

3.401

3.007

0.355

Pooled Statistics

Observations:

5

Statistic Original Scale

3.007 21.200 Mean: Std Dev: 6.907 0.355 -0.122-0.491Skewness: -1.140-1.024**Kurtosis:**

Minimum:

12.000

2.485

Maximum:

30.000

3.401

CV:

0.326

0.118

Log Scale

Shapiro-Wilk Statistics

Test 5% Critical 1% Critical

Scale Statistic Original:

0.9768

Value 0.7620 Value 0.6860 Log: 0.9507 0.7620 0.6860

* Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Parametric Prediction Interval Report Printed February 2,2005

Page 1

Facility:Haz. Waste Unit 16 - RAAP Parameter:Diethyl ether(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

```
Observations (n):
                 (W):
  Shapiro-Wilk
                           0.9768
 Critical W,\alpha = 0.01:
                           0.6860
                  Mean: 21.200 ppb
                          6.907 ppb
              Std Dev:
                     DF:
                          0.99
 Conf. Level (1-\alpha):
                              10
Future Samples (k):
          t - 1 - \alpha - 1
                            7.1732
                 Kappa:
                            7.8579
                     UL: 75.470 ppb
                     LL: -∞
```

Normality Tests

Report Printed: 02-02-2005 13:53

Facility: RAAPHWMU16 Haz. Waste Unit 16 - RAAP

Address:

City:Radford ST:VA Zip:24141

County: PULASKI

Contact:

Phone:() -

Permit Type: Detection

Constituent: DMethEth Dimethyl ether

CAS Number: - -

MCL: 0.000 ppb ACL: 0.000 ppb Detect Limit: 24.000 ppb

Start Date:Mar 31 1996 End Date:Dec 22 1999

Normality Test on Observations for wells listed below:

Well:16C1 Position: Upgradient Observations:5

 Scale
 Minimum
 Maximum
 Mean
 Std Dev

 Original:
 12.000
 17.000
 13.000
 2.236

 Log:
 2.485
 2.833
 2.555
 0.156

Pooled Statistics

Observations: 5

Original Statistic Log Scale Scale 2.555 13.000 Mean: 2.236 0.156 Std Dev: 1.500* Skewness: 1.500* 0.250 0.250**Kurtosis:** Minimum: 12.000 2.485 2.833 17.000 Maximum: 0.061 CV: 0.172

Shapiro-Wilk Statistics

Test 5% Critical 1% Critical Scale Statistic Value Value Original: 0.5521* 0.7620 0.6860 Log: 0.5521* 0.7620 0.6860

* Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Nonparametric Prediction Interval Report Printed February 2,2005

Facility:Haz. Waste Unit 16 - RAAP Parameter:Dimethyl ether(CAS Number:- -)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

Observations (n):

5

Conf. Level $(1-\alpha)$:

33.330%

UL: 17.000 ppb LL: 0.000

Report Produced by GRITS/STAT 5.01

Page 1

Normality Tests

Report Printed: 02-02-2005 13:54

Facility: RAAPHWMU16 Haz. Waste Unit 16 - RAAP

Address:

City:Radford

ST:VA Zip:24141

County:PULASKI

Contact:

Phone:() -

Permit Type: Detection

Dichloromethane (Methylene chloride) Constituent: MeCl

CAS Number: 75-09-2

MCL:

0.000 ppb

ACL:

0.000 ppb

Detect Limit:

2.000 ppb

Start Date: Mar 31 1996 End Date: Dec 22 1999

Normality Test on Observations for wells listed below:

Well:16C1 Position: Upgradient Observations: 5

Scale Original: Minimum 4.100

Maximum 6.800

Mean 5.800 1.037

Std Dev

Log:

1.411

1.917 1.743 0.197

Pooled Statistics

Observations:

5

Statistic	Original	Log
	Scale	Scale
Mean:	5.800	1.743
Std Dev:	1.037	0.197
Skewness:	-0.925	-1.088*
Kurtosis:	-0.436	-0.263
Minimum:	4.100	1.411
Maximum:	6.800	1.917
CV:	0.179	0.113

Shapiro-Wilk Statistics

Test 5% Critical 1% Critical

Scale Statistic

Original: 0.8964

Value 0.7620 Value 0.6860 Log: 0.8519 0.7620 0.6860

 $\mbox{*}$ Indicates statistically significant evidence of non-normality. GRIT/STAT Version 5.0

Parametric Prediction Interval Report Printed February 2,2005

Page 1

Facility:Haz. Waste Unit 16 - RAAP Parameter:Dichloromethane (Methylene chloride(CAS Number:75-09-2)

ONE-TAILED UPPER PARAMETRIC PREDICTION INTERVAL

```
Observations (n):
                     (W):
  Shapiro-Wilk
                              0.8964
 Critical W,\alpha=0.01:
                              0.6860
                    Mean: 5.800 ppb
                             1.037 ppb
                Std Dev:
                       DF:
                            0.95000.99
 Conf. Level (1-\alpha):
Future Samples (k):
                                  10
           t<sub>-1</sub> - α<sub>-1</sub>:
                                7.1732
                   Kappa:
                                7.8579
                       UL: 13.947 ppb
                       LL: -∞
```

Target Analyte Monitoring Results - HWMU-16 Point of Compliance Wells Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 16C1

All Results in ug/L.

Analtye/Quarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
Chloroethane						75-00-3		
Third Quarter 2003	6.4	U	4.8	U	U	1	20.7	8260B
Fourth Quarter 2003	5.7	U	2.6	1.1	U	1	20.7	8260B
First Quarter 2004	υJ	UJ	UJ	U J	UJ	1	20.7	8260B
Second Quarter 2004	4.4	U	2.4	0.63 J	U	1	20.7	8260B
Third Quarter 2004	4.2	υ	2	U	U	1	20.7	8260B
Fourth Quarter 2004	4.9	U	2.5	U	U	1	20.7	8260B
First Quarter 2005	7.6 J	UJ	3.7 J	U J	U J	1	20.7	8260B
Second Quarter 2005	υJ	U	υJ	U	U	1	20.7	8260B
Third Quarter 2005	4.7 J	Uj	U	UJ	υJ	1	20.7	8260B
Fourth Quarter 2005	4.6 J	U	2.6 J	U	ប	1	20.7	8260B
First Quarter 2006	5.3	υ	U	U	U	1	20.7	8260B
Second Quarter 2006	5 J	U	2 J	U	U	1	20.7	8260B
Third Quarter 2006	5	U	0.7 J	0.7 J	U	1	20.7	8260B
Fourth Quarter 2006	5.8	U	1	U	υ	1	20.7	8260B
First Quarter 2007	6.1	U	1	U	U	1	20.7	8260B
Second Quarter 2007	5.2	U	1.4	U	U	1	20.7	8260B
Diethyl ether					CAS#	60-29-7		
Third Quarter 2003	12 J	U	12 J	U	U	12	-	8260B
Fourth Quarter 2003	30	U	14	U	U	12	-	8260B
First Quarter 2004	24	U	U	U	U	12	-	8260B
Second Quarter 2004	23 J	UJ	13 J	UJ	UJ	12	-	8260B
Third Quarter 2004	17	U	U	U	U	12	-	8260B
Fourth Quarter 2004	24	υJ	U	U	UJ	12	-	8260B
First Quarter 2005	29	U	14	U	U	12	-	8260B
Second Quarter 2005	20	U J	9.2	UJ	UJ	12	-	8260B
Third Quarter 2005	30	U	15	U	U	12	-	8260B
Fourth Quarter 2005	25	U	18	U	Ü	12	-	8260B
First Quarter 2006	19	U	U	U	U	12	-	8260B
Second Quarter 2006	17	U	U	U	Ũ	12.5	-	8260B
Third Quarter 2006	33	1.5 J	4.3 J	4.6 J	U	12.5	-	8260B
Fourth Quarter 2006	20	U	U	U	U	12.5	-	8260B
First Quarter 2007	21	U	U	U	U	12.5		8260B
Second Quarter 2007	17 J	1.5 J	5.7 J	2.1 J	fi fi	12.5	-	8260B
Dimethyl ether					CAS#	115-10-6		
Third Quarter 2003	6.6 J	U	9.9 J	U	U	12	-	8260B
Fourth Quarter 2003	U	U	U	U	U	12	-	8260B
First Quarter 2004	17 J	Uj	13 J	UJ	n 1	12	-	8260B
Second Quarter 2004	υJ	U J	6.6 J	υJ	υJ	12	-	8260B
Third Quarter 2004	UJ	UJ	UJ	UJ	U J	12	-	8260B
Fourth Quarter 2004	16 J	UJ	12 J	U	υJ	12	-	8260B
First Quarter 2005	26	U	25	U	U	12	-	8260B
Second Quarter 2005	15	U	14	U	U	12	-	8260B
Third Quarter 2005	13	U	U	U	U	12	-	8260B
Fourth Quarter 2005	υ	υ	U	U	U	12	-	8260B
First Quarter 2006	U	. U	U	U	U	12	-	8260B
Second Quarter 2006	U	U	υ	U	U	12.5	-	8260B
Third Quarter 2006	11 J	UJ	3.2 J	2.8 J	υJ	12.5	-	8260B
Fourth Quarter 2006	U	U	U	U	U	12.5	-	8260B
First Quarter 2007	U	υ	U	U	U	12.5	-	8260B
Second Quarter 2007	11 J	U	7 J	2.6 J	1.2 J	12.5	-	8260B

Target Analyte Monitoring Results - HWMU-16 Point of Compliance Wells Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 16C1

All Results in ug/L.

Analtye/Quarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL.	GPS	Method
Methylene chloride			<u> </u>		CAS#			
Third Quarter 2003	4.1	U	U	U	U	1	13.95	8260B
Fourth Quarter 2003	6.8	U	U	U	U	1	13.95	8260B
First Quarter 2004	6.4	U	U	U	U	1	13.95	8260B
Second Quarter 2004	5.7	U	บ	U	U	1	13.95	8260B
Third Quarter 2004	6	U A	U A	U A	U A	1	13.95	8260B
Fourth Quarter 2004	6.4	U	U	U	U	1	13.95	8260B
First Quarter 2005	6.8 J	U	υ	U	U	1	13.95	8260B
Second Quarter 2005	6.3	U	U	U	U	1	13.95	8260B
Third Quarter 2005	6.2	U	U	U	U	1	13.95	8260B
Fourth Quarter 2005	4.7	U	U	U	U	1	13.95	8260B
First Quarter 2006	4.9	U	U	U	U	1	13.95	8260B
Second Quarter 2006	7	U	U	U	U	1	13.95	8260B
Third Quarter 2006	UΝ	UN	UN	UN	UN	1	13.95	8260B
Fourth Quarter 2006	U A	U	U	U A	U	1	13.95	8260B
First Quarter 2007	6.3	υ	U	U	U	1	13.95	8260B
Second Quarter 2007	3.4	U	U	U	U	1	13.95	8260B
1,1,2-Trichloro-1,2,2-Trifluc	roethane		•		CAS # 7	6-13-1		
Third Quarter 2003	U	U	U	U	U	1	-	8260B
Second Quarter 2004	1.2	UJ	υJ	U J	Uj	1	-	8260B
Third Quarter 2004	Ü	υ	U	U	U	1	•	8260B
Fourth Quarter 2004	U	U	U	U	U	1	-	8260B
First Quarter 2005	1	U	U	U	U	1	*	8260B
Second Quarter 2005	U	U	U	U	U	1	-	8260B
Third Quarter 2005	υ	U	υ	U	U	1	•	8260B
Fourth Quarter 2005	U	υ	U	U	U	1	-	8260B
First Quarter 2006	U	υ	U	U	U	1	-	8260B
Second Quarter 2006	Ü	U	U	U	U	1	-	8260B
Third Quarter 2006	U	U	U	U	U	1	-	8260B
Fourth Quarter 2006	U	U	U	U	U	1	-	8260B
First Quarter 2007	U	υ	U	U	U	1	-	8260B
Second Quarter 2007	U	U	U	U	U	1	-	8260B

Target Analyte Monitoring Results - HWMU-16 Point of Compliance Wells Radford Army Ammunition Plant, Radford, Virginia

Upgradient well = 16C1

All Results in ug/L.

Analtye/Quarter	16C1	16MW8	16MW9	16WC1A	16WC1B	OL	GPS	Method
L								

Definitions: QL Denotes permit required quantitation limit. U Denotes analyte not detected at or above QL UA Denotes analyte not detected at or above adjusted sample QL. J Denotes associated result is estimated. When used with "U" (i.e., "UJ"), denotes analyte not detected at or above QL and QL is estimated. When used with "UA" (i.e., "UAJ"), denotes analyte not detected at or above adjusted QL and adjusted QL is estimated. UN Denotes analyte concentration is less than the quantiation limit and five times the blank concentration. Not reliably detected due to blank contamination. This qualifier used only for Appendix IX monitoring event when results are reported to at or above the project detection limit. R Denotes result rejected. Q Denotes data validation qualifier. CAS# Denotes Chemical Abstract Services registration number. X Denotes mass spectral confirmation not obtained-result suspect.

GPS Denotes Groundwater Protection Standards listed in Appendix G to Attachment 5 in the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Units 5, 7, 10, and 16 (October 4, 2002).

NS denotes not sampled. NA denotes not analyzed. "-" denotes not detected (pre-2nd Quarter 2003) or not available / not sampled (beginning 2nd Quarter 2003).

Notes

-Appendix IX Groundwater Monitoring Events:

Third Quarter 2003, Second Quarter 2004, Second Quarter 2005, Third Quarter 2006, Second Quarter 2007
For Appendix IX monitoring events, all results evaluated to detection limit. See laboratory data deliverable for detection limit.

-9/30/2003: Verification sampling event for 16C1 (heptachlor) and 16C1B (Endrin). Verification results: all results reported not detected to detection limit. Original results 0.067 µg/l and 0.39 µg/l, respectively. Confirmation results reported in this table. -9/30/2003: Verification sampling event for 16C1 (chloroethane, ethyl ether, methyl ether, methylene chloride) and 16MW9 (chloroethane, ethyl ether, methyl ether, methyl ether, methyl ether). Verification results: all results confirmed original analysis. Original results reported in this table.

-June 21, 2004: Verification event for 8260B 16C1 (1,1-dichloroethene and 1,1,2-trichloro-1,2,2-trifluoroethane).

Verification results: all not detected except 1,1,2-trichloro-1,2,2-trifluoroethane added to quarterly analyte list beginning 3Q 2004.

Due to laboratory error, Appendix IX results for semivolatiles (Method 8270C) will be presented in 3Q 2004. Verification event results for 16WC1B and 16C1 (8081A) — all verification results were not confirmed.

07/27-28/2005. Verification event for 16WC1B (Mercury Method 7470A.) Not detected in verification sample.

Also, verification event for 16C1, 16WC1B-8081A. and 16C1, 16MW9, 16WC1A-ethanol. All verification results not detected. Verification results used.

06/19/2007. Verification event for 16WC1B and 16MW9 thallium Not detected in verification sample. Verification results used.

Ross Miller

From: Flint, Jeremy <Jeremy.Flint@ATK.COM>
Sent: Friday, January 20, 2012 2:23 PM

To: Powers, Loretta

Cc: Janet Frazier; Kathy Olsen; Mike Lawless; Ross Miller

Subject: FW: VA1210020730, RAAP, Additional App. IX GW Mont Results PCC HWMU 5,7,10,16,

Final Notification

Loretta,

Please file the attached e-mail as an answer to ATK letter number 11-815-106

Thank You
Jeremy Flint
Lead Compliance Engineer
Environmental Affairs Department
Alliant Techsystems Inc.
P.O. Box 1

Radford, VA 24143 Phone: 540 - 639 - 7668 Fax: 540 - 639 - 8109

"Together Everyone Accomplishes More." (TEAM)

From: Maiden, Vince (DEQ) [mailto:Vincent.Maiden@deq.virginia.gov]

Sent: Friday, January 20, 2012 10:26 AM

To: Flint, Jeremy

Cc: McKenna, Jim; Schneider, Jutta (DEQ)

Subject: VA1210020730, RAAP, Additional App. IX GW Mont Results PCC HWMU 5,7,10,16, Final Notification

Jeremy:

The Department has received the referenced August 1, 2011 document. The notification indicates the benzene was confirmed in 16MW and recommended that this contituent be added to the compliance monitoring list for HWMU-16. In addition, the facility recommeded that the background for benzene be estalished at the LOQ of $1\mu g/l$ and the groundwater protection standard be set at $5\mu g/l$ based on the MCL. The Department agrees with the recommedations. It appears that these changes were included in the permit renewal application dated September 15, 2011. The Department will formally address those changes along with others in the permit renewal process. If you have any questions please feel free to contact me.

Vincent Maiden

Corrective Action Project Manager
Virginia Department of Environmental Quality
Office of Remediation Programs
629 East Main Street or P.O. Box 1105

Richmond, VA 23218 Richmond, VA 23219

(276) 676-4867

Vincent.Maiden@deq.virginia.gov

APPENDIX E

LABORATORY ANALYTICAL RESULTS – YEAR 2012 (CD-ROM)

APPENDIX F

FIELD NOTES (CD-ROM)

APPENDIX G

CORRESPONDENCE (CD-ROM)

APPENDIX E

LABORATORY ANALYTICAL RESULTS – YEAR 2012 (CD-ROM)

Appendix IX Monitoring Event

Draper Aden Associates
Engineering • Striveying • Environmental Services

Monitoring Event: Second Quarter 2012

	Analyte	Quantitation Limit/QL (ug/L)	Detection Limit/DL (ug/L)
Method: 60	10C		
Laboratory:	CompuChem, a Division of L	iberty Analytical, Cary, NC	
Tin	, , , , , , , , , , , , , , , , , , ,	50	17.4
Method: 60	20A		
Laboratory:	CompuChem, a Division of L	berty Analytical, Cary, NC	
Antimony		2	0.4
Arsenic		10	2
Barium		10	1
Beryllium		1	0.2
Cadmium Chromium		1 5	0.2
Cobalt		5 5	1 1
Copper		5	I
Lead		1	0.2
Nickel		10	2
Selenium		10	3
Silver		2	0.2
Thallium Vanadium		10	0.2 1
Zinc		10	3
Method: 74	170A		
Laboratory:	CompuChem, a Division of L	iberty Analytical, Cary, NC	
Mercury Method: 80	81B	2	0.2
Laboratory:	CompuChem, a Division of La	iberty Analytical, Cary, NC	
Aldrin		0.025	0.0027
alpha-BHC		0.025	0.0019
beta-BHC		0.025	0.0095
delta-BHC gamma-BHC		0.025 0.025	0.0032 0.0019
Chlordane		0.8	0.24
4,4'-DDD		0.05	0.0055
4,4'-DDE		0.05	0.0039
4,4'-DDT		0.05	0.0051
Dieldrin		0.05	0.0051
Endosulfan I Endosulfan II		0.025 0.05	0.0043 0.0055
Endosulfan su		0.05	0.0068
Endrin		0.05	0.0069
Endrin aldehy	yde	0.05	0.012
Heptachlor		0.025	0.0024
Heptachlor ep		0.025	0.0028
Methoxychlor	•	0.25	0.015
Toxaphene Method: 81	51A	2.5	0.48
Laboratory:	CompuChem, a Division of L	iberty Analytical, Cary, NC	
2,4-Dichlorop	henoxyacetic acid	5	3.4
Dinoseb		2.5	0.93
Silvex		2.5	0.59
2,4,5-Trichlor	ophenoxyacetic acid	2.5	0.74

Appendix IX Monitoring Event

Monitoring Event: Second Quarter 2012

Analyte	Quantitation Limit/QL (ug/L)	Detection Limit/DL (ug/L)
Method: 8260B		
Laboratory: Lancaster Laboratories, Lanca	ister, PA	
Acetone	10	3
Acetonitrile	100	32
Acrolein	25	5
Acrylonitrile	10	1
Allyl chloride	10	0.8
Benzene	1	0.1
Bromobenzene	1	0.1
Bromochloromethane	1	0.2
Bromodichloromethane	1	0.1
Bromoform	1	0.1
2-Butanone	10	1
n-Butyl alcohol	50	20
tert-Butyl alcohol	200	50
n-Butylbenzene	1	0.1
sec-Butylbenzene	1	0.1
tert-Butylbenzene	1	0.1
Carbon disulfide	10	0.4
Carbon tetrachloride	1	0.2
Chlorobenzene	1	0.1
Chloroethane	1	0.1
Chloroform	1	0.1
2-Chloroethyl vinyl ether	20	0.5
Chloroprene	10	0.5
2-Chlorotoluene	1	0.1
4-Chlorotoluene		0.1
	1	0.1
Cyclohexane		
Dibromochloromethane	1	0.1
1,2-Dibromo-3-chloropropane	1	0.2
1,2-Dibromoethane	1	0.1
1,2-Dichlorobenzene	1	0.1
1,3-Dichlorobenzene	1	0.1
1,4-Dichlorobenzene	1	0.1
trans-1,4-Dichloro-2-butene	10	1
Dichlorodifluoromethane	1	0.1
1,1-Dichloroethane	1	0.1
1,2-Dichloroethane	1	0.1
1,1-Dichloroethene	1	0.2
trans-1,2-Dichloroethene	1	0.2
1,2-Dichloropropane	i	0.1
1,3-Dichloropropane	1	0.1
2,2-Dichloropropane	1	0.3
1,1-Dichloropropene	1	0.1
cis-1,3-Dichloropropene	1	0.1
trans-1,3-Dichloropropene	1	0.1
Diethyl ether	13	1.1
Dimethyl ether	13	0.1
1,4-Dioxane	200	45
Ethyl acetate	10	1
Ethanol	250	52
Ethylbenzene	1	0.1
Ethyl methacrylate	10	0.8
Ethylene oxide	100	20

Wednesday, August 01, 2012

Page 3 of 6

Appendix IX Monitoring Event

Monitoring Event: Second Quarter 2012

Laboratory: Lancaster Laboratories, Lancaster, PA Hexachlorobutadiene 1 0.1 Hexachloroethane 10 0.1 2-Hexanone 10 1 Isobutyl alcohol 200 10 Isopropylbenzene 1 0.1 Isopropylether 10 0.6 4-Isopropyloluene 1 0.1 Methacrylonitrile 100 9.8 Bromomethane 1 0.5 Chloromethane 1 0.5 Iodomethane 1 0.2 Iodomethane 10 0.6 Methyl methacrylate 10 0.6 4-Methyl-2-pentanone 10 1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentackloroethane 1 0.1 1-Propanol 0 0 2-Propanol 0 0	Analyte	Quantitation Limit/QL (ug/L)	Detection Limit/DL (ug/L)
Hexachlorothane	Method: 8260B		
Hexachlorothane	Laboratory: Lancaster Laboratories Lancast	ter PA	
Hexachloroethane 10 1 2-Hexanone 10 1 Isobutyt lachol 200 10 Isopropyletere 1 0.1 4-Sopropylether 10 0.6 4-Sopropylether 10 0.6 4-Stopropylether 10 0.1 Betharylonitrile 100 9.8 Bromomethane 1 0.2 Chloromethane 10 0.6 Methyl methacylate 10 0.6 4-Methyl-2-pentanone 10 1 Methyl tert-butyl ether 10 0.4 10bromomethane 1 0.1 Methylen chloride 1 0.2 Methylen chloride 1 0.2 Methylen chloride 1 0.2 Propanol 10 0.8 1-Propanol 10 0.8 1-Propanol 10 0.8 1-Propanol 10 0.1 1-Propanol 10 0.1 1-			Λ1
2-Hexanone 10 1 Isobuty alcohol 200 10 Isopropylebrezene 1 0.1 Isopropylether 10 0.6 4-Isopropyloluene 1 0.1 Methacrypolyloluene 10 0.5 Bromonethane 1 0.5 Chloromethane 1 0.2 Iodomethane 10 0.6 Methyl methacrylate 10 0.6 Methyl methacrylate 10 0.4 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methyl tert-butyl ether 10 0.1 Dibromomethane 1 0.1 Methyl tert-butyl ether 10 0.1 Dibromomethane 1 0.1 Pethachloroethane 1 0.1 Horping 10 0.8 1-Propanil 10 0.1			
Isobutyl alcohol 200 10 Isopropylbenzen 1 0.1 Isopropylbenzen 10 0.6 4-Isopropylbulene 1 0.1 Methacrylonitrile 100 9.8 Bromomethane 1 0.5 Chloromethane 1 0.2 Methyl methacrylate 10 3.6 4-Methyl-2-pentanone 10 1 Methyl tert-buly ether 10 1 Dibromomethane 1 0.2 Methyl tert-buly ether 10 0.4 Dibromomethane 1 0.1 Methyl tert-buly ether 10 0.1 Dibromomethane 1 0.1 Methyl tert-buly ether 10 0.1 Dibromomethane 1 0.2 Poplation 2 0.2 Poplation 3 0.2 Poplation 10 0.3 Strong 1 0.1 Titl-2-Tertachloroethane 1 0.1 <td></td> <td></td> <td></td>			
Isopropyleberee 1 0.1 Isopropylebere 10 0.6 4-Isopropylebuene 1 0.1 Methacrylonitrile 100 9.8 Bromomethane 1 0.5 Chloromethane 1 0.2 Iodomethane 10 3.6 Methyl methacrylate 10 3.6 4-Methyl-2-pentanone 10 1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.2 Naphthalene 1 0.1 Rethyl tert-butyl ether 1 0.2 Naphthalene 1 0.2 Propared 1 0.1 Pentachlorothane 1 0.1 Propanol 100 0.8 Propionitrile 100 1.0 n-Propionitrile 1 0.1 n-Propionitrile 1 0.1 n-Propionitrile 1 0.1 retrachloroethane 1 0.1			
Isopropylether 10 0.6 4-Isopropylotiuene 1 0.1 Methacrylotitrile 100 9.8 Bromomethane 1 0.5 Chloromethane 10 0.6 Methyl methacrylate 10 3.6 4-Methyl-2-pentanone 10 1 Methyl terthyl ether 10 4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 1 0.1 1-Propanal 20 2 Propionicrile 100 5 n-Propylenzene 1 0.1 Styrne 1 0.1 1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1			
4-Isopropyltoluene 1 0.1 Methacyjonitrile 100 9.8 Bromomethane 1 0.5 Chloromethane 1 0.2 Iodomethane 10 0.6 Methyl tendercylate 10 3.6 4-Methyl-2-pentanone 10 1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 1 0.8 1-Propanol 100 0.8 2-Propanol 100 0.0 2-Propanol 10 0.1 1,1,1,2-Tertachloroethane 1 0.1 1,1,1,2-Tertachloroethane 1 0.1 1,2,3-Trichloroethane 1			
Methacrylonitrile 100 9.8 Bromomethane 1 0.5 Chloromethane 1 0.2 Iodomethane 10 0.6 Methyl methacrylate 10 3.6 4 Methyl-2-pentanone 10 1 Methyl terr-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.1 Naphthalone 1 0.1 Pentachloroethane 1 0.1 1-Propanol 20 2 2-Propanol 100 0.8 Propionitrile 100 0.0 1-Propanol 100 10 2-Propanol 10 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1 Tetrachloroethane 1 0.1 1,2,3-Trichlorobenzene 1 0.1			
Bromomethane 1 0.5 Chloromethane 1 0.2 Iodomethane 10 0.6 Methyl methacrylate 10 3.6 4-Methyl-2-pentanone 10 1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 1 0.1 1-Propanol 100 0.8 1-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 10 n-Propylearene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,2-3-Trichloroethane 1 0.1 1,2-3-Trichloroethane 1 0.1 1,2-4-Trichloroethane 1 0.1 1,2-4-Trichloroethane 1 0.2			
Chloromethane 1 0.2 Iodomethane 10 0.6 Methyl methacrylate 10 3.6 4-Methyl-x-pentanone 10 1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 20 2-Propanol 100 10 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,1,2-Tetrachloroethane 1 0.1 1,1,1,2-Tetrachloroethane 1 0.1 Tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.2 <td></td> <td></td> <td></td>			
Iodomethane 10 6.6 Methyl methacrylate 10 3.6 4Methyl-2-pentanone 10 1 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Maphthalen 1 0.1 Pentachloroethane 10 0.8 1-Propanol 100 0.8 2-Propanol 100 0.8 Propionitrile 100 0.0 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,1,2-Tetrachloroethane 1 0.2 Tetraphylrofuran 2 0.1 Tetraphylrofuran 2 0.1 1,2,3-Trichloroethane 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.2 1,1,1-Trichloroethane 1 0.2 1,1,1-Trichloroethane 1			
4-Methyl-2-pentanone 10 0.4 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2,2-Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1 1,2,2-Trichloroethane 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.2 Trichloroethane 1 0.2 Trichloroethane 1<	Iodomethane		
4-Methyl-2-pentanone 10 0.4 Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2,2-Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1 1,2,2-Trichloroethane 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.2 Trichloroethane 1 0.2 Trichloroethane 1<	Methyl methacrylate	10	3.6
Methyl tert-butyl ether 10 0.4 Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 30 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.1 Tetrachloroethane 1 0.1 Tetrahydrofuran 25 2 Tolune 1 0.1 1,2,3-Trichloroethane 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 1,2,3-Trichloroethane 1 0.2 1,2,3-Trichloroethane 1		10	1
Dibromomethane 1 0.1 Methylene chloride 1 0.2 Naphthalene 1 0.1 Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.1 Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1 Tetrachloroethane 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichlorofhoromethane 1 0.2 1,2,3-Trichloropropane 1 0.2 1,2,3-Trichloroethane 1 0.2 1,2,3-Trichloroethane 1 0.2 1,2,3-Trichloroethane		10	0.4
Naphthalene I 0.1 Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 1.0 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.2 1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1 Tetrachloroethane 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloroethane 1 0.2 1,2,3-Trichloroethane		1	0.1
Pentachloroethane 10 0.8 1-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.1 Tetrakloroethane 1 0.1 Tetraklydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.2 1,2,3-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethy	Methylene chloride	1	0.2
I-Propanol 100 20 2-Propanol 100 50 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethene 1 0.1 Tetrachloroethene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropopane 1 0.2 1,2,3-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 1 0.2	Naphthalene	1	0.1
2-Propanol 100 50 Propionitrile 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.2 1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethene 1 0.1 1-tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.1 Trichloroethene 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.2 1,2,3-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 0.3 Vinyl chloride 1 0.2	Pentachloroethane	10	0.8
Propositivitie 100 10 n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethene 1 0.1 Tetrahydrofuran 25 2 Toluene 0.1 0.2 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichloroethene 1 0.2 Trichloroethane 1 0.2 1,2,3-Trichloroethane 1 0.2 1,2,3-Trichloroethane 1 0.2 1,2,4-Trichloroethane 1 0.2 1,2,4-Trichloroethane 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenz	1-Propanol	100	20
n-Propylbenzene 1 0.1 Styrene 1 0.1 1,1,2-Tefrachloroethane 1 0.1 1,1,2,2-Tetrachloroethane 1 0.2 Tetrachloroethene 1 0.1 Tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropopane 1 0.2 1,2,4-Trinethylbenzene 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 1,1,2-Trichloroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2	2-Propanol	100	50
Styrene 1 0.1 1,1,2-Tetrachloroethane 1 0.1 1,1,2-Tetrachloroethane 1 0.2 Tetrachloroethene 1 0.1 Tetrahydrofuran 25 2 Toluene 1 0.1 1,2-3-Trichlorobenzene 1 0.1 1,2-4-Trichlorobenzene 1 0.1 1,1-1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2-3-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2-4-Trimethylbenzene 1 0.2 1,2-4-Trimethylbenzene 1 0.2 1,3-5-Trimethylbenzene 1 0.2 1,3-5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Propionitrile	100	10
1,1,2-Tetrachloroethane 1 0.1 1,2,2-Tetrachloroethane 1 0.2 Tetrachloroethene 1 0.1 Tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	n-Propylbenzene	1	0.1
1,1,2,2-Tetrachloroethane 1 0.2 Tetrachloroethane 1 0.1 Tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.1 Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropopane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Styrene	1	0.1
Tetrachloroethene 1 0.1 Tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichloroethane 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropopane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,1,1,2-Tetrachloroethane	I	0.1
Tetrahydrofuran 25 2 Toluene 1 0.1 1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichloroethane 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropopane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,1,2,2-Tetrachloroethane	1	0.2
Toluene 1 0.1 1,2,3-Trichlorobenzene 0.1 0.1 1,2,4-Trichlorobenzene 0.1 0.1 1,1,1-Trichloroethane 0.1 0.1 1,1,2-Trichloroethane 0.1 0.1 Trichloroethene 0.2 0.2 Trichlorofluoromethane 0.2 0.2 1,2,3-Trichloro-1,2,2-Trifluoroethane 0.2 0.2 1,2,4-Trimethylbenzene 0.2 0.2 1,3,5-Trimethylbenzene 0.2 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Tetrachloroethene	1	0.1
1,2,3-Trichlorobenzene 1 0.1 1,2,4-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.1 Trichloroethene 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Tetrahydrofuran	25	2
1,2,4-Trichlorobenzene 1 0.1 1,1,1-Trichloroethane 0.1 1,1,2-Trichloroethane 0.1 Trichloroethene 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Toluene	1	0.1
1,1,1-Trichloroethane 1 0.1 1,1,2-Trichloroethane 1 0.2 Trichloroethene 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,2,3-Trichlorobenzene	1	0.1
1,1,2-Trichloroethane 1 0.1 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,2,4-Trichlorobenzene	1	0.1
Trichloroethene 1 0.2 Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,1,1-Trichloroethane	1	0.1
Trichlorofluoromethane 1 0.2 1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,1,2-Trichloroethane	1	0.1
1,2,3-Trichloropropane 1 0.3 1,1,2-Trichloro-1,2,2-Trifluoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Trichloroethene	1	0.2
1,1,2-Trichloro-1,2,2-Triffuoroethane 1 0.2 1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	Trichlorofluoromethane	1	0.2
1,2,4-Trimethylbenzene 1 0.2 1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2	1,2,3-Trichloropropane	1	0.3
1,3,5-Trimethylbenzene 1 0.2 Vinyl acetate 10 3.3 Vinyl chloride 1 0.2		1	0.2
Vinyl acetate 10 3.3 Vinyl chloride 1 0.2		1	0.2
Vinyl chloride 1 0.2			
	Vinyl acetate	10	3.3
Xylenes (Total) 3 0.2	Vinyl chloride	1	0.2
	Xylenes (Total)	3	0.2

Wednesday, August 01, 2012

Appendix IX Monitoring Event

Monitoring Event: Second Quarter 2012

Laboratory: ComputChem, a Division of Liberty Analytical, Cary, NC	Analyte	Quantitation Limit/QL (ug/L)	Detection Limit/DL (ug/L)
Aceanphthene	Method: 8270D		
Second publisher	Laboratory: CompuChem, a Division of L	iberty Analytical, Cary, NC	
AcetylamioBurone 5 0.82 4-Aminobiphenyl 5 0.42 Aniline 5 0.42 Aniline 5 0.767 Anthracene 5 0.568 Benzofalputhreene 5 0.568 Benzofalpiflooranthene 5 0.58 Benzofalpiflooranthene 5 0.68 Benzofalpiflooranthene 5 0.68 Benzofalpiflooranthene 5 0.68 Benzofalpiflooranthene 5 0.605 Benzofalpiflooranthene 5 0.605 Benzofalpiflooranthene 5 0.605 Benzofalpiflooranthene 5 0.605 Benzofalpiflooranthene 5 0.75 Benzofalpiflooranthene 5 0.75 Benzofalpiflooranthene 5 0.75 Benzofalpiflooranthene 5 0.75 Benzofalpiflooranthene 5 0.79 bis2-Chloro-benzofalpiflooranthene 5 0.79 bis2-Chloro-benzidite 5 0.54 </td <td>Acenaphthene</td> <td>5</td> <td>0.802</td>	Acenaphthene	5	0.802
2-Actylaminofluorene 5 0.42 4-Aminibiphenyl 5 0.42 Aminica 5 1.75 Anthracene 5 0.767 Arramite 5 1.3 Benzofajanthracene 5 0.568 Benzofajihorarthene 5 0.68 Benzofajihorarthene 5 0.605 Benzofajihorythene 5 0.605 Benzofajihorythene 5 0.605 Benzofajihorythene 5 0.7 1,4-Benzoediamine 7.5 7.5 Benzyl alcohol 5 1.07 bis(2-Chlora-thenyl-phylophylophylophylophylophylophylophylo	Acenaphthylene	5	0.957
4-Aminotiphenyl 5 0.42 Aniline 5 1.75 Anthracene 5 0.767 Arantie 5 0.568 Benzolpillucranthene 5 0.58 Benzolpillucranthene 5 0.68 Benzolpillucranthene 5 0.68 Benzolpillucranthene 5 0.605 Benzolpiliperylene 5 0.605 Benzolpiliperylene 5 0.7 Benzolpiliperylene 5 0.7 Benzolpiliperylene 5 0.75 Benzolpiliperylene 5 0.75 Benzolpiliperylene 5 0.988 Berzolpiliperylene 5 0.988 Bisi2-Chlorechosymethane 5 0.988 Bisi2-Chlore-I-methylethylether 5 0.268 bisi2-Chlore-I-methylethylether 5 0.568 bisi2-Chlore-I-methylethylether 5 0.797 bisi2-Chlore-I-methylethylether 5 0.798 bisi2-Chlore-I-methylethylethyleth 5	Acetophenone	5	1.15
Aniliracene 5 1.75 Aniliracene 5 0.767 Aramite 5 0.568 Benzola janthracene 5 0.68 Benzola jilorranthene 5 0.68 Benzolaj jilorranthene 5 0.80 Benzolaj jilorranthene 5 0.805 Benzolaj jilorranthene 5 0.7 Benzolaj jilorranthene 5 0.988 Benzolaj jilorranthene 5 0.988 Bisic Chlorothoxylmethane 5 0.988 Bisic Chlorothenylphthalate 5 0.568 4-Brumophenyl phenyl ether 5 0.568 4-Brumophenyl phenyl phenyl ether 5 0.544 By-Chloroantiline 10 0.815 Chlorobazidite 5 0.646 Chlorobaphalate 10	2-Acetylaminofluorene	5	0.82
Anthracece 5 0.767 Arranite 5 0.568 Benzolpillurarathene 5 0.68 Benzolpillurarathene 5 0.68 Benzolpillurarathene 5 0.56 Benzolghilperylene 5 0.505 Benzolghilperylene 5 0.7 1,4-Benzendiamine 7,5 7,5 Benzol alcabab 5 1.07 bist2-Chlore-thosy methane 5 0.98 bist2-Chlore-thylpether 5 0.98 bist2-Chlore-thylpether 5 1.55 bist2-Chlore-thylpether 5 0.568 bist2-Chlore-thylpether 5 0.58 bist2-Chlore-thylpether 5 0.568 bist2-Chlore-thylpetherither 5 0.54 by-Chlore-thylpetherither 5 <td>4-Aminobiphenyl</td> <td>5</td> <td>0.42</td>	4-Aminobiphenyl	5	0.42
Aramite 5 1.3 Benzola Janthracene 5 0.568 Benzola Janthracene 5 0.68 Benzola Janthracene 5 0.5 Benzola Janthracene 5 0.605 Benzola Janthracene 5 0.605 Benzola Janthracene 5 0.7 1,4-Benzenediamine 7.5 7.5 Benzyl alcohol 5 0.98 bis/2-Chlorechtoxy)methane 5 0.988 bis/2-Chlorechtybether 5 1.26 bis/2-Chlore-Insethylethyl)bether 5 1.55 bis/2-Chlore-Insethylethyl)bether 5 0.568 4-Brompolenyl phenyl ether 5 0.568 4-Brompolenyl phenyl ether 5 0.568 4-Brompolenyl phenyl ether 5 0.548 P-Chloro-mecresol 10 0.81 Chlorophenyl phenyl ether 5 0.65 Chlorophenyl phenyl ether 5 0.65 Chrysene 5 0.73 Dibenz(a,h)anthracene	Aniline	5	1.75
Benzo[a]anthracene 5 0.568 Benzolk[Pitoranthene 5 0.68 Benzolk[Pitoranthene 5 1.5 Benzolk[Pitoranthene 5 0.605 Benzolk[Pitoranthene 5 0.7 1,4-Benzendiamine 7.5 7.5 Benzyl alcohol 5 0.988 bis(2-Chloroethny)methane 5 0.988 bis(2-Chloro-1-methylethyl)where 5 1.26 bis(2-Chloro-1-methylethyl)where 5 0.568 4-Bromophenyl phenyl ether 5 0.568 4-Bromophenyl phenyl phthalate 5 0.797 4-Brythenexyl phthalate 5 0.797 Butyl benzyl phthalate 5 0.448 p-Chloro-mercesol 10 1.08 Chlorophenzilate 5 0.64 2-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 0.216 Dislate 10 1.1 Dibenzoftran 5 0.735 Dibenzoftran 5	Anthracene	5	0.767
Benze[i]Illoranthene 5 1.5 Benze[i]Illoranthene 5 1.5 Benze[i]Illorepiche 5 0.605 Benze[i]Illorepiche 5 0.605 Benzel piliperpiche 5 0.7 1,4-Benzendiamine 7.5 1.07 Benzyl alcohol 5 0.988 bis/2-Chlore-thoxylmichane 5 1.26 bis/2-Chlore-I-methylethylyether 5 1.25 bis/2-Ehiylhexyliphthalate 5 0.568 4-Bromphenyl phenyl ether 5 0.548 4-Bromphenyl phenyl ether 5 0.548 P-Chloroadiline 10 0.548 P-Chloroadiline 5 0.548 P-Chloroadiline 5 0.548 P-Chlorophenyl phenyl ether 5 0.64 2-Chloroaphriphthalee 5 0.64 2-Chloroaphriphthalee 5 0.656 Chrysne 5 0.656 Distriction 10 1.1 Dibenz(sh) allithalee 5	Aramite	5	1.3
Benzo[ki]fluoranthene 5 0.6065 Benzo[aki]iperylene 5 0.6065 LA-Benzonediamine 7.5 7.5 Benzyl alcohol 5 1.07 bis(2-Chloroethny)methane 5 0.988 bis(2-Chloroethy)bether 5 1.26 bis(2-Chloro-1-methylethyl)ether 5 1.26 bis(2-Chloro-1-methylethyl)ether 5 0.568 4-Bromphenyl phenyl ether 5 0.568 4-Bromphenyl phenyl ether 5 0.797 Butyl benzyl phthalate 5 0.797 b-Chlorobenzillate 5 0.797 p-Chloro-mercesol 10 1.08 Chlorophenol 10 0.815 2-Chlorophenol 10 1.31 2-Chlorophenol phenyl ether 5 0.656 Chrysene 5 0.656 Chrysene 5 0.735 Dibenz(a,b)anthracene 5 0.735 Dibenz(a,b)anthracene 5 0.735 Dibenz(a,b)anthracene 5 </td <td>Benzo[a]anthracene</td> <td>5</td> <td>0.568</td>	Benzo[a]anthracene	5	0.568
Benzo(ghiperylene 5 0.7 Benzo(a)pyrene 5 0.7 1.49enzendiamine 7.5 7.5 Benzyl alcohol 5 1.07 bis(2-Chloroethry)methane 5 0.988 bis(2-Chloroethry)gether 5 1.26 bis(2-Chloro-1-methylethylbether) 5 1.55 bis(2-Chloroethy)phether 5 0.568 4-Bromophenyl phenyl ether 5 0.568 4-Bromophenyl phenyl ether 5 0.548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chlorom-cresol 10 0.815 2-Chlorophenyl phenyl ether 5 0.64 Chlorophenyl phenyl ether 5 0.65 Chlorophenyl phenyl ether 5 0.65 Chlorophenyl phenyl ether 5 0.656 Chrysene 5 0.656 Chrysene 5 0.757 Dibenzofaria 5 0.757 Dibenzofobrani 5 0.757 </td <td>Benzo[b]fluoranthene</td> <td>5</td> <td>0.68</td>	Benzo[b]fluoranthene	5	0.68
Benzo (a) pyrene 5 0.7 1.4 Benzenechiamine 7.5 7.5 1.4 Benzenechiamine 7.5 7.5 Benzy al achol 5 1.07 bis(2-Chloroethoxy) methane 5 0.988 bis(2-Chloroethy) bether 5 1.26 bis(2-Chloroethy) bether 5 1.55 bis(2-Ethylhexyl) phthalate 5 0.568 4-Bromophenyl phenyl ether 5 0.797 Butyl benzyl phthalate 5 0.797 Butyl benzyl phthalate 5 0.548 p-Chloromaphthalen 10 1.08 Chlorobenziliate 5 0.54 p-Chloromaphthalen 5 1 2-Chlorophenol 10 0.815 2-Chlorophenol 5 1 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 0.735 Dibenz(a,h)anthracene 5 0.735 Dibenzoforan 5 0.735 Dibenzi phthalate 5 0.735	Benzo[k]fluoranthene	5	1.5
1,4-Benzendiamine	Benzo[ghi]perylene	5	0.605
Benzy alcohol 5 .098 bis(2-Chloroethy) ether 5 .098 bis(2-Chloroethy) ether 5 .126 bis(2-Chloro-1-methylethyl) ether 5 .155 bis(2-Eithylhexyl) pithalate 5 .0568 4-Bromophenyl plenyl ether 5 .0548 8-Bromophenyl plenyl ether 5 .0548 Chlorobenilate 5 .0548 p-Chloromallitae 5 .064 p-Chlorophenilate 5 .064 p-Chlorophenilate 5 .065 2-Chlorophenyl phenyl ether 5 .055 2-Chlorophenyl phenyl ether 5 .055 Chrysene 5 .055 Dibenzofuran 10 .1 Dibenzofuran 5 .0735	Benzo(a)pyrene	5	0.7
Benzy alcohol 5 .098 bis(2-Chloroethy) ether 5 .098 bis(2-Chloroethy) ether 5 .126 bis(2-Chloro-1-methylethyl) ether 5 .155 bis(2-Eithylhexyl) pithalate 5 .0568 4-Bromophenyl plenyl ether 5 .0548 8-Bromophenyl plenyl ether 5 .0548 Chlorobenilate 5 .0548 p-Chloromallitae 5 .064 p-Chlorophenilate 5 .064 p-Chlorophenilate 5 .065 2-Chlorophenyl phenyl ether 5 .055 2-Chlorophenyl phenyl ether 5 .055 Chrysene 5 .055 Dibenzofuran 10 .1 Dibenzofuran 5 .0735	1,4-Benzenediamine	7.5	7.5
bis(2-Chloroethyr)ether 5 0,988 bis(2-Chloro-methylether) 5 1.26 bis(2-Chloro-methylethyr)ther 5 0,568 4-Bromophenyl phenyl ether 5 0,797 Butyl benzyl phthalate 5 0,548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0,64 p-Chloro-m-cresol 10 0,815 2-Chloronaphthalene 5 0,656 2-Chlorophenol 10 1,43 4-Chlorophenyl ether 5 0,656 Chrysene 5 0,656 Chrysene 5 0,735 Dibenz(a,h)anthracene 5 <	Benzyl alcohol	5	
bis(2-Chloro-1-methylethyl)ether 5 1.55 bis(2-Ethylhexyl)phthalate 5 0.568 4-Bromophenyl phenyl ether 5 0.797 Butyl benzyl phthalate 5 0.548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 1.43 4-Chlorophenyl phenyl ether 5 2.16 Dibalate 10 1.1 Dibenz(a,b)anthracene 5 2.16 Dibenz(a,b)anthracene 5 0.735 Dibenz(abanthracene 5 0.757 Di-a-butyl pithalate 5 0.757 3-3-Dichlorophenol 10 0.4 2-4-Dichlorophenol 10 0.4 3-3-Dichlorophenol 5 0.523 0,O-Diethyl O-2-pyrazinyl 5 0.523 0,O-Diethyl Denzidine 5 0.523 0,Dimethyl benzidine 5	bis(2-Chloroethoxy)methane	5	0.988
bis(2-Chloro-1-methylethyl)ethers 5 0.568 bis(2-Ehlylhexyl)phthalate 5 0.568 4-Bromophenyl plenyl ether 5 0.797 Butyl benzyl phthalate 5 0.548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chlorophende 5 1 2-Chlorophende 5 1 2-Chlorophende 5 0.656 Chrysene 5 2.16 Dibanz(a,b)anthracene 5 0.735 Dibenzofuran 5 0.735 Di-n-butyl phthalate 5 0.757 Di-n-butyl phthalate 5 0.757 3-3-Dichlorophenol 10 0.42 2-4-Dichlorophenol 10 0.42 2-6-Dichlorophenol 5 0.523 O,-Diethyl O-2-pyrazinyl 5 0.523 O,-Diethyl C-2-pyrazinyl 5 0.523 O,-Diethyl benzidine 5 0.51 <	bis(2-Chloroethyl)ether	5	1.26
bis(2-Ethylhexyl)phthalate 5 0.568 4-Bromophenyl phenyl ether 5 0.797 Butyl benzyl phthalate 5 0.548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chloroaphthalene 5 1 2-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 0.656 Diballate 10 1.1 Dibenzofuran 5 0.757 0i-n-butyl phthalate 5 0.752 2,4-Dichlorophenol 10 4.2 2,6-Dichlorophenol 5 0.523 0,0-Diethyl O-2-pyrazinyl 5 0.51 7,12-Dimethylbenzidine 5 0.4		5	1.55
4-Bromophenyl phenyl ethers 5 0.748 Butyl benzyl phthalate 5 0.548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chlorophenyl phenyl ether 5 1 2-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 0.656 Chrysene 5 2.16 Dibata(a.h)anthracene 5 0.735 Dibenz(a.h)anthracene 5 0.757 Dibenz(ab)anthracene 5 0.757 Dibenz(ab)anthracene 5 0.757 Dibenz(ab)anthracene 5 0.757 Jain-butyl phthalate 5 0.74 3,3*-Dicklorophenol 10 1.55 2,4-Dichlorophenol 10 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.79 p-(Dimethylamino)azobenzene 5 0.79 p-(Dimethylbenzidine 5 0.51 3,3*-Dimethylphenethylamine 15		5	
Butyl benzyl phthalate 5 0.548 p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chlorophenol 10 1.43 4-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 2.16 Dialate 10 1.1 Dibenz(a,h)anthracene 5 0.735 Dibenzofuran 5 0.735 Di-n-butyl phthalate 5 0.73 3,3-Dichlorobenzidine 5 0.73 2,4-Dichlorophenol 10 0.42 2,4-Dichlorophenol 10 0.42 Diettyl phthalate 5 0.53 O,O-Dichtyl O-2-pyrazinyl 5 0.53 Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenzidine 5 0.51 3,3-Dimethylbenzidine 5 0.635 a,2-Dimethylphenol 10 4.83		5	
p-Chloroaniline 10 1.08 Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chloroaphthalene 5 1 2-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 0.656 Chrysene 5 0.735 Diallate 10 1.1 Dibenz(a,h)anthracene 5 0.735 Dibenzafuran 5 0.757 Di-n-butyl phthalate 5 0.757 Di-n-butyl phthalate 5 0.757 3,3*-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.33 0,0-Diethyl O-2-pyrazinyl 5 0.33 Dimethylamino Jazobenzene 5 0.51 7,12-Dimethylbenz[ajanthracene 5 0.51 3,3*-Dimethylbenz[ajanthracene 5 0.51 3,3*-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635			
Chlorobenzilate 5 0.64 p-Chloro-m-cresol 10 0.815 2-Chlorophenol 10 1.43 2-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 2.16 Diballate 10 1.1 Dibenzofuran 5 0.735 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 0.42 2,4-Dichlorophenol 10 0.42 Dientyl phthalate 5 0.53 0,0-Diethyl O-2-pyrazinyl 5 0.33 Dimethose 5 0.51 7,12-Dimethylbenzidine 5 0.51 3,3'-Dimethylbenzidine 5 0.51 3,3'-Dimethylbenzidine 5 0.51 3,3'-Dimethylbenzidine 5 0.635 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenol 10 4.83 Di			
p-Chloro-m-cresol 10 0.815 2-Chlorophend 5 1 2-Chlorophend 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 2.16 Diallate 10 1.1 Dibenzofuran 5 0.735 Dibenzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.53 Dimethylenz[a]anthracene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylphenol 10 4.83 1,2-Dimethylphenol 10 4.83 2,4-Dimitrobenzene 5 0.635 m-Dinitrobenzene 5 0.635			
2-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 2.16 Diallate 10 1.1 Dibenz(a,h)anthracene 5 0.735 Dibenzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 10 1.55 2,4-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.51 Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 0.4 3,3'-Dimethylbenzidine 5 0.4 3,4-Dimethylphenol 10 4.8 Dimethylphenol 5 0.635 m.Dinitrobenzene 5 0.635 dDinitro-o-cresol 10 0.06 2,4-Dinitrotoluene 5 0.839 <td></td> <td></td> <td></td>			
2-Chlorophenol 10 1.43 4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 2.16 Diballate 10 1.1 Dibenz(a,h)anthracene 5 0.735 Dibenzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 0,O-Diethyl O-2-pyrazinyl 5 0.523 O,Diethyl O-2-pyrazinyl 5 0.79 v-(Dimethylamino)azobenzene 5 0.79 v-(Dimethylamino)azobenzene 5 0.4 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylphenethylamine 15 1.4 a,a-Dimethylphenothylamine 15 1.5 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 0.635 6,-Dinitro-o-cresol 10			
4-Chlorophenyl phenyl ether 5 0.656 Chrysene 5 2.16 Diallate 10 1.1 Dibenzó, h)anthracene 5 0.735 Dibenzótran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 0.42 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.33 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.51 7,12-Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenzidine 5 0.4 3,3'-Dimethylbenzidine 5 0.4 3,3'-Dimethylphenethylamine 15 1.4 2,4-Dimethylphenethylamine 15 1.5 2,4-Dimethylphenothylphenothylamine 5 0.635 m-Dinitrobenzene 5 0.635 m-Dinitrobenzene 5 0.0635 4,6-Dinitroblened 5 0.83	_		
Chrysene 5 2.16 Diallate 10 1.1 Dibenz(a,h)anthracene 5 0.735 Dibenzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.51 3,3'-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenz[a]anthracene 5 0.635 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 0.635 4,6-Dinitro-o-cresol 10 2.08 2,4-Dinitrophenol 2.08 <t< td=""><td></td><td></td><td></td></t<>			
Diallate 10 1.1 Dibenz(a,h)anthracene 5 0.735 Dienzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 0.635 4,6-Dinitro-o-cresol 10 2.08 2,4-Dinitrophenol 2 0.839 2,6-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 <td></td> <td></td> <td></td>			
Dibenz(a,h)anthracene 5 0.735 Dibenzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 1.5 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 0.635 m-Dinitrobenzene 5 0.635 4,6-Dinitrophenol 10 2.08 2,4-Dinitrophenol 2 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709 <td></td> <td></td> <td></td>			
Dibenzofuran 5 0.757 Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 0.4 a,a-Dimethylphenethylamine 15 1.4 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 0.635 4,6-Dinitro-o-cresol 10 2.08 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
Di-n-butyl phthalate 5 0.74 3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 0.4 3,3'-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 1.06 4,6-Dinitro-o-cresol 10 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.751			
3,3'-Dichlorobenzidine 5 1.39 2,4-Dichlorophenol 10 1.55 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[ajanthracene 5 0.4 3,3'-Dimethylphenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitrocresol 10 1.06 2,4-Dinitroblene 5 0.839 2,6-Dinitrotoluene 5 0.751 Dinoctyl phthalate 5 0.709			
2,4-Dichlorophenol 10 0.42 2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-c-cresol 10 1.06 2,4-Dinitroblene 5 0.839 2,4-Dinitrotoluene 5 0.751 Din-octyl phthalate 5 0.709			
2,6-Dichlorophenol 10 0.42 Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitrocresol 10 2.08 2,4-Dinitrobluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709	-		
Diethyl phthalate 5 0.523 O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-c-cresol 10 1.06 2,4-Dinitrobluene 5 0.839 2,4-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
O,O-Diethyl O-2-pyrazinyl 5 0.33 Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709	· ·		
Dimethoate 5 0.79 p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
p-(Dimethylamino)azobenzene 5 0.51 7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
7,12-Dimethylbenz[a]anthracene 5 0.4 3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
3,3'-Dimethylbenzidine 5 1.4 a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
a,a-Dimethylphenethylamine 15 15 2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709	· · · · · · · · · · · · · · · · · · ·		
2,4-Dimethylphenol 10 4.83 Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
Dimethyl phthalate 5 0.635 m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
m-Dinitrobenzene 5 1.06 4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
4,6-Dinitro-o-cresol 10 1.06 2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
2,4-Dinitrophenol 10 2.08 2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709			
2,4-Dinitrotoluene 5 0.839 2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709	•		
2,6-Dinitrotoluene 5 0.751 Di-n-octyl phthalate 5 0.709	•	10	
Di-n-octyl phthalate 5 0.709	2,4-Dinitrotoluene	5	0.839
· ·	2,6-Dinitrotoluene	5	0.751
Diphenylamine 5 0.07	Di-n-octyl phthalate	5	0.709
Diplicit Justine 3 U.77	Diphenylamine	5	0.97
Disulfoton 5 0.27	Disulfoton	5	0.27

Monitoring Event: Second Quarter 2012

Analyte	Quantitation Limit/QL (ug/L)	Detection Limit/DL (ug/L)
Method: 8270D		
Laboratory: CompuChem, a Division of	Liberty Analytical, Cary, NC	
Ethyl methanesulfonate	5	0.66
Famphur	5	5
Fluoranthene	5	0.579
Fluorene	5	0.708
Hexachlorobenzene	5	0.565
Hexachlorocyclopentadiene	5	0.909
Hexachloroethane	5	1.07
Hexachlorophene	100	100
Hexachloropropene	5	5
Indeno[1,2,3-cd]pyrene	5	0.635
Isodrin	5	1.4
Isophorone	5	0.938
Isosafrole	5	1.4
Kepone	5	5
Methapyrilene	5	5
3-Methylcholanthrene	5	0.39
Methyl methane sulfonate	5	0.49
2-Methylnaphthalene	5	1.07
Methyl parathion	5	0.49
2-Methylphenol	10	2.19
3 & 4-Methylphenol	10	1.65
1,4-Naphthoquinone	5	5
1-Naphthylamine	5	0.35
2-Naphthylamine	5	0.31
o-Nitroaniline	10	1.52
m-Nitroaniline	10	0.831
p-Nitroaniline	10	2.72
Nitrobenzene	5	1.33
o-Nitrophenol	10	0.989
p-Nitrophenol	10	10
4-Nitroquinoline-1-oxide	5	1.2
N-Nitrosodi-n-butylamine	5	0.48
N-Nitrosodiethylamine	5	0.62
N-Nitrosodimethylamine	5	0.981
N-Nitrosodiphenylamine	5	0.97
N-Nitrosodipropylamine	5	1.75
N-Nitrosomethylethylamine	5	0.99
N-Nitrosomorpholine	5	0.51
N-Nitrosopiperidine	5	0.41
N-Nitrosopyrrolidine	5	0.15
5-Nitroso-o-toluidine	5	0.76
Parathion	5	0.75
Pentachlorobenzene	5	1.1
Pentachloronitrobenzene	5	0.54
Pentachlorophenol	10	2.63
Phenacetin	5	0.67
Phenanthrene	5	0.7
Phenol	10	0.62
Phorate	5	0.75
2-Picoline	5	2.6
Pronamide	5	0.73
Pyrene	5	0.73
		0.755
green a constituent political plantification de modernador and constituent de modernador de plantification re-	telerite tilsk kilosika i som occurleritarin er kriser klass i kilojilg jällikki mittjäljäksi jos mesen occ	

Wednesday, August 01, 2012

Draper Aden Associates Engineering • Surveying • Environmental Services

Appendix IX Monitoring Event Monitoring Event: Second Quarter 2012

Analyte	Quantitation Limit/QL (ug/L)	Detection Limit/DL (ug/L)
Method: 8270D		
Laboratory: CompuChem, a Division of Liberty Ar	nalytical, Cary, NC	
Pyridine	5	1.13
Safrole	5	0.97
Sulfotep	5	0.43
1,2,4,5-Tetrachlorobenzene	5	1.86
2,3,4,6-Tetrachlorophenol	10	0.698
o-Toluidine	5	0.42
2,4,5-Trichlorophenol	10	1.51
2,4,6-Trichlorophenol	10	0.893
O,O,O-Triethyl phosphorothioate	5	0.51
sym-Trinitrobenzene	5	0.6
Method: 9012B		
Laboratory: CompuChem, a Division of Liberty Ar	nalytical, Cary, NC	
Cyanide	20	4
Method: 9034		
Laboratory: TestAmerica, North Canton, OH		
Sulfide	3000	2000
Method: 9066		
Laboratory: Lancaster Laboratories, Lancaster, PA	4	
Total Recoverable Phenolics	40	15

Wednesday, August 01, 2012 Page 6 of 6

APPENDIX F FIELD NOTES (CD-ROM)

4/24/12	N. Petr	MAP F.	B.#10 1-4/24/
	C)(t	11000	
General No			15W
	50's sunny, K		pro
- PPt Eyep	Fin, noteston, nit	vileglaves,	Pest Pury
-Calibration	vs , 721 655	MDS	
		= 7.00 10.00= 9.99	(10:00)
		3/15 in a 1413/1/s standard.	(10:16)
- DO % = _			(10:10)
		(a) roads 0.2 - 1000 NTU.	(10 130)
		well skirts used at each locas	Hour (10:40)
All equipm	nent accouns	d between wells,	(10:50)
· Pruge mate	rdisposed of	at ansite-freatment plans	(11:00)
· All samp	ies keptatra	reported on ice,	(1) 0 2)
	· i		(1/:36)
	STATIC WAT	EXCEVEL TABLE (UNIT-5)	<u> </u>
MELL	DTW	Postpruge DTW MOT	5
5W8B	14.65	14.18	
5W7B	9.69	10.02	
5W5B	9.51	9.62	5WC:
SWEZZ	9.66	9.68	
5WCZ3	9.05	9.10	Post Purg
,5wcz	9.72	9.80	Tima
5W12A	11.55	11.55	(11240)
\$5W1	11,41	DIW ONEY NO SAMPU	NG (11:50)
\$5W5	8.40	6/ 6/ 10 00	(12.00)
5W9A	2.28	((1216)
5W10A	14.01	ا در م	(1270)
5WNA	10.59	(1)	No 51977 / (1270)
5wc4	/3.37	DTW-ONLY - No Samp	1235
\$5W6	7.24	N	King ty
\$5W8	12.10	K K 51	
5WCII	16.16	4 4 4	
5WC12	15,84	16 ,r 16	
: : 			
Marie -		<u> </u>	

·#10	ulouha —	RAH1' BO 3304-10	FB#10-
	4/24//2	esp/kfc	
	5WCZZ		
	prw 9.66	Begin Purg	(0100)
	Past Purga DTV1 9.68	Instial hora	e: Clear
2	Time Tamo Co Con	(M3) DO(mg/L) pH ORP(m	V) Turblarry Ruge K Desc.
	(lose) 13.00 78		2 7.09 0.35 min Clar
	(10:16) 13.12 98		
	(16:26) 13.39 98	4 6.93 6.51 194.	
	(io:30) 13.40 98	6 6.91 6.58 139.	
mi	(10:40) 13.32 198	العرض الاصحاف المصداد	
	(10:50) 13,32 98	5 0.91 6.58 127.	
	(11:00) 13.28 98	5 0.91 6.62 121.	9 1 2.88 _ 1 " 1 Clean
	(1:00) Readings st.		
	(1:36) 14.21 98	6 1 1.83 656 115.	7 3.25 Post sample Readings
-		me: (11:10)	
	Samples Ce	llected: (3) 8260, (2) 2270	, (a) 2270,(1) TM
	5WC33		
	DTW: 9.05	Begin Puc	30: ((1:40)
	Bost Purgo DAV: 9.10	Initial Pura	c Clearly
	Time Temper Cont	us) DO(myle) pt ORP(myl)	Turhidity Ruge K Desch
	11540 \ 1318 103	6 4109 6194 1421	33.4 0.37 min 31. Cloudy
4	(11:50) 12,91 111	7 1.12 6.11 197.8	
	(12:00) 13.14 112		1.69 u clear
_	(1210) 13.01 112	4 1.10 6.71 146.8	
	(12/20) 13.15 111		6.91 " cleur)
_	(1220) Readings	stable	
No sign	(1235) 13,74 112:	7 476 4,77 138,9	1.11 Post Sample Reading
RATE	Sam	he Time! (12:25)	
.	Simples	Meded: (3) 8260, (2)	\$2°/0;(2)\$2')0;(1);(\$0°(
		93	

		RAAP			i-O. His	11, ~
4/24/12		B03204-			FB#10	79/19
swe al		CJB/KF	C	•	-	51
DTW: 9.7	a	Begi	n Rugei (1240)	· ·	
Post Purge DTW: 9.80			al Ruger			Pest
Time Temple			5		Purgak Desc	Line
(1241) 14.00	718	1.75 4.70	1785		0.3 /min Clear	(1431
(1250) 13,97	695	1.13 4.23	208.7	2,80		(14 40
(1300) 14,23	488	1.06 4.16	236.8			(1450
(1310) 14.25	691	:	260.9			(1500
(1320) 14.38	683	1.03 4.10				(1510
(1325) 14.59		1.03 4.15	!		h Clear	(1510
(1330) 14.60	482	1.03 4.17	287.1	1.20	11 Chor	(15
(1340) 14.72	681	1.06 4.17	292.3	1.19	11 Clear	
(1345) 14.71	674	1.03 4.16	297.	1 1.23	11 Clear	
(350) 14.63	478	1.02 4.17	300.	6 1.34	11 Clear _	
(1350) Readings	stable	· · · · · · · · · · · · · · · · · · ·	<u>i</u>	i i i		
(1430) 14.16	671	1.09 4.10	308.7	- 1.29	Post sample Readings	5
Sà	mple Tin	nei (14:00)				
			&0, (a) 8	(270,(2)8270/(1)7m	Posi
	_	· · · · · · · · · · · · · · · · ·				There
5WD:10 - 7	aken fr	on well.	5WC21			(40
Sam	ple Time	: (14:10)				(ibic
Samp	iles Cell	acted: (3)826	0, (2)82	170, (1)	TM	(16:13
						. (12:3:
	To the second					(116:4
		:				(16:4
. :						(17:4
-						
:		: 	:			
	,	· · · · · · · · · · · · · · · · · · ·			: :	, - -
					: <u></u> .	
					<u>-</u>	}
:	:		:	:		
		(G)				

BAAP	10
B63204710	
5W8B	
DTW: 14165 Begin Purge (1490)	
PostPivasa DTW: 14:48 Initial horge Clear	- - · ·
Time Temples Constain Dolong/2) pH ORPland Turk(NTW) Arguk Dess	
(1431) 13.77 61 4.35 4.96 308,9 0.73 03 min Class	
(44 40) 13,78 56 269 41.84 307.6 1.00 1" "-	
(1450) 13,94 57 2.71 4.81 305.1 6.89	
(1500) 13.81 157 2.74 H.81 302.3 0.72 1 - "	
(1510) 14.05 57 2.82 4.84 301.9 069 "	
(1510) Readings stable	
(15) 14,05 57 2.96 4,83 302.7 1.25 Post samph re	ading
Sample Time: (15/5)	
Samples Collectad: (3) 8240, (1) TM	
	.
5w88 5w58	
DTW: 4.51 Begin Ruga: (16:00)	+
Post Paye DTW: 9.62 Initial Purge: Good	+
Time Temple Contain Delength of H ORPLAND Tuck (NOW Burge K Des	<u>+</u> .
(601) (3.18 567 5.83 5.51 3131 1.13 03/min Cleck	r
(16:10) 13 69 554 200 5.38 317.6 0.68 "	
(16:20) 12.88 553 1.74 5,38 314.9 6.73	
12:30) 13.32 550 1.80 5.37 309.7 0.14 1	_
(16:40) 12,93 550 1.84 5.37 306.9 0.48 11 11	
(16:40) Readings stable	_ -
(17:00) 12.87 552 2.22 5.41 302.7 0156 Post Sample	Reading
Sample Time (1645)	
Samples Collected: (3) 8260, (2) 8270, (2) 8270, (1) TM	-
	_
	Account of the control of the contro

ecdings.

rm._.

THAT WATER	RAAP		
4/25/12	B03204-10	ļ	B#10
	CJB/KFC	· !	
General Notes			
- Weather: 50-60's	Overcost / Partly Cla	adv	
- PPE Eye Protection	Nitrile aloves	7	
- Calibrations YSI			
	7,00=7.00, 10.00=	10.00	
Conductivity rea			~l
- Do = 100 %			
- Culibrations Hach	alooaTurbidity =	2.2 - 1000 NTU	
- Dedicated tubing ar			
· All equipment deco	nined hetiman nu	115	
- Auge water dispos	ed of at maite t	antropant Alant	
- All samples Kept at	of top accounted as	earterly provin	4
- The same of the	in in the logical response		
5W78			
DTW: 9.86	Brain Prom	: (near)	
Ast Roga DTW: NO.02	Begin Purge		
Time Timp(c) Cond(us) 1	Tritial Parge	Tabanu Da K	Asc
	.48 4.42 365.1		
/ -	98 4,38 374.3		ii -
f .	24 4.25 397.6		
£ h	32 4.24 3.41.7		i,
• 3	38 4.23 405.9		н
<i>y</i> , , ,	45 4,21 407.7	1.76 "	· ·
(1000) 12.66 186 3.		1.75 "	
(1010) 12.75 186 5.		1.21 "	,
(1020) 12.61 188 5.			· + -
(1030) 12.70 189 5.3			· j
(1040) 12.73 190 5.3		/.59 · · ·	
(1040) Readings stable	5 4.20 407.3	1.60 "	-
- 2	28 W 71 2125	1.77 M :	a
(1105) 12,93 191 5,3 Sample Time: (10		1.77 Post.	Sample Reddings
Sample 1 me (10)8260,(2)8270, (b)		
-duchies Collection ((161)	&d 18, (3)TM	l

70	4/25/12		RAAP Bo3a04-10		F6#10
	5WIAA		CJ6/K=C		
	D7W: 11	1,55	Bayin Purge	(110)	
	Post Proge DTW: 1	1055	Initial Roge	· Clear	
	Time Templei	Contest Dolongh)		Turblerry Roga K	<u>Desc</u>
	(1110) 13.81		6.64 359.9	2.29 0.3 /min	Clear
	(1120) 13,42		6.70 3617	257	46
	(1130) 14.05		6.84 3661	374 - 1	
	(1140) 14,13	464 3.89	4.84 359.2		
	(150) 14.15	449 4.08	6.80 3551	207 " -	
	(1300) 14.17	438 4.18	6.84 348.7	1149	WA-410/I/Mada
	(1a10) 1423	439 4.53	6.87 333.1	1.63	THE PROPERTY OF
	(1220) 14.54	434 4.33	6.79 334,4	1.56	A constant
	(1230) 14.69	H32 1 4.24	6.74 338.9	1,50	Manufacture and the state of th
	(1240) Readings	stable 428 4.45	6.64 324.8	1773 Rost so	mple reading
	· \			Cost 200	Control of the contro
	Jamp	le Time: (12:3 les Callected :(3)	8220 (1) TW		A CONTRACTOR OF THE CONTRACTOR
	Jamp	les Carredien Cox			
					The state of the s
					State Advantage And Ad
					displayability
					And the second s
- · · · - · · -					
,					
<u>.</u>					
le Reddings					
				:	
			(167)		

5/2/12	***************************************	RAAP 80:3204-10	F.6#10
		DECKEC	
General Notes	>		
·Weather-	5 mm 80-	2	
· PF. Eve	proteether, v	intribeglars, steel to e bos	ts hard hat meessan
e Calibration			- - 1)
. 1	-	7.00-7.00 10.00-9.9	28
		ds 1413 justina 1413,	
	00 - 100 "		
· Tur	bidity (AA	CH-21000)= 0.2-1000	NTU
· Dedicate	(Jubing	# well skirts used at all	wells.
		med between wells.	
o Pryge wa	ter dispos	ed of at an-site-fronta	next plant
· All soump	hes kept +	transported on rec	
·	STATIC	WATER LEVEL TABLE	E(NMIT-1)
Well	Pro	Box Parcy DTW	Notes
760/28	2413	24.15	
7639C	13,34	14.75	
700108	14.89	1618	
7w 10C	18,38	20.28	
7w13	8111	24.66	
711000	25,22	37,21	
761118	24,54	24.62	·
7WCA	24,45	27.58	3
7098	19,68		OLD Only
70011	DRY		<u> </u>
7m w5	24,50		1
)		
i		!	
	<u> </u>	•	
:			
•			.
		(15)	

	5/2/12 RAAP 80520410	FBHO	
	7W.12B Dr.3-24.13 Begin Rige (0933)		And the state of t
	Post Puge DTW-24,15 Initial Puge: Clear		
	Time Temple Conflis Dong pH ORPland Turbland Punget C	<u>Pese</u>	
	(0935) 15.13 765 7.89 6.71 2/29 11.1 203/min	Class	1000
-	(0940) 15.00 753 7,57 6.70 2073 10,4 1	Clear-	
		Clar	A Company
		Clear	-200 0000
		Clear	A
		Clear	4 Val Property for
	(1005) 15 01 745 7,60 6.53 225.4 5,64 491 (1010) 15,12 747 7,57 6.58 227.9 4.91	clear	0.0000000000000000000000000000000000000
	(1019) Reading State		
ţ	(1034) 15.40 760 7.75 6.62 235.7 5.31 Post Page	L DTEN	
	Sample Time (1015)		
	Semples Collected (6)8260, COTT	1,0)9066	ver i min departitions
Į	(2) 8151A, (2) 8270C, (2) 8081 Apr (2) 903-1		in the state of th
		_	
	700CA DTG - 24,45 Begis Punge (1044)	- - - - -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
.	Post-Purge DTW - 27.58 In 14 in 1 Purge: Clear		2
	Time Temp(2) Cond(us) DO my pH ORP(uv) Turb(nocs) Pure	h Desc	La constitución de la constituci
	(1045) 1544 1220 254 6.67 258,1 48,7 28.3	In House	7
:	(1050) 15,47 1/54 0.75 6,52 239,4 42.1 "		T 11
	(1055) 15,76 1182 080 6.48 323.6 39.7	_ G Cloud	9
	(100) 15.41 1203 0.87 6.48 219.9 20.6 1	Clear	
	(1105) 15.11 1208 0.92 6.46 214.7 8.28	Clear	
	(1110) 15,03 1213 0.99 6.51 212.5 5,36 11 (1115) 15,02 1225 1.04 6.56 207.1 4,44		
i			
	(1120) 15,03 1234 1,09 6,55 203,4 3,01 " (1120) Readings Stable		
j.	(Jzoz) 14,90 1235 1.19 6.74 1619 2.57 Pox5	unde Red	1785
1,	Continued on Pury 17		
	(16)		

nave essany)

	5/2/12	RAOP	FOHIO
!		803204-10 TREVIKEL	
•	7MW6		
,	DTW - 25,	22 Beg is Punge (1407)	
,	Post Purze DIW		
	Time Temper	Constas) DO " 1/2 PH ORPLAND Turbland) Dury h	Desc
	(1410) 15:61		Clear
-	(1415) 14180		clow
	(1420) 14,77		Clear
į	(1425) 14,89		Clear
	(1430) 15.11	1730 1.27 6.97 540 1,08	Clear
	(1435) 15,22		Clear
Ą	(1440) 15,34	1814 1.46 6.79 -38.7 1.17	Cleur
f ´	(1445) 15,05		Clear
	(1450) 14,96		Clear
ŗ,			Clear
• ;	(1500) 14.50		elear
-	(1500) Realize	3 1001 9 05 1 99 -737 240 D.S	4.50
Į.	(1528) 14,53		n ple Kending
		Dample Time (1505)	1. 6.7
	100	Simples Collected: (6)8260, Wir	7 (5) Dec
) ₁ ,	(2)815	1A,(2)8970C,(2)8081A, (1)CN, (2)9034	
1	•		
,			
٠.			.,
*			
		. (1/8)	

/w

513/12	RAPP	F0#10
	B03204-10	
General Notes		1
- Weather : Junny 86)\$	
- PPE: Eye Profection	n: Nitrile bloves, Steel toek	reots F
- Calibrations ! SI 6	so mos	
pH: 4.00 = 4	00 7.00-700 10.00:	9.97
Conductivity 1	each 14/3 us is 14/3 us	Std (1
DO % 2 100		
Turbidity CHA	((H 2100Q), 0,2-1000M	m
- Dedicated terbing of a	sell skirts used at each we	<i>u</i> ()
All equipment decor		
· Ponge water disposes	of at treatment plant on.	site
All samples kept to		
7639C		
Drw-13,34)
Pest Pange MEW 14,75	Initial Purge: Clay	
Time Tempo Cond(4)	DO3/ DH CRP(no) Turblory) Purzeh Desc
	2,97 6.67 171.9 5.21	
(0955) 1351 1309	1.24 6.65 119.9 4.99	!
	1,01 6.63 84.9 4.63	
A !	0.96 6.64 63.0 3.98	Clear_
	1.07 6.72 49.0 2.47	" Clew to
	1,35 6.71 48.4 2.11	" clew Z
	173 6,72 55.6 2,08	4 · clew (1
(1025) 13.10 1234	1,76 6,71 60.7 1,81	11 Clear Vi
(1030) 13.08 12.49	1.75 6.71 62.0 1.74	11 Clar (12
(1030) Readings Stuble	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6) //
· · · · · · · · · · · · · · · · · · ·	1.84 6.68 69.8 2.72	05+ Dungle heading
	nple Time (1035)	
San	igles Collected: (1) + 19, (1) CD	1(2)82700
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	(19)	
,		AN MARITIMENT AND ALL THE COLUMN TO THE COLU

410	5/3 112	RARE	FB#10
		B03204-10 79Elkfc	
	7013		4
	012-18.11)
	1054 Purge Dres	24.60 Instial Page: Clau	
		ndlus Domy's PH ORP(m) Turblionu	
	(1050) 15,99 16 (1055) 17,28 19		-0.5 min Clear
	(1000) 18,00 /		" clear
-	(1105) 16,84. 1		
	(1110) 15,02 1		" clear
_	(115) 14.62 1	387 3.43 651 98.0 2.13	11 Clear
	(1120) 15.00 1		1 Clear
	(1125) 14,56 13	97 3,09 6.49 105.4 1.66	i' clear
	(1130) 1447 1		Clear clear
	(1135) 14147 / (1135) Readings		
	The first terminal of the second control of	112 3,25 6,70 118,8 2,57	Post Scanple Banding
	(1130) 11122 1	ste Time (1140)	
15	Samples Co	Medel: (1) TM, (1) CM, (2) 827	oc i
, ,			
- 	70010B		
·	DTW-14,89	Begin Punge (1159)	
<u>′</u>	1037 luge 070 -16.19	Intral Purze: Clear	
	Time Tenger Corle	ed another DH ORPINU) Tunk word to	rach Desc
	(1200) 14,05 980		0.3/200 Clear
	(1205) 13.40 934		11 Clear
	(1210) 13,93 940	2,19 6,59 158,0 2,24	11 Clear
A		2,36 6.63 158.6 2,13	4 Cleer
dury	(1225) 14,16 947	2.38 6.43 159.7 1.88	4 clear
` -	(1230) 14,10 953	2.41 6.60 /62.6 1.54	u Clear
	(1230) Reading State		
	(1244) 14,00 952	2.55 6.64 162.7 Z60 P	ost Sample Reading
		Continued on page 121	
		(120)	

	4/25/10		RA	AP		F	B#10	
			Воза	04-10 3/KFC	!			4
			:	· į	اعز		····	
of a second		TATIC WA	FTEN LEV	er ta	BLE (VM11-101	1	
in the second	were	<u>wid</u>	POST PURCE	かた い		MIEI		#
	10 DD H2R	18.25	18.35			i	·· · · · · - <u></u>	
	1003	16.44	16.52	l .				21
	10030	16.58	16.71				············	(
	10 mw (4/25)	16.55 # 22.27	16.44	;				
	1004 "01	# 22.77	aa.78		ŀ			
	Iomul	***************************************		-				
	DTW: 16,5			R=co	y Parke	(1358)	· · - · - ·	U
	Post-Phyge DTW:					: clear		(1
	(Time) Temp(C)	and No	(./\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Tu) Punce K	Λ÷≥4	U
A CONTRACTOR OF THE PARTY OF TH	(1300) 15.16		57 7.35				c lear	
	(1318) 15,95	1			0.63		η	
	1. n = 1	362 8,4		315,9	0.60		//	8000
	(1330) 15.38	356 8.5		320,0		H	4	
And the second	(1340) 15,42	356 8.	51 7,36	321.0		, n	n	
	(1340) Readings	stable,						:
	(1430) 15 42 J	356 8.	90 7.49	308.7	1.18	Post Sample	2 Reading	1 T
	Samp	le Time:	(1345)				<i></i>	\mathcal{L}
	Sample	s Collected	1: (18) 8260	,(6)8081,	,(6)815	1,(6) 8270	, ,	(n:
	(6) 8	1081, (3) 77	N,(3)CN,((6) salfid	c, (6) Ph	enols		, (Ili
and the second	· · · · · · · · · · · · · · · · · · ·							' (f1.
					and more than	·		(la
	<u> </u>		[·	<u></u> 1) (1 <u>3</u>
					-			
				<u> </u>				(Li
		<u></u>						; (L (1)
				<u>.</u>				ha
					-			1
	: : : : : : : : : : : : : : : : : : :							13
			103	フ	I.			

	RAAP FB#10
4/25/10	B03204-10
	ESBIATE
10030	Bagin Ruge: 7440 (1438)
07w: 16.58	Initial Ruge Clear
Post Page DTW: 16.71	
Time Temple Cond(w) 7,1440) M.70 596	200 7.37 -119.3 6.14 0.51/ clear
(1450) 15.17 586	3.46 7.32 - 97.1 1134
(1500) 15.05 581	3.30 7.32 -98.3 1.47
(1510) (4.73 583	3.32 7.35 495.2 1.93
(1520) 14.86 584	المعاد ال
(1530) 14.93 592	3.30 7.41 -100.1 1.40 Give
(1550) Ruadinas stable	
(1550) 14.81 578	
Sample Time	icted: (10) 8260, (2) 8081, (2) 8151, (2) 8270,
Jamples Colle	(1) = 1 (1) a (2) \$ (5) (2) \$ (5)
(2)8081,	(1) TM, (1) CN, (2) Sulfide, (2) Phenois
	Note Date sample time enpage 106
10DOHZA	BEZIN PURC": (1127)
DTW: 18.23	
POST PURCE DTWI 18, 35	DO (myle) pH ORPM) TWO (HTL) PLUSE K Desc
	1.16 7.23 311.4 1.89 CHEN CLOSE
(135) 12.66 648	7 10 241 0 140 11
(1145) 12.60 615	
(1155) 12.56 583	mu m
(1205) 12.51 553	
(215) 12.52 539	
(1225) 12.51 515	
(1335) 12.59 506	
(1245) 1259 504	
(1250) 12.59 504	
(255) 1258 512	
(1355) Readings stable	3.01 6.61 203.1 0,99 Post sample reading
(325) 12.28 440	3.01 6.01 203.1 0.99 Post sample reading

<u>3C,</u>

dissi-

4/26/12	RAAP	FB#10	11
file:	B03204-10	70	,
	CTB/KFC		
General Notes			10
	ain-heavy attimes		
· PPE: Eye Protection			Posi
- Calibrations - 151			Tin
	00, 7.00=7.00, 10.00=10		
	ty reads 1413ms in a	1413 ps stoudowd	
- No = 100%	lla d'année		
	HACH 2100Q = 0.2 -10		
	bing & well skirts use		
offil equipment	deconned between wel	\S.	;
Purge water di	spood of at on site-	treatment plants	
- All samples ke	pt stransported on ice		
			Pos
1003			
0 10 07W? 16.52	Begin Purge		(13
Post Purge DTW: 16.52	Initial Purg		(13)
Time Temper Condust (0950) 13.60 587		Turbarry Augot Desc	• !
(1000) 13.59 504	5.23 6.49 346.2 3.46 7.31 338.2		7
(1610) 13,64 507	3.96 7.31 338.2 3.94 7.36 336.1		(J41 (J43
(1020) 13.69 511	3.98 7.37 332.8		(143
(1630) 13,1,5 514	4,20 7,32 331,7		(144
(1030) Reading stable	7130	U. 24	145
	4.30 7.39 309.	0. 22 Post Samuela Rive	114
Samole	Time: (10 40)	0100 102. Stayene Net	(15)
Sample 5 Ca	lleted: (4) 8260, (2) 8081/38151 /2183	
(2) 809	31, (1) TM, (1) CN	(2) Sulfido (2) Phas	ads
10 Dup - Taken from	n 1003	7-(1)-041	
	me: (11:00)		
	Collected: (4)8240, (2)8	081. (2) 8151.(2) 8270	<u></u>
i. 3	, (1) TM, (1)CN, (a) Sulfid		<u>'</u>
		,-,	
	(105)		<u></u>

RAAP	- FOFT
4/26/12 803204-10	FB#10
CJB/KFC	
1 +000+12R	
DAN: 18.23 Begin Parce:	
[[[[[[[[[[[[[[[[[[[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	reck Desc
Time lember company	3-1 min
1000 HaR - Purge notes on page 104 (XXX)	
Sample Time: (1305)	2) 82 74.
5 amples Collacted: (4) 8240, (2) 8081, (2) 8151, (2762707
(2) 8081, (1) TM, (1) CN, (2) SW Fde, (2) Phenols	
▊ ▗▗▞▄▗▗▞▄▗▗▞▄▗▗▞▄▗▄▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	
1004	
DTW: 22.77 Begin Ruge: (1330)	
Post Purge DTW: 22.78 Initial Purge Cloudy	
The confession of the confessi	gaK Desc
	14 min Cloudy
(1340) 13.60 331 3.36 6.92 239.1 1310	" Cloudy
(1350) 13.60 336 3.44 6.95 239.4 85.6	" Cloudy!
(1400) 13.67 336 3.67 6.95 245.6 63.4	11 Si Cloudy
(H(0) 13.65 332 3.73 1 693 249.2 42.6	" BI. Cloudy
(1420) 13.48 333 3.84 6.96 2528 37.2	" 51. Cloudy
(1430) 13.68 333 3.86 6.96 258.6 17.8	" + Clear
(1440) 13.67 332 3.40 6.95 258.4 14.2	" Clear
(1450) 13.72 333 3.192 6.95 259.6 15.6	15 Clear
(1450) Readings 15table	
(1510) 1408 333 4.15 6.96 264.4 15.7 Post.	Sample Reading
Sample Time: (1455)	
Samples Collected: (6) 8260, (2) 8081, (2) 8151, (3	1) 8270,
(2)8081, (1) TM, (1) CN, (2) Sulfide, (2) Mercels	
	<u> </u>

aling 70, nols

4/30/12		RAAP	EB#10
		B03204-10 Tae/16Fc	
GENERAL NO	रह्य :		
	or Overc		······································
· PPE-	. Eye pro-	rection, vitrile.	glares, steel too boots
		sam us Is	····
es p	t= 4.00 =	400,7.00=7.00	1000=9.99
2 Ca	nductivity	recoli 1413 Ms in	a 1413 ns studard
	0. % = 1009		<u> </u>
-trobid	hity HACH	2100Q = 0.2-11	OCONTU
· Dedica	ted tubin	y well skirts us	ed at each location
Allegi	ripment.	deconned betwee	en wells
· Purge	nater disp	and of oit on-sit	e treatment plant
	numples kep	t‡ transported c	mice.
<u> </u>	STATIC		TWILE (UNIT-16)
icil	DTW	Post-purge DTW	AUTES
16-1	49,01	Below Top of Pun	γ
16-5	55.82	55.92	<u> </u>
16-3	56,49	65,22	·
16-5	3,09	3.30	
16WC2B	52,92	64.31	· · · · · · · · · · · · · · · · · · ·
16MW8	72.31	Below top of pu	~~ <u></u>
16MW9	63,68	64.91	<u> </u>
16WCIA	66,50	69,82	
16WCIB	66.75	66.97	
1601	48,61	48.68	
16C3_			5wc only
16004		*	<u> </u>
16WC21	ADRY		
			•
: :		· :	
i.		1	
		(10-7)	

ij

1681 1070: 48:61 Begin Plage (0918) Both (vaje DTO: 48.68 This temple) Carellins DO my/L pt ORPINI) Turblim lande Doc (0920) 13.17 817 6.39 6.68 328.0 4.69 20.3/m. claw (0925) 13.05 740 1.89 6.49 330.7 1.09 4 Clear (0930) 13.07 740 1.82 6.48 327.6 0.65 4 Clear (0935) 13.07 738 1.66 6.45 321.5 0.65 4 Clear (0940) 13.07 734 1.52 6.47 316.7 0.66 4 Clear (0945) 13.04 730 1.46 6.47 313.9 0.67 4 Clear (0945) 13.05 737 1.42 6.43 307.8 0.65
1681 070: 48:61 Begin Florge (0918) The Time Temple (2006) (0920) 13:17 817 6:39 6:68 328.0 469 \$\gequire 0.3\gequire 0.6\square (0925) 13:05 740 1.89 6:49 330.7 1.09 4 Clear (0930) 13:07 740 1.82 6:48 327.6 0:65 4 Clear (0930) 13:07 738 1.66 6:45 321.5 0:65 4 Clear (0940) 13:07 734 1.52 6:47 316:2 0:66 4 Clear (0945) 13:07 730 1.46 6:47 313:9 0:67 4 Clear (0945) 13:05 7:37 1.42 6:43 307.8 0:65 4 Clear (0950) 13:05 7:37 1.42 6:43 307.8 0:65
Post (vay DTCO: 48,68
1351 (Vay DTO: 48,68 In. 412) Parge: Clear Time Temple) Carollas Do May py ORPani) Turblas Vagel Dos (0920) 13.17 817 6.39 6.68 328.0 4.69 20.3/m. claur (0925) 13.05 740 1.89 6.49 330.7 1.09 " Clear (0930) 13.07 740 1.82 6.48 327.6 0.65 " Clear (0936) 13.07 738 1.66 6.45 321.5 0.65 " Clear (0940) 13.07 734 1.52 6.47 316,2 0.66 " Clear (0945) 13.07 734 1.52 6.47 313.9 0.67 " Clear (0930) 13.05 737 1.42 6.43 307.8 0.65 " Clear
Time tempto Carollus 00 m3/2 pH ORP(mu) Turblam) luggle Use (0920) 13.17 817 6.39 6.68 328.0 4.69 ≥0.34m; Claw (0925) 13.05 740 1.89 6.49 330.7 1.09 " Clear (0930) 13.07 740 1.82 6.48 327.6 0.65 " Clear (0935) 13.07 738 1.66 6.45 321.5 0.65 " Clear (0940) 13.07 734 1.52 6.47 316.2 0.66 " Clear (0940) 13.07 734 1.52 6.47 316.2 0.66 " Clear (0945) 13.04 730 1.46 6.47 313.9 0.67 " Clear (0950) 13.05 727 1.42 6.43 307.8 0.65 " Clear
(0920) /3.17 817 6.39 6.68 328.0 4.69 ≥0.3/mo Clowr (0925) /3.05 740 1.89 6.49 330.7 /.09 " Clear (0930) /3.07 740 1.82 6.48 327.6 0.65 " Clear (0936) /3.07 738 1.66 6.45 321.5 0.65 " Clear (0940) /3.07 734 1.52 6.47 316.2 0.66 " Clear (0945) /3.04 730 1.46 6.47 313.9 0.67 " Clear (0930) /3.05 727 1.42 6.43 307.8 0.65 " Clear
(0925) 13.05 740 1.89 6.49 330.7 1.09 " Clear (0930) 13.07 740 1.82 6.48 327.6 0.65 " Clear (0936) 13.07 738 1.66 6.45 321.5 0.65 " Clear (0940) 13.07 734 1.52 6.47 316,2 0.66 " Clear (0945) 13.04 730 1.46 6.47 313.9 0.67 " Clear (0930) 13.05 727 1.42 6.43 307.8 0.65 " Clear
(0930) 13.07 740 1.82 6.48 327.6 0.65 " Clear (0936) 13.07 738 1.66 6.85 321.5 0.65 " Clear (0940) 13.07 734 1.52 6.47 316,2 0.66 " Clear (0945) 13.04 730 1.46 6.47 313.9 0.67 " Clear (0950) 13.05 727 1.42 6.43 307.8 0.65 " Clear
(0935) 13,07 738 1,66 6.45 321.5 0.65 " Clear (0940) 13,07 734 152 6.47 316,2 0.66 " Clear (0945) 13,04 730 1.46 6.47 313,9 0.67 " Clear (0950) 13,05 727 1.42 6.43 357.8 0.65 " Clear
(0940) 13.07 734 152 6.47 316,2 0.66 " clear (0945) 13.04 730 1.46 6.47 313.9 0.67 " clear (0950) 13.05 727 1.42 6.43 357.8 0.65 " clear
(0945) 13,04 730 1.46 6.47 313.9 0.67 " Clear (0950) 13,05 727 1.42 6.43 307.8 0.65 " Clear
(0150) 13,05 727 1.42 6,43 307,8 0,65 11 Clear
(0950) Readings Stable
(1016) 13.46 725 1,55 6,46 290.7 0.77 Post Sunyle Reading
Sample Time (0955)
Simples Collected: (6)8260, (1) Try, (2) 9066
(2)81514, (2) 8270C, (2) 80314, (1) CN, (2) 9034
16008
- [] [] [] [] [] [] [] [] [] [
Post Purge DTC3: top of pump In tial Russe Clear
Time Temp(4) Cond(us) Do"4/2 PH ORP(mu) Turb(NTG) Pogek Use (030) 14/15 139 2.57 5.44 224.6 1.35 293/mix class
(1035-) 14,01 136 1,39 5.26 202.3 1,12 - 3 Char
1040) 14,15 136 118 5,20 205,9 0,97 1 Clear
(1045) 14,29 135 1.15 5.19 205.4 0.91 " Clear
(050) 14,38 131 1.11 5.24 1827 0.86 clear
(1055) 1450 126 1.11 5.126 167,3 0,87 " Clear
11100) 14,60 127 1,10 5,28 160,17 090 "1 Clear
(1105) 14.72 125 1.10 5.27 157.7 0.58 " Clear
(110) 14,67 125 1,10 5,24 160,9 0,80 " Clear
(110) Readings Stable
(1155) 15:25 138 1,60 5:16 179,1 0:93 Post Suple Reality)
Califord on Page 109
108

tllast	RAD P		
1/30112	803204-10		11 - 1
77 40.0	TGE ICFC		
16MID8 - Cont	()		-:
	ple Time (1115)	13000	
	les Collected: US 8260, C		
(3)81514 (2) 8270	OC, 608081A, U) CN, (<i>a</i>)9034	(KOS)
16601A			(14
0723: 66.50	Begin Purge (1208		(14
Post Purions: 69,82	In froit large Clear		(140
Time Temple Candlus Dm	Zi OH ORPLAN) Turblar	w) Pench Osi	U5
(1210) 13,68 751 2.18	6.83 190.9 0.65	≥0.34min clear	(js
(1215) 1359 763 1.44		11.6 Clear	(15
(1220) 13.68 746 1.29		u clear	Ú5
(1885) 13,90 748 1,22	<i>a</i>	u eles	(15
(1930) 13.76 746 1.17	6.60 26.3 049	u clear:	(15
(1235) 13,81 749 1,16		en societo	(js
(1240) 1392 749 1.17		u clear	(15
(1245) 13,94 750 1.16	:	n clear	
(1250) 13.81 750 1.15		n elev	
	603 / Kin O(33)		
(1250) Readings Shuble	6,45 5,4 0,69	0 5 1 000	
(1405) 14,15 751 1.48		Rost-Sunde Reading	
	emple Time (1255)	(2 6) Tio 21 6-11	# /#
	nples Collected: (79) 32		4
(G) 8151A1(G)827	00,66)8081A, (3)CN,(4)	9034	
	3.6	<u> </u>	
1600 OUP - Taken from	m 16WCIA		·]
1 54	uple Time (1325))
Sur Sur	165 Collected (0) 8260,	(1)TM1(2)1066	
(2)8151A, (2	ple Time (1325) ples Collected (6)8260, 8870C, (2)8081A, (00)	0,(2) 9034	-
			,
The state of the s			
a Company			
	(10ª)	·	

-	4180112	<u> </u>	FBAIO	. 1
	T 1	B03204-10		,
J	16.5			
ł	Ons: 309	Begin Purge (1442)		
	Post Purge OTW:	330 In itial Porge: Clear		
	Time Templed	Constais) 10 % OH OR Plans Terthorn Punc	h lesc	
	(1445) 14.00	531 3.34 7.25 172.6 6.90 283	Vais Clear	
	(1450) 13,37	534 1,94 7.10 177.6 5,12 11		
-	(1455) 13,26	535 1.80 7.07 125.4-4.07	_ Clew ⊥	
	(1500) 13,26	535 1.70 7,08 174.8 328 4	Clau	
	(1505) 13/16	535 1,64 7,12 172,0 3.11 "	Cleev	ž
	(1510) 13,10	536 152 7.12 170.3 3.08 1	Clear	
	U515) 1307	535 1.46 7.11 169.1 6.40 1 14	Clear	-
	(1520) 19,93	534 1.42 7.12 167.9 10.9 1	Clear	- }
}	(1525) 12,88	534 1,41 7.12 166.6 91.98	Clear	į
Ì	(1525) Recoling	, 5) in le 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1
	(1544) 1301	535 1,74 7,14 167,1 12,1 Post Sum	A Realting	.
		Sample Time (1530).		[- -
1		Samples Collected: (3)8260, (1) Tr	(2)8270	
			-	
}	165PRING	╶┊╁╣┾╟╕┈╢╧┖┰╟┧╀╻┽┖┰╢╽┲┩╁╀╟╏╀		
	Time Teneto	Cond(us) Dony PH ORP(ord)		ė.
	(1555) 13,00	592 8,70 7,33 /87,5		
-		Sample Time (1600)	+	
		Jungles Cilected: (3) 8260, (1) TM, (2) 827		
		╌╬┆┸╬╧╗┸╌╫┺╕╦╛╬┸┑╬╹┆╫╁╬┡╅╠╟╬┃	+	
}		╶╿┈╬╼╇╏╇╌┧┞╬╌┞╼╶╬╌┦╏╄╌╗┷╾╫┆┞┯┰╅┾┪╸╬╅╒╗╏	+ ! !	
		╶╢┊┹╡┸┆╵┟┹╈┡┪╏ぴ┪┺┲╣╏┲╬╬╗┞┼╬╏	+ + - -	
	*			
1		<u>▗┚╏┛</u> ╏╏╬┛╏┸┟╀╃╿┇┻╏┱╩╬┸┞┼╃┠┼┦┪╟┩		.
		╌┦╏╌┺╅┸┱╃╏┸╒╾╀┦┆╧┦┧╧┖╤╩╅╁╉╽╬╏		.
		╼╊ ╎ ┾═╬┞╼╈┸╬┼┼═╣╂╀╏╬╃╏╇╏┸┸╏╬┸┱╏╇┪╏		
1)
		(PD)	_	1
- 1		<u> </u>	:	

)

<u>:</u> .

5 --

1-3 x :


```
5/11/2
                         TREINFL
 1600CIB
                        Begin Purge (1015)
DNU: 66.72
Post Purge DTW: 66,97 I I I I Touten Purge: Clear FRIES
Time Tempte) Cond(us) DOMIN PH ORP(un) Touthorn) Proget
(1020) 14.05 333 3,29 572 195.6
                                       20,3 /min 0,98 Clea
                                       11 0.89 clev
                    3,02 5,71 228,1
(1025) 14,12 333
(1030 ) 1417
                  291 5.76 2550
                                              Olle Clear
             339
                                             0,81 Clear
(1038) 14.21
                    2.67 5.77 284.8
             348
(JOYO ) 14.18
                         5,77 310,4
                                             0,68 Clau
                    2.39
             357
                          5,80 320,6
                                             0.72 clear
(1045 ) 14,39 363 2,16
                  2.11 5.84 318.6
                                            0.69 Clear
(1050) 15.00 371
(1055) 15.19 378 2,00 5.87 3188
                                             OIT) clear
(1100) 15,22 379 1.95 5,86 3204
                                             0.70 Clean
                                       Twillyre 80st Single Riceling
(1100 / Keadings Stuble
                    2.16 6.61 299.1
(1134) 1471 3 400
                                       1,01
                    Sample Time (1105
                   Samples Collected : (6) 8260, (1)779, (2) 2006
       (2) 81511, (2) 8270 C, (2) 8081A, (1) CN, (2) 9034, (2) 8081A
  16 WC2B
                          Begin Puge (1144
  DTW: 52.83
 Post Pury ons:64.31
                         Initial Puzze: Clear
 Time Temple Condlus Donge PH ORPland Turblared Purget
                                              23 min cker
1145 ) 14.81 326 5.20 7.64 262.8
                                       0,81
             326 1.42 7.48 242.6
                                                   Clear
                                       0,82
(1150 ) 14.86
                                       0,97
(1155) 14,47 326 1,16 7,55 217 7
                                                   Clear-
(1200) 14,39 326 1,20 7,55 209.11
                                                   clear
                                      0.88
                                                  cleur
                    1,27 7,62 191.6
                                       0.91
(1205) 14/22 325
                  //31
                                                   clear
                                       0.83
                          764 /878
(1210) 14,23 325
                                                   clew
(1215) 14,25 325
                          7.62 183.1
                                       0.81
                    1,35
(1215) Read in as Starby
                                       0,99 | Post Sumple Keepeling
(1229 1 14.81 325
                    1,45
                           7,51 169,7
                    Continued on Page 113
```

511112	20	we.			FBHIO
<u> </u>	Bożz	ou-10 Elkec			
16652B - cont					
	Sample T	me (1220)		
:	Sample To Samples Col	lected: (3)	8260, C	0 TM, C	08270 C
16-1					
DTC)-50.28		Beyon Purg	e (123	37)	
POST RURGE OTWO. B	elow Top of Rung : I	mitien Pur	ge: Clean	r	
Time Temp(2)	and fust DOMAL (DAL ORP(M)	Tublum	Purk !	<u>Desc</u> _
		96 221.0			clew
~		94 227.5		i	dev _
	, ,,,,	87 234,1	_		clear
	i f	83 238.5	2,01	3	Yeer
· · · · · · · · · · · · · · · · · · ·		7	3.15		Cleer
(1305) 14,59			2.20		cleer
			1,63		Clear
		,76 249.7	1,00		Clear
(1315) Readings	Stable		0	ا م کے ر	0.:15
() Well pi	nged Dry cluring	Sumpling		25t Dvw/N	Rejulity
	Sample "	Time (1320)) n) 404 =		· · · · · · · · · · · · · · · · · · ·
	comples	Collected: C	3)3260x1	$(\Omega) \mathcal{M}_{1} (Z)$	<i>めかみ7</i> 0€ <u>-</u>
11 7				,,	*
16-2		B 0	(1241		· · · · · · · · · · · · · · · · · · ·
073:55.81		Beyin Pung			
Post longe DTW 155.	16 DOMY OU	In tial Pur	adler.	Quad l	Δ
(1345) 14,82 6	47 74 6.87	259.8	144 144	2013 /min	Claur
(1350) 14.30 G		260.2	0.66	h	si
(1355) 1401 66		261.4 0	1	li li	<u> </u>
(1400) 13,72 60	12 5.66 6.87			100 . 3	h .:'
(1405) 13.65 65	571 684	265.Z D		η	:
(1410) 13,59 6				มา	/1
(1415) 13.59 6		273.6 0.		l)	<i>y</i>
(1415) Readings					
10000	(I)	3.		:	

5/1/12 10 16-2 cont Tran Tempo Cardias) Oomsh DH ORPLAN Troblaras Projecte Desi 0.88 274,1 6.88 Simple Time (1420) Samples Collected: (3)8260, (1)719, (2)8270C Begin Purge (1439 DTW:56,60 Post Purce DTW: 65,22 Initial Purge: Clear Time Temp(8) Confles) DOME DH OPP(mi) Terblare) Punck Desc 1440) 14,23 244 9.23 7.82 265.8 0.92 383/min Clean 203/mis Clear 7,90 270,1 (1445) 19.14 242 7,46 1.01 Clear Clear 694 7.83 267,1 1.33 242 (1450 7.81 264.4 242 6.85 Clear 1455 14,1de 6,80 769 261.0 14,87 1,56 Clear 242 15e0 6,86 7.61 259.4 1.38)14.93 242 1505 (1510 /14,99 6,92 7,58 257.8 1.39 241 (1510 | Recogions Stuble ্ট্রি)-7.32 255, 4 2.07 Post Singer Reaching (1528) 14.64 239 7.19 Dample Time (1515) 202 Sumples Collected: (3)8760, COM 188270C

6/27/12 RAA	P	F. B. #10	6/27/12 RAAP B03204-10	F. B. #10
150 S 20	MEC		BOBZOU TO	
(Jeneral Notes:			DUP-3 taker from 16WCIA	
· Weather-Surry clear	v, 10.803	tool last	Sangle Time (1025)	
· PPE-Nitrilegloves, ey · Calibrations: 15165	OMNS	1500 DCO15.	Scripes Collected: (1877)	
pH: 4.00= 3.99, 7.00	7-7.00 10.00= 9	.97	16MW9	
Conductivity reads 141	4 us in a 1413,	18 standard	Dav: 65,20 Begin Penze (10	43 \
1)6)70= 1/00 70			Post Pune DTW: 65,98 Intra Punge: (lew
Turbidimeter (HACHZII	000)= 0.02-1000	NTH	Time Tempor Condian Domy, pH DRP(m) Th. (D45) 15,14 968 421 617 68,8 1.	bluru) Bugh Desc
· Dedicated tubing & well	skirts wed at ea	chwell.		
· Allequipment deconned	between wells		(1050) 14,82 976 1.47 6,01 505 6	
· Purge nater disposed of	at 1810-treatment	plantonsite.	(1055) 15.08 975 1.19 5,99 41,0 6	1
· All samples Rept & transpar	ted on ice			66 " Clear
			(1105)14,53 945 0.91 5.91 403 0	
16WCIA	0 (-0")		(1110) 14,33 9/5 0.78 5.96 40.7 0	
Drw: 67.75 Be	gin Perge (0911)			61 " Clear Clear
Post Pugcioto 10018	Fractione, Cour	. 0	(1120) 15.58 920 0.79 6.69 37.1 0.	
Time Temper Condles Wige DH O	RPLAND TUBLINIU) Projet	min Clev	(1125) Readings Stable	, ac
(0915) 14.43 721 8.55 6.83 2 (0920) 13.85 745 3,22 6.57 26	27.3 0.84 in	Clar	(1141) 15:38 907 0.83 5:99 31.9 00	do lost Sande Redin
(0925) 14.01 741 1.86 6.52 22	10.4 0.61 4	eleer	Sample Time (1130)	
(0930) 14,09 742 1.34 6,44 20		clear	Sungles Colleised: (08260	
(0935) 1410 758 1,06 6,39 1		Clear		
	0.5 0.75 4	clear	DUR-2 - taken from 16MW9	
(0945) 14.36 783 0.87 6.33 12	13.4 6.75 11	Clear	Sarge Time (1135)	
	9.4 0.76 "	Clear	Samples Collected: (6)8260	
	0,9 0,81 "	clew		× 5
	9.6 0.71 "	Clear	16 C1	
(1005) 14,33 799 0.64 6,27 5	56,1 0.74 4	Clear	DT10 - 48.31 Begin Perge (115	54)
(1010) 14,30 805 0.63 6.24 5	11.4 0.62 11	Clew	Post Pung DTW-48.32 Initial Punge:	Clear
4	7.2 0.61 n	Clew	Time Temper Condins) Dongle pt Osland)7	erblures) Kingch Desc
(1015) Reactions Strable		. 0	(1155) 1451 733 9,63 6,12 73,1 6	0,64 =034min Clev
(1030) 14,60 810 1,11 6,45 4	7.5 0.99 Post Sa	nfle Heading	(1200) 13.91 719 1.01 5.96 887 8	2.60 " Clear
Sample Time (1020) Sample	les Collected: (2) TM		Continued on page 25	
(P)				THE REST OF THE PERSON NAMED IN COLUMN TO

RAAP DUP taken from 7641B Simple Time (1405) Samples Collected: (2) 8081B 7mw6 Begin Purge (1427) Dro: 25,95 Post Purge DTW: 35. 24 Total Purge: Clear Time Tempe) Condis) Domyk pH ORPHON Turb(NTL) Purgel Desc 15:39 2152 2.30 6,80 14.0 1,96 =0.37min Clear clear 14.55 1918 0.66 6.64 -40.8 (1435) 1829 0.42 6.61 -43.5 clear 14.60 1828 0.30 6.61 -41.0 2,91 clear 14.66 1854 0,25 6,57-40,1 clear 0,25 6.54 -39.5 clear 1891 0,25 6,58 -41.0 eleer 5,22 14.53 1919 (1505) 14,33 1951 0.25 6.53 -40.5 clear (1505) Reculings Starble (1519) 14.59 1998 0.56 6.45 "41.1 3.03 Post Single Realing Sample Time (15/0) Simples Collected: (6)8260 Dul-taken from 7MW6 Simple Time (1515) Simples Collected: (6)8260 (126)

F.B.#10

10/29/12	RAAP 803204-10 PA6179E	F8#10	10/29/12	RAAP	FB# 10
	803204-10 DA6179.E			B03204-10 DASI-TQE	
General Notes			5W86√		
	vercast, Prain Isleet, 30's		D7W - 13.87	Bajn Punge (0914) Initial Punge + Clea	
PPE-Eye	Profection, Witrile 9	loves	10st Purce DTW - 14152	Initial Rurge - Clea	<u>v</u>
Calibration	5 - X5T 650 MDS		Time Temple Condlus) DOTE OH ORNARU) TUNG	largek Desc
		10.00 = 9.96	(0915) 13,05 44	3.22 4.64 -20.2 1.03	0.34 min Clear
- Conductivity	read's 14/3 us in		(0920) 13,26 39	227 4.48 -13,0 0.91	11 Clear
-Doz = 100			(0925) 13,48 40	200 4.52 -5.7 0.65	" Clear
HACH 2100P 7	urbdineter: 0.0Z-	1000 nta		1,95 4,50 -3,6 0,40	" Clear
				1,93 4,52 -2,5 0.36	
Statio	Water Level Tahl	2- UNIT 5_	, , , , , , , , , , , , , , , , , , ,	1,92 4,52 -2,1 0,34	Clear
WELL	DIW Post Pure	Notes		1,90 4,52 -1,6 0.35	Clear
5WBB	13,87 14.5	2	(0948) Readings Stal	ble	
5W7B	9,79 9,94	,	(1001)13,27 40	2118 454 3,2 0.3	7 Post Purge Readin
5W5B	9.94 10.4		ك المنابيات المنابيات ا	Sample Time (0950)	
5WC2Z	9,94 10.01		Samples	Collected! (3)8240B, (1) TI	MILL
5WC 23	9,38 9,38		5W58√		<u> </u>
5WC21			DTW- 9.96	Bogin Parge (1022) In that Runge - Clear	<u>, </u>
5W12A	11,45 11,58		Post Rugo PTW -10.41	Initial Runge-Clear	1
			The Temple Condlus) Dough pH applyue) Turb	Purgel Dosc
55W7	IL23		(1025) 13:97 453		0.3 min Clear
SSW5	7,65			1,04 5,12 23,2 0,24	1) Clear
5W9A	2.93			0.90 5.15 -1.5 0.26	" Clear
5W10A	ıs. SZ			0.94 5.20 -5.1 0.24	" Clear
5WIIA				0,99 5,20 -12.0 0.25	" Clear
5WCA	13,84_			1,01 5,20 -14,4 0.23	" Clear
SSWG	Unable to occess	Beeds Dew Lock		1,05 5,20 -16.0 8.22	" Clear
S5W8	11.78		(1055) Readings Sto		0.00
5WCII	14,99		(1109)14,20 480	1.28 521 -10.3 0.25	Post Purge Readir
5WC12	14.61				
				Sample Time (1100) s Collected; (3) 8260B (1) To	
			Jample Sample	s Lollecked! (3) 626013 [1) [1	
	<u> </u>			(154)	
		<u> </u>		297)	<i></i> :

10/29/12	RAAP	EB#10	10/29/12	RAAP	F8#10
	B03201-10 DAS/TOE			B03204-10 D09179E	
5w78×	<u> </u>		5wc22V		
DTW-9,7°	1 Bezin Rusq (1124)		D1W-9.94	Begin Purge (1359)	
Post Ruge DIW-	-9.94 Initial hurex - Clear		Post Purge DTW-1	5.01 Initial Purge-Cle	ar
Time Temple	Condless) Donale DH CRP(MW) Jux	b Ringek Desc	Time Temple Cond		nb Purgek Desc
(1125) 15,03	165 <i>59</i> 8 375 373 06	603 min Clear	(1400)1352 693		
(1130) 15.40	189 2.96 3,66 63.8 0.5	× • (··) · · · · · · · · · · · · · · · · ·	(1405) 13.41 663		
(1135) 15,37	192 2,87 3.45 78,4 0,50	1	(1410)13.36 662		the state of the s
(1140)15,35	191 2.88 3,68 89,5	Clear	(1415)13.35 661	0.40 6.46 22.8 21	
(1145)15,35	190 291 3,68 100.6	Clear	(1420)13.24 650		
(1150)15.27	190 294 3,68 104.8 05	6 Clear	(1425)13,26 660		
(1155) 15.20	190 302 3,67 109,6	Chear	(1430)13,31 660		J 7 - 1 1 - 1 - 1 - 1 - 1
(1200)15,24	191 3.02 3.65 112.3	Clear		1 0.50 6.44 -4.3 17	
(1219)14,96	ngs Stable 000 190 3.05 3.67 119,8 0.4	8 Past Ruge Reading	(1440) Readings 5	0 0132 6174 7618 111	10 Clear
(41)	190 3,05 3,67 119,8 0.4 Sample Time (1205)	2	(1H 58) 13,21 659		1 Pat Parkins
	Samples Collected: (9) 82608, (3.) TIU	(1/25//0/21 @3/	Sample Time (1445)	2 105 Transe waggers
5WC21	samples concered to ourse,			mples Collected (3)82498 (1)Tru
DTW- 9.92	2 Begin Purge (1246))	Swc23		
Post Purge DTW -		/r	D7W-9,38	Baris Ruge (15	514)
Time Temple	Condius Dougle of Orland) -	Turb Purgek Des C	Post Parge DIW-9	38 Toita/Ruge-C	lear
(1250) i3.37		5,56 0,3 prin Clear	Time Temple) Co	ndlus) DOU/L DIT OFP(AN)T	
(1255) 13.63	514 0,59 3,58 107,8 C	0.55 11 Chew	(1515)1374 7	<u> </u>	82 O. Hasin Clear
(1300) 13.41		172 " Clear	as P T T	• • • • • • • • • • • • • • • • • • • •	102 11 Clear
(1305)13.67		101 11 Clear		38 0,58 6,52 -61,3 2	and the state of t
(1310)13.32		1,22 11 Clear	THE RESERVE OF THE PERSON OF T	86 0.54 6.52 -79.7 2	
(1315)13,40		.08 " Clear	(1535)13,55 68		
(1315) Readin	gs 3/able	7 0 1 0 0 0 15		36 0,53 6,52 -90,32	
[1341]13,44	500 0,64 360 112.6 1.	12 Post Ruge Reading		87 0,54 6,52 -91,1 3	
j	Sample Time (1320)	1 2-E3 4	(1550)13.60 68		3.78 "Clear
	Samples Collected (3) 82 608	<u> </u>	(1550) Readings 5	table	2 0 0 0 0
510 DUP (Coll)	eoded at monitoring well 5wc21) 	(1604)13,49 48	0 0.62 6.52 - 8913 3	28 1057 Kungo Koada
	Sample 1 mg (1333)			Sample Interest	L) TMA
	Sample Time (1335) plus Collectech (3)8260B (1)TM			Sample Time (1555) oples Collected: (3)821008, (<u> </u>

5W12A DTW-11.45 Begin Runge (1619) Bot Auge DTW-11.58 Tai Hol Purge - Clear Time Temple / condins Double pt Cellul Turb Runge & De (1620) 14.40 330 7.44 7.23 -3.8 1.69 c.31min Ch (1625) 14.19 373 1.94 6.48 -32.9 1.70 11 Ch (1630) 14.19 380 1.59 6.61 -56.7 1.72 11 Ch (1635) 14.15 381 1.40 6.61 -56.7 1.72 11 Ch (1645) 14.17 383 1.37 6.60 -59.9 1.78 11 Che (1645) 14.17 383 1.30 6.58 -62.6 1.80 11 Che (1650) 14.17 383 1.29 6.60 -65.4 1.80 11 Che (1650) 14.05 380 1.27 6.60 -65.7 1.94 Post Runge Re Sample Time (1655) Sample Time (1655) Sample Time (1655)	0/29/12		RAAP 303204-10 DAS 174E	i	FB#
DTW-11.45 Begin lunge (1619) Box + Auge DTW-11.58 Toi-Hol lunge - Clear Time Temple Condins Domol- pH Skelder Turb lunge Begin lunge Clear [1620] 14.40 330 7.64 7.23 -3.8 1.69 0.34 win Cle [1625] 14.19 373 1.94 6.48 -32.9 1.70 11 Cle [1630] 14.19 380 1.59 6.61 - 46.3 1.65 11 Cle [1635] 14.15 381 1.40 6.61 - 56.7 1.72 11 Cle [1640] 14.17 383 1.37 6.60 - 59.9 1.78 11 Clea [1645] 14.20 385 1130 6.58 - 62.6 1.80 11 Clea [1650] 14.17 383 1.29 6.60 - 65.4 1.80 11 Clea [1650] 14.185 380 1.27 6.60 - 65.7 1.94 Sost Ruge Re [1705] 14.05 380 1.27 6.60 - 65.7 1.94 Sost Ruge Re Sample Time (1655) Sample Time (1655) Sample Time (1655)					
Bot Auge DTW+11.58 Toite Ruge - Clear Time Temple Condins Dowl- pt Skillow Turb Ruge & De (1620) 14.40 330 7.64 7.23 -3.8 1.69 0.34 win Ch (1625) 14.19 373 1.94 6.48 -32.9 1.70 11 Ch (1630) 14.19 380 1.59 6.61 -46.3 1.65 11 Ch (1635) 14.15 381 1.40 6.61 -56.7 1.72 11 Ch (1640) 14.17 383 1.37 6.60 -59.9 1.78 11 Che (1650) 14.17 383 1.39 6.68 -62.6 1.80 11 Che (1650) 14.17 383 1.29 6.60 -65.4 1.80 11 Che (1650) 14.05 380 1.27 6.60 -65.7 1.94 Post Ruge Re (1705) 14.05 380 1.27 6.60 -65.7 1.94 Post Ruge Re Sample Time (1655) Sample Time (1655) Sample Time (1655)	5W12A Y			77	<u> </u>
Time Temple Condins Double of CRICKIN Turb Pargets De (1620) 14,40 330 7.64 7.23 -3.8 1.62 0,34min Ch. 1825) 14,19 373 1.94 6.48 -32,9 1.70 11 Ch. (1630) 14,19 380 1.59 6.61 -46.3 1.65 11 Che (1635) 14,15 381 1.40 6.61 -56.7 1.72 11 Che (1640) 14,17 383 1.37 6.60 -59.9 1.78 11 Che (1650) 14,17 383 1.30 6.58 -62.6 1.80 11 Che (1650) 14,17 383 1.29 6.60 -65.4 1.80 11 Che (1650) 14,05 380 1.27 6.60 -65.7 1.94 Post Ruge Rec (1705) 14,05 380 1.27 6.60 -65.7 1.94 Post Ruge Rec (1705) 14,05 380 1.27 6.60 -65.7 1.94 Post Ruge Rec			Begin lung	e (1619)	
(1620) 14,40 330 7.64 7.23 -3.8 1.62 0,34min Ch 1825) 14.19 373 1.94 6.48 -32.9 1.70 11 Ch (1630) 14,19 380 1.59 6.61 -46.3 1.65 11 Che (1635) 14.15 381 1.40 6.61 -56.7 1.72 11 Che (1640) 14.17 383 1.37 6.60 -59.9 1.78 11 Che (1650) 14.17 383 1.30 6.58 -62.6 1.80 11 Che (1650) 14.17 383 1.29 6.60 -65.4 1.80 11 Che (1650) 14.05 380 1.27 6.60 -65.7 1.94 Post Ruge Re Sample Time (1655) Sample Time (1655) Sample Time (1655)	Host Huge DT	2) 1/ /2/	Intellung		1 100
1825 14.19 373 1.94 6.48 -32.9 1.70 11 Che (1630 1419 380 159 6.61 -46.3 1.65 11 Che (1635 1415 381 1.40 6.60 -56.7 1.72 11 Che (1640 14.17 383 1.37 6.60 -59.9 1.78 11 Che (1650 14.17 383 1.29 6.60 -65.4 1.80 11 Che (1650 16.60 1.27 6.60 -65.7 1.94 Post Ruge Rec (1705 14.05 380 1.27 6.60 -65.7 1.94 Post Ruge Rec Sample Time (1655 Sample Collacted: (13) 824.015 (1) 7711					
(1630) 14,19 380 159 6 61 - 46,3 1.65 1 Cle (1635) 14,15 381 1,40 6 61 - 56,7 1.72 1 Cle (1640) 14,17 383 1.37 6,60 - 59,9 1.78 1 Cle (1645) 14,20 385 1,30 6,58 - 62,6 1,80 11 Cle (1650) 14,17 383 1,29 6,60 - 65,4 1.80 11 Cle (1650) Leadings Stable (1705) 14,05 380 1,27 6,60 - 65,7 1,94 Post Ruge Re Sample Time (1655) Sample Time (1655) Sample Time (1655)	X				
(1635) 14:15 381 1:40 6:61 - 56.7 1:72 " Clear (1640) 14:17 383 1:37 6:60 - 59.9 1:78 " Clear (1645) 14:10 385 1:30 6:58 - 62.6 1:80 " Clear (1650) 14:17 383 1:29 6:60 - (65.4 1:80 " Clear (1650) Readings Stable (1705) 14:05 380 1:27 6:60 - 65.7 1:94 Post Ruge Readings Collected: (3) 824065 (1) 7M Sample Time (1655) Samples Collected: (3) 824065 (1) 7M			and amount to the foreign to the same of the		
(1640) 14.17 383 1.37 6.60 -59.9 1.78 " Clea (1645) 14.20 385 1130 6.58 -62.6 1.80 " Clea (1650) 14.17 383 1.29 6.60 -65.4 1.80 " Clea (1650) Leadings Stable (1705) 14.05 380 1.27 6.60 -65.7 1.94 Post Ruge Rea Sample Time (1655) Samples Collected: 13) 18260 B, (1) 7M			Tel1- /	der tonne - tre transfer to the transfer to	1.:
(1645)44.20 385 130 6.58 -62.6 1.80 11 Clear (1650)14.17 383 1.29 6.60 -65.4 1.80 11 Clear (1650) Readings Stable (1705)14.05 380 1.27 6.60 -65.7 1.94 Post Ruge Real Sample Time (1655) Samples Collected: 13)82606, (1)7741					
(1650) 14,17 383 1,29 6,60 -65,4 1.80 "Cleo (1650) Readings Stable (1705) 14,05 380 1,27 6,60 -65,7 1,94 Post horge Rec Sample Time (1655) Sample Time (1655) Samples Collected: 13) 8240B, (1) 77M					
(1705) Hos 380 1.27 6.60 -65.7 1.94 Post Ruge Rec Sample Time (1655) Samples Collected: 13) 8240B, (1) 77M			· · · · · · · · · · · · · · · · · · ·	- "	
(1705)14,05 380 1.27 bild -65.7 1.94 Post Rusge Red Sample Time (1655) Samples Collected: 13)82(0B) (1)77M					
Sample Time (1655) Samples Collected: 13) B2(DB) (1) TIM			1 12/10 -1	57 194	Post Ruses Per
	1000	· į	•	:	. , , ,
			Zamale Time	(1655)	
		Samalos	Callerted 13)801011	1)774
	· - · · i	Jangros	Con wywes 6.0	2 92-2-2-3	
	·· ·			1	
	i				·i
					··· ·· - ·· -· //
				- 	
(87)					مورسا
				: [
			;		
			i	_	
(8)				_	
(187)					
(187)					
			(187)		
			(187)		
			(157)		
			(187)		
			(157)		

10/31/12	RAA	9	FB#1
	Be 320	70E	
General Notes		:]	
Weather Ove	reast 305		
PRE-Eye Pro		3/2 0/005	1 1
Calibrations -	VST 650 1	1750	
-pH14.00= 4.0			vn = 6.05
Tologial N	14/3	,	O (** 157)
Conductivity	2003: 1713	is in 1412	225 570
+D0% - 100			
HACH 2100P			
· New tabing and			
a All pune water			
All equipment de	conned before	and after	eoch use
· All samples colle			
		: : : V,	
Statio	Water Leve	1 Table -	UNIT 7
WELLS	270		
17W128 L	24.87	24.88	
7W9e	14,35	20.38	
17W/0B	15.66	16,90	
			+++
7w/oc	21.02	24.85	
1170/3		22.71	
7 106	26.64		
11.7W1/B	25.21		
7WCA	75.05	36.93	حبابا والمحادث وتبد
			SULL ON
117W98	22.82		1 1 1
7011	DRY		
7MW5	25.06		
		1	
		: 1	
		4-!	
		<u></u>	<u> </u>
	ورخوا أ أ أ ا	<u> </u>	
No. of the State o	<u> </u>	<u> </u>	WWW.
	1971 -15 -200-15-2	6.20 80 30 12	44.50A 3 X
	Marki 48 (S) / (S)	i e	and the second second
	1		

10/31/12	RAAP B03204-10 DAS/10E	FB# 10	10 31 12	RAAP	FB#10
(m) + 60 /	505207770 DAS/70E		72.10 8.1	803204-10 Dag 1785	
7W12BV	Quin O. (100	4/	761/0BV	Begin Purge (12:	29)
D7W -24.87 Post Purge D7W-24.88	Begin Purze (100 Fnitial Purge-C	Than	Rost Parge DIW-16.9	O Initial Ruge-C	inar
- 4 / 1/		1 1 2	Time Temple Conda	15) DOMYL OH ORPLAN) TU	
Time Jemple Lindles (1005) 12,58 565	7.55 6.80 11,6 2.4	7), ; •	(1240)12,98 963	2.59 6.82 -70.5 42	7)
(1010) 12.90 568	4,75 6.93 9.4 2.4		(1245)13.08 990	1.55 6.76 -72.8 3.0	
(1015) 12.99 571	4,80 6,95 6,1 2.48		(1250)13,06 1006	1150 6.76 -73.7 1.6	9.7
(1020) 13.27 582	4.70 6.94 5.0 2.40	b 11 Clear	(1255)13,09 1013		production and the second contraction of the
(1025) 13.43 582	4,72 6,95 3,7 1.98		(1300)13.12 1019		
(1030)13,48 582	4.75 4.95 2.6 1.59		(1305)13,14 1019		
(1035)13,50 582	4.80 6.95 2.0 1.38	3 11 Clear	(1310)13,18 1020		38 " Clear
(1035) Readings St	able		(1310) Readings S		-010 72 1
(1051)13,57 582	484 6.96 1.4 62	28 Post Pure Reading	(1327)13,21 7020		57 Post Ringe Readings
	Sample Time (1040)	1 (1) (1) (2) (2)		Sample Trne (1315) nples Collected! (3)82608,(1)	mi (1)01/2)02707
7w9C / Sam	ples Collected! (3)82608, (1) Th	1, (1) CN, (2) 82 100	7W10CV 191	njus contexto: (7/02000), (1/	IN, (1)CH, (2)06201)
DTW-14,35	Begin Ruse (1128	8)	DTW-21.02	Begin Purge (1447	·)
Post Purse DIW-20.3		ear	Post Purce DTW-248		
Time Rivel Conda			Time Temple Constais)		Purge K Dosc
(1130) 12.75 1956		20 Oithuin Clear	(1450) 12/20 887		0,34 min Clear
(1135) 12.75 1299	0.65 6.74 -60.4 1,0			0.61 7.09 -64.1 12.1	11 Clear
(1140)12,79 1233	0,40 6.76 -73.5 0,8		(1500) 12.20 898		'' Clear
(1145)12,86 1233			(1505/12/17 899 0		Clear
[1150]12.80 1233		42 11 Clear	(15/6)/2.11 900 0	239 703 -81,1 7,95	" Clear
(1155)12.76 1231		40 Cear	(1515)12.12 900 0	0.36 7.03 -85.7 5.24	<u> </u>
(1200)12.70 1230		The Clear	1520 12 16 900 1	9.36 7.03 -88.6 3.95 9.35 7.03 -90.2 3.09	" Ufar " Clear
(1205)1275 1230		57 " Clear	(1525) Readings 51		Clear
(1205) Reading 5	0.67 k.75 -114.6 0	29 Pact Ding Postin		.48 7.03 =101.3 2,70	Post Purge Reading
122- 11200 1204	Sample Time (1210)	13 F 1031 Turge Measury		Sample Time (1530)	In In Je I and Ch
·	amples Collected! (3)8260B (1	17m (1)col(2)8270D	Simo	les Collected: (3)8260B (1)7	m. (II) CN
	The state of the s			(2)82	
<u> </u>				(140)	
	(B)			(40)	

	II/I/IZ BAAP	FR# I)
	1803204-10	PB-H-11
	General Notes	
	Weather - Mostly Cloudy, 40's PRE-Eye Protection, Nitrile gloves	
Projects (continued)	Ple-En Destan Will to Mark	
	Calibrations - YSI 450 M35	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- 9H: 400- 17:00- 10:00-	
	- Conductivity reads 1413 us in 1413 us std	
	Magil 2008 777 1	
	HACH 2100P Turbiding for 002-1000 irtu	,
	· New tubing and well skirts used at each well	4
	· All equipment deconned befor after each use	
***************************************	· All puric water disposed of at dedicated focation	
	• All samples collected, stored and transported on ice	in coolers
	$\frac{176/3}{1}$	
	DTW-19.31 Begin Punge (1081)	
· ····································	Post Purge DTW-2271 Initial Purge Clear	
	Time tayole Carlas DO The st ORPLAN Turb Rive	ick Desc
	(1805)1240 1393 7.20 6.91 47,9 3.11 0.3	Thin Clear
	(1030)12,60 1390 1,22 7,05 34.5 2,42 n	Clear
	(1035)12,59 1352 1,18 7,05 283 1,14 (Clear
	(1040)2,56 1315 1.20 7.10 20.8 0.81	' Clear
	(10:15)12,43 1301 1,23 7,10 18,7 0.80	" Clear
***************************************		' Clear
	1055 12,55 1298 1,27 7,10 11,3 0,77	Clear
	(1955) Readings Stable	
	(11/2)1287 1283 153 7,15 187 1,06 Post	Parge Rading
	Sample Time (100)	, soil vading
	Samples Collected (3)8260B, (1)TM, (1)	MY (2) (2) (1)
		10200
·	Due	
- /	Sample Time (1235)	
	Samples Checkel (3)82608	
<u> </u>	A Disples affected at monitoring used 7mw	

10/25/12	BAAP	F8#_10	10/25/12	RAAL	FBHIO
	B03201-10 DA61TQE	·-···		RAA/ B03264-10 DA61TPE	
General Notes			10D3DV		
Weather - Si	unny, 60-70's		Dtw-19,17	Bagin Purge (1109)	
PIE-EVE, Pro	fection Nitrile gloves		Post Parge Dills-19,22	1 nitia large - Clear	
	- Y5I 650 MOS	·	Time Temple Cond (ms) Do	5 PL DEP(M) Tand Pur	sek Desc
- pH: 4.00 =	7.00= 10.00=	11/		48 7.20 -258.6 1.25 0	37mm Clear
- Conductivity 1 - Do 70 = 100	reads_1413 us in 1413 us	5570		1,27 7,15 -195,4 1,20	u Clear
	d well skirts used at each	1. 1. 11	7	29 7,10 -204.5 1,02	" Clear
All of one is les	discourt of at abdicated to	n well		15 6.83 -211.7 0.91 15 6.78 -211.0 0.80	11 Clear
· All organizat dono	disposed of at dedicated homes before lafter each use	COLINI, ULBITE			" Clear
· All examples only	cled-stored and transported on	Top in Coolors			11 Clear
_isin samples corre	orea o lossa and I lans for lea on	The transfer of the state of th	(1140) Roadioch Stabio	Rotten egg oder throughout	
St	ate Water Lovel Table!	UNITIO)	(1159) 15:35 464 4	123 6.52 -201.6 1.19 8	et Puroc Reading
WELL	DTW Post Page DTW	Unites	Sau	pple Time (1145)	
IDDDHZR	20,85 21,23		1 Samples G	ilected: (5)82608 (2)82703	D. (1) TOU
1003	19.33 19.45		1003		
10D3D	19,17 19,22		D7W-19,33	Begin Purge (1225)	
10MW1	19,32 19,48		Post Purge DTW-19:45		
10D4	22.78 22.83		Time Temple Conditus)		
1				2.49 6,28 -1293 0.60 :	
JOMWIY	0 0	X		1.48 6.21 -117.1 0.64	in Clear
D7W-19.32	Begin Purge (0948	<u>)</u>		1.51 6.05 -100,90,58	11 Clear
Post Ruge DTW-19,	48 Initial Pringe-Clea lus) Notice of Skiller Turb	20		54 5,90 -83,4 0,55	Clear
Time Temple Cond				60 5,73 -58.3 051	li Clear
(0950) 15:40 300 (0955) 15:52 300		03thin Clear 11 Clear	(1255)15,36 480 3, (1306)1542 482 3,		" Clear
(1000) 15.58 30		" Clear		94 5,43 -39 ,8 0.45 00 5,43 -20,9 0.41	" Clear Chear
(1005)15.44 308		" Clear	7.4	05 5,38 -18,3 0,44	11 Clear
(10/0)15.78 310		" Olean		13 5.38 12.9 0.44	Clear
(1015) 15.82 310		(Clear		18 5,35 14,5 0.52	" Clear
(1015) Readings Sta		6		23 5,36 16,8 0.55	1 Clear
(1036) 15.83 310		ost Auge Reding		29 5,38 19,1 0.60	"Clear
Sample Time (102	o) Samples Collected (5)82608 (2	MTCI) COSSC	(1330) Readings Stabl		
•	(149)	,		<u>(50)</u>	

General Notes General Notes Weather-Mostly Sunny, 50\$-60\$ PRE-Eye Rotection, Nitrile glives Calibra hons- YSI 650 mos - pt: 400= 4600, 7,00= 7,00 10,00= 9,97 - Concluctivity reads 1413 us in 1413 us std (1055) 13,90 407 5,171 6,85 107,9 1,866 " Clear	10/22/12	RAAI	2	F8#10	1012	2/12		RAAL)	Fl	3#10
Westher Mostly Sunny 505 - 605 DTW - 4817 Begin Parge (1047) Westher Mostly Sunny 505 - 605 DTW - 4817 Begin Parge (1047) Westher Front Front Front Great Californ fron 5 - YSI 660 mb/5 Time Rengle Down 500 DTM Burge Down Phi + Mos		B032 <i>04-</i> D45/70	70 E					B03204-	E		
Destrict	General Notes				16-1	<u> </u>					
Ref. Eye Instection Not trille gloses Calibrations VSI Got 18015 VSI	Weather- Most	4 Sunny, 50's	-60's		D70	0-48,1	7	Begi	n Parge (102	<i>+</i> 7)	<u>;</u>
Callbert ton5 - 45	PRE- Eve Profe	ction Nitrile	aloves		Post Pur	rge DTW	-56.02	Initi	al Rurge - C	iear	i _ i _ i _ i _ i _ i _ i _ i _ i _ i _
- PH + 4.09 = 1400 7,00 = 7400 10.00 = 9.97 - Constitutivity reads 1413 us in 1413 us std 1055 13.97 437 5.48 6.90 116.4 3.18.258 1100 1707 = 100 1100 1700 2 100 1100 1700 2 100 1100 1	Calibra tions -	YSI 650 MO	15		Time	Temple) Condlux) ?	03/2 pH	- ORPHAD TU	b king k	L Dese
-Conclect inity reads 1413 us in 1413 us std 1052 1390 407 5171 685 10719 1886 "Clear 1072" 100 14100 Tarbotime for 2012 1000 100 100 1105 11413 370 583 6.70 1854 0.710 "Clear 1105 11413 370 585 6.60 1854 0.710 "Clear 1115 11413 370 588 6.60 1854 0.710 "Clear 1115 11413 370 588 6.60 1857 12012 0.688 "Clear 1125 11415 370 588 6.60 1857 12012 0.688 "Clear 1125 11415 370 588 6.60 97.8 668 868 668 668 668 668 668 668 668 6											
### All springers special from the \$\tau\$ 0.02-1000 plus #### springers special of at dedicable location onsite #### springers of becamed before and of fee each use ###################################	- Conductivity	reads 1413	us in 1413 us std		(1055)	13.90	407 5,	77 6.85	101.9 1.80	2 (1)	Clear
# All epignent accorded before and after each use the burg work also and well stirts and well stirts used at each well the burg work and well stirts used at each well the burg and well stirts used at each well the samples collected are showd and transported on the in coolers HETE Static Water Level Table (UNITIO) DTW Morthwell Water Level Table (UNITIO) TIG-1 4817 5402 16-2 5580 55.94 16-3 57.23 (4.48 16-5 502 5.86 16-10 57.31 Mitting top of pump (1800) 16-10 4813 Mitting top of pump (1800) 16-10 4814 72.06 16-10 4814 72.06 16-10 4814 72.06 16-10 50.08 50.22 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10 50.08 50.20 16-10	-DO% = 100				(2100)	1403	397 5,8	34 6.80	103,6 10,71	"	Clear
# All funce swell disposed of at dedicated location ansife # All swells and well skirts used at each well # All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and in clear ilized plands of the coolers and in	HACH 2100P Parb	dimeter + 0.02	-1000 stu	, , , , , , , , , , , , , , , , , , ,	(1105)	14,13	390 5.8				Clear
# All funce swell disposed of at dedicated location ansife # All swells and well skirts used at each well # All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and transported an ice in coolers ## All samples collected are stored and in clear ilized plands of the coolers and in	+ All eniment dec	conned before qu	nd after each use		(1110)	14,29	390 5,8	5 6.67	107.7 6.70	<i>)</i>	Clear
# New Yubing and well skirts used at each well # 1120/14.52 390 5.88 6.59 100.2 0.68 "Clear # 111 Samples collected are stored and transported on (1125/14.65 372 5.85 6.56 99.8 64.8 "Clear (1125/14.65 372 5.85 6.56 99.8 64.8 "Clear (1125/14.65 372 5.85 6.56 99.8 64.8 "Clear (1125/14.65 372 5.85 6.50 99.8 64.8 "Clear (1125/14.65 372 6.66 6.70 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71				sife	(1115)	14.38	390 5.8	8 6.62	103,7 0.68	11	Ciear
# All Samples collected are stored and transported on 100 in coolers 101	It New Yubing an	duell skirts	used at each u	rell				3 6.59	100,2 0.68	11;	Clear
10 10 10 10 10 10 10 10	* All samples col	lected are stored	and transported o.	<u>1 </u>					99,8 648	1/:	Clear
Hotel Static Water Level Table (UNITIO) Sample Time (1730) Sample Time (1730) Static Drw Rothing DW Modes Sample Scillected (3)82608, (2)8270D, (1)7001 16-1	ice in cool	215	7		(1125)	Readin	95 Stabl	e .			
#5-145 Startic Water Level Table (UN) T16) #5-145 Startic DTW Bothwee DW 1845 16-1 4817 56,62 16-2 55.86 55.94 16-3 57.23 64.48 #6-5 5.02 5.86 #6-5 5.02 5.86 #6-5 5.02 5.86 #6-5 16-mw8 74:13 Httm; top of pump (1235) 1491 187 6.86 7.23 1034 0.78 11 Clear (1230) 1491 187 6.85 7.23 1034 0.78 11 Clear (1240) 14:53 185 6.55 7.21 107.3 0.59 11 Clear (1240) 14:53 185 6.55 7.21 107.3 0.59 11 Clear (1240) 14:53 18:56 18:56 7.32 11:10 0.35 11 Clear (1250) 14:56 18:46 18:56 7.32 11:10 0.35 11 Clear (1250) 14:56 18:46 18:56 7.32 11:10 0.35 11 Clear (1250) 14:56 18:46 18:36 18:46 18:36 18:46 18:36 18:46 18:36 18:46 18:36 18:46 18:36					(1148)	14,97	398 6.1	0 6.48	107.3 0.77	Post Pur	gereading
16-1	16-135 Sta	tic Water	Level Table (UN)	T16)			Sai	nole Time	(1/30)		, ,
16-1	DTW WELL	DYW KOT	Pure DTW Abdes	<u> </u>			Samples	Collected.	(3)82608,(2	18270D,	(1)TM
16-3 57.23 66.48 DTW-57.23 Begin Purge(1227) 16-5 5.02 5.86 Bot Purge DTW-66.48 Triptal Purge - Clear 16 mw8 74.13 Hatting top of pump (1230) 1491 187 6.86 7.40 98.2 0.91 0.34 min Clear 16 wc18 70.14 70.75 (1230) 1491 187 6.86 7.23 103.4 0.78 11 Clear 16 wc19 69.84 72.06 (1240) 14.53 185 6.55 7.21 107.3 0.59 11 Clear 16 wc19 6.84 68.23 (1245) 14.16 185 6.50 7.26 109.2 0.35 11 Clear 16 wc19 6.85 50.22 (1250) 14.58 184 6.65 7.32 111.0 0.31 11 Clear 16 wc20 16 wc20 14.69 183 6.70 7.26 116.2 0.25 116.2 16 wc20 16 wc20 14.69 183 6.70 7.26 116.2 0.25 116.2 16 wc20 0.35 0.55 0.55 0.55 0.55 17 wc20 180 180 180 0.82 7.15 120.4 0.35 0.55 0.55 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18 wc20 18	and the contract of the contra	48,17 5(,02	#		/					
16-5 5.02 5.86	16-2									 	
16wc28 54,81 6848 Time Tende Condlus Do Well ptt OR Phill Turb Purge Desc 16mw8 74:13 Hotting top of pump (1230) 1491 187 6.86 7:40 98.2 0.91 0.34 min Creat 16wc1A 69.84 70:14 70:75 (1235) 14:55 186 6.65 7:23 103:4 0.78 " Creat 16wc1A 69.84 68.23 (1245) 14:46 185 6.50 7:26 109:2 0.35 " Creat 16c1 50:08 50:22 (1255) 14:60 184 6:65 7:32 111:0 0.31 " Creat 1255) 14:60 184 6:64 7:32 114:3 0.28 " Creat 1255) 14:60 184 6:64 7:32 114:3 0.28 " Creat 1600H3 DRY (1300) Readings: 5table (1322) 14:67 183 6:82 7:15 120:4 0:35 Post Ruge Reading Sample Time (1305) Samples Collected: (3)82606, (2)8270D, (1) Time (1305)			.48					Beg	in Purge (122)	<i>'</i>)	
16MW8 74:13 Hething top of pump (1230) 1491 187 (686 7:40 98.2 0.91 0.34 min Clear 16WC18 70:14 70:75 (1235) 14.55 186 (6.65 7:23 103.4 0.78 11 Clear 16WC1A 69:84 72:06 (1240) 14:53 185 (6.55 7:21 107:3 0.591 11 Clear 16C1 50:08 50:22 (1255) 14:46 185 (6.50 7:26 109:2 0.35 11 Clear 16C2 180 184 (6.64 7:32 114:3 0.28 11 Clear 1800) 14:69 183 (6.70 7:26 116:2 0.25 11 Clear 1800) 14:69 183 (6.70 7:26 116:2 0.25 11 Clear 1800) 14:69 183 (6.82 7:15 120:4 0.35 Rost Rurge Keedling Stable 1800) 14:67 183 (6.82 7:15 120:4 0.35 Rost Rurge Keedling Samples Collected: (3)82606, (2)8270D, (1) TIM								Initia	1 Rivge - Cled	av	
	***************************************				Time	Temple)		9/c pt	ORPANUL Tur	2 TureK	_ Desc_
1600 16184 72.06 (1240) 14.53 185 6.55 7.21 107.3 0.59 11 Clear 1600 16.84 68.23 (1245) 14.46 185 6.50 7.26 109.2 0.35 11 Clear 1600 14.58 184 6.65 7.32 111,0 0.31 11 Clear 12.55 14.60 184 6.64 7.32 14.3 0.28 16.00 14.69 183 6.70 7.26 16.2 0.25 16.00 1300 14.69 183 6.70 7.26 16.2 0.25 16.00 1300 14.67 183 6.82 7.15 120.4 0.35 16.57 16.00 16		74.13 144	is top of pump								
(1245) 14.46 185 6.50 7.26 109.2 0.35 "Clear 16C1 50.08 50.22 (1250) 14.58 184 665 7.32 111,0 0.31 "Clear 1255) 14.60 184 6.64 7.32 114.3 0.28 "Clear 1255) 14.60 184 6.64 7.32 114.3 0.28 "Clear 1300) 14.69 183 6.70 7.26 116.2 0.25 "Clear 1300) 14.69 183 6.70 7.26 116.2 0.25 "Clear 1300) 14.69 183 6.82 7.15 120.4 0.35 Post large Kooding 5 table 5 ample Time (1305) Sample Time (1305) Sample Time (1305)	7		•	······································							
16C1 50.08 50,22 (1250) 17,58 187 (655 7,32 111,0 0.31 " Clear (1255) 17,60 184 6,64 7,32 114,3 0.28 " Clear 1600H3 DRY (1300) 14,69 183 6,70 7,26 116,2 0.25 " Clear 1600H3 DRY (1300) Readings 57able (1322) 14,67 183 6,82 7,15 120.4 0.35 Post Purge Reading Sample Time (1305) Sample Time (1305) Sample Time (1305)											
(1255) 14.60 184 6.64 7132 14.3 0.28 "Clear 1600H3 DRY (1300) 14.69 183 6.70 7.26 (16.2 0.25 "Clear 1300) Readings 5table (1322) 14.67 183 6.82 715 120.4 0.35 Post Purge Kooding Sample Time (1305) Sample Time (1305) Sample Time (1306)				and the first shows a first transfer from				0 7.26			
1600H3 DRY [1300] 14:69 183 6.70 7.26 116.2 0.25 " Clear 1600H3 DRY [1300] Readings 5table [1302] 14:67 183 6.82 7.15 120:4 0.35 Post Ruge Reading Sample Time (1305) Samples Collected (3)82606, (2)8270D, (1) TM	1601	50.08 50,	<u> 22. </u>					5 7.32		1 1 11 : :	Clear
1600H3 DRY (1300) Readings 5table 16W2A DRY (13122) 14.67 183 6.82 7.15 120.4 0.35 Rost Runge Reading Sample Time (1305) Samples Collected (3)8260B, (2)8270D, (1) TM		. <u></u> _		<u>.</u>							Clear
76WC2A DRY (13122) 14.67 183 6.82 7.15 120.4 0.35 Post Purge Roading Sample Time (1305) Samples Collected: (3)82606, (2)8270D, (1) TM									114.2 0.25	5 11	Clear
Samples Collected (3)82606, (2)8270D, (V) TM		DRY		·····	(J300)	Readine	is 5table				
Samples Collected (3)8260B, (2)8270D, (1) TM	TEWEZA	DRY	· · · · · · · · · · · · · · · · · · ·	··· :	(1322)	14.67	183 6.8	2 715	120.4, 0.35	s Post Ru	rse Roading
								imple Time	<u> </u>	4-4-4-4	, 19
							Samples Co	ollected: (3)8260B,(Ž)82	270D, (1	JIM
	<u> </u>	000			LL			(14)		لأ أ	
		(141)				onnesial de la com				Same Westign	لادور
			The state of the s	The second second second							Bulking and

D(33)12 RAAP BO3204-10	F\$#1
Commuse Construction Construct	
Time Trapel Condins Do" 1 pt 089 (MW) Turb large Desc (1145) 1496 110 5.86 5.21 86.1 0.72 50.3 him Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1155) 14,33 89 2.84 4.85 79.9 0.70 " Clear (1200) 14,85 94 2.70 4.85 83.7 0.68 " Clear (1205) 15,35 97 2.15 4.85 89.1 0.74 " Clear (1210) 15,58 101 2.04 4.82 92.7 0.86 " Clear (1210) 15,58 101 2.04 4.82 92.7 0.86 " Clear (1215) 15.57 106 1.99 4.81 94.6 0.99 " Clear (1220) 15,60 108 1.95 4.82 97.8 1.17 " Clear (1220) 15,60	
Time Trapel Condins Do" 1 pt 089 (MW) Turb large Desc (1145) 1496 110 5.86 5.21 86.1 0.72 50.3 him Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1155) 14,33 89 2.84 4.85 79.9 0.70 " Clear (1200) 14,85 94 2.70 4.85 83.7 0.68 " Clear (1205) 15,35 97 2.15 4.85 89.1 0.74 " Clear (1210) 15,58 101 2.04 4.82 92.7 0.86 " Clear (1210) 15,58 101 2.04 4.82 92.7 0.86 " Clear (1215) 15.57 106 1.99 4.81 94.6 0.99 " Clear (1220) 15,60 108 1.95 4.82 97.8 1.17 " Clear (1220) 15,60	
Time Temple Conduis Dolle ptt OPP(MW) Turb Purget Desc (1145) 1436 110 5.86 5.21 86.1 0.72 5.05 min Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1150) 1436 89 4.01 4.90 75.0 0.70 " Clear (1200) 14,85 94 2.70 4.85 83.7 0.68 " Clear (1200) 15,35 97 2.15 4.85 89.1 0.74 " Clear (1205) 15,35 97 2.15 4.85 89.1 0.74 " Clear (1210) 15,58 101 2.04 4.82 92.7 0.86 " Clear (1210) 15,58 101 2.04 4.82 92.7 0.86 " Clear (1210) 15,51 106 1.99 4.81 94.6 0.99 " Clear (1220) 15,60 108 1.95 4.82 97.8 1.17 " Clear (1220) 15,60 1	
(1150) 1436 89, 4.01 4.90 75.0 0.70 " Clear Conductivity reads 1413 us in 1413 us (1155) 14.33 89 2.84 4.85 79.9 0.70 " Clear Do 76 = 100 ! "	
(1155) 14,33 89 2.84 4.85 79,9 0.70 "Clear DO 76=100 HACH 2100P Turk dimeter: 0.02-1000 ptn (1200) 14,85 94 2.70 4.85 83,7 0.68 "Clear HACH 2100P Turk dimeter: 0.02-1000 ptn (1205) 15,35 97 2.15 4.85 89.1 0.74 "Clear HACH 2100P Turk dimeter: 0.02-1000 ptn (1210) 15,68 101 2.04 4.82 92.7 0.86 "Clear HACH 2100P ment decomed before lafter each us (1215) 15.57 106 1.99 4.81 94.6 0.99 "Clear Flurge water confained and disposed of a for (1220) 15,60 108 1.95 4.82 97.8 1.17 "Clear Flurge water confained and disposed of a for (1220) Roading Stable Bost large Reading FALL samples collected stored and transporte (1258) Sample Time (1225)	
(1205) 14.85 94 2,70 4.85 83,7 0.68 " Clear HACH 2100P Turpidine for: 0.02-1000 nturpidine for:	5HL
(1205) 15,35 97 2.15 4.85 89.1 0.74 "Clear the New Fabing and well skirts used at each (1210) 15.58 101 2.04 4.82 92.7 0.86 "Clear thinge guipment decomed before lafter each us (1215) 15.57 106 1.99 4.81 94.6 0.99 "Clear thinge wast confained and disposed of a 7 de (1220) 15.60 108 1.95 4.82 97.8 1.17 "Clear location onsite: (1220) Coadings Stable fest large Reading in coolers Sample Time (1225) Samples Collected; (3)8260B, (2)8270D, (1) TM Drw-69.84 Bagin Rurge (0942) 16mil 9 Drw-68.84 Begin Rurge (1323) Rest Rurge Drw-12.04 Initial Rurge - Clear (0945) 13.15 548 3.17 6.70 - 620 0.25	
(1210) 15.58 101 2.04 4.82 92.7 0.86 " Clear KALL equipment deconned before lafter each us (1215) 15.57 106 1.99 4.81 94.6 0.99 " Clear KALL equipment deconned before lafter each us (1220) 15.60 108 1.95 4.82 97.8 i.17 " clear location onsite. (1220) Roadings Stable (1258) Rost large Reading. In coolers Sample Time (1225) Samples Collected; (3)8260B, (2)8279D, (1) TM DTW-69.84 Begin Purge (0942) 16MW 9 Rost Purge DTW-72.04 In trail Purge - Clear DTW-66.84 Begin Purge (1323) Rost Purge DTW-72.04 In trail Purge - Clear (0945) 13.25 548 3.17 6.70 -620 0.25	
(1215)15.57 106 1.99 4.81 94.6 0.99 "Clear Flurge wasks confauned and disposed of at de (1220)15.60 108 1.95 4.82 97.8 1.17 "Clear location onsite. (1270) Roadings Stable (1258) Post lurge Reading. In coolers Sample Time (1225) Samples Collected; (3)8260B, (2)8279D, (1) TM DTW-69.84 Begin Purge (0942) 16MW 9 D7W-69.84 Begin Purge (0942) Rost Purge DTW-72.06 In that Purge - Clear DTW-66.84 Begin Purge (1323) Rost Purge DTW-8823 Initial Purge-Clear (0945) 13.25 548 3.17 6.70-620 0.25	n well
(1220)15:60 108 1.95 4.82 97.8 1.17 " Clear location onsite. (1270) Roadings Stable (1258) Rost large Reading. In coolers Sample Time (1225) Samples Collected; (3)8260B, (2)8270D, (1) TM DTW-69.84 Begin Purge (0942) Rost Purge DTW-72.06 Introd Purge (1323) Rost Purge DTW-12.06 Introd Purge (1323) Rost Purge DTW-12.06 Introd Purge (1323) Rost Purge DTW-12.06 Introd Domlin OH OKPOPOW Turb	se la l
(1270) Roadings Stable (1258) Rost large Reading. Samples Collected stored and Fransporte (1258) Samples Time (1225) Samples Collected; (3)8260B, (2)8270D, (1) TM Drw-69.84 Begin Parge (0942) Rost Parge Drw-72.04 Time Pemple Conflues Domple of BRPlaw Turb Rost Parge Drw-69.84 Rost Parge Drw-69.84 Rost Parge Drw-69.84 Time Pemple Conflues Domple of BRPlaw Turb Rost Parge Drw-68.23 Ton Hal Rurge-Clear (0945) 13.25 S48 3.17 6.70 6.20 0.25	g/carea
(1258) Sample Time (1225) Sample Time (1225) 1GWC1A DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM DTW - 69.84 Bagin Pringe (0942) 1GMW9 Samples Collected; (3)8260B, (2)8270D, (1) TM Samples Collected; (3)8260B, (2)8270D, (2)8270D, (1) TM Samples Collected; (3)8260B, (2)8270D, (2)82	1 00 10
Samples Collected; (3)8260B, (2)8270D, (1) TM DTW-69.84 Begin Purge (0942) 16mw9 Rost Purge DTW-72.04 Initial Purge (1323) Rost Purge DTW-66.84 Begin Purge (1323) Rost Purge DTW-66.84 Begin Purge (1323) Rost Purge DTW-68.23 Initial Purge-Clear (0945) 13.25 548 3.17 6.70-620 0.25	e on lee
Samples Collected; (3)8260B, (2)8279D, (1) TM DTW-69.84 Begin Pure (0942) 16may P 15ma 19ma Dom/L off Okplan) Turb 15ma 19ma 19ma Dom/L off Okplan) Turb 15ma 19ma 19ma 19ma 19ma 19ma 19ma 19ma 19	
16mw9 10st Kinge DTW-72.06 Thi trial Kinge - Okur DTW- 66.84 Begin Aurze (1323) Tyme Temple Condlus Domy/ ρΗ οκρίμω Turb Rot Purze DTW-68.23 Initial Purze Clear (0945) 13.25 548 3.17 6.70 -620 0.25	
D7W-66.84 Begin Auge (1323) Type Jeng (2000 Dom 1 - 0+ 0κρ/mw) Turb Rot Parge D7W-68.23. Initial Parge - Chear (0945) 13.25 548 3.17 6.70 -620 0.25	
Post PargeDTW-6823 Initial Parge-Clear (0945) 13.15 548 3.17 6.70 -620 0.25	
Time Temple) (addus) Dombi- att applicable Divole Dosc (0950 1321 545 238 615 -785 022	
	1 C
(1325) 14.89 700 8.05 5.98 20.4 0.37 0.5 min Clear (0955) 1321 560 2.07 4.72 +89.6 0.19	" C
(1330) 14.25 700 2.38 5.64 - 14,2 0.31 " Clear (1000) 13.22 563. 1189 6.68 - 119.7 0.17	1 C
(1335)14.13 692 2.16 5.68 -22.3 0.21 _" Clear (1005)13.33 570 1.81 6.68 -135.0 0.15	
(1340)14.09 483 2.05 5.70 -28.4 0.21 " Clear (1010)13,33 574 1.75 6.65 -1441 0.15	<u>"</u> C
(1345)14.12 679 2.02 5.70 -31.2 0.20 " Clear (1015)13.30 577 1.67 6.67 -151.7 0.15 (1350)14.10 676 2.01 5.72 -33.0 0.18 " Clear (1020)13.29 580 1.67 6.65 -155.6 0.15	<u> </u>
(1350)14,10 676 2.01 5.72 -33.0 0.18 " Clear (1020) 13.27 580 1.67 6.65 -155.6 0.15 (1355)13.95 672 2.01 5.70 -34.9 0.16 " Clear (1025)13.27 585 1.65 6.65 -158.4 0.15	U
(1355) Reading 5 Stable (1030) 13,25 S88 1,64 6,63 -159,17 0.16	ં લ
(1418) 1408 675 2,78 5,76 -25.1 0,20 Post Pure Reading (1030) Readings 54able	<u>C</u> G
Sample Time (1400) (1114) 1351 606 2.05 6.60 -168.0 0.19	Post Pum. D
Sample Time (1400) (1/14)/35/ 606 2.05 6.60-168.00.19 Samples Collected (3)8260B, (2)8270D, (1) TOU Sample Time (1035)	3.70
Samples Collected: (9)8260B (6)827	(3) TPU
⊕	<u></u>

11/29/12 RAAP BO3204-12ZE DAG17QE FB# 11 General Notes Weather - Sunny, 40's PPE- Eye Protection, Nitrile gloves Calibrations - YSI 650 MDS - ptt: 4.00 = 4.00 , 7.00 = 7.00 ,10.00 = 9.96 - Conductivity reads 1413 us in 1413 us std. Do % = 100 HACH 21000 Turbidinater: 0.02-1000 ptu * New Juling and well skirts used at each well * All equipment decorned before lafter each use All purged water disposed of at dedicated location onsite * All samples collected, stored and transported on ice in coolers 7W12B Dyw-25.04 Begin Purge (1004) Initial Purge - Clear Kost Kinge DTW-25.08 Time Temple ("onlins) Dougle ORP(MU) Turb (1005) 12.52 674 6.04 34,0 0.98 0.34min Clear 13.06 (10)0 695 7,10 6.25 23.4 0.98 Clear (1015)1354 703 6.83 6.36 18.2 0.95 Clear (1020)13,89 703 6.80 6,38 3.9 1,01 Clear (1025)13.93 704 6.77 6.38 0.6 1,01 Clear (1030)13.87 703 6.79 6,37 -8.3 Clear 1,04 (1035)13.84 703 6.80 6,37 -9.7 0.98 Clear (1040)13.77 701 6.82 6.37 -12.16 clear (1040) Rendings Stable 14110 699 6.83 6.39 -25.4 0.97 Post Purge Reading

Sample Time (1045)
Samples Collected 1. (2)8082A, (2)8082A
(2)8270D, (2)8270DDS: 1/24/12

11/28/12	RAAP	FO# 11	11/29/12	RAMP Bo3204-12	FB#1	11:
110-11-	RAAP BO3204-121E DAS/TBE	* '		DAS TOE		
7WIIB			21.12			
DTW-25.30			7W13 DTW-19.35	5 2 3.	- (14126)	
Post Purge DTW-25.	64 Initial Purge-Clear	7-46	Post Parge DTW-2	Begin Pur	ge (1430)	
Time Temple Contas	Double of ORP(Me) Turb Purgek	Desc	Took harge of a 2	3.77 Initial Pundlus) Dowell of H ORP(MU)	Tab Prost Dec	
	7 3,60 5,92 -35,9 1,23 0,34min	Clear Clear	(1440) 13.20 I			
(1135)13,11 836	2,51 5,85 -41.7 1,10	Clear	Y . A	1260 2.11 6.55 -97.3	1.75 11 Clear	
(1140) 13.10 837		Clear		1212 1.10 6.51 -102.3	1,88 " Cleav	
(1145) 13.05 840	2,01 9,05 -113 0,11	Clear		1163 1.34 6.49 -1047	2.01 " Clear	
(1150)1296 840 (1155)1291 843		Clear	7	1152 1.33 6.50 -106.2	2.22 " Clear	
(1155)1291 843 (1200)1290 841		Clear		1150 1.26 6.48 -107.8	2.45 " Clear	
(1205) 12,85 841	0.00	Clear		1150 1.18 6.48 -108.6	2,45 " Clear	
7 - 20 1	CILI		(1510) Reading	is Stable		
1311 844	1.63 5.92 -56.5 0.24 Post lu	uge Reading	13.08	1146 1.36 6.46 -107.0	3.71 Post Purge Reading	9
13114 011	Stable 1.43 5.92 -54.5 0.24 Post lu Sample Time (1210)	0 0		Sample Time (1)	515)	<i>J</i>
Sa	amples Collected: (b) 80824 (6) 80824	1,(2)82700,(2)82700		Samples Collected: (2)80.	BZA, (2) 808ZA	
7wm6	•		16WC1B			
D7W-26.85	Begin Perree (1256)		Drw - 70,64	Begin Pu	rge (1403)	
Part Pumo DIW-32.	38 Initial Purge-Clear	0 4 0 6	Post Page DTW	Initial f	irge-Clear	
Time Temple Conc	lus Doll pH ORMAN Turn	Purget Desc		Condlus Dough pit ORPLA		1
(1300) 13,35 19	13 1133 6,40 799,1 0,14	0.34min Clear		506 3.55 6.05 -37.1		
(1305)13,48 178		" Clear		449 1,26 5,80 -48,0		
	54 0.72 6.35 -154.1 0.51	" Clear	(1615)12.54	449 0.94 5.78 -53.8	0,51 Clear	
	35 0.56 6.33 -153.0 0.40	" Clear		450 0,90 5,78 -57, 1 450 0,88 5,76 -60,2		
	35 0,55 6,33 -152.2 0,32	" Clear	(1630)12.10	450 0.88 5.76 -63.0	0.30 " Clear	-
(1325)13.82 /7	138 0.54 6.33 -151.3 0.26	11	(1630) Reading	nc Stable	11 (1841)	
(1330)15,78 17	149 0,49 6,33 -151.8 0,20				0.18 Post Purge Reading	,
(1330) Reading	40 n/2 /43 -149.7	ost Page Reading		Sample Time.	(1635)	,
13.69 17	Sample Time (1335)			Samples Collected! (1) T	M. (1)+m	
2007 Programme	Sample Time (1335) Samples Collected! (2)8082A, (2)808ZA	DUP		INTEREN	
	Samples soller		5.	ample time (1645)	DEC 0 4 2012	
			Sample	es Collected! (1) TM	BY: EDR	
1 To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8		,	9	W. F Ophina and the control of th	

APPENDIX G CORRESPONDENCE (CD-ROM)

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

Street address: 629 East Main Street, Richmond, Virginia 23219

Mailing address: P.O. Box 1105, Richmond, Virginia 23218

TDD (804) 698-4021

www.deq.virginia.gov

January 5, 2012

David K. Paylor Director

(804) 698-4000 1-800-592-5482

Ms. Paige Holt, Ph.D., PE Environmental Manager Alliant Techsytems Inc. Radford Army Ammunition Plant State Route 114; P.O. Box 1 Radford, VA 24143-0100

VIA ELECTRONIC MAIL

RE: Alternate Source Demonstration for Cobalt in monitoring wells 7WCA and 7W13 HWMU #7, Radford Army Ammunition Plant, Radford, Virginia Radford Army Ammunition Plant, Radford, VA EPA ID# VA1210020730

Dear Ms. Holt:

Douglas W. Domenech

Secretary of Natural Resources

The above-noted Alternate Source Demonstration (ASD) investigation, submitted on behalf of Radford Army Ammunition Plant, by Alliant Techsystems Inc., dated December 2011, has been reviewed for technical content and consistency with the requirements of 40 CFR 264.99.(i). The need to submit an ASD was triggered by an exceedance of the Cobalt Groundwater Protection standard reported to the Department for monitoring wells 7WCA and 7W13.

As defined under 40 CFR 264.99.(i), the Alternate Source Demonstration (ASD) report must show one of the following in order to obtain approval:

- 1) The contamination was caused by natural variation in groundwater.
- 2) The contamination was a result of an error in field sampling.
- 3) The contamination was the result of an error in lab analysis.
- 4) The SSI contamination was result of an error in statistical analysis.

The ASD report focused on proving the applicability of item #1 by presenting a statistical trend analysis that shows no increasing trends of total cobalt concentrations in groundwater, presenting data showing that cobalt is widely observed at significant concentrations in non-waste derived materials and native soils at the site, and providing data that shows cobalt present at similar levels in other upgradient wells serving other waste management units at the site. The report concluded that the total cobalt

ASD Approval Letter HWMU #7, Radford Army Ammunition Plant, Radford, Virginia Radford Army Ammunition Plant, Radford, VA Page 2 or 2

concentrations observed in groundwater monitoring wells 7WCA and 7W13 are derived from ambient, naturally-occurring and naturally variable trace elements in the aquifer matrix, and not from a temporally-varying source such as a release from the closed hazardous waste management unit (HWMU-7).

Based on the above discussion and the body of evidence presented to the Department, the content of the ASD is determined to be sufficient to meet the Regulatory criteria for approval and as a result, the facility does not have to remediate the cobalt GPS exceedances observed in wells 7WCA and 7W13. Please note that future exceedances of the GPS for Cobalt noted in 7WCA and 7W13 will not require the submittal of a separate ASD unless the monitoring results reveal a change in site conditions that may indicate a release from HWMU-7. Please make sure that this approval is reflected in future correspondence to the Department where appropriate.

If you have any additional technical questions, you may contact me at 276-676-4867 or by email at Vincent.Maiden@deq.virginia.gov.

Sincerely,

Vincent A. Maiden

Office of Remediation Programs

cc: Jutta Schneider, File – DEQ CO
Aziz Farahmand, DEQ-BRRO
Andrea Barbieri, EPA Region II (3LC50)
Jeremy Flint, ATK
Jim McKenna, US Army
Loretta Powers, ATK

Ross Miller

From: Flint, Jeremy <Jeremy.Flint@ATK.COM>
Sent: Friday, January 20, 2012 2:23 PM

To: Powers, Loretta

Cc: Janet Frazier; Kathy Olsen; Mike Lawless; Ross Miller

Subject: FW: VA1210020730, RAAP, Additional App. IX GW Mont Results PCC HWMU 5,7,10,16,

Final Notification

Loretta,

Please file the attached e-mail as an answer to ATK letter number 11-815-106

Thank You Jeremy Flint Lead Compliance Engineer Environmental Affairs Department Alliant Techsystems Inc. P.O. Box 1

Radford, VA 24143 Phone: 540 - 639 - 7668 Fax: 540 - 639 - 8109

"Together Everyone Accomplishes More." (TEAM)

From: Maiden, Vince (DEQ) [mailto:Vincent.Maiden@deq.virginia.gov]

Sent: Friday, January 20, 2012 10:26 AM

To: Flint, Jeremy

Cc: McKenna, Jim; Schneider, Jutta (DEQ)

Subject: VA1210020730, RAAP, Additional App. IX GW Mont Results PCC HWMU 5,7,10,16, Final Notification

Jeremy:

The Department has received the referenced August 1, 2011 document. The notification indicates the benzene was confirmed in 16MW and recommended that this contituent be added to the compliance monitoring list for HWMU-16. In addition, the facility recommeded that the background for benzene be estalished at the LOQ of $1\mu g/l$ and the groundwater protection standard be set at $5\mu g/l$ based on the MCL. The Department agrees with the recommedations. It appears that these changes were included in the permit renewal application dated September 15, 2011. The Department will formally address those changes along with others in the permit renewal process. If you have any questions please feel free to contact me.

Vincent Maiden

Corrective Action Project Manager
Virginia Department of Environmental Quality
Office of Remediation Programs
629 East Main Street or P.O. Box 1105
Richmond, VA 23218 Richmond, VA 23219

(276) 676-4867

Vincent.Maiden@deq.virginia.gov

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

Douglas W. Domenech Secretary of Natural Resources Street address: 629 East Main Street, Richmond, Virginia 23219

Mailing address: P.O. Box 1105, Richmond, Virginia 23218

TDD (804) 698-4021

www.deq.virginia.gov

David K. Paylor Director

(804) 698-4000 1-800-592-5482

September 10, 2012

Mr. Bob Winstead BAE Systems Ordnance Systems Inc. 6580 Valley Center Drive, Suite 333 Radford, VA 24141 VIA ELECTRONIC MAIL

RE: Alternate Source Demonstration for acetone & 2-propanol in monitoring well 10D3D HWMU #10, Radford Army Ammunition Plant, Radford, VA EPA ID# VA1210020730

Dear Mr. Winstead:

The above-noted Alternate Source Demonstration (ASD) investigation, submitted on behalf of Radford Army Ammunition Plant, by BAE Systems, Ordinance Systems Inc., dated July 6, 2012, has been reviewed for technical content and consistency with the requirements of 40 CFR 264.99.(i). The need to submit an ASD was triggered by an exceedance of the acetone and 2-propanol Groundwater Protection Standard during the fourth quarter of 2011 for monitoring well 10D3D. The exceedance was reported by the facility and a 90-day extension of the ASD due date was granted by the Department on April 4, 2012.

As defined under 40 CFR 264.99.(i), the ASD report must show one of the following in order to obtain approval:

- 1) A source other than a regulated unit caused the contamination.
- 2) The contamination was caused by natural variation in groundwater.
- 3) The contamination was a result of an error in field sampling.
- 4) The contamination was the result of an error in lab analysis.
- 5) The SSI contamination was result of an error in statistical analysis.

The ASD report focused on proving the applicability of item #1 by presenting information regarding the clean closure for soils at HWMU-10, discussion of ground water flow rates, evidence of a source other than the HWMU-10 (Bioplant lift station and pressurized lines),

ASD Approval Letter HWMU #10, Radford Army Ammunition Plant, Radford, Virginia Radford Army Ammunition Plant, Radford, VA September 10, 2012 Page 2 or 2

and a trend analysis for this historically detected contaminants of concern. The report concludes that acetone and 2-propanol concentrations observed are not derived from the closed HWMU-10, but are derived from the propellant production wastewater flowing through the Bioplant lift station and associated pressurized sewer lines leading to the Bioplant equalization basins, which are located upgradient from monitoring well 10D3D.

Based on the above discussion and the body of evidence presented to the Department, the content of the ASD is determined to be sufficient to meet the regulatory criteria for approval and as a result, the facility does not have to remediate the acetone and 2-propanol GPS exceedances observed in well 10D3D. Please note that future exceedances of the GPS for acetone and 2-propanol noted in 10D3D will not require the submittal of a separate ASD unless the monitoring results reveal a change in site conditions that may indicate a release from HWMU-10. Please make sure that this approval is reflected in future correspondence to the Department where appropriate.

The facility is advised to evaluate the Bioplant lift station and pressurized sewer lines to assure that an ongoing release of wastewater is not occurring. This evaluation should be documented and retained in the facility file record.

If you have any additional technical questions, you may contact me at 276-676-4867 or by email at Vincent.Maiden@deq.virginia.gov.

Sincerely,

Vincent A. Maiden

Office of Remediation Programs

cc: Jutta Schneider, Russ McAvoy, File – DEQ CO Aziz Farahmand, DEQ-BRRO Andrea Barbieri, EPA Region II (3LC50) Jim McKenna, US Army

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

Douglas W. Domenech Secretary of Natural Resources Street address: 629 East Main Street, Richmond, Virginia 23219

Mailing address: P.O. Box 1105, Richmond, Virginia 23218

TDD (804) 698-4021

www.deq.virginia.gov

David K. Paylor Director

(804) 698-4000 1-800-592-5482

November 15, 2012

Mr. Jay Stewart BAE Systems Ordnance Systems Inc. 6580 Valley Center Drive, Suite 333 Radford, VA 24141 VIA ELECTRONIC MAIL

RE: Request to Establish Background and Groundwater Protection Standard for Diethyl Ether Post Closure Care Permit HWMU 5, 7, 10 & 16
Radford Army Ammunition Plant, Radford, VA
EPA ID# VA1210020730

Dear Mr. Stewart:

The Department of Environmental Quality (Department) has received your request, dated October 22, 2012, to establish the background value and Groundwater Protection Standard (GPS) for diethyl ether in groundwater. This document was submitted on behalf of Radford Army Ammunition Plant, by BAE Systems, Ordinance Systems Inc. The Department has reviewed this request and concurs as follows:

- The facility detected diethyl ether in HWMU-7 at point of compliance well 7MW6 at an estimated concentration of 1.2µg/l during the 2nd quarter of 2012. The post closure care permit requires the facility to conduct four quarters of monitoring and establish background for the detected constituent. However, the facility previously has collected ten independent samples from the upgradient well at HWMU-7 and none of these samples have detected diethyl ether. The Department concurs with the facility's recommendation for forgo additional quarterly sampling and establish the background value for diethyl ether at the quanitation limit (QL) of 13µg/l.
- The facility recommends that the GPS for diethyl ether be established at the April 2012 EPA Mid-Atlantic Risk Assessment Regional Screening Level (RSL) for

Request to Establish Background and Groundwater Protection Standard for Diethyl Ether Radford Army Ammunition Plant, Radford, VA November 15, 2012 Page 2 or 2

tap water of $3,100\mu g/l$. This recommendation is based on the absence a USEPA maximum contaminant level (MCL) and VDEQ alternate concentration limit (ACL) for diethyl ether. The Department concurs with this recommendation.

• The Department agrees with the facility's plan to add diethyl ether to the Groundwater Monitoring Constituent List for HWMU-7 beginning with the Fourth Quarter 2012 semi-annual monitoring event and to evaluate this constituent of concern further in the forthcoming Closure Report Addendum for HWMU-7.

If you have any questions or concerns, you may contact me at 276-676-4867 or by email at Vincent.Maiden@deq.virginia.gov.

Sincerely,

Vincent A. Maiden

Office of Remediation Programs

cc: Jutta Schneider, Russ McAvoy, File – DEQ CO Aziz Farahmand, DEQ-BRRO Andrea Barbieri, EPA Region II (3LC50) Jim McKenna, US Army Bob Winstead, Matt Alberts - BAE