FINAL Response Action Completion and Closure Report for the Northern Burning Ground New River Unit (RAAP-044) Radford Army Ammunition Plant Radford, Virginia **Prepared for:** Radford Army Ammunition Plant October 2010 ATK Armament Systems Energetic Systems Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100 www.atk.com October 15, 2010 Mr. James L. Cutler, Jr. Virginia Department of Environmental Quality 629 East Main Street Richmond, VA 23219 Subject: Transmittal Acknowledgement, Final Response Action Completion and Closure Report for the Northern Burning Ground, New River Unit (RAAP-044) April 2010 Dear Mr. Cutler: This letter is to acknowledge transmittal of the subject document that was sent to you on October 12, 2010. Enclosed is a copy of the 12 October 2010 transmittal email. Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder ATK staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 731-5782. Sincerely, P.W. Holt, Environmental Manager Alliant Techsystems Inc. c: Karen Sismour Virginia Department of Environmental Quality P. O. Box 1105 Richmond, VA 23218 E. A. Lohman Virginia Department of Environmental Quality Blue Ridge Regional Office 3019 Peters Creek Road Roanoke, VA 24019 Rich Mendoza 1 Rock Island Arsenal Attn: IMAE-CDN Bldg 350, 3rd Fl, NW Wing, Rm 319 Rock Island, Illinois, 61299 Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201 bc: Administrative File J. McKenna, ACO Staff Rob Davie-ACO Staff P.W. Holt J. J. Redder Env. File Coordination: McKenr #### Greene, Anne From: McKenna, Jim Sent: Tuesday, October 12, 2010 2:04 PM To: Greene, Anne; Cutler, Jim; dennis.druck@us.army.mil; diane.wisbeck@arcadis-us.com; durwood willis2; Geiger.William@epamail.epa.gov; Redder, Jerome; jim spencer; Llewellyn, Tim; Lohman, Elizabeth; Mendoza, Rich; Meyer, Tom NAB02; Parks, Jeffrey N; Sismour, Karen; Timothy. Leahy@shawgrp.com; Tina_MacGillivray@URSCorp.com Subject: FW: Radford NRU - NBG Completion Report (UNCLASSIFIED) Importance: High Classification: UNCLASSIFIED Caveats: FOUO All, Below are the FedEx Tracking Numbers for the Final Northern Burning Ground Completion Report. As listed in the table below, many of the recipients will only be receiving revised cover pages for the report as there were no changes to the Draft Version. Please let me know if you have any questions. Thank you for your support of the Radford AAP Installation Restoration Program. Jim McKenna Recipient Copies Fed Ex Tracking Number James McKenna - 1 Complete Hard Copy - 1 Set of Replacement Cover Pages - 2 CDs w/ full report 7940 0148 5000 Richard Mendoza - 1 Set of Replacement Cover Pages - 1 CD w/ full report 7963 3367 1737 Tom Meyer - 1 Set of Replacement Cover Pages - 1 CD w/ full report 7940 0149 9083 Dennis Druck 1 Set of Replacement Cover Pages 7940 0150 4800 Elizabeth Lohman 1 CD w/full report 7963 3370 1376 James Cutler 1 Complete Hard Copy 7940 0150 9515 Karen Sismour 1 Complete Hard Copy 7963 3369 5561 Susan Ryan 1 CD w/full report 7940 0149 3843 Classification: UNCLASSIFIED Caveats: FOUO ## COMMONWEALTH of VIRGINIA ### DEPARTMENT OF ENVIRONMENTAL QUALITY Street address: 629 East Main Street, Richmond, Virginia 23219 Mailing address: P.O. Box 1105, Richmond, Virginia 23218 TDD (804) 698-4021 www.deq.virginia.gov David K. Paylor Director (804) 698-4020 1-800-592-5482 October 7, 2010 Mr. Jim McKenna Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, Virginia 24143-0100 Re: Response Action Completion Report- Northern Burning Ground-NRU Dear Mr. McKenna: Douglas W. Domenech Secretary of Natural Resources The Virginia Department of Environmental Quality (VDEQ) has reviewed the Draft Response Action Completion and Closure Report for the Northern Burning Ground at the New River Unit (RAAP-044). VDEQ has no further comments and the report can be submitted as Final. Please contact me at (804) 698-4498 if you have any questions or comments regarding the above site. James L. Cutler, Jr., CPG Federal Facilities Project Manager cc: Paige Holt, ATK Aziz Farahmand, VDEQ-BRRO ## DEPARTMENT OF THE ARMY US ARMY PUBLIC HEALTH COMMAND (PROVISIONAL) 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND, MD 21010-5403 MCHB-TS-REH 7 APR 2010 MEMORANDUM FOR Office of Environmental Quality, Radford Army Ammunition Plant (SJMRF-OP-EQ/Mr. Jim McKenna), P.O. Box 2, Radford, VA 24143-0002 SUBJECT: Draft Response Action Completion and Closure Report for the Northern Burning Ground New River Unit (RAAP-044), Radford Army Ammunition Plant, Virginia, April 2010 - 1. The US Army Public Health Command (Provisional), formerly the US Army Center for Health Promotion and Preventive Medicine, reviewed the subject document on behalf of the Office of The Surgeon General pursuant to Army Regulation 200-1 (Environmental Protection and Enhancement). We appreciate the opportunity to review the report. - 2. We concur with the certification that the remedial actions achieved the Remedial Action Objectives and the site is suitable for clean closure and unrestricted future use. - 3. The document was reviewed by Mr. Dennis Druck, Environmental Health Risk Assessment Program. He can be reached at DSN 584-2953, commercial (410) 436-2953 or electronic mail, dennis.druck@us.army.mil. FOR THE COMMANDER: JEFFREY S. KIRKPATRICK Director, Health Risk Management CF: HQDA (DASG-PPM-NC) IMCOM-NE (IMNE-PWD-E) USACE (CEHNC-CX-ES) USAEC (IMAE-CD/Mr. Rich Mendoza) ATK Armament Systems Energetic Systems Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100 www.atk.com April 9, 2010 Mr. James L. Cutler, Jr. Virginia Department of Environmental Quality 629 East Main Street Richmond, VA 24143-0100 Subject: Transmittal Acknowledgement, Draft Response Action Completion and Closure Report for the Northern Burning Ground, New River Unit (RAAP-044) April 2010 Dear Mr. Cutler: This letter is to acknowledge transmittal of the subject document that was sent to you on April 6, 2010. Enclosed is a copy of the 6 April 2010 transmittal email. Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder ATK staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 731-5782. Sincerely P.W. Holt, Environmental Manager Alliant Techsystems Inc. :: Karen Sismour Virginia Department of Environmental Quality P. O. Box 10009 Richmond, VA 23240-0009 E. A. Lohman Virginia Department of Environmental Quality Blue Ridge Regional Office 3019 Peters Creek Road Roanoke, VA 24019 Rich Mendoza 1 Rock Island Arsenal Attn: IMAE-CDN Bldg 350, 3rd Fl, NW Wing, Rm 319 Rock Island, Illinois, 61299 Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201 be: Administrative File J. McKenna, ACO Staff Rob Davie-ACO Staff P.W. Hole P.W. Holt J. J. Redder Env. File Coordination; J. McKenna #### Greene, Anne From: McKenna, Jim Sent: Tuesday, April 06, 2010 9:42 AM To: Greene, Anne; Cutler, Jim; dennis.druck@us.army.mil; diane.wisbeck@arcadis-us.com; Redder, Jerome; Lohman, Elizabeth; Mendoza, Rich; Meyer, Tom NAB02; Sismour, Karen; Ryan, Susan M CIV USA IMCOM; Flint, Jeremy Subject: Draft Response Action Completion Closure Report for the Northern Burning Ground, New River Unit (UNCLASSIFIED) importance: High Classification: UNCLASSIFIED Caveats: FOUO All, ARCADIS will send the subject report out today to the POCs and tracking numbers below: | James McKenna | 7985 | 4101 | 8840 | |--------------------------|------|------|------| | Richard Mendoza | 7985 | 4102 | 2007 | | Susan Ryan (San Antonio) | 7934 | 1880 | 4338 | | Tom Meyer | 7934 | 1880 | 7186 | | Dennis Druck | 7985 | 4103 | 0233 | | James Cutler | 7985 | 4103 | 3416 | | Karen Sismour | 7985 | 4103 | 6286 | | Elizabeth Lohman | 7934 | 1881 | 8893 | Thank you for your support of the Radford AAP Installation Restoration Program. Jim McKenna Classification: UNCLASSIFIED Caveats: FOUO #### **FINAL** Response Action Completion and Closure Report for the Northern Burning Ground, New River Unit (RAAP-044) Radford Army Ammunition Plant, Radford, Virginia October 2010 Christopher Kalinowski Site Manager plane Mone Diane D. Wisbeck Project Manager # FINAL Response Action Completion and Closure Report for the Northern Burning Ground, New Radford Army Ammunition Plant Radford, Virginia River Unit (RAAP-044) Prepared for: U.S. Army Prepared by: ARCADIS 1114 Benfield Boulevard Suite A Millersville Maryland 21108 Tel 410.987.0032 Fax 410.987.4392 Our Ref.: GP08RAAP.4NBG Date: October 2010 This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited. | 1. | Introduction | | | 1-1 | |----|----------------------|-----------|--|------| | | 1.1 | Site Hi | story | 1-2 | | | 1.2 | Purpos | se and Objectives of Remedial Action | 1-2 | | | 1.3 | Statuto | ory and Regulatory Authority | 1-3 | | 2. | Remed | lial Acti | ion Requirements | 2-1 | | | 2.1 | Cleanu | up Levels | 2-1 | | | 2.2 | Attainn | nent of Cleanup Levels | 2-1 | | | 2.3 | Planne | ed Response Action Area | 2-1 | | 3. | Remed | lial Acti | ion Implementation | 3-1 | | | 3.1 | Projec | t Organization | 3-1 | | | 3.2 | Chron | ological Summary of Response Action Activities | 3-2 | | | 3.3 Site P | | reparation Activities | 3-3 | | | | 3.3.1 | Mobilization and Work Permits | 3-3 | | | | 3.3.2 | Subsurface Utility Clearance | 3-3 | | | | 3.3.3 | Erosion and Sediment Control | 3-3 | | | | 3.3.4 | Site Clearing | 3-3 | | | | 3.3.5 | Truck and Equipment Access/Egress Routes and Loading/Decontamination Pad | 3-4 | | | 3.4 | Excava | ation and Disposal Activities | 3-4 | | | | 3.4.1 |
Pre-Excavation Survey and Boundary Confirmation Sampling | 3-4 | | | | 3.4.2 | Excavation Activities | 3-6 | | | | 3.4.3 | Confirmation Sampling | 3-6 | | | | 3.4.4 | Transportation and Disposal | 3-8 | | | 3.5 Site Restoration | | estoration | 3-8 | | | | 3.5.1 | Backfill | 3-8 | | | | 3.5.2 | Vegetation | 3-9 | | | | 3.5.3 | Demobilization | 3-10 | | 4. | Quality Assurance/Quality Control 4- | | | | | |-----|---|--|-----|--|--| | | 4.1 | Summary of the Electronic Validation Review Report | 4-1 | | | | 5. | Final Inspection 5- | | | | | | 6. | Alterations to Planned Response Action 6- | | | | | | 7. | Future Requirements 7- | | | | | | 8. | Certification 8- | | | | | | 9. | Refere | nces | 9-1 | | | | Tal | bles | | | | | | | 3-1 | Excavation Boundary Confirmation Sampling Results | | | | | | 3-2 | Excavation Footprint Confirmation Sampling Results | | | | | | 3-3 | Waste Disposal Summary | | | | | | 3-4 | Backfill Material Sampling Results | | | | | Fig | jures | | | | | | | 1-1 | RFAAP-NRU Facility Location | | | | | | 1-2 | New River Unit Study Areas | | | | | | 1-3 | Northern Burning Ground Site Layout | | | | | | 2-1 | Planned Response Action Area | | | | | | 3-1 | Erosion Protection | | | | | | 3-2 | Truck Loading/Decontamination Pad and Road Improvements | | | | | | 3-3 | Excavation Boundary Confirmation Sampling Results | | | | | | 3-4 | Excavation Base Confirmation Sampling Results | | | | | Ар | pendice | s | | | | | | Α | Laboratory Analytical Reports from Confirmation Sampling | | | | В Site Photographs - C Waste Disposal Manifests, Weigh Tickets, and Certificates of Disposal - D Laboratory Analytical Reports for Backfill Material - E Laboratory Data Validation Review #### **Acronyms and Abbreviations** AEC U.S. Army Environmental Command ARAR Applicable or Relevant and Appropriate Requirements bgs Below Ground Surface CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CES Construction and Environmental Services CFR Code of Federal Regulations EE/CA Engineering Evaluation/Cost Analysis EPC Exposure Point Concentration EQ Environmental Quality Company ft Feet ft msl Feet Above Mean Sea Level IRP Installation Restoration Program MMA Main Manufacturing Area NBG Northern Burning Ground NCP National Contingency Plan NROW New River Ordinance Works NRU New River Unit PBC Performance Based Contract QAPA Quality Assurance Plan Addendum QA/QC Quality Assurance/Quality Control QAPP Quality Assurance Project Plan QC Quality Control RAL Remedial Action Level RAO Remedial Action Objective RFAAP Radford Army Ammunition Plant RSL Regional Screening Levels SVOC Semi-Volatile Organic Compound UCL Upper Confidence Limit USEPA United States Environmental Protection Agency VDEQ Virginia Department of Environmental Quality VOC Volatile Organic Compound XRF X-Ray Fluorescence Introduction #### 1. Introduction ARCADIS U.S., Inc. (ARCADIS) has been retained by the United States Army Environmental Command (AEC) to perform Installation Restoration Program (IRP) activities at the Radford Army Ammunition Plant (RFAAP). The RFAAP facility is located in the mountains of southwestern Virginia and consists of two noncontiguous units: the Main Manufacturing Area (MMA) and the New River Unit (NRU). The MMA is located approximately 5 miles northeast of the City of Radford, in Montgomery County, Virginia. The NRU is located about six miles west of the MMA, near the town of Dublin, in Pulaski County, Virginia (Figure 1-1). The IRP activities for both the RFAAP-MMA and the NRU are being conducted as part of a Performance Based Contract (PBC) awarded to ARCADIS under contract W91ZLK-05-D-0015: Task Order 0002. The RFAAP-NRU is managed under the Comprehensive Environmental Response and Compensation Liability Act (CERCLA). This site-specific Response Action Completion and Closure Report has been prepared to summarize the remedial activities completed at the Northern Burning Ground (NBG) area at RFAAP-NRU. This report also provides certification that the activities achieved the remedial action objectives that were outlined for the NBG in the Removal Action Work Plan (ARCADIS 2009a), the Engineering Evaluation/Cost Analysis (EE/CA) Report (ARCADIS 2009c), and the Action Memorandum for the Soil Removal Action at the Northern Burning Ground (RFAAP 2009). The following major sections are included in this report: - Introduction; - Remedial Action Requirements; - Remedial Action Implementation; - Quality Assurance/Quality Control - Final Site Inspection; - Construction Alterations; - Future Requirements; and, - Certification. Introduction Each section discusses specific site issues leading to the completion of the remedial action activities. Data collected throughout the closure activities are summarized in tables or appended for reference as supporting documentation. #### 1.1 Site History The RFAAP-NRU was established in 1940, and was originally known as the New River Ordinance Works (NROW). The NROW was incorporated into the RFAAP in 1945. The RFAAP-NRU facility operated as a bag manufacturing and loading plant for artillery, cannon, and mortar projectiles during World War II. Although active manufacturing activities at the RFAAP-NRU were reported to have ceased in the 1940's (after World War II), portions of the RFAAP-NRU are still utilized as storage facilities for operations at the MMA. The area of the RFAAP-NRU identified as the NBG was temporarily utilized as a burning ground for the facility. Anecdotal evidence suggests that the burning operations may have been conducted to remove energetics from components used in, or impacted by, the former manufacturing activities at the site. No buildings have existed at the NBG site; burning operations were conducted directly on the ground surface. #### 1.2 Purpose and Objectives of Remedial Action Based on the elevated risk levels presented by lead and chromium in soil at the NBG, a remedial action was deemed necessary for the site. In order to guide the remedial process, two primary Remedial Action Objectives (RAOs) were identified for the NBG. The first RAO was to minimize the potential for human exposure to soils containing lead and chromium at concentrations above applicable cleanup levels, thus reducing the potential for adverse health affects associated with exposure to lead and chromium in soil. The second RAO was to minimize the potential for elevated concentrations of lead and chromium in soil to migrate to un-impacted areas. Following the evaluation of the available remedial options presented within the EE/CA, a soil removal action was selected for the NBG that achieved both of the RAO's and will allow for unrestricted future development of the site. The selected removal action was excavation and off-site disposal of soils containing lead and chromium at concentrations above their respective Remedial Action Levels RALs (see Section 2.2). This removal action will be the final remedy for the NBG. Introduction #### 1.3 Statutory and Regulatory Authority The removal action at the NBG was undertaken by the United States Army as part of the IRP at Radford Army Ammunition Plant. The remediation activities at the NRU are being managed under CERCLA, with the Virginia Department of Environmental Quality (VDEQ) as the lead review agency. The investigation, reporting, and remedial actions conducted at the NRU are being conducted in accordance with the requirements outlined in National Oil and Hazardous Substances Pollution Contingency Plan (aka National Contingency Plan [NCP]), 40 Code of Federal Regulations (CFR) Part 300. The NBG site presented a relatively time-sensitive, non-complex problem that could be addressed relatively cost effectively. Based on the considerations outlined in 40 CFR 300.415(b)(2)(iv), the removal action conducted at the NBG was appropriate due to the presence of elevated levels of hazardous substances (i.e., chromium and lead) in soils that were largely at or near the surface which had the potential to migrate to adjacent soils, drainage ditch sediments, and groundwater. The removal action at the NBG complied with all Applicable or Relevant and Appropriate Requirements (ARARs) outlined in the EE/CA. Remedial Action Requirements #### 2. Remedial Action Requirements #### 2.1 Cleanup Levels Based on the assessment of the available remedial alternatives for the NBG site presented in the EE/CA, excavation and off-site disposal of impacted soils was determined to be the most effective option for achieving the RAOs and protecting human health and the environment. Although the current and reasonably anticipated future use of the NBG site is military/industrial, a cost benefit analysis indicated that in this specific case it was to the ARMY's advantage to remediate to residential levels and eliminate the need for long term monitoring and/or land use controls (LUCs). In the absence of any state mandated soil clean-up levels, the United States Environmental Protection Agency's (USEPA) Regional Screening Levels (RSLs) for residential soil (USEPA 2009) were used as the Cleanup Levels for the site. The residential soil RSLs for chromium and lead are 280 mg/kg and 400 mg/kg, respectively. #### 2.2 Attainment of Cleanup Levels To facilitate the evaluation of the attainment of the residential cleanup levels, Remediation Action Levels (RALs) were developed as part of the EE/CA following USEPA's *Guidance on Surface Soil Cleanup at Hazardous Waste Sites* (USEPA 2005). As defined by USEPA (2005), the RAL is the maximum concentration that may be left in place within an exposure unit such that the predicted average concentration is at or below the Cleanup Level. RALs for lead (3,000 mg/kg) and chromium (1,620 mg/kg) were established as the not-to-exceed levels for the NBG in the EE/CA. #### 2.3 Planned Response Action Area The comprehensive soil sampling events completed at
the site between 1997 and 2008 clearly indicated that the highest concentrations of lead and chromium at the NBG were confined to the central portion of the site. This area is believed to be where the former burning activities were completed. The planned response action area was approximately 110 ft by 70 ft, and encompassed the central portion of the site where the highest lead and chromium concentrations were historically detected (Figure 2-1). The impacts within this area were primarily confined to the interval from ground surface to approximately 1 ft below ground surface (bgs). However, lead and chromium were detected at elevated concentrations at a depth of approximately 4 ft bgs within a small (approximately 35 ft by 10 ft) portion of the site. Remedial Action Implementation #### 3. Remedial Action Implementation The field activities for the NBG remedial action were initiated on December 7, 2009 and were completed by December 11, 2009. This section provides an outline of the project organization, and details the various activities that were completed during implementation of the remedial action at the Northern Burning Ground. #### 3.1 Project Organization ARCADIS served as the prime contractor for the remedial action implementation at the NBG. ARCADIS utilized internal staff to perform the majority of the related site work, including the site preparation, excavation, confirmation sampling, and site restoration activities. However, ARCADIS did utilize the services of various subcontractors to assist with the performance of several key components, including; utility location, waste coordination, waste hauling, backfill delivery, and laboratory analytical services. Following is a list of the key personnel/subcontractors involved in the performance of the work: • Project Manager: Diane Wisbeck (ARCADIS) Site Manager: Christopher Kalinowski (ARCADIS) Construction Crew: ARCADIS – Construction and Environmental Services (CES) Division • Facility Work Permits: Matt Alberts (Alliant Techsystems, Inc.) Construction Supervisor: David Kingsley (ARCADIS) • Confirmation Sampling: Jason Tillotson (ARCADIS) Utility Clearance: Mid-Atlantic Utility Locating, LLC • Waste Coordinator: Terri Fort (Capitol Environmental Services, Inc.) Waste Hauler: US Bulk Transport, Inc. Backfill Delivery: JWB Contractors, LLC • Laboratory Analytical Services: Empirical Laboratories, Inc. Remedial Action Implementation • Health and Safety Supervisor: Christopher Kalinowski (ARCADIS) #### 3.2 Chronological Summary of Response Action Activities The following table provides a daily chronology of activities that were completed during the NBG response action. Further details on the various activities completed during the response action are also provided in Sections 3-3 through 3-5. | Date | Description of Activities | |------------------|--| | 7 December 2009 | Mobilized personnel and equipment to the site, obtained facility work permits, performed utility location, installed silt fencing, cleared vegetation from work area, and laid out initial/planned boundaries of the excavation. | | 8 December 2009 | Performed excavation perimeter confirmation sampling, set up truck loading and decontamination pad, improved dirt access road on the east side of the site, began excavation of lead and chromium impacted soils, loaded four (4) dump trailers for transportation to the disposal facility. | | 9 December 2009 | Continued excavation of lead and chromium impacted soils, loaded a total of ten (10) dump trailers for transportation to the disposal facility, performed confirmation soil sampling in areas where target depth was reached. | | 10 December 2009 | Completed excavation of lead and chromium impacted soils, loaded two (2) dump trailers for transportation to the disposal facility, completed confirmation soil sampling from excavation base and the boundaries of the expanded footprint, decontaminated equipment used in excavation activities, backfilled excavation area | | 11 December 2009 | Seeded excavation area and put down straw ground cover, demobilized equipment and personnel from the site. | | 21 January 2010 | Performed final site inspection. | | Summer 2010 | Planned abandonment of groundwater monitoring wells and removal of silt fencing from NBG site. Reseeding as necessary. | Remedial Action Implementation #### 3.3 Site Preparation Activities #### 3.3.1 Mobilization and Work Permits ARCADIS' field personnel and equipment were mobilized to RFAAP-NRU on December 7, 2009 for performance of the removal action activities at the NBG site. Prior to conducting any work on-site, an Area Entry Permit and a Hot Work Permit were obtained from the RFAAP Safety Department. No other permits were required for the performance of this work. #### 3.3.2 Subsurface Utility Clearance Prior to initiating any intrusive activities at the site, ARCADIS' field personnel completed a preliminary site inspection along with the RFAAP Safety Department to identify any potential surface or subsurface impedances to the proposed work. ARCADIS also utilized the subcontract services of Mid-Atlantic Utility Locating, LLC, to perform utility clearance services at the site on December 7, 2009. No utilities or other subsurface impedances were identified at the site. #### 3.3.3 Erosion and Sediment Control ARCADIS erected silt fencing along the northern perimeter of the excavation area to prevent sediment transport from the work area to the drainage ditch and culvert on the northern perimeter of the site. Hay bales were also placed along the drainage ditch to provide additional protection for the storm-water culvert that passes underneath the paved surface road on the north side of the NBG. The silt fencing and hay bales will be left in place until site vegetation has been re-established. The silt fencing is tentatively scheduled to be removed during the summer of 2010. The location of the silt fencing and hay bales are depicted in Figure 3-1. #### 3.3.4 Site Clearing ARCADIS cleared a total of 10 trees and several small woody shrubs from the excavation footprint and surrounding area prior to initiating the excavation activities. All cleared vegetation was spread into the wooded areas surrounding the NBG site and will be allowed to decay naturally (i.e., trees were laid down in wooded areas and large branches were removed). Tree stumps outside the excavation area were cut down to Remedial Action Implementation near ground surface and left in place, while tree stumps within the excavation footprint were removed during the excavation activities and disposed of with the excavated soil. #### 3.3.5 Truck and Equipment Access/Egress Routes and Loading/Decontamination Pad Due to wet weather conditions and site access restrictions, the truck and equipment access/egress routes, and the truck loading/decontamination areas were revised from the locations presented in the Removal Action Work Plan (ARCADIS, 2009a). Rather than have the trucks/dump trailers (used for soil transportation to the disposal facility) utilize the dirt road that loops around the south side of the site to access the work area, the trucks/trailers were kept on the paved road on the north side of the site. A truck loading and decontamination pad constructed with 10-mil polyethylene tarps was set up on the paved road to collect any debris spilled during the truck loading process. The location of the truck loading and decontamination pad is depicted in Figure 3-2. Because the dump trailers were direct loaded and were kept on the paved surface road, minimal on-site truck cleaning/decontamination was required during the removal action. Upon completion of the excavation activities, the excavation equipment was cleaned on the decontamination pad. The decontamination materials and water were disposed of with the soil. Due to wet soil conditions, a portion of the dirt access road on the western side of the NBG was improved with a gravel base layer to allow dump trucks transporting backfill material to the site to access the work area and to minimize the potential for tracking soil onto the paved roads. The extent of the gravel road improvements are depicted in Figure 3-2. The gravel road improvements were left in place upon completion of the site work. #### 3.4 Excavation and Disposal Activities #### 3.4.1 Pre-Excavation Survey and Boundary Confirmation Sampling Prior to commencing the excavation activities, ARCADIS clearly marked the planned boundaries of the excavation footprint presented in Figure 2-1. The boundaries were defined based on measurements from pre-surveyed benchmark locations (i.e., Monitoring Wells NBG-MW01 and NBG-MW02). To confirm that the planned boundaries of the excavation would encompass the surface soils containing lead and chromium at concentrations above their respective RALs of 3,000 mg/kg and 1,620 mg/kg, eight soil samples (NBG-XRF001 through NBG-XRF008) were collected along the northern perimeter of the planned excavation area. These eight sample locations are depicted in Figure 3-3. As discussed in the Removal Action Work Plan, boundary Remedial Action Implementation confirmation samples were not required on the southern half of the excavation due to the abundance of samples collected in that portion of the site during the historical site characterization process. The perimeter confirmation samples were analyzed on-site for lead and chromium using an Innov-X Systems™ portable XRF device that had been calibrated for soil screening. The results from the initial perimeter confirmation samples indicated that 6 of the 8 samples (NBG-XRF001, NBG-XRF002, NBG-XRF003, NBG-XRF006, NBG-XRF007, and
NBG-XRF008) had lead and chromium concentrations below their respective RALs. However, two of the samples (NBG-XRF004 and NBG-XRF005) had lead concentrations in excess of the lead RAL of 3,000 mg/kg. As shown in Figure 3-3, sample locations NBG-XRF004 and NBG-XRF005 were located near the northern tip of the planned excavation footprint. In response to the lead detections at NBG-XRF004 and NBG-XRF005, the northern boundary of the excavation footprint was expanded approximately 6 ft to the north. The boundaries of the expanded footprint are depicted in Figure 3-3. XRF analyses conducted on three soil samples (NBG-XRF032, NBG-XRF033, and NBG-XRF036) collected along the expanded excavation boundary indicated that lead and chromium concentrations were well below their respective RALs. These results confirmed that the excavation footprint would encompass the target lead and chromium concentrations. The results of all XRF analyses for the perimeter soil samples are presented in Table 3-1 and Figure 3-3. In addition to the field XRF analyses, 3 of the 11 samples collected during the boundary confirmation sampling activities were submitted for laboratory analysis of lead and chromium by USEPA Method 6010B. The results from these samples, which included NBG-XRF002(0-0.5), NBG-XRF005(0-0.5) and NBG-XRF007(0-0.5) are presented along with the XRF results in Table 3-1. The laboratory analytical reports are presented in Appendix A. The analytical results indicated that the chromium concentrations in all three samples were far lower the chromium RAL of 1,620 mg/kg. The lead concentrations detected in NBG-XRF002(0-0.5) and NBG-XRF007(0-0.5) were also well below the lead RAL of 3,000 mg/kg. The lead concentration detected at NBG-XRF005(0-0.5) was higher than the RAL, which corresponds with the field XRF result for this location. As discussed above, the excavation boundary was expanded at the NBG-XRF005 sample location due to the non-complying lead concentration. Remedial Action Implementation #### 3.4.2 Excavation Activities The excavation of the lead and chromium impacted soils at the NBG commenced on December 8 and was completed on December 10, 2009. The excavation was performed using a DEERE Model 200C-LC excavator equipped with a 48-inch wide bucket and was sequenced from south to north so that the excavator did not have to track back through areas where excavation was complete. The excavator was utilized for both excavation and truck loading, therefore, no other equipment was required during the excavation activities. The excavation was completed to the planned 1-ft and 4-ft depth intervals shown in Figure 2-1. However, the depth of excavation was increased in two areas within the north-central portion of the excavation footprint because debris/ash from the former burning operations was encountered below ground surface during the course of excavation (see site photographs in Appendix B). XRF analyses of the debris/ash indicated that lead concentrations were in excess of the 3,000 mg/kg RAL; therefore, the depth of the excavation was increased to the bottom of the debris/ash layers in these areas. The debris/ash layers extended to a depth of approximately 2 ft bgs in one area and ranged from 2 to 3 ft bgs in the other. Field sampling confirmed that the lead and chromium concentrations at the base of the debris layers were below their respective RALs. The final depths of excavation and the approximate locations of the debris/ash, which correspond to confirmation sample locations NBG-XRF021, NBG-XRF023 and NBG-XRF026, are depicted in Figure 3-4. No other debris/ash was encountered during the course of site work. #### 3.4.3 Confirmation Sampling A total of 25 sample locations (NBG-XRF009 through NBG-XRF035) were laid out within the base of the excavation for the purpose of collecting soil samples to confirm that the vertical extent of the excavation was sufficient to remove soils containing lead and chromium at levels greater than the RALs.. The first round of confirmation samples included 22 samples from the base of the 1-ft deep excavation area. XRF analysis of the excavation base confirmation samples, which represented the 1.0 to 1.5 ft bgs interval, indicated that 19 of the 22 the samples contained lead and chromium at concentrations below their respective RALs. However, as discussed in Section 3.4.2, three excavation base confirmation samples [NBG-XRF021(1-1.5), NBG-XRF023(1-1.5), and NBG-XRF026(1-1.5)] were collected within debris/ash layers uncovered during excavation and contained lead at concentrations above the 3,000 mg/kg RAL. As a result of the lead detections, the depth of excavation was increased in the vicinity Remedial Action Implementation of the 3 non-complying samples to the bottom of the debris/ash layer (see Figure 3-4, which depicts the final depth of excavation). A second round of confirmation samples were collected at sample locations NBG-XRF021, NBG-XRF023, and NBG-XRF026 once the debris/ash layers detected in these areas had been fully excavated. The depth of the excavation in the vicinity of NBG-XRF023 and NBG-XRF025 ranged from approximately 2 to 3 ft bgs; therefore the samples collected at these locations [NBG-XRF023(3-3.5) and NBG-XRF026(2-2.5)] represent the soils underneath the debris layer. The depth of the excavation near NBG-XRF021 extended to approximately 2 ft bgs; therefore the sample collected at this location [NBG-XRF021(3-3.5)] represents the 2.0 to 2.5 ft bgs interval. XRF analysis of these three samples indicated that lead and chromium concentrations were well below their respective RALs; therefore, no additional excavation was required. The last group of confirmation soil samples were collected from the base of the small 4-ft deep excavation area located near the central portion of the excavation footprint (see Figures 2-1 and 3-4). A total of three samples [NBG-XRF016(4-4.5), NBG-XRF024(4-4.5) and NBG-XRF025(4-4.5)] were collected from the deep area, representing the 4.0 to 4.5 ft bgs interval. XRF analysis indicated that lead and chromium concentrations were well below their respective RALs in each of these three samples; therefore, no additional excavation was required in this area. The XRF results of all 28 soil samples collected during the confirmation sampling program are presented in Table 3-2 and Figure 3-4. The results indicate that soils containing lead and chromium at concentrations greater than their respective RALS were successfully removed from the NBG site. In addition to the field XRF analyses, 12 of the 28 samples collected during the excavation base confirmation sampling activities were split and submitted for laboratory analysis of lead and chromium by USEPA Method 6010B. The results from these samples, which included NBG-XRF010(1-1.5), NBG-XRF013(1-1.5), NBG-XRF015(1-1.5), NBG-XRF017(1-1.5), NBG-XRF020(1-1.5), NBG-XRF022(1-1.5), NBG-XRF023(3-3.5), NBG-XRF025(4-4.5), NBG-XRF028(1-1.5), and NBG-XRF031(1-1.5), are presented along with the XRF results in Table 3-2. The laboratory analytical reports are presented in Appendix A. Overall the laboratory analytical results correlated well with the XRF results for chromium and lead. The results indicated that the chromium concentrations in all 12 samples were far lower the chromium RAL of 1,620 mg/kg, which corresponds with the XRF results. The laboratory lead results also agree with the XRF results in that the lead concentrations Remedial Action Implementation detected in 10 of the 12 samples were lower than the lead RAL of 3,000 mg/kg and that lead was greater than the RAL in 2 of the samples. The two samples where the laboratory and XRF results indicated lead concentrations higher than the RAL [NBG-XRF021(1-1.5)] and NBG-XRF026(1-1.5)] were collected from the debris/ash layers that were removed from the site during the excavation. #### 3.4.4 Transportation and Disposal The excavated soils and decontamination materials from the NBG removal action were direct loaded onto a total of 16 plastic-lined dump trailers for transportation to the disposal facility. The waste was transported by U.S. Bulk Transport, Inc. under approved Uniform Hazardous Waste Manifests to the Environmental Quality Company (EQ) in Belleville, Michigan and disposed of at the Wayne Disposal, Inc. (Wayne Disposal) landfill facility. Wayne Disposal (EPA ID: MID 048 090 633) is a Subtitle C landfill that is fully permitted to receive RCRA hazardous waste. The soil was originally planned to be disposed of at EQ's Subtitle D landfill facility (Michigan Disposal, Inc.) after stabilization; however, due to the possible presence of low-level dioxins in the soil (as indicated by historical data), EQ elected to dispose of the material in the Subtitle C facility instead. Based on the truck weigh tickets, a total of 384.1 tons of material were disposed of at the landfill. Table 3-3, provides a summary of the shipping information on each load (i.e., manifest number, load weight, facility receipt date). Copies of the finalized waste manifests, weigh tickets, and Certificates of Disposal are provided in Appendix C. #### 3.5 Site Restoration #### 3.5.1 Backfill Once all excavation and field confirmation sampling activities were completed, the excavated area was backfilled with common backfill material and graded to be level with the surrounding terrain. After placement and grading of the common backfill, an approximately 3-inch layer of top soil was placed throughout the excavation footprint to assist in re-vegetating the area. Both the common backfill material and the vegetative top soil were obtained from JWB Contractors, LLC of Dublin, Virginia. Prior to delivery of the backfill material to the site, samples of both the common backfill (NBG-Backfill) and the vegetative top soil (NBG-Topsoil) were submitted for laboratory analyses to ensure that the material came from a "clean" source. The samples were analyzed for volatile organic compounds (VOCs) by USEPA Method
8260B, semi-volatile organic compounds (SVOCs) by USEPA Method 8270C, metals by USEPA Remedial Action Implementation Method 6010B, pesticides by USEPA Method 8081A, and herbicides by USEPA Method 8151A. The analytical results for the common backfill and top soil samples are summarized in Table 3-4 and laboratory analytical reports are provided in Appendix D. The data indicated that the top soil backfill contained arsenic, cobalt and manganese at concentrations slightly above the residential RSLs. Arsenic was the only constituent detected in the common backfill material at a concentration above the residential RSL. While these constituents were present at concentrations slightly higher than the RSL values, the concentrations were all below the naturally occurring background metals concentrations reported in the Facility-Wide Background Study Report (IT 2001) and thus are consistent with levels of these metals in the native soil. No other constituents were detected at concentrations above applicable residential RSLs; however, some organic compounds were detected at low concentrations in both the common backfill and the topsoil samples. However, all or the organic constituents were at concentrations below applicable residential RSLs. The chromium concentration in the common backfill (33.mg/kg) and top soil (30.8 mg/kg) were both lower than the natural background chromium concentration (65.3 mg/kg) at the facility. The lead concentration in the common backfill material (17 mg/kg) was also below the facility-wide background lead concentration (26.8 mg/kg). The laboratory analytical results for lead from the top soil sample (37.6 mg/kg) indicated that the lead concentration was only slightly higher than the background value, but well below the 400 mg/kg clean up level for lead. #### 3.5.2 Vegetation Upon completion of the backfilling activities the excavation footprint, and any other areas of RFAAP-NRU that may have been disturbed by off road vehicle traffic during implementation of the NBG response action, were heavily seeded with annual (winter) ryegrass. The ryegrass seed was sown to help re-establish a vegetative layer in the disturbed areas so as to provide soil stabilization until natural vegetation is reestablished. A heavy straw layer was also placed throughout the disturbed areas to help protect the seed and to provide some measure of soil stabilization until the grass is able to grow. Pictures of the seeded and straw covered excavation footprint are presented in Appendix B. Remedial Action Implementation #### 3.5.3 Demobilization Equipment and personnel were demobilized from the site on Friday, December 11, 2009. Prior to departing the site the crew picked up all trash from the site and made sure that the large braches were removed from the pine trees that had been cleared during the removal action. The crew also repaired several soil ruts where vehicles used in performance of the work had driven off of the narrow paved surface. Grass seed and straw were placed in these areas to help stabilize the soil. Quality Assurance/Quality Control #### 4. Quality Assurance/Quality Control In accordance with the quality assurance/quality control (QA/QC) procedures outlined in the Master Quality Assurance Project Plan (QAPP) (URS 2003) and ARCADIS' Quality Assurance Plan Addendum (QAPA) (ARCADIS 2008), the laboratory data collected during the performance of this site work was validated to verify data usability and to ensure compliance with the data quality objectives. This section summarizes the findings of the laboratory data validation process. #### 4.1 Summary of the Electronic Validation Review Report The Electronic Validation Review Report addresses the results of the data validation effort for soil samples collected in support of the site closure at the NBG (see Appendix E). The purpose of the validation review is to determine the reliability of the chemical analyses and the accuracy and precision of information acquired from the laboratory. Data quality was assessed through the review and evaluation of field sampling activities and Quality Control (QC) samples and data associated with the chemical analytical results. An evaluation of QC samples and implications for data quality is provided in full within Appendix E. In general, only minor deficiencies were identified and the data were qualified as appropriate. Overall, the analytical data associated with this investigation event are considered quantitative and usable for the intended purpose. The validation identified only minor deficiencies with the data. The data were qualified, as appropriate, using guidance from the USEPA. One hundred percent of the results are valid for their intended purpose, as qualified by the data validation. The laboratory data is presented in full within Appendix A. Final Inspection #### 5. Final Inspection A final inspection of the NBG site was conducted by representatives of ARCADIS and the US Army – RAAP on January 21, 2010. Two comments were generated as a result of the site walk. The first comment was in regards to the removal of the temporary erosion control devices. It was agreed that the temporary erosion control devices will be removed from the site during the summer of 2010, once vegetation has been re-established at the site. The second comment concerned the re-vegetation efforts for the site. It was agreed that additional grass seed may be spread at the site during the spring or summer of 2010 if required to stabilize the backfilled area. The attendees at this inspection were as follows: - James McKenna US Army RFAAP; and, - Christopher Kalinowski ARCADIS. Alterations to Planned Response Action #### 6. Alterations to Planned Response Action The remedial activities for the NBG were conducted in accordance with the Removal Action Work Plan and achieved the RAOs outlined in the EE/CA for the site. The only deviations from the Work Plan involved the placement of the truck loading and decontamination area; the expansion of the horizontal and vertical extent of the excavation area. The truck loading and decontamination area was moved to the location presented in Figure 3-2 due to site access restrictions. As discussed in Section 3.4.1, the horizontal extent of the excavation was expanded slightly on the northern, boundaries based on the results of the XRF field screening conducted during the pre-excavation boundary confirmation sampling. The depth of the excavation was also increased in two discrete areas during the excavation process due to the presence of debris/ash and the detection of lead at concentrations above the RAL at the planned 1-ft depth interval. Figures 2-1 and 3-4 depict the excavation area as originally intended, and the final expanded excavation area, respectively. **Future Requirements** #### 7. Future Requirements The remedial actions for the lead and chromium impacted soils have been completed at the NBG site. The results of the sampling program conducted during the excavation activities confirmed that the response action was successful at removing the site soils containing lead and chromium at concentrations above their respective RALs. Therefore, the site is suitable for clean closure and future development of the site should be unrestricted. Long term monitoring and inspection of the site will not be required. The only future requirements for the site will include removal of the silt fencing and hay bales that were left at the site as temporary erosion control measures. The silt fencing and hay bales are scheduled to be removed from the site during the summer of 2010, once site vegetation has been re-established. ARCADIS will also re-seed the area during the spring or summer of 2010, if the seed sowed during the removal action does not establish adequate ground cover. Response Action Completion and Closure Report for the Northern Burning Ground Certification ### 8. Certification This Response Action Completion and Closure Report documents the remedial actions that were completed for the Northern Burning Ground study area at RAAP-NRU. The actions were completed as discussed in the Removal Action Work Plan for the Northern Burning Ground and achieved the Remedial Action Objectives outlined in the EE/CA and Action Memorandum for the site. No deficiencies in the work are believed to exist, nor were any documented during confirmation sampling or subsequent inspection. No additional remedial actions are required for the site. As such the site is suitable for clean closure and unrestricted future development. Response Action Completion and Closure Report for the Northern Burning Ground References ### 9. References - ARCADIS, 2009a. Removal Action Work Plan for the Northern Burning Ground, New River Unit (RAAP-044). Radford Army Ammunition Plant, Radford, Virginia. December. - ARCADIS, 2009b. DRAFT Remedial Investigation Report, New River Unit (RAAP-044). Radford Army Ammunition Plant, Radford, Virginia, October. - ARCADIS, 2009c. Engineering Evaluation/Cost Analysis (EE/CA), Northern Burning Ground, New River Unit (RAAP-044). Radford Army Ammunition Plant, Radford, Virginia. July. - ARCADIS, 2008. DRAFT Quality Assurance Plan Addendum. Radford Army Ammunition Plant, Radford, Virginia, April. - IT Corporation (IT), 2001. Facility-Wide Background Study Report. Radford Army Ammunition Plant, Virginia. Final Report. December 2001. Delivery Order No. 0013, Contract No. DACA31-94-D-0064. - Radford Army Ammunition Plant, 2009. Action Memorandum for the Soil Removal Action at the Northern Burning Ground, New River Unit. Radford Army Ammunition Plant, Radford Virginia. - Shaw, 2003. Internal Draft New River Unit Investigation Report: BDDT, BLA, IAA, NBG, RY & WBG, Radford Army Ammunition Plant. Radford, Virginia. September. - URS, 2003. Master Quality Assurance Project Plan. Radford Army Ammunition Plant, Radford, Virginia. August. - U.S. Environmental Protection Agency (USEPA). 2005. Guidance on Surface Soil Cleanup
at Hazardous Waste Sites: Implementing Cleanup Levels. Peer Review Draft. Office of Emergency and Remedial Response. EPA 9355.0-91. April. - U.S. Environmental Protection Agency (USEPA), 1999. Technical Review Workgroup for Lead Guidance Document. Rev 0. April Response Action Completion and Closure Report for the Northern Burning Ground References - U.S. Environmental Protection Agency (USEPA), 1994. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. OSWER Directive 9355.4-12. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. July 14. - U.S. Environmental Protection Agency (USEPA), 1993, Guidance on Conducting Non-Time-Critical Removal Actions Under CERCLA, Office of Emergency and Remedial Response, Publication 9360.0-32FS, EPA/540/F-94/009, Washington, D.C. - U.S. Environmental Protection Agency (USEPA), 2009. Oak Ridge National Laboratory (ORNL) Regional Screening Levels (RSLs), December. Internet access: [http://www.epa.gov/region09/superfund/prg/] **Tables** Table 3-1: Boundary Confirmation Soil Sampling Results, Northern Burning Ground New River Unit, Radford Army Ammunition Plant, Radford, Virginia | | | | Debris | XRF Screeni | ng Results | Laboratory | Analytical | |--------------------|------------------------|--------------|---------------------|---------------|------------|------------|------------| | Sample Location ID | Sample Depth
(Feet) | Sample Date | Present
(yes/no) | Chromium | Lead | Chromium | Lead | | | | Original Boเ | ındary Confirm | ation Samples | | | | | NBG-XRF001 | 0 - 0.5 | 12/08/09 | no | <108 | 1,216 | NA | NA | | NBG-XRF002 | 0 - 0.5 | 12/08/09 | no | <83 | 634 | 83.5 | 1,580 | | NBG-XRF003* | 0 - 0.5 | 12/08/09 | no | <119 | 1,417 | NA | NA | | NBG-XRF004* | 0 - 0.5 | 12/08/09 | no | <i>4</i> 29 | 6,036 | NA | NA | | NBG-XRF005* | 0 - 0.5 | 12/08/09 | no | <125 | 3,445 | 226 | 3,230 | | NBG-XRF006 | 0 - 0.5 | 12/08/09 | no | 195 | 2,403 | NA | NA | | NBG-XRF007 | 0 - 0.5 | 12/08/09 | no | <109 | 436 | 85.7 | 742 | | NBG-XRF008 | 0 - 0.5 | 12/08/09 | no | 188 | 1,889 | NA | NA | | | | Expan | ded Boundary | Samples | | | | | NBG-XRF032 | 0 - 0.5 | 12/10/09 | no | <107 | 615 | NA | NA | | NBG-XRF033 | 0 - 0.5 | 12/10/09 | no | <116 | 445 | NA | NA | | NBG-XRF036 | 0 - 0.5 | 12/10/09 | no | <101 | 915 | NA | NA | | Screening Criteria | Chromium
(mg/kg) | Lead
(mg/kg) | |---------------------------------------|---------------------|-----------------| | Facility-Wide Background ¹ | 65.3 | 26.8 | | Remedial Action Level | 1,620 | 3,000 | ### Notes: 1. From Facility-Wide Background Study Report. (IT 2001) NA - Not detected. ^{*} The boundaries of the excavation were expanded at NBG-XRF003, NBG-XRF004, and NBG-XRF005; therefore , the soils at these locations were removed from the site. Table 3-2: Summary of XRF and Laboratory Analytical Results for Excavation Base Confirmation Samples Northern Burning Ground New River Unit, Radford Army Ammunition Plant, Radford, Virginia | Sample Location ID | Sample
Depth
(Feet) | Sample Date | Debris Present
(yes/no) | | RF Screening Results
(mg/kg) | | Analytical
ults
(kg) | |--------------------|---------------------------|---------------|----------------------------|----------------|---------------------------------|----------|----------------------------| | | | | | Chromium | Lead | Chromium | Lead | | | | Shallow Area | Samples (1 ft De | ep Excavation |) | | | | NBG-XRF009 | 1 - 1.5 | 12/09/09 | no | <96 | 35 | NA | NA | | NBG-XRF010 | 1 - 1.5 | 12/09/09 | no | <101 | 31 | 21.7 | 106 | | NBG-XRF011 | 1 - 1.5 | 12/09/09 | no | <88 | 23 | NA | NA | | NBG-XRF012 | 1 - 1.5 | 12/09/09 | no | <98 | 60 | NA | NA | | NBG-XRF013 | 1 - 1.5 | 12/09/09 | no | <101 | 17 | 21.2 | 37.9 | | NBG-XRF014 | 1 - 1.5 | 12/09/09 | no | 379 | 1,856 | NA | NA | | NBG-XRF015 | 1 - 1.5 | 12/09/09 | no | <99 | 39 | 17.3 | 40.0 | | NBG-XRF017 | 1 - 1.5 | 12/09/09 | no | <97 | 48 | 24.2 | 158 | | NBG-XRF018 | 1 - 1.5 | 12/09/09 | no | 421 | 2,476 | NA | NA | | NBG-XRF019 | 1 - 1.5 | 12/09/09 | no | <93 | 210 | NA | NA | | NBG-XRF020 | 1 - 1.5 | 12/09/09 | no | <133 | 597 | 22.3 | 293 | | NBG-XRF021* | 1 - 1.5 | 12/09/09 | yes | 128 | 6,281 | 407 | 5,920 | | NBG-XRF022 | 1 - 1.5 | 12/09/09 | no | <116 | 631 | 124 | 1,540 | | NBG-XRF023* | 1 - 1.5 | 12/09/09 | yes | <128 | 3,748 | NA | NA | | NBG-XRF026* | 1 - 1.5 | 12/09/09 | yes | 166 | 4,458 | 214 | 4,040 | | NBG-XRF027 | 1 - 1.5 | 12/09/09 | no | <99 | 29 | NA | NA | | NBG-XRF028 | 1 - 1.5 | 12/09/09 | no | <123 | 902 | 68.3 | 1,230 | | NBG-XRF029 | 1 - 1.5 | 12/10/09 | no | 148 | 1,912 | NA | NA | | NBG-XRF030 | 1 - 1.5 | 12/10/09 | no | <98 | 295 | NA | NA | | NBG-XRF031 | 1 - 1.5 | 12/10/09 | no | 117 | 40 | 24.7 | 94.8 | | NBG-XRF034 | 1 - 1.5 | 12/10/09 | no | <98 | 356 | NA | NA | | NBG-XRF035 | 1 - 1.5 | 12/10/09 | no | <98 | 422 | NA | NA | | | | Shalllow Area | Samples (Base o | f Debris Layer | s) | | | | NBG-XRF021 | 2 - 2.5 | 12/10/09 | no | <117 | 327 | NA | NA | | NBG-XRF023 | 3 - 3.5 | 12/09/09 | no | 147 | 43 | 23.2 | 59.4 J | | NBG-XRF026 | 2 - 2.5 | 12/10/09 | no | <83 | 461 | NA | NA | | | | Deep Area S | amples (4 ft Dee | p Excavation) | | | | | NBG-XRF016 | 4 - 4.5 | 12/09/09 | no | <147 | 29 | NA | NA | | NBG-XRF024 | 4 - 4.5 | 12/09/09 | no | <149 | 24 | NA | NA | | NBG-XRF025 | 4 - 4.5 | 12/09/09 | no | <114 | <11 | 22.2 | 66.7 | | | | • | • | | | | | | Screening Criteria | Chromium
(mg/kg) | Lead
(mg/kg) | |---------------------------------------|---------------------|-----------------| | Facility-Wide Background ¹ | 65.3 | 26.8 | | Remedial Action Level | 1,620 | 3,000 | ### Notes: NA - Not detected. ^{1.} From Facility-Wide Background Study Report. (IT 2001) ^{*} The depth of excavation was increased at NBG-XRF021, NBG-XRF023, and NBG-XRF026 to remove the debris and soil containing lead at concentrations above the 3,000 mg/kg RAL. Table 3-3: Waste Disposal Summary, Northern Burning Ground New River Unit, Radford Army Ammunition Plant, Radford, Virginia | Manifort # | Facility Receipt | Facility Receipt | | Load Weight | |--------------|------------------|------------------|--|-------------| | Manifest # | Date | ID | Disposal Company/Site | (tons) | | 004173234JJK | 12/9/2009 | 1180367 | Environmental Quality Company / Wayne Disposal, Inc. | 23.77 | | 004173235JJK | 12/9/2009 | 1180368 | Environmental Quality Company / Wayne Disposal, Inc. | 25.27 | | 004173237JJK | 12/9/2009 | 1180366 | Environmental Quality Company / Wayne Disposal, Inc. | 20.71 | | 004173249JJK | 12/9/2009 | 1180365 | Environmental Quality Company / Wayne Disposal, Inc. | 26.23 | | 004173236JJK | 12/11/2010 | 1180399 | Environmental Quality Company / Wayne Disposal, Inc. | 17.14 | | 004173238JJK | 12/11/2009 | 1180391 | Environmental Quality Company / Wayne Disposal, Inc. | 23.88 | | 004173239JJK | 12/11/2009 | 1180408 | Environmental Quality Company / Wayne Disposal, Inc. | 24.63 | | 004173240JJK | 12/11/2009 | 1180402 | Environmental Quality Company / Wayne Disposal, Inc. | 23.09 | | 004173241JJK | 12/11/2009 | 1180404 | Environmental Quality Company / Wayne Disposal, Inc. | 25.52 | | 004173242JJK | 12/11/2009 | 1180397 | Environmental Quality Company / Wayne Disposal, Inc. | 23.70 | | 004173243JJK | 12/11/2009 | 1180424 | Environmental Quality Company / Wayne Disposal, Inc. | 21.81 | | 004173244JJK | 12/11/2009 | 1180394 | Environmental Quality Company / Wayne Disposal, Inc. | 22.31 | | 004173245JJK | 12/11/2009 | 1180398 | Environmental Quality Company / Wayne Disposal, Inc. | 19.61 | | 004173246JJK | 12/11/2009 | 1180395 | Environmental Quality Company / Wayne Disposal, Inc. | 23.58 | | 004173247JJK | 12/11/2009 | 1180400 | Environmental Quality Company / Wayne Disposal, Inc. | 26.85 | | 004173248JJK | 12/11/2009 | 1180425 | Environmental Quality Company / Wayne Disposal, Inc. | 36.00 | | | | | TOTAL (tons) | 384.10 | Table 3-4: Summary of Detected Analytes in Common Backfill and Top-Soil Samples Northern Burning Ground New River Unit, Radford Army Ammunition Plant, Radford, Virginia | | Regional | | NBG-Backfill | NBG-Topsoil | |---------------------------|----------------------------|-----------------------------|--------------|-------------| | | Screening
Level | Facility-Wide
Background | Soil | Soil | | Analyte | (Residential) ¹ | Value ² | 11/24/2009 | 11/24/2009 | | Volatile and Semivolatile | | unds (mg/kg) | | | | Dibenzofuran | 17,000 (a) | | ND | 0.141 | | Methylene chloride | 11 | | 0.00158 | 0.00209 | | 1-Methylnaphthalene | 22 | | 2.69 | 2.22 | | 2-Methylnaphthalene | 310 | | 3.14 | 2.93 | | Naphthalene | 3.6 | | 0.613 | 0.479 | | Phenanthrene | 17,000 (a) | | 1.07 | 0.765 | | Pyrene | 1,700 | | 0.212 | 0.179 | | Pesticides (mg/kg) | | | | | | alpha-BHC | 0.077 | | ND | 0.000376 | | beta-BHC | 0.27 | | ND | 0.000677 | | gamma-BHC | 0.52 | | ND | 0.000413 | | Heptachlor epoxide | 0.053 | | ND | 0.000593 | | Herbicides (mg/kg) | | | | | | Dicamba | 1,800 | | ND | 0.0212 | | Dinoseb | 61 | | ND | 0.0233 | | Metals (mg/kg) | | | | | | Mercury | 5.6 | 0.13 | 0.0629 | 0.025 | | Aluminum | 77,000 | 40,041 | 34,500 | 13,200 | | Antimony | 31 | | ND | ND | | Arsenic | 0.39 | 15.8 | 7.99 | 12.2 | | Barium | 15,000 | 209 | 50.3 | 82.8 | | Beryllium | 160 | 1.02 | 1.21 | 1.22 | | Cadmium | 70 | 0.69 | ND | ND | | Calcium | NA (b) | | 6,030 | 1,580 | | Chromium | 280 (c) | 65.3 | 33 | 30.8 | | Cobalt | 23 | 72.3 | 14.1 | 38.1 | | Copper | 3,100 | 53.5 | 17.7 | 17.4 | | Iron | 55,000 | 50,962 | 32,600 | 53,400 | | Lead | 400 | 26.8 | 17 | 37.6 | | Magnesium | NA (b) | | 10,600 | 1,640 | | Manganese | 1,800 | 2,543 | 343 | 2,030 | | Nickel | 1,500 | 62.8 | 22.2 | 11.1 | | Potassium | NA (b) | | 3,370 | 1,140 | | Selenium | 390 | | ND | ND | | Silver | 390 | | ND | ND | | Sodium | NA (b) | | ND | ND | | Thallium | 5.1 | 2.11 | ND | ND | | Vanadium |
390 | 108 | 56.7 | 104 | | Zinc | 23,000 | 202 | 43.5 | 65.6 | ### Notes: - 1. From December 2009 RSL Table (USEPA 2009) - 2. From Facility-Wide Background Study Report. (IT 2001) Hydrocarbon. - (b) No screening level is available (NA) as this is considered to be an essential nutrient. ND Not detected. - (c) total chromium is not included in the December 2009 RSL Table; therefore, value obtained from July 2009 Table. **Figures** **GROUNDWATER LOCATIONS** PAVED ROADS DIRT ROADS ===== DRAINAGE DITCH CULVERT NRU BOUNDARY NORTHERN BURNING GROUND SITE LAYOUT **ARCADIS** **GRAPHIC SCALE** ## Appendix A Laboratory Analytical Reports from Confirmation Sampling ### **INORGANIC CASE NARRATIVE** ## Arcadis SDG# Radford Work Order# 0912138 December, 2009 | Empirical Laboratories ID | Client ID | |---------------------------|----------------------| | 0912138-01 | NBG-XRF002(0-0.5) | | 0912138-02 | NBG-XRF005(0-0.5) | | 0912138-03 | NBG-XRF007(0-0.5) | | 0912138-04 | NBG-XRF010(1-1.5) | | 0912138-05 | NBG-XRF013(1-1.5) | | 0912138-06 | NBG-XRF015(1-1.5) | | 0912138-07 | NBG-XRF017(1-1.5) | | 0912138-08 | NBG-XRF020(1-1.5) | | 0912138-09 | NBG-XRF021(1-1.5) | | 0912138-10 | NBG-XRF022(1-1.5) | | 0912138-11 | NBG-XRF025(4-4.5) | | 0912138-12 | NBG-XRF023B(3-3.5) | | 0912138-13 | NBG-XRF026(1-1.5) | | 0912138-14 | NBG-XRF028(1-1.5) | | 0912138-15 | NBG-XRF031(1-1.5) | | 0912138-16 | NBG-XRFDUP001(3-3.5) | I certify that, based upon my inquiry of those individuals immediately responsible for obtaining the information and to the best of my knowledge, the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, with the exception of the conditions detailed in the case narrative, as verified by the following signature. Betty De Ville Inorganic Lab Manager ### Methods: The samples were digested ICAP metals using USEPA SW846 method 3050B and analyzed by 6010B. Note: The "U" flag on the forms indicates that the analyte is reported down to the MDL. The "J" flag indicates that the analyte result is between the laboratory MDL and the laboratory RL. ## Specific Comments: All analyses performed by the Inorganic section were completed meeting satisfactorily the corresponding specifications for Quality Control. 0912138 ## **Empirical Laboratories, LLC** Project Manager: Janice Shilling Client: Arcadis (A285) ARC Radford Project Number: Project: Radford Army Ammunition Plant Invoice To: Report To: Arcadis (A285) Arcadis (A285) Joyce Williams Jace'que Powell 640 Plaza Drive Suite 130 2929 Briarpark Dr., Suite 300 Highlands Ranch, CO 80129 Houston, TX 77042 Phone: (720) 344-3764 Phone: (281) 497-6900 Fax: (000) 000-0000 Fax: (000) 000-0000 01/07/2010 16:00 (15 day TAT) Date Due: Date Received: 12/12/2009 08:45 Received By: William Schwab Date Logged In: 12/14/2009 11:27 William Schwab Logged In By: Samples Received at: 2.1°C Yes Custody Seals No Received On Ice Containers Intact Yes COC/Labels Agree Preservation Confin Yes | Analysis | Due | TAT | Expires | Comments | |-----------------------------|--------------------|------------|------------------|--------------| | 0912138-01 NBG-XRF002(0-0.: | 5) [Solid] Sampled | 12/08/2009 | 9 11:00 Eastern | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/15/2009 10:00 | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/06/2010 10:00 | Chk Version | | 0912138-02 NBG-XRF005(0-0.: | 5) [Solid] Sampled | 12/08/2009 | 9 11:05 Eastern | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/15/2009 10:05 | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/06/2010 10:05 | Chk Version | | | 5) [Solid] Sampled | 12/08/2009 | 9 11:10 Eastern | | | 0912138-03 NBG-XRF007(0-0.3 | 12/30/2009 14:00 | 10 | 12/15/2009 10:10 | | | WC_PERCENT_SOLIDS_2540B | | | 06/06/2010 10:10 | Chk Version | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 00/00/2010 10.10 | Clik Version | | 0912138-04 NBG-XRF010(1-1.: | 5) [Solid] Sampled | 12/09/2009 | 9 14:10 Eastern | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:10 | Chk Version | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:10 | | | 0912138-05 NBG-XRF013(1-1.: | 5) [Solid] Sampled | 12/09/2009 | 9 14:15 Eastern | | | | 12/30/2009 14:00 | 10 | 06/07/2010 13:15 | Chk Version | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 12/16/2009 13:15 | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/10/2009 13.13 | | | 0912138-06 NBG-XRF015(1-1.5 | 5) [Solid] Sampled | 12/09/2009 | 9 14:20 Eastern | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:20 | Chk Version | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:20 | | Printed: 1/6/2010 2:35:23PM ### WORK ORDER ### 0912138 **Empirical Laboratories, LLC** Client: Arcadis (A285) Project: Radford Army Ammunition Plant Project Manager: **Project Number:** Janice Shilling ARC_Radford Printed: 1/6/2010 2:35:23PM | Project: Radiord Army Ammuni | tion a lant | | | | | | | |---|--------------------|-------------|---------------------|--------------|--|--|--| | Analysis | Due | TAT | Expires | Comments | | | | | 0912138-07 NBG-XRF017(1-1.5 |) [Solid] Sampled | 12/09/2009 | 9 14:25 Eastern | | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:25 | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:25 | Chk Version | | | | | 0912138-08 NBG-XRF020(1-1.5 |) [Solid] Sampled | 12/09/200 | 9 14:30 Eastern | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:30 | Chk Version | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:30 | | | | | | 0912138-09 NBG-XRF021(1-1.5 |) [Solid] Sampled | 12/09/200 | 9 14:35 Eastern | | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:35 | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:35 | Chk Version | | | | | | | | | | | | | | 0912138-10 NBG-XRF022(1-1.5 | | | | | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:40 | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:40 | Chk Version | | | | | 0912138-11 NBG-XRF025(4-4.5) [Solid] Sampled 12/09/2009 14:45 Eastern | | | | | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:45 | Chk Version | | | | | 0912138-12 NBG-XRF023B(3-3. | 5) [Solid] Sample | ed 12/09/20 | 09 14:50 Eastern | | | | | | WC PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:50 | | | | | | MET ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:50 | Chk Version | | | | | 0912138-13 NBG-XRF026(1-1.5) [Solid] Sampled 12/09/2009 14:55 Eastern | | | | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 13:55 | Chk Version | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 13:55 | | | | | | | | 100000 | 0.45 00 E - 4 | | | | | | 0912138-14 NBG-XRF028(1-1.5) | | | | Chl. Varrian | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 14:00 | Chk Version | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 14:00 | | | | | | 0912138-15 NBG-XRF031(1-1.5) | [Solid] Sampled | 12/10/200 | 9 11:20 Eastern | | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/08/2010 10:20 | Chk Version | | | | | WC_PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/17/2009 10:20 | | | | | | 0912138-16 NBG-XRFDUP001(3 | 3-3.5) [Solid] San | npled 12/10 | 0/2009 00:00 Easter | n | | | | | MET_ICP_LOW6010B_FULL | 12/30/2009 14:00 | 10 | 06/07/2010 23:00 | Chk Version | | | | | WC PERCENT_SOLIDS_2540B | 12/30/2009 14:00 | 10 | 12/16/2009 23:00 | | | | | | | | | | | | | | Reviewed 124 38 Metals Summ Date KA ARCADIS 0912138 Metals Summ Laboratory Task Order No./P.O. No._ CHAIN-OF-CUSTODY RECORD Page | 570 | n: #K-A | atio | | | |------|----------------------|---------|---|---| | Date | | ARCADIS | Air Organization: ARANIS Organization: FMPINICA | 129-cg/(150) 1 12-bcg/(1120) 1 Solid: A = Air Organization: #RAN(S) Organization: #MON(S) | | | 005
005
010ica | | Air Organization: Organization: Organization: Organization: | 124-64/1455 1
124-64/1455 1
12-15-64/120 1
50lid; A = Air
Organization: | X Common Carrier FEO EX ☐ In Person ☐ Lab Courier □Other SPECIFY AG 05-12/01 4 Delivery Method: * ARCADIS Laboratory Task Order No./P.O. No. CHAIN-OF-CUSTODY RECORD Page 22 of 2 | | 91-821-160 | Total No. of Bottles/ Containers Time / ZOO Seal Intact? Time Ob: 43 Seal Intact? Time Ob: 43 Seal Intact? |
--|--------------------------|---| | ANALYSIS / METHOD / SIZE | | 7, 1°C Date [2, 1], 169 Date 12, 12, 164 Date 12, 12, 164 Date 12, 12, 163 | | DISTORACIONO CHARACION CANDO CAN | | = Air Organization: HRADU Organization: EMOVICA! | | 8 Project Location RAPP-NRU -NCRTHERN BURNING (ROWN) 8 Laboratory Employed 8 Project Manager (1481) KAUNCUSK 8 Sampler(s)/Affiliation TASON THOTES. | NK5-XRFD, REC. (3.3.5) S | Sample Matrix: L = Liquid; \$ = \$olid; A = Relinquished by: Received by: Received by: Received by: Received by: | Delivery Method: Kcommon Carrier FED ☐ In Person ☐ Lab Courier AG 05-12/01 # EMPIRICAL LABORATORIES COOLER RECEIPT FORM | LIMS Number: 0912 | 138 | Nı | mber of Coolers: _ | of | | |--|----------------------|------------------|--------------------|---------------|-------------| | Client: Arad. S | | Project: | RAAR | Nu ti | 100 | | Date/Time Received: | 12/12/09 | | Date cooler(s) | pened: / | 211214 | | Opened By (print): France | | (signature): _ | 7 | | | | | Circle response | e below as appro | priate | | | | 1. How did the samples arrive?: | edEx | UPS | DHL | Hand | d Delivered | | | EL Courier | Other: | | | | | If applicable, enter airbill number here | | 3290 | / | | | | 2. Were custody seals on outside of co | ooler(s)? | ••••• | | Yes < | No) | | How many:Seal | date: | | Seal | Initials: | | | 3. Were custody seals unbroken and in | | | | es No | N/A | | 4. Were custody papers sealed in a pla | | | | es No | N/A | | 5. Were custody papers filled out prop | | | - | - | N/A | | 6. Did you sign custody papers in the | | | _ | , | N/A | | 7. Was project identifiable from custoo | | | | es No | N/A | | 8. If required, was enough ice present | • | | | es No | N/A | | Type of Coolant: WET DRY | BLUE NONE | | e of Samples upor | Receipt: | Z.L | | | 114/09 | | | | | | Initial this form to acknowledge logical services and the services of | | lame): Wi | 11 Schwat | (Initial): | W | | 10. Were all bottle lids intact and seale | | | x (4 | es No | N/A | | 11. Did all bottles arrive unbroken? | | | ω, ₉ | $\{s\}$ (s) | -
N/A | | 12. Was all required bottle label inform | | | <u> </u> | es) No | N/A | | 13. Did all bottle labels agree with cust | | | _ | es No | N/A | | 14. Were correct containers used for the | | | | es No | N/A | | 15. Were preservative levels correct in | | | | es No | N/A) | | 16. Was residual chlorine present in any | | | | es No | N/A | | 17. Was sufficient amount of sample se | | | | es No | N/A | | 17. Was sufficient amount of sample se18. Was headspace present in any includes | | | | es No | N/A) | | | | | | | | | If Non-Conformance issues were presen | i, list by sample in | r Merte | م) د | `AP#· | | | T 11, WW WWW.pv | 1016 | COLLUNC | ر کسک | | | | HOD-CONTORMATICE ISSUES WERE PRESENT
CONTROLLED CONTROLLED AND CONTROLLED CO | 140E13 | 3-14 | 10:06 | اسده میدا | T/A. | | | | | | | | NBG-XRF002(0-0.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-01 Sampled: <u>12/08/09 11:00</u> Received: 12/12/09 08:45 % Solids: <u>67.56</u> | CAS NO. | | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|-------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 83.5 | 0.142 | 0.356 | 1 | | SW6010B | 9L23001 | 12/28/09 21:33 | | 7439-92-1 | Lead | 1580 | 1.07 | 2.13 | 10 | D | SW6010B | 9L23001 | 12/29/09 12:08 | NBG-XRF005(0-0.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-02 Sampled: <u>12/08/09 11:05</u> Received: 12/12/09 08:45 % Solids: <u>82.56</u> | | | | | , | Method | Batch | Analyzed | |------|-------|-------|----|---|---------|-------------------|-------------------| | 226 | 0.116 | 0.290 | 1 | | SW6010B | 9L23001 | 12/28/09 21:37 | | 3230 | 2.17 | 4.35 | 25 | D | SW6010B | 9L23001 | 12/29/09 12:13 | | | | | | | | 220 0.110 0.250 1 | 220 0.110 0.270 1 | NBG-XRF007(0-0.5) Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Radford Army Ammunition Plant Project: Matrix: Soil Laboratory ID: 0912138-03 Sampled: <u>12/08/09 11:10</u> 12/12/09 08:45 <u>79.27</u> % Solids: Received: | | | | | | Method | Batch | Analyzed | |------|-------|-------|---|---|---------|--------------------|------------------| | 85.7 | 0.122 | 0.306 | 1 | | SW6010B | 9L23001 | 12/28/09 21:42 | | 742 | 0.184 | 0.367 | 2 | D | SW6010B | 9L23001 | 12/29/09 12:17 | | | | | | | | 00.7 0.122 0.000 1 | 03.7 0.122 0.500 | NBG-XRF010(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-04 Sampled: 12/09/09 14:10 Received: 12/12/09 08:45 % Solids: <u>82.25</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|--------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 21.7 | 0.117 | 0.294 | 1 | | SW6010B | 9L23001 | 12/28/09 21:47 | | 7439-92-1 | Lead | 106 | 0.0881 | 0.176 | 1 | | SW6010B | 9L23001 | 12/28/09 21:47 | NBG-XRF013(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-05 Sampled: <u>12/09/09 14:15</u> Received: 12/12/09 08:45 % Solids: <u>81.95</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed |
-----------|----------|------------------------------|--------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 21.2 | 0.121 | 0.304 | 1 | | SW6010B | 9L23001 | 12/28/09 21:51 | | 7439-92-1 | Lead | 37.9 | 0.0911 | 0.182 | 1 | | SW6010B | 9L23001 | 12/28/09 21:51 | NBG-XRF015(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Laboratory ID: Matrix: Soil 0912138-06 Sampled: <u>12/09/09 14:20</u> Received: 12/12/09 08:45 % Solids: <u>78.90</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|--------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 17.3 | 0.121 | 0.303 | 1 | | SW6010B | 9L23001 | 12/28/09 21:56 | | 7439-92-1 | Lead | 40.0 | 0.0910 | 0.182 | 1 | | SW6010B | 9L23001 | 12/28/09 21:56 | NBG-XRF017(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-07 Sampled: 12/09/09 14:25 Received: 12/12/09 08:45 % Solids: <u>81.69</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|--------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 24.2 | 0.122 | 0.305 | 1 | | SW6010B | 9L23002 | 12/28/09 22:47 | | 7439-92-1 | Lead | 158 | 0.0914 | 0.183 | 1 | | SW6010B | 9L23002 | 12/28/09 22:47 | NBG-XRF020(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-08 Sampled: <u>12/09/09 14:30</u> Received: 12/12/09 08:45 % Solids: 88.20 | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|-------|-------|--------------------|-----|---------|---------|----------------| | 7440-47-3 | Chromium | 22.3 | 0.112 | 0.281 | 1 | | SW6010B | 9L23002 | 12/28/09 22:52 | | 7439-92-1 | Lead | 293 | 0.168 | 0.337 | 2 | D . | SW6010B | 9L23002 | 12/29/09 12:21 | NBG-XRF021(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-09 Sampled: <u>12/09/09 14:35</u> Received: 12/12/09 08:45 % Solids: <u>78.88</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|-------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 407 | 0.124 | 0.309 | 1 | | SW6010B | 9L23002 | 12/28/09 22:57 | | 7439-92-1 | Lead | 5920 | 2.32 | 4.64 | 25 | D | SW6010B | 9L23002 | 12/29/09 12:26 | NBG-XRF022(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-10 Sampled: 12/09/09 14:40 Received: 12/12/09 08:45 % Solids: <u>80.45</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|-------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 124 | 0.123 | 0.308 | 1 | | SW6010B | 9L23002 | 12/28/09 23:01 | | 7439-92-1 | Lead | 1540 | 0.923 | 1.85 | 10 | D | SW6010B | 9L23002 | 12/29/09 12:31 | NBG-XRF025(4-4.5) Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-11 Sampled: <u>12/09/09 14:45</u> Received: 12/12/09 08:45 % Solids: 80.87 | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |----------|------------------------------|-----------------------------------|---------------------|--|---|---|--|--| | Chromium | 22.2 | 0.117 | 0.293 | 1 | | SW6010B | 9L23002 | 12/28/09 23:06 | | Lead | 66.7 | 0.0879 | 0.176 | 1 | | SW6010B | 9L23002 | 12/28/09 23:06 | | | Chromium | Analyte (mg/Kg dry) Chromium 22.2 | Chromium 22.2 0.117 | Analyte (mg/Kg dry) MDL RL Chromium 22.2 0.117 0.293 | Analyte (mg/Kg dry) MDL RL Factor Chromium 22.2 0.117 0.293 1 | Analyte (mg/Kg dry) MDL RL Factor Q Chromium 22.2 0.117 0.293 1 | Analyte (mg/Kg dry) MDL RL Factor Q Method Chromium 22.2 0.117 0.293 1 SW6010B | Analyte (mg/Kg dry) MDL RL Factor Q Method Batch Chromium 22.2 0.117 0.293 1 SW6010B 9L23002 | NBG-XRF023B(3-3.5) Laboratory: Empirical Laboratories, LLC 0912138 SDG: Client: Arcadis (A285) Radford Army Ammunition Plant Project: Matrix: Soil Laboratory ID: 0912138-12 Sampled: <u>12/09/09 14:50</u> Received: 12/12/09 08:45 % Solids: <u>88.63</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|--------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 23.2 | 0.111 | 0.278 | 1 | | SW6010B | 9L23002 | 12/28/09 23:11 | | 7439-92-1 | Lead | 59.4 | 0.0834 | 0.167 | 1 | | SW6010B | 9L23002 | 12/28/09 23:11 | NBG-XRF026(1-1.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-13 Sampled: 12/09/09 14:55 Received: 12/12/09 08:45 % Solids: <u>78.82</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|-------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 214 | 0.123 | 0.306 | 1 | | SW6010B | 9L23002 | 12/28/09 23:15 | | 7439-92-1 | Lead | 4040 | 0.919 | 1.84 | 10 | D | SW6010B | 9L23002 | 12/29/09 12:35 | NBG-XRF028(1-1.5) Laboratory: Empirical Laboratories, LLC 0912138 SDG: Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Soil Laboratory ID: 0912138-14 Sampled: <u>12/09/09 15:00</u> Received: 12/12/09 08:45 % Solids: <u>81.56</u> | CAS NO. | | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|-------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 68.3 | 0.121 | 0.302 | 1 | | SW6010B | 9L23002 | 12/28/09 23:20 | | 7439-92-1 | Lead | 1230 | 0.453 | 0.906 | 5 | D | SW6010B | 9L23002 | 12/29/09 12:39 | NBG-XRF031(1-1.5) Laboratory: Empirical Laboratories, LLC 0912138 SDG: Client: Arcadis (A285) Radford Army Ammunition Plant Project: Matrix: Soil Laboratory ID: 0912138-15 Sampled: <u>12/10/09 11:20</u> Received: 12/12/09 08:45 % Solids: <u>77.61</u> | CAS NO. | Analyte | Concentration
(mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |-----------|----------|------------------------------|--------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 | Chromium | 24.7 | 0.124 | 0.310 | 1 | | SW6010B | 9L23002 | 12/28/09 23:25 | | 7439-92-1 | Lead | 94.8 | 0.0929 | 0.186 | 1 | | SW6010B | 9L23002 | 12/28/09 23:25 | NBG-XRFDUP001(3-3.5) Laboratory: Empirical Laboratories, LLC SDG: 0912138 Arcadis (A285) Client: Project: Matrix: Soil Laboratory ID: Radford Army Ammunition Plant 0912138-16 Sampled: <u>12/10/09 00:00</u> Received: 12/12/09 08:45 % Solids: <u>82.96</u> | CAS NO. An | | Concentration (mg/Kg dry) | MDL | RL | Dilution
Factor | Q | Method | Batch | Analyzed | |---------------|---------|---------------------------|-------|-------|--------------------|---|---------|---------|----------------| | 7440-47-3 Ch | ıromium | 21.3 | 0.121 | 0.303 | 1 | | SW6010B | 9L23002 | 12/28/09 23:30 | | 7439-92-1 Lea | ad | 362 | 0.182 | 0.363 | 2 | D | SW6010B | 9L23002 | 12/29/09 12:44 | ## INITIAL AND CONTINUING CALIBRATION CHECK SW6010B Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Instrument ID: ME-ICP Calibration: <u>9364001</u> Sequence: <u>9L36401</u> | Lab Sample ID | Analyte | True | Found | %R | Units | Control Limit | |---------------|----------|------|-------|------|-------|---------------| | 9L36401-ICV1 | Chromium | 1000 | 982.0 | 98.2 | ug/L | +/- 10.00% | | | Lead | 1000 | 997.5 | 99.8 | ug/L | +/- 10.00% | | 9L36401-CCV1 | Chromium | 1000 | 1000 | 100 | ug/L | +/- 10.00% | | | Lead | 1000 | 1014 | 101 | ug/L | +/- 10.00% | | 9L36401-CCV4 | Chromium | 1000 | 984.0 | 98.4 | ug/L | +/- 10.00% | | | Lead | 1000 | 969.5 | 97.0 | ug/L | +/- 10.00% | | 9L36401-CCV5 | Chromium | 1000 | 990.2 | 99.0 | ug/L | +/- 10.00% | | | Lead | 1000 | 983.1 | 98.3 | ug/L | +/- 10.00% | | 9L36401-CCV6 | Chromium | 1000 | 985.8 | 98.6 | ug/L | +/- 10.00% | | | Lead | 1000 | 972.1 | 97.2 | ug/L | +/- 10.00% | | 9L36401-CCV7 | Chromium | 1000 | 1012 | 101 |
ug/L | +/- 10.00% | | | Lead | 1000 | 977.7 | 97.8 | ug/L | +/- 10.00% | # INITIAL AND CONTINUING CALIBRATION CHECK SW6010B Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Instrument ID: ME-ICP Calibration: 9364004 Sequence: 9L36407 | Lab Sample ID | Analyte | True | Found | %R | Units | Control Limit | |---------------|---------|------|-------|------|-------|---------------| | 9L36407-ICV1 | Lead | 1000 | 986.0 | 98.6 | ug/L | +/- 10.00% | | 9L36407-CCV1 | Lead | 1000 | 980.7 | 98.1 | ug/L | +/- 10.00% | | 9L36407-CCV2 | Lead | 1000 | 990.0 | 99.0 | ug/L | +/- 10.00% | ### Metals in Water by ICP-AES - Quality Control | Analyte | Result | MDL | RL | Units | Spike
Level | Source
Result | %REC | %REC
Limits | RPD | RPD
Limit | Notes | |---------------------|--------|-----|----------|--------|----------------|------------------|------|----------------|-----|--------------|-------| | Batch 9L36401 | | | | | | | | | | | | | Instrument RL Check | | | Prepared | & Anal | yzed: 12 | /28/2009 |) | | | | | | Chromium | 4.875 | | | ug/L | 5.000 | | 97.5 | 80-120 | | | | | Lead | 2.842 | | | ug/L | 3.000 | | 94.7 | 80-120 | | | | | Batch 9L36407 | | | | | | | | | | | | | Instrument RL Check | | | Prepared | & Anal | yzed: 12 | /29/2009 |) | | | | | | Lead | 2.820 | | | ug/L | 3.000 | | 94.0 | 80-120 | | | | #### BLANKS SW6010B Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Instrument ID: ME-ICP Project: Radford Army Ammunition Plant Sequence: <u>9L36401</u> Calibration: <u>9364001</u> | Lab Sample ID | Analyte | Found | MDL | MRL | Units | C | Method | |---------------|----------|----------|--------|-------|-----------|---|---------| | 9L36401-ICB1 | Chromium | -0.09331 | 2.00 | 5.00 | ug/L | U | SW6010B | | | Lead | -0.9421 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L36401-CCB1 | Chromium | 0.163 | 2.00 | 5.00 | ug/L | U | SW6010B | | | Lead | 0.408 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L36401-CCB4 | Chromium | -0.124 | 2.00 | 5.00 | ug/L | U | SW6010B | | | Lead | -0.244 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L23001-BLK1 | Chromium | 0.0452 | 0.100 | 0.250 | mg/Kg wet | U | SW6010B | | | Lead | 0.0224 | 0.0750 | 0.150 | mg/Kg wet | U | SW6010B | | 9L36401-CCB5 | Chromium | 0.105 | 2.00 | 5.00 | ug/L | U | SW6010B | | | Lead | -0.632 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L36401-CCB6 | Chromium | 0.0799 | 2.00 | 5.00 | ug/L | U | SW6010B | | | Lead | 0.879 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L23002-BLK1 | Chromium | 0.0415 | 0.100 | 0.250 | mg/Kg wet | U | SW6010B | | | Lead | -0.0175 | 0.0750 | 0.150 | mg/Kg wet | U | SW6010B | | 9L36401-CCB7 | Chromium | -0.0760 | 2.00 | 5.00 | ug/L | U | SW6010B | | | Lead | 0.957 | 1.50 | 3.00 | ug/L | U | SW6010B | ### BLANKS SW6010B Laboratory: Empirical Laboratories, LLC Client: Arcadis (A285) Instrument ID: ME-ICP Sequence: <u>9L36407</u> SDG: <u>0912138</u> Project: Radford Army Ammunition Plant Calibration: 9364004 | Lab Sample ID | Analyte | Found | MDL | MRL | Units | C | Method | |---------------|---------|----------|------|------|-------|---|---------| | 9L36407-ICB1 | Lead | -0.09231 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L36407-CCB1 | Lead | 0.0269 | 1.50 | 3.00 | ug/L | U | SW6010B | | 9L36407-CCB2 | Lead | 0.345 | 1.50 | 3.00 | ug/L | U | SW6010B | ### ICP INTERFERENCE CHECK SAMPLE #### SW6010B Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Instrument ID: ME-ICP Calibration: <u>9364001</u> Sequence: <u>9L36401</u> | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|----------|-------|--------|------|-------| | 9L36401-IFA1 | Chromium | | -2.22 | | ug/L | | | Lead | | 2.10 | | ug/L | | 9L36401-IFB1 | Chromium | 500.0 | 430.31 | 86.1 | ug/L | | | Lead | 50.00 | 47.55 | 95.1 | ug/L | ### ICP INTERFERENCE CHECK SAMPLE SW6010B Laboratory: Empirical Laboratories, LLC SDG: <u>0912138</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Instrument ID: ME-ICP Calibration: 9364004 Sequence: 9L36407 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|---------|-------|-------|------|-------| | 9L36407-IFA1 | Lead | | 1.66 | | ug/L | | 9L36407-IFB1 | Lead | 50.00 | 46.12 | 92.2 | ug/L | # LCS / LCS DUPLICATE RECOVERY SW6010B Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Solid Batch: 9L23001 Laboratory ID: 9L23001-BS1 Preparation: MET 3050B Initial/Final: <u>2 g / 100 mL</u> | ANALYTE | SPIKE
ADDED
(mg/Kg wet) | LCS
CONCENTRATION
(mg/Kg wet) | LCS
%
REC. | QC
LIMITS
REC. | |----------|-------------------------------|-------------------------------------|------------------|----------------------| | Chromium | 10.00 | 10.72 | 107 | 80 - 120 | | Lead | 12.50 | 12.60 | 101 | 80 - 120 | ## LCS / LCS DUPLICATE RECOVERY SW6010B Laboratory: Empirical Laboratories, LLC SDG: 0912138 Client: Arcadis (A285) Project: **Radford Army Ammunition Plant** Matrix: <u>Solid</u> Batch: 9L23002 Laboratory ID: 9L23002-BS1 Preparation: MET 3050B Initial/Final: 2 g / 100 mL | ANALYTE | SPIKE
ADDED
(mg/Kg wet) | LCS
CONCENTRATION
(mg/Kg wet) | LCS
%
REC. | QC
LIMITS
REC. | |----------|-------------------------------|-------------------------------------|------------------|----------------------| | Chromium | 10.00 | 10.86 | 109 | 80 - 120 | | Lead | 12.50 | 12.65 | 101 | 80 - 120 | ### Appendix B Site Photographs Photo 1 – Silt Fence installed in northwest portion of the work area prior to excavation. Photo 2 – Gravel added to dirt road on east side of work area. Photo 3 – View of plastic liner being installed in dump trailer prior to loading. Photo 4 – Debris/ash from historic burning operations encountered during excavation activities. Photo 5 – Southern portion of excavation footprint after target depth of 1-ft bgs achieved. Photo 6 – Central portion of site where target excavation depth was 4-ft bgs. Photo 7 – View of excavation area during backfill activities. Photo 8 – View of work area after grass seed and straw were placed. ### Appendix C Waste Disposal Manifests, Weigh Tickets, and Certificates of Disposal invoice: 40176541 Receipt 03-01 1180367 Manifest 004173234JJK | Page | | | | | | | ~ | | | | | Form | Аррголий, СМ | B No. 205 | XV-0039 | |--|------|---|-----------------------------------|-----------------------|---------------------------|---------------------------|------------------|---------------|--------------------|-----------------------------|--|--|--|-------------|---------------| | InterCont Hands (1997) 1990
1990 199 | | et on's | ti or type. (Form desi- | greed for use c | n efita (12-pitch) tap | avriter.) | ET ONA Lat | 1 1700 | noy Karponee | rtxone | | acking Nu | mi-et | | . 1 | | World World Storage Company Storage Company Control of the Company | Ĭ | UNE | ORM HAZARIXOUS | [],Gandraux | K) I/N IIV | | 1 . | ann-é | 24-9300 | | | | <u> </u> | <u> </u> | | | New River School September 1 Red Gross (No. 2314) PO Bits 1 Red Gross (No. 2314) PO Bits 1 Red Gross (No. 2314) Constall From Set (Constall S | ŧί | w | LSTE BLUNIFEST | 1 AMAG 4 | 300 015 558 | | <u> </u> | Conservator | a Siño Address (| i diterest in | onegue soone | } | | | ļ | | PO Box 1 Red Professor Auto- H. R. Stankenship Double, VA VA 24084 El Braych I Compress Lorge Plant US SUR Transpard SUR SUR SUR SUR SUR SUR SUR SUR S | $\ $ | S. GA | rerator's Kame and Mak | od vepres | O | Nant Techsyste | em 9 | | lew River | · Storag | e Depot | | | | 1 | | Consider France Fold 0.539-7868 Attr: H. V. Stationaria P. | П | | New River | Storage | Debat clo v | Mark - Carry | | | 0,8 mi 9 ,0 | oth of R | it. 1030 & | Rt. 747 | ſ | | | | Comparison Com | 1 | | PO Box 1 | Radioro. | V2 Z0149
V2 Z0149 | ~dklansvnet | | l _ | Dublin, V | <u> A VA 2</u> | 4084 | 3 | | | | | US BARK Trainspart T. Interpret Tompsylvania T | П | Gene | nator's Phone: 640 | 83 9- 7866 | Ann. H. IV. | 2001 415-110-1-1- | | | | | | | 515 | | | | The proportion of Controlly Name and San Address | П | a. In | reporter 1 Company For | ns
ncmad | 100 | | | | | | | | 010 | | 1 | | Disciplant Frainty Name and Standards | H | N E | US BUTK 17 | 3/15/101 | TUE | <u> </u> | | | | | i diametria | | | | - 1 | | Completed Enable Name and Sendance Mail Address | П | /. I/A | Libbit les 5 corrécails : | | مشاعث | | 4 | | | | US EPAIDA | - Labor | | | | | ### Afficial Space Property And Assertice Drive Facility Property 800-592-5489 Belleville, MI 49111 | Н | 1 64 | American Facility Harris & | nd Ste Address | DAYNE | DISPOSAL | INC | ما تاد | a. | | V.4. 14 - 1 - 2 | _ | | 2-7 | - 1 | | ### Facility Process (BID-592-5288) Belleville, IM 49111 Facili | П | | | | Aligh Heart 🗗 | CARRY A 1956A. | 11001 | 146 141 | 76 | | | rus i | 040 ゆう | ワ | 1 | | Secretarian | 1 | | | | 49350 N. I- | 84 Service Uni | V& | | | | I MID-9 | | p3+ | | [| | No. 10 pt Description (Control of Proper Supply General Trade) Description Des | Ĭ | CZ | 44 Dans 800-59 | 2-5489 | Belleville, M | 48111 | | | th Coule | | 61 THAT | 12 trà | /a 115 | معامدات ساء | \ | | International Content (1971) | 1 | | ON U.S.DOTDHOT | aion (musica) f | hoper Shipping Name. | Plazard Class, #D Kumbo | τ, | 1 | | | | | 13.10 | | | | RO, NASOTT, Hazardous Waste Solid, RUS (lead). 1. Laggardous Marking biservicus and Addisonal February | l | | Packing © ФФ (| a y∦ | | | | | | | . 61 - 45 | l} _a P | D008 | ` | ì | | ## Report Prince Central Cent | 1 | Γ, | RO, NA | 3077, Haz | ardous Wash | e Solid, NOS (| (690), | ľ | 0 0 + | , -· | UL DV | | | - | | | I. Special Variating Nonvectors and Additional Platformation L. Lago-24 (Any Control Trust) Platform Surror ground soil ERC#4171 Lago-24 (Any Control Trust) Platform Surror ground soil ERC#4171 Lago-24 (Any Control Trust) Platform Surror ground soil ERC#4171 I. Cashes-Nonvector Trust) Platform Surror ground gro | Ž |] [| | | | | | } | | <u> </u> | | | 1 | | | | I. Special Variating Nonvectors and Additional Platformation L. Lago-24 (Any Control Trust) Platform Surror ground soil ERC#4171 Lago-24 (Any Control Trust) Platform Surror ground soil ERC#4171 Lago-24 (Any Control Trust) Platform Surror ground soil ERC#4171 I. Cashes-Nonvector Trust) Platform Surror ground gro | Ž | | <u> </u> | | | | | | | Γ | | 1 | 1 | | | | I. Special Verifies and Roddonial Microsoft Annalysis Anna | | } | ² | | | | | - 1 | | į. | \ | | | | | | H. Special Hamiling instructions and Additional Primarion L. LOSS-SHOWCOT TOUTH HE TO HULTIN ground soil: ERG# 171 LOSS-SHOWCOT TOUTH HE TO HULTIN ground soil: ERG# 171 In. CEREPATION SCHEME (CRITICAL Investory doctors in proper condition for the upon a monthly described above by the proper shipping name, and are despited, pockaged, many and are despited, pockaged, and are facilities of the condition for the upon a condition of the despited and conditions of the condition of the conditions of the condition of the conditions of the condition of the conditions of the conditions of the conditions of the condition of the conditions t | li | Į. | } | | | | | | | ļ | <u> </u> | | ┝╾╌╂╴ | - | | | H. Special Hamiling instructions and Additional Primarion L. LOSS-SHOWLOTT CONTINENT INJURY STREET BULLIN ground soil: ERG# 171 LOSS-SHOWLOTT CONTINENT INJURY STREET BULLIN ground soil: ERG# 171 Int. CEREPATION STREET BULLIN STREET BULLIN ground soil: ERG# 171 Int. CEREPATION STREET BULLIN BU | H | ⊢ | 1 | | | | | | | l | 1 | 1 | | | | | H. Special Hamiling instructions and Additional Primarion L. LOSS-SHOWCOT TOUTH HE TO HULTIN ground soil: ERG# 171 LOSS-SHOWCOT TOUTH HE TO HULTIN ground soil: ERG# 171 In. CEREPATION SCHEME (CRITICAL Investory doctors in proper condition for the upon a monthly described above by the proper shipping name, and are despited, pockaged, many and are despited, pockaged, and are facilities of the condition for the upon a condition of the despited and conditions of the condition of the conditions of the condition of the conditions of the condition of the conditions of the conditions of the conditions of the condition of the conditions t | | ĺ | 1 | | | | | | | 1 | i | 1 | 1 | ١, | | | H. Special Hamiling instructions and Additional Primarion L. LOSS-SHOWLOTT CONTINENT INJURY STREET BULLIN ground soil: ERG# 171 LOSS-SHOWLOTT CONTINENT INJURY STREET BULLIN ground soil: ERG# 171 Int. CEREPATION STREET BULLIN STREET BULLIN ground soil: ERG# 171 Int. CEREPATION STREET BULLIN BU | ١ | | | _ | | | | | | \ | | | | | | | LABERANCE TO THE PLANT ENTRY SCREEN SOLVER STATES AND SOLVER SOLV | П | | 1. | | | | | ĺ | | ł | 1 | { | | —— | | | LABERANCE TO THE PLANT ENTRY SCREEN SOLVER STATES AND SOLVER SOLV | ١, | | i | | | | | | | 1 | į | 1 | | | | | LABERANCE TO THE PLANT ENTRY SCREEN SOLVER STATES AND SOLVER SOLV | 11 | | 1 | | | | | | | | | | | | | | 1. CEMERATOR SCRIFFICATION: Thereby ductive Polt The contents of Pile consistent | Н | 14.5 | coccal Harding instruct | COLDENS ACCUSES | nastomene
Abom bum di | round soil ERG | # 171 | | | | | | | | | | 18. GENERATORNOFFERIORS CERTIFICATION: Investory decision for the contribution of this consistency of the contribution | Н | 1 | 10020 | | illerit maris g | | | | CESI J | 258 Hdd | CTT-NA | T-3831 | 10811-6 | | | | Transporter 2 pit Not Type pi | 11 |] | المراسا | 11/2/10/10 | • | | | | | | | • • • • | 14 1944 | HAI AND | erest. | | Transporter 2 pit Not Type pi | Н | 18 | CENERATOR'S IDEED | ROM'S CERTIF | CATION: I handy doc | tere that the contents of | this consignme | at one fully: | and accountely of | escribed abo
Sonal ocean | ve by the proper:
mental reculation | nopong nam
Laponte | no, auto entro cass
Rigornecia uncidia | n the Print | 37 | | Conflight flow and the inferior of inferior content (content of the content | 11 | \" | markAd and 300000 P.S. | COMPLESS, AND STI | BEIST IDDAS IN IN AN | | L. APTIO Sales | | e vi i l'accessi | | | • | | | | | Demonstrate Printed | ۱۱ | 1 | Exporter, Longly that at | NO COMMONS OF S | (tekhen) kitanapatrin avi | CLE toctacial his muni- | Acres 1 | promiss) o | (\$)(ii)ens4z | al acousts a | ecergect at eur. | | Work | n Day | Year | | BY: H.R. BLANKENSHIP, TRANSPORTACION ANALYSI British | П | 0= | embrs/Offers's Prefed | Typed Name | ALLIANI' | TEXTISYSTEMS | , TMC . | SOME | 0 S/In. | alke at | (UZ) | | la · | 2 10 9 | b 9 | | St. Percentional Shipments Import to U.S. Export from U.S. Data lear virg U.S. | Ц | ı ı | BY: H.R.BLA | NKENSH | IP, TRANSP | ORTATION AN | | | | me | 7// | | | -7, 1 | | | Transporter Squates (Sar supports of Records) Transporter Refreshing Control of Retorials Transporter Refreshing Control of Retorials Signature Signature Signature Signature Signature Record Operation Hearth Oby Year Transporter 2 Pit Red Type of Name R | È | | | | | | IEPpctlive | nUS. | | | <i>/</i> | | | | | | Transporter 1 Princip Type Signature Morth Day Year | 星 | 7/2 | raporter algradure (for e) | ports only): | | | | | Date (or | a daw. | | | | | | | Transporter 2 Pit-heid Typod Cleans No. Discrepancy Decides | 6 | | | | of Hatorials | | | Signature | 11 10 | ٠٠ ١٠٠ | , | *************************************** | | | Yes
Hea/√> | | Transporter 2 Pit-feet (year) feature 18. Discompanie) 19. Sprinklure of Aherman Faceby (or Generator) 19. Hazarobus Words Responsibles and Responsible and Responsibles Responsible and Responsibles Responsible and Responsibles Resp | E | Ira | | | مے وہ میں سین | | 1 | L | with . | har la | | | | | 17 | | 18. Biscorpacey 19. Biscor | 8 | į | | | VIOLITIES. | | <u>.</u> | Signature | | | | | MOTI
I | en coest | 10.00 | | 15a Discrepancy Enclass Space Quantity Trylo Because Partial Rejection Par | ŕ | 31''- | Marie at the second in the second | ******* | | | į | | | | | | | | | | 15a Discrepancy Enclass Space Quantity Trylo Because Partial Rejection Par | ۴ | 1,, | Pérsonana | | | | | | | | | | | | | | Tab. Alexandy Electry (of Generator) | 11 | 1 | | Seace | 1000 | 7199 | | 1 | Residue | | Putal R | ජපුරේගා | i. | - Ful flej | ection | | Tab. Alexandy Electry (of Generator) | 1 | 1 | 1 |
 TOWNS | 1 110 - 10 | الم أمرارة | TAVL | 6)11 | n del | 12/0 | MA | MD | /+171. | , | | Tab. Alexandy Electry (of Generator) | 11 | 1 | nanais ta | 0 | 1011 (1 +1° | 7 467 18 | <u> </u> | <u> </u> | Vital But | <u>Arnomeni</u> | I S BEAV | ((/ * I | 1.4 | | | | Facility's Pront: 16: Signature of Alternate Facility (or Generality) 19: Hazarcture Wasta Report Management Method Codes (i.e., codes for hazardous wade freelment, disposal, and recycling systems) 2. 20: Description Facility Owning or Operator Certification of receipt of hazardous moterals covered by the manifest integrals and in large for the property of the control of the control of the covered by the manifest integrals and in large for the covered by the manifest integrals and in large for the covered by the manifest integrals and in large for the covered by the manifest integrals and in large for the covered by the manifest integrals and in large for the covered by the manifest integrals and covered by the manifest integrals and the covered by the covered by the manifest integrals and the covered by | 17 | -112 | Alemen Finding (of Go | snerator) | | • | | | | • | G/30 (J. 1) | , | , | | | | 20. Developer of mailty Chang or Operation Conflictation of receipt of hazardous materials covered by the mainting displace based in large for the conflict of | Æ | 3/ | J | | | | | | | | 1 | | | | | | 20. Developer of mailty Chang or Operation Conflictation of receipt of hazardous materials covered by the mainting displace based in large for the conflict of | 1 | F× | arys Prone: | | mbul. | | | | | | | | 160 | ան 10 ոչ | 160/ | | 20. Developer Tracky Owing or Operator: Confliction of receipt of hazardous molecule covered by the manifest displaced in large for Strings (Springs of Springs Sp | ĺ | 1 18: | : Signature of Microbia I | CONTRACTOR CONTRACTOR | 12007 | | | | | | | | | | | | 20. Developer Tracky Owing or Operator: Confliction of receipt of hazardous molecule covered by the manifest displaced in large for Strings (Springs of Springs Sp | ŀ | <u>. </u> | · | a è lucanament | State of Cortes (i.e. th | ies for hazanious yrada | transment, disp | osal, and n | cycling systems | } | | | | | | | 20. Developer Tracky Owing or Operator: Confliction of receipt of hazardous molecule covered by the manifest displaced in large for Strings (Springs of Springs Sp | ě | 3 <u>19.</u> | HETHEROLD INSON NAVA | / T | 2. | | | 3. | | _ ^ | . I ^{4.} | | | | | | 120404 | [5 | " | ニュリリク | <u>_</u> | - 1 | | | | | \rightarrow | | | | | | | 1/20/1/17 | Н | 20 | Designated Facility Con | veg or Chermon | Certification of receipt | of hazardous moleculs or | pythog by that o | Marie de | estas dad in) | <i>7</i> | | | - Jac | 4 101 | 1 /4 | | BAFORM 5704-22 (157) 3 45) Proficus action side baselels. DEBEGNATED FACILITY O DESTINATION STATE (IF REQUIRED | } | | | 7 11/1 | IMAN | | | 77 | 1/ | /, / | | | 1/2 | 409 | 11/1 | | EX Form 8704-22 (16% 3-16) Proficus action and tobsoldie. DEBEGNATED FACILITY TO DESTINATION STATE (1) | 1. | | LILLII. | N N | 1/401 | | | | | | 20 DECT | NATIO | NSTATE | (SE PEC | วบเกรา | | | E | A Fo | m 8704-22 Rby, 3 | 5) ProHouse | ations are tobsolate. | | Ĺ | DEBIG | NATED E | ACILITY | N O DESI | IAN LINI | | | | ### Wayne Disposal, Inc. 49350 North I-94 Service Drive, Belleville, Michigan 48111 ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Receipt ID: 1180367 EQ Account #: 5247 Manifest / BOL: 004173234JJK Transporter: US BULK Date: 12/09/2009 Time In: 8:08 AM Time Out: 12:17 PM | Line | Description | | | Qty. Unit | _ | |-------|--------------------|------------------------|---------------------------|-------------|---| | | Generator | | | | | | 1 - A | L092016WDI - New I | River Storage Depot- N | lorthern Burn Ground Soil | 23.770 TONS | | | | VAR000012559 NE | W RIVER STORAGE E | DEPOT | | | | | Gross: 80,680 | Tare: 33,140 | Net: 47,540 | | | Authorized Signature: 3003254 Page 3 of 7 ## CERTIFICATE OF DISPOSAL FAX NUMBER: ADDRESS: PHONE NUMBER: 1-800-593-5329 1-800-592-5489 Michigan Disposal Waste Treatment Plant (சவரம் சன்றனர்கள்) 49350 N. I-94 Service Drive Belleville, Michigan 48111 FACILITY NAME (Please theck one) d Wayne Disposal, Inc. Form # REC-FM-013-BEL THE ENVIRONMENTAL QUALITY COMPANY 49350 N. 1-94 SERVICE DRIVE BELLEVILLE MICHIGAN 48111 The thecharic version of this document is the controlled version. Each user is responsible for ensuring that any document being used is the current version. 8055/08 COG 004173234JJK Receipt 03-01 1180367 involce: 40176541 This certificate is to verify the wastes specified on Manifest # 004173234JJK have been properly disposed of in accordance with all local, state and federal regulations. "Disposed of" means either; 1) Burial or 2) Processed as specified in 40 CFR at sea. Invoice: 40176541 Receipt 03-01 1180368 Manifest 004173235JJK | <u>Pio</u> | 356 P. | rink or type. (Form desig | oned for use on eite (12-phdh) lypownitor |) | | | F. 10 10 12 | For | n Approved, OMB No | . 2050-003 | |------------|------------|--|--|-------------------------------------
---|----------------|--|----------------|---|----------------| | ↑ | UN | IFORM HAZARDOUS
MASTE MANIFEST | 1. Generator 19 Number
VAR 000 012 559 | 2.Page 1 | 3. Emergency Response
800-424-9300 | | 00 | | | ЗK | | Ų | | energical Name and Skaff | | | Generalor's SJM Address | | 1 0 0 | | VEUU U | ni/ | | П | | | Storage Depot C/O Alliant | Techsystems | | | ge Depoi | | _ | | | 1 | l | | Radford, Va 24143 | | • | | Rt. 1030 & | RL 74 | 7 | | | 1 | | erator's Phone: 540 I | 639-7668 Altn: H. R. Blank | enship | Dublin, | VA VA | 24084
V.S. 674 O F | unher | | | | ı | 1 " | US Bulk Tr | 1. | | | | PAD 9 | | 7 515 | | | IJ | 7, 10 | emporier 2 Company Nam | | | | | U.S. EPA D1 | i,mber | | | | 1 | _ | | | | | | | | | | | 1 | 8.D6 | olground Facility Harris ar | al Sile Address William Disput | RI INC | ent Clarit | | U.S. EPA ION | | a - 6 m m | | | ١ | ì | | 48360 N. I-94 Se | rvice Orive | | | 6 | X <i>18 ()</i> | 90 633 | | | ١ | Facili | eys Prone: 800-592 | 2-5489 Believille, MI 481 | 111 | | | MIDE | | | | | 1 | 54. | | ion (including Propor Shipping Home, Hazard C | lant, ID Humber, | 10, Cortai | | 11, Total | 12. Upil | 13. Neste Co | és | | 1 | Ж | | | | No. | 1)/pm | Guaraity | HE/NEX | | 1 | | Š | , | 1 ' | 077, Hazardous Waste Soli | d, NOS (lead), | 001 | DT | 23 1 | م | D008 | 1 | | EKICK | | 9, PGIII | | <u>-</u> | | 1 | 257 | 1 | | | | 8 | | 2 | | | | ļ i | | | | 1 | | G
L | | | | | | | | | | | | | | 3. | | ···· | | | | | | | | | | 1 | | | 1 |) į | | | <u> </u> | } | | П | | | | <u></u> , | | | | | | | | 11 | | ! * | • | | | 1 | | | <u> </u> | ļ | | П | ı | ł | | | | | | | I | 1 | | Ĥ | 14.50 | | is and Additional Information | | | | | • | | | | H | | | MEL morthern burn ground | SMIERG# 171 | cee (| ologić (D.C) | TRORT-W | 4940. | _17007 | | | Ц | | LUTELLA | ועטו | | OEG. J | ODT 11(2) | -04-61-0161 | -5000 | - I I BUT | 1 | | Ш | 15. (| CEHERATOR MOFFESIO | ners CERTIFICATION: Thereby declare that the
ided, and are in ad respects in proper consider | s contents of this consignmen | t are fully and accumulaly de | octpany sposs | by the proper and | syng pane | s, and are classified, par
leased and less the Dri | inget, | | 11 | | Francis: Londify that the s | net eri ül meines Josephere interior eit in sinaloo | րուսի փուբերանինի ԵՐԱ Ն ՀԱՐՀ | elfeógmant of Consent. | | | e exposts as | y | , | | ۱ | | l certify that the maple mini
rater's Otheror's Printed Typ | imization statement (certified in 48 GFR 262.27 | SYSTEMS INC | | and and the | 77. TE | | Horin Da | y Year | | Į | | | KENSHIP, TRANSPORTAT | | | Mind | Win | | 1 2 0 | 909 | | 2 | | iernational Shipments | | Export from | | | | | | | | 5 | _ | Doger edungtial (joi exbo. | | | Dela lacri | ing U.S.: V | · · · · · · · · · · · · · · · · · · · | | | | | Ť | | nsporter Activitation of the property of the control contro | and the first of the second se | গ্ৰ | grature | | | | Morth On | , Year | | ţ | , | DAGE | POPULATION | 1_ | | | | | 1 1 | J | | Š | lra sp | orler 2 Pri tod Typed Ha | 718 | S | ousture. | | | | Month De
11218 | | | _ | 76 DT- | | | | | | _ | | 11210 | 109 | | ۱ | _ | screpancy
Sistrepency Indication Spe | œ / Tana | | Resista | - ;- | ☐Parist Reiv | Stea 1 | Tetro. | ection | | H | ۸ĥ | 14444 | | 54 1 Tim | ENVLA M | mile | 12 | Alag | moth | 7 | | ١ | Ш | 11/11/11/11 | | per Im | 10 may 15 m | VIII) | 1 2 | <u> 1,01</u> | 1117 113 | <u>-`</u> | | į | RD.A | Partials Facility (or General | itor) | t . | ſ | | U.A. EPA IOJIN | wi-la | , | į | | Š | ncity | /s Phone: | | | | | L | | | | | ġŀ | de Si | grature of Allemaia Facili | ty (or Generator) | | | | | | Month Da | y Year | | ş | | gradure of Atlematic Facility | 117.12.14.14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | da sa sara la francisca de | of and provides maken at | | • | | | 1 | | ġ, | . HA | VIVE CONTRACTOR | negament Method Codes (i.e., nodes for hazar
A. i. et al. 2 | 3. | er er it ich ben it sharryn | | 14 | | | | | 1 | | 11115 Y | 1176 | | | | | | | | | | | | Operator, Certification of receipt of Nazardous | | | 164 | | | Month Day | Your | | ľ | ***** | Typed Name | and la | /· | mare of the state | 16 ~ | and the same of th | ٠٠, | / I 2 5 | 109 | | ,, | Ot IT I | 8700-22 (Rev. 3-05) Pr | revious editions are objoiete. | | ESVENATED FAC | 17/17/27 | DESTINA | TION | | | | | -11-11 V | | 7 | , D | EDRANIED FAU | /16-15 T 1 T | r peo ima | | VIAIL UF NEW | omar) | | | | | | | | | | | | | ### Wayne Disposal, Inc. 49350 North I-94 Service Drive, Belleville, Michigan 48111 ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 **NEWARK, DE 19702** Receipt ID: 1180368 EQ Account #: 5247 Manifest / BOL: 004173235JJK Transporter: US BULK Date: 12/09/2009 Time In: 8:00 AM Time Out: 12:26 PM | Line | Description | | | | | Qty. Unit | | |-------|------------------|-------------|-------------|----------------|-------------|-------------|--| | | Generator | | | | | | | | 1 - A | L092016WDJ - Nev | River Stora | ge Depot- N | orthern Burn C | Ground Soil | 25.270 TONS | | | | VAR000012559 N | EW RIVER S | STORAGE D | ЕРОТ | | | | | | Gross: 83,380 | Tare: | 32,840 | Net: 50 |),540 | | | 0816000 7 to 9 egsq Fortix Recamonable ## CERTIFICATE OF DISPOSAL FACILITY NAME: FAX NUMBER: PHONE NUMBER: ADDRESS: 49350 N. I-94 Service Drive Belleville, Michigan 48111 Michigan Disposal Waste Treatment Plant (FPA 1.D. 4 MIN9972431) (Hayne Disposal, Inc. (Hayns # MIDM#809663) 1-800-592-5489 1-800-593-5329 Authorized Signature:, THE ENVIRONMENTAL QUALITY COMPANY 49350 N. 1-94 SERVICE DRIVE BELLEVILLE MICHIGAN 48111 The electronic reason of this document is the controlled rection. Each poor is responsible for easylving that any document deleg used is the current
version. 8/25/68 Receipt 03-01 1180368 Invoice: 40176541 This certificate is to verify the wastes specified on Manifest # 00417323555 have been properly disposed of in accordance with all local, state and federal regulations. COG 004173235JJK "Disposed of" means either: 1) Burial or 2) Processed as specified in 40 CFR et sea. invoice: 40177363 Receipt 03-01 1180399 Manifest 004173236JJK | LUM | 1 Panagin | on este (12-ptich) typewrite | (| 2, Page 1 of | 3 Emergen | cy Raspons | + Phoco | 4, Mandest | rackina t | NEWS . | . ONB No | |--|--|--|--
--|--|--|--|---|----------------------------|---|---| | 1) | PONE HAZAROOUS 1. Berosto
HASTE MANYEST VAR | 000 012 559 | ļ | 1 | _ | 24-930 | | 00. | 417 | '323 | 6 J | | <u>3. G</u> | eneratora Nome and Maring Address | | | | | | | han making addres | | | | | 11 | | e Depot C/O Alkan | it Techsyster | 735 | | | | ige Depot | | | | |]) | PO Box 1 Radford | | | 1 | | | | Rt. 1030 & | Rt. 70 | 13 | | | Gen | orator's Phone: 540 639-766
receptater 1 Company Nerve | B Attn: B. R. Blan | nkenship | | | <u> Դությու</u> | <u>VA VA</u> | 24084
U.S. EPAIDE | LITED IX | | - | | 11"" | US Bulk Transport | loc - | | | | | | PAD | 87.34 | 7 516 | | | 2.17 | areporter 2 Company Harris | TUE | | | | | | U.S. EPAID H | | | | | <u> </u> | | | | | | | | | | | | | | esignated Facility Harne and San Address (c) a Priorie; 800-592-5489 | Midagan Dispos
49350 N. I-94 S
Balleville, MI 48 | Service Orive | reatmer | nt Flant | | | US. EPAIDA
O
D-CIIM | ાપ્જુ દ | 90 6 | 33 | | 94. | 95.11.8. DOT Description (including if and Packing Group (if any)) | Propor Shipping Hame, Hezard C | Class, ID Number, | | | 10. Cortai | | 11. Total | 12. Uni | 13. | Waste Code | | HM | | | | | | No. | Type | Chiantry | HRAFEL | | | | 1 | , | ardous Waste So! | lid, NDS (lea | ad), | 0 | 01 | DT | ZS1 | P | £0008 | | | | e, PGIII | | | | | | | 40,000 | | | | | - | 7. | | | | \neg | | | | | | | | 1 | | | | | - 1 | | | | | | | |) — | | | | | | | ļ | | | | | | | [* | | | | 1 | | | | | | | | | ļ | | | | ł | | 1 | | | | |
 | <u> </u> | | | | 1 | | | · | | | | | | 14. | | | | | | ł | | | | | | | ected Handwig Institution's and Addition
1. LD92016Mぞ1 nort
ピタエ | them bum ground | | | | | | AN-TFORT | | | | | 15. 6 | edsi Handing Institutions and Addition 1. L D92016M-EDI mont PT ENERGATOR STOFFER ON 13 CERTIFIC and tool and indeed and any in | them burn ground ATON: Thereby declare that a mapped in proper condition | the contents of fits co
g for transport account | nsignment &
ing to applica | na iuliy and so
akin inimadio | cursially des | united about | by Do namer shir | vina name | zedam da | esified, packs | | 15. G
A
E
I | edel Handing Instructors and Addition 1. L092016MFC1 mont UP T SEMERATION STOFFERON'S CERTIFIC series and sub-edulyscentod, and any popular, 100189 that the contents of this control that he weeter minimization states | thern burn ground ATON: Thereby declare that is all mapach to proper conditions to the learning of learni | he contents of this co
o for transport account
one of the attached E
17(a) (d Lum allage q | nsignment k
ng lio applici
PAAdanovio
umsity gene | ra fully and so
side internation
adgress of Co | cursially dea
natend refle
one cu | iczbedabow
orai governi | by the proper abig
serial regulations. I | vina name | , and are disc
preson and t | era ilia Prista | | 15. G | edel Handing Instructors and Addition 1. LD92016AHEI mont LD92 EMERIATION SOFTERON'S CERTIFIC MATERIAL CONFIDENCIALS, and are in sporting, loonly that the contract of the confly that the water minimized as about of the start SOFTERON STATES AND STATES and SOFTERON STATES TO STATES THE SOFTERON SOFTERO | ATON: Thereby declare that a naturapacts in proper confideration to the learned technical declare that a natural technical declare that a natural technical declare the technical technical and the | the contents of this co
of the transport account
inns of the attached E
17(a) (f I am a large of
SYSTEMS II | nsignment a
inglic applic
PAAdmonic
ventry gene
NC 590 | ra fully and so
side internation
adgress of Co | cursially deal
mailend notic
muscli
(1 am a tunal | icrbedabon
oral governi
it quality go | by the proper ship
period negulations. I
necessor) is figure. | vina name | zedam da | ara iha Primi | | 15. G
E
I
General | edel Handing Instructors and Addition 1. L092016MED mont L0 C SEMERATION STOFFERON'S CERTIFIC semenation of biological and and and porting, locally that the contents of this confly that the weets minimized an advan- and story that the weets minimized and are story that the weets minimized and are story that the weets minimized and are story that the weets minimized and and story that the weets minimized and and story that the weets minimized are | ATON: The oby dedare that a subject to proper confect consumerate confect to the last most bonder of the last confect in 40 CFR 2627 ALLIANT TEXTS TRANSPORTATI | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | onigomenia
ng lo applica
PAAdrovic
Umbry gene
NC Sgo | no fully and so
side insertation
obgress of (b) (if
silars | cursiely der
reland rela
meck
is ama smal | urbesebon
oral governi
Republiky go | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are disc
preson and t | era ilia Prista | | 15. G
6. 11
General
16. 44 | edel Handling Instructors and Addition 1. LD92016HH21 north UP C EMERIATOR SOFTEROR'S CERTIFIC softed and labeled placement, and are in specime, losefly that the contexts of this speciment losefly that the contexts of this speciment losefly that the contexts of this speciment losefly that the contexts of the context of the speciment losefly that the context of co | ATON: Thereby declare that a naturapacts in proper confideration to the learned technical declare that a natural technical declare that a natural technical declare the technical technical and the | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | nsignment a
inglic applic
PAAdmonic
ventry gene
NC 590 | no fully and so
side insertation
obgress of (b) (if
silars | cursially deal
mailend notic
muscli
(1 am a tunal | gribedsidan
oral governi
il quantity go
oral definition | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are disc
preson and t | ara iha Primi | | 15. G
E
1:
Genera
B ³
16. th | edel Handing Instructors and Addition 1. L092016MED mont L0 C SEMERATION STOFFERON'S CERTIFIC semenation of biological and and and porting, locally that the contents of this confly that the weets minimized an advan- and story that the weets minimized and are story that the weets minimized and are story that the weets minimized and are story that the weets minimized and and story that the weets minimized and and story that the weets minimized are | them burn ground ATON: thereby declare that it all mappeds to proper confect consignment conform to the formed kinning of the CFR 2027 ATLIANT TECH! TRANSPORTATION DUS. | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | onigomenia
ng lo applica
PAAdrovic
Umbry gene
NC Sgo | no fully and so
side insertation
obgress of (b) (if
silars | constelly dear
natend rests
on sect
1 am a smal | gribedsidan
oral governi
il quantity go
oral definition | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are class
pyrated and I
like | em the Primi | | 15. G
E
I:
General
I6. va
Transp
12. 7/a | edel Handling Instructions and Addition 1. L D92016MED In north UP T ENERATOR'S FOFFEROR'S CERTIFIC and and inded photographs, and are in sporting, locating that the contains of this start's Operior's Printed Proper Marine Y: H, R, BLANKENSHIP enational Shipmoth Importer signature (for exports only). | thern burn ground ADOS: thereby declare that it as mapach in proper condition consistent and the second to declare de | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | onigomenia
ng lo applica
PAAdrovic
Umbry gene
NC Sgo | re suty and so sittle internation obgreent of Co ration or (b) (di siture in the control of | constelly deed noticed in the consteller of | probession
oral governi
diquality go
oral probability
oral probability
oral probability
oral probability | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are class
preson and t
Mod | em the Prime Day 2 O 9 | | 15. G
ferens
(5, the
Transp
12. Tra | edel Handing Instructors and Addison 1. L092016MED mont L02 EMERIATION STOFFERON'S CERTIFIC EMERIATION STOFFERON'S CERTIFIC EMERIATION STOFFERON'S CERTIFIC EMPORISE, 100789 that the contents of this confly that the wester minimization states for Stofferon's Printed Typed Name Y c H , R , BLANKENSHIP emerican Stofferon's Certification porter structure (for exponts only) enter T Peter Typed Name A T Peter Typed Name A T Peter Typed Name | them burn ground ATON: thereby declare that it all mappeds to proper confect consignment conform to the formed kinning of the CFR 2027 ATLIANT TECH! TRANSPORTATION DUS. | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | osignment in inglic application of the property general technique of the property general from U. | re sulty and so still y remains odgreent of Co ration or (b) (if all remains of the control t | constelly dear
natend rests
on sect
1 am a smal | probession
oral governi
diquality go
oral probability
oral probability
oral probability
oral probability | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are dae
printed and t
life
11 | an the Primi | | 15. G
ferens
(5, the
Transp
12. Tra | edel Handing Instructions and Addition 1. LD92016M-251 nort LD T ENERATOR STOFFERON'S CERRIFIC actual and labeled placed of all proposes, 1 certify that the orbital of this certify that the waste minimization states start significant in the state of the states | thern burn ground ADOS: thereby declare that it as mapach in proper condition consistent and the second to declare de | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | onsignment is niglic applies a | re sulty and so still y remains odgreent of Co ration or (b) (if all remains of the control t | constelly deed noticed in the consteller of | probession
oral governi
diquality go
oral probability
oral probability
oral probability
oral probability | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are class
preson and t
Mod | an the Primi | | 15. G
forest
E
General
16. va
Transp
12. Transp | edel Handing Instructors and Addition 1. LD92016AHEI mont LD92 EMERIATION STOFFERON'S CERTIFIC sorted and labeled/plocated, and are in sporting 1 confty that the contact of this sporting 1 confty that the contact of this start stofferon's Printed Typed Name Y 6 H. R. BLANKENSHIP protect starture (for exposts only). The printed for exposts only. e | thern burn ground ADOS: thereby declare that it as mapach in proper condition consistent and the second to declare de | he contents of this co
o for transport accord
ome of the attached E
17(a) (d for a longe of
SYSTEMS II
ION ANALY; | osignment in inglic application of the property general technique of the property
general from U. | re sulty and so still y remains odgreent of Co ration or (b) (if all remains of the control t | constelly deed noticed in the consteller of | probession
oral governi
diquality go
oral probability
oral probability
oral probability
oral probability | by the proper ship
period negulations. I
necessor) is figure. | vina name | , and are dae
printed and t
life
11 | an the Primi | | 15. G fr E I I General I I I I I I I I I I I I I I I I I I I | acted Handling Instructions and Addition 1. L092016MH21 mont L02 SEMERATION STOFFERON'S CERTIFIC services and and sub-edulphorated, and and popular, 100789 that the contents of this confly that the wester minimization states for the R. BLANKENSHIP content states of the responsion of the content states of the responsion of the content states of the responsion of the content of the responsion of the content of the content of the responsion of the content c | ATON: thereby declare that is an appear to proper condition to the largest that the proper condition to the largest thereford in 40 CFR 2522 ATLICANT TECHNICAL TRANSPORTATION TO U.S. | the contents of this co
of for transport account
one of the attached E
17(a) (filture shape
SYSTEMS II
ION ANALY; | osignment in inglic application of the property general technique of the property general from U. | re buty and so the harmonic side harmonic side harmonic side harmonic side side harmonic harmon | constelly deed noticed in the consteller of | probession
oral governi
diquality go
oral probability
oral probability
oral probability
oral probability | by the proper ship
period negulations. I
necessor) is figure. | ping name
if export shi | , and are date present and 1 Hotel State | an the Primi | | 15. G
RE
11:
General
16. Val.
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Tra | edel Handling Instructors and Addition 1. LD92016AHEN mont LD92 EMERIATION STOFFERON'S CERTIFIC MARKET STOFFERON'S | ATOR: thereby declare that it and respects to proper condition of the cond | the contents of this contents of this could be attached a fight of the attache | onigramma in glo application of the property o | re baly and so the harmonic state in har | corrielly designation of the constraint c | ichesione
de govern
de govern
de govern
gus: | thy the proper also writer regulations. I have been been been been been been been be | ping name
if export shi | , and are date present and 1 Hotel State | en the Prime Day 2 to 9 2 to 9 2 to 00 77 Cay | | 15. G
RE
11:
General
16. Val.
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Tra | edel Handling Instructors and Addition 1. LD92016AHEN mont LD92 EMERIATION STOFFERON'S CERTIFIC MARKET STOFFERON'S | ATOR: thereby declare that it and respects to proper condition of the cond | the contents of this contents of this could be attached a fight of the attache | onigramma in glo application of the property o | re baly and so the harmonic state in har | corrielly designation of the constraint c | ichesione
de govern
de govern
de govern
gus: | by the proper skip wards regulations. I wards regulations. Lange Partial Regulation (A. Pere | ping name
i export shi | , and are date present and 1 Hotel State | en the Prime Day 2 to 9 2 to 9 2 to 00 77 Cay | | 15. G
RE
11:
General
16.
Val.
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Transp
Tra | acted Handling Instructions and Addition 1. L092016MH21 mont L02 SEMERATION STOFFERON'S CERTIFIC services and and sub-edulphorated, and and popular, 100789 that the contents of this confly that the wester minimization states for the R. BLANKENSHIP content states of the responsion of the content states of the responsion of the content states of the responsion of the content of the responsion of the content of the content of the responsion of the content c | ATOR: thereby declare that it and respects to proper condition of the cond | the contents of this contents of this could be attached a fight of the attache | onigramma in glo application of the property o | re baly and so the harmonic state in har | corrielly designation of the constraint c | ichesione
de govern
de govern
de govern
gus: | thy the proper also writer regulations. I have been been been been been been been be | ping name
i export shi | , and are date present and 1 Hotel State | en the Prime Day 2 to 9 2 to 9 2 to 00 77 Cay | | 15. Gorers Elitaria General 17. Transp Transp 18. Dis 18. Dis 18. Dis 155. AV | acidel Handling Instructions and Addition 1. LD92016MH21 month LD92016MH21 month LD92 SEMERIATION STOFFERON'S CERTIFIC services and indeed, incoming and are in properties, 10078y that the contents of this confly that the weets minimized an address and stofferon's Printed Typed Name Y t H. R. BLANKENSHIP Improve Agreement of Receipt of in content Typical Typical Name ATT Printed Typical Name Company Company Incompany Indication Space Company Compan | ATOR: thereby declare that it and respects to proper condition of the cond | the contents of this contents of this could be attached a fight of the attache | onigramma in glo application of the property o | re baly and so the harmonic state in har | corrielly designation of the constraint c | ichesione
de govern
de govern
de govern
gus: | by the proper skip wards regulations. I wards regulations. Lange Partial Regulation (A. Pore | ping name
i export shi | , and are date present and 1 Hotel State | en the Prime Day 2 to 9 2 to 9 2 to 00 77 Cay | | 15. General Birth Community of the August 17. Transport 18. Dis 18a. Di Chi All Sanking 15b. August 15 | edel Handling Instructors and Addition 1. LD92016AHEN mont LD92 EMERIATION STOFFERON'S CERTIFIC MARKET STOFFERON'S | ATON: thereby declare that it all mappeds in proper condition to CFR 2622 ATLIANT TECHS. TRANSPORTATION OF BUSINESS BUSINE | the contents of this contents of this could be attached a fight of the attache | onigramma in glo application of the property o | re baly and so the harmonic state in har | corrielly designation of the constraint c | ichesione
de govern
de govern
de govern
gus: | by the proper skip wards regulations. I wards regulations. Lange Partial Regulation (A. Pore | ping name
i export shi | , and are class principle and limited | en the Prime Day 2 to 9 2 to 9 2 to 00 77 Cay | | 15. G T General 17. Transp Transp 18. Dis Ch 155. JJ Facility Total Facility Total | acidal Handling Instructions and Addition 1. LD92016M-R51 nort LD92 SEMERATOR STOFFEROR'S CERRIFIC service and Indeed place of Cerrific propriate, 100018 you've or or or or propriate, 100018 you've or or propriate, 100018 you've or THE BLANKENSHIP propriate of Proposition only propriate Proposition on the control APTONIA Service of Cerrific Office Ser | them burn ground ATON: theoby declare that is a paragraph to proper confect to consignment conform to the former than 10 CFR 2027 ALLIANT TECH! TRANSPORTATION OF BUS. ABOVER COUNTY TO DUS. | the contents of this contents of this contents of this country of the attached Entitle the attached ENTING (I have a large of the attached ENTING ANALY). | originaria a rigita applica polica po | in fully and so so the full part of | Constelly dealers and and articles and and articles articles and articles articles are articles and articles are articles and articles are are articles articles are are articles are are articles are are articles are articles are articles are articles are articles are articles are are articles are are articles are articles are are articles are are articles are articles are | ichesione
de govern
de govern
de govern
gus: | by the proper skip wards regulations. I wards regulations. Lange Partial Regulation (A. Pore | ping name
i export shi | , and are class principle and limited | an Day 2 0 9 2 0 9 2 Cay 2 Cay | | 15. G T General Tomas Temas | edel Handling Instructors and Addition 1. LD92016HHS1 north LD92 EMERIATOR SOFTEROR'S CERTIFIC softed and labeled/plocanded, and are in sporting 100169 that the contacts of this soft of the wester minimized states but stoperor's Printed Types Name V of H. R. BLANKENSHIP prosporal Stipmonth Importer Sporting (for exports only) mapping Sporting (for exports only) content of Printed Types Name | them burn ground ATON: theoby declare that is a paragraph to proper confect to consignment conform to the former than 10 CFR 2027 ALLIANT TECH! TRANSPORTATION OF BUS. ABOVER COUNTY TO DUS. | the contents of this contents of this contents of this country of the attached Entitle the attached ENTING (I have a large of the attached ENTING ANALY). | originaria a rigita applica polica po | in fully and so so the full part of | Constelly dealers and and articles and and articles articles and articles articles are articles and articles are articles and articles are are articles articles are are articles are are articles are are articles are articles are articles are articles are articles are articles are are articles are are articles are articles are are articles are are articles are articles are | ichesione
de govern
de govern
de govern
gus: | by the proper skip wards regulations. I wards regulations. Lange Partial Regulation (A. Pore | ping name
i export shi | , and are class principle and limited | an Day 2 0 9 2 0 9 2 Cay 2 Cay | | 15. G T General Tomas Temas | acidal Handling Instructions and Addition 1. LD92016M-R51 nort LD92016M-R51 nort LD92016M-R51 nort LD92016M-R51 nort LD92016M-R51 nort LD92016M-R51 nort LD92016M-R51 SCRIPPIC Server Scrippid State V 1 H. R. BLANKENSHIP Personal Stephenic Disposition of Pictodiffyped Name LD92016M-R51 Stephenic Disposition of Receipt of Name LD92016M-R51 Stephenic Disposition of Receipt of Name Company Scrippid Name Company Scrippid State State Scrippid Scr | them burn ground ATON: theoby declare that is a paragraph to proper confect to consignment conform to the former than 10 CFR 2027 ALLIANT TECH! TRANSPORTATION OF BUS. ABOVER COUNTY TO DUS. | the contents of this contents of this contents of this country of the attached Entitle the attached ENTING (I have a large of the attached ENTING ANALY). | originaria a rigita applica polica po | in fully and so so the full part of | Constelly dealers and and articles and and articles articles and articles articles are articles and articles are articles and articles are are articles articles are are articles are are articles are are articles are articles are articles are articles are articles are articles are are articles are are articles are articles are are articles are are articles are articles are | ichesione
de govern
de govern
de govern
gus: | by the proper skip wards regulations. I wards regulations. Lange Partial Regulation (A. Pore | ping name
i export shi | , and are class principle and limited | an Day 2 0 9 2 0 9 2 Cay 2
Cay | # Wayne Disposal, Inc. 49350 North i-94 Service Drive, Belleville, Michigan 48111 #### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Tare: 33,040 Gross: 67,320 Receipt ID: 1180399 EQ Account #: 5247 Manifest / BOL: 004173236JJK Transporter: US BULK Date: 12/11/2009 Time In: 7:23 AM Time Out: 8:58 AM Line Description Generator 1 - A L092016WDI - New River Storage Depot- Northern Burn Ground Soil VAR000012559 NEW RIVER STORAGE DEPOT Net: 34,280 FAX NUMBER: Authorized Signature: PHONE NUMBER: ## CERTIFICATE OF DISPOSAL ADDRESS: FACILITY NAME: (Picuse chrek une) THE ENVIRONMENTAL QUALITY COMPANY 49350 N. 1-94 SERV CE DRIVE BELLEVILLE MICHIGAN 48111 The electronic version of this discurrent is the controlled version. Each user is responsible for risung that any document being used is the content version 8/25/08 COQ 00411353917K Receipt 03-01 1180399 Invoice: 40177363 Invoice: 40176541 Receipt 03-01 1180366 Manifest 004173237JJK | P | ease | print or type. (Form design | sed for the au | AD- /69 -5-33 c | | 共比 | {E | | | | | | | |--|----------|--|-------------------|------------------------|--|--|--|--|-------------------------|-------------|----------------|--|--| | $-I_1$ | T W | MELINOLIKAZARDO(IS 1 | r cauciant in | MUDDO | XEWITER!) | • | | | | | FormAnna | wed Duc | No. 2050-000 | | - [[| | WASTE MANIFEST | VAR 8 | 00 012 559 | | 1 | L Emergency Resp.
800-424-93 | onee Phone | A. Maria | | | | | | | 1 | oversors Name and Uniting | Address | | | | merator's Sale Actor | 00
111 / 16 / 16 / 16 / 16 / 16 / 16 / 16 | U | <u> 141</u> | 732 | 37 | JJK | | - [] | 1 | New River S
PO Box 1 Ra | rorage C | epot C/O AJ | liani Techsy | stems | New Ri | ver Sta | rage Depoi | (kess) | | | | | Ш | Gen | rator's Phone: 540 83 | OLTARO | 8 24743
Marti 8 - | | _ | im 8.8 | south o | Rt. 1030 | ዴዋኑ : | 7/17 | | | | - | 6. Tr | Insporter 1 Company Name | 0.7000 , | wur m. R. E | Rankenship | | Dublin | . VA VA | 24084 | | 47 | | | | Ш | | US Bulk Tran | sport | ne. | | | | | U.S. GW | | | | | | Ш | J. In | insporter 2 Coupany Name | <u> </u> | ∠ THE | - | | | | - PAD | 987 34 | 7 615 | | | | П | 0.5 | | | - Lail: | | | | _ | U.S. EPAK | Number | | | | | H | N. COST | Poroted Facility Name and Si | to Address | energy Ca. | | | | | U.S. EPA E | | | | { | | 1{{ | | | 71
21 | പ ടുമെ ല ാദ | posal Waste
 Service Dri | Treatment F | lan! | | O.S. LOW A. | | | | | | III | Facility | 4 Phones 800-592-50 | 488 F | elieville, Mi | AG444 | ive . | | | | 0 4 | (C) 0 | 906 | 33 1 | | | Ga. | Sh. U.S. DOT Describer of | white Dec | Stimbs Hans Ha | 40177 | | | | MIDA | | F 6 31 | | , | | Ш | H | and a month of a month | | | | | 10. Corès | nec) | SS. Yotal | 12. Uni | | | | | œ | × | RQ, NA3077 | Hezard | ous Waste 5 | alid Mos # | | No. | Тура | Quantity | WLWAL | · 13 | . Hante Co | ‱ j | | ENERATOR | l | 9, PGIII | | | | eau j, | 001 | DT | - | 4 | D008 | | | | 曑 | -/ | | | | | | 1 | 1. | 66 | ` ` | | | 1 | | 떙 | - [| • | | | | | | - | · | | <u> </u> | _ | 11 | | H | | | | | | | | [] | | | | <u> </u> | 1 1 | | 11 | 3, | | | | | | | 1 | j | · . | | i —— | | | 11 | 1 | | | | | | 1 1 | | | | | | | | 11 | 나. | | | _ | | | l # | Ì | Ì | ŀ | | | | | Ш | ľ | | | | | | | | | | | | | | 11 | 1 | | | | | | 1 1 | - [| - 1 | - 1 | J | | | | Ιh | Soci | Handing Instructions and A | | | · - | | | 1 | 1 | - 1 | | | | | \prod | | 1. L002018) (D) | morthem | bum arcuni | d soli ERGA | 174 | | | | | | | | |]] | | 1092016 | WDI | | - DOIL DITCH | 123 | CEC) (A) | | | | | | 1 | | <u> </u> | Ana | | | | | | CES: 300 | ACK #K | N-TFORT- | 3839- | 17907 | | ł | | ** | TRACY. | RATOR SOFTEROR'S CER
is and labelled place role and
lay I couldly hat the contents of | (TIFICATION: | hereby declars that | the contents of this p | onsignment are fully a | no accurately descri | todatom b | the transmitter | L | | | | | | Espa | chand babelous place and a contents of the wants of the wants making contents of the the wants making according to | d Gas concions | ent contons to the A | भागाः वसाध्यात् केल्याः
भागाः वसाध्यान्यः विकास | ding to applicable this
EPA Action victoria | habonal accident | CVentren | prisading services in a | HOOK INDO | PER PARE CLASS | vices, packa;
11 One Prima |)ed. | | Gwn | (Plan's | Otheror's Printed Typed Noon | ALT | TAKE TEVE | 2/(4) (6) hri alarya (| draugit devotage) ot | (b) (diem z gmalo) | panilly gener | ≠orj.Jaytrus. | | | | . | | B | : H. | R.BLANKENSHI | P TRA | NSPORTATI | ON SNATAC | NC Scretze | | 77 | 7 | | More | Day | Your | | 1 ~ . | -0. | ne-orekusom L | mootbus. | | | | TUCH F | UNI | | |]1 2 | 210 91 | 0 9 | | Train | co/w | signature (for exports only): | ., | | LJe | eport from U.S. | Portor | **// | | | | | | | Trans | Unico: | his Adjournment of Receiptions | April Median leis | | | | - December | ls: | | | | | | | ****** | 7 | 1 | 2 | 514 | 7 | Same of the last o | | J | | | Lines. | | | | Traves | oruż z | Privaci Typed Name | | D/YCD | <u></u> | | | 72 | ر رست | | 172 | L 201 | 84 | | | | | | | | Springe | | | | | Month | Dry | Year | | 12 Dis | | | | | | | | | | | _L | 1 | 1 | | Påg. De | erren | ncy Indication Space | Quantity | | □ _{₹ype} | | | | | | | | | | d | · | رمد علم س | | - 126 | rrs:) pe | LI CL | Facility | | Partid Rejection | | | Full Rejection | 47 | | 16.0 | errale | 1 = 5 to Se
Facility (or Governor) | <u>ራጥ ४</u> | 214 Pe | 17:00 | Fey+ Gin | CC/P. 10/ | , 12/9 | 1/09 | ner | | | - 1 | | •• | | | | • | | | | ď. | S. EPAID Humbs | , - | 100 | | | | actiny | Phon | & : | | | | | | | | | | • | 1 | | 8c 3g | u Ln | of Alternativ Facility (or Gener | alor) | | | | | | | | | | { | | | | | | | | | | | | | s contr | Day | Year | | S. Har | mous | Warin Report Marragement N | Actinos Costes (| in , codes for hazard | OLIS MINISTE PRESTRATA | disposal, and recycles | famelichi z | | | | <u> </u> | | | | | | hien | 3. | | | 1. | <u></u> | | 14. | | | | | |). Desp | | Facility Olimec or Onscala- | | nein) affin | | | _ (| | 1 | | | | 1 | | 7 | F A | acity Owner or Operator: C | 11111 | CT NAZZINSOUS (II) | distant consist in it | | noted in the 183 | <71 | | | | | | | 1 | | | 11//// | Y | . / | July / | 4 | | | | Harry | NA X | 5 | | om (i) | W 22 | (Play, Cost Pravious east | OLS BY OUT | dele. | (- | 1 1 1 | | | | | 1121 | [[[| 71 | | | | J | 1 | | <u>_</u> | DESIGNAT | ED FACILIT | 410 DE | STINATIO | NSTAT | E (IF R | EQUIRE | (D) | | | | | | | | • | | | | | - | | | # Wayne Disposal, Inc. 49350 North I-94 Service Drive, Belleville, Michigan 48111 ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Receipt ID: 1180366 EQ Account #: 5247 Manifest / BOL: 004173237JJK Transporter: US BULK Date: 12/09/2009 Time In: 11:29 AM Time Out: 12:30 PM Line Description Generator Qty. Unit 1 - A £092016WDi - New River Storage Depot- Northern Burn Ground Soil 20.710 TONS VAR000012559 NEW RIVER STORAGE DEPOT Gross: 75,600 Tare: 34,180 Net: 41,420 41,420 THE ENVIRONMENTAL QUALITY COMPANY 49350 N.1-94 SERVICE DRIVE BELLEVILLE MICHIGAN 48111 FORM REC-ENDITABEL ## CERTIFICATE OF DISPOSAL Belleville, Michigan 48111 49350 N. I-94 Service Drive (Picase check one) ADDRESS: FACILITY NAME: Michigan Disposal Waste Treatment Plant (EPAID. # MIX00714831) Wayne Disposal, Inc.
FAX NUMBER: 1-800-593-5329 PHONE NUMBER: 1-800-592-5489 Authorized Signature: 80/22/08 The electratic version of the document is the coefficient version. Each user is responsible for easing that any document being used is the curran version, Page 2 of 7 This certificate is to verify the wastes specified on Manifest #_ have been properly disposed of in accordance with all local, state and federal regulations. "Disposed of" means either: 1) Burial or 2) Processed as specified in 40 CFR et sea. Invoice: 40177647 Receipt 03-01 1180391 Capitol Environmental Va Manifest 004173238JJK v) 327-634. | | | 49 | | | | | | | | | |------------|-------|--|----------------------|-----------|---------------------|--------------|--------------------|--------------------|---------------------------------------|-----------------| | P | eas | to crint or type. (Form designed for use on altie (12-plach) type writer.) | | | | | | For | m Approved. D | MB No. 2050-003 | | | ŧĺ | | 2. Page 1 of | 3. Erre | rponcy Response | Phone | 4. Menimust | Tracking I | ALTRONY | | | 1 | IŁ | WASTE WAREFEST VAR 000 012 559 | 1 | 800 | -424-9300 |) | 1 00 | 41/ | '3238 | } JJK | | 1 | J F | 5. Generator's Massia and Mailing Address | | ଦେଖନ | or's Sim Address | (il esteron) | han masing addre | tt) | | | | Ī | | New River Storage Depot C/O Alliant Techsyster | ስ 5 | | New Rive | r Stora | ge Depot | | | | | 1 | 1 | PO Box 1 Radford, Va 24143 | | | บิ.ช์ กาเ รด | ruin of l | Rt. 1030 & | Rt. 74 | 7 | | | 1 | Ŀ | Gereald's Prone: 540 839-7869 Altr.: H. R. Ellankenship | - 1 | | Dublin, 1 | VA VA | 24084 | | | | | Ł |] [6 | R. Transporter I Company Harne | | | | | U.S. EPAID? | bithber | *** | | | L | | US Bulk Transport DC . | | | | | I PAD 9 | 97 347 | 7 515 | | | П | 7 | . Transporter 2 Company Karno | , | | | | U.S. EPAIDI | lumber | | | | П | 1 | | | | | | 1 | | | | | П | Ū | Designated Facility Name and Sta Address Change | | | *** | | U.S. EPÁID N | unthe | ****** | | | П | 1 | Michigan Disposal Waste Tr | eatmen | t Piar | nt | | | _ | | _ | | 11 | 1 | 49350 N. I-94 Service Orive | | | | | miD | છપર્જ _ે | 090 63 | ⇒ | | ı | F | 300-582-5489 Belleville, MI 48111 | | | | | I MID O | 30-724 | 634 | | | П | 7 | 90 U.S. DOT Description (including Proper Shipping Harne, Huzzur Class, ID Humber, | | | 10. Contain | | JI, Total | I2 Unit | | | | H | | gue and Pacting Group (d wny)) | | - 1 | Hò. | Type | Quantity | WL W. | 13, 172 | te Codes | | Ľ | Г | XI. RO, NA3077, Hazardous Waste Solid, NOS (tea | ed'i | \neg | 0 0 1 | DT | | P | DODS | | | Ö | | 9, PGNI |), | - 1 | V U 1 | 0 | 48,000 | , , | 2000 | | | 3 | | 9,1 011) | | | ł | | 10,000 | | | i 1 | | ENERATOR | Γ | 7. | | | | | | | | | | 9 | l | | | | | | | | | | | ı | | | | | | | | | | i I | | 1 | _ | 3, | | | ~ | | | | | | | 1 | | | | l | | | | | | | | ı | | | | - 1 | - (| | 1 | | ! | 1 1 | | I | Г | €. | | | | | | | | | | | l | | | 1 | | | | - 1 | | | | 1 | | | | | ľ | - 1 | | - 1 | - 1 | - 1 1 | | ١ | 14. | . Special Handing Instructions and Additional Information | | | | | | | | | | | | 1. L092016MBt northern burn ground soil ERG# 1 | 71 | | | | | | | | | П | | ₹ ₩ | | | CE31 JU | AOR HO | 75OST-46 | -3638- | 17807 | 1 | | | | | | | | | | | | | | 11 | 15, | GENERATOR'S/OFFEROR'S CERTIFICATION: I haveby declare that the conferts of this co | nsighme <i>n</i> Lah |) Nily an | d account bely seed | apor spans | by the proper ship | orginaria, | and are desiring | i, peckagod, | | | | marked and labeled placeded, and are in all respects its proper consisten for transport accord.
Exposor, I certify that the contents of this consignment conform to the jettes of the intented El | PA Actoom/ed | icmedia | (Consent | | | exportship | tional bos insore | et Primary | | П | | comity that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large or | atridly genera | ix) or (| (Cree a mails) | dnavgy) ይጀታ | erator) is true. | | _ | | | П | Cat | water SChool's Philad Types Name ALLIAANT TECHSYSTEMS 1 | NC. 5011 | ra. | 10 11 | | 1/- | | Ligath | Cay Year | | IJ | J | BY: H.R. BLANKENSHIP, TRANSPORTATION ANALYS | क | | 4 S/2 | edu | 1861 | | 1 7 | 0 9 0 9 | | 딤 | 16.1 | International Shipments | on tem U.S | | Port of or ity | ect | _/// | | | | | 킈 | | nuporites signature (for exports only): | | | Data leaving | | 0 | | | | | ij | | Transporter Acknowledgment of Receipt of Materials | | | | | | • | | | | KANSPORTER | (m) | sporter ! PrisodTypetFlorie | Signat | 716
 | ca H | 1 | There | | Month | Day Year | | Ĭ. | | ERIC HARTMAN | i | | Ca H | cun | ecus | 2-4 | 1/2 (| 09 09 | | ξl | iran. | sporter 2 Printed Typed Name | Slynat | urė. | | | | | Honth | Bak Aon | | | | | | | | | | | | | | ı | | Descripting | | | | | | | | | | ı | l Sr. | Discrepancy Indication Space | | | Residue | | Partial Reject | óon | T _F | d Rejection | | | , | | | ٠, | 12.1 | | | Λ. | L | | |] | Ĺ, | houses to sect 8+14 Decition fut a | j cu | 112 | test Rationaria | Hoor | maja i | Poer | | [| | 3 | EA. | Aternal Facility (or Generalty) | | | | | U.S. EPAID Hut | nòer | | | | | | | | | | | _ | | | 1 | | ١ | ack | rlys Phone: | | | | | | | | } | | | oc : | Signature of Atlantate Facility (or Generator) | | | | | | | Monita | Day Year | | ١Ļ | | | | | · | | | | | | | | | lazardous Waste Report Management Method Codes (La., codes for inazardous was la treatment | | d tecycli | uð ekepta) | | | | | | | 4 | • | 1.137 2 | 3. | _ | | | 4. | | | | | L | _ | nisc | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | esignated Facility Owner or Operator. Organization of receipt of historistics materials covered by | | | noted in Roma 1 | 1/7 | L | | | | | P | núč | MACCOLLAND IN LINE | Sam | 1/1/ | 1 0 | 11 | 1/ | | . 72 | FI Yea | | 1 | | William Kotto | | 11 | <u> </u> | 10-1 | 0 | | 10 | (1 07 | | ۸F | OHT) | 8760-22 (Rev. 3-05). Previous editions are obsolete. | DES | GNA | TED FACU | ilry to | DESTINAT | IUN & | TATE ME D | FOUREN | # Wayne Disposal, Inc. 49350 North I-94 Service Drive, Belleville, Michigan 48111 #### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Gross: 79,240 Tare: 31,480 Receipt ID: 1180391 EQ Account #: 5247 Manifest / BOL: 004173238JJK Transporter: US BULK Date: 12/11/2009 Time In: 6:51 AM Time Out: 8:36 AM Line Description Generator 1 - A L092016WDI - New River Storage Depot- Northern Burn Ground Soil VAR000012559 NEW RIVER STORAGE DEPOT Net: 47,760 FAX NUMBER: 1-800-593-5329 1-800-592-5489 form#REC-PA-013-851 ## CERTIFICATE OF DISPOSAL PHONE NUMBER ADDRESS: (Please theck one) 49350 N. I-94 Service Drive Belleville, Michigan 48111 FACILITY NAME: ☐ Michigan Disposal Waste Treatment Plant она тр. т михиотънки (HIN 1D & MIDDASONOALS) 825/08 The abstrait version of this document is the controlled version. Each user is responsible for ensuring that any document being used is the current version. COG 0041333871K Authorized Signature: Receipt 03-01 1180391 Invoice: 40177647 This certificate is to verify the wastes specified on Manifest # 004/73238 SX have been properly disposed of in accordance with all local, state and federal regulations. "Disposed of" means either; 1) Burial or 2) Processed as specified in 40 CFR et sea. Invoice: 40177363 Receipt 03-01 1180408 Manifest 004173239JJK | Dinesa | _i_bachun (Enmider) | and former on alita | 112 mints knowniters | //> | | | | | For | n Aporoved. O | MB No. 2050-0 | |------------------|---|--|---|----------------------|------------------------------|---|-----------------|-----------------------|-------------|-------------------|---------------------------------------| | | print or type. (Form desi
NIFORM HAZARDOUS | F. Generator ID Hum | fir-brank tiberanent | 2. Page Lo | 3. Emergency | (esponso) | hone | C Married | Tracking K | (MACAN | | | | WASTE WARIFEST | VAR 000 I | 112 559 | 1 | 800-424 | | | _ ~ ~ | <u>41 /</u> | 3239 | JJK | | 5, | Senorator's Name and Hail | | | | | | | us intergration | 55) | | | | H | | - , | d C/O Alliani Techsy | steme | Mak | HIVEF | Stora | ge Depat | 53 TA | 7 | | | Ш | | Radiord, Va 2 | | | | | | ?t. 1030 & | ME 74 | f | | | Ģ | eremita's Phone: 540 | 839-7869 AH | r: H. R. Blankenship | | <u> </u> | blin, ۷ | A VA | US EPAID | keriber | | | | b. | Transporter Company Na | ransport I ry | (| | | | | | 997 347 | 515 | | | - | Transporter 2 Company Na | | - 000 | , | | | <u> </u> | U.S. EPAID | - | | | | " | | | . • | • | | | | 1 | | | | | 5. | Designated Facility Name a | ri Sie Address | AVAIT DISPOSA | reov | 7 | | | U.S. EPA (0.) | tumber | | | | Ш | | 100 | Higan Disposal Wool | e fredirie | rit Flant | | | | de l | 11.1.2 | 4 | | Ш | | | 150 N. I-94 Service C | rive | | | | () | 748 0 | 9063 | / | | F3 | 100-59 (Style Phone): 500-59 | | leville, Mi 48111 | · | | | | MID9 | T | 035" | | | 92 | A | | ipping Kerpe, Hazard Class, ID Nur | iber, | | 0, Containe
lo. | (2
(1)250 | iji, Tobi
Quantity | (2.Unit | 13.7% | ota Codes | | 1 12 | | | - 166-3-0-6-1-1-100 | 11 | <u></u> | ~ + | DT : | | Р | 0008 | | | 쯍 | 1 | U//, Hazardol | ıs Waste Bolid, NÖS | issol. | 0.4 | 0 1 | ٠,٠ | 46,000 | | 10000 | | | 3 | 8, PGHI | | | | | 1 | | | | <u> </u> | | | GENERATOR | 2. | | | | | | | | | | [| | Ü | 1 | | | | | | | | 1 | | | | IL | | | | | | | | | | | | | Ш | 3. | | | | l | | | | | | | | Ш | } | | | | | | | | i I | | 1 | | Ⅱ | 4. | | · · · · · · · · · · · · · · · · · · · | |
 | | | | | | | | Ш | ľ | | | | | | | | | | | | | | | | | | 1. | | | | | | | 10 | Special Harking Instruction | is and Additional Inform | a≛on | | | | | | | | | | | 1.7397015 | Mei northem | burn ground soil ER | GP 171 | O. | | 400 | AN-TFOR | r 2420 | 47007 | | | | L0 9 20 | IONDI | | | U | :31 JU | OH+ ICO. | ANI-TON | 1-3038 | +119W1 | | | 15 | | R'S CERTENCATION: | Chereby declare that the contents o | this considerment | ars fully end eccu | rately stocks | rbed above | by the proper sh | ipping same | . and are charge | ed, padraged. | | " | marked and labeled from | miadi sandigani in sili mata | rate in emote condition for intrasperi | according to soci | cacia internationa | THE PARTY | व्यं व्रवस्थारा | ental regulators. | Propositi | ipment and Parn | the Primary | | | Exporter, Ecentry that the
Locate that the waste min | cordinis et sys coesign
Imiza Son statoment Sie | nent cordorn to the lems of the att
shed in 40 CFR 26227(a) (f1 am a | retied Elivivation | Hecograph of (p) (c) : | nu a swyj i
Mar | quantity 99 | nerator) ly ijus. | | | | | Gos | nemior's Offeror's Printed (1) | | LANT TECHSYSTEM | | maker / / | 10 | | 72 | | Richits | Day Yea | | ↓ | BY:H.R.BLANK | | ASNPORTATION AN | | }// / | Silan | (BBB) | (II) | | | <u> 2090</u> | | E 16 | International Stripments | Insports U. | | Export from | us, j | od of one y | Amoit | <i>///</i> | | | ··· | | | unsporter signature (for expo | | | | | yd laning | U.S. | <u> </u> | | - | | | | Transporter Acktor-Verligtter
https://ex. | | | Sic | nature / | | 72 | | | Month | Cay Yes: | | Ş | ` # : K | 7 00/1 | | 1 | 1 6 | // | 1/200 | 200/// | | 1/2 | 109105 | | 经市 | Asporter 7 Printed Typed Na | ma v | | Si | natural | | | Wille | | 38000 | D2/ Y61 | | TAKES
WILLIAM | | | | 1 | | | | 1.7 | | | 1 | | 4 18 | Discreporcy | | | | | | | | | | | | 17.4 | Discrepancy Indication Spa | Ocanity | ☐ _{Type} | | . Daw | ius
sus | _ | Paristra | action | /□ | Full Rejection | | Ш, | Rhamair a | n cantin | n 8 + 14 OK | nav 7 | أ أسراه | $c_{n,l}$ | 10 | MANIL | al - | 12/11/ | 19 7 | | <u> </u> | [[U[]]] [| <u>U 381770</u> | 1 0 P/4 UN | VY7 T | Pary'est 7 | 13/4/6e/1 | impo// | US/EPAIDN | // | 12/11/ | | | 5)120 | AZZIFAZIO ÇACINY (OF GONE) | arce) | ′ | | | | • | 00,0,,,,, | | • | | | ₽I | villy's Phone: | | | | | | | 1 | | | | | 9 16 | Signature of Alternate Faci | ity (or Generator) | | | | *************************************** | | | | Month | Cay Ye | | DESIGNATED FA | 1 | | | | | | | | | | 1 | | S 19.1 | Havansaus Wassa Report M | | es (A.e., codes for hazardous waste | | , and racycling sy | sierra) | | | | | | | 임 1. | 1/192 | 2 | | 1. | | | | 4. | | | | | 1 | 11170 | | | | Cue suesant en c | -1 to P 4 | | | | | | | | Designated Packly Owner of
Sec Typed Name | r Operator: Controlication | of receipt of narardous materials co | Section by the Metro | fest éscépt as not
retura | N ST PORTS | <u>~</u> | | | Morally. | Day Yea | | 11 | AD (7) DO THE THE | ا ما | Lelia | 1 | 1 | | | | | 112 | 111 100 | | PA For | m 8700-22 (Rav. 3-05) | revious editions an | obsole le. | | EBIGNATE | <u> </u> | 1170 - | O REGULA | ATION I | STATE NE | · · · · · · · · · · · · · · · · · · · | | | | 7 | | U) | COLONA I E | Y FAUI | | יאווטיים י | - 1 1-234 1 | - 10 1 - IL | , the spirit of the | | | | • | | | | | | | | | | ### Wayne Disposal, Inc. 49350 North I-94 Service Drive, Belleville, Michigan 48111 ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Receipt ID: 1180408 EQ Account #: 5247 Manifest / BOL: 004173239JJK Transporter: US BULK Date: 12/11/2009 Time In: 8:47 AM Time Out: 10:02 AM Line Description Generator 1 - A L092016WDI - New River Storage Depot- Northern Burn Ground Soil Qty. Unit 24.630 TONS VAR000012559 NEW RIVER STORAGE DEPOT Gross: 80,700 Tare: 31,440 Net: 49,260 FAX NUMBER: Authorized Signature: PHONE NUMBER: CERTIFICATE OF DISPOSAL ADDRESS: FACILITY NAME: (Pleuse check one) Form # REC-EM-913-BEL This certificate is to verify the wastes specified on Manifest # 004173231 Tylehave been properly disposed of in accordance with all local, state and federal regulations. "Disposed of" means either: 1) Burial or 2) Processed as specified in 40 CFR et sea. 8125/05 The eastwais version of the document is the confeded version. Each user is responsible for ensuring that any document being used is the current version. COQ 004173239JJK Receipt 03-01 1180408 Invoice: 40177363 p.13 invoice: 40177363 Receipt 03-01 1180402 Manifest 004173240JJK 544-2 | Pleasa | print or type. (Form desig | med for use on eate (12-phch) typew | | | | | | | OMB No. 201 | 50-00 | |---|---|--|---|---|--|-----------------------|---------------------|----------|-----------------|--| | | NEOKM HAZARDOUS
WASTE MANIFEST | 1. Generator ID Number
15.5 R 900 012 568 | 2.Pige Lot | 3 Energency Risports
5C() -\$24 - 93(7-0) | | | 417 | 324 | | K | | 5.1 | Genetator's Rame and Malic | • | | Generator's Site Address | | | 233) | | | | | 11 | | Storage Depth CiV Allia | nt Ferriystana | ₩6~ B~# | | - | | | | | | 11. | | ladford, va 21149 | | i | | R: 1050 A | y byth is to | | | | | | haratora Phone; 5/4 U. E
Introporter I Company Nam | 13 3-7 989 Atta H. R EN | 11/4/15/40 | ີ່ ປະເທດ ເ | د در در وه س | ZGUEG
US. EPAKI | Nonhe | | | | | 1 | US Buly Tra | | | | | | 957 N | 7 9 - 4 | | | | 17.5 | ransporter 2 Company Nam | |) | | - | U.S. EPAID | | | | | | Ш | • • • | مسلسلين | | | | 1 | | | | | | 8.0 | Doubgralled Facility Hamo an | Historian Walk | Woods Prossing | 1.74. | · | U.S. EPMO | | 1200 | 201.21 | _
2 | | Ш | | 49350 N. i-24 | Service Ima | | | NA | DO. | -(3U) | 10 63 |) | | 1 200 | Pay's Phage: 600-582 | -5469 Believille M 4 | 图 9.9.9 | | | 10 ALC: - | وتداسنخ | 1277 | | | | \$a.
100 | | n (Including Proper Shipping Hame, Haza
(VI) | rd Class, 10 Number, | 10, Contain | 2) De | 11. Total
Oceanity | 12. Unit
WL/Vol. | 13.1/1 | asie Codes | | | <u>, </u> | AL BO MARO | 77. Hazaroou+ Waste S | rust . 639 (Jead) | | 571 | | £. | 2008 | 1 | | | ENERATOR | a Poit | | - 11. | 001 | | 271 | | | | | | | 2 | | | | | | | | | | |]_ | | | | | | | <u> </u> | | | | | | a la | | | | | | | | | | | IL | | | | | | | | | | | | Н | 1. | | | | | | , | | | | | l i | 1 | | | | | | | |] | | | FA.5 | Special Handling Instructions | and Additional Information | · | ···- | | | <u> </u> | | | | | 15 | 16 201 | 紀 northorn hum groun
じんり)
SCERTIFICATION: Therety decises for | | | | eld, 75 CF. | | | Scot, packaged | ī. | | Ħ | Exporter, I continy that the oc | ed, and size in all respects in proper condi-
nients of this consignment confirm to the
ization statement itematics in 40 CFR 25 | Terms of the attached EPA Actionals
2.21(a) (41 are a large quantly game | rigment of Consent.
rator) or (b) (if I see a seruit | • | - | E exportable | | | | | | rador's/Offeror's Printed/Type | ALLIANI TEX | HSYSTEMS INC | oters if it All | | 1/27 | •• | Month | Day 1 | Year | | 18.8 | Year Share | Incomp TOANSDOOM | ATICEL ANALYST | S. Port of anty | A STATE OF THE STA | 44 <i>7</i> 77 | | 112 | <u> 10 9 10</u> | _9_ | | Trans | porter signatura (for exports | | £1 Export sout (r. | s. Postoranoj
Calpierving | | -/ | | | | | | 17.72 | anaportur Acknowledgment o | | | | | | | | | | | Trans | portex Printed Typed Name | 2.1 | Signs | | 1 | 1// | | Monet | | Year | | Trans | porter 2 Printed Typod Name | -
Alexa | Z C Skory | Mass | E. S. | 1.222- | | Month | | 09 | | 1000 | Power a Surface (Abot) secur | | ogr | PAES ' | | | | I MACONO | Day Y | (CA) | | | screpancy | | | | | | | | | | | - | Secretary Indication Space | Па | П | Residue | | Пала | L | <u></u> | la rais s | | | į, | 11114 08 | L wasny , | سابهه
اینیم آیا | | ء آنو | Parta Reje | UO01 | | Ful Rejection | 1 | | 1 | | | - sint vias 14 | + Swainlandown | Just [] | 1 (| 1.1 | <u> </u> | 101 | | | 1364. A | Abritable Falcasky for Generals | η' , <u>, , , , , , , , , , , , , , , , , ,</u> | 1 | 7 | , | U.S. EPAIDI | arber . | | , | | | | | • | | | | | | | | | | Facility
BBC 5 | (s Fitene:
gratum of Atlantale Facility | (or Generator) | | | | <u> </u> | | Month | Day | Year | | 18c. 5 | | • | | | | | | | 1 1 | | | 19. Ha | zavioja Waste Report Marc | garnest Motord Codes (i.e., codes for he | zardous waste bookrent, disposal, i | ind recycling systems) | | | | | | | | I. | H137 | 2 | 3. | | | 4. | | | | | | | | persion Certification of receipt of hazardo | us motocials covered by the executive | expecting nated in Horn I | &z | | | | | | | | Typiso Names | 7) \ | See | | 47 | 21 | | Month | Ory I | rev. | | <u> </u> | Victori | NOUGE | | 1112 | <u> </u> | <u> </u> | | | \mathbf{m} | <u>) </u> | | . Form | 8700-72 (Nov. 3-05) PM | vious editions are obsoleto. | | 254 | dy DE | SIGNATE | D FACII | JTY TO | GENERA | TOR | | | | | | | | | | | | | ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Receipt ID: 1180402 EQ Account #: 5247 Manifest / BOL: 004173240JJK Transporter: US BULK Date: 12/11/2009 Time In: 7:38 AM Time Out: 11:26 AM | Line | Description | Qty. Unit | |-------|---|-------------| | 1 - A | Generator L092016WDI - New River Storage Depot- Northern Burn Ground Soil | 23.090 TONS | | 2 | VAR000012559 NEW RIVER STORAGE DEPOT Gross: 78,560 Tare: 32,380 Net: 46,180 DIG OUT | 1.000 EACH | | | VAR000012559 NEW RIVER STORAGE DEPOT | | Receipt 03-01 1180402 Cod 004173240JJK have been properly disposed of in accordance with all local, state and federal regulations. This certificate is to verify the wastes specified on Manifest # $\Omega 4/73240$ "Disposed of" means either: 1) Burial or 2) Processed as specified in 40 CFR et sea. FACILITY NAME: (Please check our) ADDRESS: EKTIFICATE OF DISPOSAL ☐ Michigan Disposal Waste Treatment Plant เฮนาม.*ศมธงชระเลก 49350 N. 1-94 Service Drive Belleville, Michigan 48111 1-800-592-5489 PHONE NUMBER: 1-800-593-5329 FAX NUMBER: Authorized Signature: Term F. REC-FAR-013-8EL THE ENVIRONMENTAL QUALITY COMPANY 49350 N. [-94 SERVICE DRIVE BELLEVILLE MICHIGAN 4811] The electronic verson of dus documents the cooming verson. Each user is responsible for enseming that any document being used is the current verson 80:528 Receipt 03-01 1180404 Manifest 004173241JJK | DC. | asa orintor type. (| Com desi | ioned for area | on eithe i 12-nih | thi transmiter.) | | | | | | For | m Approved | . ON BIAG. | 2050-0039 | |------------|---|--------------|-----------------|-------------------|---|---------------------------|-------------------|-----------------------|------------------|---|--------------------|-------------|----------------|-----------| | Ä | UNIFORM HAZ | | | IO Number | an ny vanany | 2.Page 11 | | rgency Response | | | Tracking H | | 4 L | iV | | | WASTE KAN | IFEST | VAR | 000 012 5 | 59 | 1 | | -424-8300 | | 0.0 | 74. | <u> 324</u> | <u> </u> | <u>JK</u> | | 11 | S. Denerator's Nat | | | | ~ **! > * > | | Genera | New Rive | | | P(1) | | | | | П | 1 | | | | toet Insilia C | isystems | | | | ga 13030 6
31. 1030 6 | D) 7.5 | 7 | | | | П | | | | Va 24143 | | | 1 | | | | LAL 14 | • | | - | | П | Generator's Phone
6. Transporter 1 Co | 540 | 839-766E | ARN: M. | R. Blankensh | AD. | l | Oublin, \ | VA VA | U.S. EPANI | Number | | | | | П | 1 | | ansport | la. | | | | | | I PAD! | <u>987 347</u> | 616 | | | | П | 2. Transporter 2 Co | | | 7 | | | | | | U.S. EPA ID | Number | - | | | | П | | | | 1 | r | | | | | 1 | | | | | | П | 8. Designated Fact | Зу Нагно з | nd Site Address | LIZY | M. DIE | 5a L 191 | 7 | | | U.S. EX ID | Number | | | | | П | | | | Witchiga | H. Disches | acie i recim o | N Pl a | 75- | | | 1481 | 1906 | 13 | | | Ш | | | | | l. 1-94 Service | Duve | | | | | 100-724 | 7 | , | | | Ш | Facility's Phone: \$ | | | | e, MI 48111 | | | 10. Contai | | , , , , , , , , , , , , , , , , , , , | 12,04 | T | | | | [[| Sa Sa U.S.D. | | | Johes Stribburg v | lame, Hazard Class, 30 | numoer, | | Hb. | Type | 15. Total
Ocarrity | WAL | 13. | Yesia Code | d | | Ц | y t - 55 | MAS | 177 Hazz | ardous W | aste Solid, Ni | OS (lead). | | 001 | DT | | P | D008 | | | | 厦 | ^ `;` | PGIII | u, r, mer | 010002 71 | 6512 CUILD, 111 | oo (ieaan | | OOT | | 201 | 1 | | | | | Ä | ,
, | · ())) | | | | · | | | <u> </u> | | <u> </u> | | | <u> </u> | | GENERATOR | 2 | | | | | | | Į : | l | | | | | : | | ľ | | | | | | | | • | • | | | | | | | П | 3 | | | | | | | | | | - | | | | | Н | " | | | | | | | | | | 1 | | <u> </u> | | | П | | | | | | | | | | | <u> </u> | | | | | $\ \ $ | 4. | | ****** | | | | | | | | | | | | | Ш | | | | | | | | | ĺ | | | | | | | Ш | 14. Spacial Junion | ×16 | 11162 | | | | | L | <u> </u> | <u> </u> | <u> </u> | Li | | | | | 16 GENERATOR | 19 <i>20</i> | 16WD | trost there | ground soil E
declare that the confer
exper condition for trans | nts of this construmen | are folly: | and accurately the | eribed above | AN-TFOR | locins name | ard are de | ssided, packs | igod. | | Ш | Exporter, I cert | y that # • | conjects of his | consignment co | rions to the terms of th | a altached EPA Admo | decignori | of Corsess | | | e m extraction | | W. T. W. T. T. | -, | | Н | Rewally that the
Generator's Offeror's | | | | 40 CFR 262,27(a) (f) | | DESCRIPTION OF | (O) (F) (M) 3 (M) | 77799 | // | | NA | nth Day | Year | | | | - | - | | TECHSYSTE
ORTATION A | 32733 TIME . | VI. | 1 Abu | kuu | (A) | | 11 | 20 9 | le o le | | ٦ | 16. Informational Shi | ements | | ort to U.S. | Oldistadii I | Export from | | Port of and | niot / | <i>y</i> | | | | | | '≥ | Transpoder eignotu | w (jok a 190 | | U1 10 10,01 | | Серини | 14.11 | Dalla lecade | | - | | | | | | 話 | 17. Transporter Actor | | | Kelenisis | | | | | | | | Mon | ds Date | Year | | 용 | Transporter Printer | وسنو | me | | | S4 | TIME TO | | ~). | | | I de | | 109 | | ş | <i>CAERSTAL</i>
Taraxonir 2 Print | | <i>9/75//5/</i> | | | | Garage
Section | | سبسكم | <u> </u> | | — l∉is | | Year | | X | () = mpy (av to 1 av - | | | | | ڏا | , | - | | | | [| 1 | 1 | | 7 | 58. Discrepency | | | | | | | | | | | | | | | Н | 1 da, Discrepancy in | iesten Sp | aco [| Quarrity | Π, | ivne | Г | Reston / | $\overline{}$ | Describe Re | ación . | , [| Full Paris | dón | | $\ $ | chang i | 5 + | O SACT | ton i | 8 + 14 01 | Koer Te | //)u | fort p | 10 | 110 | 10 | 12/10 | 199. | | | 틹 | 180, Navasia Fpoti | y (or Gene | 500 | | | 3 | | • | , | V.J. CANIUR | -4:473 | | , | 1 | | Š | Facility's Phone; | | | | | | | | | 1 | | | | 1 | | a | i sorry's Priorec
18c, Squakere of Alb | meta Faci | ty (or Generate | a) | | | | | | | | 740 | nh 0≥y | Year | | DESKANATED | | | | | | | | | | | | L | | | | Š | 19. Kazando da Wasa | Regod M | Bagement Mot | had Codes (re., | codes for hazardous wo | asta transment, dispos | t, and rec | (आक्राक्ष्य द्वाराज्य | | | | | | | | 띰 | · (1) | わし | | 2. | | 3. | | | | 4. | | | | } | | ار | <u>[[]]</u> | 100 | | | | | | | | | | | | | | | | Ky Owner o | COperator, Co. | Wicadon of recel | et of hazzardous material | | Total except | Casoded in Ben | 194 / | 11 | | Va. | 7. 97 | Ve3/ | | Ш | Priore Proped House | صو | 1 (Kc | hde | • | | _// | my | K | Map | | 1) | <u> </u> | 109 | | LIT 75 | Fom: 8700-22 (Re | er and all | INTO COMPANY | N 10 OL O CASON | rr. | D | ESIGN | ATED FAC | HITT T | O DESTIN | AHON! | olw(c) | r neu | omen) | ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Receipt ID: 1180404 EQ Account #: 5247 Manifest / BOL: 004173241JJK Transporter: US BULK Date: 12/11/2009 Time in: 7:46 AM Time Out: 5:41 PM Line Description Generator Qty. Unit 1 - A L092016WDI - New River Storage Depot- Northern Burn Ground Soil 25.520 TONS VAR000012559 NEW RIVER STORAGE DEPOT Gross: 82,880 Tare: 31,840 Net: 51,040 10.020 , 0... பி Michigan Disposal Waste Treatment Plant சந்தில் சகாணையல் 49350 N. I-94 Service Drive Belleville, Michigan 48111 1-800-593-5329 1-800-592-5489 Wayne Disposal, Inc. COG 004173241JJK Receipt 03-01 1180404 TABYTYOA :epioval Receipt 03-01 1180397 Manifest 004173242JJK 192-2 . | Description (Processed Description 100 Per 2 250 1 | He | lse pi | nal or type. (Form desk | ned for use on | ežie (12-plich) typovrtier | :) | | | | | | | 48 No. 2050-000 |
--|-----------------|----------------|--|--------------------------------------|--|---|--|--|--|--|---------------------------------|--|----------------------------| | S. Comment State and State Color | Ŧ | | | | | | 1 - 1 | | | (stinous | Tracking H | 2040 | 1117 | | Heave River Storage Depart | 11 | Ŀ | | | 10 012 589 | ····· | | | | | | <u> </u> | 171 | | ### CD DUT FRACFORD A 3 A 14 S DUPLE FROM THE Blackbanchy Duple A 2008d Bindy Control Congress Name | П | 0.14 | | | anne Oils Alliant | Territor ala | | | | | 2023 | | | | Consideration Sub 0.307-668 Agin H. R. Blanckenship Durchin, V.P. M. 20084 H. Consideration L. S. Bulk Transport True True L. S. Bulk True T | Н | | | - | | . 22 .43 61 6 | 1-17 | | | | ER 74 | - | | | Bit Secretary | Ш | Carr | | | | ranetro | Į | | | | -11. | | | | Theory of Part of Service and Selections and Additional Selection (Section 2015) (Appendix Market Color Colo | Ш | | | | -ALITE IS DIENE | 47771412 | | CARLING | ** *** | | Harricer | | | | Consider National Parties and Biol Accesses Linear Signar Dispressive Vision Tree-stroker Biol/ Linear Signar Dispressive Vision Tree-stroker Biol/ Linear Signar Dispressive Vision Dispressive Vision Biological Processive Biological Processive Vision Bi | Ш | | US Bulk Tra | aneport | TV. | | | | | FAC | 987 347 | 515 | | | Contract | Ш | 7. T <i>ra</i> | Importer 2 Company Ham | 4 | (TSP) | · · · · · · · · · · · · · · · · · · · | | | | U.S.EPAID | Number | | | | Contract | Ш | | ···· | | | | | | | | | | | | Foliably in Price (200.502.5150) Big Bay the File In IV 485111 See 19. U.S. DOT Consistent (passing Price Steppe News) See 19. Des 19 | Ш | d, De | signated Facility Monve an | | Granda Prisance | m reinara C | طحيد رساقه رسا | C1! | | CLS. GPAID | řívníce - | | | | Price Student | | | | | | | | B | | | | | | | So U.S. SCOT Conscience (Coasting Proper Stepping Names, Harmot Class, Di Harmot, Maria Table (Septing Names, Harmot Class, Di Harmot, Maria Table (Septing Names, Harmot Class, Di Harmot, Maria Table (Septing Names, N | | EAAD! | LA GENE 200.402 | | | | 4 | | | _ | | | | | Second Record States (Control (1974)) Second Record (1974) Sec | H | | | | | · · · · · · · · · · · · · · · · · · · | | 10.Contai | rect | | T | | ~~ | | Till, Special Residency Season and Additional Valumentors 1 10 20 10 20 10 20 10 20 10 20 2 | Ш | | | | | | | | | | | 13.1925 | ta Codes | | 1.6. Special Narrading Sentructures and Additional Information 1.1 OF 2016 BATCH CONTROL OF THE PROPERTY OF CONTROL OF BETTER 1171 1.6. Special Narrading Sentructures and Additional Information 1.1 OF 2016 BATCH CONTROL OF THE PROPERTY OF CONTROL OF BETTER 1171 1.6. Special Narrading Sentructures and Additional Information of Sentructures | 긺 | 1 | 1. HG MASC | 77 Hazar | dous Waste Boli | a NOS de | 동선 | 0.0.1 | 2/1 | | X | D008 | | | 1. Special National formations and Additional Printension 1. 1. 0920 (SMNP) - Optification in the property optification in the content of the consignment and the content of the consignment and developed phases (e.g., and see in all respects in proper to proper principle). And the content of the consignment and developed phases (e.g., and see in all respects in proper principle) in the content of | 읽 | | 1 | | | | | " " + | | 22 | 1 | | | | 1. Special National formations and Additional Printension 1. 1. 0920 (SMNP) - Optification in the property optification in the content of the consignment and the content of the consignment and developed phases (e.g., and see in all respects in proper to proper principle). And the
content of the consignment and developed phases (e.g., and see in all respects in proper principle) in the content of | ᇷ | | | | | | | | | | | | | | 1. Special National formations and Additional Printension 1. 1. 0920 (SMNP) - Optification in the property optification in the content of the consignment and the content of the consignment and developed phases (e.g., and see in all respects in proper to proper principle). And the content of the consignment and developed phases (e.g., and see in all respects in proper principle) in the content of | g | | - | | | | | | | | 1 | | \ | | 16. Special National four-bodies and Additional Visionation 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | H | , | | | | | | 1 | i i | |]] | | T | | 1. Special Namining Institutions and Additional Information | ╟ | _ | 3. | | | | | - | | | | | | | 1. Special Namining Institutions and Additional Information | Ш | | - | | | | | - | | |] | | | | 1. Special Namining Institutions and Additional Information | | | | | | | | | | | | | | | 1. 1 CSS CORP ROUGH Interference Description of the control of the condense | П | | 4. | | | | | | | | 1 | 1 | | | 1. 1 CSS CORP ROUGH Interference Description of the control of the condense | П | | | | | | | i | f I | | | | | | 1. 1 CSS CORP ROUGH Interference Description of the control of the condense | ╂ | í. Šo | edal Xarding helpstore | anzi Arkitional M | formation | | ····· | L | <u> </u> | | <u> </u> | | | | S. DERIERATION EXCITE CONTEXT CATION. I Investoy decision that is consistent of this consistent are finity and accurately described above by the proper tribiging name, and are deather, packaged, and are in all respects to proper condition for transport according to applicable intermedical and rectional governmental recipitions. It is expected in the contexts of this consistent in the proper condition for the intermedical and rectional governmental recipitions. It is expected in the most proper context of the contexts of this consistent in the context decision to the intermedical plant property generated in context of the | Ш | , | | | | 心 医骨部的 | 171 | | | | | | | | Interspective prince (1) products of this control of the o | Н | | | ·e: | 7 | | | C\$6: .c | 会を表 | 4 "F" JF" | T-3K25- | 17907 | | | Interspective prince (1) products of this control of the o | 11 | | | | | | | | | | | | | | Exposes, I cardly that the contracts of this consignment contions to be immediately precision of this contracts of this consignment contions to be browned the stack of the stack of the contracts of this contract on this contracts of this contract on this contracts of this contract on contracts on this contract on this contract on this contract on this contracts on this contract on this contract on this contract on this contracts on this contract on this contract on this contra | H | 5. G | REPERATOR TANDERS AND A STATE OF THE O | KS CERTIFICATI
No. and are in oil | OM: Thereby declare that the
respects in proper condition | e contents of this c
for transport socce | ransignantai tara
Parana la escalcaci | idily and socurately des
simborostonal addicate | eculosed albana
Securitoria | by the proper shi
entail moderations. | (polog Maria).
H export shic | edianals are the
Number lace lactor | f, packaged,
e Patriery | | Generator's Printed Typed Name ALLIANT TECHS VSID'S IN Experts IN TO STATE AND IN THE CHIS STATE AND IN THE STATE OF REPORTS OF THE STATE OF REPORTS OF THE STATE S | П | ε | isporter, I carried that the or | intends of this con | ed of moints inemaks | ns of the effected | EPA Actnowled | ment of Consent | - | • | | | , | | TO No. TO PERANCESSATED TRANSPORTED TOTAL ANALYST Department of anytheris o | П | | | | | | | | i troatroy pad | eratori di The. | | Month | Eley Year | | Transporter Administry for exposts only) Import to U.S. Deposition U.S. Peri of entryleuic Dead American D | Ш | | | | | | | JP Bla | de la sur | Min - | | 115 | وماما | | Transporter Algorithms (Prince/Typed Name Month Day Year Facility's Phone COPY Fac | الج | e. ime | reaconal Shomens | | | | | Peri of ort | rvivoir | 7/ | | | 12 31 0 2 | | Fundamental Printed Pyride Name | 뒼. | ranso | octor signature (for export | | | | Tarken (N) s asses | | | 0 | | | | | Transported 2 Printed Typed Harms Signature Signa | | | | | rielis | | | | | | | | | | Transported 2 Printed Typed Harms | | | | | * | | Signatu
- | · | | | | • | · · · | | 18. Discrepancy Indication Spece | <u>بالإ</u> | بر)
- دونو | of 15 1 Short | <u>)</u> | me of full and an italian | J. 11 | Shriet | | The state of s | | | | | | 18. Discrepancy Indication Spece | ≣Ι. | | | - | | | 1 | • | . / | • | | | 1 | | Partial Rejection Part | | B. Disc | repency | ***** | | ***** | | | | | | | | | Manifest Reference Number: C | ۱ I | _ | | , <u> </u> | obthe . | D _{Dec} | - , | Rocking | | Daniel Bry | cson | in. | cal Rejection | | 15. Abenda Facility (or Generator) U.S. ESN ID Noncorr Facility's Phone. Idea Speakurs of Piternals Facility (or Generator) | | | • | | - | | | | <i>I</i> . | | | 15 | | | 15. Abenda Facility (or Generator) U.S. ESN ID Noncorr Facility's Phone. Idea Speakurs of Piternals Facility (or Generator) | !L | | | | F . 7. 4: 3. | <u> </u> | · : ' | Manifest Reference | Number, Fo | Ċ. | | | | | 20. Designated Facility Owner or Operators Conflictation of receipt of Incomposite covered by the manifest occapt as noted in Norm 184 Primed/lyped Name Signature A Form 8 700-22 (Raw, 3-05) Previous editions and obspiciets. DESIGNATED FACILITY'S COPY | Ęľ | њ. Д | actual Facility (of German | 01) | | | | | | U.S.EPA101/ | OUT OFF | | | | 20. Designated Facility Owner or Operators Conflictation of receipt of Incomposite covered by the manifest occapt as noted in Norm 184 Primed/lyped Name Signature A Form 8 700-22 (Raw, 3-05) Previous editions and obspiciets. DESIGNATED FACILITY'S COPY | 9 | 4 | . Pk | | | | | | | | | | | | 20. Designated Facility Owner or Operators Conflictation of receipt of Incomposite covered by the manifest occapt as noted in Norm 184 Primed/lyped Name Signature A Form 8 700-22 (Raw, 3-05) Previous editions and obspiciets. DESIGNATED FACILITY'S COPY | ลห | | | (or Generator) | | | | | | I | |) Month | Cay Year | | 20. Designated Facility Owner or Operators Conflictation of receipt of Incomposite covered by the manifest occapt as noted in Norm 184 Primed/lyped Name Signature A Form 8 700-22 (Raw, 3-05) Previous editions and obspiciets. DESIGNATED FACILITY'S COPY | 3 | - 0 | | | | | | | | | |] | 1 | | 20. Designated Facility Owner or Operators Conflictation of receipt of Incomposite covered by the manifest occapt as noted in Norm 184 Primed/lyped Name Signature A Form 8 700-22 (Raw, 3-05) Previous editions and obspiciets. DESIGNATED FACILITY'S COPY | Ž k | , Flan | anticus Waste Report Man | bodiesk knemege | Codes (Le., codes for hozard | ious waste beekin | oni, disposal, an | liscycling systems) | | | | | | | 20. Designated Facility Owner or Operators Conflictation of receipt of Incomposite covered by the manifest occapt as noted in Norm 184 Primed/lyped Name Signature A Form 8 700-22 (Raw, 3-05) Previous editions and obspiciets. DESIGNATED FACILITY'S COPY | § 1 | | · · · · · | ··· | 12. | | 3. | | | 4. | | | | | AForm 8 700-22 (Raw, 3-05) Previous editions and obsidets. Aform 8 700-22 (Raw, 3-05) Previous editions and obsidets. | ıL | | | | J | | | | | | | | | | X Form 8700-22 (Raw, 3-05) Previous editions and obscileto. DESIGNATED FACILITY'S COPY | | | | perator, Confic | don of stoops of learnings | netorials covered | | | 154 | | | 1/22 | One Const | | A Form 8709-22 (Raw, 3-05) Previous editions and obsideto. DESIGNATED FACILITY'S COPY | ll ^a | nied/ | sypes Navn a | j | 1 - / | ٠. | Signetur
I | تتنعمه. | | مر بزم | | Month
() 7 -1 | LL IC/ | | , , , , , , , , , , , , , , , , , , , | 04.5 | ent fi | 700.00 (Day 2 08) Pa- | COLUMN TO THE REAL PROPERTY. | and the second | , , | | | | | | 10 | | | | ra Pi | AUG C | tower tient 2-03) Lie | imes comes | an sugaran. | ./ | | | , | DES | SIGNAT | | TY'S COPY | ### Receipt CAPITOL ENVIRONMENTAL - ROANOKE VA 200 BIDDLE AVE, SUITE 205 NEWARK, DE 19702 Receipt ID: 1180397 EQ Account #: 5247 Manifest / BOL: 004173242JJK Transporter: US BULK Date: 12/11/2009 Time In: 7:17 AM Time Out: 10:59 AM | Line | Description | Qty. Unit | |-------|---|-------------| | | Generator | | | 1 - A | L092016WDI - New River Storage Depot- Northern Burn Ground Soil | 23.700 TONS | | | VAR000012559 NEW RIVER STORAGE DEPOT | | | | Gross: 82,020 Tare: 34,620 Net: 47,400 | | | 2 | DIGOUT | 1.000 EACH | | | VAR000012559 NEW RIVER STORAGE DEPOT | | ### CERTIFICATE OF DISPOSAL ADDRESS: Form # REC-PM-013-BEL ۲ THE ENVIRONMENTAL QUALITY COMPANY 4935 N. 1-94 SERVICE DRIVE BELLEVILLE MICHIGAN 48111 Authorized Signature: FAX NUMBER: PHONE NUMBER: 1-800-592-5489 49350 N. J-94 Service Drive Belleville, Mickigan 48111 Michigan Disposal Waste Treatment Plant FACILITY NAME: (Please theck one) Weyne Disposal, Inc. 1-800-593-532 802508 The electroric ressum of this document is the communical rection. E a) user is responsible for ensuring that any obcurrent being used is the current ression. Page 4 of 17 3014594 004173242 John This certificate is to verify the wastes spec.fied on Manifest #_ have been properly disposed of in accordance with all local, state and federal regulations. "Disposed of" means either: 1) Buxial or 2) Processed as specified in 40 CFR et sea. Receipt 03-01 1180424 Manifest 004173243JJK | | នេទ ស្ត្រា | nter type. (Form desig | oned for use o | xı elite (12-p(lch) | typewiter.) | | | | _ | | | nn Approved | , OMB No. | 2050-003 |
--	--	--	--
---	--	--	---
Conservation or (b) (1/12 S. p.	articly described and neto- torial and a strati- call of sales	probable stores on the stores of	by the proper sine contain regularization. Service of the contained th
/ BOL: 004173243JJK Transporter: US BULK Date: 12/11/2009 Time In: 11:29 AM Time Out: 6:23 PM	ine	Description	Qty. Unit
--	--	--	--
---	--	-----------------------------	---
and labeled placerd Exporter, I certify that the control that the waste minim Generator's/Offeror's Printed/Type BY: H.R. BLANK	AD4 northern burn ground so OT 'S CERTIFICATION: I hereby declare that the ed, and are in all respects in proper condition for names of this consignment conform to the terms sization statement identified in 40 CFR 262.27(a)	contents of this co is transport accord of the attached E o) (il tarm is large of YSTEMS	onsignment are sing to applicate EPA Acknowled quantity genera TNC Signat
YST xpon from U.S	fully and ecourately de la international del additional consent. Sono or (b) (if I am a small port of ent Dutte leave of the Capito	ecribed shove onel government of quantity gas onel government	by the proper sing entail regulations. It is true; the property of propert
quantity general INC Signat YSTI xpon from U.S. Signat XPOT For IV.S. Signature Signat	Fally and eccurately de la International automation and automation of (a) (if I am a small automatical for the International Constant and Cons	corbed shows one government of committee	by the proper sing enter regulations. In grant is bugg
of in accordance with all local, state and federal regulations. "Disposed of" means either: 1) Burial or 2) Processed as specified in 40 CFR et sea. FACILITY NAME: ☐ Michigan Disposal Waste Treatment Plant (FTA1D # МПЖООТ148;) Wayne Disposal, Inc. FAX NUMBER: PHONE NUMBER: 1-800-592-5489 49350 N. I-94 Service Drive Belleville, Michigan 48111 Authorized Signature: Form#REC-FM-013-BEL Receipt 03-01 1180395 Manifest 004173246JJK 196		print or type. (Form desi	SHEAT WY DOS OUT OF
--	--	--	--
--	--	--	---
it a) (I I am a large of THSYSTEM)	nalgement are l ing to applicable 24 Admostedg canally general 3 IN Broke	Dy and accumulatly dass international and natio ment of Consent o) or (o) (all am a smoll of Autoria	tribed above rel governme quantity from Ald the read:
Estrockhern PT SCENTFICATION: A and are in all explaints of the consignation	thurn ground s. Therebydedee the the cost is proper condent in most or the term of the death of the CFR 2022/// ALLIANT TEC RANSPORPATTI S.	contents of this co	insignment are in ing to applicable Ph Actrophicogo control y generals INS return (ST) good from U.S. Signatus Signatus
--		1 - A	Ł092016WDI - New River Storage Depot- Northern Burn Ground Soil
lat, Signature of Atlemat	Facility (or Generalis)		
--	--	---------------------------------------	---
metals using USEPA SW846 method 3050B and analyzed by 6010B. Mercury was digested and analyzed by 7471A. Note: The "U" flag on the forms indicates that the analyte is reported down to the MDL. The "J" flag indicates that the analyte result is between the laboratory MDL and the laboratory RL. ### **Specific Comments:** All analyses performed by the Inorganic section were completed meeting satisfactorily the corresponding specifications for Quality Control with the following exceptions: #### I. ICAP Metals - A. Matrix Spike and Matrix Spike Duplicate (MS/MSD) Specification Limits (80 to 120%) - 1. The matrix spike and the matrix spike duplicate were out of the specification limits for sodium at 123 and 122% for sample NBG-Topsoil. The post digestion spike recovery was at 108%. All associated data are flagged with an "N" on the final report. **NOTE:** The sample matrix was spiked for all TAL metals but iron in the sample was over the linear range and required a dilution. Since iron has IECs for all other metals in the TAL list that are not reflected on the matrix spike form, and all other metals were reported from a diluted sample, those spike recoveries are not shown on the matrix spike page. B. Laboratory Control Sample (LCS) Specification Limits (80 to 120%) 1. The laboratory control sample was out of the specification limits for barium at 121%. This impacted both samples in the SDG. 0911230 Metals Summ 2 #### WORK ORDER 0911230 **Empirical Laboratories, LLC** Project Manager: Janice Shilling Client: Arcadis (A285) ARC_Radford Project: Radford Army Ammunition Plant **Project Number:** Invoice To: Report To: Arcadis (A285) Arcadis (A285) Joyce Williams Jace'que Powell 640 Plaza Drive Suite 130 2929 Briarpark Dr., Suite 300 Highlands Ranch, CO 80129 Houston, TX 77042 Phone: (720) 344-3764 Phone: (281) 497-6900 Fax: (000) 000-0000 Fax: (000) 000-0000 12/11/2009 16:00 (10 day TAT) Date Due: Date Received: 11/25/2009 08:15 William Schwab Received By: Date Logged In: 11/25/2009 17:07 William Schwab Logged In By: 1.7°C Samples Received at Received On Ice Yes **Custody Seals** No Containers Intact Yes COC/Labels Agree Yes Preservation Confin Yes	Analysis	Due	TAT
2	U	SW6010B	9L02007
1000	1012	101	ug/L
Project: Radford Army Ammunition Plant Sequence: <u>9L33812</u> Calibration: <u>9338008</u>	Lab Sample ID	Analyte	Found
-----------	-------------------------------	--	------------------------------------
without qualification or exceeded with a positive bias. See form 3. - MS/MSD Results: While results for dalapon were below the detection limit, recoveries were within limits. All other recoveries were within limits without qualification or exceeded with a positive bias. See form 3. - Dilutions: All samples were analyzed without dilution. - Manual Integrations: As is necessary for all GC/LC chromatography, manual integrations were performed to correctly quantitate target analytes. A "before" chromatogram and "after" chromatogram is provided for all sample analyses to provide information regarding the manual integrations performed. I certify that, to the best of my knowledge and based upon my inquiry of those individuals immediately responsible for obtaining the information, the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, with the exception of the conditions detailed in the case narrative, as verified by the following signature. Marcia K. McGinnity Data Quality Manager ### ANALYTICAL REPORT TERMS AND QUALIFIERS (ORGANIC) - MDL: The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The MDL is determined from analysis of a sample containing the analyte in a given matrix. - **EQL**: The estimated quantitation limit (EQL) is defined as the estimated concentration above which quantitative results can be obtained with a specific degree of confidence. Empirical Laboratories defines the EQL to be at or near the lowest standard of the calibration curve. - U: The presence of a "U" indicates that the analyte was analyzed for but was not detected or the concentration of the analyte quantitated below the MDL. - B: The presence of a "B" to the right of an analytical value indicates that this compound was also detected in the method blank and the data should be interpreted with caution. One should consider the possibility that the correct sample result might be less than the reported result and, perhaps, zero. - D: When a sample (or sample extract) is rerun diluted because one of the compound concentrations exceeded the highest concentration range for the standard curve, all of the values obtained in the dilution run will be flagged with a "D". - E: The concentration for any compound found which exceeds the highest concentration level on the standard curve for that compound will be flagged with an "E". Usually the sample will be rerun at a dilution to quantitate the flagged compound. - J: The presence of a "J" to the right of an analytical result indicates that the reported result is estimated. The data pass the identification criteria indicating that the compound is present, but the calculated result is less than the EQL. - P: The associated numerical value is an estimated quantity. There is greater than a 40% difference between the two GC/HPLC columns for the detected concentrations. The higher of the two values is reported for GC unless matrix interference is apparent. The primary column results are reported for HPLC unless matrix interference is apparent. - M: The presence of an "M" to the right of an analytical result indicates that the sample matrix interfered with the quantitation of the analyte. In GC and HPLC, results are reported from the column with the lower concentration. - I: The presence of an "I" to the right of an analytical result that the presence of a qualitative interference could have caused a false positive or over estimation of the analyte. In GC and HPLC, results are reported from the column with the lower concentration. ARCADIS Laboratory Task Order No./P.O. No.. CHAIN-OF-CUSTODY RECORD Page _	Project Number/Name CTCSKAAR 41216 KG NUS	るころ	
---	---	----	---------------------------------------
--	--	--	---
cis-1,2-Dichloroethene	50.00	43.60	87
2.0 0.47 0.42 0.30 1.0 0.72 1.4 1.3 0.88 0.34 1.1 0.55 0.52 0.54 0.34 1.2 0.43 0.37 0.84 0.55 1.1 0.54 0.46 1.2 1.1 0.46 0.50 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.35 0.32 0.32 0.32 0.33 0.34 0.35 0.34 0.43 0.43 0.43 0.44 0.55 0.54 0.46 0.55 0.54 0.46 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.33 0.34 0.35 0.34 0.45 0.46 0.55 0.5	10 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.	ממממממממממממממממממממממממממממ	
--	---	--	
17.50 17.5	SAMPLE NO.		
CURVE	A0	A1	A2
MTBE	0.448	0.431	
----------------------------	----------------	--------	
0.749	100.0		
400	U		
430 1700 1700 430 430 430 430 430 430 430 430 430 4	2900 480	ממרמממממממממ ממממממממממממ	
-------------------------	---------	---------------	---------------
3945	2512	64	1
-----------	---	---	----------
flag internal standard area values with an asterisk. Lab Name: EMPIRICAL LABS Contract: Lab Code: EL Case No.: NA SAS No.: NA SDG No.: SDGA86373 Si Calibration Date(s): 11/04/09 11/04/09 Instrument ID: BNA1 Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 0923 2313 RF2: SEQ-CAL3 RF5: SEQ-CAL4 LAB FILE ID: RF1: SEQ-CAL2 RF10: SEQ-CAL5 RF20: SEQ-CAL6	COMPOUND	RF1	RF2
2,4-Dinitrotoluene	0.402	0.419	0.446
0.203 0.513	0.204 0.596	0.210 0.671	
1.591 1.637 0.296 0.349 0.416 0.415 0.794	50.00 50.00 50.00 50.00	52.53 50.48	
		13.2	39.5
<u>Solid</u> Batch: 9L01006 Laboratory ID: 9L01006-BS1 Preparation: EXT 3546 Initial/Final: 15 g / 5 mL | ANALYTE | SPIKE
ADDED
(ug/Kg wet) | LCS
CONCENTRATION
(ug/Kg wet) | LCS
%
REC. | QC
LIMITS
REC. | |--------------------------|-------------------------------|-------------------------------------|------------------|----------------------| | gamma-BHC (Lindane) | 33.33 | 34.62 | 104 | 60 - 125 | | gamma-BHC (Lindane) [2C] | 33.33 | 25.98 | 77.9 | 60 - 125 | | gamma-Chlordane | 33.33 | 35.35 | 106 | 65 - 125 | | gamma-Chlordane [2C] | 33.33 | 28.72 | 86.2 | 65 - 125 | | Heptachlor | 33.33 | 38.30 | 115 | 50 - 140 | | Heptachlor [2C] | 33.33 | 28.02 | 84.0 | 50 - 140 | | Heptachlor epoxide | 33.33 | 34.28 | 103 | 65 - 130 | | Heptachlor epoxide [2C] | 33.33 | 27.51 | 82.5 | 65 - 130 | | Methoxychlor | 33.33 | 43.08 | 129 | 55 - 145 | | Methoxychlor [2C] | 33.33 | 38.46 | 115 | 55 - 145 | | Chlordane (tech) | | 1.70 U | 0 | 50 - 150 | | Chlordane (tech) [2C] | | 1.70 U | 0 | 50 - 150 | | Toxaphene | | 33.0 U | 0 | 50 - 150 | | Toxaphene [2C] | | 33.0 U | 0 | 50 - 150 | ## MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY SW8081A NBG-Topsoil Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Solid Batch: <u>9L01006</u> % Solids: 78.24 Source Sample Name: <u>0911230-02</u> | ANALYTE | SPIKE
ADDED
(ug/Kg dry) | SAMPLE
CONCENTRATION
(ug/Kg dry) | MS
CONCENTRATION
(ug/Kg dry) | MS
%
REC. | Q | QC
LIMITS
REC. | |---------------------|-------------------------------|--|------------------------------------|-----------------|---|----------------------| | 4,4'-DDD | 42.61 | ND | 41.57 | 97.6 | | 30 - 135 | | 4,4'-DDE | 42.61 | ND | 44.78 | 105 | | 70 - 125 | | 4,4'-DDT | 42.61 | ND | 49.31 | 116 | | 45 - 140 | | Aldrin | 42.61 | ND | 36.11 | 84.8 | | 45 - 140 | | alpha-BHC | 42.61 | 0.3757 | 37.75 | 87.7 | | 60 - 125 | | alpha-Chlordane | 42.61 | ND | 38.26 | 89.8 | | 65 - 120 | | beta-BHC | 42.61 | 0.6769 | 38.81 | 89.5 | | 60 - 125 | | delta-BHC | 42.61 | ND | 38.96 | 91.4 | | 55 - 130 | | Dieldrin | 42.61 | ND | 38.55 | 90.5 | | 65 - 125 | | Endosulfan I | 42.61 | 1.233 | 37.56 | 85.3 | | 15 - 135 | | Endosulfan II | 42.61 | ND | 33.30 | 78.1 | | 35 - 140 | | Endosulfan sulfate | 42.61 | 0.3213 | 38.06 | 88.6 | | 60 - 135 | | Endrin | 42.61 | ND | 54.18 | 127 | | 60 - 135 | | Endrin aldehyde | 42.61 | ND | 26.69 | 62.7 | | 35 - 145 | | Endrin ketone | 42.61 | ND | 34.30 | 80.5 | | 65 - 135 | | gamma-BHC (Lindane) | 42.61 | 0.4135 | 38.51 | 89.4 | | 60 - 125 | | gamma-Chlordane | 42.61 | 0.2900 | 39.26 | 91.5 | | 65 - 125 | | Heptachlor | 42.61 | ND | 43.00 | 101 | | 50 - 140 | | Heptachlor epoxide | 42.61 | 0.5573 | 38.14 | 88.2 | | 65 - 130 | | Methoxychlor | 42.61 | ND | 44.99 | 106 | | 55 - 145 | | Chlordane (tech) | | ND | 2.17 U | 0 | | 50 - 150 | | Toxaphene | | ND | 42.2 U | 0 | | 50 - 150 | # MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY SW8081A NBG-Topsoil Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: <u>Solid</u> Batch: <u>9L01006</u> % Solids: 78.24 Source Sample Name: <u>0911230-02</u> | ANALYTE | SPIKE
ADDED
(ug/Kg dry) | SAMPLE
CONCENTRATION
(ug/Kg dry) | MS
CONCENTRATION
(ug/Kg dry) | MS
%
REC. | Q | QC
LIMITS
REC. | |--------------------------|-------------------------------|--|------------------------------------|-----------------|---|----------------------| | 4,4'-DDD [2C] | 42.61 | ND | 30.77 | 72.2 | | 30 - 135 | | 4,4'-DDE [2C] | 42.61 | ND | 33.94 | 79.7 | | 70 - 125 | | 4,4'-DDT [2C] | 42.61 | 0.4490 | 39.15 | 90.8 | | 45 - 140 | | Aldrin [2C] | 42.61 | 0.2740 | 27.45 | 63.8 | | 45 - 140 | | alpha-BHC [2C] | 42.61 | 2.445 | 26.21 | 55.8 | N | 60 - 125 | | alpha-Chlordane [2C] | 42.61 | 0.8893 | 27.12 | 61.6 | N | 65 - 120 | | beta-BHC [2C] | 42.61 | 0.3305 | 24.70 | 57.2 | N | 60 - 125 | | delta-BHC [2C] | 42.61 | 0.2668 | 26.98 | 62.7 | | 55 - 130 | | Dieldrin [2C] | 42.61 | 6.859 | 29.58 | 53.3 | N | 65 - 125 | | Endosulfan I [2C] | 42.61 | ND | 33.13 | 77.7 | | 15 - 135 | | Endosulfan II [2C] | 42.61 | ND | 25.63 | 60.2 | | 35 - 140 | | Endosulfan sulfate [2C] | 42.61 | ND | 25.40 | 59.6 | N | 60 - 135 | | Endrin [2C] | 42.61 | ND | 34.40 | 80.7 | | 60 - 135 | | Endrin aldehyde [2C] | 42.61 | ND | 20.35 | 47.8 | | 35 - 145 | | Endrin ketone [2C] | 42.61 | ND | 24.50 | 57.5 | N | 65 - 135 | | gamma-BHC (Lindane) [2C] | 42.61 | 0.2242 | 26.45 | 61.5 | | 60 - 125 | | gamma-Chlordane [2C] | 42.61 | ND | 27.50 | 64.5 | N | 65 - 125 | | Heptachlor [2C] | 42.61 | 1.014 | 30.83 | 70.0 | | 50 - 140 | | Heptachlor epoxide [2C] | 42.61 | 0.5932 | 27.87 | 64.0 | N | 65 - 130 | | Methoxychlor [2C] | 42.61 | ND | 35.57 | 83.5 | | 55 - 145 | | Chlordane (tech) [2C] | | ND | 2.17 U | 0 | | 50 - 150 | | Toxaphene [2C] | | ND | 42.2 U | 0 | | 50 - 150 | # MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY SW8081A NBG-Topsoil Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Solid Batch: 9L01006 % Solids: 78.24 Source Sample Name: 0911230-02 | | SPIKE | MSD | MSD | 2.4 | | QC | LIMITS | |---------------------|----------------------|---------------------------|-------------|----------|---|-----|----------| | ANALYTE | ADDED
(ug/Kg dry) | CONCENTRATION (ug/Kg dry) | %
REC. # | %
RPD | Q | RPD | REC. | | 4,4'-DDD | 42.61 | 39.83 | 93.5 | 4.27 | | 30 | 30 - 135 | | 4,4'-DDE | 42.61 | 43.67 | 103 | 2.51 | | 30 | 70 - 125 | | 4,4'-DDT | 42.61 | 47.35 | 111 | 4.05 | | 30 | 45 - 140 | | Aldrin | 42.61 | 36.12 | 84.8 | 0.0243 | | 30 | 45 - 140 | | alpha-BHC | 42.61 | 37.75 | 87.7 | 0.00317 | | 30 | 60 - 125 | | alpha-Chlordane | 42.61 | 37.48 | 88.0 | 2.05 | | 30 | 65 - 120 | | beta-BHC | 42.61 | 38.64 | 89.1 | 0.443 | | 30 | 60 - 125 | | delta-BHC | 42.61 | 40.31 | 94.6 | 3.42 | | 30 | 55 - 130 | | Dieldrin | 42.61 | 38.00 | 89.2 | 1.46 | | 30 | 65 - 125 | | Endosulfan I | 42.61 | 36.72 | 83.3 | 2.26 | | 30 | 15 - 135 | | Endosulfan II | 42.61 | 32.57 | 76.4 | 2.20 | | 30 | 35 - 140 | | Endosulfan sulfate | 42.61 | 38.79 | 90.3 | 1.91 | | 30 | 60 - 135 | | Endrin | 42.61 | 52.49 | 123 | 3.18 | | 30 | 60 - 135 | | Endrin aldehyde | 42.61 | 27.34 | 64.2 | 2.37 | | 30 | 35 - 145 | | Endrin ketone | 42.61 | 32.91 | 77.3 | 4.14 | | 30 | 65 - 135 | | gamma-BHC (Lindane) | 42.61 | 39.21 | 91.1 | 1.79 | | 30 | 60 - 125 | | gamma-Chlordane | 42.61 | 38.46 | 89.6 | 2.08 | | 30 | 65 - 125 | | Heptachlor | 42.61 | 43.34 | 102 | 0.787 | | 30 | 50 - 140 | | Heptachlor epoxide | 42.61 | 37.90 | 87.7 | 0.628 | | 30 | 65 - 130 | | Methoxychlor | 42.61 | 41.89 | 98.3 | 7.13 | | 30 | 55 - 145 | | Chlordane (tech) | | 2.17 U | 0 | | | 30 | 50 - 150 | | Toxaphene | | 42.2 U | 0 | | | 30 | 50 - 150 | # MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY SW8081A NBG-Topsoil Laboratory: Empirical Laboratories, LLC SDG: <u>0911230</u> Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: <u>Solid</u> Batch: 9L01006 % Solids: 78.24 Source Sample Name: 0911230-02 | | SPIKE | MSD | MSD | | | QC | LIMITS | |--------------------------|----------------------|---------------------------|-------------|----------|---|-----|----------| | ANALYTE | ADDED
(ug/Kg dry) | CONCENTRATION (ug/Kg dry) | %
REC. # | %
RPD | Q | RPD | REC. | | 4,4'-DDD [2C] | 42.61 | 29.53 | 69.3 | 4.12 | | 30 | 30 - 135 | | 4,4'-DDE [2C] | 42.61 | 34.20 | 80.3 | 0.786 | | 30 | 70 - 125 | | 4,4'-DDT [2C] | 42.61 | 39.13 | 90.8 | 0.0666 | | 30 | 45 - 140 | | Aldrin [2C] | 42.61 | 27.25 | 63.3 | 0.738 | | 30 | 45 - 140 | | alpha-BHC [2C] | 42.61 | 26.48 | 56.4 | 1.01 | N | 30 | 60 - 125 | | alpha-Chlordane [2C] | 42.61 | 27.30 | 62.0 | 0.644 | N | 30 | 65 - 120 | | beta-BHC [2C] | 42.61 | 24.61 | 57.0 | 0.362 | N | 30 | 60 - 125 | | delta-BHC [2C] | 42.61 | 27.93 | 64.9 | 3.45 | | 30 | 55 - 130 | | Dieldrin [2C] | 42.61 | 30.72 | 56.0 | 3.80 | N | 30 | 65 - 125 | | Endosulfan I [2C] | 42.61 | 33.45 | 78.5 | 0.965 | | 30 | 15 - 135 | | Endosulfan II [2C] | 42.61 | 26.11 | 61.3 | 1.86 | | 30 | 35 - 140 | | Endosulfan sulfate [2C] | 42.61 | 27.01 | 63.4 | 6.16 | | 30 | 60 - 135 | | Endrin [2C] | 42.61 | 32.73 | 76.8 | 4.99 | | 30 | 60 - 135 | | Endrin aldehyde [2C] | 42.61 | 21.24 | 49.8 | 4.26 | | 30 | 35 - 145 | | Endrin ketone [2C] | 42.61 | 24.38 | 57.2 | 0.470 | N | 30 | 65 - 135 | | gamma-BHC (Lindane) [2C] | 42.61 | 26.81 | 62.4 | 1.38 | | 30 | 60 - 125 | | gamma-Chlordane [2C] | 42.61 | 28.10 | 66.0 | 2.16 | | 30 | 65 - 125 | | Heptachlor [2C] | 42.61 | 29.99 | 68.0 | 2.77 | | 30 | 50 - 140 | | Heptachlor epoxide [2C] | 42.61 | 27.97 | 64.3 | 0.367 | N | 30 | 65 - 130 | | Methoxychlor [2C] | 42.61 | 34.16 | 80.2 | 4.06 | | 30 | 55 - 145 | | Chlordane (tech) [2C] | | 2.17 U | 0 | | | 30 | 50 - 150 | | Toxaphene [2C] | | 42.2 U | 0 | | | 30 | 50 - 150 | ## PREPARATION BATCH SUMMARY SW8081A Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Batch: <u>9L01006</u> Batch Matrix: Solid Preparation: EXT_3546 | SAMPLE NAME | LAB SAMPLE ID | DATE PREPARED | INITIAL VOL./WEIGHT | FINAL VOL. | |--------------|---------------|----------------|---------------------|------------| | NBG-Backfill | 0911230-01 | 12/01/09 11:00 | 15.00 | 5.00 | | NBG-Topsoil | 0911230-02 | 12/01/09 11:00 | 15.00 | 5.00 | | Blank | 9L01006-BLK1 | 12/01/09 11:00 | 15.00 | 5.00 | | LCS | 9L01006-BS1 | 12/01/09 11:00 | 15.00 | 5.00 | | NBG-Topsoil | 9L01006-MS1 | 12/01/09 11:00 | 15.00 | 5.00 | | NBG-Topsoil | 9L01006-MSD1 | 12/01/09 11:00 | 15.00 | 5.00 | ## ANALYSIS DATA SHEET Blank Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Laboratory ID: 9L01006-BLK1 File ID: 007R0701.D
Sampled: Prepared: 12/01/09 11:00 Analyzed: 12/02/09 19:55 Solids: Preparation: <u>EXT_3546</u> Dilution: | Batch: | <u>9L01006</u> | Sequence: | 9L33706 | | Calibration: | 9310003 | Instrument: | GL-ECD4 | |----------------|---------------------------|-----------|-----------|----------|------------------|---------|-------------|---------| | CAS NO. | COMPOUND | | | CON | NC. (ug/Kg wet) | MDL | MRL | Q | | 72-54-8 | 4,4'-DDD | | | | | 0.170 | 0.670 | U | | 72-55-9 | 4,4'-DDE | | | | | 0.170 | 0.670 | U | | 50-29-3 | 4,4'-DDT | | | | | 0.170 | 0.670 | U | | 309-00-2 | Aldrin | | | | | 0.110 | 0.330 | U | | 319-84-6 | alpha-BHC | | | | | 0.110 | 0.330 | U | | 5103-71-9 | alpha-Chlordane | | | | | 0.110 | 0.330 | U | | 319-85-7 | beta-BHC | | | | | 0.110 | 0.330 | U | | 319-86-8 | delta-BHC | | | | | 0.110 | 0.330 | U | | 60-57-1 | Dieldrin | | | | | 0.170 | 0.670 | U | | 959-98-8 | Endosulfan I | | | | | 0.110 | 0.330 | U | | 33213-65-9 | Endosulfan II | | | | | 0.170 | 0.670 | U | | 1031-07-8 | Endosulfan sulfa | te | | | | 0.170 | 0.670 | U | | 72-20-8 | Endrin | | | | | 0.170 | 0.670 | U | | 7421-93-4 | Endrin aldehyde | | | | | 0.170 | 0.670 | U | | 53494-70-5 | Endrin ketone | | | | | 0.170 | 0.670 | U | | 58-89-9 | gamma-BHC (Li | ndane) | | | | 0.110 | 0.330 | U | | 5566-34-7 | gamma-Chlordan | ne | | | | 0.110 | 0.330 | U | | 76-44-8 | Heptachlor | | | | | 0.110 | 0.330 | U | | 1024-57-3 | Heptachlor epoxi | ide | | | | 0.110 | 0.330 | U | | 72-43-5 | Methoxychlor | | | | | 0.110 | 0.330 | U | | 57-74-9 | Chlordane (tech) | | | | | 0.570 | 1.70 | U | | 8001-35-2 | Toxaphene | | | | | 11.0 | 33.0 | U | | SYSTEM MO | NITORING COM | 1POUND | ADDED (ug | /Kg wet) | CONC (ug/Kg wet) | % REC | QC LIMITS | Q | | Tetrachloro-m- | Tetrachloro-m-xylene 16.6 | | 16.6 | 7 | 16.57 | 99.4 | 70 - 125 | | | Tetrachloro-m- | | | 16.6 | 7 | 12.94 | 77.7 | 70 - 125 | | | Decachlorobiph | | | 16.6 | 7 | 21.23 | 127 | 55 - 130 | | | Decachlorobiph | nenyl [2C] | | 16.6 | 7 | 20.20 | 121 | 55 - 130 | | ^{*} Values outside of QC limits Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: <u>Soil</u> Laboratory ID: 0911230-01 File ID: 013F1301.D Sampled: 11/24/09 15:30 Prepared: 12/02/09 09:50 Analyzed: 12/04/09 16:05 Solids: <u>83.65</u> Preparation: EXT_8151 Dilution: <u>1</u> | Batch: | 9L01005 | Sequence: | <u>9L34314</u> | | Calibration: | 9342007 | Instrument: | GL-ECD3 | |------------------------------------|------------------|-----------|----------------|------------------|-----------------|-----------|-------------|---------| | CAS NO. | COMPOUND | | | CON | IC. (ug/Kg dry) | MDL | MRL | Q | | 93-76-5 | 2,4,5-T | | | | | 2.99 | 5.98 | U | | 93-72-1 | 2,4,5-TP (Silver | x) | | | | 2.99 | 5.98 | U | | 94-75-7 | 2,4-D | | | | | 29.9 | 59.8 | U | | 94-82-6 | 2,4-DB | | | | | 29.9 | 59.8 | U | | 75-99-0 | Dalapon | | | | | 74.7 | 149 | U | | 1918-00-9 | Dicamba | | | | | 2.99 | 5.98 | U | | 120-36-5 | Dichloroprop | | | | | 29.9 | 59.8 | U | | 88-85-7 | Dinoseb | | | | | 14.9 | 29.9 | U | | 94-74-6 | МСРА | | | | | 2990 | 5980 | U | | 7085-19-0 | МСРР | | | | | 2990 | 5980 | U | | SYSTEM MONITORING COMPOUND | | ADDED (ug | /Kg dry) | CONC (ug/Kg dry) | % REC | QC LIMITS | Q | | | | nenylacetic acid | | 119. | 5 | 103.1 | 86.3 | 30 - 120 | | | 2,4-Dichlorophenylacetic acid [2C] | | | 119.: | 5 | 96.00 | 80.3 | 30 - 120 | | | | | | | | | | | | ^{*} Values outside of QC limits Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: <u>Soil</u> Laboratory ID: 0911230-02 File ID: 016R1601.D Sampled: 11/24/09 14:30 Prepared: 12/02/09 09:50 Analyzed: 12/04/09 17:21 Solids: 78.24 Preparation: EXT_8151 Dilution: 1 | Solids: | <u> 18.24</u> | Trop | ui uiioii. | | 2151 | | _ | | |-----------|---|-----------|----------------|-----------|------------------|----------------|-------------|---------| | Batch: | 9L01005 | Sequence: | <u>9L34314</u> | | Calibration: | <u>9342007</u> | Instrument: | GL-ECD3 | | CAS NO. | COMPOUN | D | | CON | IC. (ug/Kg dry) | MDL | MRL | Q | | 93-76-5 | 2,4,5-T | | | | | 3.20 | 6.39 | U | | 93-70-3 | 2,4,5-TP (Silv | ex) | | | 11.3 | 3.20 | 6.39 | P | | 94-75-7 | 2,4-D | | | | | 32.0 | 63.9 | U | | 94-82-6 | 2,4-DB | | | | | 32.0 | 63.9 | U | | 75-99-0 | Dalapon | | | <u> </u> | | 79.9 | 160 | U | | 1918-00-9 | Dicamba | | - | | 15.3 | 3.20 | 6.39 | P | | 120-36-5 | Dichloroprop | | | | | 32.0 | 63.9 | U | | 88-85-7 | Dinoseb | | | | | 16.0 | 32.0 | U | | 94-74-6 | MCPA | | | | | 3200 | 6390 | U | | 7085-19-0 | MCPP | | | | | 3200 | 6390 | U | | | | OMPOUND | ADDED (ug | g/Kg dry) | CONC (ug/Kg dry) | % REC | QC LIMITS | Q | | | SYSTEM MONITORING COMPOUND ADDED (control of the system) 2,4-Dichlorophenylacetic acid 127 | | 127.5 | 8 | 117.3 | 91.7 | 30 - 120 | | | | | 127.5 | | 81.08 | 63.4 | 30 - 120 | | | | | | | | | | | | | ^{*} Values outside of QC limits ## LCS / LCS DUPLICATE RECOVERY SW8151A Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Solid Batch: 9L01005 Laboratory ID: 9L01005-BS1 Preparation: EXT_8151 Initial/Final: 10 g / 10 mL | | SPIKE | LCS | LCS | QC | |------------------------|-------------|---------------------------|-----------|----------------| | | ADDED | CONCENTRATION (ug/Kg wet) | %
REC. | LIMITS
REC. | | ANALYTE | (ug/Kg wet) | | | | | 2,4,5-T | 20.00 | 22.77 | 114 | 45 - 135 | | 2,4,5-T [2C] | 20.00 | 28.03 | 140 | 45 - 135 | | 2,4,5-TP (Silvex) | 20.00 | 19.87 | 99.3 | 45 - 125 | | 2,4,5-TP (Silvex) [2C] | 20.00 | 20.39 | 102 | 45 - 125 | | 2,4-D | 200.0 | 189.2 | 94.6 | 35 - 145 | | 2,4-D [2C] | 200.0 | 181.6 | 90.8 | 35 - 145 | | 2,4-DB | 200.0 | 173.0 | 86.5 | 50 - 155 | | 2,4-DB [2C] | 200.0 | 168.5 | 84.3 | 50 - 155 | | Dalapon | 500.0 | -125 U-53.56 | -0.7 | 10 - 110 | | Dalapon [2C] | 500.0 | -125 U- 52.32 | -0 10,5 | 10 - 110 | | Dicamba | 20.00 | 15.21 | 76.1 | 55 - 110 | | Dicamba [2C] | 20.00 | 15.19 | 76.0 | 55 - 110 | | Dichloroprop | 200.0 | 238.6 | 119 | 75 - 140 | | Dichloroprop [2C] | 200.0 | 237.6 | 119 | 75 - 140 | | Dinoseb | 100.0 | 40.10 | 40.1 | 5 - 130 | | Dinoseb [2C] | 100.0 | 36.44 | 36.4 | 5 - 130 | | MCPA | 20000 | 19000 | 95.0 | 30 - 115 | | MCPA [2C] | 20000 | 18080 | 90.4 | 30 - 115 | | MCPP | 20000 | 19320 | 96.6 | 35 - 135 | | MCPP [2C] | 20000 | 19400 | 97.0 | 35 - 135 | WV 12/10/09 # MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY SW8151A NBG-Backfill Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: **Radford Army Ammunition Plant** Matrix: Solid Batch: 9L01005 % Solids: 83.65 Source Sample Name: 0911230-01 | ANALYTE | SPIKE
ADDED
(ug/Kg dry) | SAMPLE
CONCENTRATION
(ug/Kg dry) | MS
CONCENTRATION
(ug/Kg dry) | MS
%
REC. | Q | QC
LIMITS
REC. | |-------------------|-------------------------------|--|------------------------------------|-----------------|---|----------------------| | 2,4,5-T | 23.91 | ND | 34.16 | 143 | N | 45 - 135 | | 2,4,5-TP (Silvex) | 23.91 | ND | 24.61 | 103 | | 45 - 125 | | 2,4-D | 239.1 | ND | 210.3 | 87.9 | | 35 - 145 | | 2,4-DB | 239.1 | ND | 216.1 | 90.4 | | 50 - 155 | | Dalapon | 597.7 | ND | 80.24 | 13.4 | | 10 - 110 | | Dicamba | 23.91 | ND | 19.49 | 81.5 | | 55 - 110 | | Dichloroprop | 239.1 | ND | 278.1 | 116 | | 75 - 140 | | Dinoseb | 119.5 | ND | 41.15 | 34.4 | | 5 - 130 | | MCPA | 23910 | ND | 22270 | 93.1 | | 30 - 115 | | МСРР | 23910 | ND | 22720 | 95.0 | | 35 - 135 | | | SPIKE | MSD | MSD | | | QC | LIMITS | |-------------------|----------------------|---------------------------|-------------|----------|-----------------|-----|----------| | ANALYTE | ADDED
(ug/Kg dry) | CONCENTRATION (ug/Kg dry) | %
REC. # | %
RPD | Q | RPD | REC. | | 2,4,5-T | 23.91 | 30.19 | 126 | 12.3 | | 30 | 45 - 135 | | 2,4,5-TP (Silvex) | 23.91 | 22.22 | 92.9 | 10.2 | | 30 | 45 - 125 | | 2,4-D | 239.1 | 201.2 | 84.2 | 4.39 | | 30 | 35 - 145 | | 2,4-DB | 239.1 | 193.8 | 81.1 | 10.9 | | 30 | 50 - 155 | | Dalapon | 597.7 | 149 U 71.54 | æ12.0 | 11.4 | 14 - | 30 | 10 - 110 | | Dicamba | 23.91 | 17.36 | 72.6 | 11.5 | | 30 | 55 - 110 | | Dichloroprop | 239.1 | 264.7 | 111 | 4.94 | | 30 | 75 - 140 | | Dinoseb | 119.5 | 36.35 | 30.4 | 12.4 | | 30 | 5 - 130 | | MCPA | 23910 | 20400 | 85.3 | 8.74 | | 30 | 30 - 115 | | MCPP | 23910 | 21320 | 89.2 | 6.37 | | 30 | 35 - 135 | N-12/10/19 # MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY SW8151A **NBG-Backfill** Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Solid Batch: 9L01005 % Solids: 83.65 Source Sample Name: 0911230-01 | ANALYTE | SPIKE
ADDED
(ug/Kg dry) | SAMPLE
CONCENTRATION
(ug/Kg dry) | MS
CONCENTRATION
(ug/Kg dry) | MS
%
REC. | Q | QC
LIMITS
REC. | |------------------------|-------------------------------|--|------------------------------------|-----------------|---|----------------------| | 2,4,5-T [2C] | 23.91 | 5.229 | 27.94 | 95.0 | | 45 - 135 | | 2,4,5-TP (Silvex) [2C] | 23.91 | ND | 25.28 | 106 | | 45 - 125 | | 2,4-D [2C] | 239.1 | ND | 211.8 | 88.6 | | 35 - 145 | | 2,4-DB [2C] | 239.1 | ND | 201.5 | 84.3 | | 50 - 155 | | Dalapon [2C] | 597.7 | ND OK ND | 149 U 74.68 | ⊕ /2.5 | ₩ | 10 - 110 | | Dicamba [2C] | 23.91 | ND | 18.09 | 75.7 | | 55 - 110 | | Dichloroprop [2C] | 239.1 | ND | 272.0 | 114 | | 75 - 140 | | Dinoseb [2C] | 119.5 | ND | 38.32 | 32.1 | | 5 - 130 | | MCPA [2C] | 23910 | ND | 21610 | 90.4 | | 30 - 115 | | MCPP [2C] | 23910 | ND | 22290 | 93.2 | | 35 - 135 | | | SPIKE | | | | | QC LIMITS | | | |------------------------|----------------------
---------------------------|--------------------|----------|---------------|-----------|----------|--| | ANALYTE | ADDED
(ug/Kg dry) | CONCENTRATION (ug/Kg dry) | %
REC. # | %
RPD | Q | RPD | REC. | | | 2,4,5-T [2C] | 23.91 | 28.97 | 99.3 | 3.63 | | 30 | 45 - 135 | | | 2,4,5-TP (Silvex) [2C] | 23.91 | 23.77 | 99.4 | 6.19 | | 30 | 45 - 125 | | | 2,4-D [2C] | 239.1 | 202.4 | 84.6 | 4.53 | | 30 | 35 - 145 | | | 2,4-DB [2C] | 239.1 | 189.8 | 79.4 | 5.96 | | 30 | 50 - 155 | | | Dalapon [2C] | 597.7 | 149 U 7/.63 | - 0 123 | 4.17 | 14 | 30 | 10 - 110 | | | Dicamba [2C] | 23.91 | 17.35 | 72.6 | 4.18 | | 30 | 55 - 110 | | | Dichloroprop [2C] | 239.1 | 264.8 | 111 | 2.67 | | 30 | 75 - 140 | | | Dinoseb [2C] | 119.5 | 34.08 | 28.5 | 11.7 | | 30 | 5 - 130 | | | MCPA [2C] | 23910 | 20000 | 83.7 | 7.73 | | 30 | 30 - 115 | | | MCPP [2C] | 23910 | 21410 | 89.6 | 4.01 | | 30 | 35 - 135 | | 12/10/09 ## PREPARATION BATCH SUMMARY SW8151A Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Batch: 9L01005 Batch Matrix: Solid Preparation: EXT_8151 | SAMPLE NAME | LAB SAMPLE ID | DATE PREPARED | INITIAL VOL./WEIGHT | FINAL VOL. | |--------------|---------------|----------------|---------------------|------------| | NBG-Backfill | 0911230-01 | 12/02/09 09:50 | 10.00 | 10.00 | | NBG-Topsoil | 0911230-02 | 12/02/09 09:50 | 10.00 | 10.00 | | Blank | 9L01005-BLK1 | 12/02/09 09:50 | 10.00 | 10.00 | | LCS | 9L01005-BS1 | 12/02/09 09:50 | 10.00 | 10.00 | | NBG-Backfill | 9L01005-MS1 | 12/02/09 09:50 | 10.00 | 10.00 | | NBG-Backfill | 9L01005-MSD1 | 12/02/09 09:50 | 10.00 | 10.00 | ## **ANALYSIS DATA SHEET** Blank Laboratory: Empirical Laboratories, LLC SDG: 0911230 Client: Arcadis (A285) Project: Radford Army Ammunition Plant Matrix: Laboratory ID: 9L01005-BLK1 File ID: <u>011R1101.D</u> Sampled: Prepared: 12/02/09 09:50 Analyzed: 12/04/09 15:11 Solids: Preparation: EXT_8151 Dilution: | Batch: | <u>9L01005</u> | Sequence: | uence: <u>9L34314</u> Calibration: | | 9342007 | Instrument: | GL-ECD3 | | |-------------------------------|-----------------|-----------|------------------------------------|---------|------------------|-------------|-----------|---| | CAS NO. | COMPOUNI | O | | CON | IC. (ug/Kg wet) | MDL | MRL | Q | | 93-76-5 | 2,4,5-T | | | | | 2.50 | 5.00 | U | | 93-72-1 | 2,4,5-TP (Silve | ex) | | | | 2.50 | 5.00 | U | | 94-75-7 | 2,4-D | | | | | 25.0 | 50.0 | U | | 94-82-6 | 2,4-DB | | | | | 25.0 | 50.0 | U | | 75-99-0 | Dalapon | | | | | 62.5 | 125 | U | | 1918-00-9 | Dicamba | | | | | 2.50 | 5.00 | U | | 120-36-5 | Dichloroprop | | | | | 25.0 | 50.0 | U | | 88-85-7 | Dinoseb | | | | | 12.5 | 25.0 | U | | 94-74-6 | MCPA | | | | | 2500 | 5000 | U | | 7085-19-0 | MCPP | | | | | 2500 | 5000 | U | | SYSTEM MOI | NITORING CC | MPOUND | ADDED (ug/ | Kg wet) | CONC (ug/Kg wet) | % REC | QC LIMITS | Q | | 2,4-Dichlorophenylacetic acid | | 100.0 |) | 86.96 | 87.0 | 30 - 120 | | | | 2,4-Dichloroph | enylacetic acid | [2C] | 100.0 |) | 81.82 | 81.8 | 30 - 120 | | ^{*} Values outside of QC limits | Appendix E | | |------------------------------|--------| | Laboratory Data Validation F | Review | Analytical data was evaluated in accordance with applicable USEPA SW-846 method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (July 2002), "USEPA Region III National Functional Guidelines for Organic Data Review" (September 1994), "USEPA Region III National Functional Guidelines for Inorganic Data Review" (June 1995), site-specific requirements defined in *Radford Master Work Plan* (URS, 2003), and site-specific requirements defined in the *Quality Assurance Plan Addendum* (Arcadis, 2008). The validation presented in this review was performed at the RAAP defined Level I. The data review summarized in this report includes a review of all sample collection documentation and the electronic data validation of the analytical data housed in the project database. Sample collection documentation included sample collection logs and chains of custody. The electronic data validation was performed utilizing the EQuIS Data Qualification Module (DQM). DQM checks for the following parameters: - Holding times and preservation; - Blank contamination: - 1. Method blanks. - 2. Trip blanks, - 3. Equipment blanks; - Matrix spike and Duplicate sample recovery; - Matrix Spike and Matrix Spike Duplicate relative percent differences; - Laboratory Control Sample and Duplicate recovery; - Laboratory Control Sample and Duplicate relative percent differences; - Surrogate recovery (organic analyses only); and - Field duplicate relative percent difference. Manually review was performed on the following items: - Sample dilutions and reporting limits; - Case Narratives; and - Total versus dissolved metals concentrations. Reviewed data was generated by Empirical Laboratories. Data qualifiers were applied electronically to the database with any additional qualifiers added manually. A summary of the data as amended by data qualifiers is included with the original hard copy reports. The attached table summarizes the data that were qualified due to QC deficiencies. The table indicates compounds/analytes qualified based on electronic and manual validation. Refer to the associated method section of the validation checklist for a detailed explanation of qualification. All other data in this SDG are considered usable as reported. The following list of data qualifiers and definitions were applied in accordance with qualification criteria defined in the above guidance documents: - UB Compound/analyte detected in blank or associated blank, qualified as a non-detect at listed value. - J The analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample. - UJ The analyte was not detected above the reporting limit; however, the reported quantitation limit is approximate and may, or may not represent the actual limit of quantitation necessary to accurately and precisely measure analyte in the sample. - R The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; and the presence or absence of the analyte cannot be verified. | DQM RUN BY: | Rachelle Borne | 01/26/10 | |----------------------|------------------|----------| | REVIEW PERFORMED BY: | Rachelle Borne | 01/26/10 | | SIGNATURE: | Samue Ban | 01/26/10 | | PEER REVIEW: | I nee gue Towell | 1/28/10 | The following samples were included in this SDG: | _ | | Sample | | |----------|----------------------|------------|--------------------| | SDG | Sample ID | Date | Parent sample | | 0912138 | NBG-XRF002(0-0.5) | 12/8/2009 | | | 0912138 | NBG-XRF005(0-0.5) | 12/8/2009 | | | 0912138 | NBG-XRF007(0-0.5) | 12/8/2009 | | | 0912138 | NBG-XRF010(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF013(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF015(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF017(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF020(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF021(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF022(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF023B(3-3.5) | 12/9/2009 | | | 0912138 | NBG-XRF025(4-4.5) | 12/9/2009 | | | 0912138 | NBG-XRF026(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF028(1-1.5) | 12/9/2009 | | | 0912138 | NBG-XRF031(1-1.5) | 12/10/2009 | | | 0912138 | NBG-XRFDUP001(3-3.5) | 12/9/2009 | NBG-XRF023B(3-3.5) | ## ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION | | Reported | | Performance
Acceptable | | Not | |---|----------|-----|---------------------------|-----|----------| | | No | Yes | No | Yes | Required | | 1. Sample results | | X | | X | | | 2. Parameters analyzed | | X | | X | | | 3. Method of analysis | | X | | X | | | 4. Sample collection date | | X | | X | | | 5. Laboratory sample received date | | X | | X | | | 6. Sample analysis date | | X | | X | | | 7. Copy of chain-of-custody form signed by lab sample custodian | | X | | X | | | 8. Narrative summary of QA or sample problems provided | | X | | X | | QA - quality assurance ### Comments: All samples were reported on a dry weight basis. ### **METALS** | | | | | fication | |------------------------------------|-------|----------------|-----|----------| | | DQM D | DQM Deficiency | | plied | | Items Reviewed | No | Yes | No | Yes | | 1. Holding times | DQM | | DQM | | | 2. Reporting limits | M | | M | | | 3. Blanks | | | | | | A. Method blanks | DQM | | DQM | | | B. Equipment blanks | NA | | NA | | | 5. Laboratory control sample (LCS) | | | | | | A. LCS accuracy (%R) | DQM | | DQM | | | B. LCS duplicate (LCSD) %R | NA | | NA | | | C. LCS/LCSD precision (RPD) | NA | | NA | | | 6. Matrix spike | | | | | | A. Matrix spike (MS) %R | NA | | NA | | | B. Matrix spike duplicate (MSD) %R | NA | | NA | | | C. MS/MSD RPD | NA | | NA | | | 7. Total vs. dissolved | NA | | NA | | | 8. Field duplicate sample RPD | | DQM | | DQM | ### Comments: This section presents a discussion of any additions or changes to the electronic data validation for compounds analyzed utilizing Methods 6010B and 7470A. - 2. Several samples required dilutions for lead. - 8. Sample location NBG-XRFDUP001(3-3.5) was collected as a field duplicate of NBG-XRF023B(3-3.5) The RPD for lead was above the control limit. The parent and the duplicate are qualified as estimated for lead. ### DATA VALIDATION QUALIFICATION SUMMARY | Sample ID | Parameter | Result | Units | Qualifier | Reason | |----------------------|-----------|--------|-------|-----------|--------| | NBG-XRFDUP001(3-3.5) | Lead | 362.0 | mg/kg | J | FD RPD | | NBG-XRF023B(3-3.5) | Lead | 59.4 | mg/kg | J | FD RPD | ### **Qualifier Definitions:** - J Result is considered to be estimated at the value reported. - UJ Result is considered not detected but estimated due to QC
deficiencies. - UB Non-detect at the Reporting Limit or at the concentration reported if greater than the RL due to associated blank contamination. - R Result is qualified as unusable, data point is rejected. Explanation/Notes: