

FINAL

RFI Addendum SWMU-31 (RAAP-026): Coal Ash Settling Lagoons

Prepared for: Radford Army Ammunition Plant

October 2009

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1650 Arch Street Philadelphia, Pennsylvania 19103-2029

December 14, 2009

Commander, Radford Army Ammunition Plant Attn: SJMRF-OP-EQ (Jim McKenna) P.O. Box 2 Radford, VA 24141-0099

P.W. Holt Environmental Manager Alliant Techsystems, Inc. Radford Army Ammunition Plant P.O. Box 1 Radford, VA 24141-0100

Re: Radford Army Ammunition Plant, Va. Review of Army's Final RCRA Facility Investigation (RFI) Addendum Report for Solid Waste Management Units (SWMU) 31 (RAAP-026)

Dear Mr. McKenna and Ms. Holt:

The U.S. Environmental Protection Agency (EPA) and Virginia Department of Environmental Quality (VDEQ) have reviewed the U.S. Army's (Army's) October 2009 Final RFI Addendum Report for SWMU 31, located at the Radford Army Ammunition Plant (RFAAP) in Radford, Virginia. Based upon our review, the report is approved, and in accordance with Part II. (E) (5) of RFAAP's Corrective Action Permit, it can now be considered final.

If you have any questions, please call me at 215-814-3413. Thanks.

Sincerely.

William Geiger

RCRA Project Manager

Office of Remediation (3LC20)

cc: James Cutler, VDEQ

ATK Armament Systems Energetic Systems Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0160

www.atk.com

October 29, 2009

Mr. William Geiger RCRA General Operations Branch, Mail Code: 3WC23 Waste and Chemicals Management Division U. S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

Mr. James L. Cutler, Jr. Virginia Department of Environmental Quality 629 East Main Street Richmond, VA 24143-0100

Subject: With Certification, Final RFI Addendum SWMU 31(RAAP-026) Coal Ash Settling Lagoons, October 2009 EPA ID# VA1 210020730

Dear Mr. Geiger and Mr. Cutler:

Enclosed is the certification for the subject document that was sent to you on October 28, 2009. Also enclosed is the 28 October 2009 transmittal email.

This document was discussed during the October 28, 2008 and June 23, 2009 partnering meetings and we anticipate approval.

Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder ATK staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 731-5782.

Sincerely,

P.W. Holt, Environmental Manager

Alliant Techsystems Inc.

:: Karen Sismour

Virginia Department of Environmental Quality P. O. Box 10009 Richmond, VA 23240-0009

E. A. Lohman Virginia Department of Environmental Quality Blue Ridge Regional Office 3019 Peters Creek Road Roanoke, VA 24019

09-815-174 JMcKenna Kip Foster Virginia Department of Environmental Quality Blue Ridge Regional Office 3019 Peters Creek Road Roanoke, VA 24019

Rich Mendoza
U.S. Army Environmental Command
1 Rock Island Arsenal
Bldg 90, 3rd Floor, Room 30A
IMAE-CDN
Rock Island, Illinois 61299

Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201

bc:

Administrative File J. McKenna, ACO Staff Rob Davie-ACO Staff P.W. Holt J. J. Redder Env. File Coordination:

M. A. Mian

Radford Army Ammunition Plant Final RFI Addendum SWMU31 (RAAP-026): Coal Ash Settling Lagoons October 2009

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

SIGNATURE:

PRINTED NAME:

TITLE:

Antonio Munera

LTC, CM

Commanding

SIGNATURE: PRINTED NAME:

TITLE:

Kent Moliday

Vice President and General Manager

ATK Energetics Systems

Greene, Anne

From:

McKenna, Jim

Sent:

Wednesday, October 28, 2009 1:49 PM

To:

Greene, Anne; ealohman@deq.virginia.gov; Druck, Dennis E Mr CIV USA MEDCOM CHPPM; diane.wisbeck@arcadis-us.com; durwood willis2; Geiger.William@epamail.epa.gov; Redder, Jerome; jim spencer; jlcutler@deq.virginia.gov; kjsismour@deq.virginia.gov; Llewellyn, Tim;

Mendoza, Richard R Mr CIV USA IMCOM; Meyer, Tom NAB02; Parks, Jeffrey N;

Timothy.Leahy@shawgrp.com; Tina Devine@URSCorp.com

Cc: Subject: kdfoster@deg.virginia.gov SWMU 31 (UNCLASSIFIED)

Classification: UNCLASSIFIED

Caveats: FOUO

A11:

Note the contractor will ship the subject document with a copy of this email to the POCs and tracking numbers below.

Certification letter will follow from Radford AAP under separate cover. As this document discusses the Building 4330 potable water filter backwash, a copy is also being provided to Mr. Kip Foster.

Immediately below are the POCs with tracking numbers.

Thank you for your support of the Radford AAP IRP.

POCs and Fed Ex tracking numbers:

Mr. James McKenna

Already Sent

2 Copies and 2 CDs

Mr. Richard Mendoza

797057785661

1 CD

1 Copy and 1 CD

Ms. Susan Ryan 797057790330

Mr. Tom Meyer

797057793832

1 Copy and 1 CD

Mr. Dennis Druck

797057797301

1 Copy

Mr. James Cutler

796070363120

1 Copy

Ms. Karen Sismour

797057805185

1 Copy

Ms. Elizabeth Lohman

796070386955

1 CD

Mr. William Geiger

797057829344

1 Copy

Mr. Mark Bowen 797057835096

1 Copy

Mr. Kip Foster

797057840625

1 Copy and 1 CD

Classification: UNCLASSIFIED

Caveats: FOUO

RE SWMU-31 (UNCLASSIFIED)

From: Geiger.William@epamail.epa.gov Sent: Wednesday, May 06, 2009 10:46 AM To: McKenna, Jim J Mr CIV USA AMC

Cc: diane.wisbeck@arcadis-us.com; jerome.redder@atk.com; jlcutler@deq.virginia.gov; Mendoza, Richard R Mr CIV USA IMCOM;

Llewellyn, Tim; Meyer, Tom NABO2

Subject: RE: SWMU-31 (UNCLASSIFIED) Attachments: SWMU 31 Benzo a Pyrene.xlsx

Jim, we are ok with your response below, but I would hold off on revising and resubmitting the report, as Jim C. is still in discussions with the regional office regarding the need for any groundwater monitoring requirements. Thanks

William A. Geiger USEPA Region III 1650 Arch Street, 3LC20 Philadelphia, PA 19103 (215)814-3413

> "McKenna, Jim J Mr CIV USA AMC" <jim.mckenna@us. army.mil>

04/16/2009 08:22 AM <di ane. wi sbeck@arcadi s-us. com>,
William Gei ger/R3/USEPA/US@EPA,
<j erome. redder@atk. com>,
<jlcutler@deq. vi rgi ni a. gov>,
"Llewellyn, Ti m"
<Ti m. Llewellyn@arcadi s-us. com>,
"Mendoza, Ri chard R Mr CIV USA IMCOM"
<ri chard. r. mendoza@us. army. mil>,
"Meyer, Tom NABO2"
<Tom. Meyer@nabO2. usace. army. mil>

Subj ect

Tο

RE: SWMU-31 (UNCLASSIFIED)

Classification: UNCLASSIFIED

Caveats: FOUO

Will G. and Jim C.

Are you ok with our response below? We would like to revise and resubmit the report per our Feb 18, 2009 partnering meeting.

Thanks, Jim

----Original Message----

From: McKenna, Jim J Mr CIV USA AMC Sent: Friday, March 20, 2009 1:44 PM

To: 'Anne Greene (anne. greene@atk. com)'; 'di ane. wi sbeck@arcadi s-us. com'; Page 1

RE SWMU-31 (UNCLASSIFIED)

'Geiger.William@epamail.epa.gov'; 'jerome.redder@atk.com'; 'jim spencer'; 'jlcutler@deq.virginia.gov'; 'Llewellyn, Tim'; Mendoza, Richard R Mr CIV USA IMCOM; 'Meyer, Tom NABO2'; 'Parks, Jeffrey N'; 'Timothy.Leahy@shawgrp.com'; 'Tina_Devine@URSCorp.com'; 'Jeremy Flint (jeremy.flint@atk.com)' Subject: FW: SWMU-31 (UNCLASSIFIED) Importance: High

Classification: UNCLASSIFIED

Caveats: FOUO

Will and Jim,

Responses to EPA/Betty Ann's questions during our Feb 18, 2009 Partnering Meeting held in Baltimore, MD. Please forward to others in your organization. I apologize for the delay. Let us know if this is ok.

Thanks. Jim

1) Betty Ann (USEPA) indicated there might be a discrepancy in the benzo(a)pyrene results presented in the RFI Addendum. ARCADIS was unable to identify the discrepancy, however the following summary of B(a)P concentrations detected in groundwater has been provided to clarify groundwater conditions:

In 1998, benzo(a)pyrene (B(a)P) was detected in groundwater samples collected at two wells: 31MW2 (0.022 ug/L) and 31MW3 (0.061 ug/L). The concentration reported in the RFI Addendum for 31MW2 of 0.022 ug/L is correct. When the wells were resampled in 2002, B(a)P was not detected in 31MW3, but a sample could not be collected from 31MW2, thus is presence/absence at this location could not be confirmed. The RFI concluded that "The low frequency of exceendances [sic] in sediment and the lack of reproducibility in the groundwater samples suggest that PAHs are not a concern at this site." It should be noted for both this discussion and the one below regarding the reporting limit (RL), that B(a)P was not detected in the duplicate sample collected at 31MW2 in 1998. A summary of B(a)P concentrations reported in groundwater samples collected in 1998, 2002, and 2008 for all monitoring wells is provided in the attached table.

Betty Ann (USEPA) questioned the magnitude of the reporting limit with respect to the previously reported B(a)P results in groundwater. In accordance with the QAPA submitted for this project, if detected, B(a)P would be have reported between the MDL (0.015 ug/L) and the RL (0.046 ug/L). This is consistent with previous practices including 1998 when the detected concentration (0.022 ug/L) was less than the RL (0.05 ug/L). In addition, the samples collected in 1998 were analyzed using USEPA SW-846 Method 8310, which at the low-levels reported, is prone to false positives. As noted above B(a)P was not detected in the duplicate sample collected from 31MW2 in 1998. The samples collected in both 2002 and 2008 were analyzed using Method 8270 (GC/MS).

In summary, B(a)P was detected at low levels in 1998 in the groundwater sample collected at 31MW3 and in the primary sample collected from 31MW2, but not in the duplicate sample. Samples were analyzed using a method (8310) that is prone to false positives at low-levels. B(a)P was not detected in the groundwater sample collected at 31MW3 in 2002 and it was not detected in either the primary or duplicate sample collected from 31MW2 in 2008. Sample collected in 2002 and 2008 were analyzed using Method 8270 and the MDLs for were both lower than the concentrations reported in 1998.

RE SWMU-31 (UNCLASSIFIED) The lines of evidence presented here make a strong case that the detection of B(a)P in groundwater samples collected in 1998 were anomalous and that B(a)P is not a concern in groundwater.

Classification: UNCLASSIFIED

Caveats: FOUO

Classification: UNCLASSIFIED

Caveats: FOUO

(See attached file: SWMU 31 Benzo a Pyrene.xlsx)

Summary of Benzo(a)Pyrene Analytical Data for Groundwater SWMU-031 (RAAP-026) Coal Ash Settling Lagoons, Radford Army Ammunition Plant, Virginia

	Location	Date			Result	Result	Result	Reporting	
Sample Name	ID	Collected	Method	Analyte	Value	Qualifiers	Units	Limit	MDL
31MW1-2_19980407	31MW1	4/7/1998	8310	Benzo(a)pyrene	0.05	U	ug/L	0.05	
31MW1-2D_19980407	31MW1	4/7/1998	8310	Benzo(a)pyrene	0.05	U	ug/L	0.05	
31MW2-2	31MW2	4/1/1998	8310	Benzo(a)pyrene	0.022	J	ug/L	0.05	
31MW3-2	31MW3	4/1/1998	8310	Benzo(a)pyrene	0.061	J	ug/L	0.05	
31MW4-2	31MW4	4/6/1998	8310	Benzo(a)pyrene	0.05	U	ug/L	0.05	
31MW01	31MW1	7/11/2002	8270C	Benzo(a)pyrene	5	U	ug/L	5	0.2
31MW01	31MW1	7/11/2002	8270C SIM	Benzo(a)pyrene	0.05	U	ug/L	0.05	0.0172
31MW04	31MW4	7/11/2002	8270C	Benzo(a)pyrene	5	U	ug/L	5	0.2
31MW04	31MW4	7/11/2002	8270C SIM	Benzo(a)pyrene	0.05	U	ug/L	0.05	0.0172
31MW3	31MW3	7/11/2002	8270C	Benzo(a)pyrene	5	U	ug/L	5	0.2
31MW3	31MW3	7/11/2002	8270C SIM	Benzo(a)pyrene	0.05	U	ug/L	0.05	0.0172
31MW002(061808)	31MW2	6/18/2008	SW8270C-PAHs	Benzo(a)pyrene	0.046	U	ug/L	0.046	0.015
31MWDUP001(061808)	31MW2	6/18/2008	SW8270C-PAHs	Benzo(a)pyrene	0.046	U	ug/L	0.046	0.015

ATK Ammunition Systems Energetic Systems Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100

www.atk.com

December 12, 2008

Mr. William Geiger RCRA General Operations Branch, Mail Code: 3WC23 Waste and Chemicals Management Division U. S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

Mr. James L. Cutler, Jr. Virginia Department of Environmental Quality 629 East Main Street Richmond, VA 24143-0100

Subject: With Certification, Radford Army Ammunition Plant,
Draft SWMU 31 RFI Addendum (RAAP-026): Coal Ash Settling Lagoons November 2008
EPA ID# VA1 210020730

Dear Mr. Geiger and Mr. Cutler:

Enclosed is the certification for the subject document that was sent to you on November 3, 2008. In the final copy we will clarify Section 3.3.3.5 by adding the following sentence: The potential risk contributed by dioxin/furans is 1x10-6, which is at the low end of the USEPA target risk range of 1x10-6 to 1x10-4.

In addition, we will clarify Section 3.4 by including the following: The potential risks for adult and child resident exposure to soil, surface water, and sediment were within the USEPA target risk range and the HI was less than or equal to the benchmark hazard index threshold of 1. Therefore, no chemicals of concern were identified in these media. Potential risks associated with hypothetical resident exposures to groundwater are discussed in the following section.

Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder ATK staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 731-5782.

Sincerely,

P.W. Holt, Environmental Manager

Alliant Techsystems Inc.

c: Karen Sismour

Virginia Department of Environmental Quality

P. O. Box 10009

Richmond, VA 23240-0009

E. A. Lohman Virginia Department of Environmental Quality West Central Regional Office 3019 Peters Creek Road Roanoke, VA 24019

Rich Mendoza
U.S. Army Environmental Command
1 Rock Island Arsenal
Bldg. 90, 3rd Floor, Room 30A
IMAE-CDN
Rock Island, Illinois 61299

Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201

bc:

Administrative File J. McKenna, ACO Staff M.A. Miano P.W. Holt J. J. Redder Env. File Coordination:

MMMan

M. A. Miano

Radford Army Ammunition Plant Draft RFI Addendum SWMU31 (RAAP-026): Coal Ash Settling Lagoons November 2008

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

SIGNATURE: PRINTED NAME:

TITLE:

Jon R. Drushal

Lieutenant Colonel (P), US Army

Commanding

SIGNATURE:

PRINTED NAME:

TITLE:

Kent Holiday

Vice President and General Manager

ATK Energetics Systems

Greene, Anne

From:

McKenna, Jim

Sent:

Monday, November 03, 2008 11:17 AM

To:

Greene, Anne; ealohman@deq.virginia.gov; dennis.druck@us.armv.mil:

diane.wisbeck@arcadis-us.com; durwood willis2; Geiger.William@epamail.epa.gov; Redder, Jerome; jim spencer; jlcutler@deq.virginia.gov; Llewellyn, Tim; Mendoza, Richard R Mr CIV USA IMCOM; Parks, Jeffrey N; Timothy Leahy@shawgrp.com; Tina Devine@URSCorp.com:

Tom.Meyer@nab02.usace.army.mil

Subject:

Draft RFI Addendum SWMU 31 (RAAP-026): Coal Ash Settling Lagoons (UNCLASSIFIED)

Importance:

High

Classification:

UNCLASSIFIED

Caveats: NONE

A11:

Note the contractor will ship the subject document with a copy of this email to the POCs and tracking numbers below.

A certification letter will follow.

Thank you for your support of the Radford Army Ammunition Plant Installation Restoration Program.

Jim McKenna

POCs and tracking numbers:

James McKenna

7980 5398 9284

Richard Mendoza

7906 1884 2232

Tom Meyer

7927 8183 7675

Dennis Druck

7994 0582 3272

James Cutler

7921 3819 6186

Durwood Willis

7980 5399 9447

Elizabeth Lohman

7906 1885 2531

William Geiger

7994 0582 6238

Classification: UNCLASSIFIED

Caveats: NONE

DE SA

DEPARTMENT OF THE ARMY

US ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MD 21010-5403

MCHB-TS-REH

2 1 NOV 200R

MEMORANDUM FOR Office of Environmental Quality, Radford Army Ammunition Plant (SJMRF-OP-EQ/Mr. Jim McKenna), P.O. Box 2, Radford, VA 24143-0002

SUBJECT: Document Titled: "Draft RFI Addendum, SWMU-31 (RAAP-026), Coal Ash Settling Lagoons, Radford Army Ammunition Plant, Virginia, November 2008"

- 1. The U.S. Army Center for Health Promotion and Preventive Medicine reviewed, without comment, the subject document on behalf of the Office of The Surgeon General pursuant to Army Regulation 200-1 (Environmental Protection and Enhancement). We appreciate the opportunity to review this addendum. Our previous comment has been addressed and we concur with the No Further Action recommendation as being protective of human health and the environment.
- 2. The document was reviewed by Mr. Dennis Druck, Environmental Health Risk Assessment Program. He can be reached at DSN 584-2953, commercial (410) 436-2953 or electronic mail "dennis.druck@us.army.mil".

FOR THE COMMANDER:

JEFFREY S. KIRKPATRICK

My b. Bragatics

Director, Health Risk Management

CF:

HQDA (DASG-PPM-NC) IMCOM-NE (IMNE-PWD-E) USACE (CEHNC-CX-ES) USAEC (IMAE-CD/Mr. Rich Mendoza) prave Done

Diane D. Wisbeck Deputy Project Manager

Tim Llewellyn Project Manager

RFI Addendum SWMU-31 (RAAP-026): Coal Ash Settling Lagoons

Radford Army Ammunition Plant

Prepared for:

Radford Army Ammunition Plant

Prepared by:
ARCADIS
1114 Benfield Boulevard
Suite A
Millersville
Maryland 21108
Tel 410.987.0032
Fax 410.987.4392

Our Ref.:

GP08RAAP.0026

Date:

October, 2009

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

Ex	Executive Summary					
1.	Introduction					
	1.1	Object	ive	1		
	1.2	Site Hi	story	1		
2.	Recen	t Groun	dwater Summary	3		
3.	Human Health Risk Assessment Summary					
	3.1	3.1 Data Evaluation				
	3.2	Exposure Assessment				
	3.3 Risk Characterization					
		3.3.1	Hazard Quotient for Non-cancer Hazard	6		
		3.3.2	Excess Lifetime Cancer Risk	7		
		3.3.3	Receptor-Specific Excess Lifetime Risk and Hazard Evaluation	7		
	3.4	Summ	ary	10		
	3.5	Reassessment of Potential Risks Excluding Benzo(a)Pyrene				
	3.6	Conclu	usions	12		
4.	Screen	ning Lev	vel Ecological Risk Assessment Summary	13		
	4.1	Background				
	4.2	Identification of Exposure Pathways and Potential Receptors				
	4.3 Effects Characterization					
	4.4	4.4 Summary of COPEC Selection for the Direct Toxicity Evaluation				
		4.4.1	Surface Soil	15		
		4.4.2	Sediment	15		
		4.4.3	Surface Water	15		
	4.5	Risk Characterization				
		4.5.1	Groundwater Evaluation	16		
		4.5.2	Amphibian Evaluation	16		

Table of Contents

	4.6	Summary and Conclusions	17		
5.	Recom	Recommendations			
6.	Referer	nces	21		
Та	bles				
	Table	1 Summary of Groundwater Analtyical Results for 31MW2			
	Table	2 Summary of Potential Human Health Risks and Hazards			
	Table	3 Revised Potential Human Health Risks and Hazards			
Fig	jures				
	Figure	e 1 Site Location			
	Figure	e 2 Site Map			
Ар	pendice	s			
	A Gro	oundwater Sampling Log			
	B Lab	poratory Data Report			

Acronyms and Abbreviations

AEC United States Army Environmental Command

bgs Below Ground Surface

CERCLA Comprehensive Environmental Response and Compensation Liability Act

COC Chemical of Concern

COPECs chemicals of potential ecological concern

COPCs chemicals of potential concern

CSF cancer slope factor

ELCR excess lifetime cancer risk
ERA Ecological Risk Assessment

ft Feet

HHRA Human Health Risk Assessment

HI hazard index HQ hazard quotient HSA Horseshoe area

IRP Installation Restoration Program
MCL Maximum Contaminant Level
MMA Main Manufacturing Area

MWP Master Work Plan NFA No Further Action

PAHs Polynuclear Aromatic Hydrocarbons

PBC Performance Based Contract RBC Risk-Based Concentration

RCRA Resource Conservation and Recovery Act

RFAAP Radford Army Ammunition Plant

RfC Reference Concentration

RfD Reference Dose

SLERA Screening Level Ecological Risk Assessment

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEQ Toxic Equivalent

TRVs toxicity reference values

URF Unit Risk Factor

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

VDEQ Virginia Department of Environmental Quality

VPDES Virginia Pollution Discharge

Radford Army Ammunition Plant

Executive Summary

ARCADIS U.S, Inc. (ARCADIS) has been retained by the United States Army Environmental Command (AEC) to perform Installation Restoration Program (IRP) activities at Radford Army Ammunition Plant (RFAAP), located in Radford Virginia.

A Final Resource Conservation and Recovery Act (RCRA) Facility Investigation Report (RFI) for SMWU-31, also identified as RAAP-26, located within the installation's Main Manufacturing Area (MMA) was submitted in July 2007. The RFI was approved by U.S. Environmental Protection Agency (USEPA) and Virginia Department of Environmental Quality (VDEQ) in September 2007 under the condition that one supplemental groundwater sample be collected from 31MW2 and analyzed for polynuclear aromatic hydrocarbons (PAHs).

The supplemental groundwater sample was collected in duplicate from Well 31MW2 on 16 June 2008 via low flow sampling protocol and submitted for analysis for PAHs by USEPA method 8270. No compounds were detected in either the primary sample or the duplicate. Therefore, the confirmation sample collected in June 2008 indicates that the previous benzo(a)pyrene detection in the groundwater sample collected from 31MW2 was anomalous. Its detection was most likely related to sample turbidity, and therefore, was not indicative of the groundwater quality at this location.

Based on the data collected as part of this and previous investigations, and the results of the Human Health Risk Assessment (HHRA) and Ecological Risk Assessment (ERA), No Further Action (NFA) is required for SWMU-31. Data collected as part of the RFI and RFI addendum investigation indicate that the observed levels of site-related constituents in the soil, sediment and surface water of the lagoons do not pose an unacceptable risk to either human or ecological receptors under current industrial or future residential land uses. Although PAHs were detected in previous groundwater samples, their presence was not verified during subsequent sampling events. Potential risks associated with the use of groundwater as a drinking water source are primarily driven by the presence of chloroform and arsenic. Chloroform is associated with backwash discharged to the lagoons by the current drinking water plant operation and is present in the groundwater at concentrations less than its Maximum Contaminant Level (MCL). The levels of arsenic are also less than the MCL. Therefore, no further action is recommended at SWMU-31.

Radford Army Ammunition Plant

1. Introduction

ARCADIS U.S, Inc. (ARCADIS) has been retained by the United States AEC to perform IRP activities at RFAAP, located in Radford Virginia (Figure 1). This work in being conducted under a Performance Based Contract (PBC) that encompasses the New River Unit (NRU), two Solid Waste Management Units (SWMUs), and one Hazardous Waste Management Unit (HWMU) currently under RCRA Part II Permit.

A Final RCRA Facility Investigation Report (RFI) for SMWU-31, also identified as RAAP-26, located within the installation's MMA was submitted in July 2007 (Figure 2). The RFI was approved by USEPA and VDEQ under the condition that one supplemental groundwater sample be collected from 31MW2 and analyzed for PAHs. This RFI Addendum transmits this additional data point to fulfill USEPA requirements and presents a summary of the risk assessment which incorporates the results of the supplemental groundwater data.

1.1 Objective

The objective of this report is to transmit data collected in accordance with the Master Work Plan (MWP) (URS, 2003) to demonstrate that the data gap at well 31MW2 identified in the SWMU-31 RFI Report (Shaw, 2003) by USEPA in an email dated April 11, 2007, has been filled and to provide USEPA and Virginia Department of Environmental Quality (VDEQ) with the Army's selected risk assessment approach/conclusions for SWMU-31. This path has been selected to expedite the path to corrective action decision for SWMU-31 by providing a means to gain agreement on the risk profile.

1.2 Site History

SWMU-31 is composed of three unlined surface water impoundments presently used to control backwash water for potable water treatment. As such the lagoons are an actively operated industrial unit receiving approximately 40,000 gallons of combined backwash and overflow water each day. Historically, prior to the mid 1980s, the lagoons were used to control water effluent from the power house. The water reportedly may have included fly ash and bottom ash from the combustion of low sulfur coal (Shaw, 2007) for the purpose of steam production. The lagoons were periodically dredged and coal ash from the former operations was removed and transported to the fly ash landfill number 2 (SWMU 29) for disposal. Total surface area of the three lagoons is approximately 72,500 square feet (ft²). The primary lagoon is one sixth of

Radford Army Ammunition Plant

the size of the secondary lagoon and less than a seventh of the size of the tertiary lagoon. The Final VI Report recommended that a groundwater investigation be conducted at SWMU-31 (Dames & Moore, 1992). Parsons conducted an RFI and published the draft results in 1996 indicating that groundwater ingestion by site workers at SWMU-31 was the risk driver. The Final RFI (Shaw, 2007) identified benzo(a)pyrene as a risk driver. ARCADIS conducted a groundwater sampling event in June 2008 to fill the data gap at SWMU-31. The data was used in conjunction with preexisting data to reevaluate the potential health risks associated with SWMU-31. The results are presented herein.

Radford Army Ammunition Plant

2. Recent Groundwater Summary

On June 16, 2008 ARCADIS personnel collected a groundwater sample from Well 31MW2 via low flow sampling protocol and submitted it for extraction/analysis for PAHs by EPA method 3541/8270C. The analytical results for the sample are included in Table 1. For comparison, the historical results for PAHs in 31MW2 are also presented in Table 1.

No compounds were detected within the target range of the analytical method in either the primary sample or the duplicate. Therefore, the confirmation sample collected in June 2008 indicates that the previous benzo(a)pyrene exceedance in well 31MW2 was anomalous, and most likely related to a turbid PAH sample and is therefore not indicative of the groundwater quality at this location.

Radford Army Ammunition Plant

3. Human Health Risk Assessment Summary

The following sections present a summary of the HHRA that was prepared for SWMU-31 (Coal Ash Settling Lagoons) as part of the RCRA Facility Investigation Report (Shaw, 2007). The purpose of the HHRA was to evaluate the potential exposure to site-related constituents at SWMU-31.

The HHRA for the SWMU-31 was prepared following the RFAAP Final MWP (URS, 2003) and the RFAAP Site Screening Process (USEPA, 2001). The HHRA was consistent with USEPA (1989) guidance.

3.1 Data Evaluation

Analytical data obtained in 1992, 1996, 1998, and 2002 were collected from surface soil, total soil, sediment, surface water, and groundwater. Two surface and two subsurface soil samples were collected and used in the analysis. Six surface water and sediment samples were collected for use in the risk assessment. Finally, five groundwater samples were used in the evaluation.

Constituents of potential concern (COPCs) were identified to focus the HHRA on those constituents present as a result of past activities at the site and to be of potential concern to human health. The maximum detected concentration of a constituent to the USEPA Region 3 risk based concentration (RBC) and to background levels for the inorganic constituents. Residential soil RBCs were used as a point of comparison for the soil and sediment samples. Tap water RBCs were used as a point of comparison for the groundwater and surface water samples. Constituents that were not detected in any medium were not selected as COPCs. Aluminum and cobalt were detected at concentrations within the background range. The COPCs by medium are:

- Surface soil 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-toxicity equivalents, aluminum, arsenic, chromium, cobalt, iron, manganese, and vanadium.
- Total soil TCDD-toxicity equivalents, aluminum, arsenic, chromium, cobalt, iron, manganese, and vanadium.
- Sediment dibenzofuran, aluminum, arsenic, cobalt, and iron.

Radford Army Ammunition Plant

- Surface water bromodichloromenthane, chloroform, and aluminum.
- Groundwater benzo(a)pyrene, chloroform, aluminum, arsenic, cobalt, iron, manganese, and vanadium.

3.2 Exposure Assessment

Exposure pathways have been identified based on an evaluation of the site characterization information and the fate and transport properties of the constituents of interest. The exposure pathways evaluated identify likely points where human receptors may contact affected media under current or potential future conditions at the site. The principal pathways by which exposure could occur are identified and presented in this section.

An exposure pathway is defined by the following four elements: (1) a source and mechanism of constituent release to the environment; (2) an environmental transport medium for the released constituent; (3) a point of potential contact with the contaminated medium (the exposure point); and (4) an exposure route at the exposure point. The purpose of the exposure assessment is to estimate the ways a population may potentially be exposed to constituents at a site. This typically involves projecting concentrations along potential pathways between sources and receptors. The projection usually is accomplished using site-specific data and, when necessary, mathematical modeling. Exposure can occur only when the potential exists for a receptor to directly contact released constituents or when there is a mechanism for released constituents to be transported to a receptor. Without exposure there is no risk; therefore, the exposure assessment is a critical component of the risk assessment.

SWMU-31 is located within the Horseshoe area (HSA) of RAAP. This area of RFAAP is mostly rural with areas that were used primarily for agriculture. Currently, the HSA is an industrial area and there are no plans to change existing land use. Residential and recreational areas are found adjacent to RFAAP.

Due to the industrial land-use of SWMU-31, current potential receptors are maintenance and industrial workers. Workers are found in the area of the water treatment plant, but not typically in the area around the lagoons. If SWMU-31 were redeveloped, it is unlikely that the area would be used for non-industrial purposes. Nonetheless, a hypothetical future residential exposure scenario was evaluated.

Radford Army Ammunition Plant

The installation is fenced, has guard towers, and security at entry gates. Therefore, it is unlikely that trespassers could gain access to the facility. The high level of security at RAAP makes it very difficult for an older child or adolescent to trespass onto the installation on a regular basis. The risks assessment did not evaluate exposure of a trespasser quantitatively. Rather, it was assumed that this potential receptor's exposure would be less than a hypothetical future resident and approximately equal to that of a maintenance worker.

Under current conditions, maintenance and industrial workers were assumed to contact surface soil, sediment, and surface water. Through this contact, they could be exposed through incidental ingestion, dermal contact, and inhalation of vapors or dust. Inhalation of vapors migrating from groundwater to ambient air also was evaluated for these two potential receptors. Direct ingestion of groundwater was not evaluated since groundwater is not used as a potable water supply.

Hypothetical future exposure scenarios were evaluated for the maintenance workers, industrial workers and excavation workers potentially exposed to surface soil, combined surface and subsurface soil, surface water, sediment, and groundwater. Additionally, hypothetical future residential exposure to combined surface and subsurface soil, sediment surface water, and groundwater.

3.3 Risk Characterization

Potential risks to human health are evaluated quantitatively by combining calculated exposure levels and toxicity data. A distinction is made between non-carcinogenic and carcinogenic endpoints, and two general criteria are used to describe the hazard quotient (HQ) for non-carcinogenic effects and excess lifetime cancer risk (ELCR) for constituents evaluated as human carcinogens.

3.3.1 Hazard Quotient for Non-cancer Hazard

Exposure doses are averaged over the expected exposure period to evaluate non-carcinogenic effects. The HQ is the ratio of the estimated exposure dose and the Reference Dose (RfD). Thus, an HQ greater than 1 indicates that the estimated exposure level for that constituent exceeds the RfD or Reference Concentration (RfC). This ratio does not provide the probability of an adverse effect. Although an HQ less than 1 indicates that health effects should not occur, an HQ that exceeds 1 does not imply that health effects will occur, but that health effects are potentially possible.

Radford Army Ammunition Plant

The sum of the HQs is the hazard index (HI). A limitation with the HI approach is that the assumption of dose additivity is applied to compounds that may induce different effects by different mechanisms of action. Consequently, the summing of HIs for a number of compounds that are not expected to induce the same type of effects or that do not act by the same mechanism may overestimate the potential for toxic effects. Consistent with USEPA risk assessment guidelines for chemical mixtures, in the event that the total HI for an exposure scenario exceeds 1, it is incumbent on a risk assessor to segregate HQs by target organ/critical effect (USEPA, 1989). Therefore, if the calculated HI exceeds 1 as a consequence of summing several HQs for constituents not expected to induce the same type of effects or that do not act by the same mechanism, the HIs may be segregated by effect and mechanism of action to derive separate HIs for each target-organ/critical-effect group (USEPA, 1989).

3.3.2 Excess Lifetime Cancer Risk

The ELCR is an estimate of the potential increased risk of cancer that results from lifetime exposure, at specified average daily dosages, to constituents detected in media at a site. Estimated doses or intakes for each constituent are averaged over the hypothesized lifetime of 70 years. It is assumed that a large dose received over a short period is equivalent to a smaller dose received over a longer period, as long as the total doses are equal. The ELCR is calculated as the product of the exposure dose and the cancer slope factor (CSF) or unit risk factor (URF). The risk values provided in this report indicate the potential increased risk, above that applying to the general population, which may result from the exposure scenarios described in the Exposure Assessment. The risk estimate is considered to be an upper-bound estimate; therefore, it is likely that the true risk is far less than that predicted by the model.

3.3.3 Receptor-Specific Excess Lifetime Risk and Hazard Evaluation

The results of the human health risk assessment are summarized below. For this evaluation, the USEPA target risk range of 1×10⁻⁶ to 1×10⁻⁴ is appropriate for characterizing potential risk and a hazard index of 1 is the appropriate benchmark for non-cancer endpoints. A summary of the calculated potential risks and HIs are presented in Table 2.

3.3.3.1 Maintenance Workers

Current and future maintenance workers were assumed to contact surface (current) and total (future) soil, sediment, surface water and groundwater. The calculated ELCR

Radford Army Ammunition Plant

for soil exposure was 8.5×10^{-7} below the risk range, and the calculated HI was 0.07, well below the benchmark of 1. Exposure to sediment was evaluated and the calculated ELCR and HI were 2×10^{-6} and 0.03, respectively. The ELCR was at the low end of the target risk range and the HI was well below the benchmark of 1. Exposure of the maintenance worker to surface water was evaluated. The calculated ELCR and HI were 6×10^{-9} and 0.0003, respectively, well below the benchmarks. The maintenance worker was assumed to inhale constituents migrating from groundwater to ambient air. The calculated ELCR was calculated 2×10^{-8} and the HI was 0.00005, well below the benchmarks.

The total risk from exposure to all media was 3×10^{-6} which is at the low end of the target risk range and the hazard index was 0.1, well below the benchmark of 1. Exposure to arsenic in sediments was the risk driver. The maximum concentration of arsenic is within the background range for soil; sediment background levels were not determined.

3.3.3.2 Industrial Workers

Industrial workers were assumed to contact surface (current) and total (future) soil, sediment, surface water and groundwater. The calculated ELCR for surface soil exposure was 4×10^{-6} within the risk range, and the calculated HI was 0.3, well below the benchmark of 1. Exposure to total soil resulted in a calculated ELCR of 4×10^{-6} at the low end of the risk range, and the calculated HI was 0.3, below the benchmark of 1. Exposure to sediment was evaluated and the calculated ELCR and HI were 9×10^{-6} and 0.2, respectively. The ELCR was within the target risk range and the HI was well below the benchmark of 1. Exposure of the industrial worker to surface water was evaluated. The calculated ELCR and HI were 3×10^{-8} and 0.001, respectively, well below the benchmarks. The industrial worker was assumed to inhale constituents migrating from groundwater to ambient air. The calculated ELCR was calculated 8×10^{-8} and the HI was 0.0002, well below the benchmarks. The hypothetical industrial worker was assumed to ingest groundwater and the ELCR was calculated to be 5×10^{-5} and the HI was 0.7, within and below the benchmarks.

The total risk from exposure to all media was 6×10^{-5} which is within the target risk range and the hazard index was 1, approximately equal to the benchmark of 1 for the current worker. The total risk from exposure to groundwater was 5×10^{-5} within the target risk range and the hazard index was 0.7, below the benchmark of 1 for the future worker. Arsenic was the risk driver but it was determined to be at background levels.

Radford Army Ammunition Plant

3.3.3.3 Excavation Worker

Hypothetical future excavation workers were assumed to contact combined surface and subsurface soil, sediment, surface water and groundwater. Exposure to total soil resulted in a calculated ELCR of 5×10^{-7} below the risk range, and the calculated HI was 5, above the benchmark of 1 and due to the presence of manganese. Exposure to sediment was evaluated and the calculated ELCR and HI were 1×10^{-6} and 0.4, respectively. The ELCR was equal to the low end of the target risk range and the HI was below the benchmark of 1. Exposure of the excavation worker to surface water was evaluated. The calculated ELCR and HI were 1×10^{-9} and 0.001, respectively, well below the benchmarks. The excavation worker was assumed to inhale constituents migrating from groundwater to ambient air. The calculated ELCR was calculated 1×10^{-7} and the HI was 0.008, well below the benchmarks.

The total risk was calculated to be 2×10^{-6} which is at the low end of the target risk range and the hazard index was 5, above the benchmark of 1. Exposure to arsenic in sediments was the risk driver. The maximum concentration of arsenic is within the background range. Manganese in soil was the non-cancer hazard driver. However, like arsenic, manganese was found within the background range.

3.3.3.4 Adult Residents

Hypothetical future adult residents were assumed to contact combined surface and subsurface soil, sediment, surface water, and groundwater. Exposure to soil and sediments could result in excess lifetime cancer risks of 3×10^{-6} and 3×10^{-6} , respectively, due to the presence of arsenic at background levels. The non-cancer hazards for soil and sediment exposures were below 1. Exposure to surface water resulted in excess lifetime cancer risks and non-cancer hazards below the benchmarks. Groundwater was assumed to be used as a potable water supply and exposure was evaluated based on ingestion, dermal contact, and inhalation exposures. The risks were calculated to be 4×10^{-4} which is above the target risk range. The risk drivers were benzo(a)pyrene, arsenic and chloroform. The non-cancer hazards were less than 1.

3.3.3.5 Child Residents

Exposure of hypothetical future child residents was evaluated assuming contact with combined surface and subsurface soil, sediment, surface water, and groundwater. The excess lifetime cancer risk and hazard index 2x10⁻⁴ and 9, both are above their

Radford Army Ammunition Plant

respective benchmarks. Exposure to soil resulted in an excess lifetime cancer risk of 1×10⁻⁵ due to the presence of arsenic at background levels and dioxins/furans. The potential risk contributed by dioxins/furans was 1×10⁻⁶ which is at the low end of the USEPA target risk range of 1×10⁻⁶ to 1×10⁻⁴. The non-cancer hazard exceeded 1 due to the presence of iron and vanadium. The vanadium was found to be at background levels. The hazard due to iron exposure was approximately equal to 1 and was less than the recommended daily allowance for iron in the diet. Therefore, the soil exposures are acceptable. Exposure to sediment was dominated by arsenic present at background levels. Children were assumed to contact surface water while wading and swimming. The risks and hazards were all less than benchmarks. Groundwater exposures resulted in the greatest risks. The excess lifetime cancer risk as calculated to be 1×10⁻⁴ due to the presence of benzo(a)pyrene, arsenic and chloroform. The non-cancer hazard was calculated to be 8 due to arsenic, iron and vanadium. The presence of iron was reevaluated and found to be at levels less than the recommended daily allowance for iron in the diet.

Finally, the HHRA proposed that off-site resident exposure to groundwater was the same as the on-site resident exposure to groundwater. However, the New River, is directly downgradient of the lagoons and acts as the regional discharge boundary for groundwater. Therefore, off-site migration of groundwater beyond this boundary is not considered to be a realistic exposure scenario.

3.4 Summary

The SWMU-31 HHRA evaluated current and future exposure to soil, sediment and surface water under current/future industrial and future hypothetical residential landuses. Soil, sediment and surface water exposure pathways evaluated included incidental ingestion, dermal contact, and inhalation of vapors and dust. Groundwater exposure pathways evaluated included inhalation of volatiles migrating from groundwater to ambient air and ingestion of groundwater.

Under current land-use conditions, maintenance worker and industrial worker exposure to soil, sediment, and surface water were evaluated quantitatively. Trespasser exposure to environmental media at SWMU-31 was considered to be highly unlikely, and thus this exposure scenario was evaluated qualitatively.

Under future industrial land-use conditions, maintenance, industrial, and excavation worker exposure to combined surface and subsurface soil, sediment, surface water, and groundwater were evaluated. Under future hypothetical residential land-use

Radford Army Ammunition Plant

conditions, adult and child residential exposure to combined surface and subsurface soil, sediment, surface water, and groundwater were evaluated. In addition, future offsite residential exposure to groundwater was evaluated.

Under current and future land-use scenarios, the potential risks and hazards for the maintenance worker and industrial worker were all within or below the USEPA target risk range (1x10⁻⁴ to 1x10⁻⁶) or less than or equal to the benchmark hazard index threshold of 1. The potential risk for the future excavation worker was at the low end of the USEPA target risk range. The total HI was greater than 1 due to manganese in soil. However, manganese is naturally occurring and is present in soil at the site at levels that are within background. Therefore, following USEPA (2002) guidance, it was not identified as a Chemical of Concern (COC). The potential risks for adult and child residential exposure to soil, sediment and surface water were within the USEPA target risk range and the HI was less than or equal to the benchmark hazard index of 1. Therefore, no COCs were identified in these media. Potential risks associated with hypothetical resident exposure to groundwater are discussed in the following section.

3.5 Reassessment of Potential Risks Excluding Benzo(a)Pyrene

Potential risks were reevaluated considering the most recent groundwater data collected in June 2008. Only potential risks for the hypothetical future residential landuse scenario were re-assessed to incorporate the recent groundwater data (i.e., potential risks were recalculated excluding benzo(a)pyrene which was not detected during the most recent sampling event). Constituents contributing to a risk greater than 10^{-6} or the HI greater than 1 were identified as risk drivers. Excluding benzo(a)pyrene, the excess lifetime cancer risks were recalculated to be 2×10^{-4} (adult) and 1×10^{-4} (child) (Table 3). The primary risk drivers were arsenic, iron, vanadium, and chloroform in groundwater. Although potential risks and hazards associated with residential exposure to groundwater exceeded the USEPA target risk range and hazard index, there are a number attenuating factors. Each of the factors along with its impact on the HHRA results are discussed below.

- The HHRA relied on the use of maximum detected concentrations rather than the recommended central tendency concentration, resulting in a conservative estimate of potential risk.
- 2) Iron is an essential nutrient and was reevaluated and determined to be within the recommended daily allowance (i.e., the intake amount recommended by the Surgeon General to maintain a healthy diet).

Radford Army Ammunition Plant

- 3) The presence of chloroform in groundwater at SWMU-31 is associated with drinking water disinfection process at the adjacent Drinking Water Plant (Figure 2), and is not related to historical site-activities. In addition, the concentration of chloroform in groundwater is less than the Federal MCL.
- 4) Arsenic is a naturally occurring metal in groundwater, and although, site-specific background levels are unavailable, detected concentrations are less than the Federal MCL.
- 5) Vanadium is a naturally occurring metal present groundwater in this area. Vanadium concentrations in background groundwater at HWMU-5 and HWMU-7 range from 17 to 40 ug/L (Draper Aden, 2007). The maximum detected concentration of vanadium in groundwater at SWMU-31 is 17 ug/L, which is at the low end of the naturally occurring range.

3.6 Conclusions

Based on the consideration of these factors, the hazards and risks calculated in the risk assessment result from constituents at or below associated backgrounds or Federal Standards accordingly. Accordingly, no COCs in groundwater were identified and no further evaluation of human health is recommended.

Radford Army Ammunition Plant

4. Screening Level Ecological Risk Assessment Summary

The following sections present a summary of the Screening Level Ecological Risk Assessment (SLERA) that was prepared for SWMU-31 (Coal Ash Settling Lagoons) as part of the RCRA Facility Investigation Report (Shaw, 2007).

The SLERA for the SWMU-31 was prepared following the RFAAP Final MWP (URS, 2003), the RFAAP Site Screening Process (USEPA, 2001), the Tri-Service Procedural Guidelines for Ecological Risk Assessments (Wentsel et al., 1996) and USEPA guidance (USEPA, 1997). Steps 1, 2 and 3 of the USEPA guidance were completed as part of the SLERA.

The primary objective of the SLERA was to assess whether enough information exists at SWMU-31 to state there is a potential for unacceptable risks to ecological receptors as a result of potential hazardous substance releases. To that end, the SLERA evaluated potential hazards associated with chemicals of potential ecological concern (COPECs) in surface soil, lagoon sediment and lagoon surface water at SWMU-31.

4.1 Background

The former coal ash settling lagoons (the lagoons) are located on the floodplain of the New River. The primary, secondary and tertiary lagoons are connected and have surface areas of approximately 0.11, 0.68, and 0.86 acre, respectively. The effluent of the secondary and tertiary settling lagoons are designed to discharge to the New River through Outfall 024 which is regulated under a Virginia Pollution Discharge (VPDES) permit issued in 1986. The SLERA indicates that there have only been two discharge events through Outfall 024 during the past 22 years, one in 1992 and one in 2005.

The lagoons are unlined settling ponds that were constructed in the 1950s and designed to receive effluent from Power House No. 2 and the water treatment plant. The primary lagoon received water carrying fly ash and bottom ash from Power House No. 2 and filter backwash from the water treatment plant. The secondary and tertiary lagoons were designed to receive discharge from the primary lagoon, if necessary. The Power House ceased discharging to the lagoons in the late 1980s. The water treatment plant is currently discharging to the lagoons; water flowing into the primary lagoon consists of overflow or filter backwash from the drinking water settling tanks at Water Plant 4330. The lagoons have not been used for any other activities.

Radford Army Ammunition Plant

An installation-wide biological survey was conducted by the Virginia Department of Game and Inland Fisheries in 1999. Survey results are discussed in the SLERA.

4.2 Identification of Exposure Pathways and Potential Receptors

The following exposure pathways were evaluated in the food chain assessment:

- the incidental ingestion of soil and sediment; and
- the ingestion of water and food.

Five terrestrial receptor species that could potentially occur at SWMU-31 were selected as representative indicator species for the potential effects of COPECs. Species included the meadow vole (*Microtus pennsylvanicus*), short-tailed shrew (*Blarina brevicauda*), American robin (*Turdus migratorius*), red-tailed hawk (*Buteo jamaicensis*) and red fox (*Vulpes vulpes*). In addition, the potential impacts to terrestrial plants were considered by the presence or absence of vegetative stress, assessed during site inspections.

Two aquatic habitat dwelling receptor species that could potentially occur in the area of SWMU-31 were selected as representative indicator species for the potential effects of COPECs. Species included the great blue heron (*Ardea herodias*) and the mink (*Mustela vison*). Potential impacts to aquatic plants and other aquatic biota were assessed by comparing measured surface water and sediment COPEC concentrations with available direct contact screening levels as discussed later in this summary. In addition, an amphibian assessment was also conducted as part of the SLERA.

The measurement endpoints for the food chain portion of the SLERA were based on toxicity values from available literature. The selected assessment endpoint for SWMU-31 is the protection of long-term survival and reproductive capabilities for populations of receptors.

4.3 Effects Characterization

The ecological effects characterization presents the selection of literature benchmarks, the development of toxicity reference values (TRVs) and the approach for evaluating direct contact toxicity. Several sources for literature benchmarks and TRVs were used in the SLERA and are discussed at length in the SLERA report.

Radford Army Ammunition Plant

4.4 Summary of COPEC Selection for the Direct Toxicity Evaluation

Chemical concentrations in soil, lagoon sediment and lagoon surface water were compared to applicable screening levels to evaluate direct toxicity to soil invertebrates and aquatic biota at SWMU-31. Chemicals with concentrations that exceeded screening levels were identified as Direct Toxicity COPECs.

4.4.1 Surface Soil

Impacts to soil at SWMU-31 were expected to originate from the lagoons, and therefore soil samples were collected at the permitted outfall. Two samples from one boring (31SB05A and 31SB05B) were used for the soil evaluation in the SLERA. Samples were collected between 0 and 4 feet below ground surface (bgs). As noted in the SLERA, the samples were collected to address chemical parameter data gaps. Maximum metal concentrations in soil were less than their respective background upper tolerance limits (UTLs). No organics were detected at concentrations exceeding their soil screening levels.

4.4.2 Sediment

Six sediment samples were collected from the lagoons at depth intervals ranging from 0 to 6 inches bgs. One additional sample (31SE11B) collected from 1 to 3 feet bgs was also included in the sediment evaluation. Twenty-four COPECs were detected at concentrations above sediment screening levels. COPECs include tetrachlorodibenzo-dioxin Toxic Equivalent (TCDD-TEQ), several PAHs, and 11 metals.

4.4.3 Surface Water

Six surface water samples were collected from the lagoons (2 from each lagoon). Pyrene, endosulfan II, endrin, barium, aluminum, lead and iron exceeded their surface water screening levels and were identified as COPECs.

4.5 Risk Characterization

Potential hazards were characterized for terrestrial and aquatic habitat dwelling wildlife receptors at SWMU-31 based on HQs (direct contact and food web modeling), with emphasis on the weight-of-evidence, such as background levels relative to site-related concentrations, the representativeness of the soil data, and the quality of the available habitat. An HQ less than or equal to a value of 1 indicates that adverse impacts to

Radford Army Ammunition Plant

wildlife are considered unlikely (USEPA, 2000a). However, there is no clear guidance for interpreting the HQs that exceed a value of 1, except that this point of departure indicates that adverse effects of some kind may have occurred in the past or may occur in the future. The conclusions drawn based on the HQs and analysis of supporting information are summarized below.

In the SLERA food chain evaluation, HQs calculated for the American robin and short-tailed shrew exceeded 1.0, indicating a potential risk to these receptors if exposure to soil and prey (e.g., earthworms) were to occur. The primary exposure pathway was the ingestion of soil invertebrates. The primary COPECs contributing to the estimated risks in soil are 2,3,7,8-TCDD and DDT.

Twenty-four COPECs were detected at concentrations above sediment screening levels indicating potential hazards to aquatic biota via direct toxicity if exposure were to occur. COPECs include TCDD-TEQ, several PAHs and 11 metals. It is important to note that 7 of the 11 metals (arsenic, chromium, copper, iron, manganese, nickel and zinc) had maximum concentrations below the background UTLs calculated for soil.

Pyrene, endosulfan II, endrin, barium, aluminum, lead and iron exceeded their surface water screening levels indicating potential hazards to aquatic biota via direct toxicity if exposure were to occur. A summary of the spatial extent of these COPECs in surface water is as follows: pyrene was only detected in the primary lagoon; endosulfan II and endrin were only detected in the tertiary lagoon; lead and iron exceeded screening levels in the primary lagoon while barium and aluminum exceeded screening levels in all three lagoons.

4.5.1 Groundwater Evaluation

Potential impacts to surface water via groundwater discharge were evaluated by modeling the groundwater at SWMU-31 discharging to the New River. After factoring in assimilation (New River 7Q10), results indicate that groundwater COPEC concentrations discharging to surface water would not adversely impact biota residing in the New River. Groundwater COPECs were determined based on constituents specified in the RCRA permit for SWMU-31.

4.5.2 Amphibian Evaluation

Two qualitative amphibian surveys were performed at SWMU-31. Results of the surveys demonstrate the presence of amphibians at the secondary and tertiary

Radford Army Ammunition Plant

lagoons. No amphibians were observed in the primary lagoon during the surveys. The SLERA suggests that the surveys may not provide a complete assessment because they did not include an evening observation period. However, the SLERA concludes that local populations of amphibians are not being significantly impacted by surface water or sediment COPECs based on the presence of amphibians in the secondary and tertiary lagoons.

4.6 Summary and Conclusions

The SLERA concludes the following: 1) HQs calculated for the American robin and short-tailed shrew exceeded 1.0, 2) twenty-four COPECs were detected at concentrations above sediment screening levels, and 3) pyrene, endosulfan II, endrin, barium, aluminum, lead and iron exceeded their surface water screening levels. The SLERA is based on comparisons of representative media concentrations to conservative screening levels and toxicity reference values for terrestrial and aquatic organisms. Based on an evaluation of the data, the majority of the screening level exceedances at SWMU-31 are associated with the primary lagoon.

However, it is important to realize that the size or space of an impacted area is directly related to the potential for ecological exposure if ecological habitat is present. Spatial scale can be useful as a screening criterion if used in conjunction with other considerations, such as the valued ecological resources that may be present, current and future land use, the likelihood for COPEC migration from the site, and the proximity to a valued or sensitive ecological habitat. Spatial scale screening criteria are used widely in ERA guidance.

Although no information on spatial scale screening could be found in the Virginia DEQ guidance, several states' guidance address the importance of spatial scale in ecological assessments, as does the *ASTM Standard Guide for Risk-Based Corrective Action for Protection of Ecological Resources*, E 2205-02 (ASTM [American Society for Testing and Materials], 2002). The following spatial scale screening criteria are used by the following states: 1 to 2 acres for Minnesota (the smaller scale for bioaccumulative compounds); 1 acre for Texas, Louisiana, and Mississippi; 2 acres for Pennsylvania; and 2 acres or 1,000 square feet of sediments for Massachusetts (MPCA, 1998; TCEQ, 2001; MDEQ, 1997; LDEQ, 2003; PADEP, 1998; MADEP, 1996). This spatial scale criterion has often been referred to as *de minimis* because it is not expected to cause adverse impacts to the population, community, or ecosystem, providing certain conditions are met (Suter, 1995; Henning and Shear, 1998). These conditions include similar but unimpacted habitat be available adjacent to the impacted

Radford Army Ammunition Plant

area, that sensitive habitat not be present within ½ mile if the COPECs will migrate off site, and COPEC fate and transport must be unlikely to increase the spatial extent to greater than the current spatial extent. Based on available information, which is discussed below, it is believed that these other conditions are met for SWMU-31.

In terms of similar but unaffected habitat being present adjacent to SWMU-31, the New River represents a valuable and significant aquatic and riparian (terrestrial) habitat that likely represents a more attractive area for potential ecological receptors than the three industrial settling lagoons at SWMU-31. The lagoons at SWMU-31 are man-made and designed to contain effluent from the water treatment plant. Based on their design, potential impacts within those lagoons are not expected to increase in spatial extent. The Virginia Department of Game and Inland Fisheries conducted the most recent Installation-wide biological survey at RFAAP in 1999. Results indicated that no threatened, rare or endangered species were found at or near SWMU-31.

Based on the small size of the lagoons (primary lagoon is approximately 0.11 acre, secondary lagoon is approximately 0.68 acre, and tertiary lagoon is approximately 0.86 acre), the fact that the lagoons are man-made containment structures that were designed to receive treated water, the likelihood that the spatial extent of impacts within each lagoon is limited (particularly in the secondary and tertiary lagoons), and the low potential that the spatial extent will increase, adverse population-level impacts are not expected for ecological receptors exposed to surface water and sediment at SWMU-31. The same situation applies for soil conditions in the outfall area. This assumption is reasonable considering that the outfall area is limited to a small channelized ditch that runs approximately 50 feet from the outfall pipe to the New River, and is approximately 3 to 5 feet wide. This outfall channel corresponds to a very small area (approximately 250 square feet) and thus does not represent a significant habitat nor an ecological concern. Based on these considerations, it is believed that the conditions discussed above for the de minimis spatial scale criteria (i.e., unimpacted habitat available adjacent to the impacted area, sensitive habitat not present within 1/4 mile, and COPEC fate and transport unlikely to increase the spatial extent) are met for SWMU-31.

In summary, although the SLERA indicated some exceedances of surface water, sediment, and soil screening levels in limited areas of SWMU-31, when evaluated in the context of ecosystem health based on site reconnaissance, the small spatial extent, and availability of similar and unimpacted habitat adjacent to SWMU-31, there is adequate information to conclude that adverse impacts to ecological receptors exposed to surface soil, surface water and sediment are unlikely or are not ecologically

Radford Army Ammunition Plant

significant. Therefore, no further ecological evaluation of SWMU-31 is considered necessary.

Radford Army Ammunition Plant

5. Recommendations

Based on the data collected as part of this and previous investigations, and the results of the HHRA and ERA, NFA is required for SWMU-31. Data collected as part of the RFI and RFI addendum investigation indicate that the observed levels of site-related constituents in the lagoons and underlying groundwater do not pose an unacceptable risk to either human or ecological receptors.

Future development plans at RAAP may include ongoing use of the lagoons for the adjacent Drinking Water Plant. Therefore the HHRA and ERA evaluated current (i.e., pond remains) exposure scenarios. Based upon the results of the risk assessments, there are presently no chemical constituents present in the pond or surrounding media that would limit current or future activities at the site.

Based on the data presented, no evidence exists of a release from this site. Several constituents are present at the site at levels that exceed risk-based screening criteria. However, the site-specific risk assessments conclude that the site does not pose an unacceptable risk to human or ecological receptors. Although PAHs were detected in one previous groundwater sample, their presence was not verified during the most recent sampling event. Chloroform in the groundwater is associated backwash discharged to the lagoons by the drinking water plant operation managed via the current VPDES permit. The levels of metals present in groundwater are either consistent with naturally-occurring levels in groundwater, or are less than Federal MCLs. Therefore, no further action is recommended at SWMU-31.

Radford Army Ammunition Plant

6. References

- ASTM Standard E2205-02, 2002, "Guide for Risk-Based Corrective Action for Protection of Ecological Resources," ASTM International, West Conshohocken, PA, www.astm.org
- Dames & Moore. 1992. Final Draft VI Report for the Radford Army Ammunition Plant, Virginia. Prepared for the U.S. Army Toxic and Hazardous Materials Agency.
- Draper Aden, 2007. Annual Groundwater Monitoring Report Hazardous Waste Management Units 5, 7, 10 and 16 Calendar Year 2007. Radford Army Ammunition Plant, Radford, VA.
- Henning, M., and N. Shear. 1998. Regulatory perspectives on the significance of ecological changes as reported in ecological risk assessments. Human and Ecological Risk Assessment, 4(4)807-814.
- Louisiana Department of Environmental Quality (LDEQ). 2003. Risk Evaluation/Corrective Action Program. Louisiana Administrative Code 33:I. Chapter 13. October 20.
- Massachusetts Department of Environmental Protection (MADEP). 1996.

 Massachusetts Contingency Plan: Environmental Risk Characterization (Chapter 9). Bureau of Waste Site Cleanup, WCS/ORS-95-141. April. http://www.state.ma.us/dep/ors/orspubs.htm
- Minnesota Pollution Control Agency (MPCA). 1998. Appendix 2: The Risk-Based Site Evaluation Process, Checklist for RBSE Implementation and Documentation. http://www.pca.state.mn.us/cleanup/riskbasedoc.html
- Mississippi Department of Environmental Quality (MDEQ), 1997. Risk Evaluation Procedures for Voluntary Cleanup and Redevelopment of Brownfield Sites. Subpart II.
- Pennsylvania Department of Environmental Protection (PADEP). 1998. Ecological Screening Process. Attachment V.E.3 of Ecological Health Evaluation Screening Procedure for Sites in Pennsylvania.

Radford Army Ammunition Plant

- Suter, G.W, B.W. Cornaby, C.T. Hadden, R.N.Hull, M. Stack, F.A. Zafran. 1995. *An approach for balancing health and ecological risks at hazardous waste Facilities. Risk Analysis* 15(2)221-231.
- Texas Commission on Environmental Quality (TCEQ). 2001. *Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas.* RG-263 (revised). Office of Waste Management. December.
- U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume 1, Part A. Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December.
- U.S. Environmental Protection Agency (USEPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment, EPA/540-R-97-006.
- U.S. Environmental Protection Agency (USEPA). 2000. Amended Guidance on Ecological Risk Assessment at Military Bases: Process Considerations, Timing of Activities, and Inclusion of Stakeholders. Memorandum from Ted W. Simon, Ph.D., Office of Technical Services. June 23, 2000. http://risk.lsd.ornl.gov/homepage/ecoproc2.pdf
- U.S. Environmental Protection Agency (USEPA). 2001. Radford Army Ammunition Plant Site Screening Process, October 26.
- U.S. Environmental Protection Agency (USEPA). 2002. Role of Background in the CERCLA Cleanup Program. OSWER 9285.6-07P. May 1.

Tables

Table 1
Summary of Groundwater Sample Analytical Results for 31MW2
SWMU-31 (RAAP-026): Coal Ash Settling Lagoons
Radford Army Ammunition Plan, Virginia

Location ID: Date Collected:	Units	31MW2 04/01/98	31MW2 06/18/08
PAHs			
1-Methylnaphthalene	ug/L	NA	<0.046 [<0.046]
2-Methylnaphthalene	ug/L	NA	<0.046 [<0.046]
Acenaphthene	ug/L	<0.1	<0.046 [<0.046]
Acenaphthylene	ug/L	<1	<0.046 [<0.046]
Anthracene	ug/L	<0.1	<0.046 [<0.046]
Benzo(a)anthracene	ug/L	0.022 J	<0.046 [<0.046]
Benzo(a)pyrene	ug/L	0.022 J	<0.046 [<0.046]
Benzo(b)fluoranthene	ug/L	0.027 J	<0.046 [<0.046]
Benzo(g,h,i)perylene	ug/L	<0.1	<0.046 [<0.046]
Benzo(k)fluoranthene	ug/L	< 0.05	<0.046 [<0.046]
Chrysene	ug/L	< 0.05	<0.046 [<0.046]
Dibenzo(a,h)anthracene	ug/L	<0.1	<0.046 [<0.046]
Fluoranthene	ug/L	<0.1	<0.046 [<0.046]
Fluorene	ug/L	<0.1	<0.046 [<0.046]
Indeno(1,2,3-cd)pyrene	ug/L	< 0.05	<0.046 J [<0.046 UJ]
Naphthalene	ug/L	<0.1 L	<0.046 [<0.046]
Phenanthrene	ug/L	< 0.05	<0.046 [<0.046]
Pyrene	ug/L	<0.05	<0.046 [<0.046]

Duplicate sample results are provided in brackets.

Table 2
Summary of Potential Human Health Risks and Hazards
SWMU-31 (RAAP-026): Coal Ash Settling Lagoons
Radford Army Ammunition Plan, Virginia

Receptor	Media	Cumulative Risk	Hazard Index	Risk Driver
Maintenance worker	soil, sediment, surface water, groundwater	3 x 10 ⁻⁶	0.1	Not Applicable (a)
Industrial worker	soil, sediment, groundwater	6 x 10 ⁻⁵	1	Not Applicable
Excavation worker	soil, sediment, surface water, groundwater	2 x 10 ⁻⁶	5	arsenic in sediment manganese in soil (b)
Adult residents	soil, sediment, surface water, groundwater	4 x 10 ⁻⁴	2 (c)	benzo(a)pyrene, chloroform
Child resident	soil, sediment, surface water, groundwater	2 x 10 ⁻⁴	9	benzo(a)pyrene, arsenic, chloroform, iron, vanadium

- (a) NA Not Applicable. No risk drivers were identified because the potential cancer risk and HI was less than the USEPA target risk range and/or benchmark for non-cancer effects.
- (b) Manganese and arsenic concentrations are less than background levels, and thus, were not identified as COCs.|
- (c) Although the cumulative HI was greater than one, the target organ/critical effect HIs were less than one. Therefore, no risk drivers were identified based on the non-cancer endpoint.

Figures

Appendix A

Groundwater Sample Log

Site Activities Tailgate Safety Briefing - Sign-in Log

Date: 6/18/08			Time: L	415					
Briefing Conducted by:		Signature:	hy	Company: ARCADIS					
perform work operations on 8 briefing, daily.	ne tailgat Site are r	e bfiefing condu equired to atten	cted in acco	ordance with the HASP. Personnel which the model of the fing and to acknowledge receipt of each	no ch				
TOPICS COVERED (che	ck all th	nose covered):						
General PPE Usage	,	Smoking, E Drinking, C Prohibition	hewing	☐ Excavation Safety ☐ Confined Space ☐ Traffic Safety					
☐ Hearing Conservation	1	Slips, Trips	s, Falls	☐ Changes to the HASP					
Respiratory Protection	×	Heat Stres		Initial Review of Hazard Evaluation (from Work Pla	าง				
Personal Hygiene		Cold Stres		Other (specify):	'/				
Exposure Guidelines Decon Procedures		☐ Site Contro							
Emergency Procedures;		☐ Work Zone☐ Lockout/Ta							
include route to hospital		LOCKOUVIA	gout						
Personnel Sign-in List									
	The state of the s				CHECKED FROM				
Printed Name		Signature		Company Name					
Printed Name Sondin Gesbosski	Jan	Signature		Company Name ARCADIS					
Printed Name Sandin Gabouski	Jan	Signature							
Printed Name Sandin Gubouski	Jun	Signature							
Printed Name Sandin Gubouski	Jun	Signature							
Printed Name Sandin Gerbouski	Jun	Signature							
Printed Name Sondin Gasovski	Jan	Signature							
Printed Name Sondin Gasovski	Jan	Signature							
Printed Name Sondin Gasouski	Jm	Signature							
Printed Name Sondin Gasovski	Jun	Signature							
Printed Name Sandin Gasouski	- Jun	Signature							
Printed Name Sondin Gasovski	- Jan	Signature							
Printed Name Sondin Gesbouski	Jun	Signature							
Printed Name Sondin Gasovski	- Jun	Signature							

DAILY LOG

	GPO8RAAP.6026.06000
Project Name and N	0. RAPP 47/26 GPUERAAP 0847. NFUOO
Site Location	Redford, VA
Prepared by	Sondra Grabouski
Date/Time	Description of Activities
6/18/18	
0530	ome at office, gather supples, pack thek
0600	leave office for site
1100	arrive onsite, meet with Matt A and Jerry R
	(ATK)
1130	cheek in at NRE to tour AOC A area
1230	obtain area entry permit for AOCA area, to
	begin June 30th and end July 5th. Hot
	work marmit must not be obtained before
***************************************	start date. Matt (ATIC) will help ul that an
	the 30th
1300	obtain came a cell phone pass for S6. Good for Zyears
1345	SG to area 26 (SMU31) to sample 3/MWZ
1500	stort pump at 31MWZ
1625	sample 31MWZ for SVOCS (PAHS); dupiale sample collected
1700	EB sample collected
1710	clear up area, pack samples, leave site fer
	fed Ex
1750	drug samples aff at Fed Ex; Ship equipmal
	back to PINE
1830	arrive at hotel
	ENID DAY

Project Name: GPCBRAAP, COSE, DGCC

Calibrating Personnel: 5G

Time of Calibration: 1430

Weather Conditions: 35 focus

mm Ha

	TEMP	74700	25.78	25.75	Armonia diamentara	Company of the Control of the Contro	0000	25.8	***************************************	With the second				
	TIME	1425	1438	433	S 20	5	1434	14136						
	FINAL READING	7.00 7.00	4.00	(4)	[*] /empressible of the second	9	8	339.9				-	٠	
	VALUE ENTERED	7.00	4 .0 6	1.413	1.0	10.0	100	240		Harry Company of the				
<u> </u>	INITIAL READING	463	7,00	1.38%	5	0	1017	8				22341 AC	- (259 AR	7
3	INSTRUMENT	YSI 600	YSI 600	YSI 600	Lamotte	Lamotte	YSI 600	VSI 600				DUL JAP. G SK	1 SO 1 NS A	•
Dalottieulo riessule.	CALIBRANT	pH 7.00	pH 4.01	Conductivity (SpCond)	Turbidity (1.0 NTU)	Turbidity (10.0 NTU)	%OQ	ORP (mV)				Notes: \sqrt{S}	Www.M.tr	

Calibration log.xls.xls Inst Calibration

か日本

		ARC		_								â	j
	Groundwa				Norman and			BIMW	വവ			Page	of 1
	Project No.			AP.OURE.		·	Weli ID	21/1/10			Date	6/18	108
	Project Name/		RAG	' /	Lad Pord	/ V/	1				Weather	757	<u> cla</u>
	Measuring Pt. Description			Screen Setting (ft-bmp)			Casing Diameter (in.	4"	_		Well Mat	erial <u>X</u>	PVC SS
	Total Depth (ff-	_{bmp)} 30	35	Static Water Level (ft-bmp)	<u> 36, </u>	38	Water Colun	nn in Well	3.9	4	Gallons in V	/ell	_Other 58
	Calc.Gallons Purged		<u> </u>	Pump Intake (bmp) MP Elevation	n- just-on	st solle	√ Purge Metho	Centrifugal			Sample Method	106-1	70W
١	Gallons Purged		16:25	7)				Submersibl Risp. Bailer			Pump On/0	off 127	4)
	Sample Time:	Labei	16.73	Replicate/ Code No.	31M	MOUPO	10	Olher			Sampled by	/	
	Time	Minutes Elapsed	[Depth to	Gallons		Cond.	Turbidity	Dissolved		Redox	Anne	arance
			(mL/min)	Water (ft) TOC	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
5:25	CONTO	SON C	1	26.64		687	0.519	0.90	689	1635	1073	cea	no
	15:35	20	150	26.84	_	6-90	0.508	<u> S. S.</u>	5.98	16.45	1523	Clean	no
	15:40	30	150	36.00		6-93 6-91	0.500	7.7	586	16.71	167.2	Class	no
	15:45	35	150	26.91		6.44	0.300	6.1	6-53	16.55	177.5	clean	nox
	15:55	45	150	20.91		699	0.511	17-	639	1678	162-1	Clear	(4)
74	16:00	50	156	26-98		696	0 503	23	604	1542	1755	Clar	n d
	16:05	55	(SO	27.07	- l	693	0.503	16	5.91	14.20	1919	Clear	70
	16:10	60	150	27.15	11,	6-80	0.503	14	5.84		A02.0	Cleon	no
	16:15	65	150	27-25	14	6.79	0.503	14_	5-68		2057	clor	NO
Ì	16320	70	150	2451	M.S.	680	0.502	13	559	14.63	2104	Cler	100
	Constituents S	Sampled	AHs)	 		Container	m.be/			Number		Preservat	tive)
			· · · · · · · · · · · · · · · · · · ·	***************************************	_	1 62- 9 1	moe		-	<u>. </u>		<u> </u>	
									_		-		***************************************
-			· · · · · · · · · · · · · · · · · · ·			w			••				
-	· · · · · · · · · · · · · · · · · · ·		***************************************		 .	##* <u> </u>			···		-		
-					 .				~				
-		······			 .				·~		•		
-									•		•		
Ţ	Well Information												
	Well Locat		den 54	of of bu	moz	apon		•	ell Locked a	_	(Yes/)	/ N	0
	Condition of Well Comple	-	tar.	sh Mount /	Stick Up		***************************************		ocked at D		Yes	/ N	0
L.			. IQ	3 HIVANE /	Prost OD			N.	ey Number	TO WEIL	1	~~~~	
<u>.</u> 	VOTES:	11 00	บันท _{ี่} อ	1 40 f	X air	Plnc	gresta	+ and	N O	Or en	4		
_							7,0,0	<u> </u>			·3		
	Well Casing Vo	lumes								*****			
G		1" = 0.04 1.25" = 0.06		0.09 = 0.16	2.5" = 0.26 3" = 0.37	شر	5" = 0.50 = 0.65	6" = 1.47		780-7	30.75		
	Field Forms-E GW Samp For		al.xis.xis			Carrie Mass	n Carri			, ~ "	v 1	. •	

PARCADIS

Laboratory Task Order No./P.O. No. __

CHAIN-OF-CUSTODY RECORD Page

Project Number/Name GP08RAM9 coll Liss out RAAP	NUTS IN SING R			ANALYSIS / METHOD / SIZE	SIZE		
Project Location Rend WA			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			/	
Laboratory E	A CONTRACTOR OF THE PERSON OF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	**		/	/	
Project Manager Man & Mashark							
Sampler(s)/Affiliation $\lesssim s / M \mathcal{E}$ (Z INV	S_{ℓ}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			,	
D Sample ID/Location Matrix 5	Date/Time Sampled Lab ID					Remarks	Total
73.4		7					e e
TO THE PROPERTY OF THE PARTY OF		7					77
7		7					100
	orige.						
				1007.00			
				3,000,00			
						6.	
Sample Matrix: L = Liquid; S = Sol	Solid, A = Air 💍					Total No. of Bottles/ Containers	
Relinquished by:	Organization: Organization:	zation: 🕰 zation:	Alyis	Date 6 /	- A Ume - A Time	(3) (3)	Seal Intact? Yes No N/A
Relinquished by: Received by:	Organization: Organization:	zation:		Date/	/Time		Seal Intact? es No N/A
Special Instructions/Remarks: 19 1000					300/110		
Delivery Method: ☐ In Person		Common Carrier		□ Lab Courier		ो रिकट	
			SPECIFY			SPECIFY	AG 05-12/

Appendix B

Laboratory Data Report

Analytical Report

Main Data Package - Semi-Volatiles

Arcadis Project # GP08RAAP.0026/RAAP

WO #0806207

Empirical Laboratories, LLC

Marcia K. McGinnity Senior Project Manager

TABLE OF CONTENTS WO #0806207

	Page No
Table of Contents	i
Organic Case Narrative	1
Chain of Custody & Sample Receipt Confirmation Forms	3
Semivolatiles QC Summary Forms Sample Forms and Data Initial Calibration Forms and Data Continuing Calibration Forms and Data DFTPP Tune Data Storage Blank Forms and Data LCS Forms and Data Logs	6 17 27 84 92 107 110
Last Page	135

ORGANIC CASE NARRATIVE - Low-level PAHs

Arcadis - Radford Workorder: 0806207

Date Sampled	Date Received	Lab ID	Client ID
18-Jun-2008	19-Jun-2008	0806207-01	31MW002(061808)
18-Jun-2008	19-Jun-2008	0806207-02	31MWDUP001(061808)
18-Jun-2008	19-Jun-2008	0806207-03	EB001(061808)

Method: The samples were extracted/analyzed by USEPA SW-846 Methods 3541/8270C (separatory funnel extraction followed by capillary column GC/MS) for water upon receipt to the laboratory in satisfactory condition.

Comments: The analyses for these samples were satisfactorily completed within sample holding times and met the corresponding specifications with the following notes/exceptions:

- Note: These samples were analyzed for full-scan, low-concentration PAHs by employing a combination of sensitivity enhancing techniques in the extraction and analysis processes.
- DFTPP Tuning: All method tuning criteria were met.
- Calibration Criteria: All method calibration criteria were met for the target analytes. Radford criteria were exceeded for indeno(1,2,3-cd)pyrene in the initial calibration verification where the percent difference of 20% was exceeded at 22.3% with a negative bias. Results for indeno(1,2,3-cd)pyrene are qualified with a "Y" to indicate a potential negative bias.
- Blank Results: No target analytes were detected in the method blank. Equipment blank EB001 (061808) reported a concentration of 2-methylnaphthalene but was not detected in the associated samples.
- Surrogate Recoveries: All surrogate recoveries were within limits.
- SBLK0623BW1LCS/LCSD results: All recoveries and relative percent differences were within limits.
- MS/MSD Results: Not applicable.
- Internal Standard Area Counts: All area counts were within limits.
- Dilutions: All samples were analyzed without dilution.

I certify that, to the best of my knowledge and based upon my inquiry of those individuals immediately responsible for obtaining the information, the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, with the exception of the conditions detailed in the case narrative, as verified by the following signature.

Marcia K. McGinnity Senior Project Manager

ANALYTICAL REPORT TERMS AND QUALIFIERS (ORGANIC)

- **MDL:** The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The MDL is determined from analysis of a sample containing the analyte in a given matrix.
- **EQL**: The estimated quantitation limit (EQL) is defined as the estimated concentration above which quantitative results can be obtained with a specific degree of confidence. Empirical Laboratories defines the EQL to be at or near the lowest standard of the calibration curve.
- U: The presence of a "U" indicates that the analyte was analyzed for but was not detected or the concentration of the analyte quantitated below the MDL.
- B: The presence of a "B" to the right of an analytical value indicates that this compound was also detected in the method blank and the data should be interpreted with caution. One should consider the possibility that the correct sample result might be less than the reported result and, perhaps, zero.
- **D:** When a sample (or sample extract) is rerun diluted because one of the compound concentrations exceeded the highest concentration range for the standard curve, all of the values obtained in the dilution run will be flagged with a "D".
- E: The concentration for any compound found which exceeds the highest concentration level on the standard curve for that compound will be flagged with an "E". Usually the sample will be rerun at a dilution to quantitate the flagged compound.
- J: The presence of a "J" to the right of an analytical result indicates that the reported result is estimated. The data pass the identification criteria indicating that the compound is present, but the calculated result is less than the EQL.

G ARCADIS

Laboratory Task Order No./P.O. No.

CHAIN-OF-CUSTODY RECORD Page ___

YES NO N/A Yes No N/A Seal Intact? Seal Intact? Total R Total No. of Bottles/ Containers mortedas Essos (061903) us 61968 * - contains labels Remarks Time 18:00 9:00 In Person A Common Carrier (PCEX | Dease de not distrub 6 / 19 / 08 Time Time -1279-994-8061 **ANALYSIS / METHOD / SIZE** Date 6 / 1.5°C . Date_ Date_ Sharks Organization: //2/2/1 Organization: Empirical (200) = Air GW= Svowd inator Sons S Special Instructions/Remarks (1) place (Cartilly analysis Organization: __ Organization: Project Number/Name GOOB RAAP GOLG COCOL RAAP Lab ID C/18/08/17:00 SEC 6/18/08 1625 C/18/02/ 16:25 Date/Time Sampled Sampler(s)/Affiliation <u>\$6- {</u> ACCANIS ⋖ Laboratory Emplica / Lasrataries S = Solid;Relinquished by: Sanda Cabo Project Manager Diane Wisheck Matrix Project Location Rad Book, VA ~02 |308130) 100 NONN 15 20-L = Liquid; -01 31 MW OOD (06180E) Relinquished by: -03 EB-001 (061808) 0806207 Sample ID/Location Received by: Sample Matrix: Received by: -

Delivery Method:

SPECIFY

Empirical Reports

From:

Powell, Jace'que [Jaceque.Powell@arcadis-us.com]

Sent:

Friday, June 20, 2008 11:32 AM

To:

ReportProduction@EmpirLabs.com; Kennedy, Jane

Cc:

renee; MMcGinnity@EmpirLabs.com

Subject: RE: SRC for WO #0806207

Hi Renee and Marcia,

FB001 should be EB001 as labeled on the sample containers.

Thanks,

Jace'que

From: Empirical Reports [mailto:ReportProduction@EmpirLabs.com]

Sent: Friday, June 20, 2008 11:29 AM **To:** Powell, Jace'que; Kennedy, Jane

Cc: renee

Subject: SRC for WO #0806207

Importance: High

Christine Gramada Administrative Assistant Empirical Laboratories, LLC

227 French Landing Drive, Suite 550 I Nashville, TN 37228 I www.empirlabs.com

Main: 615.345.1115 ext. 244 | Toll free: 877.345.1113 | Fax: 615.846.5426

Recipient of the 2008 Region IV (Southeastern US) Subcontractor of the Year from the Small Business Administration.

Celebrating over 40 years of excellence, Empirical Laboratories is certified as a HUBZone Business, a Woman-Owned Small Business, and a Small Disadvantaged Business by the Small Business Administration. Come visit our website at www.empirlabs.com today.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates.

EMPIRICAL LABORATORIES COOLER RECEIPT FORM

	OC ID(s):
ClientArcadis1	Project Radford, UA
Sample Custodian	Project Radford, UA Foday's Date 6/19/08
Date/Time Samples Received 6/19/08 Airbill Number Fedex Cooler Opened: Date 6/19/08	<u>09</u> ;00 — —
Chain of custody seal intact? Chain of custody provided? Sample labels present? Bottle labels correspond w/COC	res No res No res No
Number of Custody Seals on Cooler(s):	Seal Date(s):
Tue of coolant used Tue	
Coolant condition: Melted	Partially melted/frozen Frozen
# of Coolers Temp. of Coolers Condition of Bottles in Shipment: Broken	1-506
Condition of Bottles in Simplification 21 ones	le types affected:
If broken or leaking list sample 10%s and bott	it types arrests
Comments: Sample FBOOI had contained	- labels as sample: EBOOI!

FORM 2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

	CLIENT	S1	S2	S3	S4	İ	S5	S6	S7	S8	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#		#	#	#	#	#	OUT
			=====	======	=====						===
01	SBLK0623BW1	83	71	73							
02	SBLK0623BW1L	104	92	95		- -					ŏ
03	SBLK0623BW1L	103	88	88		- -					
						-					
04	31MW002 (0618	76	75	81		_].					0
05	31MWDUP001(0	82	74	71		.		***************************************		***************************************	0
06	EB001 (061808	89	80	80		_1.					0
07											
08						-					
09						-					
10						- :					
11						- -					
12						- -					I
12						-					
13						.					
14						_ .					
15						_1.					
16											
17						_					
18						_					
19						- -					
20						- -					
21						- -					
21						-1-					
22						.					
23						_ .					
24						_ .					
25											
26						- -					
27						- -					
28						- -			***************************************	***************************************	
29						- -	······································				
						- -					
30]			_1.	,			l	ll

				EL QC LIMITS	SPIKE CONC (UG/L)
S1	(NBZ)	=	Nitrobenzene-d5	(30-110)	1.0
S2	(FBP)	=	2-Fluorobiphenyl	(35-110)	1.0
S3	(TPH)	=	Terphenyl-d14	(55-125)	1.0

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogate results reported from a diluted analysis

FORM 3 WATER SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix Spike - Client Sample No.: SBLK0623BW1

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
				=====	=====
Acenaphthene	1.000	0.0000	0.9953	100	35-120
Acenaphthylene	1.000	0.0000	0.9181	92	40-115
Anthracene	1.000	0.0000	0.9796	98	45-120
Benzo (a) anthracene	1.000	0.0000	0.9661	97	45-120
Benzo (b) fluoranthene	1.000	0.0000	0.8464	85	35-130
Benzo(k) fluoranthene	1.000	0.0000	0.9320	93	30-135
Benzo(g,h,i)perylene	1.000	0.0000	0.7923	79	25-135
Benzo (a) pyrene	1.000	0.0000	0.7921	79	45-120
Chrysene	1.000	0.0000	0.9174	92	45-120
Dibenz (a, h) anthracene	1.000	0.0000	0.7890	79	30-140
Fluoranthene	1.000	0.0000	1.091	109	45-125
Fluorene	1.000	0.0000	1.034	103	40-120
Indeno (1, 2, 3-cd) pyrene	1.000	0.0000	0.7708	77	30-140
2-Methylnaphthalene	1.000	0.0000	1.040	104	35-115
1-Methylnaphthalene	1.000	0.0000	0.9326	93	35-115
Naphthalene	1.000	0.0000	0.9298	93	30-115
Phenanthrene	1.000	0.0000	0.9819	98	40-130
Pyrene	1.000	0.0000	1.047	105	35-140
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

FORM 3 WATER SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix Spike - Client Sample No.: SBLK0623BW1

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	olo	QC L	MITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RPD	REC.
Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(g,h,i) perylene Benzo(a) pyrene Chrysene Dibenz(a,h) anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd) pyrene 2-Methylnaphthalene 1-Methylnaphthalene Naphthalene Phenanthrene	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.9279 0.8488 0.9048 0.9212 0.8022 0.8765 0.7486 0.7447 0.9024 0.7289 1.048 0.9782 0.7566 0.9970 0.9264 0.9148 0.9148	93 85 90 92 80 88 75 74 90 73 105 98 76 100 93 91	7 8 8 5 5 6 6 6 2 8 4 1 2 4	40 40 40 40 40 40 40 40 40 40 40 40 40 4	====== 35-120 40-115 45-120 35-130 30-135 25-135 45-120 45-120 30-140 45-125 40-120 30-140 35-115 35-115 30-115 40-130
Pyrene	1.000	0.9752	98	7	40	35-140

RPD: 0 out of 18 outside limits Spike Recovery: 0 out of 36 outside limits

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

FORM 4 SEMIVOLATILE METHOD BLANK SUMMARY

SBLK0623BW1

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID: S1BW0623 Lab Sample ID: SBLK0623BW1

Instrument ID: BNA3 Date Extracted: 06/23/08

Matrix: (soil/water) WATER Date Analyzed: 06/25/08

Level: (low/med) LOW GPC Cleanup: (Y/N) N Time Analyzed: 1114

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	DATE
	CANCOT ET ATO		FILE ID	ANALYZED
	SAMPLE NO.	SAMPLE ID	LITE ID	ANAUIZED
	=========		C1.T.TO.CO.2	06/05/09
01	SBLK0623BW1L	SBLK0623BW1LCS	S1LW0623	06/25/08
02	SBLK0623BW1L		S1DW0623	06/25/08
03	31MW002(0618	0806207-01	0620701	06/26/08 06/26/08
04	31MWDUP001(0	0806207-02	0620702	06/26/08
05	EB001 (061808	0806207-03	0620703	06/26/08
06				
07				
08				
09				
10				
11				
12	***************************************			
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
			····	
23		***************************************		
24				
25				
26				
27				
28				
29				
30				

COMMENTS:	

page 1 of 1

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: EMPIRICAL LABS Contract:

Case No.: SAS No.: NA SDG No.: SDGA92299 Lab Code:

DFTPP Injection Date: 01/14/08 Lab File ID: DF0114B2

DFTPP Injection Time: 1734 Instrument ID: BNA3

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
==== 51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	42.1 0.0 (0.0)1 47.3 0.2 (0.5)1 55.2 0.0 100.0 7.2 26.6 3.08 9.6 55.7 11.2 (20.1)2
	1-Value is % mass 69 2-Value is % mass	442

1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========				
01	LPAHCAL30PPM	LPAHCAL30PPM	LPAHCAL8	01/14/08	1754
02	LPAHCAL20PPM	LPAHCAL20PPM	LPAHCAL7	01/14/08	1834
03	LPAHCAL10PPM	LPAHCAL10PPM	LPAHCAL6	01/14/08	1914
04	LPAHCAL5PPM	LPAHCAL5PPM	LPAHCAL5	01/14/08	1953
05	LPAHCAL1PPM	LPAHCAL1PPM	LPAHCAL4	01/14/08	2033
06	LPAHCAL0.4PP	LPAHCAL0.4PPM	LPAHCAL3	01/14/08	2113
07	LPAHCAL0.2PP	LPAHCAL0.2PPM	LPAHCAL2	01/14/08	2152
08	LPAHCAL0.1PP	LPAHCAL0.1PPM	LPAHCAL1	01/14/08	2232
09	LPAHICV5PPM	LPAHICV5PPM	LPAHICV	01/14/08	2311
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID: DF0625B1 DFTPP Injection Date: 06/25/08

Instrument ID: BNA3 DFTPP Injection Time: 0900

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
==== 51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	46.7 0.0 (0.0)1 52.3 0.3 (0.5)1 56.9 0.0 100.0 6.9 24.5 2.80 8.2 51.1 10.4 (20.4)2
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06	LOWPAH5PPM SBLK0623BW1 SBLK0623BW1L SBLK0623BW1L	LOWPAH5PPM SBLK0623BW1 SBLK0623BW1LCS SBLK0623BW1LCS	FIDE 1D ====================================	06/25/08 06/25/08 06/25/08 06/25/08	0919 1114 1153 1231
07 08 09 10 11 12 13					
14 15 16 17 18 19					
20 21 22		-			

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID: DF0626B1 DFTPP Injection Date: 06/26/08

Instrument ID: BNA3 DFTPP Injection Time: 0932

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	52.2 0.0 (0.0)1 54.6 0.3 (0.5)1 57.4 0.0 100.0 6.7 26.0 2.98 7.9 49.8 9.7 (19.4)2
I	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	SAMELE NO.	DAME ID	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
				=======================================	
01	LOWPAH5PPM	LOWPAH5PPM	LPAHCCV	06/26/08	0951
02	31MW002(0618	0806207-01	0620701	06/26/08	1108
03	31MWDUP001(0	0806207-02	0620702	06/26/08	1147
				06/26/08	1225
04	EB001(061808	0806207-03	0620703	06/26/06	1225
05					
06					
07					
80					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/25/08

Instrument ID: BNA3 Time Analyzed: 0919

				# GO (377777)		TGO /33TE)	
		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========					=======
	12 HOUR STD	41299	3.38	155161	6.33	79018	10.46
	UPPER LIMIT	82598	3.88	310322	6.83	158036	10.96
	LOWER LIMIT	20650	2.88	77581	5.83	39509	9.96
	TOMPIC TITUTE						
	CLIENT						
	SAMPLE NO.						
		=======================================	======	100167		C4520	10 46
01	SBLK0623BW1	33195	3.37	128167	6.33	64530	10.46
02	SBLK0623BW1L	39318	3.37	144504	6.33	72112	10.46
03	SBLK0623BW1L	37853	3.38	135950	6.34	70476	10.45
04							
05							
06							
07							
08							
09							
10							
11			***************************************				
12							
13							
14							
15							
16							
17							
18							
19							
20	***************************************						
21							
22							
44						1	l l

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

[#] Column used to flag internal standard area values with an asterisk.

^{*} Values outside of QC limits.

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/25/08

Instrument ID: BNA3 Time Analyzed: 0919

AREA # RT # AREA # PST # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # RT # AREA # RT # AREA # PST # AREA # RT # AREA # RT # AREA # PST # AREA # PST # AREA # PST # AREA # RT # AREA # RT # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # PST # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # PST # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # PST # AREA # RT # AREA # PST # AREA # RT # AREA # PST # AREA							#G C (DD TT)	I
12 HOUR STD UPPER LIMIT			IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
UPPER LIMIT LOWER LIMIT	l		AREA #	RT #	AREA #	RT #	AREA #	RT #
UPPER LIMIT LOWER LIMIT 1000						======		======
UPPER LIMIT LOWER LIMIT 1000		מוזסט מיזסט	127833	13 82	124574	19.98	99762	23.04
LOWER LIMIT 63917 13.32 62287 19.48 49881 22.54								
CLIENT SAMPLE NO. SBLK0623BW1 104632 13.82 100450 19.98 75435 23.05 23.04 23.04 23.05 23.	ŀ							
CLIENT SAMPLE NO. SBLK0623BW1	İ	LOWER LIMIT!	63917	13.32	62287	19.48	49881	22.54
SAMPLE NO. SAMPLE NO.						======		======
SBLK0623BW1L		CLIENT						
SBLK0623BW1L		SAMPLE NO.						
02 SBLK0623BW1L 118682 13.82 116066 19.98 89156 23.04 03 SBLK0623BW1L 112594 13.82 111137 19.98 85965 23.05 04								
02 SBLK0623BW1L 118682 13.82 116066 19.98 89156 23.04 23.05		CDI KOCOODMI	104622	12 02	100450	10 00	75435	23 05
03 SBLK0623BW1L 112594 13.82 111137 19.98 85965 23.05 04 05	1	· I						
04 05 06 07 08 09 10 11 12 13 14 15 16 17 18								
05	03	SBLK0623BW1L	112594	13.82	111137	19.98	85965	23.05
06 —	04							
06 —	05							
07 08 09 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
08					***************************************			
09 10 11 12 13 14 15 16 17 18 19								
10								
11								
12	10							
12	11							
13	12							
14								
15								
16 17 18 19	14							
17 18 19								
18 19	16							
18 19	17							
19								
20								
21								
22	22							l

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

[#] Column used to flag internal standard area values with an asterisk.

^{*} Values outside of QC limits.

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/26/08

Instrument ID: BNA3 Time Analyzed: 0951

		IS1 (DCB)		IS2 (NPT)	11	IS3 (ANT)	DIT 11
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT	35632 71264 17816	3.36 3.86 2.86	137087 274174 68544	6.31 6.81 5.81	68600 137200 34300	10.43 10.93 9.93
	CLIENT	17010	2.00	========	======	========	======
	SAMPLE NO.						
01 02 03	31MW002(0618 31MWDUP001(0 EB001(061808	33560 33959 33432	3.35 3.34 3.34	123062 128090 121417	6.32 6.31 6.31	60646 62908 61044	10.43 10.44 10.44
04 05 06							
07 08 09							
10 11							
12 13 14							
15 16 17							
18 19 20							
21 22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/26/08

Instrument ID: BNA3 Time Analyzed: 0951

		IS4 (PHN) AREA #	RT #	IS5(CRY) AREA #	RT #	IS6(PRY) AREA #	RT #
UPPE	HOUR STDER LIMIT	105384 210768 52692	13.80 14.30 13.30	102897 205794 51449	19.95 20.45 19.45	74514 149028 37257	23.03 23.53 22.53
	JENT PLE NO.						
02 31MWI 03 EB001	002 (0618 0UP001 (0 . (061808	101187 100271 95886	13.80 13.80 13.80	104176 95803 89592	19.96 19.96 19.96	85002 70041 69408	23.03 23.03 23.03
04 05 06 07							
08 09 10							
11 12 13 14							
15 16 17							
18 19 20 21							
22							

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

page 1 of 1

[#] Column used to flag internal standard area values with an asterisk.

^{*} Values outside of QC limits.

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

31MW002 (061808)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: 0806207-01

Sample wt/vol: 1080 (g/mL) ML Lab File ID: 0620701

% Moisture: _____ decanted: (Y/N) ___ Date Sampled: 06/18/08 16:25

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/26/08 11:08

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NO.	COMPOUND	MDL	RL	CONC	Q
208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3	Benzo (a) anthraceneBenzo (b) fluorantheneBenzo (k) fluorantheneBenzo (g, h, i) peryleneBenzo (a) pyreneChryseneChryseneDibenz (a, h) anthraceneFluorantheneFluoreneIndeno (1, 2, 3-cd) pyrene2-Methylnaphthalene1-MethylnaphthaleneNaphthalenePhenanthrene	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.017 0.018 0.017 0.018 0.015 0.015	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046		ש ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט

m19608

Data File: \ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620701.D

Report Date: 26-Jun-2008 12:12

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620701.D

Client Smp ID: 31MW002(061808)

MS Autotune Date: 01-NOV-2007 04:29

Lab Smp Id: 0806207-01
Inj Date: 26-JUN-2008 11:08
Operator: ADM Inst ID: bna3.i Smp Info : 0806207-01;1;1080;500;1;UG/L;23-JUN-2008 Misc Info : arc.b06207;0;;;;062308BW1;pahsurr.sub;4432

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\PAHLOW1.m Method

Meth Date: 26-Jun-2008 12:11 tmonteiro Quant Type: ISTD Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Als bottle: 4
Dil Factor: 1.00000
Integrator: HP RTE

Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02_VM

Name	Value	Description	
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	m6/26/p

						CONCENTRA	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(UG/L)	
		==		=====		======	======	
* 1 1,4-Dichlorobenzene-d4	152	3.345	3.355	(1.000)	33560	1.00000		
* 3 Naphthalene-d8	136	6.316	6.307	(1.000)	123062	1.00000		\circ
\$ 4 Nitrobenzene-d5	82	4.766	4.748	(0.755)	45360	1.52912	0.7079	
* 8 Acenaphthene-d10	164	10.428	10.429	(1.000)	60646	1.00000		John of
\$ 11 2-Fluorobiphenyl	172	9.045	9.055	(0.867)	112900	1.49856	0.6938	7.7.1
* 17 Phenanthrene-d10	188	13.798	13.799	(1.000)	101187	1.00000		6
* 21 Chrysene-d12	240	19.963	19.954	(1.000)	104176	1.00000		
\$ 23 Terphenyl-d14	244	17.762	17.763	(0.890)	143455	1.62964	0.7545	
* 26 Perylene-d12	264	23.026	23.027	(1.000)	85002	1.00000		

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

31MWDUP00 1(061808)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: 0806207-02

Sample wt/vol: 1080 (g/mL) ML Lab File ID: 0620702

% Moisture: decanted: (Y/N)___ Date Sampled: 06/18/08 16:25

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/26/08 11:47

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

	CONCENTRA	TION UNITS:	(ug/L or	ug/Kg) UG/L
CAS NO.	COMPOUND	MDL	\mathtt{RL}	CONC Q
	1.1.1	0 015	0.046	
83-32-9A		0.015	0.046	U
208-96-8A		0.015	0.046	U
120-12-7A	nthracene	0.015	0.046	ן ט
56-55-3E	enzo (a) anthracene	0.015	0.046	Įΰ
	enzo(b)fluoranthene	0.015	0.046	ן ד
	enzo(k)fluoranthene	0.015	0.046	บ
	enzo(g,h,i)perylene	0.015	0.046	ט
50-32-8E		0.015	0.046	U
218-01-9	hrysene	0.015	0.046	U
	ibenz(a,h)anthracene	0.015	0.046	U
206-44-0F	luoranthene	0.015	0.046	U
86-73-7F	luorene	0.015		U
193-39-5I	ndeno (1,2,3-cd) pyrene	0.017	0.046	\U <i>\gamma</i>
91-57-62	-Methylnaphthalene	0.018	0.046	ט'
90-12-01	-Methylnaphthalene	0.017	0.046	บ
91-20-3N	aphthalene	0.018	0.046	\U
85-01-8P		0.015	0.046	U
129-00-0F	yrene	0.015	0.046	U

W 19608

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620702.D

Report Date: 26-Jun-2008 12:51

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620702.D

Lab Smp Id: 0806207-02 Client Smp ID: 31MWDUP001(061808)
Inj Date : 26-JUN-2008 11:47 MS Autotune Date: 01-NOV-2007 04:29

Comment

Method: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\PAHLOW1.m

Meth Date: 26-Jun-2008 12:11 tmonteiro Quant Type: ISTD Cal Date: 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Als bottle: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02_VM

Name	Value	Description	
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	M6/26/3

						CONCENTRA	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ug/L)	
	###	==	=====	=====		======		
* 1 1,4-Dichlorobenzene-d4	152	3.343	3.355	(1.000)	33959	1.00000		_
* 3 Naphthalene-d8	136	6.313	6.307	(1.000)	128090	1.00000		()
\$ 4 Nitrobenzene-d5	82	4.763	4.748	(0.754)	51390	1.64630	0.7622	100
* 8 Acenaphthene-d10	164	10.435	10.429	(1.000)	62908	1.00000		1 210
s 11 2-Fluorobiphenyl	172	9.052	9.055	(0.867)	115479	1.47769	0.6841	Varl
* 17 Phenanthrene-d10	188	13.796	13.799	(1.000)	100271	1.00000		Ų
* 21 Chrysene-d12	240	19.960	19.954	(1.000)	95803	1.00000		
\$ 23 Terphenyl-d14	244	17.769	17.763	(0.890)	115133	1.42221	0.6584	
* 26 Perylene-d12	264	23.033	23.027	(1.000)	70041	1.00000		

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

EB001 (061808)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: 0806207-03

Sample wt/vol: 1080 (g/mL) ML Lab File ID: 0620703

% Moisture: ____ decanted: (Y/N)___ Date Sampled: 06/18/08 17:00

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/26/08 12:25

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CONCENTRA: CAS NO. COMPOUND	TION UNITS:	(ug/L or	ug/Kg) UG	Q
	MDL	RL	CONC	Q
83-32-9Acenaphthene 208-96-8Acenaphthylene 120-12-7Anthracene 56-55-3Benzo(a) anthracene 205-99-2Benzo(b) fluoranthene 207-08-9Benzo(g, h, i) perylene 191-24-2Benzo(g, h, i) perylene 50-32-8Benzo(a) pyrene 218-01-9Chrysene 53-70-3Dibenz(a, h) anthracene 206-44-0Fluoranthene 86-73-7Fluorene 193-39-5Indeno(1,2,3-cd) pyrene 91-57-62-Methylnaphthalene 90-12-01-Methylnaphthalene 91-20-3Naphthalene 85-01-8Phenanthrene 129-00-0	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.017 0.018 0.017 0.018 0.015	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.094	ממממ מממממממממ

N 219108

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620703.D

Report Date: 26-Jun-2008 13:20

Empirical Laboratories, LLC

Data file : \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620703.D

Client Smp ID: EB001(061808) Lab Smp Id: 0806207-03

Inj Date : 26-JUN-2008 12:25 MS Autotune Date: 01-NOV-2007 04:29

Inst ID: bna3.i Operator : ADM Smp Info : 0806207-03;1;1080;500;1;UG/L;23-JUN-2008 Misc Info : arc.b06207;0;;;;062308BW1;pahsurr.sub;4432

Comment

Method : \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\\PAHLOW1.m

Meth Date : 26-Jun-2008 12:11 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D Cal Date : 14-JAN-2008 22:32

Als bottle: 6

Dil Factor: 1.00000

Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02_VM

Name	Value	Description	
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	M 6 1 26 13

							CONCENTRA	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL	
Compound	is	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(UG/L)	
			==	=====	=====	======			
* 11,	,4-Dichlorobenzene-d4	152	3.343	3.355	(1.000)	33432	1.00000		
* 3 Na	aphthalene-d8	136	6.314	6.307	(1.000)	121417	1.00000		
\$ 4 Ni	itrobenzene-d5	82	4.754	4.748	(0.753)	53179	1.77849	0.8234	^
6 2-	-Methylnaphthalene	141	8.022	8.015	(1.271)	10808	0.20218	0.09360	
* 8 Ac	cenaphthene-d10	164	10.436	10.429	(1.000)	61044	1.00000		VEN V
\$ 11 2-	Fluorobiphenyl	172	9.053	9.055	(0.867)	120814	1.59316	0.7376	W 27 No
* 17 Ph	nenanthrene-d10	188	13.796	13.799	(1.000)	95886	1.00000		10 20
* 21 Ch	nrysene-d12	240	19.961	19.954	(1.000)	89592	1.00000		U
\$ 23 Te	erphenyl-d14	244	17.770	17.763	(0.890)	121206	1.60103	0.7412	
* 26 Pe	erylene-d12	264	23.034	23.027	(1.000)	69408	1.00000		

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\0620703.D

Date : 26-JUN-2008 12:25

Client ID: EB001(061808)

Instrument: bna3.i

Sample Info: 0806207-03;1;1080;500;1;UG/L;23-JUN-2008

Volume Injected (uL): 2.0 Column phase: fused silica Operator: ADM

Column diameter: 0.25

6 2-Methylnaphthalene

Concentration: 0.09360 UG/L

FORM 6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: EMPIRICAL LABS Contract:

Lab Code: Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date(s): 01/14/08 01/14/08

Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 1754 2232

LAB FILE ID: RF0.1: LPAHCAL1 RF0.2: LPAHCAL2 RF0.4: LPAHCAL3 RF1: LPAHCAL4 RF5: LPAHCAL5

COMPOUND	RF0.1	RF0.2	RF0.4	RF1	RF5
Acenaphthene	1.038	1.001	0.977	1.052	1.058
Acenaphthylene	0.936	1.010	1.049	1.338	1.582
Anthracene	0.581	0.641	0.684	0.938	
Benzo (a) anthracene	0.455	0.466			
Benzo(b) fluoranthene	0.706	0.790	0.792		
Benzo(k) fluoranthene	1.043	0.912	1.043	1.395	1.532
Benzo(q,h,i)perylene	0.616	0.629		0.862	
Benzo (a) pyrene	0.568	0.490	0.509	0.764	
Chrysene	1.082	1.122	1.078	1.177	
Dibenz (a, h) anthracene	0.376	0.377	0.446	0.601	
Fluoranthene	0.563	0.642	0.700	0.903	
Fluorene	0.708	0.756	0.846	1.003	
Indeno(1,2,3-cd)pyrene	0.338	0.318	0.513	0.450	
2-Methylnaphthalene	0.380	0.371	0.400	0.447	
1-Methylnaphthalene	0.469	0.445	0.451	0.498	
Naphthalene	0.918	0.853	0.860	0.888	0.874
Phenanthrene	1.108	1.066	1.049	1.132	1.122
Pyrene	1.117	1.015	1.073	1.215	1.223
	========	========			
Nitrobenzene-d5	0.140	0.153	0.170	0.208	0.262
2-Fluorobiphenyl	1.245	1.225	1.203	1.308	1.277
Terphenyl-d14	0.832	0.730	0.766	0.862	0.866

FORM 6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: EMPIRICAL LABS Contract:

Lab Code: Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date(s): 01/14/08 01/14/08

Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 1754 2232

LAB FILE ID: RF10: LPAHCAL6 RF20: LPAHCAL7 RF30: LPAHCAL8

	I		
COMPOUND	RF10	RF20	RF30
	These where short these stores short these things should		
Acenaphthene	1.067	1.049	0.993
Acenaphthylene	1.618	1.659	1.557
Anthracene	1.070	1.051	1.008
Benzo (a) anthracene	0.977	1.049	1.051
Benzo (b) fluoranthene	1.287	1.379	1.325
Benzo(k) fluoranthene	1.530	1.408	1.409
Benzo(g,h,i)perylene	1.020	0.903	0.964
Benzo(a) pyrene	1.171	1.201	1.197
Chrysene	1.068	1.062	1.041
Dibenz(a,h)anthracene	0.888	0.888	0.904
Fluoranthene	1.093	1.076	1.037
Fluorene	1.138	1.161	1.102
Indeno(1,2,3-cd)pyrene	0.797	0.816	0.890
2-Methylnaphthalene	0.484	0.478	0.468
1-Methylnaphthalene	0.500	0.489	0.480
Naphthalene	0.858	0.838	0.807
Phenanthrene Phenanthrene	1.122	1.059	1.028
Pyrene	1.315	1.238	1.226
	=======	========	=========
Nitrobenzene-d5	0.263	0.277	0.277
2-Fluorobiphenyl	1.261	1.254	1.166
Terphenyl-d14	0.913	0.894	0.898

FORM 6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: EMPIRICAL LABS Contract:

Lab Code: Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date(s): 01/14/08 01/14/08

Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 1754 2232

		COEFF	%RSD	
COMPOUND	CURVE	A0	A1	OR R^2
	=====	_=========		
Acenaphthene	AVRG		1.02950848	3.3
Acenaphthylene	LINR	0.00000000		0.998
Anthracene	LINR	0.00000000		0.999
Benzo (a) anthracene	LINR	0.00000000	1	0.999
Benzo (b) fluoranthene	LINR	0.00000000	}	0.999
Benzo(k) fluoranthene	LINR	0.00000000		0.999
Benzo(g,h,i)perylene	LINR	0.00000000	l	0.998
Benzo(a) pyrene	LINR	0.00000000		1.000
Chrysene	AVRG		1.08898009	3.9
Dibenz (a, h) anthracene	LINR	0.00000000	0.89793055	1.000
Fluoranthene	LINR	0.00000000	1.05271841	0.999
Fluorene	LINR	0.00000000	1.12226395	0.999
Indeno(1,2,3-cd)pyrene	LINR	0.00000000	0.86214757	0.996
2-Methylnaphthalene	AVRG		0.44026924	11.2
1-Methylnaphthalene	AVRG		0.48037708	4.9
Naphthalene	AVRG		0.86201971	3.8
Phenanthrene	AVRG		1.08579490	3.6
Pyrene	AVRG		1.17792752	8.4
	=====			
Nitrobenzene-d5	LINR	0.20450048	0.27826515	1.000
2-Fluorobiphenyl	AVRG		1.24226628	3.5
Terphenyl-d14	AVRG		0.84499758	7.8

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL8.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file : \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL8.D

Lab Smp Id: LPAHCAL30PPM Client Smp ID: LPAHCAL30PPM

Inj Date : 14-JAN-2008 17:54 MS Autotune Date: 01-NOV-2007 04:29

Operator : ADM Inst ID: bna3.i

Smp Info : LPAHCAL30PPM;;;;;SV4285-8 Misc Info : ;;;;;pahsurr.sub;4277

Comment

Method : \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m

Meth Date: 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Als bottle: 17 Calibration Sample, Level: 8

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02_VM

Name	Value	Description	M1111)8
DF Uf		Dilution Factor ng unit correction factor	V 11 11 21 0
Vt Vi	500.000	Volume of final extract (uL)	1-15-08
Amt	1000.000	Volume injected (uL) Volume of initial extraction	17,

								AMOUN	TS
			QUANT SIG					CAL-AMT	ON-COL
Co	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
===	_		====	==	=====		======	======	======
*	1	1,4-Dichlorobenzene-d4	152	5.636	5.636	(1.000)	89756	1.00000	
*	3	Naphthalene-d8	136	8.523	8.523	(1.000)	351399	1.00000	
\$	4	Nitrobenzene-d5	82	6.954	6.954	(0.816)	2919252	30.0000	30.06(A)
	5	Naphthalene	128	8.569	8.569	(1.005)	8511242	30.0000	28.10
	6	2-Methylnaphthalene	141	10.231	10.231	(1.200)	4939025	30.0000	31.92(A)
	7	1-Methylnaphthalene	141	10.482	10.482	(1.230)	5063810	30.0000	30.00
*	8	Acenaphthene-d10	164	12.719	12.719	(1.000)	189923	1.00000	
\$	11	2-Fluorobiphenyl	172	11.243	11.243	(0.884)	6642116	30.0000	28.15
	12	Acenaphthylene	152	12.348	12.348	(0.971)	8869408	30.0000	29.35
	13	Acenaphthene	153	12.802	12.802	(1.007)	5656909	30.0000	28.93
	16	Fluorene	166	14.019	14.019	(1.102)	6278134	30.0000	29.45
*	17	Phenanthrene-d10	188	16.200	16.200	(1.000)	295282	1.00000	
	18	Phenanthrene	178	16.265	16.265	(1.004)	9108666	30.0000	28.41
	19	Anthracene	178	16.377	16.377	(1.011)	8925357	30.0000	29.48

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL8.D Report Date: 15-Jan-2008 06:39

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
	====	==				
20 Fluoranthene	202	19.115	19.115 (1.180)	9184791	30.0000	29.55
* 21 Chrysene-d12	240	22.559	22.559 (1.000)	267102	1.00000	
22 Pyrene	202	19.617	19.617 (0.870)	9822486	30.0000	31.22(A)
\$ 23 Terphenyl-d14	244	20.220	20.220 (0.896)	7198021	30.0000	31.89(A)
24 Benzo(a)anthracene	228	22.532	22.532 (0.999)	8423586	30.0000	30.10(A)
25 Chrysene	228	22.624	22.624 (1.003)	8344123	30.0000	28.69
* 26 Perylene-d12	264	25.697	25.697 (1.000)	188322	1.00000	
27 Benzo(b) fluoranthene	252	24.964	24.964 (0.971)	7488071	30.0000	29.78
28 Benzo(k) fluoranthene	252	25.020	25.020 (0.974)	7961065	30.0000	29.77
29 Benzo(a)pyrene	252	25.595	25.595 (0.996)	6763457	30.0000	30.06(A)
30 Indeno(1,2,3-cd)pyrene	276	27.712	27.712 (1.078)	5028621	30.0000	30.97(A)
31 Dibenz(a,h)anthracene	278	27.777	27.777 (1.081)	5106286	30.0000	30.20(A)
32 Benzo(g,h,i)perylene	276	28.139	28.139 (1.095)	5443789	30.0000	30.32(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL7.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file : \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL7.D

Lab Smp Id: LPAHCAL20PPM Client Smp ID: LPAHCAL20PPM

MS Autotune Date: 01-NOV-2007 04:29 Inj Date : 14-JAN-2008 18:34

Inst ID: bna3.i Operator : ADM

Smp Info : LPAHCAL20PPM;;;;;SV4285-7 Misc Info : ;;;;;pahsurr.sub;4277

Comment

Method : \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m Meth Date : 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Calibration Sample, Level: 7 Als bottle: 18

Dil Factor: 1.00000

Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02 VM

Name	Value	Description	M1)1578
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	1-15-08

								AMOUN	ITS
			QUANT SIG					CAL-AMT	ON-COL
Co	mpc	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
==	===			* *	=====		=======	======	======
*	1	1,4-Dichlorobenzene-d4	152	5.635	5.635	(1.000)	83543	1.00000	
*	3	Naphthalene-d8	136	8.523	8.523	(1.000)	333311	1.00000	
\$	4	Nitrobenzene-d5	82	6.944	6.944	(0.815)	1844589	20.0000	20.09
	5	Naphthalene	128	8.569	8.569	(1.005)	5589174	20.0000	19.45
	6	2-Methylnaphthalene	141	10.231	10.231	(1.200)	3186955	20.0000	21.72
	7	1-Methylnaphthalene	141	10.472	10.472	(1.229)	3261578	20.0000	20.37
*	8	Acenaphthene-d10	164	12.719	12.719	(1.000)	173631	1.00000	
\$	11	2-Fluorobiphenyl	172	11.233	11.233	(0.883)	4354007	20.0000	20.18
	12	Acenaphthylene	152	12.338	12.338	(0.970)	5760892	20.0000	20.85
	13	Acenaphthene	153	12.802	12.802	(1.007)	3644167	20.0000	20.39
	16	Fluorene	166	14.009	14.009	(1.101)	4032571	20.0000	20.69
*	17	Phenanthrene-d10	188	16.200	16.200	(1.000)	276741	1.00000	
	18	Phenanthrene	178	16.256	16.256	(1.003)	5861745	20.0000	19.51
	19	Anthracene	178	16.367	16.367	(1.010)	5818848	20.0000	20.50

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL7.D Report Date: 15-Jan-2008 06:39

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL R	r response	(ng/ul)	(ng/ul)
===			w ==	=====		======	
	20 Fluoranthene	202	19.106	19.106 (1.179	5956558	20.0000	20.45
*	21 Chrysene-d12	240	22.550	22.550 (1.000	255576	1.00000	
	22 Pyrene	202	19.607	19.607 (0.869	6329482	20.0000	21.02
\$	23 Terphenyl-d14	244	20.220	20.220 (0.897	4570104	20.0000	21.16
	24 Benzo(a)anthracene	228	22.522	22.522 (0.999	5361424	20.0000	20.13
	25 Chrysene	228	22.615	22.615 (1.003	5431075	20.0000	19.51
*	26 Perylene-d12	264	25.697	25.697 (1.000)	179215	1.00000	
	27 Benzo(b) fluoranthene	252	24.954	24.954 (0.971	4941343	20.0000	20.65
	28 Benzo(k)fluoranthene	252	25.010	25.010 (0.973)	5046449	20.0000	19.83
	29 Benzo(a)pyrene	252	25.586	25.586 (0.996)	4303600	20.0000	20.10
	30 Indeno(1,2,3-cd)pyrene	276	27.702	27.702 (1.078)	2926097	20.0000	18.94
	31 Dibenz(a,h)anthracene	278	27.767	27.767 (1.081)	3183828	20.0000	19.78
	32 Benzo(g,h,i)perylene	276	28.129	28.129 (1.095)	3238228	20.0000	18.95

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL6.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL6.D

Lab Smp Id: LPAHCAL10PPM Client Smp ID: LPAHCAL10PPM

Inj Date : 14-JAN-2008 19:14 Operator : ADM MS Autotune Date: 01-NOV-2007 04:29

Inst ID: bna3.i

Smp Info : LPAHCAL10PPM;;;;;SV4285-6 Misc Info: ;;;;;;pahsurr.sub;4277

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m Method

Meth Date: 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Calibration Sample, Level: 6

Als bottle: 19
Dil Factor: 1.00000
Integrator: HP RTE

Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02 VM

Name	Value	Description	いりりか
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	(-15-08

							AMOUN	me.
		QUANT SIG					CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
32 3		====	==	=====	=====	=======	======	
*	1 1,4-Dichlorobenzene-d4	152	5.629	5.629	(1.000)	71150	1.00000	
*	3 Naphthalene-d8	136	8.516	8.516	(1.000)	282085	1.00000	
\$	4 Nitrobenzene-d5	82	6.947	6.947	(0.816)	742327	10.0000	9.662
	5 Naphthalene	128	8.562	8.562	(1.005)	2421935	10.0000	9.960
	6 2-Methylnaphthalene	141	10.224	10.224	(1.201)	1364809	10.0000	10.99
	7 1-Methylnaphthalene	141	10.466	10.466	(1.229)	1412113	10.0000	10.42
*	8 Acenaphthene-d10	164	12.721	12.721	(1.000)	146032	1.00000	
\$	11 2-Fluorobiphenyl	172	11.227	11.227	(0.883)	1841135	10.0000	10.15
	12 Acenaphthylene	152	12.331	12.331	(0.969)	2362746	10.0000	10.17
	13 Acenaphthene	153	12.796	12.796	(1.006)	1557881	10.0000	10.36
	16 Fluorene	166	14.003	14.003	(1.101)	1662703	10.0000	10.14
*	17 Phenanthrene-d10	188	16.203	16.203	(1.000)	216925	1.00000	
	18 Phenanthrene	178	16.249	16.249	(1.003)	2434030	10.0000	10.33
	19 Anthracene	178	16.361	16.361	(1.010)	2320885	10.0000	10.43

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL6.D Report Date: 15-Jan-2008 06:39

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
=:				=====			======	======
	20 Fluoranthene	202	19.099	19.099	(1.179)	2370193	10.0000	10.38
*	21 Chrysene-d12	240	22.543	22.543	(1.000)	196456	1.00000	
	22 Pyrene	202	19.600	19.600	(0.869)	2583728	10.0000	11.16
\$	23 Terphenyl-d14	244	20.204	20.204	(0.896)	1793052	10.0000	10.80
	24 Benzo(a)anthracene	228	22.515	22.515	(0.999)	1919603	10.0000	9.548
	25 Chrysene	228	22.608	22.608	(1.003)	2098684	10.0000	9.810
*	26 Perylene-d12	264	25.700	25.700	(1.000)	128699	1.00000	
	27 Benzo(b) fluoranthene	252	24.938	24.938	(0.970)	1656920	10.0000	9.641
	28 Benzo(k)fluoranthene	252	24.994	24.994	(0.973)	1969142	10.0000	10.77
	29 Benzo(a)pyrene	252	25.579	25.579	(0.995)	1507512	10.0000	9.806
	30 Indeno(1,2,3-cd)pyrene	276	27.696	27.696	(1.078)	1025952	10.0000	9.246
	31 Dibenz(a,h)anthracene	278	27.761	27.761	(1.080)	1143049	10.0000	9.891
	32 Benzo(g,h,i)perylene	276	28.113	28.113	(1.094)	1312761	10.0000	10.70

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL5.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL5.D Lab Smp Id: LPAHCAL5PPM Client Smp ID: LPAHCAL5PP Client Smp ID: LPAHCAL5PPM

MS Autotune Date: 01-NOV-2007 04:29 Inj Date : 14-JAN-2008 19:53

Inst ID: bna3.i Operator : ADM

Smp Info : LPAHCAL5PPM;;;;;SV4285-5 Misc Info: ;;;;;;pahsurr.sub;4277

Comment

Method: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m

Meth Date: 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date: 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Als bottle: 20 Calibration Sample, Lev

Calibration Sample, Level: 5

Dil Factor: 1.00000

Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02 VM

Name	Value	Description	M111178
DF Uf Vt	1.000 500.000	Dilution Factor ng unit correction factor Volume of final extract (uL)	6.61
Vi Amt		Volume injected (uL) Volume of initial extraction	

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
==	*	====	==	=====	=====	=======	======	======
*	1 1,4-Dichlorobenzene-d4	152	5.635	5.635	(1.000)	73284	1.00000	
*	3 Naphthalene-d8	136	8.522	8.522	(1.000)	289503	1.00000	
\$	4 Nitrobenzene-d5	82	6.944	6.944	(0.815)	379421	5.00000	4.914
	5 Naphthalene	128	8.560	8.560	(1.004)	1264667	5.00000	5.068
	6 2-Methylnaphthalene	141	10.221	10.221	(1.199)	713854	5.00000	5.601
	7 1-Methylnaphthalene	141	10.463	10.463	(1.228)	736596	5.00000	5.296
*	8 Acenaphthene-d10	164	12.719	12.719	(1.000)	151461	1.00000	
\$	11 2-Fluorobiphenyl	172	11.233	11.233	(0.883)	966792	5.00000	5.138
	12 Acenaphthylene	152	12.338	12.338	(0.970)	1197815	5.00000	4.970
	13 Acenaphthene	153	12.793	12.793	(1.006)	801482	5.00000	5.140
	16 Fluorene	166	14.009	14.009	(1.101)	861235	5.00000	5.067
*	17 Phenanthrene-d10	188	16.200	16.200	(1.000)	229716	1.00000	
	18 Phenanthrene	178	16.256	16.256	(1.003)	1288760	5.00000	5.167
	19 Anthracene	178	16.358	16.358	(1.010)	1207535	5.00000	5.126

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL5.D Report Date: 15-Jan-2008 06:39

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
	====	==			=======	======	======
20 Fluoranthene	202	19.096	19.096	(1.179)	1232182	5.00000	5.095
* 21 Chrysene-d12	240	22.550	22.550 ((1.000)	221153	1.00000	
22 Pyrene	202	19.598	19.598 ((0.869)	1352228	5.00000	5.191
\$ 23 Terphenyl-d14	244	20.210	20.210 ((0.896)	957443	5.00000	5.123
24 Benzo(a)anthracene	228	22.513	22.513 ((0.998)	1011465	5.00000	4.640
25 Chrysene	228	22.605	22.605 ((1.002)	1194368	5.00000	4.959
* 26 Perylene-d12	264	25.697	25.697 ((1.000)	154582	1.00000	
27 Benzo(b) fluoranthene	252	24.936	24.936 ((0.970)	889404	5.00000	4.308
28 Benzo(k) fluoranthene	252	24.991	24.991 ((0.973)	1183863	5.00000	5.392
29 Benzo(a)pyrene	252	25.576	25.576 ((0.995)	849269	5.00000	4.599
30 Indeno(1,2,3-cd)pyrene	276	27.693	27.693 (1.078)	583705	5.00000	4.380
31 Dibenz(a,h)anthracene	278	27.758	27.758 (1.080)	684552	5.00000	4.932
32 Benzo(g,h,i)perylene	276	28.111	28.111 (1.094)	809435	5.00000	5.493

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL4.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL4.D

Lab Smp Id: LPAHCAL1PPM Client Smp ID: LPAHCAL1PPM

Inj Date : 14-JAN-2008 20:33 MS Autotune Date: 01-NOV-2007 04:29

Operator : ADM Inst ID: bna3.i

Smp Info : LPAHCAL1PPM;;;;;SV4285-4 Misc Info : ;;;;;pahsurr.sub;4277

Comment :

Method : \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m

Meth Date: 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Als bottle: 21 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02_VM

Concentration Formula: Amt * DF * Uf * Vt*Vi/(Amt * Vi)

Name	Value	Description
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction

1.15.08 1.15.08

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
	====	==	=====	=====		======	
* 1 1,4-Dichlorobenzene-d4	152	5.636	5.636	(1.000)	79950	1.00000	
* 3 Naphthalene-d8	136	8.523	8.523	(1.000)	305350	1.00000	
\$ 4 Nitrobenzene-d5	82	6.945	6.945	(0.815)	63649	1.00000	0.9536
5 Naphthalene	128	8.560	8.560	(1.004)	271110	1.00000	1.030
6 2-Methylnaphthalene	141	10.222	10.222	(1.199)	136573	1.00000	1.016
7 1-Methylnaphthalene	141	10.463	10.463	(1.228)	152243	1.00000	1.038
* 8 Acenaphthene-d10	164	12.719	12.719	(1.000)	156261	1.00000	
\$ 11 2-Fluorobiphenyl	172	11.234	11.234	(0.883)	204319	1.00000	1.052
12 Acenaphthylene	152	12.339	12.339	(0.970)	209149	1.00000	0.8411
13 Acenaphthene	153	12.794	12.794	(1.006)	164450	1.00000	1.022
16 Fluorene	166	14.000	14.000	(1.101)	156696	1.00000	0.8935
* 17 Phenanthrene-d10	188	16.201	16.201	(1.000)	229278	1.00000	
18 Phenanthrene	178	16.247	16.247	(1.003)	259544	1.00000	1.042
19 Anthracene	178	16.358	16.358	(1.010)	215047	1.00000	0.9147

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL4.D Report Date: 15-Jan-2008 06:39

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
	***	==	*************************		======	_======
20 Fluoranthene	202	19.097	19.097 (1.179)	207041	1.00000	0.8578
* 21 Chrysene-dl2	240	22.541	22.541 (1.000)	193473	1.00000	
22 Pyrene	202	19.598	19.598 (0.869)	235148	1.00000	1.032
\$ 23 Terphenyl-d14	244	20.211	20.211 (0.897)	166774	1.00000	1.020
24 Benzo(a)anthracene	228	22.513	22.513 (0.999)	136211	1.00000	0.9856
25 Chrysene	228	22.597	22.597 (1.002)	227759	1.00000	1.081
* 26 Perylene-d12	264	25.698	25.698 (1.000)	123381	1.00000	
27 Benzo(b) fluoranthene	252	24.936	24.936 (0.970)	119098	1.00000	0.7228
28 Benzo(k)fluoranthene	252	24.992	24.992 (0.973)	172098	1.00000	0.9822
29 Benzo(a)pyrene	252	25.577	25.577 (0.995)	94214	1.00000	0.6392
30 Indeno(1,2,3-cd)pyrene	276	27.684	27.684 (1.077)	55482	1.00000	0.5216
31 Dibenz(a,h)anthracene	278	27.759	27.759 (1.080)	74109	1.00000	0.6689
32 Benzo(q,h,i)perylene	276	28.111	28.111 (1.094)	106341	1.00000	0.9041

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL3.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL3.D Lab Smp Id: LPAHCAL0.4PPM Client Smp ID: LPAHCAL0.4 Client Smp ID: LPAHCAL0.4PPM

MS Autotune Date: 01-NOV-2007 04:29 Inj Date : 14-JAN-2008 21:13

Inst ID: bna3.i Operator : ADM

Smp Info : LPAHCALO.4PPM;;;;;SV4285-3 Misc Info : ;;;;;;pahsurr.sub;4277

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m Method

Meth Date: 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Calibration Sample, Level: 3

Als bottle: 22 Dil Factor: 1.00000

Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02 VM

Name	Value	Description	8 (11/100)
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	1-15-08

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
	====	==	=======================================		======	
* 1 1,4-Dichlorobenzene-d4	152	5.638	5.638 (1.000)	76360	1.00000	
* 3 Naphthalene-d8	136	8.516	8.516 (1.000)	295934	1.00000	
\$ 4 Nitrobenzene-d5	82	6.947	6.947 (0.816)	20175	0.40000	0.4495
5 Naphthalene	128	8.562	8.562 (1.005)	101793	0.40000	0.3990
6 2-Methylnaphthalene	141	10.224	10.224 (1.201)	47378	0.40000	0.3636
7 1-Methylnaphthalene	141	10.465	10.465 (1.229)	53371	0.40000	0.3754
* 8 Acenaphthene-d10	164	12.721	12.721 (1.000)	148428	1.00000	
\$ 11 2-Fluorobiphenyl	172	11.227	11.227 (0.883)	71433	0.40000	0.3874
12 Acenaphthylene	152	12.341	12.341 (0.970)	62304	0.40000	0.2638
13 Acenaphthene	153	12.786	12.786 (1.005)	58001	0.40000	0.3796
16 Fluorene	166	14.002	14.002 (1.101)	50201	0.40000	0.3014
* 17 Phenanthrene-d10	188	16.203	16.203 (1.000)	221165	1.00000	
18 Phenanthrene	178	16.249	16.249 (1.003)	92806	0.40000	0.3865
19 Anthracene	178	16.360	16.360 (1.010)	60541	0.40000	0.2670

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL3.D Report Date: 15-Jan-2008 06:39

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
	===	==			======	
20 Fluoranthene	202	19.099	19.099 (1.179)	61960	0.40000	0.2661
* 21 Chrysene-d12	240	22.543	22.543 (1.000)	165881	1.00000	
22 Pyrene	202	19.591	19.591 (0.869)	71214	0.40000	0.3645
\$ 23 Terphenyl-d14	244	20.204	20.204 (0.896)	50802	0.40000	0.3624
24 Benzo(a)anthracene	228	22.515	22.515 (0.999)	34833	0.40000	0.5190
25 Chrysene	228	22.599	22.599 (1.002)	71515	0.40000	0.3959
* 26 Perylene-d12	264	25.700	25.700 (1.000)	97327	1.00000	
27 Benzo(b) fluoranthene	252	24.938	24.938 (0.970)	30841	0.40000	0.2373
28 Benzo(k) fluoranthene	252	24.994	24.994 (0.973)	40622	0.40000	0.2939
29 Benzo(a)pyrene	252	25.579	25.579 (0.995)	19824	0.40000	0.1705
30 Indeno(1,2,3-cd)pyrer	ie 276	27.686	27.686 (1.077)	19976	0.40000	0.2381(M)
31 Dibenz(a,h)anthracene	278	27.761	27.761 (1.080)	17355	0.40000	0.1986(M)
32 Benzo(g,h,i)perylene	276	28.113	28.113 (1.094)	26668	0.40000	0.2874

QC Flag Legend

M - Compound response manually integrated.

Compound: Dibenz(a,h)anthracene CAS Number: 53-70-3

Compound: Indeno(1,2,3-cd)pyrene CAS Number: 193-39-5

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL2.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL2.D Lab Smp Id: LPAHCAL0.2PPM Client Smp ID: LPAHCAL0.2 Inj Date: 14-JAN-2008 21:52 MS Autotune Date: 01-NOV-Client Smp ID: LPAHCAL0.2PPM

MS Autotune Date: 01-NOV-2007 04:29

Inst ID: bna3.i Operator : ADM

Smp Info : LPAHCALO.2PPM;;;;;SV4285-2 Misc Info: ;;;;;;pahsurr.sub;4277

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m Method

Meth Date: 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Calibration Sample, Level: 2

Als bottle: 23 Dil Factor: 1.00000

Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02 VM

M	Description	Value	Name
1/1/12	Dilution Factor ng unit correction factor		DF Uf
	Volume of final extract (uL) Volume injected (uL)	500.000	Vt Vi
1-15	Volume of initial extraction		Amt

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
		===	==				======	=====
* :	l 1,4-Dichlorobenzene-d4	152	5.637	5.637	(1.000)	72529	1.00000	
* 3	Naphthalene-d8	136	8.524	8.524	(1.000)	277983	1.00000	
\$ 4	Nitrobenzene-d5	82	6.955	6.955	(0.816)	8499	0.20000	0.3144
	Naphthalene	128	8.561	8.561	(1.004)	47409	0.20000	0.1978
6	2-Methylnaphthalene	141	10.223	10.223	(1.199)	20626	0.20000	0.1685
7	7 1-Methylnaphthalene	141	10.464	10.464	(1.228)	24747	0.20000	0.1853
* {	Acenaphthene-d10	164	12.720	12.720	(1.000)	136425	1.00000	
\$ 11	2-Fluorobiphenyl	172	11.235	11.235	(0.883)	33432	0.20000	0.1973
12	2 Acenaphthylene	152	12.339	12.339	(0.970)	27552	0.20000	0.1269
13	Acenaphthene	153	12.785	12.785	(1.005)	27308	0.20000	0.1944
16	Fluorene	166	14.001	14.001	(1.101)	20631	0.20000	0.1348(M)
* 17	Phenanthrene-d10	188	16.201	16.201	(1.000)	200936	1.00000	
18	Phenanthrene	178	16.248	16.248	(1.003)	42852	0.20000	0.1964
19	Anthracene	178	16.359	16.359	(1.010)	25755	0.20000	0.1250

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL2.D Report Date: 15-Jan-2008 06:39

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
	***	==	===== =====			
20 Fluoranthene	202	19.098	19.098 (1.179)	25807	0.20000	0.1220
* 21 Chrysene-d12	240	22.542	22.542 (1.000)	140959	1.00000	
22 Pyrene	202	19.599	19.599 (0.869)	28620	0.20000	0.1724
\$ 23 Terphenyl-d14	244	20.212	20.212 (0.897)	20569	0.20000	0.1727
24 Benzo(a)anthracene	228	22.514	22.514 (0.999)	13148	0.20000	0.4088(M)
25 Chrysene	228	22.598	22.598 (1.002)	31645	0.20000	0.2062
* 26 Perylene-d12	264	25.698	25.698 (1.000)	72067	1.00000	
27 Benzo(b) fluoranthene	252	24.937	24.937 (0.970)	11391	0.20000	0.1184(M)
28 Benzo(k)fluoranthene	252	24.984	24.984 (0.972)	13139	0.20000	0.1284(M)
29 Benzo(a)pyrene	252	25.568	25.568 (0.995)	7064	0.20000	0.08206(aM)
30 Indeno(1,2,3-cd)pyrene	276	27.685	27.685 (1.077)	4581	0.20000	0.07373(aM)
31 Dibenz(a,h)anthracene	278	27.750	27.750 (1.080)	5439	0.20000	0.08405(aM)
32 Benzo(g,h,i)perylene	276	28.103	28.103 (1.094)	9061	0.20000	0.1319

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 M Compound response manually integrated.

Compound: Fluorene CAS Number: 86-73-7

Compound: Benzo(a)anthracene CAS Number: 56-55-3

Compound: Benzo(b)fluoranthene CAS Number: 205-99-2

Compound: Benzo(k)fluoranthene CAS Number: 207-08-9

Compound: Benzo(a)pyrene CAS Number: 50-32-8

Compound: Indeno(1,2,3-cd)pyrene CAS Number: 193-39-5

Data File: \\ELABNSHO5\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL2.D Injection Date: 14-JAN-2008 21:52 Instrument: bna3.i Client Sample ID: LPAHCAL0.2PPM

Compound: Dibenz(a,h)anthracene CAS Number: 53-70-3

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL1.D

Report Date: 15-Jan-2008 06:39

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL1.D

Lab Smp Id: LPAHCAL0.1PPM Client Smp ID: LPAHCAL0.1PPM

Inj Date : 14-JAN-2008 22:32 MS Autotune Date: 01-NOV-2007 04:29

Operator : ADM Inst ID: bna3.i

Smp Info : LPAHCALO.1PPM;;;;;SV4285-1 Misc Info : ;;;;;;pahsurr.sub;4277

Comment

Method : \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW.m Meth Date : 15-Jan-2008 06:39 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D Calibration Sample, Level: 1

Als bottle: 24

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02 VM

Concentration Formula: Amt * DF * Uf * Vt*Vi/(Amt * Vi)

Name	Value	Description
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction

								AMOUN	ITS
			QUANT SIG					CAL-AMT	ON-COL
Co	oqm	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
==	===		22 22 22 22	==	=====		======	======	======
*	1	1,4-Dichlorobenzene-d4	152	5.629	5.629	(1.000)	61123	1.00000	
*	3	Naphthalene-d8	136	8.516	8.516	(1.000)	233978	1.00000	
\$	4	Nitrobenzene-d5	82	6.956	6.956	(0.817)	3283	0.10000	0.2549(M)
	5	Naphthalene	128	8.562	8.562	(1.005)	21469	0.10000	0.1064(M)
	6	2-Methylnaphthalene	141	10.224	10.224	(1.201)	8893	0.10000	0.08633(a)
	7	1-Methylnaphthalene	141	10.465	10.465	(1.229)	10982	0.10000	0.09771(a)
*	8	Acenaphthene-d10	164	12.721	12.721	(1.000)	116715	1.00000	
\$	11	2-Fluorobiphenyl	172	11.236	11.236	(0.883)	14533	0.10000	0.1002
	12	Acenaphthylene	152	12.331	12.331	(0.969)	10928	0.10000	0.05884 (aM)
	13	Acenaphthene	153	12.786	12.786	(1.005)	12121	0.10000	0.1009
	16	Fluorene	166	14.012	14.012	(1.101)	8266	0.10000	0.06311(aM)
*	17	Phenanthrene-d10	188	16.203	16.203	(1.000)	165516	1.00000	
	18	Phenanthrene	178	16.249	16.249	(1.003)	18332	0.10000	0.1020(M)
	19	Anthracene	178	16.360	16.360	(1.010)	9621	0.10000	0.05669(aM)

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL1.D Report Date: 15-Jan-2008 06:39

					AMOUNT	'S
QUANT SIG					CAL-AMT	ON-COL
MASS	RT	EXP RT F	REL RT	RESPONSE	(ng/ul)	(ng/ul)
	==	===== =	=====		======	======
202	19.099	19.099 (1	1.179)	9314	0.10000	0.05345(aM)
240	22.543	22.543 (1	1.000)	96285	1.00000	
202	19.591	19.591 (0	0.869)	10759	0.10000	0.09486(aM)
244	20.213	20.213 (0	0.897)	8009	0.10000	0.09844(aM)
228	22.515	22.515 (0	0.999)	4378	0.10000	0.3637(M)
228	22.599	22.599 (1	1.002)	10419	0.10000	0.09937(aM)
264	25.700	25.700 (1	1.000)	44738	1.00000	
252	24.938	24.938 (0	0.970)	3159	0.10000	0.05288 (aM)
252	24.976	24.976 (0	0.972)	4665	0.10000	0.07342(aM)
252	25.579	25.579 (0	0.995)	2542	0.10000	0.04757 (aM)
276	27.696	27.696 (1	1.078)	1511	0.10000	0.03917(aM)
278	27.751	27.751 (1	L.080)	1684	0.10000	0.04192(aM)
276	28.095	28.095 (1	L.093)	2756	0.10000	0.06462(aM)
	MASS === 202 240 202 244 228 228 228 264 252 252 276 278	MASS RT ==== ===============================	MASS RT EXP RT ===================================	MASS RT EXP RT REL RT ==== ==============================	MASS RT EXP RT REL RT RESPONSE === ====================================	MASS RT EXP RT REL RT RESPONSE (ng/ul) ==== ===============================

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- M Compound response manually integrated.

Compound: Naphthalene CAS Number: 91-20-3

Compound: Acenaphthylene CAS Number: 208-96-8

Compound: Fluorene CAS Number: 86-73-7

Compound: Phenanthrene CAS Number: 85-01-8

Data File: \\ELABNSHO5\TARGET\chem\bna3.i\\011408b3E.b\LPAHCAL1.D Injection Date: 14-JAN-2008 22:32 Instrument: bna3.i Client Sample ID: LPAHCAL0.1PPM

Compound: Anthracene CAS Number: 120-12-7

Compound: Fluoranthene CAS Number: 206-44-0

Compound: Pyrene CAS Number: 129-00-0

Compound: Terphenyl-d14 CAS Number: 1718-51-0

Compound: Benzo(a)anthracene CAS Number: 56-55-3

Compound: Chrysene CAS Number: 218-01-9

Compound: Benzo(b)fluoranthene CAS Number: 205-99-2

24.5

24.6

Min

Compound: Benzo(a)pyrene CAS Number: 50-32-8

Data File: \\ELABNSHO5\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL1.D Injection Date: 14-JAN-2008 22:32 Instrument: bna3.i Client Sample ID: LPAHCAL0.1PPM

Compound: Indeno(1,2,3-cd)pyrene CAS Number: 193-39-5

Data File: \\ELABNSHO5\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL1.D Injection Date: 14-JAN-2008 22:32 Instrument: bna3.i Client Sample ID: LPAHCAL0.1PPM

Compound: Dibenz(a,h)anthracene CAS Number: 53-70-3

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHCAL1.D Injection Date: 14-JAN-2008 22:32 Instrument: bna3.i Client Sample ID: LPAHCAL0.1PPM

Compound: Benzo(g,h,i)perylene CAS Number: 191–24–2

SEMIVOLATILE INITIAL CALIBRATION VERIFICATION

Lab Name: EMPIRICAL LABS Contract:

Lab Code: Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date: 01/14/08 Time: 2311

Lab File ID: LPAHICV Init. Calib. Date(s): 01/14/08 01/14/08

Init. Calib. Times: 1754 2232

COMPOUND	RRF	RRF5	CURVE AMOUNT	1	MIN RRF	CURVE	%D	MAX %D
Acenaphthene	1.029	1.102	5.000	5.351	=====	AVRG	7 0	25.0
Acenaphthylene	1.344	1.589		1		LINR		25.0
Anthracene	0.878	1.071				LINR	l .	25.0
Benzo (a) anthracene	0.768	1.037				LINR		25.0
Benzo(b) fluoranthene	1.049	1.381	5.000			LINR		25.0
Benzo(k) fluoranthene	1.284	1.652	5.000	i .		LINR		25.0
Benzo(g,h,i)perylene	0.841	0.945	5.000			LINR		25.0
Benzo(a) pyrene	0.875	1.145	5.000	1		LINR		25.0
Chrysene	1.089	1.135		5.212		AVRG		25.0
Dibenz(a,h)anthracene	0.671	0.799				LINR	-11.0	
Fluoranthene	0.886	1.115	5.000			LINR		25.0
Fluorene	0.981	1.196	5.000			LINR		25.0
Indeno (1,2,3-cd) pyrene	0.610	0.670	5.000	3.887		LINR	-22.3	
2-Methylnaphthalene	0.440	0.523	5.000	1 1		AVRG		25.0
1-Methylnaphthalene	0.480	0.496	5.000			AVRG		25.0
Naphthalene	0.862	0.915	5.000	1		AVRG		25.0
Phenanthrene	1.086	1.106	5.000			AVRG		25.0
Pyrene	1.178	1.395	5.000	5.920		AVRG	18.4	
					=====		=====	====
Nitrobenzene-d5	0.219	0.262	5.000	0.0000		LINR	-99.9	25.0
2-Fluorobiphenyl	1.242	1.277	5.000	0.0000		AVRG	2.8	25.0
Terphenyl-d14	0.845	0.866	5.000	0.0000		AVRG		25.0
± ±						<u> </u>		***************************************

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHICV.D

Report Date: 28-Apr-2008 10:56

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHICV.D

Lab Smp Id: LPAHICV5PPM Client Smp ID: LPAHICV5PPM

MS Autotune Date: 01-NOV-2007 04:29 Inj Date : 14-JAN-2008 23:11

Inst ID: bna3.i Operator : ADM

Smp Info : LPAHICV5PPM;;;;;SV4286 Misc Info: ;;;;;;pahsurr.sub;4277

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\PAHLOW1.m Method

Meth Date: 28-Apr-2008 10:56 tmonteiro Quant Type: ISTD Cal Date: 14-JAN-2008 22:32 Cal File: LPAHCA Cal File: LPAHCAL1.D

Als bottle: 25 Continuing Calibration Sample

Dil Factor: 1.00000 Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02 VM

Concentration	Formula: Amt	* DF * Uf * Vt*Vi/(Amt * Vi)	b as
Name	Value	Description	0m 2128 00
DF		Dilution Factor	9(
U£		ng unit correction factor	m 1128 17
Vt		Volume of final extract (uL)	1 1 1
Vi	2.000	Volume injected (uL)	,
Amt	1000.000	Volume of initial extraction	

AMOUNTS QUANT SIG CAL-AMT ON-COL (ng/ul) Compounds MASS RT EXP RT REL RT RESPONSE (ng/ul) ====== 152 5.635 5.635 (1.000) 73808 1.00000 (M) 1 1,4-Dichlorobenzene-d4 136 8.522 8.522 (1.000) 293971 1.00000 3 Naphthalene-d8 128 8.559 8.559 (1.004) 1345206 5.00000 5.308 5 Naphthalene 10.221 10.221 (1.199) 768485 5.00000 5.938 141 6 2-Methylnaphthalene 141 10.462 10.462 (1.228) 729745 5.00000 5 168 7 1-Methylnaphthalene 164 12.718 12.718 (1.000) 154683 1.00000 8 Acenaphthene-d10 5.00000 4.994 12 Acenaphthylene 152 12.337 12.337 (0.970) 1229085 12.792 12.792 (1.006) 852164 5.00000 5.351 153 13 Acenaphthene 14.008 14.008 (1.101) 925170 5.00000 5.329 16 Fluorene 166 16.199 16.199 (1.000) 243100 1.00000 * 17 Phenanthrene-d10 188 16.255 16.255 (1.003) 1344274 5.00000 5.093 18 Phenanthrene 178 5.224 178 16.357 16.357 (1.010) 1302112 5.00000 19 Anthracene 19.096 19.096 (1.179) 1355399 5.00000 5.296 202 20 Fluoranthene 22.549 22.549 (1.000) 200307 1.00000 * 21 Chrysene d12 240

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\LPAHICV.D Report Date: 28-Apr-2008 10:56

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
÷		====	==			=======	7 = = = = = = =
	22 Pyrene	202	19.597	19.597 (0.869)	1396875	5.00000	5.920
	24 Benzo(a)anthracene	228	22.512	22.512 (0.998)	1038669	5.00000	4.970
	25 Chrysene	228	22.605	22.605 (1.002)	1136927	5.00000	5.212
*	26 Perylene-dl2	264	25.696	25.696 (1.000)	130813	1.00000	
	27 Benzo(b)fluoranthene	252	24.935	24.935 (0.970)	903365	5.00000	5.171
	28 Benzo(k)fluoranthene	252	24.991	24.991 (0.973)	1080465	5.00000	5.816
	29 Benzo(a)pyrene	252	25.575	25.575 (0.995)	749026	5.00000	4.793
	30 Indeno(1,2,3-cd)pyrene	276	27.692	27.692 (1.078)	438336	5.00000	3.887
	31 Dibenz(a,h)anthracene	278	27.757	27.757 (1.080)	522547	5.00000	4.449
	32 Benzo(g,h,i)perylene	276	28.110	28.110 (1.094)	618053	5.00000	4.956

QC Flag Legend

M - Compound response manually integrated.

Data File: \\ELABNSHO5\TARGET\chem\bna3.i\011408b3E.b\LPAHICV.D Injection Date: 14-JAN-2008 23:11 Instrument: bna3.i Client Sample ID: LPAHICV5PPM

Compound: 1,4-Dichlorobenzene-d4 CAS Number: 3855-82-1

FORM 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Instrument ID: BNA3

Calibration Date: 06/25/08 Time: 0919

Lab File ID: LPAHCCV

Init. Calib. Date(s): 01/14/08 01/14/08

Init. Calib. Times: 1754 2232

COMPOUND	RRF	RRF5	CURVE AMOUNT	CCAL AMOUNT	MIN RRF	CURVE	%D	MAX %D
	=====			======	====	=====		====
Acenaphthene	1.029	1.111	5.000	5.395		AVRG	7.9	20.0
Acenaphthylene	1.344	1.703	5.000			LINR	7.0	20.0
Anthracene	0.878	1.050	5.000	5.120		LINR	2.4	20.0
Benzo (a) anthracene	0.768	0.985	5.000	4.721		LINR	-5.6	20.0
Benzo (b) fluoranthene	1.049	1.135	5.000	4.248		LINR	-15.0	20.0
Benzo(k) fluoranthene	1.284	1.358	5.000	4.782		LINR	-4.4	20.0
Benzo(g,h,i)perylene	0.841	1.016	5.000	5.327		LINR	6.5	20.0
Benzo(a) pyrene	0.875	1.028	5.000	4.305		LINR	-13.9	20.0
Chrysene	1.089	1.067	5.000	4.897		AVRG	-2.0	20.0
Dibenz (a, h) anthracene	0.671	0.899	5.000	5.004		LINR	0.1	20.0
Fluoranthene	0.886	1.056	5.000	5.018		LINR	0.4	20.0
Fluorene	0.981	1.147	5.000	5.111		LINR	2.2	20.0
Indeno (1,2,3-cd) pyrene	0.610	0.855	5.000	4.957		LINR		20.0
2-Methylnaphthalene	0.440	0.502	5.000	5.703		AVRG	14.1	
1-Methylnaphthalene	0.480	0.530	5.000	5.522		AVRG	10.4	
Naphthalene	0.862	0.891	5.000	5.170		AVRG	3.4	
Phenanthrene	1.086	1.074	5.000	4.948		AVRG	-1.0	1
Pyrene	1.178	1.170	5.000	4.968		AVRG	-0.6	20.0
	======	======		=====	=====	=====		====
Nitrobenzene-d5	0.219	0.292	5.000	5.462		LINR	9.2	
2-Fluorobiphenyl	1.242	1.325	5.000	5.334		AVRG	6.7	
Terphenyl-d14	0.845	0.822	5.000	4.866		AVRG	-2.7	

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\LPAHCCV.D

Report Date: 25-Jun-2008 09:52

Empirical Laboratories, LLC

Data file : \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\LPAHCCV.D

Lab Smp Id: LOWPAH5PPM Client Smp ID: LOWPAH5PPM

Inj Date : 25-JUN-2008 09:19 Operator : ADM MS Autotune Date: 01-NOV-2007 04:29

Inst ID: bna3.i

Smp Info : LOWPAH5PPM;;;;; SV4420B Misc Info: ;2;;;;pahsurr.sub;4352

Comment : \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\PAHLOW1.m Method

Meth Date: 25-Jun-2008 09:52 tmonteiro Quant Type: ISTD

Cal File: LPAHCAL1.D Cal Date : 14-JAN-2008 22:32

Continuing Calibration Sample Als bottle: 2

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02_VM

M612178

						AMOUN	TS	
	QUANT	rsig				CAL-AMT	ON-COL	
	MAS		EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)	
Compounds		***					*****	
		3.381	3.381	(1.000)	41299	1.00000		
* 1 1,4-Dichlorobe		6.333	6.333	(1.000)	155161	1.00000		
* 3 Naphthalene-d8	,	32 4.773	4.773	(0.754)	226976	5.00000	5.461	(I)
\$ 4 Nitrobenzene-0	12		6.370	(1.006)	691536	5.00000	5.170	1~
5 Naphthalene			8.032	(1.268)	389597	5.00000	5.703	1000
6 2-Methylnaphth	MICHO		8.255	(1.303)	411596	5.00000	5.522	1,234
7 1-Methylnaphth	MIGNE		10.455	(1.000)	79018	1.00000		V
* 8 Acenaphthene-C			9.071	(0.868)	523615	5.00000	5.334	
\$ 11 2-Fluorobipher	191		10.074	(0.964)	673009	5.00000	5.352	
12 Acenaphthylene	15		10.520	(1.006)	438882	5.00000	5.395	
13 Acenaphthene	16	6 11.708	11.708	(1.120)	453257	5.00000	5.111	
16 Fluorene			13.815	(1.000)	127833	1.00000		
* 17 Phenanthrene-C	110			(1.003)	686819	5.00000	4.948	
18 Phenanthrene	17		13.973	(1.011)	671201	5.00000	5.120	
19 Anthracene	20		16.619	(1.203)	675229	5.00000	5.018	
20 Fluoranthene	24		19.980	(1.000)	124574	1.00000		
* 21 Chrysene-d12	20	-		(0.855)	728973	5.00000	4.968	
22 Pyrene	24			(0.890)	512264	5.00000	4.866	
\$ 23 Terphenyl-d14		_		(0.999)	613595	5.00000	4.721	
24 Benzo(a)anthra	icene 22	-		(1.003)	664369	5.00000	4.897	
25 Chrysene	26	-		(1.000)	99762	1.00000		
* 26 Perylene-d12		_		(0.969)	565983	5.00000	4.248	
27 Benzo(b) fluora	uithene	_		(0.971)	677554	5.00000	4.782	
28 Benzo(k)fluora	menene	_		(0.995)	512985	5.00000	4.305	
29 Benzo(a)pyrene				(1.085)	426317	5.00000	4.957	
30 Indeno(1,2,3-0	(u) pyrene	_		(1.088)	448279	5.00000	5.004	
31 Dibenz(a,h)ant	hracene 27	5 25.076	25.076	(1.000)	220413			

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\LPAHCCV.D Report Date: 25-Jun-2008 09:52

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ng/ul)
	===	==		=======		======
22 Renzo(g, h, i) pervlene	276	25.392	25.392 (1.102)	506628	5.00000	5.327

FORM 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Instrument ID: BNA3 Calibration Date: 06/26/08 Time: 0951

Lab File ID: LPAHCCV Init. Calib. Date(s): 01/14/08 01/14/08

Init. Calib. Times: 1754 2232

COMPOUND	RRF	RRF5	CURVE AMOUNT	CCAL AMOUNT	MIN RRF	CURVE	%D	MAX %D
Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(g,h,i) perylene Benzo(a) pyrene Chrysene Dibenz(a,h) anthracene Fluoranthene Fluorene Indeno(1,2,3-cd) pyrene 2-Methylnaphthalene 1-Methylnaphthalene Naphthalene Phenanthrene	1.029 1.344 0.878 0.768 1.049 1.284 0.841 0.875 1.089 0.671 0.886 0.981 0.440 0.480 0.862 1.086	1.668 1.087 0.917 1.206 1.397 0.851 1.054 1.084 0.783 1.073 1.159 0.692 0.486 0.512 0.885 1.090	5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000	5.242 5.301 4.395 4.516 4.919 4.464 4.414 4.979 4.358 5.166 4.014 5.516 5.333 5.135 5.017		AVRG LINR LINR LINR LINR LINR LINR LINR LINR	-12.1 -9.7 -1.6 -10.7 -0.4 -12.8 1.9 3.3 -19.7 10.3 6.6 2.7 0.3	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Pyrene	1.178	1.196	5.000	5.077		AVRG	1.5	20.0
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	0.219 1.242 0.845	0.273 1.327 0.832	5.000 5.000 5.000	5.118 5.340 4.922		LINR AVRG AVRG	2.4 6.8 -1.6	

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\LPAHCCV.D Report Date: 26-Jun-2008 10:47

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\LPAHCCV.D

Client Smp ID: LOWPAH5PPM

Lab Smp Id: LOWPAH5PPM
Inj Date : 26-JUN-2008 09:51
Operator : ADM MS Autotune Date: 01-NOV-2007 04:29

Inst ID: bna3.i Operator

Smp Info : LOWPAH5PPM;;;; SV4420B Misc Info: ;2;;;;pahsurr.sub;4352

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\PAHLOW1.m Method

Meth Date: 26-Jun-2008 10:46 tmonteiro Quant Type: ISTD

Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

Continuing Calibration Sample

Als bottle: 2 Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: pahsurr.sub

Target Version: 4.04

Processing Host: TARGET02_VM

									6/26/3
							NUOMA	TS	/ - / /
		QUANT SIG					CAL-AMT	ON-COL	
C	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)	
=:			==	=====					
*	1 1,4-Dichlorobenzene-d4	152	3.355	3.355	(1.000)	35632	1.00000		
*	3 Naphthalene-d8	136	6.307	6.307	(1.000)	137087	1.00000		
\$	4 Nitrobenzene-d5	82	4.748	4.748	(0.753)	187437	5.00000	5.118	
	5 Naphthalene	128	6.354	6.354	(1.007)	606769	5.00000	5.135	
	6 2-Methylnaphthalene	141	8.015	8.015	(1.271)	332947	5.00000	5.516	
	7 1-Methylnaphthalene	141	8.238	8.238	(1.306)	351192	5.00000	5.333	
*	8 Acenaphthene-d10	164	10.429	10.429	(1.000)	68600	1.00000		
\$	11 2-Fluorobiphenyl	172	9.055	9.055	(0.868)	455121	5.00000	5.340	\bigcirc 1
	12 Acenaphthylene	152	10.058	10.058	(0.964)	572188	5.00000	5.242	Vnd
	13 Acenaphthene	153	10.503	10.503	(1.007)	383942	5.00000	5.436	6-27-08
	16 Fluorene	166	11.682	11.682	(1.120)	397700	5.00000	5.166	1, 7/10
*	17 Phenanthrene-d10	188	13.799	13.799 ((1.000)	105384	1.00000		in-L'
	18 Phenanthrene	178	13.845	13.845 ((1.003)	574105	5.00000	5.017	V
	19 Anthracene	178	13.947	13.947 ((1.011)	572861	5.00000	5.301	
	20 Fluoranthene	202	16.603	16.603 ((1.203)	565332	5.00000	5.096	
*	21 Chrysene-d12	240	19.954	19.954 (1.000)	102897	1.00000		
	22 Pyrene	202	17.067	17.067 (0.855)	615409	5.00000	5.077	
\$	23 Terphenyl-d14	244	17.763	17.763 (0.890)	427985	5.00000	4.922	
	24 Benzo(a)anthracene	228	19.935	19.935 (0.999)	471817	5.00000	4.394	
	25 Chrysene	228	20.019	20.019 (1.003)	557900	5.00000	4.979	
*	26 Perylene-d12	264	23.027	23.027 (1.000)	74514	1.00000		
	27 Benzo(b) fluoranthene	252	22.293	22.293 (0.968)	449403	5.00000	4.516	
	28 Benzo(k)fluoranthene	252	22.340	22.340 (0.970)	520588	5.00000	4.919	
	29 Benzo(a)pyrene	252	22.906	22.906 (0.995)	392867	5.00000	4.414	
	30 Indeno(1,2,3-cd)pyrene	276	24.976	24.976 (1.085)	257892	5.00000	4.014	
	31 Dibenz(a,h)anthracene	278	25.060	25.060 (1.088)	291613	5.00000	4.358	

my.

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062608b3.b\LPAHCCV.D Report Date: 26-Jun-2008 10:47

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ng/ul)
	===	==		=====	=======		
32 Benzo(q.h.i)perylene	276	25.366	25.366	(1.102)	317128	5.00000	4.464

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\DF0114B2.D

Date : 14-JAN-2008 17:34

Client ID: 10ppm DFTPP Instrument: bna3.i

Sample Info: DF0114B2;;;;;SV4283

Operator: ADM

Column phase: DB5-MS Column diameter: 0.25

1 dftpp

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\DF0114B2.D

Date : 14-JAN-2008 17:34 Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0114B2;;;;;SV4283

Operator: ADM

Column phase: DB5-MS Column diameter: 0.25

Data File: DF0114B2.D

Spectrum: Avg. Scans 849-851 (7.68), Background Scan 844

	m/z	Y	m/z	Y	m/z	Y	m/z	Y
1	36.00	41	1 140.00	433	1 239,00	447	+ 339,00	60 I
ı	37.00	318	141.00	5122	1 240,00	348	1 340,00	34 I
1	38.00	1114	142.00	1611	241.00	835	I 341.00	511 I
1	39.00	6648	143.00	886	242.00	1532	1 342,00	155 I
1	40,00	330	1 144.00	350	243.00	1686	I 343,00	48 I
1	41.00	 359	145.00	270	244,00	23640	1 344.00	37 I
1	44,00	279	146.00	945 1	245.00	3086	345.00	30 1
1	45,00	172	147.00	2519	246.00	4203	1 346.00	993
I	47.00	86	148.00	5902	247.00	854	1 347.00	150 I
1	48,00	133	1 149.00	1522	248.00	294	1 348.00	54 I
1	50,00	21880	I 150.00	434 I	249.00	975	1 350.00	 52 I
1	51.00	84152	151.00	839 I	250.00	203	351,00	107
1	52,00	4515	152.00	379 I	251,00	215	352,00	1422 i
1	53,00	91	153,00	1565 I	252,00	152	353.00	865 I
1	54,00	48	154.00	1315 I	253,00	455	354,00	1470 I
1	55.00	626	. 155.00	2929 I	255.00	122080	355.00	260 I
ı	56.00		156,00	4172 I	256.00	17712	356.00	51
1	57,00	6143	157.00	903 1	257.00	1619	357.00	25
ı	58.00	303	158,00	945	258,00	6768	358.00	10
ı	59,00	50	159.00	550 I	259,00	1079	359,00	97 I
1	60.00	164	160.00	 1524 I	260.00	223	360,00	49
1	61.00	1052	161.00	2231	261,00	199	361.00	35 I
ı	62,00	1189	162.00	506 I	262,00	46 1	362,00	33
1	63,00	3023 (163.00	230	263,00	37 I	363,00	25
1	64.00	488 1	164.00	294 I	264,00	250	365,00	6396 I
+- !	65.00	1683	165,00	1901 I	265,00	 2640 I	366.00	765
ı	66,00	181	166,00	1589 I	266.00	451 I	367,00	66 I
i	67.00	100	167.00	10090 I	267.00	90 1	369,00	67 1
ı	69,00	94656	168,00	7899 1	269,00	55 I	370,00	116
1	70,00	365 I	169.00	1112	270,00	148 I	371.00	355 I
+ 	71,00	7 I	170,00	304 I	271.00	 280 I	372,00	2315
ı	72,00	91 I	171.00	500 I	272.00	367 I	373.00	609 1
ı	73.00	778 1	172,00	709 1	273,00	3759 1	374.00	119
l	74.00	8654 I	173,00	1187 I	274,00	9228 I	376.00	13
ı	75.00	14678 I	174.00	2152	275,00	54968 I	377.00	118

Data File: \\ELABNSH05\TARGET\chem\bna3.i\011408b3E.b\DF0114B2.D

Date : 14-JAN-2008 17:34

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0114B2;;;;;SV4283

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0114B2.D

Spectrum: Avg. Scans 849-851 (7.68), Background Scan 844

	m/z	Y		m/z	Y	m/z	Υ		m/z	Y
+-	76.00	3476	1	175.00	3736	276.00	7181	ı	378.00	31 I
١	77.00	98208	ı	176.00	1279	277.00	4233	ı	379.00	24 1
ı	78.00	7503	1	177.00	1839	278.00	774	ı	380,00	4 I
1	79.00	5818	1	178,00	530	279,00	174	i	382,00	4 1
ı	80.00	5224	1	179.00	7382	280,00	24	1	383,00	680 I
1	81,00	6696	1	180,00	5621	281.00	55	ı	384,00	157 I
1	82,00	1902	ŧ	181.00	2454	282,00	66	l	385.00	45 I
1	83.00	1550	i	182,00	353	283,00	343	I	388.00	10
1	84.00	290	ı	183.00	292	284,00	290	I	389,00	14 I
I	85.00	1568	1	184.00	563 1	285,00	784	1	390.00	362
+	86,00	1721	1	185.00	3611	286,00	205	1	391,00	256 I
١	87.00	830	I	186.00	28344	287,00	44	l	392.00	161
١	88.00	482	ı	187.00	7743 1	288,00	83	I	393,00	53 1
1	89,00	91	ı	188.00	1022	289,00	229	ı	394.00	16
ı	90,00	32	ı	189.00	1910	290,00	134	1	395,00	7 1
+	91.00	1556	+	190,00	390	291.00	88	1	396.00	27
1	92,00	1774	ı	191.00	867 1	292,00	316	ı	397.00	25 I
ı	93.00	10601	ı	192,00	2762 1	293,00	1100	ı	401,00	137
1	94.00	652	ı	193.00	2717	294,00	303	į	402,00	800
ı	95.00	246	ı	194,00	582	296.00	13967	1	403,00	1348 l
+	96.00	508	1	195.00	366	297.00	2196	ı	404.00	427 I
ı	98.00	7512	ı	196.00	7115 I	298,00	184	I	405,00	73 I
1	99.00	7554	ı	198.00	204736	299,00	91	ı	406.00	61 I
ı	100.00	582	ì	199,00	14275 I	300,00	9	ı	407.00	7 1
i	101.00	3915	1	200,00	1205 I	301.00	241	۱	408,00	26
+	102,00	211	+	201.00	967	302.00	267	ı	409,00	35
ı	103.00	1256	ı	203,00	1412	303.00	1649	ı	410.00	54 I
ı	104.00	2470	ı	204,00	6979	304,00	516	I	411.00	13 I
1	105.00	2222	ı	205,00	12907 l	305.00	39	ı	413.00	4 1
ı	106.00	227	ı	206,00	55096 I	306.00	8	1	414.00	18
+	107.00	27832	+	207.00	6995 l	307.00	25	ı	415.00	57 I
ı	108.00	4871	ı	208.00	1976	308.00	202	ı	416,00	13 I
ı	110.00	53880	ı	209,00	608 1	309,00	154	l	417.00	35 I
ı	111.00	8851	ı	210,00	133 I	310,00	242	l	418,00	20 1
١	112.00	930	ı	211.00	2633 I	311,00	28	ı	419,00	25 I

Data File: \\ELABNSHO5\TARGET\chem\bna3.i\011408b3E.b\DF0114B2.D

Date : 14-JAN-2008 17:34

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0114B2;;;;;SV4283

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0114B2.D

Spectrum: Avg. Scans 849-851 (7.68), Background Scan 844

	m/z	Y		m/z	Υ		m/z	Y		m/z		Υ	_
1	113.00	424	ı	212,00	104	ı	312,00	 33	ı	420,00		26 I	
ı	114.00	91	1	213,00	216	ı	313,00	170	İ	421,00	10	07 I	
1	115.00	53	١	214.00	63	I	314,00	624	ı	422,00	9	85 I	
1	116.00	1546	١	215,00	523	ı	315.00	1566	i	423,00	65	66 I	
1	117.00	21128	1	216,00	1382	1	316,00	964	ı	424,00	18	63 I	
1	118.00	1580	1	217.00	 14003	T- 	317,00	 198	T.	425,00	3	 23	•
ı	119.00	192	ı	218.00	1966	ı	318,00	6	ı	427.00		10 I	
1	120,00	350	ı	219,00	272	ı	319.00	33	ı	428.00		46 I	
1	121.00	14	ı	221,00	13730	ı	320,00	17	ı	431.00		9 I	
ı	122,00	1889	ı	222,00	822	l	321,00	567	1	432,00		41 I	
+-	123.00	2871	+	223.00	 3415	+- I	322.00	 349	+· 	433.00		+ 11	
	124.00			224.00	29792		-			434.00		28 I	
	125.00	1156	1	225.00	7718	1	324.00	907	ļ	435.00	;	26 I	
ı	127.00	111208	ı	226.00	953	ı	325.00	64	ı	436.00	;	25 I	
ı	128,00	8586	i	227.00	12215	ı	326.00	72	I	437.00	•	96 I	
+-			+-		 	+		 	+-			+	
•	129.00		•	228.00			327.00			438.00	_	32 I	
	130.00			229.00			328.00			439.00		14 I	
	131.00			230.00			329.00			441.00		72 I	
	132,00			231,00			330,00			442,00	1303		
 -	133.00	142 	 +-	232,00	 213	: 	331,00	 13 	 	443,00	253	44 +	
i	134.00	1084	1	233,00	286	:	332.00	339	•	444.00	25	86 I	
ı	135,00	3091	ı	234,00	667 I	1	333.00	419	ı	445.00	13	31 I	
ı	136,00	1184	ı	235.00	777 1	1	334.00	3144	ı	446.00	:	10 1	
ı	137.00	2055	ı	236.00	604 I	1	335,00	843	ı	448.00	:	18	
1	138.00	306	i	237,00	1193 I	ı :	336.00	53	I	449,00		4 1	
+- 	139.00	211	+ 	238,00	 246 i	;	338.00	 41	 -			+ 	
+			-		 			 	_			+	

Date : 25-JUN-2008 09:00

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0625B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

1 dftpp

m/e	ION ABUNDANCE CRITERIA		* RELATIVE ABUNDANCE		
+ I			·		- -
198 i	Base Peak, 100% relative abundance	t	100.00		I
	30.00 - 60.00% of mass 198	· 1	46.67		1
	Less than 2.00% of mass 69	1	0.00 (0.00)	I .
	Mass 69 relative abundance	1	52,33		1
_	Less than 2.00% of mass 69	1	¢.27 (0.52)	1
	40.00 - 60.00% of mass 198	1	56.90		^I M
	Less than 1.00% of mass 198	I	0.00		1 (100) 8
	5.00 - 9.00% of mass 198	1	6.94		1 10 10310
	10.00 - 30.00% of mass 198	1	24.50		1
	Greater than 1.00% of mass 198	1	2,80		· () /
	Present, but less than mass 443	l	8.18		1 1
	Greater than 40.00% of mass 198	ľ	51.08		6-2508
	17,00 - 23,00% of mass 442	ı	10,42 (2	20.41)	1-25 25

Date : 25-JUN-2008 09:00

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0625B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0625B1.D

Spectrum: Avg. Scans 579-581 (6.38), Background Scan 572

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ.
+	35,20	 33	1 137.00	939 (235,90	220	1 332,9¢	277 I
i			1 138.00	195 (237.00	763	1 334.00	- 2060 I
i	37.10		1 138.80	107	237.90	234	1 335.00	515
i	38.10	1026	1 140.00	339 1	238.90	289	1 335.80	67
i	39.10		1 141.00	3430 I	240.00	259	1 336.90	23
+			+				+	
1	40.00	205	1 142,00	1080 I	240,90	433	1 339.00	76 1
ı	41.10	299	1 143,00	870 I	242.00	1128	1 340.00	24
ı	41.90	29	1 144,10	243	243.00	1075	I 341.00	305
ı	43.10	150	1 145.00	129	244,00	13105	1 342.00	153 I
ı	44.00	227	145.90	642	245.00	2113	1 343.00	88 1
+			+				+	
ı	45.00	179	1 147.00	1859 I	246.00	2522	344.60	46 1
ı	46.10	27	148.00	3521 I	247.00	600	1 345.90	487 I
ı	47.00	47	1 149.00	808 1	248.00	145	1 346,90	166 I
ı	48,10	29	150.00	285 I	248,90	585	1 348,20	42 1
ı	50.10	15069	151.10	477 1	250.00	109	1 349,90	27 1
+-			 	+			 	+
ı	51.10	56000	153.00	1059	250,70	118	351.00	38
1	52,10	3141	154,10	846 I	251,80	99	I 351.90	503
ı	53,20	139	155,00	1769 I	252,90	353	1 353.00	568 I
1	54,00	53	156,00	2474	255,00	72744	354.00	569 l
-1	55,10	419	157,10	655 I	256,00	10610	355,00	200
+-				+			+	+
ı	56.00	1600	157.90	867 I	257,00	983	I 355 ₊ 90	13 I
ı	57.00	4150 l	159,00	421 I	258.00	4562	356.60	30 1
ı	58.00	223	160.00	1006 I	259.00	735	I 358.10	36 I
ı	59,20	34 1	161.00	1363 I	260,00	75	1 359.00	31 I
1	60,10	107	162,10	502 I	261,10	63	359,80	26 I
+				+-			+	+
ı	61.00	655 I	163,10	144	261.60	11	362,10	16 I
ı	62,10	1071	163,80	255	262,10	27	1 362,80	13
ı	63.10	2340	165.00	1342	263.00	36	1 363.40	19 I
ı	64.10	470	166.00	1010	264.00	147	365.00	3362
ı	65,10	999 1	167,00	6292 I	265,00	1406	366.00	461
+-		+		+-			 	+
ı	66,10	151 I	168.00	3734 1	265,90	247	366.70	44 1
ı	67.00	140	169.00	574 1	267.00	49	367,20	24
ı	69.00	62792	170,00	190 I	267,90	106	368.10	12 I
ı	70.00	324 I	170.80	239	270.00	143	I 369 . 90	117 I
ı	71.10	45	172,00	503 I	271.00	218	371.00	199 I

Date : 25-JUN-2008 09:00

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0625B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0625B1.D

Spectrum: Avg. Scans 579-581 (6.38), Background Scan 572

	m/z	Y	m/z	Y	m/z	Y	m/z	Y
+	72,00	43	1 173,00	637	1 271.90	273	1 372.00	1281
ı	73.00	387	1 174,00	1533	1 273.00	2073	372.90	250
ı	74.00	6323	1 175,00	2447	1 274.00	5818	373,80	21
i	75.00	9281	1 176,00	865	1 275,00	29400	374.40	11
ı	76,10	3284	1 177.00	1261	1 276.00	4177	376,20	45
+	77,10	61832	1 178,10	487	1 277,00	2423	377.10	34
ı	78,10	4526	1 179.00	4850	278,00	562	378,90	35
i	79,00	4648	180,00	3473	279,00	109	382.90	304
ı	80,00	3117	181.00	1688	280,20	24	384,20	40
i	81,00	4654	1 181.90	239	281.10	48	385,20	20
+	82.00	997	183 . 10	242	282.10	62	385,90	44
ı	83,00	999	184.00	461	283.00	438	386,70	14
1	84.10	225	185.00	2221	284,00	262	389.70	141
ı	85,00	792	186.00	17824	285.00	495	390,70	80
i	86,00	1099	1 187,00	5238	285,90	95	392,10	128
+-	87.00	718	187.90	642	287,90	55	393,00	59
Ŧ	88.00	365	189,00	1133	288,80	71	394.20	11
ı	89.00	193	190.00	211	289.90	150 I	394,80	30
ı	90.00	54	190.90	468	290.80	63 (395.80	48
1	91.00	1028	192,00	1541 I	292,10	133-I	397.00	15
+-	92.00	1151	193,00	1765 l	292,90	508 I	398,10	36
1	93,00	7267 1	194.00	317	293,80	129 I	400,90	68
ı	94.00	674 1	195.00	321	294.70	133 I	402.00	444
ı	95,00	246	196.00	4463 I	296.00	9014 I	402,90	542
I	96.10	406 I	198.00	120000	296.90	1369 i	404.00	271
+-	98.00	5478 I	198.90	8326 I	297,80	96 I	404,80	52
ı	99.00	4729	200,00	662 1	299,10	60 1	405,30	47
ı	100.10	488	201,50	619 I	299,90	53 I	405,80	28
	101.00	2388 I	202,90	801 I	301.10	224	408,30	14
	102.00	172 I	204.00	4856 I	301,90	396 I	409,10	38
+- 	 103.00	+ 946 I	205.00	7965 I	303,00	962 I	409,80	53
	104.00	1623 I	206,00	31904 I	304,00	298	413,80	14
	105.00		207.00		305.00	118	414,40	16
	107.00	18600 I	208.00	1292 I	306,00	38 I	415.40	27
	108.00		208.90	318	306,60	58 1	416,80	11

Date : 25-JUN-2008 09:00

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0625B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0625B1.D

Spectrum: Avg. Scans 579-581 (6.38), Background Scan 572

m/z	Y	m/z	Υ	m/z	Y	m/z	Y
1 110.00	34104	209.90	439 I	307,90	122	I 418,20	25 I
1 111.00	5848	1 211.00	1468 I	308,90	137	1 419,20	32
1 112.00	765	1 212,90	73 I	309.90	98	1 419,70	41 i
1 113,00	251	1 214,20	60 1	311,10	60	1 421,00	518 I
1 114.10	43	1 215.00	378	311,90	47	1 422,00	504
1 114.90	133	1 216.00	821 I	313.00	24	i 423.00	3579 I
1 116.00	1107	1 217.00	9039	313,90	371	1 424.00	1150 I
1 117.00	14469	1 217.90	1220	315,00	1014	425.10	88 I
1 118.00	1203	1 218,80	53 I	316.00	748	1 426.00	32 I
1 119.00	76	219,40	101	316.80	73	1 426.80	22
1 120.00	312	. 221.00	6237 I	317,20	64	1 429,20	19
1 122.00	1198	223,00	2240	319,50	15	1 433,20	78 I
1 123.00	1712	224,00	18168	320,10	31	434.90	25
1 124.00	942	225,00	4396 I	320,90	373	435.80	28
1 125.00	974	226.00	469	321.80	79	1 436,40	43 1
+ 127.00	6828¢ I	227.00	7837 I	323.00	2903	1 437 . 20	51 I
1 128.00	5356 I	227.90	1037	324,00	612	438,60	75 I
129,00	26816 I	229,00	1842	325,20	83	439,30	103 I
1 130.00	2313 I	229,70	126	325,80	38	441.00	9818 I
131.00	494	230,10	152	326,90	758	442,00	61296 I
131.90	223	231,00	644 l	328.00	320	443.00	12509 I
133.00	130 I	231.90	92	329.00	36	444.00	994 1
1 134.00	980	233,10	133 I	329,70	24	444.80	61
1 135.00	2027	233,90	487 I	330,90	28	1	1
136.00	1096 I	234,90	507	332,10	206		1
<u> </u>	+		+-				+

Date : 25-JUN-2008 09:00

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0625B1;;;;;\$V4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Date : 26-JUN-2008 09:32

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0626B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

m/e ION ABUNDANCE CRITERIA	ABUNDANCE	
	1	
198 Base Peak, 100% relative abundance	1 100,00	
51 30.00 - 60.00% of mass 198	I 52,20 I	
68 Less than 2.00% of mass 69	1 0.00 (0.00) 1	
69 Mass 69 relative abundance	ı 54₊62 l	
70 Less than 2.00% of mass 69	0,29 (0,53)	•
127 40.00 - 60.00% of mass 198	ı 57₊45 İ	(η_{i})
197 Less than 1.00% of mass 198	1 0.00 1	' 6 1
199 5.00 - 9.00% of mass 198	I 6,72 I	·
275 10.00 - 30.00% of mass 198	ı 25₊98 I	\sim 1
365 Greater than 1.00% of mass 198	ı 2,98 l	IN
441 Present, but less than mass 443	ı 7,87 l	W_{γ}
442 Greater than 40.00% of mass 198	1 49,77 I	(0)
443 17.00 - 23.00% of mass 442	ı 9,66 (19,42) I	Ŭ

Date : 26-JUN-2008 09:32

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0626B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0626B1.D Spectrum: Scan 577 (6.36)

	m/z	Y	m/z	Y	m/z	Υ	m/z	Y +
+-	36.10	62	1 135.00	1447	1 232.00	248	327,80	124 I
i	37.00	204	1 136.00	510	1 232,90	90	328,80	25
1	38.00	520	1 137,10	681	1 234.00	349	329,40	13 I
i	39.00	3160	1 137,70	258	1 234,90	243	330.70	17 I
ı	40.00	210	1 139,00	90	1 235,80	258	332.10	160
+-	41.00	158	I 139.90	292	237.00	714	333,10	121
1	42.20	62	141.00	2139	237,70	54	334.00	862 I
ı	43.00	117	141.90	562	238,20	80	335.00	288 1
ı	44.00	527	142,90	580	239,00	215	336.10	30 1
ı	44.90	91	143,90	131	240.00	148	337,20	33
+-	46.20	22	145.00	165	240,90	304	338,00	19 I
ı	46.80	17	145.90	338	242,00	667	339,10	39 1
ı	48.10	18	147,00	1058	243,10	709	340,10	43 I
1	50.00	10352	147.90	2292	244.00	8295	340,90	124
ı	51.10	39000 I	149.00	519	245,00	978	342.00	55 I
+- I	52.00	2035 I	150.00	205 (246.00	1679	343,80	28 1
1	53.20	40 1	151,20	303	246,90	339	344.40	11
ı	53.80	51 I	151.90	273	248.00	131	345,80	338
ı	54.10	38 I	152,90	739 1	249,00	266	347.00	151
ı	55.00	323	154.00	464 I	249,90	76	348,00	23
+-	56.00	950 l	155,00	1225 I	251.00	160	350,10	33 1
ı	57.00	2732 I	156.00	1693 l	252,10	96	350,80	29
1	58.00	139 I	157,00	569 i	253,00	189	352,00	508 I
1	59.00	63 I	157,90	404 I	255,00	43888	352.90	457 I
ı	59.90	45	158.90	362 I	256,00	6177	353.90	479
+-	61.00	792 i	160.00	566 l	257,00	685	355.00	156 I
ı	62.00	522	161.00	1026	258,00	2661	356,80	24
i	63.00	1458 I	162.00	267	258.90	573	357,80	27
i	64.00	238	163,10	80 I	259,90	117	359.00	28
i	65.00	669	163,90	38 I	261.00	86	360,20	19
+ 	66.30	 59 I	165.00	- 693	262,60	18	361.00	26 I
i	67.00		166.00	444 1	264.00	149	362,70	15 I
i	69.00	40808 I		4148 I	265.00	1190	363,70	29
i	70.00	216	168.00		266.00	225	364.90	2228
ı	70,90	56 I	169,00		266.90	53	366,00	273 I
		_						

Date : 26-JUN-2008 09:32

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0626B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0626B1.D Spectrum: Scan 577 (6.36) Location of Maximum: 198.00

Number of points: 376

	m/z	Y	m/z	Υ	m/z	Υ	m/z +	Y +
	1 72.00	59	170.00	250	267,70	37	366.80	62 1
	73.10	350	171.00	244	268,10	33	369.40	28
	74.00	3913	172.00	349 I	268,80	64	371.00	187 I
	75.00	6237	173,00	505 I	269,90	87	372,00	905
	76.10	2557	174.00	848 I	271.00	136	373.00	224
1	77,00	40416	175.00	1575 I	271,90	80	373.90	25 I
ı	78.10	2506 I	176,00	503 1	272.90	1519	374,80	20 1
١	79,00	2855 I	177.00	888 I	274.00	3336	376,20	21
ı	80,00	2143	178,00	366	275,00	19408	376,90	42
ı	81.00	3264 I	179.00	3132 I	275,90	2732	382,90	164
1	81.90	742 I	180,00	2538 I	276.90	1587	383,90	107 I
ı	83.00	748	181.00	956 l	277.90	248	384,90	28 1
I	83,90	117	182,10	145	278,80	67	386,10	24 1
i	85.00	560 I	183,10	13	280,20	17	389,10	38 1
ı	86.00	1116	184,00	295	281,00	91	390.00	109
1	87.00	410	185,00	1496 I	282,20	78	390.90	53 I
ı	87,90	270	186.00	11586 l	283.00	212	391.90	25 1
ł	89.00	78 I	187,00	3142	283,90	118	392,90	19
١	89,80	56 I	188,00	317 I	285,00	441	394,30	16
1	91.00	943	188,90	654 I	286,20	24	394.80	27
+	92,10	789 I	190.00	101	287,10	26	395,90	47 I
ı	93.00	4982	190,90	354 I	288,30	22	397.00	5¢ I
ı	93,90	423	191.20	334 1	288,90	69	400.40	63
١	94,80	112	191.90	793 I	289,80	139	400,90	. 77 I
1	96.10	184	193,00	1001	290,50	13	401.90	262
1	98.00	3665 I	194,00	377 I	291,20	53	402.90	419
ı	99,00	3191 I	194.90	183 I	292.10	112	404.00	135
ı	100.10	442	196,00	2707	293,00	356	405.70	50 I
ı	101.00	1788 I	196,60	635 I	293,90	206	409.10	31 I
J	101.80	35 I	198,00	74712 I	295,00	153 I	411.40	28
1	103.00	711	198,90	5019 I	296.00	5907 I	411.90	28 I
ı	104.00	1215 I	200.00	458 I	296.90	836 I	413,70	26 I
I	105.00	825 I	201.60	426	297,90	116	415,40	22
ı	107.00	12807 I	203,00	629	299,20	31 I	418,60	20 1
I	108.00	2327 I	204,00	2614 I	300.80	66 1	419.10	14

Date : 26-JUN-2008 09:32

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0626B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

Data File: DF0626B1.D

Spectrum: Scan 577 (6.36)

m/z	Υ	m/z	Y +	m/z	Y	m/z +	Y +
1 110.00	21920	1 205,00	4503 I	302,10	129	1 419.70	21
1 111.00	3203	1 206,00	20488	303.00	732	1 421.00	212
1 111.90	339	1 207,00	3454 I	304,00	122	1 421.90	293
1 112.90	312	1 208,00	1012	304.70	50	1 423,00	1616 I
1 113.70	39	1 209.00	336	305,50	26 	1 423 . 90	774 I
114.10	65	I 210.90	929	306,40	13	1 424.80	49 I
1 115,10	83	1 212,10	169 I	307,80	95	1 425,10	50 I
1 116.00	875	1 213.20	76 1	309.00	25	1 427.80	14
1 117.00	9249	1 214.90	311	309,90	75	1 428,90	51 I
117,90	836	1 215.90	441	310,90	18	1 433,60	13 I
1 118.90	 158	1 217.00	5017 I	312.90	24	433,90	21 I
1 119.90	183	1 217.90	656 I	314.00	387	1 435.10	25 1
1 120.90	83	1 218.70	25	314.90	584	1 436.40	12 I
1 122,00	750	1 219,20	33 I	315.90	224	1 436,80	12 I
1 123.00	1136	1 221.00	4466 I	317.00	66	1 437,30	21
1 123.90	636	1 222,00	725 I	317.90	41	438,40	73 I
1 125.00	494	1 223,00	1240 I	318,50	21	1 441.00	5882 I
1 127.00	42920	224.00	10608 I	319,70	41	1 442,00	37184 I
1 128.00	3279	225.00	2461 I	320,90	296	1 443.00	7220 1
129,00	17560	226.00	499 I	322,10	136	1 443.90	397 I
1 130.00	1291	227,00	4557 I	323.00	1812	445,10	64 I
1 130.90	326	227.90	700 I	324,00	290	1	ı
1 132.00	216	229,00	1079 I	324,80	37	1	ı
1 133.00	108	229,90	145 I	326.10	51	I	i
1 133.90	504 I	231.00	599 I	326,90	465	1	
+	+		+-				

Date : 26-JUN-2008 09:32

Client ID: 10ppm DFTPP

Instrument: bna3.i

Sample Info: DF0626B1;;;;;SV4411

Operator: ADM

Column phase: DB5-MS

Column diameter: 0.25

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SBLK0623BW1

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: SBLK0623BW1

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1BW0623

% Moisture: _____ decanted: (Y/N)___ Date Sampled: _____

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/25/08 11:14

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CAS NO. COMPOUND MDL RL CONG 83-32-9Acenaphthene 0.016 0.050 208-96-8Acenaphthylene 0.016 0.050	C Q
208-96-8Acenaphthylene 0.016 0.050	
208-96-8Acenaphthylene 0.016 0.050	
	U
	U
120-12-7Anthracene 0.016 0.050	U
56-55-3Benzo(a) anthracene 0.016 0.050	U
205-99-2Benzo (b) fluoranthene 0.016 0.050	U
207-08-9Benzo(k) fluoranthene 0.016 0.050	U
191-24-2Benzo(q,h,i)perylene 0.016 0.050	U
50-32-8Benzo(a) pyrene 0.016 0.050	U
218-01-9Chrysene 0.016 0.050	U
53-70-3Dibenz(a,h)anthracene 0.016 0.050	U
206-44-0Fluoranthene 0.016 0.050	ע
86-73-7Fluorene 0.016 0.050	ע ,
193-39-5Indeno(1,2,3-cd)pyrene 0.018 0.050	UΫ́
91-57-62-Methylnaphthalene 0.019 0.050	\U *
90-12-01-Methylnaphthalene 0.018 0.050	ט
91-20-3Naphthalene 0.020 0.050	U
85-01-8Phenanthrene 0.016 0.050	U
129-00-0Pyrene 0.016 0.050	U

M-1/9/108

Report Date: 25-Jun-2008 12:00

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\S1BW0623.D Lab Smp Id: SBLK0623BW1 Client Smp ID: SBLK0623 Client Smp ID: SBLK0623BW1

Inj Date : 25-JUN-2008 11:14 MS Autotune Date: 01-NOV-2007 04:29

Inst ID: bna3.i : ADM Operator Smp Info : SBLK0623BW1;1;1000;500;1;UG/L;23-JUN-2008

Misc Info: ;3;BLANK;;;062308BW1;pahsurr.sub;4432

Comment

Method : \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\PAHLOW1.m Meth Date : 25-Jun-2008 11:29 tmonteiro Quant Type: ISTD Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D QC Sample: BLANK Als bottle: 5

Dil Factor: 1.00000

Compound Sublist: pahsurr.sub Integrator: HP RTE

4.04 Target Version:

Processing Host: TARGET02 VM

Concentration Formula: Amt * DF * Uf * Vt*Vi/(Amt * Vi)

Name	Value	Description	M 23
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	W6/2013

						CONCENTR	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ug/L)	\cap
		==	=====	=====	*****			
* 1 1,4-Dichlorobenzene-d4	152	3.372	3.381	(1.000)	33195	1.00000		Im
* 3 Naphthalene-d8	136	6.334	6.333	(1.000)	128167	1.00000		YP'
\$ 4 Nitrobenzene-d5	82	4.783	4.773	(0.755)	51726	1.65488	0.8274	1,27
* 8 Acenaphthene-d10	164	10.455	10.455	(1.000)	64530	1.00000		V
\$ 11 2-Fluorobiphenyl	172	9.072	9.071	(0.868)	113562	1.41663	0.7083	
* 17 Phenanthrene-d10	188	13.816	13.815	(1.000)	104632	1.00000		
* 21 Chrysene-d12	240	19.980	19.980	(1.000)	100450	1.00000		
\$ 23 Terphenyl-d14	244	17.780	17.789	(0.890)	123444	1.45433	0.7272	
* 26 Pervlene-d12	264	23.053	23.043	(1.000)	75435	1.00000		

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SBLK0623BW1LCS

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: SBLK0623BW1LCS

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1LW0623

% Moisture: decanted: (Y/N) Date Sampled:

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/25/08 11:53

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L CAS NO. COMPOUND MDL RLCONC Q 83-32-9----Acenaphthene 0.016 0.050 1.00 208-96-8-----Acenaphthylene 0.016 0.050 0.92 120-12-7----Anthracene 0.016 0.050 0.98 56-55-3-----Benzo (a) anthracene 0.016 0.050 0.97 205-99-2----Benzo (b) fluoranthene 0.016 0.050 0.85 207-08-9----Benzo (k) fluoranthene 0.016 0.050 0.93 191-24-2----Benzo(g,h,i)perylene_ 0.016 0.79 0.050 50-32-8-----Benzo (a) pyrene 0.016 0.050 0.79 218-01-9-----Chrysene 0.016 0.050 0.92 53-70-3-----Dibenz (a, h) anthracene 0.016 0.050 0.79 206-44-0----Fluoranthene 0.016 0.050 1.1 86-73-7----Fluorene 0.016 0.050 1.0 193-39-5----Indeno (1,2,3-cd) pyrene 0.018 0.050 0.77 91-57-6----2-Methylnaphthalene 0.019 0.050 1.0 90-12-0----1-Methylnaphthalene 0.018 0.050 0.93 91-20-3----Naphthalene 0.020 0.050 0.93 85-01-8-----Phenanthrene 0.016 0.050 0.98 129-00-0----Pyrene 0.016 0.050 1.0

Report Date: 25-Jun-2008 12:49

Empirical Laboratories, LLC

Data file: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\S1LW0623.D

Client Smp ID: SBLK0623BW1LCS Lab Smp Id: SBLK0623BW1LCS

MS Autotune Date: 01-NOV-2007 04:29 Inj Date : 25-JUN-2008 11:53

Inst ID: bna3.i Operator : ADM Smp Info : SBLK0623BW1LCS;1;1000;500;1;UG/L;23-JUN-2008

Misc Info: ;3;LCS;;;062308BW1;pahsurr.sub;4432

Comment

Method : \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\PAHLOW1.m Meth Date : 25-Jun-2008 11:29 tmonteiro Quant Type: ISTD Cal Date : 14-JAN-2008 22:32 Cal File: LPAHCAL1.D

OC Sample: LCS Als bottle: 6

Dil Factor: 1.00000 Compound Sublist: pahsurr.sub Integrator: HP RTE

Target Version: 4.04

Processing Host: TARGET02_VM

Concentration Formula: Amt * DF * Uf * Vt*Vi/(Amt * Vi)

Name	Value	Description	W. 1273
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	

							CONCENTRA	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL	
Compo	da	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ug/L)	
-		m to # =	==		=====		****		
	1,4-Dichlorobenzene-d4	152	3.372	3.381	(1.000)	39318	1.00000		\wedge
	Naphthalene-d8	136	6.334	6.333	(1.000)	144504	1.00000		
	Nitrobenzene-d5	82	4.774	4.773	(0.754)	75109	2.07241	1.036	/1 ah
•	5 Naphthalene	128	6.371	6.370	(1.006)	231633	1.85952	0.9298	as y
	2-Methylnaphthalene	141	8.032	8.032	(1.268)	132370	2.08061	1.040	\ _\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	1-Methylnaphthalene	141	8.264	8.255	(1.305)	129483	1.86530	0.9326	6
	Acenaphthene-d10	164	10.455	10.455	(1.000)	72112	1.00000		v
	2-Fluorobiphenyl	172	9.063	9.071	(0.867)	165706	1.84975	0.9249	
•	Acenaphthylene	152	10.075	10.074	(0.964)	210695	1.83617	0.9181	
	Acenaphthene	153	10.520	10.520	(1.006)	147779	1.99056	0.9953	
	5 Fluorene	166	11.709	11.708	(1.120)	167391	2.06836	1.034	
	Phenanthrene-d10	188	13.816	13.815	(1.000)	118682	1.00000		
	Phenanthrene	178	13.872	13.862	(1.004)	253060	1.96376	0.9819	
	Anthracene	178	13.974	13.973	(1:011)	238423	1.95912	0.9796	

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\S1LW0623.D Report Date: 25-Jun-2008 12:49

							CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
C	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ug/L)
=:		** ** **	==					======
	20 Fluoranthene	202	16.620	16.619	(1.203)	272611	2.18195	1.091
*	21 Chrysene-dl2	240	19.980	19.980	(1.000)	116066	1.00000	
	22 Pyrene	202	17.084	17.083	(0.855)	286273	2.09390	1.047
Ś	23 Terphenyl-d14	244	17.780	17.789	(0.890)	186099	1.89750	0.9488
*	24 Benzo(a)anthracene	228	19.952	19.952	(0.999)	234000	1.93223	0.9661
	25 Chrysene	228	20.036	20.035	(1.003)	231915	1.83486	0.9174
*	26 Perylene-d12	264	23.044	23.043	(1.000)	89156	1.00000	
	27 Benzo(b) fluoranthene	252	22.320	22.319	(0.969)	201543	1.69283	0.8464
	28 Benzo(k)fluoranthene	252	22.366	22.365	(0.971)	236017	1.86399	0.9320
	29 Benzo(a)pyrene	252	22.923	22.922	(0.995)	168712	1.58414	0.7921
	30 Indeno(1,2,3-cd)pyrene	276	25.003	24.993	(1.085)	118492	1.54155	0.7708
	31 Dibenz(a,h)anthracene	278	25.086	25.076	(1.089)	126332	1.57805	0.7890
	32 Benzo(q,h,i)perylene	276	25.392	25.392	(1.102)	134688	1.58467	0.7923

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SBLK0623BW1LCSD

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: SBLK0623BW1LCSD

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1DW0623

% Moisture: ____ decanted: (Y/N) Date Sampled:

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/25/08 12:31

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L CAS NO. COMPOUND MDL RLCONC 83-32-9-----Acenaphthene 0.016 0.050 0.93 208-96-8-----Acenaphthylene 0.016 0.050 0.85 120-12-7----Anthracene 0.016 0.050 0.90 56-55-3----Benzo (a) anthracene 0.016 0.050 0.92 205-99-2----Benzo (b) fluoranthene 0.016 0.050 0.80 207-08-9----Benzo(k) fluoranthene 0.88 0.016 0.050 191-24-2----Benzo(g,h,i)perylene 0.016 0.050 0.75 50-32-8-----Benzo (a) pyrene 0.016 0.050 0.74 218-01-9-----Chrysene 0.016 0.050 0.90 53-70-3-----Dibenz (a,h) anthracene 0.016 0.050 0.73 206-44-0----Fluoranthene 0.016 0.050 1.0 86-73-7----Fluorene 0.016 0.050 0.98 193-39-5----Indeno (1,2,3-cd) pyrene 0.018 0.050 0.76 91-57-6----2-Methylnaphthalene 0.019 0.050 1.00 90-12-0----1-Methylnaphthalene 0.018 0.050 0.93 91-20-3----Naphthalene 0.020 0.050 0.91 85-01-8-----Phenanthrene 0.016 0.050 0.94 129-00-0----Pyrene 0.016 0.050 0.98

Report Date: 25-Jun-2008 14:48

Empirical Laboratories, LLC

Data file : \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\S1DW0623.D

Lab Smp Id: SBLK0623BW1LCSD Client Smp ID: SBLK0623BW1LCSD

MS Autotune Date: 01-NOV-2007 04:29 Inj Date : 25-JUN-2008 12:31

Inst ID: bna3.i Operator : ADM Smp Info : SBLK0623BW1LCD;1;1000;500;1;UG/L;23-JUN-2008

Misc Info: ;3;LCSD;;;062308BW1;pahsurr.sub;4432

Comment

: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\PAHLOW1.m Method

Meth Date: 25-Jun-2008 11:29 tmonteiro Quant Type: ISTD

Cal File: LPAHCAL1.D Cal Date : 14-JAN-2008 22:32

QC Sample: LCSD Als bottle: 7

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: pahsurr.sub

CONCENTEDATEONS

Target Version:

Processing Host: TARGET02_VM

Concentration Formula: Amt * DF * Uf * Vt*Vi/(Amt * Vi)

Name	Value	Description	m 6/2 =
DF Uf Vt Vi Amt	1.000 500.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume injected (uL) Volume of initial extraction	6/27/7

						CONCENTRA	ATTONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng/ul)	(ug/L)	
	====	*=			*=======	=======		
* 1 1,4-Dichlorobenzene-d4	152	3.375	3.381	(1.000)	37853	1.00000		α
* 3 Naphthalene-d8	136	6.336	6.333	(1.000)	135950	1.00000		
\$ 4 Nitrobenzene-d5	82	4.776	4.773	(0.754)	70217	2.06061	1.030	Jan o
5 Naphthalene	128	6.373	6.370	(1.006)	214410	1.82957	0.9148	7, 26
6 2-Methylnaphthalene	141	8.035	8.032	(1.268)	119347	1.99395	0.9970	6
7 1-Methylnaphthalene	141	8.258	8.255	(1.303)	121003	1.85283	0.9264	. •
* 8 Acenaphthene-d10	164	10.449	10.455	(1.000)	70476	1.00000		
\$ 11 2-Fluorobiphenyl	172	9.065	9.071	(0.868)	153782	1.75651	0.8782	
12 Acenaphthylene	152	10.077	10.074	(0.964)	190366	1.69752	0.8488	
13 Acenaphthene	153	10.523	10.520	(1.007)	134648	1.85579	0.9279	
16 Fluorene	166	11.711	11.708	(1.121)	154741	1.95645	0.9782	
* 17 Phenanthrene-d10	188	13.818	13.815	(1.000)	112594	1.00000		
18 Phenanthrene	178	13.865	13.862	(1.003)	229980	1.88117	0.9406	
19 Anthracene	178	13.967	13.973	(1.011)	208937	1.80967	0.9048	

Data File: \\ELABNSH05\TARGET\chem\bna3.i\062508b3.b\S1DW0623.D Report Date: 25-Jun-2008 14:48

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
	MASS	RT	EXP RT REL RT	RESPONSE	(ng/ul)	(ug/L)
Compounds		===	#=====	=======		****
20 Fluoranthene	202	16.622	16.619 (1.203)	248377	2.09548	1.048
* 21 Chrysene-dl2	240	19.983	19.980 (1.000)	111137	1.00000	
_	202	17.086	17.083 (0.855)	255329	1.95040	0.9752
22 Pyrene \$ 23 Terphenyl-d14	244	17.782	17.789 (0.890)	166184	1.76960	0.8848
\$ 23 Terpheny1-d14 24 Benzo(a)anthracene	228	19.955	19.952 (0.999)	213644	1.84239	0.9212
25 Chrysene	228	20.038	20.035 (1.003)	218435	1.80486	0.9024
* 26 Perylene-dl2	264	23.046	23.043 (1.000)	85965	1.00000	
27 Benzo(b) fluoranthene	252	22.322	22.319 (0.969)	184184	1.60445	0.8022
28 Benzo(k) fluoranthene	252	22.368	22.365 (0.971)	214021	1.75302	0.8765
29 Benzo(a)pyrene	252	22.926	22.922 (0.995)	152945	1.48940	0.7447
30 Indeno(1,2,3-cd)pyrene	276	25.005	24.993 (1.085)	112158	1.51331	0.7566
31 Dibenz(a,h)anthracene	278	25.089	25.076 (1.089)	112536	1.45790	0.7289
32 Benzo(g,h,i)perylene	276	25.395	25.392 (1.102)	122703	1.49725	0.7486

Sequence Name: C:\HPCHEM\1\SEQUENCE\011408B3.S

Comment: SW846-8270C/625

Operator: ADM

Data Path: F:\HPCHEM\1\DATA\011408b3\

Pre-Seq Cmd: Post-Seq Cmd:

On A Barcode Mismatch Method Sections To Run (X) Inject Anyway (X) Full Method () Don't Inject () Reprocessing Only

M1)1418 346

Line Type	Vial	DataFile	Method	Sample Name
1 Blank	100	BLANK	DFTPPBN3	
2 DailyCal	_	- DILLIN	IXBN3	BNACCV50PPM;;;;SV4270
3 DFTPP	1	DF0114B1	DFTPPBN3	DF0114B1;;;;;\$V4242 8:09, 1/14
4 DailyCal	2	CCV050	IXBN3	BNACCV50PPM;;;;SV4270
5 Sample	3	MDLCKW1	IXBN3	mdlchk-1ppm;1;1000;1000;1;UG/ mdlchk-2ppm;1;1000;1000;1;UG/ mdlchk-10ppm;1;1000;1000;1;UG/ mdlchk-10ppm;1;15;1000;1;UG/K mdlchk-2ppm;1;15;1000;1;UG/KG
6 Sample		MDLCKW2	IXBN3	mdlchk-2ppm;1;1000;1000;1;UG/
7 Sample		MDLCKW10	IXBN3	mdlchk-10ppm;1;1000;1000;1;UG / MV 0 \
8 Sample	6	MDLCKS10	IXBN3	mdlchk-10ppm;1;15;1000;1;UG/K
9 Sample	7	MDLCKS2	IXBN3	
10 Sample	8	MDLCKS1	IXBN3	mdlchk-1ppm;1;15;1000;1;UG/KG /
11 Sample	9	0101902D	IXBN3	0801019-02;5;1060;1000;1;UG/L
12 Sample	10	0104005	IXBN3	0801040-05;1;1080;1000;1;UG/L
13 Sample	11	0104006	IXBN3	0801040-06;1;1080;1000;1;UG/L
14 Sample	12	0104007	IXBN3	0801040-07;1;1080;1000;1;UG/L
15 Sample		0104008	IXBN3	0801040-08;1;1070;1000;1;UG/L
16 Sample		0103208	IXBN3	0801032-08;1;1000;1000;1;UG/L
17 Sample		0103208D		0801032-08;5;1000;1000;1;UG/L
18 Sample		0103209	IXBN3	0801032-09;1;1020;1000;1;UG/L 15:42, 1/14
19 Blank		BLANK	DFTPPLOW	
20 Blank		BLANK	DFTPPLOW	
21 Blank		BLANK	DFTPPLOW	
22 DailyCal	99	PRIMER1	PAHLOW	LPAHCCV5PPM;;;;;SV4282
23 Sample	16	DF0114B2	DFTPPLOW	DF0114B2;;;;;SV4283/7:36,)//4
24 Sample		LPAHCAL8		LPAHCAL30PPM;;;;;SV4285-8
25 Sample	18	LPAHCAL7	PAHLOW	LPAHCAL20PPM;;;;;SV4285-7
26 Sample		LPAHCAL6		LPAHCAL10PPM;;;;;SV4285-6
27 Sample		LPAHCAL5		LPAHCAL5PPM;;;;;SV4285-5
28 Sample		LPAHCAL4		LPAHCAL1PPM;;;;SV4285-4 LPAHCAL0.4PPM;;;;SV4285-3 LPAHCAL0.2PPM;;;;SV4285-2 LPAHCAL0.1PPM;;;;SV4285-1 LPAHICV5PPM;;;;SV4286 LPAHCCV5PPM;;;;SV4282 mdlchkslpah;1;15;500;1;UG/KG; mdlchkwlpah;1;1000;500;1;UG/L
29 Sample		LPAHCAL3		LPAHCAL0.4PPM;;;;;SV4285-3 LPAHCAL0.2PPM;;;;SV4285-2
30 Sample		LPAHCAL2		LPAHCALO.1PPM;;;;;SV4285-1
31 Sample		LPAHCAL1		LPAHICV5PPM;;;;;SV4286
32 Sample		LPAHICV	PAHLOW	LPAHCCV5PPM;;;;;SV4282
33 DailyCal		LPAHCCV1		mdlchkslpah; 1; 15; 500; 1; UG/KG;
34 Spike		MDLLPHS1		mdlchkwlpah; 1; 1000; 500; 1; UG/L
35 Spike		MDLLPHW1		SBLK1220BW1LCS;1;1000;500;1;U
36 Spike		S1LW1220		SBLK1220BW1;1;1000;500;1;UG/L
37 Blank		S1BW1220		SBLK1226BW1LCS;1;1000;500;1;U
38 Spike		S1LW1226 S1DW1226		SBLK1226BW1LCSD;1;1000;500;1;
39 Spike	3 1	S1BW1226	MOLITAG	SBLK1226BW1;1;1000;500;1;UG/L 4:27,1))5
40 Blank	32	DIDMI440	FMILLOW	DDDCC1000000000000000000000000000000000

```
Sequence Name: C:\HPCHEM\1\SEQUENCE\011408B3.S
       Comment: SW846-8270C/625
     Operator: ADM
    Data Path: F:\HPCHEM\1\DATA\011408b3\
  Pre-Seq Cmd:
 Post-Seq Cmd:
                               On A Barcode Mismatch
Method Sections To Run
                                 (X) Inject Anyway
 (X) Full Method
                            ( ) Don't Inject
 ( ) Reprocessing Only
-----
                      Sample Name/Misc Info
Line
    Type: Blank
    Vial: 100
    Data: BLANK.D Samp Amt: 0

Area% Report :per Method
Quant Report :per Method
CR Database :per Method

CR Spreadsheet :per Method
    Meth: DFTPPBN3.M Barcode:
on bucababe .por .comou on optoaconoco .por recinou
    Type: DailyCal BNACCV50PPM;;;;SV4270
Vial: 2 ;2;;;;all.sub;4269
Meth: IXBN3.M Barcode:
Data: PRIMER.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
_____
    Type: DFTPP DF0114B1;;;;SV4242 Vial: 1 ;3;DFTPP;;;;
    Vial: 1
    Meth: DFTPPBN3.M Barcode:
    Type: DailyCal BNACCV50PPM;;;;SV4270
Vial: 2 ;2;;;;all.sub;4269
Meth: IXBN3.M Barcode:
Data: CCV050.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
    Type: Sample mdlchk-lppm;1;1000;1000;1;UG/L;10-JAN-2008
Vial: 3 ;3;;;011008BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
     Data: MDLCKW1.D Samp Amt: 0
                                                  Multiplr: 1
    Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method CR Database :per Method CR Spreadsheet :per Method
    Type: Sample mdlchk-2ppm;1;1000;1000;1;UG/L;10-JAN-2008
Vial: 4 ;3;;;011008BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
     Data: MDLCKW2.D Samp Amt: 0
                                                  Multiplr: 1
     Type: Sample mdlchk-10ppm;1;1000;1000;1;UG/L;10-JAN-2008
Vial: 5 ;3;;;011008BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
     Data: MDLCKW10.D Samp Amt: 0
                                                  Multiplr: 1
     Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
```

3217

```
Type: Sample mdlchk-10ppm;1;15;1000;1;UG/KG;10-JAN-2008
Vial: 6 ;3;;;011008BS1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
8
     Data: MDLCKS10.D Samp Amt: 0
Area% Report :per Method
Quant Report :per Method
CR Database :per Method CR Spreadsheet :per Method
                                                                                               3218
______
    Type: Sample mdlchk-2ppm;1;15;1000;1;UG/KG;10-JAN-2008
Vial: 7 ;3;;;011008BS1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
Data: MDLCKS2.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
Type: Sample mdlchk-lppm;1;15;1000;1;UG/KG;10-JAN-2008
Vial: 8 ;3;;;011008BS1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
Data: MDLCKS1.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
-----
11 Type: Sample 0801019-02;5;1060;1000;1;UG/L;09-JAN-2008
Vial: 9 ch2.b01019;0;;;010908BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
    Metn: IXBN3.M Barcode:
Data: 0101902D.D Samp Amt: 0 Multiplr: 5
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
-----
12 Type: Sample 0801040-05;1;1080;1000;1;UG/L;09-JAN-2008
Vial: 10 ch2.b01040;0;;;010908BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
     Data: 0104005.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
______
13 Type: Sample 0801040-06;1;1080;1000;1;UG/L;09-JAN-2008
Vial: 11 ch2.b01040;0;;;;010908BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
    .....
14 Type: Sample 0801040-07;1;1080;1000;1;UG/L;09-JAN-2008 Vial: 12 ch2.b01040;0;;;;010908BW1;ppbna.sub;4276 Barcode:
    - - <del>-</del>
15 Type: Sample 0801040-08;1;1070;1000;1;UG/L;09-JAN-2008 Vial: 13 ch2.b01040;0;;;;010908BW1;ppbna.sub;4276 Barcode:
    -----
16 Type: Sample 0801032-08;1;1000;1000;1;UG/L;09-JAN-2008 Vial: 14 ch2.b01032;0;;;010908BW1;ppbna.sub;4276 Meth: IXBN3.M Barcode:
     Data: 0103208.D Samp Amt: 0
                                                   Multiplr: 1
Sequence: 011408B3.S Last Modified: Mon Jan 14 15:10:30 2008 Page: 2
```

```
Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
         ______
  Type: Sample 0801032-08;5;1000;1000;1;UG/L;09-JAN-2008
Vial: 35 ch2.b01032;0;;;010908BW1;ppbna.sub;4276
Meth: IXBN3.M Barcode:
Data: 0103208D.D Samp Amt: 0 Multiplr: 5
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
  _____
 Type: Sample
Vial: 15
Meth: IXBN3.M
Data: 0103209.D
Area% Report
Quant Report
CR Database

0801032-09;1;1020;1000;1;UG/L;09-JAN-2008
ch2.b01032;0;;;010908BW1;ppbna.sub;4276
Multiplr: 1
Lib. Search Rep :per Method
Post-Quant Macro:per Method
CR Spreadsheet :per Method
CR Spreadsheet :per Method
  19 Type: Blank
         Vial: 100
 Meth: DFTPPLOW.M Barcode:
Data: BLANK.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
 20 Type: Blank
         Vial: 100
        Meth: DFTPPLOW.M Barcode:
Data: BLANK.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
 - - -
Type: Blank
Vial: 100
Meth: DFTPPLOW.M Barcode:
Data: BLANK.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method

22 Type: DailyCal LPAHCCV5PPM;;;;SV4282
Vial: 99 ;2;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
Data: PRIMERI.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method
Quant Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
 21 Type: Blank
 ______
23 Type: Sample DF0114B2;;;;SV4283 Vial: 16 ;;DFTPP;;;;
        Meth: DFTPPLOW.M Barcode:
       ______
Type: Sample LPAHCAL30PPM;;;;SV4285-8
Vial: 17 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
Data: LPAHCAL8.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
 ______
25 Type: Sample LPAHCAL20PPM;;;;;SV4285-7
```

3219

```
;;;;;;pahsurr.sub;4277
     Viai: 18 ;;;;;par
Meth: PAHLOW.M Barcode:
     Vial: 18
    Data: LPAHCAL7.D Samp Amt: 0
Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
26 Type: Sample LPAHCAL10PPM;;;;SV4285-6
Vial: 19 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
    Data: LPAHCAL6.D Samp Amt: 0
Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
27 Type: Sample LPAHCAL5PPM;;;;SV4285-5
Vial: 20 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
    Data: LPAHCAL5.D Samp Amt: 0

Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
28 Type: Sample LPAHCAL1PPM;;;;SV4285-4
Vial: 21 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
    Data: LPAHCAL4.D Samp Amt: 0
Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
 29 Type: Sample LPAHCAL0.4PPM;;;;SV4285-3
Vial: 22 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
     Data: LPAHCAL3.D Samp Amt: 0
Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
 30 Type: Sample LPAHCAL0.2PPM;;;;SV4285-2 Vial: 23 ;;;;;pahsurr.sub;4277 Barcode:
     Metn: PAHLOW.M Balcode.

Data: LPAHCAL2.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
 31 Type: Sample LPAHCALO.1PPM;;;;SV4285-1
Vial: 24 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
     Data: LPAHCALI.D Samp Amt: 0
Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
 32 Type: Sample LPAHICV5PPM;;;;SV4286
Vial: 25 ;;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
     33 Type: DailyCal LPAHCCV5PPM;;;;SV4282
Vial: 99 ;2;;;;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
     Data: LPAHCCV1.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
```

```
CR Spreadsheet :per Method
   CR Database :per Method
    ______
34 Type: Spike mdlchkslpah;1;15;500;1;UG/KG;04-JAN-2008
                   ;3;;;010408BS2;pahsurr.sub;4277
   Vial: 26
                    Barcode:
   Meth: PAHLOW.M
   Data: MDLLPHS1.D Samp Amt: 0
                                      Multiplr: 1
   Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
-----
35 Type: Spike mdlchkwlpah;1;1000;500;1;UG/L;04-JAN-2008
                   ;3;;;;010408BW2;pahsurr.sub;4277
   Vial: 27
                   Barcode:
   Meth: PAHLOW.M
   Data: MDLLPHW1.D Samp Amt: 0
                                       Multiplr: 1
   Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
.......
36 Type: Spike SBLK1220BW1LCS;1;1000;500;1;UG/L;20-DEC-2007
                   ;3;LCS;;;122007BW1;pahsurr.sub;4277
   Vial: 28
   Meth: PAHLOW.M Barcode:
   Data: S1LW1220.D Samp Amt: 0
                                       Multiplr: 1
   Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
-----
37 Type: Blank SBLK1220BW1;1;1000;500;1;UG/L;20-DEC-2007
   Vial: 29 ;3;BLANK;;;122007BW1;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
   Data: S1BW1220.D Samp Amt: 0
                                       Multiplr: 1
   Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
 ______
38 Type: Spike SBLK1226BW1LCS;1;1000;500;1;UG/L;26-DEC-2007
   Vial: 30 ;3;LCS;;;122607BW1;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
   Data: S1LW1226.D Samp Amt: 0
                                       Multiplr: 1
   Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
 39 Type: Spike SBLK1226BW1LCSD;1;1000;500;1;UG/L;26-DEC-2007
   Vial: 31 ;3;LCSD;;;122607BW1;pahsurr.sub;4277
Meth: PAHLOW.M Barcode:
   Data: S1DW1226.D Samp Amt: 0
                                       Multiplr: 1
   Area% Report :per Method
Quant Report :per Method
CR Database :per Method
                                 Lib. Search Rep :per Method
                                 Post-Quant Macro:per Method
                                 CR Spreadsheet :per Method
 40 Type: Blank SBLK1226BW1;1;1000;500;1;UG/L;26-DEC-2007
                    ;3;BLANK;;;122607BW1;pahsurr.sub;4277
    Vial: 32
                  Barcode:
    Meth: PAHLOW.M
   Data: S1BW1226.D Samp Amt: 0
                                       Multiplr: 1
   Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
______
```

3221

Sequence Name: C:\nrcnem(1\bBgobach(0025055))

Comment: SW846-8270C/625

Operator: ADM

Data Path: F:\HPCHEM\1\DATA\062508b3\

Pre-Seq Cmd: Post-Seq Cmd:

Method Sections To Run

(X) Full Method () Reprocessing Only On A Barcode Mismatch (X) Inject Anyway () Don't Inject

Line Type	Vial DataFile Method Sample Name Librals	
Line Type 1 Sample 2 DailyCal 3 Sample 4 DailyCal 5 DailyCal 6 Sample 7 Blank 8 Spike 9 Spike 10 Blank 11 Spike 12 Spike 13 Sample 14 Sample	100 BLANK DFTPPLOW BLANK;;;; 2 PRIMER PAHLOW1 LOWPAH5PPM;;;; SV4420B 1 DF0625B1 DFTPPLOW DF0625B1;;;;SV4411 9:00,6/25 2 LPAHCCV PAHLOW1 LOWPAH5PPM;;;; SV4420B 3 SPCCV - PAHLOW1 Spc30PPM;;;; SV4420A 4 0605305R PAHLOW1 0806053-05;1;1000;500;1;UG/L; 5 S1BW0623 PAHLOW1 SBLK0623BW1;1;1000;500;1;UG/L 6 S1LW0623 PAHLOW1 SBLK0623BW1LCS;1;1000;500;1;U 7 S1DW0623 PAHLOW1 SBLK0623BW1LCD;1;1000;500;1;U 8 S1BS0623 PAHLOW1 SBLK0623BW1LCD;1;1000;500;1;U 8 S1BS0623 PAHLOW1 SBLK0623BS1;1;15;500;1;UG/KG; 9 S1LS0623 PAHLOW1 SBLK0623BS1LCD;1;15;500;1;UG/ 10 S1DS0623 PAHLOW1 SBLK0623BS1LCD;1;15;500;1;UG/ 10 0622508 PAHLOW1 0806225-08;1;1080;500;1;UG/L; 10 0622509 PAHLOW1 0806225-09;1;1080;500;1;UG/L;	
15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 23 Sample 24 Sample 25 Sample 26 Sample 27 Sample 28 Sample 29 Sample	13 0622501 PAHLOW1 0806225-01;1;15;500;1;UG/KG;2 14 0622502 PAHLOW1 0806225-02;1;15;500;1;UG/KG;2 15 0622503 PAHLOW1 0806225-03;1;15;500;1;UG/KG;2 16 0622504 PAHLOW1 0806225-04;1;15;500;1;UG/KG;2 17 0622505 PAHLOW1 0806225-05;1;15;500;1;UG/KG;2 18 0622506 PAHLOW1 0806225-06;1;15;500;1;UG/KG;2 19 0622507 PAHLOW1 0806225-07;1;15;500;1;UG/KG;2 19 PRIMER PAHLOW1 LOWPAH5PPM;;;; 2 PRIMER1 PAHLOW1 LOWPAH5PPM;;;; 2 PRIMER1 PAHLOW1 LOWPAH5PPM;;;; SV4420B 1 DF0625B2 DFTPPLOW DF0625B2;;;;SV4411 2 LPAHCCVE PAHLOW1 LOWPAH5PPM;;;; SV4420B 3 SPCCVE PAHLOW1 SPCC30PPM;;;; SV4420A 20 0620701 PAHLOW1 0806207-01;1;1080;500;1;UG/L; 21 0620702 PAHLOW1 0806207-02;1;1080;500;1;UG/L; 22 0620703 PAHLOW1 0806207-03;1;1080;500;1;UG/L;	2

Sequence Name: C:\HPCHEM\1\SEQUENCE\U02300B3.8 Comment: SW846-8270C/625 Operator: ADM Data Path: F:\HPCHEM\1\DATA\062508b3\ Pre-Seq Cmd: Post-Seq Cmd: On A Barcode Mismatch Method Sections To Run (X) Inject Anyway (X) Full Method () Don't Inject () Reprocessing Only -----Sample Name/Misc Info Line Type: Sample BLANK;;;;;
Vial: 100 ;;;;;;pahsurr.sub; Vial: 100 Meth: DFTPPLOW.M Barcode: Type: DailyCal LOWPAH5PPM;;;; SV4420B Vial: 2 ;2;;;;pahsurr.sub;4352 Vial: 2 Meth: PAHLOW1.M Barcode: Type: Sample DF0625B1;;;;SV4411 ;3;DFTPP;;;; Meth: DFTPPLOW.M Barcode: Type: DailyCal LOWPAH5PPM;;;; SV4420B ;2;;;;pahsurr.sub;4352 Vial: 2 Meth: PAHLOW1.M Barcode: Type: DailyCal spcc30PPM;;;; SV4420A Vial: 3 ;2;;;;spcc.sub;4352 Vial: 3 Meth: PAHLOW1.M Barcode: Type: Sample 0806053-05;1;1000;500;1;UG/L;09-JUN-2008 sha.b06053;0;;;;060908BW1;pahsurr.sub;4352 Vial: 4 Meth: PAHLOW1.M Barcode: Type: Blank SBLK0623BW1;1;1000;500;1;UG/L;23-JUN-2008 ;3;BLANK;;;062308BW1;pahsurr.sub;4432 Vial: 5 Meth: PAHLOW1.M Barcode: Data: S1BW0623.D Samp Amt: 0 Multiplr: 1 Area% Report :per Method
Quant Report :per Method
CR Database :per Method Lib. Search Rep :per Method Post-Quant Macro:per Method CR Spreadsheet :per Method

```
SBLK0623BW1LCS; 1; 1000; 500; 1; UG/L; 23-JUN-2008
      Type: Spike
                          ;3;LCS;;;062308BW1;pahsurr.sub;4432
      Vial: 6
                          Barcode:
      Meth: PAHLOW1.M
      Data: S1LW0623.D Samp Amt: 0
                                                Multiplr: 1
      Area% Report :per Method
                                           Lib. Search Rep :per Method
     Quant Report : per Method CR Database : per Method
                                           Post-Quant Macro:per Method
                                           CR Spreadsheet :per Method
                        SBLK0623BW1LCD;1;1000;500;1;UG/L;23-JUN-2008
      Type: Spike
                          ;3;LCSD;;;062308BW1;pahsurr.sub;4432
     Vial: 7
                       Barcode:
     Meth: PAHLOW1.M
     Data: S1DW0623.D Samp Amt: 0
                                               Multiplr: 1
     Area% Report :per Method
Quant Report :per Method
                                          Lib. Search Rep :per Method
                                          Post-Quant Macro:per Method
     CR Database :per Method
                                          CR Spreadsheet :per Method
                       SBLK0623BS1;1;15;500;1;UG/KG;23-JUN-2008
 10 Type: Blank
                         ;3;BLANK;;;062308BW1;pahsurr.sub;4432
     Vial: 8
     Meth: PAHLOW1.M Barcode:
     Data: S1BS0623.D Samp Amt: 0
                                               Multiplr: 1
     Area% Report :per Method
Quant Report :per Method
CR Database :per Method
                                          Lib. Search Rep :per Method
                                         Post-Quant Macro:per Method
                                        CR Spreadsheet :per Method
 11 Type: Spike SBLK0623BS1LCS;1;15;500;1;UG/KG;23-JUN-2008
                         ;3;LCS;;;062308BW1;pahsurr.sub;4432
     Vial: 9
     Meth: PAHLOW1.M Barcode:
     Data: S1LS0623.D Samp Amt: 0
                                               Multiplr: 1
     Area% Report : per Method
Quant Report : per Method
CR Database : per Method
                                         Lib. Search Rep :per Method
                                         Post-Quant Macro:per Method
                                        CR Spreadsheet :per Method
                        SBLK0623BS1LCD;1;15;500;1;UG/KG;23-JUN-2008
 12 Type: Spike
                        ;3;LCSD;;;062308BW1;pahsurr.sub;4432
     Vial: 10
     Meth: PAHLOW1.M Barcode:
     Data: S1DS0623.D Samp Amt: 0
                                               Multiplr: 1
    Area% Report :per Method
Quant Report :per Method
CR Database :per Method
                                         Lib. Search Rep :per Method
                                         Post-Quant Macro:per Method
                                     CR Spreadsheet :per Method
     CR Database
                        0806225-08;1;1080;500;1;UG/L;23-JUN-2008
13 Type: Sample
                        ch2.b06225;0;;;;062308BW1;pahsurr.sub;4432
     Vial: 11
    Meth: PAHLOW1.M Barcode:
    Data: 0622508.D Samp Amt: 0
                                              Multiplr: 1
    Area% Report :per Method
                                         Lib. Search Rep :per Method
    Quant Report :per Method
CR Database :per Method
                                         Post-Quant Macro:per Method
                                         CR Spreadsheet :per Method
                      0806225-09;1;1080;500;1;UG/L;23-JUN-2008
14 Type: Sample
                       ch2.b06225;0;;;;062308BW1;pahsurr.sub;4432
    Vial: 12
    Meth: PAHLOW1.M Barcode:
    Data: 0622509.D Samp Amt: 0
                                              Multiplr: 1
                                        Lib. Search Rep :per Method
    Area% Report :per Method
    Quant Report :per Method
CR Database :per Method
                                        Post-Quant Macro:per Method
                                         CR Spreadsheet :per Method
                       0806225-01;1;15;500;1;UG/KG;23-JUN-2008
15 Type: Sample
                       ch2.b06225;0;;;;062308BW1;pahsurr.sub;4432
    Vial: 13
    Meth: PAHLOW1.M Barcode:
    Data: 0622501.D Samp Amt: 0
                                              Multiplr: 1
    Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
------
                      0806225-02;1;15;500;1;UG/KG;23-JUN-2008
16 Type: Sample
                       ch2.b06225;0;;;;062308BW1;pahsurr.sub;4432
    Vial: 14
    Meth: PAHLOW1.M Barcode:
                                              Multiplr: 1
    Data: 0622502.D
                     Samp Amt: 0
Sequence: 062508B3.S Last Modified: Wed Jun 25 10:28:49 2008 Page: 2
```

```
Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
       CR Database
  _
 17 Type: Sample 0806225-03;1;15;500;1;UG/KG;23-JUN-2008 Vial: 15 ch2.b06225;0;;;062308BW1;pahsurr.sub;4432
      Meth: PAHLOW1.M
Data: 0622503.D
Area% Report
Quant Report
CR Database

CH2.B00225;0;;;;0023088W1;pansurr.sub;4432

Multiplr: 1
Lib. Search Rep :per Method
Post-Quant Macro:per Method
CR Spreadsheet :per Method
       Vial: 15
  ______
 18 Type: Sample 0806225-04;1;15;500;1;UG/KG;23-JUN-2008 vial: 16 ch2.b06225;0;;;062308BW1;pahsurr.sub;4432 Meth: PAHLOW1.M Barcode: Data: 0622504.D Samp Amt: 0 Multiplr: 1
      Data: 0622504.D Samp Amt: 0 Multiple: 1

Area% Report :per Method Lib. Search Rep :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
 _ _ _
 Type: Sample
Vial: 17
Meth: PAHLOW1.M
Data: 0622505.D
Area% Report
Quant Report
CR Database

0806225-05;1;15;500;1;UG/KG;23-JUN-2008
ch2.b06225;0;;;062308BW1;pahsurr.sub;4432
Multiplr: 1
Lib. Search Rep :per Method
Post-Quant Macro:per Method
CR Spreadsheet :per Method
CR Spreadsheet :per Method
20 Type: Sample 0806225-06;1;15;500;1;UG/KG;23-JUN-2008
                             ch2.b06225;0;;;;062308BW1;pahsurr.sub;4432
      Vial: 18
      Meth: PAHLOW1.M Barcode:
     -
21 Type: Sample 0806225-07;1;15;500;1;UG/KG;23-JUN-2008 Ch2.b06225;0;;;062308BW1;pahsurr.sub;4432
     Vial: 19
Meth: PAHLOW1.M
Data: 0622507.D
Area% Report
Quant Report
CR Database

Cn2.D06225;0;;;;062308BW1;pahsurr.sub;4432

Multiplr: 1

Multiplr: 1

Lib. Search Rep :per Method
Post-Quant Macro:per Method
CR Spreadsheet :per Method
     Vial: 19
 Type: Sample LOWPAH5PPM;;;;

Vial: 99 ;;;;;pahsurr.sub;

Meth: PAHLOW1.M Barcode:

Data: PRIMER.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method

Quant Report :per Method Post-Quant Macro:per Method

CR Database :per Method CR Spreadsheet :per Method
______
23 Type: Sample LOWPAH5PPM;;;; SV4420B
    Vial: 2
24 Type: Sample DF0625B2;;;;SV4411 Vial: 1 ;3;DFTPP;;;;
     Meth: DFTPPLOW.M Barcode:
    Data: DF16F10W.M Barcoatc.

Data: DF0625B2.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method
Quant Report :per Method
CR Database :per Method
CR Spreadsheet :per Method
    25 Type: Sample LOWPAH5PPM;;;; SV4420B
```

```
viai. 4
                    Barcode:
    Meth: PAHLOW1.M
    Data: LPAHCCVE.D Samp Amt: 0
                                     Multiplr: 1
    Area% Report : per Method
                                 Lib. Search Rep :per Method
    Quant Report : per Method : per Method
                                 Post-Quant Macro:per Method
                                 CR Spreadsheet :per Method
                   spcc30PPM;;;;; SV4420A
26 Type: Sample
                    ;;;;;spcc.sub;4352
    Vial: 3
    Meth: PAHLOW1.M
                   Barcode:
                                     Multiplr: 1
    Data: SPCCVE.D
                   Samp Amt: 0
                                 Lib. Search Rep :per Method
                  :per Method
    Area% Report
   Quant Report
                                 Post-Quant Macro:per Method
                 :per Method
                                CR Spreadsheet :per Method
                 :per Method
    CR Database
     _____
                   0806207-01;1;1080;500;1;UG/L;23-JUN-2008
27 Type: Sample
                   arc.b06207;0;;;;062308BW1;pahsurr.sub;4432
   Vial: 20
   Meth: PAHLOW1.M
                   Barcode:
                   Samp Amt: 0
                                     Multiplr: 1
   Data: 0620701.D
   Area% Report :per Method
                                Lib. Search Rep :per Method
   Quant Report :per Method
                                Post-Quant Macro:per Method
                                CR Spreadsheet :per Method
                 :per Method
   CR Database
   _____
                   0806207-02;1;1080;500;1;UG/L;23-JUN-2008
28 Type: Sample
                   arc.b06207;0;;;;062308BW1;pahsurr.sub;4432
   Vial: 21
   Meth: PAHLOW1.M
                   Barcode:
                   Samp Amt: 0
                                    Multiplr: 1
   Data: 0620702.D
   Area% Report : per Method
                                Lib. Search Rep :per Method
                :per Method
                                Post-Quant Macro:per Method
   Quant Report
                                CR Spreadsheet :per Method
                 :per Method
   CR Database
_____
                   0806207-03;1;1080;500;1;UG/L;23-JUN-2008
29 Type: Sample
                   arc.b06207;0;;;;062308BW1;pahsurr.sub;4432
   Vial: 22
   Meth: PAHLOW1.M
                  Barcode:
   Data: 0620703.D
                 Samp Amt: 0
                                    Multiplr: 1
                                Lib. Search Rep :per Method
                :per Method
   Area% Report
                                Post-Quant Macro:per Method
                 :per Method
   Quant Report
                               CR Spreadsheet :per Method
                 :per Method
   CR Database
  _____
```

Method Sections To Run

(X) Full Method () Reprocessing Only

Operator: ADM
Data Path: F:\HPCHEM\1\DATA\062608b3\

Pre-Seq Cmd: Post-Seq Cmd:

On A Barcode Mismatch

(X) Inject Anyway

() Don't Inject

3562 Mc/26/8

Line Type	Vial	DataFile	Method	Sample Name	LC Mosts
1 Sample 2 DailyCal 3 Sample 4 DailyCal 5 DailyCal 6 Sample 7 Sample 8 Sample 9 Sample 10 Spike 11 Spike 12 Spike 13 Spike 14 Blank 15 Blank 16 Blank 17 Blank 18 Blank 19 Blank 20 Blank 21 Blank 21 Blank	100 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		DFTPPLOW PAHLOW1 PAHLOW1 PAHLOW1 PAHLOW1 PAHLOW1 PAHLOW1 PAHLOW1 PAHLOW1	BLANK;;;; LOWPAH5PPM;;;; SV4 DF0626B1;;;;SV4411 LOWPAH5PPM;;;; SV4 \$pcc30PPM;;;; SV4 \$0806207-01;1;1080;5 0806207-03;1;1080;5 0806225-01;10;15;50 LCS1;1;30;500;1;UG/ LCS2;1;30;500;1;UG/ LCS3;1;30;500;1;UG/ RB27;1;15;500;1;UG/ RB23;1;15;500;1;UG/ RB37;1;15;500;1;UG/ RB37;1;15;500;1;UG/ RB40;1;15;500;1;UG/ RB40;1;15;500;1;UG/ RB40;1;15;500;1;UG/ RB34;1;15;500;1;UG/ RB34;1;15;500;1;UG/ RB34;1;15;500;1;UG/ RB34;1;15;500;1;UG/ RB34;1;15;500;1;UG/	1420B 1420B 120A 100;1;UG/L; 100;1;UG/L; 100;1;UG/KG; 100;1;UG/KG; 13-JUN- 14G;13-JUN- 14G;13-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN- 14G;04-JUN-
23 Blank	21			• • • • •	

COMMETTE: DROZO -----

Operator: ADM

Data Path: F:\HPCHEM\1\DATA\062608b3\

Pre-Seq Cmd: Post-Seq Cmd:

On A Barcode Mismatch Method Sections To Run (X) Full Method (X) Inject Anyway () Don't Inject () Reprocessing Only

3,63

```
-----
                            Sample Name/Misc Info
 _____
Line
     Type: Sample BLANK;;;;
Vial: 100 ;;;;;;pahsurr.sub;
     Vial: 100 ;;;;;;pansurr.sub;

Meth: DFTPPLOW.M Barcode:
Data: BLANK.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
Type: DailyCal LOWPAH5PPM;;;; SV4420B

Vial: 2 ;2;;;;pahsurr.sub;4352

Meth: PAHLOW1.M Barcode:
Data: PRIMER.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
2
    Type: Sample DF0626B1;;;;;SV4411 
Vial: 1 ;3;DFTPP;;;;
3
     Meth: DFTPPLOW.M Barcode:
     Data: DF0626B1.D Samp Amt: 0
Data: DFU626B1.D Samp Ame: U Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
                                                     Multiplr: 1
     Type: DailyCal LOWPAH5PPM;;;; SV4420B Vial: 2 ;2;;;;pahsurr.sub;4352
     Vial: 2
     Meth: PAHLOW1.M Barcode:
     Data: LPAHCCV.D Samp Amt: 0
     Data: LPAHCCV.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
                                                      Multiplr: 1
Type: DailyCal spcc30PPM;;;; SV4420A yial: 3 ;2;;;;spcc.sub;4352
     Vial: 3
     Meth: PAHLOW1.M Barcode:
    Type: Sample 0806207-01;1;1080;500;1;UG/L;23-JUN-2008 arc.b06207;0;;;062308BW1;pahsurr.sub;4432
     Vial: 4
     Meth: PAHLOW1.M Barcode:
Data: 0620701.D Samp Amt: 0
                                                     Multiplr: 1
    Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method CR Database :per Method CR Spreadsheet :per Method
Type: Sample 0806207-02;1;1080;500;1;UG/L;23-JUN-2008 vial: 5 arc.b06207:0...062209BW1-D-L-2008
                          arc.b06207;0;;;;062308BW1;pahsurr.sub;4432
     Vial: 5
    Meth: PAHLOW1.M Barcode:
Data: 0620702.D Samp Amt: 0
                                                     Multiplr: 1
    Area% Report :per Method
Quant Report :per Method
CR Database :per Method CR Spreadsheet :per Method
Sequence: 062608B3.S Last Modified: Thu Jun 26 12:09:10 2008 Page: 1
```

```
TAbe: pambro
                             arc.b06207;0;;;;062308BW1;pahsurr.sub;4432
      Meth: PAHLOW1.M
Data: 0620703.D
Area% Report
Quant Report
CR Database

Meth: PAHLOW1.M
Barcode:
Samp Amt: 0
Pulliplr: 1
Lib. Search Rep :per Method
Post-Quant Macro:per Method
CR Spreadsheet :per Method
      Vial: 6
 Type: Sample 0806225-01;10;15;500;1;UG/KG;23-JUN-2008 ch2.b06225;0;;;062308BW1;pahsurr.sub;4432
      Meth: PAHLOW1.M Barcode:
      Data: 0622501D.D Samp Amt: 0
                                                     Multiplr: 10
      Data: 0622501D.D Samp Amt: 0 Multipir: 10

Area% Report :per Method Lib. Search Rep :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
 10 Type: Spike LCS1;1;30;500;1;UG/KG;13-JUN-2008 
Vial: 8 ;3;LCS;;;061308BS1;pahsurr.sub;4432
     Vial: 8 ;3;LCS;;;061308BS1;pansurr.sub;4432

Meth: PAHLOW1.M Barcode:
Data: LCS01.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
 11 Type: Spike LCS2;1;30;500;1;UG/KG;13-JUN-2008
Vial: 9 ;3;LCS;;;061308BS1;pahsurr.sub;4432
     Vial: 9;3;LCS;;;061308BS1;pansurr.sub;4432Meth: PAHLOW1.MBarcode:Data: LCS02.DSamp Amt: 0Multiplr: 1Area% Report:per MethodLib. Search Rep :per MethodQuant Report:per MethodPost-Quant Macro:per MethodCR Database:per MethodCR Spreadsheet:per Method
 12 Type: Spike LCS3;1;30;500;1;UG/KG;13-JUN-2008
Vial: 10 ;3;LCS;;;061308BS1;pahsurr.sub;4432
Meth: PAHLOW1.M Barcode:
     13 Type: Spike LCS4;1;30;500;1;UG/KG;13-JUN-2008 Vial: 11 ;3;LCS;;;061308BS1;pahsurr.sub;4432
     Meth: PAHLOW1.M Barcode:
     14 Type: Blank RB27;1;15;500;1;UG/KG;04-JUN-2008 Yial: 12 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
     Meth: PAHLOW1.M Barcode:
    ______
15 Type: Blank RB33;1;15;500;1;UG/KG;04-JUN-2008 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
    Vial: 13 ;3;BLANK;;;060408BS1;pahsurr.sub;4432

Meth: PAHLOW1.M Barcode:
Data: RB33.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
16 Type: Blank RB23;1;15;500;1;UG/KG;04-JUN-2008
Vial: 14 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
Meth: PAHLOW1.M Barcode:
Data: RB23.D Samp Amt: 0 Multiplr: 1
Sequence: 062608B3.S Last Modified: Thu Jun 26 12:09:10 2008 Page: 2
```

```
Quant Report : Per Method : CR Spreadsheet : per Method
  17 Type: Blank RB37;1;15;500;1;UG/KG;04-JUN-2008 Yial: 15 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
       Type: Blank DRG;1;15;500;1;UG/KG;04-JUN-2008
Vial: 16 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
Meth: PAHLOW1.M Barcode:
Data: DRG.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
 19 Type: Blank RB01;1;15;500;1;UG/KG;04-JUN-2008 Vial: 17 ;3;BLANK;;;060408BS1:naheurr
       Vial: 17 ;3;BLANK;;060408BS1;pahsurr.sub;4432

Meth: PAHLOW1.M Barcode:
Data: RB01.D Samp Amt: 0 Multiplr: 1

Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
 Type: Blank RB40;1;15;500;1;UG/KG;04-JUN-2008
Vial: 18 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
Meth: PAHLOW1.M Barcode:
Data: RB40.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
 Type: Blank RB34;1;15;500;1;UG/KG;04-JUN-2008
Vial: 19 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
Meth: PAHLOW1.M Barcode:
Data: RB34.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method
Quant Report :per Method Post-Quant Macro:per Method
CR Database :per Method CR Spreadsheet :per Method
Type: Blank RB28;1;15;500;1;UG/KG;04-JUN-2008
Vial: 20 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
Meth: PAHLOW1.M Barcode:
Data: RB28.D Samp Amt: 0 Multiplr: 1
Area% Report :per Method Lib. Search Rep :per Method Quant Report :per Method Post-Quant Macro:per Method CR Database :per Method CR Spreadsheet :per Method
23 Type: Blank RB30;1;15;500;1;UG/KG;04-JUN-2008 
Vial: 21 ;3;BLANK;;;060408BS1;pahsurr.sub;4432
      Vial: 21;;;DEANK;;;UBU4U8BS1;pansurr.sub;4432Meth: PAHLOW1.MBarcode:Data: RB30.DSamp Amt: 0Multiplr: 1Area% Report:per MethodLib. Search Rep :per MethodQuant Report:per MethodPost-Quant Macro:per MethodCR Database:per MethodCR Spreadsheet:per Method
```

3,565

Empirical Laboratories EMPIRICAL LABORATORIES, LLC LABORATORY SAMPLE CUSTODY FORM WALK-IN REFRIGERATOR

Sample Log # (s)	Time/Date/Initials Removed	Time/Date/Initials Returned (Note if all Sample Used)	Notes/ Comments	Task Performed
1.0	Fromlogin	16:45 6/20/08 KBG		N02
6216.61714 6083-01755 6032-43-94	RS 4/21/08 11:03			%50lid
6033-01704				01
4082-04708 6084-017110		<u> </u>		NH3-
U203-01704 U017-74	RS 6121108 1615	RS 4/21/08/40		TSS
170-21,02 6170-01,02 6110-01,02	AU 6/23/087:35	DU 6/23/02/11	5-	16-16
1 96-01-714				
£210-01				
1184-0123714	0908 KBG6/23/08	6/20/09:55 cat		Clou-
6202-01717				
6202-01-17	KH 6/23/089:45	NH 6/23/08	•	Toc
6216-01	KH 6/23/08 11:50	# htt H23/0812:50	,	TBC
6205-01 628-01	13:40 8A2 4/23/08	14:52 60 6/208		142
6219-67,04				
(230 · 0) · 5	801866	useall		extriction ,
6335 CF 09	(C) 2 11 (0133108)	useall		7
LD32-32,35,38	R5 4123108 18:42	RS 4123/08 19:22	,	90501.ds /
1,116-01 6191-01,02	AH 6/24/087:20	AH 6/24 9:00		CN-
6172-01 11-01 11-01-01-705		A46/24020:00	n seed a 11 x cept 6198	07.6
6139-05				
622601	***************************************			

HOBART SAMPLE EXTRACT CUSTODY FORM

			:रहर्गेनर्स्स्रोझीड	ŧk	secuii.	1683	ling	ร เกษให้รู้ อาเมษให้รู้	
Sumple :				Systeman	Resultation	Amilysis	Defection	References	Takifeled Umseriod Completed
	1	/insorted							
6151 (1-2) 6193-01 6205-01	BNA	6-23-08 12:05PM	6-23-08 11:46 AM	×					
6207 (1,3)			1						
6051-01, 42	ter	15:15 6/23/08 BTA 6123/08	06/33/08 14:50 6/23	જ		X			
6225-1-7	PCB	15:WA							×
6225-01-07	pus	14421 2 1650	1505			æ			
6225-1-7	[LPA!	6173108 15:15 AC	4.					-	\nearrow
6220-62-05	O.R	41300							
6724-61-16 6727-01-67 6724-08-00	Tell.	4123/08							
5266-4,2:0	MA KRO,	146/24-8							
5272-01,693.01	BNA	6-24-08	6-24-08 6:29 AM			X	,		
6307 (31,3)						Ì		_	• ;
6131(3-4)									
6220-02-05	EΨ	13:45 6/24/08 BM	06-24-08 BHD 08:30			X			
5074-06,12 6035 6137-03	EH		1			X			
1273-1-3	લ્લ		9:50 6174108 AF Hate	ntolas	+	X			

18 19 8 22 13 * 15 18 1 2 = 6 7 æ 6 4 S 9 Notes/Comments Solvent LotVendor
Methylene Chloride

(2) 99999 SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS H THIN THIN OF SERVICE S Conc. ラ MANIE 7 Conc. 10ml 988 Y Y Y Y Y Y Y Y Y Y Initials ₹ Y Y ¥ ¥ N A ¥ ¥ ₹ ₹ ₹ SAS SH4725 SAS Added A A A A A A ¥ × X X X X X sas IOM ₹ ž ¥ Z Y Y Y **Empirical Laboratories** SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS Surrogate Surr Added Initials **>** SAS SAS SAS SAS SAS SAS J. J. J. SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS SAS 05m pH | Volume(ml) 0.52 Final 7 EX083 9 و Setup Initials Matrix: Water Date SAS (200) tion: BNA/PAH/(LPAH) 5000 8 \rightarrow Madis **GSD** 135

Page 33 of 100

ORGANIC CASE NARRATIVE – Low-level PAHs

Arcadis – Radford Workorder: 0806207

Date Sampled	Date Received	Lab ID	Client ID
18-Jun-2008	19-Jun-2008	0806207-01	31MW002(061808)
18-Jun-2008	19-Jun-2008	0806207-02	31MWDUP001(061808)
18-Jun-2008	19-Jun-2008	0806207-03	EB001(061808)

Method: The samples were extracted/analyzed by USEPA SW-846 Methods 3541/8270C (separatory funnel extraction followed by capillary column GC/MS) for water upon receipt to the laboratory in satisfactory condition.

Comments: The analyses for these samples were satisfactorily completed within sample holding times and met the corresponding specifications with the following notes/exceptions:

- Note: These samples were analyzed for full-scan, low-concentration PAHs by employing a combination of sensitivity enhancing techniques in the extraction and analysis processes.
- DFTPP Tuning: All method tuning criteria were met.
- Calibration Criteria: All method calibration criteria were met for the target analytes. Radford criteria were exceeded for indeno(1,2,3-cd)pyrene in the initial calibration verification where the percent difference of 20% was exceeded at 22.3% with a negative bias. Results for indeno(1,2,3-cd)pyrene are qualified with a "Y" to indicate a potential negative bias.
- Blank Results: No target analytes were detected in the method blank. Equipment blank EB001 (061808) reported a concentration of 2-methylnaphthalene but was not detected in the associated samples.
- Surrogate Recoveries: All surrogate recoveries were within limits.
- SBLK0623BW1LCS/LCSD results: All recoveries and relative percent differences were within limits.
- MS/MSD Results: Not applicable.
- Internal Standard Area Counts: All area counts were within limits.
- Dilutions: All samples were analyzed without dilution.

I certify that, to the best of my knowledge and based upon my inquiry of those individuals immediately responsible for obtaining the information, the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, with the exception of the conditions detailed in the case narrative, as verified by the following signature.

Marcia K. McGinnity Senior Project Manager

ANALYTICAL REPORT TERMS AND QUALIFIERS (ORGANIC)

- MDL: The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The MDL is determined from analysis of a sample containing the analyte in a given matrix.
- **EQL**: The estimated quantitation limit (EQL) is defined as the estimated concentration above which quantitative results can be obtained with a specific degree of confidence. Empirical Laboratories defines the EQL to be at or near the lowest standard of the calibration curve.
- U: The presence of a "U" indicates that the analyte was analyzed for but was not detected or the concentration of the analyte quantitated below the MDL.
- B: The presence of a "B" to the right of an analytical value indicates that this compound was also detected in the method blank and the data should be interpreted with caution. One should consider the possibility that the correct sample result might be less than the reported result and, perhaps, zero.
- **D:** When a sample (or sample extract) is rerun diluted because one of the compound concentrations exceeded the highest concentration range for the standard curve, all of the values obtained in the dilution run will be flagged with a "D".
- E: The concentration for any compound found which exceeds the highest concentration level on the standard curve for that compound will be flagged with an "E". Usually the sample will be rerun at a dilution to quantitate the flagged compound.
- J: The presence of a "J" to the right of an analytical result indicates that the reported result is estimated. The data pass the identification criteria indicating that the compound is present, but the calculated result is less than the EQL.

ARCADIS

CHAIN-OF-CUSTODY RECORD Page __ Laboratory Task Order No./P.O. No.

Yes No N/A YES NO N/A Seal Intact? Seal Intact? R morled as EBOO1 Total No. of Bottles/ Containers SPECIFY * - contains labels ES. Remarks Time 18:00 9:00 06 (303) Other and softmant settled out in samples slease des not disturbe In Person Decoming Courier Peterson Despendent of the Courier Dether 7 / Time __ Sharps (279-994-8061 **ANALYSIS / METHOD / SIZE** Date 6 - Date __ Date_ CNCIS | neceived by: 65 control | Organization: Empirical | Special Instructions/Remarks | D place (Onfile Onalys) | Cho Organization: ACA(1)(g) GW= Svoundinator Sols . Organization: Organization: Project Number/Name GOOB RAAP. GOJ 6. DC. OCLOW RAAP Lab ID = Air Coct 1 (30 / 81/2) GC 6/18/08/1625 C/18/02/16:25 Date/Time Sampled Sampler(s)/Affiliation 🖒 / 🗚 (SAN) ⋖ Laboratory Emplica Lasra by PS S = Solid;☐In Person Relinquished by: Sanda Gabon Project Manager Diane Wisheck Matrix Project Location Rad Bod, VA -02 BIMWILD COI (061808) CM L = Liquid;-01 31 MW OOD (06180E) Relinquished by: -03 EB-001 (06.1808) 0806207 Sample ID/Location Delivery Method: Sample Matrix: Received by:

Empirical Reports

From:

Powell, Jace'que [Jaceque.Powell@arcadis-us.com]

Sent:

Friday, June 20, 2008 11:32 AM

To:

ReportProduction@EmpirLabs.com; Kennedy, Jane

Cc:

renee; MMcGinnity@EmpirLabs.com

Subject: RE: SRC for WO #0806207

Hi Renee and Marcia,

FB001 should be EB001 as labeled on the sample containers.

Thanks,

Jace'que

From: Empirical Reports [mailto:ReportProduction@EmpirLabs.com]

Sent: Friday, June 20, 2008 11:29 AM **To:** Powell, Jace'que; Kennedy, Jane

Cc: renee

Subject: SRC for WO #0806207

Importance: High

Christine Gramada Administrative Assistant Empirical Laboratories, LLC

227 French Landing Drive, Suite 550 I Nashville, TN 37228 I www.empirlabs.com

Main: 615.345.1115 ext. 244 | Toll free: 877.345.1113 | Fax: 615.846.5426

Recipient of the 2008 Region IV (Southeastern US) Subcontractor of the Year from the Small Business Administration.

Celebrating over 40 years of excellence, Empirical Laboratories is certified as a HUBZone Business, a Woman-Owned Small Business, and a Small Disadvantaged Business by the Small Business Administration. Come visit our website at www.empirlabs.com today.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates.

EMPIRICAL LABORATORIES COOLER RECEIPT FORM

I MS Nulliber -	COC ID(s):
ClientA/cadis Sample Custodian W	_ ProjectRadford, UA
Sample Custodian	_ Today's Date 6 19/08
Date/Time Samples Received 6 1908 Airbill Number 6 1908 Cooler Opened: Date 6 1908	
Chain of custody seal intact? Chain of custody provided? Sample labels present? Bottle labels correspond w/COC	Yes No No No No No
Number of Custody Seals on Cooler(s):	Seal Date(s):
Type of coolant used Tw	_
Coolant condition: Melted	Partially melted/frozen Frozen
# of Coolers Temp. of Coolers	1-5°C
Condition of Bottles in Shipment: Brol	ken Leaking intact Wissing
If broken or leaking list sample ID#s and be	ottle types affected:
Comments: (supple FROOT had contain	er labels as sample: EBOOI!
Sample 1 De :	

CLIENT SAMPLE NO.

31MW002(061808)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab Sample ID: 0806207-01 Matrix: (soil/water) WATER

Sample wt/vol: 1080 (g/mL) ML Lab File ID: 0620701

% Moisture: ____ decanted: (Y/N)___ Date Sampled: 06/18/08 16:25

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/26/08 11:08

Dilution Factor: 1.0 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) N pH: NA

CAS NO.	CONCENTRA COMPOUND	TION UNITS:	(ug/L or RL	cug/Kg) U CONC	G/L Q
120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(g,h,i) perylene Benzo(a) pyrene Chrysene Dibenz(a,h) anthracene Fluoranthene Fluorene Indeno(1,2,3-cd) pyrene 2-Methylnaphthalene 1-Methylnaphthalene Naphthalene Phenanthrene	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.017 0.018 0.017 0.018 0.015	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046		מממממממממממממ

Miglo8

CLIENT SAMPLE NO.

31MWDUP00 1(061808)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: 0806207-02

Sample wt/vol: 1080 (g/mL) ML Lab File ID: 0620702

% Moisture: ____ decanted: (Y/N)___ Date Sampled: 06/18/08 16:25

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted: 06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/26/08 11:47

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CONCENTRATE CAS NO. COMPOUND	TION UNITS:	(ug/L or	ug/Kg) UG/L
	MDL	RL	CONC Q
83-32-9Acenaphthene 208-96-8Acenaphthylene 120-12-7Anthracene 56-55-3Benzo(a) anthracene 205-99-2Benzo(b) fluoranthene 207-08-9Benzo(k) fluoranthene 191-24-2Benzo(g,h,i) perylene 50-32-8Benzo(a) pyrene 218-01-9Chrysene 53-70-3Dibenz(a,h) anthracene 206-44-0Fluoranthene 86-73-7Fluorene 193-39-5Indeno(1,2,3-cd) pyrene 91-57-62-Methylnaphthalene 90-12-01-Methylnaphthalene 91-20-3Naphthalene 85-01-8Phenanthrene 129-00-0	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.017 0.018 0.017 0.018 0.015	0.046 0.046 0.046	ממממממממממממממממ

Malalos

CLIENT SAMPLE NO.

EB001 (061808)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: 0806207-03

Sample wt/vol: 1080 (g/mL) ML Lab File ID: 0620703

% Moisture: ____ decanted: (Y/N)___ Date Sampled: 06/18/08 17:00

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted: 06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/26/08 12:25

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

CONCENTRA! CAS NO. COMPOUND	TION UNITS:	(ug/L or RL	ug/Kg) UC CONC	G/L Q
83-32-9Acenaphthene 208-96-8Acenaphthylene 120-12-7Anthracene 56-55-3Benzo(a) anthracene 205-99-2Benzo(b) fluoranthene 207-08-9Benzo(g, h, i) perylene 191-24-2Benzo(g, h, i) perylene 50-32-8Benzo(a) pyrene 218-01-9Chrysene 53-70-3Dibenz(a, h) anthracene 206-44-0Fluoranthene 86-73-7Fluorene 193-39-5Indeno(1,2,3-cd) pyrene 91-57-62-Methylnaphthalene 90-12-01-Methylnaphthalene 91-20-3Naphthalene 85-01-8Phenanthrene 129-00-0	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.017 0.018 0.017 0.018 0.015	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.094	מסמם מסטמממממממ

M -1968

FORM 2 WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

	CLIENT	S1	S2	S3	S4		S5	S6	S7	S8	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#		#	#	#	#	#	OUT
		=====	=====			:=	=====		=====	======	===
01	SBLK0623BW1	83	71	73		l					0
02	SBLK0623BW1L	104	92	95		_					0
03	SBLK0623BW1L	103	88	88		_					0
04	31MW002(0618	76	75	81							0
05	31MWDUP001(0	82	74	71		_					0
06	EB001 (061808	89	80	80							0
07											
08				***************************************				-			
09											
10						_	*****				
$\overline{11}$											
12						_					
13						_					
14						_					
15											
16						-					
17											
18											
19						-					
20						-					
21							***************************************				
22			***************************************			-1			***************************************		l
23								***************************************			
24											
25]								
26		***************************************									
26											
27											
28		***************************************							l		<u> </u>
29						— l					
30						I			l	l	ll

				EL	SPIKE
				QC LIMITS	CONC (UG/L)
S1	(NBZ)	=	Nitrobenzene-d5	(30-110)	1.0
S2	(FBP)	=	2-Fluorobiphenyl	(35-110)	1.0
S3	(TPH)		Terphenyl-d14	(55-125)	1.0

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogate results reported from a diluted analysis

FORM 3 WATER SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix Spike - Client Sample No.: SBLK0623BW1

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	જ	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
				=====	=====
Acenaphthene	1.000	0.0000	0.9953	100	35-120
Acenaphthylene	1.000	0.0000	0.9181	92	40-115
Anthracene	1.000	0.0000	0.9796	98	45-120
Benzo(a) anthracene	1.000	0.0000	0.9661	97	45-120
Benzo (b) fluoranthene	1.000	0.0000	0.8464	85	35-130
Benzo(k) fluoranthene	1.000	0.0000	0.9320	93	30-135
Benzo(g,h,i)perylene	1.000	0.0000	0.7923	79	25-135
Benzo (a) pyrene	1.000	0.0000	0.7921	79	45-120
Chrysene	1.000	0.0000	0.9174	92	45-120
Dibenz(a,h)anthracene	1.000	0.0000	0.7890	79	30-140
Fluoranthene	1.000	0.0000	1.091	109	45-125
Fluorene	1.000	0.0000	1.034	103	40-120
Indeno(1,2,3-cd)pyrene	1.000	0.0000	0.7708	77	30-140
2-Methylnaphthalene	1.000	0.0000	1.040	104	35-115
1-Methylnaphthalene	1.000	0.0000	0.9326	93	35-115
Naphthalene	1.000	0.0000	0.9298	93	30-115
Phenanthrene	1.000	0.0000	0.9819	98	40-130
Pyrene	1.000	0.0000	1.047	105	35-140
_					

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

FORM 3 WATER SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix Spike - Client Sample No.: SBLK0623BW1

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: 0 out of 18 outside limits

Spike Recovery: 0 out of 36 outside limits

COMMENTS:	

SBLK0623BW1

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID: S1BW0623 Lab Sample ID: SBLK0623BW1

Instrument ID: BNA3 Date Extracted: 06/23/08

Matrix: (soil/water) WATER Date Analyzed: 06/25/08

Level: (low/med) LOW GPC Cleanup: (Y/N) N Time Analyzed: 1114

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
			=======================================	========
01 02	SBLK0623BW1L SBLK0623BW1L	SBLK0623BW1LCS SBLK0623BW1LCS	S1LW0623 S1DW0623	06/25/08 06/25/08
02	31MW002 (0618	0806207-01	0620701	06/26/08
04	31MWDUP001(0	0806207-02	0620702	06/26/08 06/26/08
05	EB001 (061808	0806207-03	0620703	06/26/08
06				
07				
08 09				
10				
11				
12				
13				
14 15				
16				
17				
18				
19				
20 21				
22				
23				
24				
25				
26 27				
28				
29			***************************************	
30				

COMMENTS:	

CLIENT SAMPLE NO.

SBLK0623BW1

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Matrix: (soil/water) WATER Lab Sample ID: SBLK0623BW1

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1BW0623

% Moisture: ____ decanted: (Y/N)___ Date Sampled: _____

Extraction: (SepF/Cont/Sonc/Soxh) SEPF Date Extracted:06/23/08

Concentrated Extract Volume: 500.0(uL) Date Analyzed: 06/25/08 11:14

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: NA

		TION UNITS:	_	ug/Kg) UG	:/L
CAS NO.	COMPOUND	MDL	RL	CONC	Q
83-32-9Ac		0.016			U
208-96-8Ac		0.016			U U
120-12-7Ar	nzo(a)anthracene	0.016			ט ו
	nzo(b) fluoranthene	0.016			Ŭ
207-08-9B€	nzo(k)fluoranthene	0.016			U
	nzo(g,h,i)perylene	0.016			U
50-32-8Be		0.016			U U
	benz (a,h) anthracene	0.016			υ
206-44-0Fl		0.016	0.050		U
86-73-7Fl		0.016			U ,
	deno (1,2,3-cd) pyrene	0.018			UY U
91-57-62-	Methylnaphthalene Methylnaphthalene	0.019			บ
91-20-3Na		0.020			Ū
85-01-8Ph		0.016			U
129-00-0Py	rene	0.016	0.050		U

m 1/5/08

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: EMPIRICAL LABS Contract:

Lab Code:

Case No.: SAS No.: NA SDG No.: SDGA92299

Lab File ID: DF0114B2

DFTPP Injection Date: 01/14/08

Instrument ID: BNA3

DFTPP Injection Time: 1734

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
m/e ===== 51 68 69 70 127 197 198 199 275 365 441 442 443	ION ABUNDANCE CRITERIA ===================================	ABONDANCE ===================================
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
			==========		
01	LPAHCAL30PPM	LPAHCAL30PPM	LPAHCAL8	01/14/08	1754
02	LPAHCAL20PPM	LPAHCAL20PPM	LPAHCAL7	01/14/08	1834
03	LPAHCAL10PPM	LPAHCAL10PPM	LPAHCAL6	01/14/08	1914
04	LPAHCAL5PPM	LPAHCAL5PPM	LPAHCAL5	01/14/08	1953
05	LPAHCAL1PPM	LPAHCAL1PPM	LPAHCAL4	01/14/08	2033
06	LPAHCAL0.4PP	LPAHCAL0.4PPM	LPAHCAL3	01/14/08	2113
07	LPAHCAL0.2PP	LPAHCAL0.2PPM	LPAHCAL2	01/14/08	2152
08	LPAHCAL0.1PP	LPAHCAL0.1PPM	LPAHCAL1	01/14/08	2232
09	LPAHICV5PPM	LPAHICV5PPM	LPAHICV	01/14/08	2311
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20		-			
21					
22					

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID: DF0625B1 DFTPP Injection Date: 06/25/08

Instrument ID: BNA3 DFTPP Injection Time: 0900

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
===== = 51 68 69 70	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198	46.7 0.0 (0.0)1 52.3 0.3 (0.5)1 56.9
197 198 199 275 365 441 442	Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	0.0 100.0 6.9 24.5 2.80 8.2 51.1 10.4 (20.4)2

1-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 11 12 13 14		1	FILE ID ========= LPAHCCV S1BW0623 S1LW0623		
16 17 18					
19 20 21 22					

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID: DF0626B1 DFTPP Injection Date: 06/26/08

Instrument ID: BNA3 DFTPP Injection Time: 0932

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	52.2
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	54.6
70	Less than 2.0% of mass 69	0.3 (0.5)1
127	40.0 - 60.0% of mass 198	57.4
197	Less than 1.0% of mass 198 Base Peak, 100% relative abundance	0.0 100.0
198 199	5.0 to 9.0% of mass 198	6.7
275	10.0 - 30.0% of mass 198	26.0
365	Greater than 1.0% of mass 198	2.98
441	Present, but less than mass $4\overline{43}$	7.9
442	Greater than 40.0% of mass 198	49.8
443	17.0 - 23.0% of mass 442	9.7 (19.4)2
		1

1-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10 11	SAMPLE NO. ====================================	SAMPLE 1D ====================================	LPAHCCV 0620701 0620702 0620703	06/26/08 06/26/08 06/26/08 06/26/08	0951 1108 1147 1225
13 14 15					
16 17 18 19					
20 21 22					

Contract: ARCADIS Lab Name: EMPIRICAL LABS

SDG No.: ARC.B06207 Case No.: NA SAS No.: NA Lab Code: NA

Date Analyzed: 06/25/08 Lab File ID (Standard): LPAHCCV

Time Analyzed: 0919 Instrument ID: BNA3

		IS1 (DCB) AREA #	RT #	IS2(NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT	41299 82598 20650	3.38 3.88 2.88	155161 310322 77581	6.33 6.83 5.83	79018 158036 39509	10.46 10.96 9.96
	CLIENT SAMPLE NO.						
01 02 03	SBLK0623BW1L SBLK0623BW1L SBLK0623BW1L	33195 39318 37853	3.37 3.37 3.38	128167 144504 135950	6.33 6.33 6.34	64530 72112 70476	10.46 10.46 10.45
04 05 06 07							
08 09 10							
11 12 13 14							
15 16 17							
18 19 20 21							
22							

(DCB) = 1,4-Dichlorobenzene-d4 IS1

(NPT) = Naphthalene-d8IS2 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/25/08

Instrument ID: BNA3 Time Analyzed: 0919

		· · · · · · · · · · · · · · · · · · ·					
		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
							======
	12 HOUR STD	127833	13.82	124574	19.98	99762	23.04
	UPPER LIMIT	255666	14.32	249148	20.48	199524	23.54
	LOWER LIMIT	63917	13.32	62287	19.48	49881	22.54
					======	17001	
	CLIENT						
	SAMPLE NO.						
	SAMPLE NO.						
0.1	CDT TO CO ODT	104630	12 00	100450	10.00		======
01	SBLK0623BW1	104632	13.82	100450	19.98	75435	23.05
02	SBLK0623BW1L	118682	13.82	116066	19.98	89156	23.04
03	SBLK0623BW1L	112594	13.82	111137	19.98	85965	23.05
04							
05							
06							
07					***************************************		
80							
09							
10							
11							
12							
13	***************************************			***************************************			

14							
15							
16							
17							
18							
19							
20						***************************************	
21				***************************************			
22							
سه حب				<u></u> 1			

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/26/08

Instrument ID: BNA3 Time Analyzed: 0951

	\\\\\\\\\		TOO (37DE)		T() (33TT)	
	IS1 (DCB)		IS2 (NPT)	11	IS3 (ANT)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	35632	3.36	137087	6.31	68600	10.43
UPPER LIMIT	71264	3.86	274174	6.81	137200	10.93
LOWER LIMIT	17816	2.86	68544	5.81	34300	9.93
CLIENT						
SAMPLE NO.						1
SAMPLE NO.						
01 21 10 02 (061 9	33560	3.35	123062	6.32	60646	10.43
01 31MW002 (0618			128090	6.31	62908	10.44
02 31MWDUP001 (0	33959	3.34	1		61044	10.44
03 EB001 (061808	33432	3.34	121417	6.31	61044	10.44
04						
05				-		
06						
07						
08						
09						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						l

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Lab File ID (Standard): LPAHCCV Date Analyzed: 06/26/08

Instrument ID: BNA3 Time Analyzed: 0951

		IS4 (PHN) AREA #	RT #	IS5(CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
UPI	HOUR STD PER LIMIT VER LIMIT	105384 210768 52692	13.80 14.30 13.30	102897 205794 51449	19.95 20.45 19.45	74514 149028 37257	23.03 23.53 22.53
	CLIENT MPLE NO.						======
02 31MV 03 EB00	W002 (0618 WDUP001 (0	101187 100271 95886	13.80 13.80 13.80	104176 95803 89592	19.96 19.96 19.96	85002 70041 69408	23.03 23.03 23.03
04 05 06 07							
08 09 10							
11 12 13 14							
15 16 17					***************************************		
18 19 20 21							
22							

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

FORM 6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: EMPIRICAL LABS Contract:

Lab Code:

Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date(s): 01/14/08 01/14/08

Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 1754 2232

LAB FILE ID: RF0.1: LPAHCAL1 RF0.2: LPAHCAL2 RF0.4: LPAHCAL3 RF1: LPAHCAL4 RF5: LPAHCAL5

Acenaphthylene 0.936 1.010 1.049 1.338 1.58 Anthracene 0.581 0.641 0.684 0.938 1.05 Benzo (a) anthracene 0.455 0.466 0.525 0.704 0.91 Benzo (b) fluoranthene 0.706 0.790 0.792 0.965 1.15 Benzo (k) fluoranthene 1.043 0.912 1.043 1.395 1.53 Benzo (g, h, i) perylene 0.616 0.629 0.685 0.862 1.04 Benzo (a) pyrene 0.568 0.490 0.509 0.764 1.09 Chrysene 1.082 1.122 1.078 1.177 1.08 Dibenz (a, h) anthracene 0.376 0.377 0.446 0.601 0.88 Fluoranthene 0.563 0.642 0.700 0.903 1.07 Indeno (1,2,3-cd) pyrene 0.338 0.318 0.513 0.450 0.75 2-Methylnaphthalene 0.380 0.371 0.400 0.447 0.49	COMPOUND	RF0.1	RF0.2	RF0.4	RF1	RF5
Naphthalene 0.918 0.853 0.860 0.888 0.87 Phenanthrene 1.108 1.066 1.049 1.132 1.12 Pyrene 1.117 1.015 1.073 1.215 1.22 Nitrobenzene-d5 0.140 0.153 0.170 0.208 0.26 2-Fluorobiphenyl 1.245 1.225 1.203 1.308 1.27	Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(g,h,i) perylene Benzo(a) pyrene Chrysene Dibenz(a,h) anthracene Fluoranthene Fluorene Indeno(1,2,3-cd) pyrene 2-Methylnaphthalene 1-Methylnaphthalene Naphthalene Phenanthrene Pyrene ===================================	1.038 0.936 0.581 0.455 0.706 1.043 0.616 0.568 1.082 0.376 0.563 0.708 0.338 0.380 0.469 0.918 1.108 1.117	1.001 1.010 0.641 0.466 0.790 0.912 0.629 0.490 1.122 0.377 0.642 0.756 0.318 0.371 0.445 0.853 1.066 1.015		1.052 1.338 0.938 0.704 0.965 1.395 0.862 0.764 1.177 0.601 0.903 1.003 0.450 0.447 0.498 0.888 1.132 1.215 ====================================	1.058 1.582 1.051 0.915 1.151 1.532 1.047 1.099 1.080 0.886 1.073 1.137 0.755 0.493 0.509 0.874 1.122 1.223 ===================================

FORM 6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: EMPIRICAL LABS Contract:

Lab Code: Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date(s): 01/14/08 01/14/08

Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 1754 2232

LAB FILE ID: RF10: LPAHCAL6 RF20: LPAHCAL7 RF30: LPAHCAL8

	T		
COMPOUND	RF10	RF20	RF30
Acenaphthene	1.067	1.049	0.993
Acenaphthylene	1.618	1.659	1.557
Anthracene	1.070	1.051	1.008
Benzo(a) anthracene	0.977	1.049	1.051
Benzo (b) fluoranthene	1.287	1.379	1.325
Benzo(k) fluoranthene	1.530	1.408	1.409
Benzo(g,h,i)perylene	1.020	0.903	0.964
Benzo (a) pyrene	1.171	1.201	1.197
Chrysene	1.068		1.041
Dibenz (a, h) anthracene	0.888	0.888	0.904
Fluoranthene	1.093	1	1.037
Fluorene	1.138	1.161	1.102
Indeno(1,2,3-cd)pyrene	0.797	0.816	0.890
2-Methylnaphthalene	0.484	0.478	0.468
1-Methylnaphthalene	0.500	0.489	0.480
Naphthalene	0.858	0.838	0.807
Phenanthrene	1.122	1.059	1.028
Pyrene	1.315	1.238	1.226
Nitrobenzene-d5	0.263	0.277	0.277
2-Fluorobiphenyl	1.261	1.254	1.166
Terphenyl-d14	0.913	0.894	0.898

FORM 6 SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: EMPIRICAL LABS Contract:

Lab Code:

Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date(s): 01/14/08 01/14/08

Column: FUSED SILICA ID: 0.25 (mm) Calibration Time(s): 1754 2232

		1	ICENTS	%RSD
COMPOUND	CURVE	A0	A1	OR R^2
	=====			
Acenaphthene	AVRG		1.02950848	
Acenaphthylene	LINR	0.00000000	1	1
Anthracene	LINR	0.00000000	1	1
Benzo (a) anthracene	LINR	0.00000000		
Benzo (b) fluoranthene	LINR	0.00000000	1.33538156	1
Benzo(k)fluoranthene	LINR	0.00000000		
Benzo(g,h,i)perylene	LINR	0.00000000	1	
Benzo (a) pyrene	LINR	0.00000000	1.19454344	1 1
Chrysene	AVRG		1.08898009	1
Dibenz(a,h)anthracene	LINR	0.00000000	i i	
Fluoranthene	LINR	0.00000000		
Fluorene	LINR	0.00000000		1
Indeno (1,2,3-cd) pyrene	LINR	0.00000000		
2-Methylnaphthalene	AVRG		0.44026924	
1-Methylnaphthalene	AVRG		0.48037708	
Naphthalene	AVRG		0.86201971	l .
Phenanthrene	AVRG		1.08579490	1
Pyrene	AVRG		1.17792752	8.4
	=====			
Nitrobenzene-d5	LINR	0.20450048		
2-Fluorobiphenyl	AVRG		1.24226628	
Terphenyl-d14	AVRG		0.84499758	7.8

SEMIVOLATILE INITIAL CALIBRATION VERIFICATION

Lab Name: EMPIRICAL LABS Contract:

Lab Code: Case No.: SAS No.: NA SDG No.: SDGA70651

Instrument ID: BNA3 Calibration Date: 01/14/08 Time: 2311

Lab File ID: LPAHICV

Init. Calib. Date(s): 01/14/08 01/14/08

Init. Calib. Times: 1754 2232

COMPOUND	RRF	RRF5	CURVE AMOUNT	CCAL AMOUNT	MIN RRF	CURVE	%D	MAX %D
	======	1 100	=====	======		AVRG	7 0	25.0
Acenaphthene	1.029	1.102	5.000	5.351		LINR	-0.1	
Acenaphthylene	1.344)		25.0
Anthracene	0.878		5.000			LINR		
Benzo(a)anthracene	0.768	1.037	5.000			LINR		25.0
Benzo(b) fluoranthene	1.049	1.381				LINR		25.0
Benzo(k)fluoranthene	1.284	1.652				LINR	16.3	
Benzo(g,h,i)perylene	0.841	0.945		4.956		LINR	-0.9	
Benzo(a)pyrene	0.875	1.145	5.000			LINR		25.0
Chrysene	1.089	1.135				AVRG		25.0
Dibenz(a,h)anthracene	0.671	0.799		4.449		LINR	-11.0	
Fluoranthene	0.886	1.115				LINR		25.0
Fluorene	0.981	1.196	5.000			LINR		25.0
Indeno (1,2,3-cd) pyrene	0.610	0.670				LINR	-22.3	
2-Methylnaphthalene	0.440	0.523	5.000	5.938		AVRG	18.8	
1-Methylnaphthalene	0.480	0.496	5.000	5.168		AVRG		25.0
Naphthalene	0.862	0.915	5.000	5.308		AVRG	6.2	
Phenanthrene	1.086	1.106	5.000	5.093		AVRG	1.8	25.0
Pyrene	1.178	1.395	5.000	5.920		AVRG	18.4	25.0
	=====	=====		=====	=====			====
Nitrobenzene-d5	0.219	0.262	5.000	0.0000		LINR	-99.9	
2-Fluorobiphenyl	1.242	1.277	5.000	0.0000		AVRG		25.0
Terphenyl-d14	0.845	0.866	5.000	0.0000		AVRG	2.5	25.0
								l

FORM 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Instrument ID: BNA3 Calibration Date: 06/25/08 Time: 0919

Lab File ID: LPAHCCV Init. Calib. Date(s): 01/14/08 01/14/08

Init. Calib. Times: 1754 2232

COMPOUND	RRF	RRF5	CURVE AMOUNT	CCAL AMOUNT	MIN RRF	CURVE	%D	MAX %D
=====================================	1.029	1.111	5.000	5.395	=====	AVRG	7.9	20.0
Acenaphthylene	1.344	1.703	5.000	l .		LINR	7.0	
Anthracene	0.878	1.050	5.000	l .		LINR	2.4	
Benzo (a) anthracene	0.768	0.985				LINR		20.0
Benzo (b) fluoranthene	1.049	1.135				LINR	-15.0	
Benzo(k) fluoranthene	1.284	1.358		1		LINR		20.0
Benzo(g,h,i)perylene	0.841	1.016				LINR	6.5	20.0
Benzo (a) pyrene	0.875	1.028	5.000	4.305		LINR	-13.9	20.0
Chrysene	1.089	1.067	5.000	4.897		AVRG	-2.0	20.0
Dibenz (a, h) anthracene	0.671	0.899	5.000	5.004		LINR	0.1	20.0
Fluoranthene	0.886	1.056	5.000	5.018		LINR	0.4	20.0
Fluorene	0.981	1.147	5.000	5.111		LINR	2.2	20.0
Indeno(1,2,3-cd)pyrene	0.610	0.855	5.000	4.957		LINR	-0.9	20.0
2-Methylnaphthalene	0.440	0.502	5.000	5.703		AVRG	14.1	20.0
1-Methylnaphthalene	0.480	0.530	5.000	5.522		AVRG	10.4	20.0
Naphthalene	0.862	0.891	5.000	5.170		AVRG	3.4	20.0
Phenanthrene	1.086	1.074	5.000	4.948		AVRG	-1.0	20.0
Pyrene	1.178	1.170	5.000	4.968		AVRG	-0.6	20.0
					=====			====
Nitrobenzene-d5	0.219	0.292	5.000	5.462		LINR	9.2	
2-Fluorobiphenyl	1.242	1.325	5.000	5.334		AVRG	6.7	
Terphenyl-d14	0.845	0.822	5.000	4.866		AVRG	-2.7	
						l		

FORM 7 SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: EMPIRICAL LABS Contract: ARCADIS

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: ARC.B06207

Instrument ID: BNA3 Calibration Date: 06/26/08 Time: 0951

Lab File ID: LPAHCCV Init. Calib. Date(s): 01/14/08 01/14/08

Init. Calib. Times: 1754 2232

				~~~				36337
			CURVE	CCAL	MIN		0-	MAX
COMPOUND	RRF	RRF5	AMOUNT	AMOUNT	RRF	CURVE	%D	%D
	=====		======	=====	=====	=====		====
Acenaphthene	1.029	1.119	l			AVRG		20.0
Acenaphthylene	1.344	1.668	ł	1 i		LINR		20.0
Anthracene	0.878	1.087				LINR		20.0
Benzo (a) anthracene	0.768	0.917		3		LINR	-12.1	
Benzo (b) fluoranthene	1.049	1.206				LINR		20.0
Benzo(k) fluoranthene	1.284	1.397	1			LINR		20.0
Benzo(g,h,i)perylene	0.841	0.851	5.000	i :		LINR	-10.7	
Benzo(a)pyrene	0.875	1.054	5.000			LINR	-11.7	
Chrysene	1.089	1.084	ł	1		AVRG		20.0
Dibenz (a, h) anthracene	0.671	0.783	5.000			LINR	-12.8	
Fluoranthene	0.886	1.073	5.000			LINR		20.0
Fluorene	0.981	1.159	5.000			LINR		20.0
Indeno (1,2,3-cd) pyrene	0.610	0.692	5.000			LINR	-19.7	1
2-Methylnaphthalene	0.440	0.486	5.000			AVRG	10.3	20.0
1-Methylnaphthalene	0.480	0.512	5.000	5.333		AVRG		20.0
Naphthalene	0.862	0.885	5.000	5.135		AVRG	2.7	20.0
Phenanthrene	1.086	1.090	5.000	5.017		AVRG	0.3	20.0
Pyrene	1.178	1.196	5.000	5.077		AVRG	1.5	20.0
	======		=====	=		=====	=====	====
Nitrobenzene-d5	0.219	0.273	5.000	5.118		LINR	2.4	
2-Fluorobiphenyl	1.242	1.327	5.000	5.340		AVRG	6.8	
Terphenyl-d14	0.845	0.832	5.000	4.922		AVRG	-1.6	
								ļ
		· · · · · · · · · · · · · · · · · · ·		l				' ——— '