RADFORD ARMY AMMUNITION PLANT, VIRGINIA

Master Work Plan Addendum 19:

SWMU 48

SWMU 49

SWMU 50

SWMU 59

SWMU 41

Area O

FLFA

LLLA

SWMU 43

Area P

Prepared for:

USACE Baltimore District 10 S. Howard St. Baltimore, MD 21201

Prepared by:

Shaw Environmental, Inc. 2113 Emmorton Park Rd. Edgewood, MD 21040

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1650 Arch Street Philadelphia, Pennsylvania 19103-2029

received 11-29-07 07-160

November 26, 2007

Commander,

Radford Army Ammunition Plant Attn: SJMRF-OP-EQ (Jim McKenna) P.O. Box 2

Radford, VA 24141-0099

P.W. Holt Environmental Manager Alliant Techsystems, Inc. Radford Army Ammunition Plant P.O. Box 1 Radford, VA 24141-0100

Re: Radford Army Ammunition Plant, Va.
Master Work Plan Addendum 019
Review of the Army's RCRA Work Plan Addendum

Dear Mr. McKenna and Ms. Holt:

The U.S. Environmental Protection Agency (EPA) and the Virginia Department of Environmental Quality (VDEQ) have reviewed the U.S. Army's (Army's) September, 2007 submittal of the Final RCRA Master Work Plan Addendum 019 for SWMUs 45, 49, 50, 59, 41, and 43, and Area O, FLFA, and Area P located at the Radford Army Ammunition Plant (RFAAP). Based upon our review, the report is approved, and in accordance with Part II. (E) (5) of RFAAP's Corrective Action Permit, it can now be considered final.

If you have any questions, please call me at 215-814-3413, or Jim Cutler at 804-698-4498. Thanks.

Sincerely,

William Geiger

RCRA Project Manager

General Operations Branch (3WC23)

cc:

Jim Cutler, VDEQ Richard Criqui, VDEQ

Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100 USA

September 26, 2007

Mr. William Geiger RCRA General Operations Branch, Mail Code: 3WC23 Waste and Chemicals Management Division U. S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

Subject: With Certification, Master Work Plan Addendum 019: SWMU 45, SWMU 49, SWMU 50, SWMU 59,

SWMU 41, Area O, FLFA, SWMU 43, Area P, Final Document, July 2007

Radford Army Ammunition Plant Installation Action Plan

EPA ID# VA1 210020730

Dear Mr. Geiger:

Enclosed is the certification for the subject document that was sent to you on September 26, 2007.

Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder of my staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 639-8641.

Sincerely,

P.W. Holt, Environmental Manager

Alliant Techsystems Inc.

Enclosure

c:

Jim Cutler

Virginia Department of Environmental Quality

P. O. Box 10009

Richmond, VA 23240-0009

Durwood Willis

Virginia Department of Environmental Quality

P. O. Box 10009

Richmond, VA 23240-0009

E. A. Lohman

Virginia Department of Environmental Quality

West Central Regional Office

3019 Peters Creek Road

Roanoke, VA 24019

Rich Mendoza
U.S. Army Environmental Command
1 Rock Island Arsenal
Bldg 90, 3rd Floor, Room 30A
IMAE-CDN
Rock Island, Illinois 61299

Dennis Druck U.S. Army Center for Health Promotion and Preventive Medicine 5158 Blackhawk Road, Attn: MCHB-TS-REH Aberdeen Proving Ground, MD 21010-5403

Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201

bc:

Administrative File J. McKenna, ACO Staff Rob Davie-ACO Staff M.A. Miano

M.A. Miano P.W. Holt J. J. Redder Env. File Coordination:

IM

M A Miano

Master Work Plan Addendum 019: SWMU 45, SWMU 49, SWMU 50, SWMU 59, SWMU 41, Area O, FLFA, SWMU 43, Area P, Final Document,

July 2007

Radford Army Ammunition Plant

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

SIGNATURE:

PRINTED NAME:

TITLE:

on **K**. Drushal

Lieutenant Colonel, US Army

Commanding

SIGNATURE:

PRINTED NAME:

TITLE:

Kent/Holiday

Vice President and General Manager ATK Energetics Systems Division

Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100 USA

September 26, 2007

Mr. William Geiger RCRA General Operations Branch, Mail Code: 3WC23 Waste and Chemicals Management Division U. S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

Subject Master Work Plan Addendum 019: SWMU 45, SWMU 49, SWMU 50, SWMU 59, SWMU 41, Area O, FLFA, SWMU 43, Area P, Final Document, July 2007
Radford Army Ammunition Plant Installation Action Plan
EPA ID# VA1 210020730

Dear Mr. Geiger:

Enclosed is one copy of the subject document. It has been revised per your June 20, 2007 email. Also under separate cover, one copy each will be sent to the distribution below.

Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder of my staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 639-8641.

Sincerely,

P.W. Holt, Environmental Manager

Alliant Techsystems Inc.

Enclosure

c:

Jim Cutler

Virginia Department of Environmental Quality P. O. Box 10009

Richmond, VA 23240-0009

Durwood Willis Virginia Department of Environmental Quality P. O. Box 10009 Richmond, VA 23240-0009

E. A. Lohman Virginia Department of Environmental Quality West Central Regional Office 3019 Peters Creek Road Roanoke, VA 24019 Rich Mendoza
U.S. Army Environmental Command
1 Rock Island Arsenal
Bldg 90, 3rd Floor, Room 30A
IMAE-CDN
Rock Island, Illinois 61299

Dennis Druck U.S. Army Center for Health Promotion and Preventive Medicine 5158 Blackhawk Road, Attn: MCHB-TS-REH Aberdeen Proving Ground, MD 21010-5403

Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201

bc:

Administrative File

J. McKenna, ACO Staff

P.W. Holt J. J. Redder Env. File Coordination: McKenna

J. McKenna

07-815-187 JMcKenna

Leahy, Timothy

From:

Geiger.William@epamail.epa.gov

Sent:

Wednesday, June 20, 2007 9:13 AM

To:

Leahy, Timothy, McKenna, Jim Mr. RFAAP ACO Staff

Subject:

Re: Radford Work Plan Addendum 019

Attachments:

EAS

Looks good, Tim.

Jim, EPA approves the additional information/updates for Work Plan Addendum 19. Radford can move forward with the field work.

Thanks

William A. Geiger **USEPA** Region III 1650 Arch Street Philadelphia, PA 19103 (215)814-3413

> "Leahy, Timothy" <Timothy.Leahy@s hawgrp.com>

Τо

William Geiger/R3/USEPA/US@EPA, 06/19/2007 05:34

William Geiger/R3/USEPA/US@EPA

PM

СС

Subject Radford Work Plan Addendum 019

Will,

Thanks for taking the time to discuss the comments and responses for Work Plan Addendum 019 with me this morning. This email is intended to capture the main points that we discussed and provide additional information/updates to the responses so that we can move forward with the field work.

- EPA agrees with the RTCs for comments 1-11. 1) Boring Logs (comment #3) will be sent shortly.
- 2) Comment #12 has been dropped by the EPA.
- EPA agrees with the RTCs for comments 13-17. 3) Revised Figure 3-2 (comment #14) will be sent shortly. An older figure that shows the location of the requested features is attached.

- 4) Comment #18 The Response has been changed. Parsons' sample location map and Parsons' data table with the results is attached. A new table, similar in format to the other tables in the work plan will be included in the RFI report. Sample locations in the vicinity of SWMU 41 will be added to the site figure in the RFI as well.
- 5) Comment #19 The Response has been changed. The following information on 2,3,7,8-TCDD TEQ at Area A will be added to the RFI.

"Exceedances of adjusted R-RBCs for organic chemicals at Area A were limited to one "B" sample (41SB2B at 7.5 to 8 ft bgs)) for total 2,3,7,8-TCDD as TEQ. No individual congener exceeded the applicable criteria in the sample. Vertical delineation of this exceedance was provided by the deeper "C" sample at this location (41SB2C at 15 to 16.5 ft bgs), which had a TEQ concentration below the adjusted R-RBC."

- 6) EPA is OK with the RTCs for comments 20-21.
- 7) Comment #22 The Response has been changed. Sediment samples (4) will be collected at the same locations as the surface water samples at SWMU 41. Analyses will be the same as the surface water samples.
- 8) EPA agrees with the RTCs for comments 23-33.
 (Comment #23) A figure showing the piping from the tanks, if available, will be included in the RFI.
 (Comment #28) The XRF survey area is essentially the same as the area show on the figure as "Former Lead Furnace Area Boundary".
- 9) Comment #34 The Response has been changed. The samples from borings 43SB03 and 43SB08, located in the center of each landfill cell, will be analyzed for dioxins/furans in addition to the analytes listed in Table 6-4.
- 10) EPA agrees with the RTCs for comments 35-40. (Comment #37) Figure 7-2 has been revised and is attached.

Let me know if you would like any additional information or clarification.

Thanks, Tim

Timothy Leahy
Project Manager
Shaw Environmental, Inc
2113 Emmorton Park Road
Edgewood, MD 21040
(410) 612-6357 (direct)
(410) 612-6351 (fax)
www.Shawgrp.com

****Internet Email Confidentiality Footer**** Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email. Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it.

______ The Shaw Group Inc.

http://www.shawgrp.com (See attached file:
RFAAP_006_Fig7-2_Workplan_AreaP_SampleLocations_060107.pdf)(See attached file: parsons tribuary study data.pdf)(See attached file: Parsons New River Study sample location map.pdf)(See attached file: SWMU 41 site layout.pdf)

Attachments:

RFAAP_006_Fig7-2_Workplan_AreaP_SampleLocations_060107.pdf (1405506 Bytes) parsons tribuary study data.pdf (769794 Bytes)
Parsons New River Study sample location map.pdf (2151958 Bytes)
SWMU 41 site layout.pdf (327460 Bytes)

LEGEND

- Previous Investigation Soil Sample Location
- Proposed Soil Sample Location
- Proposed Geoprobe Groundwater Sample Location
- ---- 10 ft Contour Line
- Area P Boundary

Notes:

 Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

U.S. Army Corps of Engineers

Shaw[®] Shaw Environmental, Inc.

FIGURE 7-2

Area P Sample Locations

Radford Army Ammunition Plant, Radford, VA

IS File: RFAAP_005_Fig7-2_Workplan_SWMU41_SampleLocations.mxd

K:\SHARED\RAAP\1995HITS.XLS

POSITIVE RESULTS TABLE OF STROUBLES CREEK - Aqueous Samples RADFORD ARMY AMMUNITION PLANT TABLE 4

Field Sample Number	SCSW1	SCSW2	SCSW3*
	1/17/95	1/17/95	1/17/95
METALS (ug/l) Barium Beryllium Chromium	44.7 J4 1.95	47.3 J4 2.22 30.9 J4	48 14 2.23
EXPLOSIVES (ug/l) Cyclotetramethylenetetranitramine (HMX)	5.3 J9	5.3 J9	5.3 J9
*TOTAL HARDNESS *TOTAL ORGANIC CARBON *TOTAL ORGANIC HALOGENS CHLORIDE	148000	152000	153000
	2690	2490 J7	2370
	16.9	18 J7	16
	11000	10000	11000

* SCSW3 is a duplicate sample of SCSW2

The analyte was analyzed for and was positively identified, but the associated numerical value may be imprecise due to a QC anomaly or due to being between the method detection limit (MDL) and the project reporting limit. The data is considered estimated and usable for many purposes.

K:\SHARED\RAAP\95NRHITS.XLS

TABLE 4 (Continued)
POSITIVE RESULTS TABLE OF NEW RIVER - Aqueous Samples
RADFORD ARMY AMMUNITION PLANT

Field Sample Number Sample Collection Date	NRSW1 7/21/95	NRSW2 7/21/93	NRSW3 7/21/95	NRSW4 7/28/95	NRSW5 7/18/95	NRSW6 7/28/95	NRSW8* S 7/18/95	SPG3SW1 1/13/95
METALS (ug/l) Lead Barium Beryllium	24.90	25.10	24.90	9.80	21.10	24.80	21.10	25.20 26.60 J4 1.64
VOLATILES (ug/l) Methylene chloride								
OTHER (ug/l) Total Hardness Total Organic Carbon Total Organic Halogens	42700.00 2180.00 3890.00	42800.00 2320.00 3750.00	43200.00 2080.00 3810.00	44600.00 1960.00 10.00 3950.00	47800.00 1810.00 4030.00	51300.00 2310.00 4120.00	47700.00 1870.00 J7 4000.00	1200.00

* NRSW8 is a duplicate sample of NRSW5

The analyte was analyzed for and was positively identified, but the associated numerical value may be imprecise due to a QC anomaly or due to being between the method detection limit (MDL) and the project reporting limit. The data is considered estimated and usable for many purposes.

TABLE 4 (Continued)
POSITIVE RESULTS TABLE - Aqueous Samples
RADFORD ARMY AMMUNITION PLANT
NEW RIVER AND TRIBUTARIES STUDY

}.

							TOTAL STREET STREET	The second of th	The Property of the State of th
FIELD SAMPLE ID: SAMPLING DATE:		NRSW17 11/22/96	NRSW18 11/22/96	NRSW38 11/25/96 DUP/TRIB2	SCSW3(B) 11/20/96	SCSW4 11/21/96	TRIBSW2 11/25/96	TRIBSW4 11/2/196	TRIBSW5 11/20/96
Semivolatile Organic Compounds	_								
Di-n-butyiphthalate	ng/l				74	4 12		19.11	17
Butylbenzylphthalate	/gn				=				:
bis(2-Ethylhexyl)phthalate	/gn				13				
Dissolved Metals									
Barium	ng/l	121	124	132	133		123		170
Calcium	/gn	8880	9380	49500	26700	58300	47400	36600	72400
iron	/gn	165	154						
Magnesium	/gn	3920	4040	21900	23000	25500	20900	18700	42400
Manganese	/gn			10.4		•			12.6
Potassium	/gn	1880	2470	2320	3300	3210	2470	3880	3120
Sodium	/gn	5110	5110	17700	13500	13500	17600	11000	7490
Zinc	ng/l	15.6	16.2	11.3			10.5	15.2 J1	
	/ 011	153	168				7	160	
Barium		24.8	8 %	42 5	A 0A		70.7	8	C
Calcium	/bn	9190	0866	44300	54000	47300	50800	33600	61500
Iron	/gn	443	436	76.7	51.4	22	125	432	
Magnesium	/gn	4220	4540	19600	22400	20500	22500	16900	34400
Manganese	/gn	88.2	83.2	19.6			30.6	146	18.2
Potassium	/bn	2300	2390	2350	3530	3310	2620	3650	3140
Sodium	ng/l			15800	10300		17700		4880
Wet Chemistry Parameters									
Hardness	l/gu	42900	45600	192000	226000	202000	219000	153000	295000
Total Organic Carbon	ng/J			11000	12000	2000	10000	11000	14000
						-			

J1 Analyte detected in the field or laboratory blank associated with this sample. Result should be considered estimated and biased high.

K:\SHARED\RAAP\95SCHITS.XLS

POSITIVE RESULTS TABLE OF STROUBLES CREEK - Sediment Samples RADFORD ARMY AMMUNITION PLANT TABLE 5

Field Sample Number Sample Collection Date	SCSE1 1/17/95	SCSE2 1/17/95	SCSE3 * 1/17/95
METALS (ug/g)			
Arsenic	10.59 J4	9.03 14	6.70 14
Lead	13.41 16	95.87 J6	31.21 J6
Silver	0.03 14	0.18 J4	0.21 J4
Barium	141.45 J1	240.41 J1	262.41 J1
Beryllium	1.38 J4	1.45 J4	1.39 J4
Chromium	27.80 J6	39.53 J6	36.17 J6
Nickel	32.60 J4	26.99 14	26.10 J4
SEMIVOLATILES (ug/g)			
Chrysene		0.22	
Di-n-butyl phthalate		7.82 J1	5.53 J1
Fluoranthene		0.27	0.16
Phenanthrene		0.29	0.13
OTHER (ug/g)			
Total Organic Carbon	2841.33	63274.30	43829.80
Extractable Organic Halides (total)	123.00	147.49	141.84

* SCSE3 is a duplicate sample of SCSE2

The analyte was analyzed for and was positively identified, but the associated numerical value may be imprecise due to a QC anomaly or due to being between the method detection limit (MDL) and the project reporting limit. The data is considered estimated and usable for many purposes.

TABLE 5 (Continued)
POSITIVE RESULTS TABLE OF NEW RIVER - Sediment Samples
RADFORD ARMY AMMUNITION PLANT

Field Sample Number Sample Collection Date	NRSE1 7/21/95	NRSE2 7/21/95	NRSE3 7/21/95	NRSE4 7/28/95	NRSE S 7/18/95	NRSE6 7/28/95	NRSE8* 7/18/95	SPG3SE1 1/13/95
METALS (ug/g) Arsenic Selenium			1.85		6.92		7.83	17.40 J4
Lead	148.42 J1 0.14	136.29 J1 0.09	200.00 J1 0.15	4415.58 0.10	220.08 J1	141.99 J1	245.90 J1	548.59 J6 0.22 J4
Barium Beryllinm	226.35 J1	151.82 J1	415.00 J1	97.14	178.82 J1	109.77 J1	187.16 J1	700.63 J1
Chromium Nickel Mercury	46.20 J1 25.05	32.01 J1 15.72	77.33 J1 41.83	37.53 13.25	31.50 J1 15.82	24.89 J1 12.49	33.88 JI 14.89	62.70 J6 62.70 J6 52.98 J4 0.13 J4
SEMIVOLATILES (ug/g) Bis (2-ethylhexyl) phthalate Diethyl phthalate Dimethyl phthalate Dim-butyl phthalate Benzo[a]anthracene Chrysene Fluoranthene Phenanthrene Pyrene N-Nitrosodiphenylamine	0.58 1.67 0.76 0.80	0.32 0.35 0.30 0.51 0.40	0.72 0.68 0.80 0.82 1.00	6.62 6.23 8.31 12.99 0.08		0.40 0.53 0.50 0.35 0.76		·
EXPLOSIVES (ug/g) 2,4,6-Trinitrotoluene					28.89 J10			
OTHER (ug/g) Total Organic Carbon Extractable Organic Halides (tot	91651.20 185.53	58478.60 158.48	36333.30 166.67	9831.17 129.87	11251.70 82.53	22595.40 152.67	20218.60 81.97	33742.00 244.40

* NRSE8 is a duplicate sample of NRSE5

The analyte was analyzed for and was positively identified, but the associated numerical value may be imprecise due to a QC anomaly or due to being between the method detection limit (MDL) and the project reporting limit. The data is considered estimated and usable for many purposes.

G:UOBS/722/722843/TB73389F.XLS

TABLE Sycontinued)
POSITIVE RESULTS TABLE - Sediment Samples
RADFORD ARMY AMMUNITION PLANT
NEW RIVER AND TRIBUTARIES STUDY

FIELD SAMPLE ID: SAMPLING DATE:		NIKSE7. 1.1/26/98	NRSE8(b) 11/26/98	NRSE9 11/26/96	NRSE10 11/26/96	NRSE/1 14/26/98	NRSE12 1:1/22/96		NRSE14 11/22/96	NRSE16 11/22/96
Volatile Organic Compounds Methylene Chloride Acetone 2-Butanone	6/6ri 6/6ri						0.017	0.022		0.014
	n h									
Semivolatile Organic Compounds										
Diethylphthalate	6/6rl									
Fluorene	6/6rl				,					0.76
Phenanthrene	6/6rl									4
Anthracene	6/6rl									0.86
Carbazole	6/6rl									0.49
Fluoranthene	6/6rl									2.8
Pyrene	hg/g									33
Benzo(a)anthracene	6/6rl									2.2
Chrysene	6/6rl									1.8
Benzo(b)fluoranthene	6/6rl									2.5
Benzo(k)fluoranthene	b/bn									-
Benzo(a)pyrene	6/6rl									9
Indeno(1,2,3-cd)pyrene	6/6rl									0.56
Benzo(g,h,i)perylene	p/gu									0.54
Pesticide/PCB Compounds										
Aluba Chlordane	מיש/טו	000								-
gamma-Chlordane	6/6rl	0.012								
of of other										
Aliminim	2/21	1730 1	12100 1	1 0001	1 0743	0350	0200	4,000	0,00	0000
Arsenic	n 5/51	25.5	2 2 2	17	0/40 J	9330 3	0/06	7.7	0.66	0808
Barium	6 p/on	39.9	151	60.5.1	105 .1	130 .1	1 20	156	5.5	63.0
Beryllium	na/a	0.43	0.83	0.46	0 63	. 88.0	27.0	200	27.0	97.0
Cadmium	5/6r)		-	9	9	- -	2.4
Calcium	6/6rl	2810 J	3270 J	1310 J	2830 J	1670 J	4310	5350	2190	11200
Chromium	6/6rl	10.9	22.8	13.1	17.8	16.6	18.8	19	21	29.4
Cobalt	6/6rl	7.8 J	11.7 J	6.5 J	8.9 J	8.9 J	10	10.2	5	10.9
Copper	6/6rl	11.7	21.5	7.5	16.8	13.8	15.9	17.8	13.4	110
Iron	6/6rl	17300 J	25000 J	18700 J	21900 J	29200 J	30700	30000	30800	43500
Lead	6/6rl	54.1 J	78.1 J	74.7 J	79.4 J	259 J	112	118	104	34.3
Magnesium	6/6rl	2610 J	3650 J	1490 J	2410 J	2110 J	3040 J	3790 J	2600 J	7400
Manganese	6/6rl	423 J	1570 J	703 J	917 J	f 606	1100 J	1160 J	1210 J	512

G:\UOBS\722\722843\TB73389F.XLS

TABLE Sycontinued)
POSITIVE RESULTS TABLE - Sediment Samples RADFORD ARMY AMMUNITION PLANT
NEW RIVER AND TRIBUTARIES STUDY

SAMPLING DATE: Nickel Potasslum Sodium			IRSE8(b)	NRSE9	MOSEAN	NRSE11	NRSE12	NDSE11	771	
		11/26/96	1/26/96	11/26/98	11/26/98	11/26/96	11/22/96	11/22/96	11/22/96	NRSE15 11/22/96
E										
E	hg/g	6.9	11.7	7.3	6. 6.	9.1	12.4	15.1	10.6	44.8
	6/6rl	579 J	1840 J	835 J	1160 J	1160 J	1430	1570	1420	1300
	6/61									
Thallium	6/6r				1.7	1.8			1.6	1.6
Vanadium	6/6rl	11.3	30.5	13.1	18.9	22.4	22.4	25.8	24.7	33.8
Zinc	pg/g	206 J	250 J	254 J	259 J	L 797	466	479	378	1430
Wet Chemistry Parameters										
Acid Volatile Sulfide	6/6rt						4.1			
H.		7.8	7.4	7.4	7.9	7.7	7.3	7.1	6.9	7.6
	6/6rl	40	22	09	51	4	51	29	40	71
Total Organic Halogens	6/6rl	60.2 J1	137	53.4 J1	65.7 J1	29.7 J1		54.8 J1		

J1 Analyte detected in the field or laboratory blank associated with this sample. Result should be considered estimated and biased high.

G:UOBS/722/722843/TB73389F.XLS

TABLE'S (Continued) POSITIVE RESULTS TABLE - Sediment Samples RADFORD ARMY AMMUNITION PLANT NEW RIVER AND TRIBUTARIES STUDY

FIELD SAMPLE ID:		NRSE/B	NRSE17	NRSE18	NRSESO	SCSE3(B)	SCSE4	TRIBSE	TRIBSE2	TRIBSE3
SAMPLING DATE:		11/22/96	11/22/96	11/22/96	11/22/96 Dup NR15	. 11/20/96	11/21/96	11/25/96	11/25/96	11/25/96
Volatile Organic Compounds										
ne Chloride	6/6rl	0.014						0.015		
	6/61									
2-Butanone	6/6n									
Semivolatile Organic Compounds										
Diethylphthalate	6/6/								0.82	
Fluorene	6/6rl									
Phenanthrene	6/61				1.7					
Anthracene	6/6rl				0.51					
Carbazole	6/6rl									
Finoranthene	6/6rl				1.9					
Pyrene	6/6rl				1.6					
Benzo(a)anthracene	6/6rl				1.1					
Chrysene	b/grl				0.95					
Benzo(b)fluoranthene	6/6rl				1.2					
Benzo(k)fluoranthene	6/6rl				0.44					
Benzo(a)pyrene	6/6rl				0.84					
Indeno(1,2,3-cd)pyrene	6/6rl									
Benzo(g,h,i)perylene	рд/д									
Pesticide/PCB Compounds										
	ממ/ם									
9	19/9 19/9									0.01
Total Metals										
Aluminum	6/6/1	16000	11800	15800	12100	6010	7270	8770 J	4360 J	2210 J
Arsenic	bg/g	5.1	2.7	3.8	4	6.5	8.7	1.8	1.8	
Barium	b/6d	48.2	134	170	75.2	58.9		55.4 J	48.6 J	25.1 J
Beryllium	6/6rl	0.62	0.81		0.57	0.48	99.0	0.55	0.41	
Cadmium	hg/g	2.8		•	1.5					
Calcium	6/6d	006	3600	4190	3260	7740	17200	52500 J	2380 J	5050 J
Chromium	6/6rl	29.8	22.2	25.9	တ္တ	12.6	16.7	15.9	13.4	6.9
	6/61	10.6	10.2	13.1	10.6	9.1	10.3	5.3 J	6.9 J	2.7 J
Copper	6/6rl	13.7	16.7	21.8	27.5	12.7	11.3	10.3	8.1	3.7
	6/6rt	22100	27000	33200	27500	20500	34400	14700 J	14900 J	5970 J
	5/6rl	4	80.8	87.8	23.5	10.3	12.7	37.8 J	54.9 J	7.4 J
Magnesium	6/61	C 0006	3780 J	4730 J	3530 J	4400	10200	38900 J	1950 J	1560 J
Manganese	µg/g	512 J	1220 J	1830 J	536 J	260	442	382 J	545 J	135 J

G:JOBS/722/722843/TB73389F.XLS

TABLE byww.ntinued)
POSITIVE RESULTS TABLE - Sediment Samples RADFORD ARMY AMMUNITION PLANT NEW RIVER AND TRIBUTARIES STUDY

FIELD SAMPLE ID: SAMPLING DATE:		NRSE16 11/22/96	NRSE17 11/22/96	NRSE18 11/22/98	NRSE30 11122/96 Dup: NR15	SCSE3(B) 11/20/96	SCSE4 11/21/96	TRIBSE1 11/25/96	TRIBSE2 11/25/96	TRIBSE3 11/25/96
Nickel	6/6rl	19	12.3	16.1		13.2	17.9	80 80	r.	
Potassium	6/6rl	1670	1800	2210	1600	972	946	3710 J	625 J	454 J
Sodium	6/6rl			97.6 J1			89.3 J1			•
Thallium	5/6rl	1.6		1.9				1.6		
Vanadium	5/6rl	40.9	27.5	35.4	45.8	13.4	20	19.3	13.4	8.1
Zinc	b/6rl	33.2	323	358	849	60.4	70.2 J1	122 J	131 J	29.3 J
Wet Chemistry Parameters			٠							
Acid Volatile Sulfide	Б/б п					5.5	4.5			
Ŧ <u>ā</u>		7.2			7.5	7.6	7.4	7.9	8.1	89.2
Total Organic Carbon	6/6rl	72			92	45	4	27	99	28
Total Organic Halogens	6/6rl	24.3 J1			12.5 J1	76.5		74.4 J1		125 J1

J1 Analyte detected in the field or laboratory blank associated with this sample. Result should be considered estimated and biased high.

TABLE Sycontinued) POSITIVE RESULTS TABLE - Sediment Samples RADFORD ARMY AMMUNITION PLANT NEW RIVER AND TRIBUTARIES STUDY

SAMPLING DATE:		TRIBSE4 11/2/196	TRIBSE6 1/1/20/96	11/2/196
Volatile Organic Compounds				
Methylene Chloride	6/6rl			
Acetone	6/6rl	0.093		
2-Butanone	рд/д	0.016		
Semivolatile Organic Compounds				
Diethylphthalate	6/6rl			
Fluorene	6/61			
Phenanthrene	6/6rl			
Anthracene	6/6rl			
Carbazole	6/6rl			
Fluoranthene	6/6rl			1.1
Pyrene	6/6rl			0.69
Benzo(a)anthracene	6/6rl			
Chrysene	6/6rl			
Benzo(b)fluoranthene	6/6rl			
Benzo(k)fluoranthene	5/6rl			
Benzo(a)pyrene	6/6rl			
Indeno(1,2,3-cd)pyrene	6/6rt			
Benzo(g,h,i)perylene	6/6rl			
Pesticide/PCB Compounds				
Alpha Chlordane	5/5rl	_		
gamma-Chlordane	6/6rl			
Total Metals				
Aluminum	6/6rl	11500	13700	10700
Arsenic	6/6rl	3.2	13.4	6.9
Barium	6/6rl		197	
Beryllium	6/6rl	9.0	0.95	0.54
Cadmium	6/6rl			
Calcium	6/6rl	2660	15600	1230 J1
Chromium	6/6rl	19.4	29.6	18.5
Cobalt	6/6rl	9	18.5	7.2
Copper	6/6rl	12.3	27.6	16.5
iron	6/6rl	15800	36800	20200
Lead	6/6rl	19.3	23.7	19.4
Magnesium	6/6rl	2870	13300	2450

TABLE & (Continued) POSITIVE RESULTS TABLE - Sediment Samples RADFORD ARMY AMMUNITION PLANT NEW RIVER AND TRIBUTARIES STUDY

Nickel	б/би	10.4	20.9	5
Potassium	6/6rl	940	1500	1400
Sodium Thallium	6/6rl			
Vanadium	6/6rl	25.2	33.2	27.7
Zinc	6/6rt	44.8 J1	76.9 J1	75.9 J1
Wet Chemistry Parameters				
Acid Volatile Sulfide	6/6rl			
H	1	6.7	7.7	6.5
Total Organic Carbon	6/6rl	20	36	26
Total Organic Halogens	na/a	46.7.11	1. 45	

J1 Analyte detected in the field or laboratory blank associated with this sample. Result should be considered estimated and biased high.

Leahy, Timothy

From: McKenna, Jim Mr. RFAAP ACO Staff [jim.mckenna@us.army.mil]

Sent: Thursday, June 07, 2007 8:27 AM

To: Leahy, Timothy; Parks, Jeffrey; 'Meyer, Tom NAB02'; Mendoza, Richard R USAEC; 'jim

spencer'; 'Tina_Devine@URSCorp.com'; 'Redder, Jerome'; 'Geiger.William@epa.gov';

'jlcutler@deq.virginia.gov'

Subject: WPA 19 draft responses to comments

Importance: High

Attachments: Draft Final WPA19 USEPA & VDEQ RTCs.doc

All:

The attached file contains our draft response to comments. If they don't answer the mail then maybe we can schedule a conference call to talk about them. My availability next week is limited and Jerry will be out of pocket at Hawthorne AD. Suggest week of June 18.

Thanks.

Jim

PS URS is welcome to listen in and participate.

Response to USEPA/VDEQ Comments received via email on May 24, 2007

for

Draft Final Work Plan Addendum 019 February 2007

GENERAL COMMENTS

EPA Comment 1

The Work Plan Addendum references the RFAAP Master Work Plan for standard operating procedures (SOPs) that will be used during the proposed investigations. However, in many cases, the SOPs describe several procedures that can be used when sampling environmental media or installing wells or borings. For example, the Master Work Plan indicates that surface water samples can be collected using dip samplers, pond samplers, a peristaltic pump, or other devices. SOP 30.3 (Surface Water Sampling) also states that "the most appropriate method of sample collection and the appropriate depths of sampling (sampling strategies) will be specified in work plan addenda based on site-specific conditions and data quality objectives (DQOs)." The Work Plan Addendum does not describe specific methods for sample collection and boring advancement (with the exception of direct push sampling).

Revise the Work Plan Addendum to describe the specific methods that will be used to collect the surface water, soil, groundwater, and sediment samples proposed in this report. Additionally, revise the Work Plan Addendum to indicate the methods to be used for installing all monitoring wells, and describe the important details of the construction of these wells (i.e. well screen length, filter pack material, well diameter, slot screen size, depth, etc.).

RFAAP Response

Additional information will be added to describe specific sampling methods. Details are provided next to the appropriate specific comments below.

EPA Comment 2

The Work Plan Addendum focuses primarily on the collection of additional chemical data to identify source areas and delineate the extent of contamination. While this is a primary component of the RCRA Facility Investigation (RFI) process, it is also important to characterize the environmental setting of each of the site areas. Of particular concern is that this Work Plan Addendum does not propose to collect data necessary to characterize the underlying aquifer(s). An understanding of hydrogeologic characteristics (hydraulic conductivity, groundwater flow velocities, etc.) is important when evaluating potential contaminant migration and potentially impacted areas. Revise the Work Plan Addendum to propose activities to investigate the environmental setting of each area, including underlying aquifer(s) or provide specific references where this information can be found. Please consider conducting slug tests or other aquifer tests in select monitoring wells to obtain information about the underlying aquifer(s).

RFAAP Response

Hydrogeologic tests were performed during the *Current Conditions Report – Horseshoe Area* (Shaw, August 2005) to gain an understanding of the regional groundwater flow

regime at Radford. Additional information may be collected during the CMS phase of the investigations at these sites if groundwater contamination is identified. This information can then be used to design a treatment system (or identify a treatment zone for *in-situ* remedial strategies) for groundwater contamination. At this stage of the investigation, however, the information available in the *Current Conditions Report* is sufficient to characterize the fate and transport of constituents identified in groundwater.

EPA Comment 3

Groundwater sampling of existing wells is proposed for many of the sites. Well construction details for the existing wells have not been provided in this Work Plan Addendum. Knowledge of the well construction (depth, screened interval) is important when evaluating the existing data. Revise the Work Plan Addendum to provide either the well construction logs for existing wells or a summary of well construction details for all of the existing wells that will be sampled as part of this Work Plan Addendum. Alternatively, provide clear references to where the information can be found.

RFAAP Response

Boring logs will be provided for the wells that are proposed to be sampled.

EPA Comment 4

Surface soil sampling for volatile organic compounds (VOCs) is proposed at several of the sites discussed in this Work Plan Addendum. The depth interval for these surface soil samples is identified as 0 to 0.5 feet (ft) below ground surface (bgs). The RFAAP Master Work Plan indicates that surface soil samples for VOCs should be collected within the depth interval of 6 to 12 inches bgs (Section 5.2). Revise the Work Plan Addendum to address this deviation from the Master Work Plan. Alternatively, revise the Work Plan Addendum to propose that surface soil samples collected for VOC analysis be collected from the 6- to 12-inch depth interval.

RFAAP Response

Surface soil samples will be collected from 0-0.5 ft bgs with the exception of the VOC fraction, which will be collected from 0.5-1 ft bgs. Text will be added to the Introduction that explains this discrepancy.

EPA Comment 5

Soil data from only one of the sites (the Former Lead Furnace Area) appears to have been compared to soil screening levels (SSLs) to assess the potential for migration to groundwater. Indicate whether the proposed groundwater sampling at each of the sites considers those contaminants that may have been detected above SSLs in soil, even though the SSLs have not been provided for comparison. Future submittals should include the SSLs on data summary tables for soil.

RFAAP Response

SSLs will be provided with RFI reports. SSLs are intended to screen surface soil data at sites where there is no subsurface soil or groundwater data available. Actual chemical

data from subsurface soil samples provides a better indication of the migration potential than a simple comparison to the SSLs.

EPA Comment 6

None of the individual data summary tables include a notes section that defines the meaning of acronyms or highlighted values within the table. A Soil/Sediment Master Table Legend has been provided at the end of Table 2-5d in Section 2, but this table does not address notes that may be associated with surface water or groundwater samples.

Additionally, the Soil/Sediment Master List does not appear to include the meaning of all of the different shading that has been used in the tables. For example, Table 5-1 (Former Lead Furnace Area – VI Detected Soil Results – 1992) includes cells that have been highlighted in gray and outlined in black, and the values inside are shown in white font.

The Soil/Sediment Master Table Legend does not address the use of white font. Revise the Work Plan Addendum so that the meaning of all acronyms and highlighting in all of the tables (including surface water and groundwater tables) is appropriately defined. Consideration should be made to include a notes section on each table for easy reference.

RFAAP Response

Additional legends will be provided for the tables.

EPA Comment 7

Groundwater samples at several sites will be analyzed for metals. Clarify if the samples will be analyzed for total or dissolved metals, or both. If groundwater is analyzed for dissolved metals, indicate whether the samples will be filtered in the field or at the laboratory.

RFAAP Response

Groundwater samples will be collected for total metals for risk assessments. Filtered metals analysis may be performed for samples that have high turbidity after purging. These filtered samples would be used in a qualitative assessment of the metals content of groundwater versus the metals content in suspended sediment.

SPECIFIC COMMENTS

EPA Comment 8

Section 2.1.1, Site Description, Page 2-1. The text states that a 1986 aerial photo is shown on Figure 2-2; however, a note on Figure 2-2 indicates that the source of the figure is a May 25, 2000 aerial photo. Revise the Work Plan Addendum to resolve this discrepancy.

RFAAP Response

The figure is correct. The aerial photo is from 2000. The text will be corrected.

EPA Comment 9

Section 2.5, Data Gap Analysis, Soil, SWMU 49, Page 2-35. Figure 2-2 appears to show that most of the previous sampling at this site is concentrated in the western half of the solid waste management unit (SWMU) (with the exception of one surface soil sample on the southeastern side). Additional information for this sampling approach has not been provided. Revise the Work Plan Addendum to address this apparent data gap. Additional surface and/or subsurface samples may be necessary to characterize the eastern half of SWMU 49.

RFAAP Response

The actual site is a clearing in the woods adjacent to a dirt road that runs south with SWMUs 48 and 50 to the west and SWMUs 49 and 59 to the east. The red site boundary encompasses a greater area than the actual clearing. Disposal practices would have most likely taken place within the clearing and near the road. Previous investigations collected samples from the eastern portion of the site to eliminate this area as a concern.

EPA Comment 10

Section 2.6, Investigation Approach, Groundwater, Page 2-43. Installation of several wells is proposed for the combined site area, but the specific method for installation of the wells has not been provided. Although SOPs 20.1 and 20.11 in the RFAAP Master Work Plan are referenced in this section, these SOPs address several types of drilling methods (hollow stem auger, air rotary, etc.). The specific methods and procedures to be used for installation of the monitoring wells at this site area should be indicated in the Work Plan Addendum.

Additionally, the above mentioned SOPs indicate that the proposed well screen length, screen slot size, filter pack, and method of sampling should be specified in the work plan addenda. However, these details have not been provided. Revise the Work Plan Addendum to address these omissions.

RFAAP Response

Drilling will be performed with Hollow Stem Augers (HSA) to allow split spoon sampling. If water is encountered in the overburden, the well will be installed through the augers. If additional drilling into the bedrock is required, drilling will switch to Air rotary drilling and will continue until water is encountered. Wells will be constructed of two inch Schedule 40 PVC with 0.01 inch slot size screen. Ten feet of screened material will be used unless the rate of water production is low, in which case 15 to 20 feet of screen may be used. Number 1 sand will be used as a filter pack. The wells will be developed using a high capacity submersible pump, and will be periodically surged during development. Water quality parameters will be measured and recorded during development.

Groundwater sampling from the wells will be performed using low-flow sampling techniques and a submersible pump. Water quality parameters will be monitored until stabilized (3 consecutive readings within 10%), the flow cell will be removed, the flow rate will be reduced to 100 ml/min and then sampling will be performed.

EPA Comment 11

Section 2.6, Investigation Approach, Page 2-43. Additional soil sampling is not proposed at SWMU 48, but it is not clear that the extent of explosives contamination has been adequately

defined at this SWMU. Concentrations of the dinitrotoluene mix were detected above screening criteria in sample 48SB2 (10-12 ft) (Table 2-2) and sample 48SB6C (1-3 ft) (Table 2-4), both located in the eastern side of SWMU 48 (as shown on Figure 2-2). It is not clear that this contamination has been delineated to the north and east. Furthermore, it is not clear if explosives may be located at shallower depths in sample 48SB2 since it does not appear that any samples were collected between 0 and 10 ft bgs.

Revise the Work Plan Addendum to address the adequacy of the existing samples to define the extent of explosives contamination. Additional soil samples may be necessary to delineate the extent of this contamination.

RFAAP Response

The two former trench areas have subsided relative to the undisturbed land on either side and are visible at the site. Test pits were excavated in 1998 to investigate the former depth of the trenches at the site and collected samples from within (48TP1 & 48TP2) and outside the former trench wall (48TP3 & 48TP4). The elevated levels of explosives (TNT and DNT) were found in samples collected within the pit boundary. Additional samples (48SB08 and 48SB09) collected in 2002 were located outside the trench boundary to the west and south of 48SB07 (highest concentration of TNT). Results from 2002 corroborate the 1998 test pit samples and indicate that the explosives in soil are confined to the trenches.

At this time, it appears that SWMU 48 will have a soil removal action for the trench soil. Prior to implementing the removal action, delineation samples will be collected from the perimeter of the trench to completely define the extent of explosives in soil. After removal of the soil, confirmation samples will be collected from the sidewalls and bottom of the excavation to ensure that explosives-containing soil has been removed. Shaw would prefer to do the final delineation at that time to expedite the action at this site.

EPA Comment 12

Section 2.6, Investigation Approach, Page 2-43. It does not appear that the extent of dioxins in surface soil at SWMU 48 has been adequately characterized. Table 2-1 (Previous Soil Investigations Environmental Samples and Analyses) shows that only three surface soil samples were analyzed for dioxins at this SWMU. Two of the three samples reported tetrachlorodibenzop-dioxin (TCDD) TE in excess of the industrial and residential RBCs (as shown on Table 2-5a). The extent of dioxin contamination in surface soil will need to be characterized at SWMU 48. Revise the Work Plan Addendum to propose additional surface soil sampling for dioxins at SWMU 48. Alternatively, provide justification for not characterizing the extent of dioxin contamination.

RFAAP Response

Nine samples from SWMU 48 were collected for dioxins/furans analysis (3 surface soil and 3 subsurface soil). One sample exceeded the residential RBC and one sample exceeded the residential RBC and the SSL. There were no industrial RBC exceedances and no individual congeners exceeded their respective criteria.

EPA Comment 13

Section 3.1.1, Site Description, Page 3-1. The Work Plan Addendum appears to incorrectly reference Figure 3-1 (SWMU 41 and 43 and Areas O and P Site Location Map) in its discussion of the topography of SWMU 41. Topographic contours are actually shown on Figure 3-2 (SWMU 41 Sample Locations). Revise the Work Plan Addendum to correct this reference.

RFAAP Response

The reference will be changed from 3-1 to 3-2.

EPA Comment 14

Section 3.1.1, Site Description, Page 3-1. Important site features at this site include Stroubles Creek, a drainage ditch, and an unnamed tributary of Stroubles Creek. None of these features are labeled on the site figures. Revise the Work Plan Addendum to label Stroubles Creek, the drainage ditch, and the unnamed tributary of Stroubles Creek on a site figure. Additionally, clarify if the drainage ditch is lined or unlined.

RFAAP Response

The figure will be revised to identify these features.

EPA Comment 15

Section 3.2.2, Site Geology, Page 3-3. This section notes that 40 direct push borings were completed at SWMU 41 during the 2005 RFI, but it does not appear that a majority of these boring locations have been shown on a site figure. Figure 3-2 only shows 15 soil sample locations. Revise the Work Plan Addendum to show all of the previous boring locations at SWMU 41.

RFAAP Response

40 direct push were advanced to characterize lithology and overburden thickness. Analytical samples were collected from fifteen of the borings. These borings are shown on Figure 3-2. In the interest of not cluttering the figure, the stratigraphic brings were not presented in the Work Plan. All borings (including the stratigraphic) will be shown in the RFI report.

EPA Comment 16

Section 3.3.2, VI, Dames and Moore, 1992, Groundwater, Page 3-9. This section notes that bis(2-ethylhexyl)phthalate and vanadium were detected above the tapwater risk based concentrations (RBCs). Table 3-1b (1992 VI Detected Analytes for Groundwater at SWMU 41) also notes that antimony was detected in monitoring well 41MW2 above both the federal maximum contaminant level (MCL) and tapwater RBC. Revise Section 3.3.2 to include this notable exceedance in the discussion of groundwater results.

RFAAP Response

Antimony will be added to the text.

EPA Comment 17

Section 3.3.2, VI, Dames and Moore, 1992, Surface Water, Page 3-9. This section indicates that constituents detected in surface water, with the exception of barium, were detected below the tapwater RBCs and the Region 3 Biological Technical Assistance Group (BTAG) freshwater screening values. Table 3-1c (1992 VI Detected Results for Surface Water at SWMU 41) only compares the detected results to MCLs and the tapwater RBCs. Revise Table 3-1c to include the BTAG screening values for easy reference.

RFAAP Response

BTAG screening values will be added to the table and included in the resultant RFI.

EPA Comment 18

Section 3.3.3, New River and Tributaries Study, Parsons, 1997, Page 3-9. A summary of the 1995 and 1996 sampling events is presented, but the sampling locations to which this section refers (i.e., SCSW2) are not shown on a site figure. A summary table of the data has also not been provided. This information will aid in the evaluation of the current understanding of the extent of contamination at and in the vicinity of the site. Revise the Work Plan Addendum to show the 1995 and 1996 surface water and sediment sampling locations. Additionally, include a summary table of the detected concentrations.

RFAAP Response

This information is presented elsewhere. Highlights of the data that are relevant to this work plan are included in the text. The reviewer is referred to the original study for additional details. In order to expedite reviews, a streamlined approach to work plans has been agreed upon between the RFAAP stakeholders.

EPA Comment 19

Section 3.3.5, RFI, URS Corporation, 2005, Nature and Extent Assessment at Area A, Page 3-16. Total 2,3,7,8-TCDD equivalents concentration (TEQ) was identified as a constituent of potential concern (COPC) for Area A, but it is not clear which samples contributed to this constituent's inclusion as a COPC. Table 3-2 (2004 RFI Detected Results for Soil at SWMU 41) has not highlighted any dioxin/furan constituents for exceeding screening criteria. Clarify why total 2,3,7,8-TCDD TEQ was included as a COPC, and indicate which samples contributed to its inclusion as a COPC. This information will be necessary to assess the adequacy of the proposed sampling program in defining the extent of contamination associated with this constituent. Additional soil samples to assess the extent of this contamination may be required.

RFAAP Response

The URS RFI was an internal draft that was never submitted for regulatory review. Information about COPCs will be removed from the text since a reviewed risk assessment has not been completed.

EPA Comment 20

Section 3.3.5, RFI, URS Corporation, 2005, Nature and Extent of Assessment at Area A and Area B, Page 3-16. Table 3-2 indicates that PCB-1254 was detected above the industrial and residential RBCs in surface samples 41SB2A and 41SB10A, but these exceedances are not

discussed in Section 3.3.5. Based on the data presented in Table 3-2 and the sampling locations shown on Figure 3-2, it does not appear that the extent of the polychlorinated biphenyl (PCB) contamination has been defined. Most of the samples adjacent to samples 41SB2A and 41SB10A were not analyzed for PCBs or the method reporting limits for those samples that were analyzed exceeded the RBCs. Revise the Work Plan Addendum to propose additional sampling to assess the extent of surface soil PCB contamination in the vicinity of samples 41SB2A and 41SB10A. Alternatively, provide justification for not further characterizing the extent of PCB-1254 contamination.

RFAAP Response

The error is on Table 3-2. The units for the PCBs are shown as mg/kg, and the RBCs are also presented in mg/kg. The actual units for the chemical data are ug/kg. The actual results are below RBCs. Table 3-2 will be revised.

EPA Comment 21

Section 3.6, Investigation Approach, Area A, Page 3-43. It is not clear that the proposed method for collecting groundwater samples (direct push method) is appropriate for this site. Figure 3-3 (SWMU 41 Geological Cross Section) appears to show that the water table is located at or below the top of the bedrock/overburden interface. Direct push sampling is typically used for sampling in the overburden.

Alternative drilling methods may need to be proposed in order to obtain the groundwater samples. Permanent wells should be considered as they will allow for future monitoring and trend analysis, if contaminants of concern are identified. *Realize we discussed at meeting, just putting it out there – Will*

RFAAP Response

It is anticipated that groundwater will be encountered in the overburden, as the site is adjacent to an unnamed tributary to Stroubles Creek. If groundwater is not encountered in the overburden, drilling will be performed with a Hydropunch (similar to a direct push sampler combined with a drill rig).

EPA Comment 22

Section 3.6, Investigation Approach, Area A, Page 3-43. Surface water sampling has been proposed to assess the unnamed tributary to Stroubles Creek, but co-located sediment samples have not been proposed.

Sediment samples collected in 1997 as part of the New River and Tributaries Study identified several metals (arsenic, chromium, lead, nickel, manganese, vanadium, and iron) above applicable screening criteria in samples collected from areas downgradient of the site. To assess whether SWMU 41 may have contributed to this contamination, additional sediment samples should be proposed. Revise the Work Plan Addendum to propose sediment sampling at those locations where surface water sampling has been proposed. Alternatively, provide justification for not characterizing sediment in the vicinity of the site.

RFAAP Response

Seven surface water/sediment pairs were collected during the 2005 URS RFI from Stroubles Creek and the un-named tributary in the vicinity of SWMU 41. Surface water and sediment at the site are considered characterized. Additional surface water samples are proposed for comparison to the proposed groundwater samples.

EPA Comment 23

Section 4.1.2, Site History, Page 4-1. It is proposed that a source of contamination in Area O may have been a leaking discharge line that connected the northeastern-most fuel tank to a pumping station.

The location of this former discharge line is not shown on any figures, so it is not clear if proposed sampling will adequately assess this area. If any additional subsurface structures or pipes are/were located in the vicinity of the Area O tanks, they should also be depicted on a site figure in accordance with Section 2.2.1.1 of EPA's RCRA Facility Investigation (RFI) Guidance (May, 1989). Revise the Work Plan Addendum to include a figure which shows all known past or present product and waste underground tanks or piping. The location of the former leaking discharge line should be specifically identified.

RFAAP Response

The area where the leak occurred is identified on Figure 4-2 and is labeled "oil leak area/proposed soil borings". Additional piping and/or tanks will also be identified on the figure.

EPA Comment 24

Section 4.6, Investigation Approach, Page 4-22. Proposed sample locations are supposed to be shown on Figure 4-2; however, the Figure 4-2 only shows the boundaries of the areas in which the investigations will be conducted. The proposed locations of the soil borings and groundwater samples should be clearly depicted on a site figure that is constructed using a scale that will show sufficient detail of the site area. Revise the Work Plan Addendum to show the specific locations of all of the proposed samples.

RFAAP Response

One of the advantages to direct push sampling is the ability to adjust locations based on conditions encountered in the field. The general areas are shown and the actual locations will be dictated by the results of the borings and field readings (PID, etc.). The EPA/VDEQ are invited to be present during field activities if they would like additional input on locations.

EPA Comment 25

Section 4.6, Investigation Approach, Groundwater, Page 4-22. It is noted that groundwater samples will be analyzed for monitored natural attenuation parameters (MNA), including total organic carbon (TOC), anions, and dissolved gases. The specific anions and dissolved gases

have not been identified. Revise the Work Plan Addendum to specify all of the proposed MNA parameters. Additionally, clarify the objective of this sampling.

RFAAP Response

The text has been revised to read:

Groundwater samples will be analyzed for TCL VOCs, SVOCs, PAHs, and monitored natural attenuation (MNA) parameters. The MNA parameters will examine changes in geochemical parameters that directly correlate to the indigenous microbiology. Field parameters (DO, ORP, pH, temperature, and conductivity) will be collected during groundwater sampling as part of the low-flow sampling procedures. Biodegradation parameters (nitrate, sulfate, ferrous iron, chloride, methane, ethene, ethane, alkalinity, TOC, and DHC) will be collected from the monitoring wells to be analyzed.

EPA Comment 26

Section 4.6, Investigation Approach, Groundwater, Page 4-22. The Work Plan Addendum proposes to collect additional groundwater samples using direct push technology. However, based on the anticipated depth to bedrock at this site, it is not clear that this methodology will be appropriate. Figure 4-3 (Cross Section A-A', Area O) appears to show that the water table is located within bedrock at existing monitoring well WC1-2, which is located in the same area for which the direct push sampling is proposed (Figure 4-2). Direct push sampling is typically used for sampling in the overburden, not bedrock. Revise the Work Plan Addendum to address this concern. Alternative drilling methods should be considered in order to obtain the proposed groundwater samples.

RFAAP Response

Groundwater exists in the overburden in paleo-channels ("river jack") incised into the bedrock surface (see Site Hydrogeology, Section 4.2.3). These channels are the likely migration pathway for impacted groundwater at the site. The direct push sampling is intended to define the extent of these deposits and whether they are currently impacted by fuel-constituents. Alternative drilling methods will not be needed since groundwater in the overburden is the goal of the sampling program and there are existing wells to characterize groundwater within the bedrock.

EPA Comment 27

Table 4-1, Detected Results for Soil at Area O, 1994 RFI – Dames and Moore. This table does not include the industrial and residential RBCs for dibenzofuran. RBCs have been established for dibenzofuran, so these values should be included in Table 4-1. Revise Table 4-1 to include the industrial and residential soil RBCs for dibenzofuran.

RFAAP Response

OK.

EPA Comment 28

Section 5.6, Investigation Approach, Soil, Page 5-32. An X-ray fluorescence (XRF) survey is proposed, but the survey area (a 220-ft by 120-ft grid) has not been shown on a site figure. This figure should show the location of the survey area and the initial 12 sampling locations that are described in Section 5.6. Revise the Work Plan Addendum to show the location of the XRF survey grid and the initially proposed sampling locations

RFAAP Response

The survey will start adjacent to the area excavated in 1998 and will step out until concentrations are below the residential screening criteria. The 220 ft by 120 ft area and the 1998 excavation will be added to the figure.

EPA Comment 29

Section 5.6, Investigation Approach, Soil, Page 5-32. It is noted that confirmatory soil samples will be collected around the outer perimeter of the survey area after XRF data have delineated the extent of contamination. The anticipated spacing between confirmatory samples has not been specified. Revise the Work Plan Addendum to specify the spacing between confirmatory soil samples so that a consistent approach is employed in the field.

Additionally, it is noted that these confirmatory samples will be analyzed for lead, PCBs, and dioxins/furans. Table 5-6 (Proposed Sampling and Analysis Plan, Former Lead Furnace Area) notes that these samples will also be analyzed for TAL metals. Confirm that TAL metals will also be analyzed in the perimeter confirmatory soil samples. Metals should be included in the proposed parameter list as there are several inorganic constituents besides lead (copper, iron, zinc, etc.) that exceeded their residential RBC values during the 2002 sampling event (Table 5-3).

RFAAP Response

The text will be revised to shown TAL metals as the analyte instead of lead only. The confirmation sampling will be guided by the overall shape of the area that is delineated. Confirmation samples will be collected in each direction and at inflection points of the boundary. It is anticipated that confirmation sample spacing will be approximately 20 ft apart around the perimeter of the site. Spacing will be greater at the top of the slope that defines the edge of site and at the predefined boundary between the FLFA and SWMU 17A. Sample spacing will be closer (5 ft) along the side boundaries of the area of elevated lead.

EPA Comment 30

Table 5-3, Analytes Detected in Soil – 2002 RFI. Pages 3 and 4 of this table do not include the RBCs, background values, or SSL values. This makes it difficult to assess potential exceedances of the screening criteria. Revise Table 5-3 so that each page of the table includes the applicable screening criteria.

RFAAP Response

The table will be revised to shown the criteria columns at the left on each page, similar to the other multi-page tables included in the work plan.

EPA Comment 31

Section 5.6, Investigation Approach, Groundwater, Page 5-34. One monitoring well is proposed, but the specific method for installation of this well has not been specified. Although SOPs 20.1 and 20.11 in the Master Work Plan are referenced in this section, these SOPs address several types of drilling methods (hollow stem auger, air rotary, etc.). The procedures and methods for installation of the FLFA monitoring well should be indicated in the Work Plan Addendum.

Additionally, the above mentioned SOPs indicate that the proposed well screen length, screen slot size, filter pack, method of sampling, and sampling intervals should be specified in the work plan addenda. However, theses details have not been specified for the FLFA well. Revise the Work Plan Addendum to address these omissions.

RFAAP Response

Drilling will be performed with Hollow Stem Augers (HSA) to allow split spoon sampling. If water is encountered in the overburden, the well will be installed through the augers. If additional drilling into the bedrock is required, drilling will switch to Air Rotary drilling and will continue until water is encountered. Wells will be constructed of two inch Schedule 40 PVC with 0.01 inch slot size screen. Ten feet of screened material will be used unless the rate of water production is low, in which case 15 to 20 feet of screen may be used. Number 1 sand will be used as a filter pack. The well will be developed using a high capacity submersible pump, and will be periodically surged during development. Water quality parameters will be measured and recorded during development.

Groundwater sampling from the well will be performed using low-flow sampling techniques and a submersible pump. Water quality parameters will be monitored until stabilized (3 consecutive readings within 10%), the flow cell will be removed, the flow rate will be reduced to 100 ml/min and then sampling will be performed.

EPA Comment 32

Section 6.1.1, Site Description, Page 6-1. The site description mentions that a pile of soil is located adjacent to the roadway in the western section of SWMU 43. The origin of this soil has not been described, and the proposed investigation does not specifically plan to sample soil from the pile. Revise the Work Plan Addendum to describe the origin of this soil pile, show its location on a site figure, and estimate its volume. If the origin is unknown, it is suggested that it be sampled as part of the SWMU 43 investigation.

RFAAP Response

The site description will be revised. The pile of soil at the western edge of the site is no longer present. The concrete pad and the gravel pad are still present and are currently used to store office and equipment trailers. Soil boring 43SB06 is located adjacent to the pad and will be used to characterize the area where the soil pile was located.

EPA Comment 33

Section 6.6, Investigation Approach, Page 6-16. A geophysical survey is proposed to define the landfill boundaries, but very few specific details of this investigation have been provided. The area proposed for this geophysical survey should be identified on a site figure. Additionally, the grid spacing and anticipated survey depths should be specified. SOP 20.7 (Resistivity and Electromagnetic Induction Surveys) in the Master Work Plan describes two types of EM instruments that could be used for site surveys, but the type of instrument proposed for the SWMU 43 investigation has not been specified. Revise the Work Plan Addendum to provide additional site-specific information for the geophysical survey at SWMU 43.

Geophysical survey already completed - Will

RFAAP Response

The geophysical survey has been completed. The requested information will be included in the resultant RFI report, along with a description of the results of the survey.

EPA Comment 34

Section 6.6, Investigation Approach, Page 6-16. The second paragraph of this section indicates that the chemical parameters needed to fill data gaps include polynuclear aromatic hydrocarbons (PAHs), explosives, TCL pesticides/PCBs, herbicides, dioxins/furans, and perchlorate. However, the proposed analyses for surface water, soil, and groundwater sampling summarized in Table 6-4 (Proposed Sampling and Analysis Plan, SWMU 43) and in the narrative description on Page 6-18 exclude dioxins/furans. Since this is a data gap that needs to be addressed, revise the Work Plan Addendum to include analysis of dioxins/furans for surface water, soil, and groundwater samples. Alternatively, provide justification for not sampling for these chemical parameters.

RFAAP Response

Per previous agreements with the EPA and VDEQ, Radford will sample for dioxins/furans at sites where known or suspected burning took place, or where burning wastes (i.e. ash) were disposed or stored. SWMU 43 does not fit into the category of sites where dioxins/furans are analyzed.

EPA Comment 35

Section 6.6, Investigation Approach, Surface Water Sampling, Page 6-18. Two seep samples are proposed at locations previously sampled. The intent of these samples is to characterize groundwater that is leaving the site and entering the New River. Figure 6-2 (SWMU 43 Sample Locations) appears to show that both of these sample locations are located north of the eastern cell of the landfill. Surface water sampling is apparently not proposed to assess groundwater as it discharges north of the western cell of the landfill. During a previous investigation, monitoring wells 43MW3 and 43MW4, both located downgradient of the western cell, reported concentrations of arsenic, iron, manganese, 1,2-dichloroethane, and/or benzene above screening levels. The potential discharge of these contaminants in groundwater water to surface water needs to be addressed. Revise the Work Plan Addendum to propose additional surface water sampling north of the western cell of the SWMU 43, or provide justification for not addressing this apparent data gap.

RFAAP Response

If seeps are present adjacent to the western cell, then surface water samples will be collected at those locations. The two seeps that are currently proposed to be sampled were identified in a previous investigation. Samplers will walk the bank of the New River to identify additional seeps during the sampling event.

EPA Comment 36

Section 6.6, Investigation Approach, Soil Sampling, Page 6-18. Five soil borings in each landfill cell are proposed at SWMU 43, but the drilling method for these borings has not been specified. Revise the Work Plan Addendum to specify the method for installing the soil borings, and collecting the soil samples. A specific reference to the Master Work Plan and corresponding SOP should be provided.

Additionally, it is noted that samples will be collected at three depths in each boring: 0 to 0.5ft bgs, within the waste, and below the waste (Table 6-4). It is also noted that bedrock in the area was encountered in previous borings at this site. Please clarify the sampling protocol if bedrock prevents sampling below the waste.

RFAAP Response

Soil borings will be completed with a direct push (geoprobe) rig. Samples will be collected continuously with a four ft, 2-in core barrel. If waste is encountered immediately on top of bedrock, the lower sample will be collected from the epikarst zone of weathered bedrock (saprolite). The saprolite is generally fairly clayey and a sample from this zone will provide chemical information used to assess migration of landfill constituents.

EPA Comment 37

Section 7.1.1, Site Description, Page 7-1. The site description identifies features to the north of the site, but it does not describe site features to the south, east, or west. Figure 7-2 appears to show buildings in close proximity to Area P, but the Work Plan Addendum does not describe their current use. A description of the surrounding land use is important as it may help appropriately define all potential receptors. Revise the Work Plan Addendum to describe the area surrounding Area P.

RFAAP Response

After review of the figure, the site outline should be shifted to the west, away from the buildings. The surrounding land is used as a storage yard and a scrap yard. Additional details will be provided, if available.

EPA Comment 38

Section 7.1.2, Site History, Page 7-1. This section does not indicate the time period in which Area P operated as a scrap metal yard. The RFI guidance indicates that the history of the site, including its period of operation, should be included in the RFI Work Plan as background information. Revise the Work Plan Addendum to include the period of operation for Area P.

RFAAP Response

The section contains all available information about the site history. If additional information is discovered during the field investigation, then the Site History section in the RFI Report will be updated to include the new information.

EPA Comment 39

Section 7.3.1, VI, Dames and Moore, 1992, Page 7-3. It is noted that antimony and copper exceeded the residential RBC in site soil, but they are below the RFAAP Facility-Wide Background inorganic screening levels. These conclusions do not appear to be consistent with the data presented in Table 7-1 (1992 VI Detected Results for Soil – Area P).

The table appears to show that copper was detected above both the residential RBC and the background value in sample PSB2. Antimony was detected above the residential RBC in the same sample; however, a background concentration for antimony does not appear to have been established (as noted by the "na" on the table). Revise the Work Plan Addendum to address this discrepancy.

RFAAP Response

The reference to background was for the arsenic, beryllium and cobalt that exceeded criteria when the samples were collected. The section will be revised to read:

"In 1992, soils at Area P were evaluated to determine if they had been impacted from the possible spillage of spent battery acid. At each of five locations, one surface (0-0.5 ft bgs) and one subsurface soil sample (4-5 ft bgs) was collected and analyzed for TAL metals and pH. Arsenic, beryllium, and cobalt were detected at concentrations greater than screening criteria at the time of the investigation. However, a current review of the metals results indicates that these concentrations are below the RFAAP Facility-Wide Background inorganic screening levels (IT, 2002a).

Compared to current RBCs, antimony and copper each exceeded the R-RBC in sample PSB2A (0-0.5 ft bgs). The remaining metals were below screening criteria. Results from the samples are presented in **Table 7-1**. Sample locations are presented on **Figure 7-2**. pH results indicated that soil samples varied from neutral to slightly basic."

EPA Comment 40

Section 7.6, Investigation Approach, Page 7-4. The proposed analyses for the soil investigation do not appear to include metals. Since the site was historically used as a scrap metal yard, it is recommended that soil samples be analyzed for metals. Additionally, concentrations of copper and antimony were detected above the residential RBC and/or background values during a previous investigation. The extent of contamination associated with these exceedances will need to be defined. Revise the Work Plan Addendum to propose metals analysis for soil samples and to define the extent of copper and antimony contamination east of sample PSB2.

RFAAP Response

The approach calls for analyzing samples for analyte groups that were not investigated during the earlier sampling event. Samples were analyzed for metals and pH in 1992. The levels of metals that were identified during that investigation (two residential exceedances out of ten samples) do not seem sufficient to warrant additional sampling.

Leahy, Timothy

Cc:

From: Geiger.William@epamail.epa.gov Sent: Thursday, May 24, 2007 3:32 PM

To: Mendoza, Richard R USAEC; Tom.Meyer@nab02.usace.army.mil; jlcutler@deq.virginia.gov;

jerome.redder@atk.com; jim.mckenna@us.army.mil; Leahy, Timothy Fish.Russell@epamail.epa.gov; Cramer.Mike@epamail.epa.gov

Subject: Draft Comments for Master Work Plan Addendum 19

As stated in my earlier phone conversations with Tim and Jim, EPA would like Shaw to hold off on scheduling the field work portion of Master Work Plan Addendum 19 until several outstanding issues are resolved. I will be out of the office starting tomorrow and will return on June 4. While we are still in the process of reviewing the work plan, I am sending out a draft set of comments that Radford can begin to address, and we can discuss in more detail the week of June 4. Mike Cramer may also be sending some additional hydro comments next week. It should be noted that while this may look like a lot of comments, many of them are minor (3, 6, 8, 13, 14, etc...) and do not necessarily need to be addressed before field work can proceed. Comments dealing with drilling/sampling methods or analyses (1, 4, 7, 10, 31, 36, 40, etc...) will need to be addressed before EPA approves of field work proceeding, and should also be noted for all future submittals. EPA is still in the process of reviewing comments 12, 17, 22, 29, and 34. Certain comments expand on Jim Cutler's comments from the meeting and state the need for further characterization in specified areas. As Jim and I stated at the meeting, these comments do not necessarily need to be addressed before field work can proceed, but we are reserving the right to come back to them if need be.

GENERAL COMMENTS

- The Work Plan Addendum references the RFAAP Master Work Plan for standard operating procedures (SOPs) that will be used during the proposed investigations. However, in many cases, the SOPs describe several procedures that can be used when sampling environmental media or installing wells or borings. For example, the Master Work Plan indicates that surface water samples can be collected using dip samplers, pond samplers, a peristaltic pump, or other devices. SOP 30.3 (Surface Water Sampling) also states that "the most appropriate method of sample collection and the appropriate depths of sampling (sampling strategies) will be specified in work plan addenda based on site-specific conditions and data quality objectives (DQOs)." The Work Plan Addendum does not describe specific methods for sample collection and boring advancement (with the exception of direct push sampling). Revise the Work Plan Addendum to describe the specific methods that will be used to collect the surface water, soil, groundwater, and sediment samples proposed in this report. Additionally, revise the Work Plan Addendum to indicate the methods to be used for installing all monitoring wells, and describe the important details of the construction of these wells (i.e. well screen length, filter pack material, well diameter, slot screen size, depth, etc.).
- 2. The Work Plan Addendum focuses primarily on the collection of additional chemical data to identify source areas and delineate the extent of contamination. While this is a primary component of the RCRA Facility Investigation (RFI) process, it is also important to characterize the environmental setting of each of the site areas. Of

particular concern is that this Work Plan Addendum does not propose to collect data necessary to characterize the underlying aquifer(s). An understanding of hydrogeologic characteristics (hydraulic conductivity, groundwater flow velocities, etc.) is important when evaluating potential contaminant migration and potentially impacted areas. Revise the Work Plan Addendum to propose activities to investigate the environmental setting of each area, including underlying aquifer(s) or provide specific references where this information can be found. Please consider conducting slug tests or other aquifer tests in select monitoring wells to obtain information about the underlying aquifer(s).

- 3. Groundwater sampling of existing wells is proposed for many of the sites. Well construction details for the existing wells have not been provided in this Work Plan Addendum. Knowledge of the well construction (depth, screened interval) is important when evaluating the existing data. Revise the Work Plan Addendum to provide either the well construction logs for existing wells or a summary of well construction details for all of the existing wells that will be sampled as part of this Work Plan Addendum. Alternatively, provide clear references to where the information can be found.
- 4. Surface soil sampling for volatile organic compounds (VOCs) is proposed at several of the sites discussed in this Work Plan Addendum. The depth interval for these surface soil samples is identified as 0 to 0.5 feet (ft) below ground surface (bgs). The RFAAP Master Work Plan indicates that surface soil samples for VOCs should be collected within the depth interval of 6 to 12 inches bgs (Section 5.2). Revise the Work Plan Addendum to address this deviation from the Master Work Plan. Alternatively, revise the Work Plan Addendum to propose that surface soil samples collected for VOC analysis be collected from the 6- to 12-inch depth interval.
- 5. Soil data from only one of the sites (the Former Lead Furnace Area) appears to have been compared to soil screening levels (SSLs) to assess the potential for migration to groundwater. Indicate whether the proposed groundwater sampling at each of the sites considers those contaminants that may have been detected above SSLs in soil, even though the SSLs have not been provided for comparison. Future submittals should include the SSLs on data summary tables for soil.
- 6. None of the individual data summary tables include a notes section that defines the meaning of acronyms or highlighted values within the table. A Soil/Sediment Master Table Legend has been provided at the end of Table 2-5d in Section 2, but this table does not address notes that may be associated with surface water or groundwater samples. Additionally, the Soil/Sediment Master List does not appear to include the meaning of all of the different shading that has been used in the tables. For example, Table 5-1 (Former Lead Furnace Area VI Detected Soil Results 1992) includes cells that have been highlighted in gray and outlined in black, and the values inside are shown in white font. The Soil/Sediment Master Table Legend does not address the use of white font. Revise the Work Plan Addendum so that the meaning of all acronyms and highlighting in all of the tables (including surface water and groundwater tables) is appropriately defined. Consideration should be made to include a notes section on each table for easy reference.
- 7. Groundwater samples at several sites will be analyzed for metals. Clarify if the samples will be analyzed for total or dissolved metals, or both. If groundwater is analyzed for dissolved metals, indicate whether the samples will be filtered in the field or at the laboratory.

SPECIFIC COMMENTS

- 8. Section 2.1.1, Site Description, Page 2-1. The text states that a 1986 aerial photo is shown on Figure 2-2; however, a note on Figure 2-2 indicates that the source of the figure is a May 25, 2000 aerial photo. Revise the Work Plan Addendum to resolve this discrepancy.
- 9. Section 2.5, Data Gap Analysis, Soil, SWMU 49, Page 2-35. Figure 2-2 appears to show that most of the previous sampling at this site is concentrated in the western half of the solid waste management unit (SWMU) (with the exception of one surface soil sample on the southeastern side). Additional information for this sampling approach has not been provided. Revise the Work Plan Addendum to address this apparent data gap. Additional surface and/or subsurface samples may be necessary to characterize the eastern half of SWMU 49.
- 10. Section 2.6, Investigation Approach, Groundwater, Page 2-43. Installation of several wells is proposed for the combined site area, but the specific method for installation of the wells has not been provided. Although SOPs 20.1 and 20.11 in the RFAAP Master Work Plan are referenced in this section, these SOPs address several types of drilling methods (hollow stem auger, air rotary, etc.). The specific methods and procedures to be used for installation of the monitoring wells at this site area should be indicated in the Work Plan Addendum.

Additionally, the above mentioned SOPs indicate that the proposed well screen length, screen slot size, filter pack, and method of sampling should be specified in the work plan addenda. However, these details have not been provided. Revise the Work Plan Addendum to address these omissions.

- 11. Section 2.6, Investigation Approach, Page 2-43. Additional soil sampling is not proposed at SWMU 48, but it is not clear that the extent of explosives contamination has been adequately defined at this SWMU. Concentrations of the dinitrotoluene mix were detected above screening criteria in sample 48SB2 (10-12 ft) (Table 2-2) and sample 48SB6C (1-3 ft) (Table 2-4), both located in the eastern side of SWMU 48 (as shown on Figure 2-2). It is not clear that this contamination has been delineated to the north and east. Furthermore, it is not clear if explosives may be located at shallower depths in sample 48SB2 since it does not appear that any samples were collected between 0 and 10 ft bgs. Revise the Work Plan Addendum to address the adequacy of the existing samples to define the extent of explosives contamination. Additional soil samples may be necessary to delineate the extent of this contamination.
- 12. Section 2.6, Investigation Approach, Page 2-43. It does not appear that the extent of dioxins in surface soil at SWMU 48 has been adequately characterized. Table 2-1 (Previous Soil Investigations Environmental Samples and Analyses) shows that only three surface soil samples were analyzed for dioxins at this SWMU. Two of the three samples reported tetrachlorodibenzo-p-dioxin (TCDD) TE in excess of the industrial and residential RBCs (as shown on Table 2-5a). The extent of dioxin contamination in surface soil will need to be characterized at SWMU 48. Revise the Work Plan Addendum to propose additional surface soil sampling for dioxins at SWMU 48. Alternatively, provide justification for not characterizing the extent of dioxin contamination.
- 13. Section 3.1.1, Site Description, Page 3-1. The Work Plan Addendum appears to incorrectly reference Figure 3-1 (SWMU 41 and 43 and Areas O and P Site Location Map) in its discussion of the topography of SWMU 41. Topographic contours are actually shown on Figure 3-2 (SWMU 41 Sample Locations). Revise the Work Plan Addendum to correct this reference.
- 14. Section 3.1.1, Site Description, Page 3-1. Important site

features at this site include Stroubles Creek, a drainage ditch, and an unnamed tributary of Stroubles Creek. None of these features are labeled on the site figures. Revise the Work Plan Addendum to label Stroubles Creek, the drainage ditch, and the unnamed tributary of Stroubles Creek on a site figure. Additionally, clarify if the drainage ditch is lined or unlined.

- 15. Section 3.2.2, Site Geology, Page 3-3. This section notes that 40 direct push borings were completed at SWMU 41 during the 2005 RFI, but it does not appear that a majority of these boring locations have been shown on a site figure. Figure 3-2 only shows 15 soil sample locations. Revise the Work Plan Addendum to show all of the previous boring locations at SWMU 41.
- 16. Section 3.3.2, VI, Dames and Moore, 1992, Groundwater, Page 3-9. This section notes that bis(2-ethylhexyl)phthalate and vanadium were detected above the tapwater risk based concentrations (RBCs). Table 3-1b (1992 VI Detected Analytes for Groundwater at SWMU 41) also notes that antimony was detected in monitoring well 41MW2 above both the federal maximum contaminant level (MCL) and tapwater RBC. Revise Section 3.3.2 to include this notable exceedance in the discussion of groundwater results.
- 17. Section 3.3.2, VI, Dames and Moore, 1992, Surface Water, Page 3-9. This section indicates that constituents detected in surface water, with the exception of barium, were detected below the tapwater RBCs and the Region 3 Biological Technical Assistance Group (BTAG) freshwater screening values. Table 3-1c (1992 VI Detected Results for Surface Water at SWMU 41) only compares the detected results to MCLs and the tapwater RBCs. Revise Table 3-1c to include the BTAG screening values for easy reference.
- 18. Section 3.3.3, New River and Tributaries Study, Parsons, 1997, Page 3-9. A summary of the 1995 and 1996 sampling events is presented, but the sampling locations to which this section refers (i.e., SCSW2) are not shown on a site figure. A summary table of the data has also not been provided. This information will aid in the evaluation of the current understanding of the extent of contamination at and in the vicinity of the site. Revise the Work Plan Addendum to show the 1995 and 1996 surface water and sediment sampling locations. Additionally, include a summary table of the detected concentrations.
- 19. Section 3.3.5, RFI, URS Corporation, 2005, Nature and Extent Assessment at Area A, Page 3-16. Total 2,3,7,8-TCDD equivalents concentration (TEQ) was identified as a constituent of potential concern (COPC) for Area A, but it is not clear which samples contributed to this constituent's inclusion as a COPC. Table 3-2 (2004 RFI Detected Results for Soil at SWMU 41) has not highlighted any dioxin/furan constituents for exceeding screening criteria. Clarify why total 2,3,7,8-TCDD TEQ was included as a COPC, and indicate which samples contributed to its inclusion as a COPC. This information will be necessary to assess the adequacy of the proposed sampling program in defining the extent of contamination associated with this constituent. Additional soil samples to assess the extent of this contamination may be required.
- 20. Section 3.3.5, RFI, URS Corporation, 2005, Nature and Extent of Assessment at Area A and Area B, Page 3-16. Table 3-2 indicates that PCB-1254 was detected above the industrial and residential RBCs in surface samples 41SB2A and 41SB10A, but these exceedances are not discussed in Section 3.3.5. Based on the data presented in Table 3-2 and the sampling locations shown on Figure 3-2, it does not appear that the extent of the polychlorinated biphenyl (PCB) contamination has been defined. Most of the samples adjacent to samples 41SB2A and 41SB10A

were not analyzed for PCBs or the method reporting limits for those samples that were analyzed exceeded the RBCs. Revise the Work Plan Addendum to propose additional sampling to assess the extent of surface soil PCB contamination in the vicinity of samples 41SB2A and 41SB10A. Alternatively, provide justification for not further characterizing the extent of PCB-1254 contamination.

- 21. Section 3.6, Investigation Approach, Area A, Page 3-43. It is not clear that the proposed method for collecting groundwater samples (direct push method) is appropriate for this site. Figure 3-3 (SWMU 41 Geological Cross Section) appears to show that the water table is located at or below the top of the bedrock/overburden interface. Direct push sampling is typically used for sampling in the overburden. Alternative drilling methods may need to be proposed in order to obtain the groundwater samples. Permanent wells should be considered as they will allow for future monitoring and trend analysis, if contaminants of concern are identified. Realize we discussed at meeting, just putting it out there Will
- 22. Section 3.6, Investigation Approach, Area A, Page 3-43. Surface water sampling has been proposed to assess the unnamed tributary to Stroubles Creek, but co-located sediment samples have not been proposed. Sediment samples collected in 1997 as part of the New River and Tributaries Study identified several metals (arsenic, chromium, lead, nickel, manganese, vanadium, and iron) above applicable screening criteria in samples collected from areas downgradient of the site. To assess whether SWMU 41 may have contributed to this contamination, additional sediment samples should be proposed. Revise the Work Plan Addendum to propose sediment sampling at those locations where surface water sampling has been proposed. Alternatively, provide justification for not characterizing sediment in the vicinity of the site.
- 23. Section 4.1.2, Site History, Page 4-1. It is proposed that a source of contamination in Area O may have been a leaking discharge line that connected the northeastern-most fuel tank to a pumping station. The location of this former discharge line is not shown on any figures, so it is not clear if proposed sampling will adequately assess this area. If any additional subsurface structures or pipes are/were located in the vicinity of the Area O tanks, they should also be depicted on a site figure in accordance with Section 2.2.1.1 of EPA's RCRA Facility Investigation (RFI) Guidance (May, 1989). Revise the Work Plan Addendum to include a figure which shows all known past or present product and waste underground tanks or piping. The location of the former leaking discharge line should be specifically identified.
- 24. Section 4.6, Investigation Approach, Page 4-22. Proposed sample locations are supposed to be shown on Figure 4-2; however, the Figure 4-2 only shows the boundaries of the areas in which the investigations will be conducted. The proposed locations of the soil borings and groundwater samples should be clearly depicted on a site figure that is constructed using a scale that will show sufficient detail of the site area. Revise the Work Plan Addendum to show the specific locations of all of the proposed samples.
- 25. Section 4.6, Investigation Approach, Groundwater, Page 4-22. It is noted that groundwater samples will be analyzed for monitored natural attenuation parameters (MNA), including total organic carbon (TOC), anions, and dissolved gases. The specific anions and dissolved gases have not been identified. Revise the Work Plan Addendum to specify all of the proposed MNA parameters. Additionally, clarify the objective of this sampling.
- 26. Section 4.6, Investigation Approach, Groundwater, Page 4-22. The

Work Plan Addendum proposes to collect additional groundwater samples using direct push technology. However, based on the anticipated depth to bedrock at this site, it is not clear that this methodology will be appropriate. Figure 4-3 (Cross Section A-A', Area O) appears to show that the water table is located within bedrock at existing monitoring well WC1-2, which is located in the same area for which the direct push sampling is proposed (Figure 4-2). Direct push sampling is typically used for sampling in the overburden, not bedrock. Revise the Work Plan Addendum to address this concern. Alternative drilling methods should be considered in order to obtain the proposed groundwater samples.

- 27. Table 4-1, Detected Results for Soil at Area O, 1994 RFI Dames and Moore. This table does not include the industrial and residential RBCs for dibenzofuran. RBCs have been established for dibenzofuran, so these values should be included in Table 4-1. Revise Table 4-1 to include the industrial and residential soil RBCs for dibenzofuran.
- 28. Section 5.6, Investigation Approach, Soil, Page 5-32. An X-ray fluorescence (XRF) survey is proposed, but the survey area (a 220-ft by 120-ft grid) has not been shown on a site figure. This figure should show the location of the survey area and the initial 12 sampling locations that are described in Section 5.6. Revise the Work Plan Addendum to show the location of the XRF survey grid and the initially proposed sampling locations.
- 29. Section 5.6, Investigation Approach, Soil, Page 5-32. It is noted that confirmatory soil samples will be collected around the outer perimeter of the survey area after XRF data have delineated the extent of contamination. The anticipated spacing between confirmatory samples has not been specified. Revise the Work Plan Addendum to specify the spacing between confirmatory soil samples so that a consistent approach is employed in the field.

Additionally, it is noted that these confirmatory samples will be analyzed for lead, PCBs, and dioxins/furans. Table 5-6 (Proposed Sampling and Analysis Plan, Former Lead Furnace Area) notes that these samples will also be analyzed for TAL metals. Confirm that TAL metals will also be analyzed in the perimeter confirmatory soil samples. Metals should be included in the proposed parameter list as there are several inorganic constituents besides lead (copper, iron, zinc, etc.) that exceeded their residential RBC values during the 2002 sampling event (Table 5-3).

- 30. Table 5-3, Analytes Detected in Soil 2002 RFI. Pages 3 and 4 of this table do not include the RBCs, background values, or SSL values. This makes it difficult to assess potential exceedances of the screening criteria. Revise Table 5-3 so that each page of the table includes the applicable screening criteria.
- 31. Section 5.6, Investigation Approach, Groundwater, Page 5-34. One monitoring well is proposed, but the specific method for installation of this well has not been specified. Although SOPs 20.1 and 20.11 in the Master Work Plan are referenced in this section, these SOPs address several types of drilling methods (hollow stem auger, air rotary, etc.). The procedures and methods for installation of the FLFA monitoring well should be indicated in the Work Plan Addendum.

Additionally, the above mentioned SOPs indicate that the proposed well screen length, screen slot size, filter pack, method of sampling, and sampling intervals should be specified in the work plan addenda. However, theses details have not been specified for the FLFA well. Revise the Work Plan Addendum to address these omissions.

- 32. Section 6.1.1, Site Description, Page 6-1. The site description mentions that a pile of soil is located adjacent to the roadway in the western section of SWMU 43. The origin of this soil has not been described, and the proposed investigation does not specifically plan to sample soil from the pile. Revise the Work Plan Addendum to describe the origin of this soil pile, show its location on a site figure, and estimate its volume. If the origin is unknown, it is suggested that it be sampled as part of the SWMU 43 investigation.
- 33. Section 6.6, Investigation Approach, Page 6-16. A geophysical survey is proposed to define the landfill boundaries, but very few specific details of this investigation have been provided. The area proposed for this geophysical survey should be identified on a site figure. Additionally, the grid spacing and anticipated survey depths should be specified. SOP 20.7 (Resistivity and Electromagnetic Induction Surveys) in the Master Work Plan describes two types of EM instruments that could be used for site surveys, but the type of instrument proposed for the SWMU 43 investigation has not been specified. Revise the Work Plan Addendum to provide additional site-specific information for the geophysical survey at SWMU 43. Geophysical survey already completed Will
- 34. Section 6.6, Investigation Approach, Page 6-16. The second paragraph of this section indicates that the chemical parameters needed to fill data gaps include polynuclear aromatic hydrocarbons (PAHs), explosives, TCL pesticides/PCBs, herbicides, dioxins/furans, and perchlorate. However, the proposed analyses for surface water, soil, and groundwater sampling summarized in Table 6-4 (Proposed Sampling and Analysis Plan, SWMU 43) and in the narrative description on Page 6-18 exclude dioxins/furans. Since this is a data gap that needs to be addressed, revise the Work Plan Addendum to include analysis of dioxins/furans for surface water, soil, and groundwater samples. Alternatively, provide justification for not sampling for these chemical parameters.
- 35. Section 6.6, Investigation Approach, Surface Water Sampling, Page 6-18. Two seep samples are proposed at locations previously sampled. The intent of these samples is to characterize groundwater that is leaving the site and entering the New River. Figure 6-2 (SWMU 43 Sample Locations) appears to show that both of these sample locations are located north of the eastern cell of the landfill. Surface water sampling is apparently not proposed to assess groundwater as it discharges north of the western cell of the landfill. During a previous investigation, monitoring wells 43MW3 and 43MW4, both located downgradient of the western cell, reported concentrations of arsenic. iron, manganese, 1,2-dichloroethane, and/or benzene above screening levels. The potential discharge of these contaminants in groundwater water to surface water needs to be addressed. Revise the Work Plan Addendum to propose additional surface water sampling north of the western cell of the SWMU 43, or provide justification for not addressing this apparent data gap.
- 36. Section 6.6, Investigation Approach, Soil Sampling, Page 6-18. Five soil borings in each landfill cell are proposed at SWMU 43, but the drilling method for these borings has not been specified. Revise the Work Plan Addendum to specify the method for installing the soil borings, and collecting the soil samples. A specific reference to the Master Work Plan and corresponding SOP should be provided.

Additionally, it is noted that samples will be collected at three depths in each boring: 0 to 0.5ft bgs, within the waste, and below the waste (Table 6-4). It is also noted that bedrock in the area

was encountered in previous borings at this site. Please clarify the sampling protocol if bedrock prevents sampling below the waste.

- 37. Section 7.1.1, Site Description, Page 7-1. The site description identifies features to the north of the site, but it does not describe site features to the south, east, or west. Figure 7-2 appears to show buildings in close proximity to Area P, but the Work Plan Addendum does not describe their current use. A description of the surrounding land use is important as it may help appropriately define all potential receptors. Revise the Work Plan Addendum to describe the area surrounding Area P.
- 38. Section 7.1.2, Site History, Page 7-1. This section does not indicate the time period in which Area P operated as a scrap metal yard. The RFI guidance indicates that the history of the site, including its period of operation, should be included in the RFI Work Plan as background information. Revise the Work Plan Addendum to include the period of operation for Area P.
- 39. Section 7.3.1, VI, Dames and Moore, 1992, Page 7-3. It is noted that antimony and copper exceeded the residential RBC in site soil, but they are below the RFAAP Facility-Wide Background inorganic screening levels. These conclusions do not appear to be consistent with the data presented in Table 7-1 (1992 VI Detected Results for Soil Area P). The table appears to show that copper was detected above both the residential RBC and the background value in sample PSB2. Antimony was detected above the residential RBC in the same sample; however, a background concentration for antimony does not appear to have been established (as noted by the "na" on the table). Revise the Work Plan Addendum to address this discrepancy.
- 40. Section 7.6, Investigation Approach, Page 7-4. The proposed analyses for the soil investigation do not appear to include metals. Since the site was historically used as a scrap metal yard, it is recommended that soil samples be analyzed for metals. Additionally, concentrations of copper and antimony were detected above the residential RBC and/or background values during a previous investigation. The extent of contamination associated with these exceedances will need to be defined. Revise the Work Plan Addendum to propose metals analysis for soil samples and to define the extent of copper and antimony contamination east of sample PSB2.

William A. Geiger USEPA Region III 1650 Arch Street Philadelphia, PA 19103 (215)814-3413

Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24143-0100 USA

February 28, 2007

Mr. William Geiger RCRA General Operations Branch, Mail Code: 3WC23 Waste and Chemicals Management Division U. S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

Subject: Master Work Plan Addendum 19: SWMU 48, SWMU 49, SWMU 50, SWMU 59, SWMU 41, Area O, FLFA, SWMU 43, Area P, Draft Final Document, February 2007
Radford Army Ammunition Plant Installation Action Plan
EPA ID# VA1 210020730

Dear Mr. Geiger:

Enclosed is one copy of the subject document. Your additional four copies will be sent under separate cover . Also under separate cover one copy each will be sent to the distribution below.

This document was discussed at the February 15, 2007 stakeholder meeting in Philadelphia.

Please coordinate with and provide any questions or comments to myself at (540) 639-8658, Jerry Redder of my staff (540) 639-7536 or Jim McKenna, ACO Staff (540) 639-8641.

Sincerely,

c:

P.W. Holt, Environmental Manager

Alliant Techsystems Inc.

Russell Fish, P.E., EPA Region III, 3WC23

Jim Cutler Virginia Department of Environmental Quality P. O. Box 10009 Richmond, VA 23240-0009

Durwood Willis Virginia Department of Environmental Quality P. O. Box 10009 Richmond, VA 23240-0009

E. A. Lohman
Virginia Department of Environmental Quality
West Central Regional Office
3019 Peters Creek Road
Roanoke, VA 24019

Rich Mendoza
U.S. Army Environmental Command
1 Rock Island Arsenal
Bldg 60, 3rd Fl, NW Wing
Room 320 (IMAE-CDN)
Rock Island, Illinois 61299

U.S. Army Environmental Command, Office of Counsel Beal Road, Bldg E4460 Aberdeen Proving Ground, MD 21010-5401

Dennis Druck U.S. Army Center for Health Promotion and Preventive Medicine 5158 Blackhawk Road, Attn: MCHB-TS-REH Aberdeen Proving Ground, MD 21010-5403

Tom Meyer Corps of Engineers, Baltimore District ATTN: CENAB-EN-HM 10 South Howard Street Baltimore, MD 21201

bc:

Administrative File J. McKenna, ACO Staff Rob Davie-ACO Staff P. Holt J. J. Redder Env. File Coordination:

0000

M. A. Miano

Master Work Plan Addendum 19: <u>SWMU 48, SWMU 49, SWMU 50, SWMU 59, SWMU 41, Area O, FLFA, SWMU 43, Area P,</u> <u>Draft Final Document, February 2007</u>

Radford Army Ammunition Plant

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

SIGNATURE: PRINTED NAME:

TITLE:

Ronald F. Fizer

Lieutenant Colonel, US Army

Commanding Officer

SIGNATURE:

PRINTED NAME:

TITLE:

Kent Holiday

Vice President and General Manager ATK Energetics Systems Division

TABLE OF CONTENTS

Secti	on		Page
1.0	INT	RODUCTION	1–1
	1.1 1.2 1.3	INVESTIGATION OVERVIEW 1.1.1 Site Characterization Criteria	1-4 1-4 1-4 1-5 1-5
2.0	SWN BUR	MU 48 – OILY WATER BURIAL AREA SWMU 49 – RED WATER RIAL NO. 2 SWMU 50 – CALCIUM SULFATE DISPOSAL/TREAT EA SWMU 59 – BOTTOM ASH PILE	R ASH MENT
	2.1	SITE DESCRIPTION AND HISTORY	2-1
	2.1	2.1.1 Site Description	
		2.1.2 Site History	2-1
	2.2	SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY	
		2.2.1 Site Soil	
		2.2.2 Site Geology	
		2.2.3 Site Hydrogeology	
	2.3	2.2.4 Surface Water Hydrology PREVIOUS INVESTIGATIONS	
	2.3	2.3.1 RFA, USATHAMA, 1987	
		2.3.2 VI, Dames and Moore, 1992	
		2.3.3 Draft RFI, Parsons, 1996	
		2.3.4 RFI, ICF KE, 1998	
		2.3.5 RFI, Shaw, 2002	
		2.3.6 Eastern HSA Groundwater Data Report, Shaw, 2006	2-31
	2.4	CONCEPTUAL SITE MODEL – SWMUS 48, 49, 50, AND 59	
	2.5	DATA GAP ANALYSIS	
	2.6	INVESTIGATION APPROACH	2-41
3.0	SWN	MU 41 RED WATER ASH BURIAL	3-1
	3.1	SITE DESCRIPTION AND HISTORY	3-1
		3.1.1 Site Description	3-1
		3.1.2 Site History	
	3.2	SITE GEOLOLOGY, HYDROGEOLOGY AND HYDROLOGY	
		3.2.1 Site Soil	
		3.2.2 Site Geology	
		3.2.3 Site Hydrogeology	
	2.2	3.2.4 Surface Water Hydrology	
	3.3	PREVIOUS INVESTIGATIONS	
		3.3.1 Installation Assessment (Air Photo Interpretation), 1992	
		3.3.2 VI, Dames and Moore, 1992	
		3.3.3 New River and Tributaries Study, Parsons, 1997	3-9

		3.3.4 Geophysical Survey, Argonne National Laboratory (ANL), 2002	3-13
		3.3.5 RFI, URS Corporation, 2005	
	3.4	CONCEPTUAL SITE MODEL	3-34
	3.5	DATA GAP ANALYSIS	3-43
	3.6	INVESTIGATION APPROACH	3-43
4.0	ARE	A O – UNDERGROUND FUEL OIL SPILL	4-1
	4.1	SITE DESCRIPTION AND HISTORY	
		4.1.1 Site Description	
		4.1.2 Site History	
	4.2	SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY	
		4.2.1 Site Soil	
		4.2.2 Site Geology	
		4.2.3 Site Hydrogeology	
		4.2.4 Surface Water Hydrology	
	4.3	PREVIOUS INVESTIGATIONS	
		4.3.1 RFI, Dames and Moore, 1994	
	4.4	CONCEPTUAL SITE MODEL	
	4.5	DATA GAP ANALYSIS	
	4.6	INVESTIGATION APPROACH	4-22
5.0	FOR	MER LEAD FURNACE AREA	5-1
	5.1	SITE DESCRIPTION AND HISTORY	5-1
		5.1.1 Site Description	
		5.1.2 Site History	
	5.2	SITE GEOLOLGY, HYDROGEOLOGY AND HYDROLOGY	5-3
		5.2.1 Site Soil	
		5.2.2 Site Geology	5-3
		5.2.3 Site Hydrogeology	
		5.2.4 Surface Water Hydrology	
	5.3	PREVIOUS INVESTIGATIONS	
		5.3.1 VI, Dames and Moore, 1992	5-8
		5.3.2 RFI, ICF KE, 1998	
		5.3.3 RFI, Shaw, 2002	
	5.4	CONCEPTUAL SITE MODEL	5-23
	5.5	DATA GAP ANALYSIS	
	5.6	INVESTIGATION APPROACH	5-32
6.0	SWN	MU 43 – SANITARY LANDFILL NO. 2	6-1
	6.1	SITE DESCRIPTION AND HISTORY	6-1
		6.1.1 Site Description	6-1
		6.1.2 Site History	
	6.2	SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY	6-1
		6.2.1 Site Soil	6-1
		6.2.2 Site Geology	
		6.2.3 Site Hydrogeology	6-3
		6.2.4 Surface Water Hydrology	6-3
	6.3	PREVIOUS INVESTIGATIONS	6-3
		6.3.1 VI, Dames and Moore, 1992	6-3

	6.4	CONCEPTUAL SITE MODEL	6-5
	6.5	DATA GAP ANALYSIS	
	6.6	INVESTIGATION APPROACH	6-16
7.0	ARI	EA P – BATTERY STORAGE AREA	7-1
	7.1	SITE DESCRIPTION AND HISTORY	7-1
	,	7.1.1 Site Description	
		7.1.2 Site History	
	7.2	SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY	
		7.2.1 Site Soil	
		7.2.2 Site Geology	7-1
		7.2.3 Site Hydrogeology	7-1
		7.2.4 Surface Water Hydrology	
	7.3	PREVIOUS INVESTIGATIONS	
		7.3.1 VI, Dames and Moore, 1992	
	7.4	CONCEPTUAL SITE MODEL	
	7.5	DATA GAP ANALYSIS	
	7.6	INVESTIGATION APPROACH	7-4
8.0	REF	FERENCES	8-1
Table	1-1	Investigative Activities Discussed in the Master Work Plan	1-1
Table	1-2	Proposed Sampling and Analysis Plan	
Table	1-3	Facility-Wide Point Estimates for Background Soil	1-14
Table	2-1	Previous Soil Investigations Environmental Samples and Analyses at	
		SWMUs 48, 49, 50, and 59	
Table	2-2	Verification Investigation SWMUs 48, 49, 50, and 59 Detected Soil Results – 1992.	
Table	2 2	- 1992	
Table		SWMUs 48, 49, 50, and 59 1998 RFI Detected Results in Soil	
Table		2002 RFI Soil Sample Results – SWMUs 48, 49, 50, and 59	
Table		2006 Groundwater Results – SWMUs 48, 49, 50, and 59	
Table		Selection of Exposure Pathways – SWMUs 48, 49, 50, and 59	
Table		Proposed Sampling and Analysis Plan – SWMUs 48, 49, 50, and 59	
Table	3-1	1992 VI Data Tables, SWMU 41	
Table	3-2	2004 RFI Detected Results for Soil at SWMU 41	3-17
Table	3-3	2004 RFI Detected Results for Groundwater at SWMU 41	
Table		2004 RFI Detected Results for Surface Water at SWMU 41	
Table		2004 RFI Detected Results for Sediment at SWMU 41	
Table		Selection of Exposure Pathways – SWMU 41	
Table		Proposed Sampling and Analysis Plan – SWMU 41	
Table		Detected Results for Soil at Area O 1994 RFI – Dames and Moore	
Table	4-2	Detected Results for Groundwater at Area O 1994 RFI – Dames and Moore	4-9

Table 4-3	Detected Results for Surface Water Samples at Area O 1994 RFI – Dames	
	and Moore	4-11
Table 4-4	Detected Results for Sediment at Area O 1994 RFI – Dames and Moore	4-12
Table 4-5	Selection of Exposure Pathways – Area O	4-14
Table 4-6	Proposed Sampling and Analysis Plan – Area O	4-24
Table 5-1	Former Lead Furnace Area – VI Detected Soil Results – 1992	5-10
Table 5-2	Analytes Detected in Soil – 1998 RFI	
Table 5-3	Analytes Detected in Soil – 2002 RFI	5-18
Table 5-4	Dioxins/Furans Detected in Soil – 2002 RFI	5-22
Table 5-5	Selection of Exposure Pathways – FLFA	5-24
Table 5-6	Proposed Sampling and Analysis Plan – FLFA	
Table 6-1	1992 VI Detected Results for Groundwater – SWMU 43	6-6
Table 6-2	1992 VI Detected Results for Surface Water – SWMU 43	6-7
Table 6-3	Selection of Exposure Pathways – SWMU 43	6-8
Table 6-4	Proposed Sampling and Analysis Plan – SWMU 43	6-17
Table 7-1	1992 VI Detected Results for Soil – Area P	7-5
Table 7-2	Selection of Exposure Pathways – Area P	7-7
Table 7-3	Proposed Sampling and Analysis Plan – Area P	7-14
	LIST OF FIGURES	
Figure 1-1	Investigation Overview	1–3
Figure 2-1	SWMUs 48, 49, 50, and 59 Site Location Map	
Figure 2-2	SWMUs 48, 49, 50, and 59 Sample Locations	
Figure 2-3	Plan View of Geologic Cross-Section Lines A-A' and B-B'	
Figure 2-4	Geologic Cross-Section A-A'	
Figure 2-5	Geologic Cross-Section B-B'	
Figure 2-6	Eastern Horseshoe Area April 2006 Groundwater Elevation Contour Map	2-10
Figure 2-7	Current Land Use Conceptual Site Model for SWMUs 48, 49, 50, and 59	
Figure 2-8	Future Land Use Conceptual Site Model for SWMUs 48, 49, 50, and 59	2-40
Figure 3-1	SWMU 41 and 43, and Areas O and P Site Location Map	3-2
Figure 3-2	SWMU 41 Sample Locations and Cross Section Lines	
Figure 3-3	Geologic Cross-Section A-A'	
Figure 3-4	Geologic Cross-Section B-B'	
Figure 3-5	EM-31 Conductivity Anomoly Map Area B	
Figure 3-6	Seismic Refraction Profiling Results Area B	
Figure 3-7	Current Land Use Conceptual Site Model for SWMU 41	
Figure 3-8	Future Land Use Conceptual Site Model for SWMU 41	
Figure 4-1	SWMU 41 and 43, and Areas O and P Site Location Map	
Figure 4-2	Area O Sample Locations and Cross Section Line	
Figure 4-3	Cross Section A-A' Area O	
Figure 4-4 Figure 4-5	L DECEND LANG LIVE L ONCENHAL NICOLETOR ATAGEL	4-20
Figure 5-1	Future Land Use Conceptual Site Model for Area O Former Lead Furnace Area Site Location Map	4-21

Figure 5-2	Geologic Cross-Section Lines A-A', B-B' and C-C' Former Lead Furnace	
	Area	5-4
Figure 5-3	Geologic Cross-Section A-A' Former Lead Furnace Area	5-5
Figure 5-4	Geologic Cross-Section B-B' Former Lead Furnace Area	
Figure 5-5	Geologic Cross-Section C-C' Former Lead Furnace Area	5-7
Figure 5-6	Former Lead Furnace Area Sample Locations	5-9
Figure 5-7	Flowchart of 1998 RFI Activities	5-11
Figure 5-8	Current Land Use Conceptual Site Model for FLFA	5-30
Figure 5-9	Future Land Use Conceptual Site Model for FLFA	5-31
Figure 6-1	SWMU 41 and 43, and Areas O and P Site Location Map	
Figure 6-2	SWMU 43 Sample Locations	6-4
Figure 6-3	Current Land Use Conceptual Site Model for SWMU 43	6-14
Figure 6-4	Future Land Use Conceptual Site Model for SWMU 43	
Figure 7-1	SWMU 41 and 43, and Areas O and P Site Location Map	
Figure 7-2	Area P Sample Locations	
Figure 7-3	Current Land Use Conceptual Site Model for Area P	
Figure 7-4	Future Land Use Conceptual Site Model for Area P	

LIST OF APPENDICES

Appendix A XRF Standard Operating Procedure

Appendix B Monitoring Well Boring Logs and Construction Diagrams

LIST OF ABBREVIATIONS AND ACRONYMS

μg/Lmicrograms per liter	PAH	Polynuclear Aromatic
1,1,2,2-TCA1,1,2,2-tetrachloroethane		Hydrocarbon
2,3,7,8-TCDD 2,3,7,8-tetrachlorodibenzo-p-	Parsons	Parsons Engineering Science,
dioxin		Inc.
ANLArgonne National Laboratory	PCB	Polychlorinated Biphenyl
ASTAboveground Storage Tank	PPE	Personal Protective
bgsbelow ground surface		Equipment and Clothing
BRABaseline Risk Assessment	QA	Quality Assurance
BTAGBiological Technical		Quality Control
Assistance Group		Resource Conservation and
CFRCode of Federal Regulations		Recovery Act
CMSCorrective Measures Study	RFA	RCRA Facility Assessment
COPCChemical of Potential		Radford Army Ammunition
Concern	141 141 111 1111	Plant
CSMConceptual Site Model	RFI	RCRA Facility Investigation
CTCarbon Tetrachloride		Residential Risk-Based
DHCdehalococcoides	K KBC	Concentration
DODissolved Oxygen	Chan	Shaw Environmental, Inc.
DQOData Quality Objective		Screening Level Ecological
- •	SLEKA	Risk Assessment
EMElectromagnetic FLFAFormer Lead Furnace Area	COD	
	30P	Standard Operating
ft mslfeet above mean sea level	aar	Procedure
ftfeet		Soil Screening Level
ft ³ /scubic feet per second	SVOC	Semivolatile Organic
GIGastrointestinal		Compound
HHRAHuman Health Risk	SWMU	Solid Waste Management
Assessment		Unit
HIHazard Index		Target Analyte List
HQHazard Quotient		Trichloroethene
HSAHorseshoe Area	TCL	Target Compound List
HWMUHazardous Waste	TCLP	Toxicity Characteristic
Management Unit		Leachate Procedure
ICF KEICF Kaiser Engineers, Inc.	TCLPRL	Toxicity Characteristic
I-RBCIndustrial Risk-Based		Leachate Procedure
Concentration		Regulatory Limit
MCLMaximum Contaminant	TE	Toxicity Equivalent
Level		Equivalents Concentration
mg/kgmilligrams per kilogram		Tentatively Identified
MMAMain Manufacturing Area		Compound
MNAMonitored Natural	TNT	Trinitrotoluene
Attenuation		Total Organic Carbon
MWPMaster Work Plan		Total Organic Halides
ORPOxidation Reduction		Total Petroleum
Potential	11 11	Hydrocarbons
i ownan		Trydrocaroons

tw-RBC	.Tap Water Risk-Based
	Concentration
UCL	.Upper Confidence Limit
USACE	.U.S. Army Corps of
	Engineers
USAEC	.U.S. Army Environmental
	Command
USATHAMA	.U.S. Army Toxic and
	Hazardous Materials Agency
USCS	.Unified Soil Classification
	System
USEPA	.U.S. Environmental
	Protection Agency
UST	.Underground Storage Tank
	.Upper Tolerance Limit
VI	.Verification Investigation
VOC	.Volatile Organic Compound
	.Work Plan Addendum
XRF	.X-ray Fluorescence

1.0 INTRODUCTION

Shaw Environmental, Inc. (Shaw) was tasked by the U.S. Army Corps of Engineers (USACE), Baltimore District, to perform characterization and remediation activities at eleven Solid Waste Management Units (SWMUs) and Areas of Concern at Radford Army Ammunition Plant (RFAAP), in accordance with Contract No. W912QR-04-D-0027, Delivery Order DA0101. This document is a Work Plan Addendum (WPA) to RFAAP's Master Work Plan (MWP) (URS, 2003a) and describes additional investigation activities at nine of the eleven sites. The purpose of the investigation is to collect additional data in order to complete Resource Conservation Recovery Act (RCRA) Facility Investigations (RFIs)/Corrective Measures Studies (CMSs) for the nine sites.

RFAAP, the U.S. Environmental Protection Agency (USEPA), and the Virginia Department of Environmental Quality have developed a two-stage approach to facilitate and streamline RCRA site investigations at RFAAP pursuant to the Permit for Corrective Action and Waste Minimization (October 2000). The approach consists of a single facility-wide MWP and multiple site-specific WPAs.

The MWP provides comprehensive discussions of standard procedures, protocol, and methodologies that are to be followed during execution of field investigations at RCRA sites within the RFAAP. The MWP is a generic plan designed to streamline site-specific WPA development, review, and approval. **Table 1-1** lists the appropriate sections of the MWP that are applicable to the current investigation.

Table 1-1
Investigative Activities Discussed in the Master Work Plan

Subject	MWP Section	SOP(s) MWP Appendix A
Installation Description	2.0	NA
Environmental Setting	3.0	NA
Sample Management	5.1	50.1, 50.2, 50.3
Documentation	4.3	10.1, 10.2, 10.3, 10.4
Direct Push Methods	5.2.3.3	20.12
Well Drilling/Installation	5.2	20.1, 20.2, 20.11
Boring Logs/Stratigraphic Characterization	5.2.5	10.3
Geophysical Survey	5.5	20.7, 20.8
Soil Sampling	5.2.8	30.1, 30.7
Sediment Sampling	5.4	30.4
Surface Water Sampling	5.3	30.3
Decontamination Requirements	5.12	80.1
Investigation-Derived Material	5.14	70.1

This WPA describes the site-specific information for nine RCRA sites, providing detailed data on past site operations, potential constituents of concern, sampling strategy, etc. Each addendum, through reference to the MWP, is developed as a concise document, focused on site-specific investigations.

The nine sites covered in this WPA are:

- SWMU 48 Oily Water Burial Area
- SWMU 49 Red Water Ash Burial #2
- SWMU 50 Calcium Sulfate Treatment/Disposal Area
- SWMU 59 Bottom Ash Pile
- SWMU 41 Red Water Ash Burial
- Area O Underground Fuel Oil Spill
- Former Lead Furnace Area (FLFA)
- Area P Battery Storage Area
- SWMU 43 Sanitary Landfill No. 2

1.1 Investigation Overview

Investigation program activities designed to achieve site-specific data quality objectives (DQOs) are presented in the following sections. Each program systematically establishes the rationale for investigative activities through an assessment of site characteristics and associated project objectives. Supplemental chemical and physical data obtained during the sampling and analysis phase will be used to refine site profiles and enhance the accuracy of risk management decisions. A diagram illustrating the investigation process is presented on **Figure 1-1**.

Investigation programs focus on data gaps and have been designed to provide a comprehensive framework for establishing consistency in the decision-making process. The program clearly articulates project objectives, assumptions, and data use specifications. Program elements include:

- **Site Characteristics:** Brief site descriptions are included in the introductory paragraph for each investigation area to provide an overview of existing site conditions.
- **Preliminary Investigative Results:** Preliminary results will be integrated into conceptual site models (CSMs). Investigative activities have been conducted in each of the study areas. Baseline Human Health and Ecological Risk Assessments have been conducted in applicable study areas.
- **Sampling Program:** Phased, focused investigations will be performed to effectively utilize resources and achieve project DQOs. The sampling design program presented for each area has been structured to meet site-specific DQOs.
- Quality Assurance/Quality Control (QA/QC): Independent QC checks are used to demonstrate investigation and laboratory accuracy, precision, and integrity. Section 2.0 of the MWP establishes requirements for documentation, data collection and reporting, management and tracking of electronic and hard copy data, and presentation format. The

Figure 1-1 Investigation Overview

Master Quality Assurance Plan provides assurance that data of known and documented quality is generated to allow the Army to make accurate risk management decisions.

• **Health and Safety:** Site-specific training, personal protective equipment and clothing (PPE), and applicable monitoring requirements are presented in Section 3.0 of the MWP. These procedures were developed to provide the requirements for protection of site personnel including government employees, Shaw, regulators, subcontractors, and visitors, who are expected to be involved with site activities.

1.1.1 Site Characterization Criteria

Shaw was tasked to develop and implement a work plan to complete the characterization of each of the nine sites included in this investigation. Sections 2 through 7 of this report provide site-by-site summaries that include subsections covering the following investigational activities:

- 1. Review of site conditions and existing data.
- 2. Completion of a CSM.
- 3. Proposed sampling plan.

1.1.2 Site Conditions and Previous Investigations

Each site-specific section of this WPA begins with a description of the site and a summary of the current conditions at the site. This section includes physical, natural features that may affect migration pathways as well as structures and former activities that may impact site media.

Following the site description, a summary of previous investigations is provided. These sections primarily focus on sampling activities that have occurred at each site. A re-analysis of existing data, with an emphasis on identifying data gaps, forms the basis for the desktop audit.

1.1.3 Conceptual Site Model

A site-specific CSM has been developed for each site to identify potential contaminant sources, exposure pathways and human and ecological receptors. Each media type (i.e., surface soil, subsurface soil, groundwater, surface water, and sediment) was evaluated to assess whether human (site worker, hypothetical future resident) or biotic (terrestrial, aquatic, and benthic) receptors would be impacted by contamination. For the purposes of this CSM, air is not considered a viable pathway. Should analytical results indicate otherwise, the air pathway will be re-evaluated. Three exposure routes (ingestion, inhalation, and dermal absorption) were evaluated for each media type. Historical site use information was employed to identify types of potential contamination and locations of potentially contaminated areas. Site topography and physical land features, such as creeks, sinkholes, or drainage ditches, were used to approximate contaminant migration pathways. A CSM figure was developed for each site.

1.1.4 Data Gap Analysis

An analysis was performed on each site to assess the current data and identify data gaps that prevent adequate characterization of the sites. Data gaps are identified by media (surface soil, subsurface soil, groundwater, surface water and sediment) and analytical class [volatile organic compounds (VOCs), metals, etc.]. It should be noted that surface soil samples are collected from 0 to 0.5 feet (ft) with the exception of the VOC fraction, which is collected from 0.5 to 1 foot below ground surface. The data gap analysis focuses the sampling strategy so that the data collected is the "right" data required to fill the data gap and further characterize the site.

1.1.5 Planned Field Activities and Technical Approach

Based on the results of previous investigations and the CSM, a site-specific field program has been developed. The sampling and analysis schemes are designed to complete data needs identified during the development of the CSM. Samples collected as part of this investigation can be divided into two groups, based on whether the samples are for 1) site characterization or 2) delineation, as identified in the CSM. Samples will be collected to characterize each site for analyte classes for which site media have not been previously tested. Samples will also be collected to complete the delineation of sites. The purpose of these samples, then, is to refine the characterization of a previously identified constituent. The rationale for the placement of these samples will differ from the first group of samples in that these samples will be placed at specific locations to target specific analytes. A summary table detailing the number of samples to be collected from various media is presented as **Table 1-2**.

1.2 FACILITY-WIDE BACKGROUND STUDY

A Facility-Wide Background Study was conducted at the Main Manufacturing Area (MMA) and New River Unit at RFAAP in 2001 (IT, 2002a). Task objectives were to characterize naturally occurring background soil inorganic concentrations to establish a baseline for inorganic compounds of concern at RFAAP. Data was statistically evaluated across soil types, soil horizons, and study areas to assess the potential for expanding the effective data into one set. Statistical tests demonstrated that the data was statistically similar across soil types and study areas, resulting in one set of background values for both surface and subsurface soil. Facility-wide point estimates for background soil data were calculated as 95% upper tolerance limits (UTLs) and are presented in **Table 1-3**. In general, UTLs were calculated as follows:

$$UTL = \overline{X} + k(a)$$

where:

UTL = upper tolerance limit (confidence factor of 0.95 and coverage of 95 percent)

x = arithmetic mean
 a = standard deviation
 k = tolerance factor

It should be noted that for seven (aluminum, arsenic, chromium, iron, manganese, thallium, and vanadium) of the constituents, the 95% UTLs are greater than their respective residential screening levels. In addition, the 95% UTLs for arsenic, iron, manganese, and vanadium are greater than their industrial screening levels.

Inorganic constituents detected at concentrations exceeding screening levels are compared to the background concentrations to assess whether these metals are present at concentrations greater than naturally occurring levels. Inorganics detected at concentrations less than background levels are not considered site-related constituents.

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 1 of 8

Media	Sampling ID	Depth	Location	Analytes
			SWMU 48	
Groundwater	48MW4	84 ft bgs	existing onsite well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	48MW05	screened at first encountered water	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	48MW06	screened at first encountered water	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	49MW07	screened at first encountered water	proposed upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			SWMU 49	explosives, TAL metals, dioxins/furans, perchlorate
G G . 9	1400000	0.0561		TOU YOU GYOU DANK AND TO THE TOUR
Surface Soil	49SS02	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	49SS03	0-0.5 ft bgs		explosives, TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	498803	0-0.5 ft bgs	onsite surface soil	explosives, TAL metals, dioxins/furans
	49SS04	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	493304	0-0.5 It bgs	onsite surface son	explosives, TAL metals, dioxins/furans
	49SS05	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	175503	0 0.5 11 0g5	onsite surface son	explosives, TAL metals, dioxins/furans
Subsurface Soil	49MW01A	4-6 ft bgs	well boring 49MW01	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			<i>g</i>	explosives, TAL metals, dioxins/furans
	49MW01B	10-12 ft bgs	well boring 49MW01	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	49MW01C	18-20 ft bgs	well boring 49MW01	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
Groundwater	48MW1	125 ft bgs	existing upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	48MW2	123.7 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	402 5772	110.01		explosives, TAL metals, dioxins/furans, perchlorate
	48MW3	110 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	49MW01	1 _ £ 1 1 1 1 1		explosives, TAL metals, dioxins/furans, perchlorate TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	49M W 01	screened at first encountered water	proposed onsite well	explosives, TAL metals, dioxins/furans, perchlorate
			SWMU 50	explosives, TAL metals, dioxins/turalis, perchlorate
Surface Soil	50SB06A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
Surface Son	303B00A	0-0.5 it bgs	onsite surface son	explosives, TAL metals, dioxins/furans
	50SB07A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	30 5B 0771	0 0.5 11 0g3	onsite surface son	explosives, TAL metals, dioxins/furans
	50SB08A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB09A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB10A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 2 of 8

Media	Sampling ID	Depth	Location	Analytes
	50SB11A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB12A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB13A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB14A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB15A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
ıbsurface Soil	50SB06B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB07B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB08B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB09B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB10B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB11B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB12B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB13B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB14B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	50SB15B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
roundwater	50MW01	screened at first encountered water	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	50MW02	screened at first encountered water	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
			SWMU 59	
ırface Soil	59SS06	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SS07	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SS08	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
		<i>G</i> .		explosives, TAL metals, dioxins/furans
	59SS09	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 3 of 8

Media	Sampling ID	Depth	Location	Analytes
	59SS10	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB02A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB03A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB04A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB05A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB06A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
ıbsurface Soil	59SB02B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB02C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB03B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB03C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB04B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB04C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB05B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB05C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB06B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	59SB06C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
roundwater	59MW01	screened at first encountered water	proposed upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
			SWMU 41	
roundwater	41GW01	at water table	Area A, direct push GW	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			•	explosives, TAL metals, dioxins/furans, perchlorate
	41GW02	at water table	Area A, direct push GW	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			,	explosives, TAL metals, dioxins/furans, perchlorate
	41GW03	at water table	Area A, direct push GW	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			,	explosives, TAL metals, dioxins/furans, perchlorate
	41MW1	70 ft bgs	Area B, existing upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 4 of 8

Media	Sampling ID	Depth	Location	Analytes
	41MW2	113 ft bgs	Area B, existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	41MW3	52.5 ft bgs	Area B, existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
urfaceWater	41SW08	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	41SW09	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	41SW10	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	41SW11	NA	Area B, seep sample	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
ediment	41SD08	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	41SD09	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	41SD10	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	41SD11	NA	Area B, seep sample	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
			Area O	
urface Soil	AOSB01A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB02A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB03A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB04A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB05A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
ubsurface Soil	AOSB01B	4-6 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB01C	8-10 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB02B	4-6 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB02C	8-10 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB03B	4-6 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB03C	8-10 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB04B	4-6 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB04C	8-10 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB05B	4-6 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB05C	8-10 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
roundwater	AOGW01	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, Monitored Natural
			(555 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Attenuation Parameters (MNA), TOC
	AOGW02	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW03	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 5 of 8

Media	Sampling ID	Depth	Location	Analytes
	AOGW05	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW06	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW07	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW08	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW09	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW10	screened at first encountered water	Direct Push GW Sample Area (see Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	S4W-1	10 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	WC1-1	39 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	WC1-2	25 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	8B	25 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-1	25 ft bgs	exising upgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-2	11 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-3	18 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-4	23 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	OMW1	31 ft bgs	existing onsite well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	OMW2	31 ft bgs	existing upgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
Surface Water	AOSW01	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
	AOSW02	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
Sediment	AOSD01	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
	AOSD02	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
			ormer Lead Furnace Area (FLFA)	, ,
Surface Soil	LFXR01-60	0-0.5 ft bgs	Within defined FLFA Area	XRF Lead. A sufficient number of samples will be collected
				and screened to define the extent of lead in soil.
	LFSS04-14	0-0.5 ft bgs	At boundiaries of lead containing soil defined by XRF	TAL metals, TCL PCBs, dioxins/furans (assume 10 samples)
	LFSS15-21	0-0.5 ft bgs	Random grid samples within area defined by XRF	TAL metals, TCL PCBs, dioxins/furans (6 samples)
Groundwater	LFMW01	screened at first encountered water	in sinkhole near original furnace location.	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	17PZ01	122.5 ft bgs	exisiting upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	17MW2	mid-point of well screen	exisiting upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
	17MW3	mid-point of well screen	existing cross/downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans, perchlorate
Surface Water	LFSW01	NA	at spring discharge on New River	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
G . 1	I ECDO1	N/A	, ' 1' 1 N D'	explosives, TAL metals, dioxins/furans, perchlorate
Sediment	LFSD01	NA	at spring discharge on New River	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			SWMU 43	explosives, TAL metals, dioxins/furans, perchlorate
Surface Soil	43SB01A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
Surface Sull	1422D01V	10-0.5 11 023	IIII Cast CCII	TIVE YVAS DYVAS I ATIS DESILIDES/IVED HEIDICIDES.

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 6 of 8

Media	Sampling ID	Depth	Location	Analytes
	43SB02A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB03A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
		_		explosives, TAL metals, dioxins/furans
	43SB04A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
		_		explosives, TAL metals
	43SB05A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
		_		explosives, TAL metals
	43SB06A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB07A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB08A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals, dioxans/furans
	43SB09A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB010A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
surface Soil	43SB01B	in waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB01C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB02B	in waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB02C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB03B	in waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals, dioxins/furans
	43SB03C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals, dioxins/furans
	43SB04B	in waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB04C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB05B	in waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB05C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB06B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
				explosives, TAL metals
	43SB06C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides
	I			explosives, TAL metals

Table 1-2
Proposed Sampling and Analysis Plan
Radford AAP, Radford, VA
Page 7 of 8

Media	Sampling ID	Depth	Location	Analytes
	43SB07B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB07C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB08B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	43SB08C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	43SB09B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB09C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB10B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB10C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
Groundwater	43MW1	21 ft bgs	exsiting well - upgradient, east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
	43MW2	27 ft bgs	exsiting well - upgradient, west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
	43MW3	30 ft bgs	exsiting well - downgradient, west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
	43MW4	21 ft bgs	exsiting well - downgradient, west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
	43MW5	37 ft bgs	exsiting well - downgradient, east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
	43MW6	33 ft bgs	exsiting well - downgradient, east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
Surface Water	43SW01	NA	At seep on New River (collocated with 43SP1)	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
	43SW02	NA	At seep on New River (collocated with 43SP2)	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, perchlorate
			Area P	
Surface Soil	APSB06A	0-0.5 ft bgs	upgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives
	APSB07A	0-0.5 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	IN SBOTT	0 0.5 11 055	central area within former battery storage area	explosives
	APSB08A	0-0.5 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			sister and a second sec	explosives
	APSB09A	0-0.5 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			The state of the s	explosives
	APSB10A	0-0.5 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	111 51510/1	0 0.5 11 053	do ingradient end of former battery storage area	explosives

Table 1-2 Proposed Sampling and Analysis Plan Radford AAP, Radford, VA Page 8 of 8

Media	Sampling ID	Depth	Location	Analytes
Subsurface Soil	APSB06B	4-6 ft bgs	upgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB07B	4-6 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB08B	4-6 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB09B	4-6 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB10B	4-6 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
Groundwater	APGW01	water table	upgradient of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW02	water table	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW03	water table	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW04	water table	downgradient of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW05	water table	downgradient of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate

Table 1-3
Facility-Wide Point Estimates for Background Soil

Chemical Name	Range of Data (mg/kg)	Background Concentration 95% UTL (mg/kg)
Aluminum	3,620 - 47,900	40,041
Arsenic	1.2 - 35.9	15.8
Barium	23.4 - 174	209
Beryllium	0.61 - 5.4	1.02
Cadmium	0.62 - 2.5	0.69
Chromium	6.3 - 75.8	65.3
Cobalt	5.9 - 130	72.3
Copper	1.6 - 38.7	53.5
Iron	7,250 - 67,700	50,962
Lead	2.1 - 256	26.8
Manganese	16.7 - 2,040	2,543
Mercury	0.038 - 1.2	0.13
Nickel	4.6 - 94.2	62.8
Thallium	1.3 - 5.0	2.11
Vanadium	12.2 - 114	108
Zinc	4.7 - 598	202

1.3 Master Table Legend

Master table legends for the data tables in this work plan are presented on the following pages. The soil and sediment tables are generally similar and use the same comparison criteria. The legend for these tables has been combined. Similarly, groundwater and surface water tables are similar and a single legend identifying the shading, bold font and bold outline is provided. The master legends also include the meanings of abbreviations and laboratory and validation qualifier codes.

Soil/Sediment Master Table Legend

12	J	Shading and black font indicates an industrial RBC exceedance.
12	J	Bold outline indicates a residential RBC exceedance.
<u>12</u>	<u>J</u>	Bold, underlined font indicates a background exceedance.
12	12	Shading in the MDL/MRL columns indicates the MDL exceeds a criterion.
	J	Shading and white font indicates a SSL Transfer exceedance.
12	J	Mixed shading indicates a i-RBC and a SSL Transfer exceedance.

The pyrene RBCs and SSL were used for acenaphthylene, benzo(g,h,i)perylene and phenanthrene.

Inorganic results below background UTLs are not indicated as exceedances on the table.

RBC = Risk Based Concentration (October, 2006).

RBC values in table are for the more conservative chromium VI.

Lead screening values from Technical Review Workgroup for Lead: Guidance Document (April, 1999).

mg/kg = milligrams per kilogram (parts per million).

ng/kg = nanograms per kilogram (parts per trillion).

ug/kg = micrograms per kilogram (parts per billion).

NA = not applicable.

NT = analyte not tested.

LQ = Lab Data Qualifiers:

B = (organics) Blank contamination. Value detected in sample and associated blank.

B = (metals) Value <MRL and >MDL and is considered estimated.

E (metals) = Reported value is estimated because of the presence of interferences.

J = (organics) Value <MRL and >MDL and is considered estimated.

U = Analyte not-detected at the method reporting limit.

X = (dioxins) Ion abundance ratio outside acceptable range. Value reported is EMPC.

VQ = Validation Data Qualifiers:

B = blank contamination. Value detected in sample and associated blank.

J = estimated concentration.

K =estimated concentration bias high.

L =estimated concentration bias low.

N = presumptive evidence for tentatively identified compounds using a library search.

U = analyte not detected.

UJ = estimated concentration non-detect.

UL = estimated concentration non-detect bias low.

Groundwater/Surface Water Master Table Legend

12	J	Shading and black font indicates an MCL exceedance.
12	J	Bold outline indicates a tap water RBC exceedance.
12	12	Shading in the MDL/MRL columns indicates the MDL exceeds a criterion.

RBCs for non-carcinogenic compounds have been recalculated to an HI of 0.1.

The pyrene RBCs were used for acenaphthylene, benzo(g,h,i)perylene and phenanthrene.

RBC = Risk Based Concentration (October, 2006).

RBC values in table are for the more conservative chromium VI.

mg/L = milligrams per liter (parts per million).

ng/L = nanograms per liter (parts per trillion).

ug/L = micrograms per liter (parts per billion).

NA = not applicable.

NT = analyte not tested.

LQ = **Lab Data Qualifiers**:

B = (organics) Blank contamination. Value detected in sample and associated blank.

B = (metals) Value <MRL and >MDL and is considered estimated.

E (metals) = Reported value is estimated because of the presence of interferences.

J = (organics) Value <MRL and >MDL and is considered estimated.

U = Analyte not-detected at the method reporting limit.

X = (dioxins) Ion abundance ratio outside acceptable range. Value reported is EMPC.

VQ = **Validation Data Qualifiers:**

B = blank contamination. Value detected in sample and associated blank.

J = estimated concentration.

K =estimated concentration bias high.

L =estimated concentration bias low.

N = presumptive evidence for tentatively identified compounds using a library search.

U = analyte not detected.

UJ = estimated concentration non-detect.

UL = estimated concentration non-detect bias low.

2.0 SWMU 48 – OILY WATER BURIAL AREA

SWMU 49 – RED WATER ASH BURIAL NO. 2

SWMU 50 - CALCIUM SULFATE DISPOSAL/TREATMENT AREA

SWMU 59 – BOTTOM ASH PILE

SWMUs 48, 49, 50, and 59 are adjacent sites located in the eastern portion of the Horseshoe Area (HSA). The investigation for these four sites has been combined due to the sites' proximity to each other, similar disposal histories, and similar constituents in groundwater.

2.1 SITE DESCRIPTION AND HISTORY

2.1.1 Site Description

The combined study area (SWMUs 48, 49, 50, and 59) is located in the southeastern portion of the RFAAP HSA, east of the main bridge over the New River. As illustrated on **Figure 2-1**, the four SWMUs are co-located, with SWMU 48 in the northwestern portion of the combined study area. SWMU 48 is located approximately 30 ft north of SWMU 50, 75 ft west of SWMU 59, and 200 ft northwest of SWMU 49.

The combined study area is approximately 460 ft long by 600 ft wide and is situated on a bluff approximately 120 ft above and overlooking SWMU 13 and the New River. The land surface in the combined study area gently slopes from approximately 1,830 feet above mean sea level (ft

msl) on the north side of SWMUs 48 and 59, to approximately 1,814 ft msl on the south of SWMU 50. Based on topography, surface water runoff is expected to flow approximately 700 ft southwest to the New River.

The overall study area is grassy with wooded areas to the south, east, and west. The 2000 aerial photo shown on **Figure 2-2** indicates ground scarring and disturbed soil; however, the site has re-vegetated in the years since they were active.

A subsided area that coincides with the southern SWMU 48 trench provides evidence of its location.

An east-west asphalt road, located at the northern edge of the study area, parallels SWMU 48 and provides access to the combined study area via a gravel and bottom ash covered dirt road that trends north-south in the middle of the study area. The dirt and gravel road connects to an east-west trending dirt road at the southern end of the area. There are no structures in the combined study area; and, according to RFAAP utility maps, there are no manholes, catch basins, or storm drains located in the immediate vicinity of the area.

2.1.2 Site History

Although the history of the four SWMUs that comprise the combined study area are described separately in this section, and the site figures depict the four SWMUs as separate and distinct areas, it is apparent from analytical testing of soil that the combined study area should be considered as one contiguous area with some degree of cross disposal occurring. This is especially true for SWMUs 48, 49, and 50, at which operations occurred concurrently.

LEGEND

SWMU 48, 49, 50, and 59 Boundaries

Other SWMU Boundary

Installation Boundary

Notes:

Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 2,000 1,000

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 2-1 SWMU 48, 49, 50 and 59 Site Location Map Radford Army Ammunition Plant, Radford, VA

LEGEND

- Monitoring Well Location
- **Proposed Well Location**
- **Previous Investigation** Soil Sample Location
- **Proposed Soil Boring** Location
- Proposed Surface Soil Sample Location

10 ft Contour Line

SWMU 48, 49, 50, and 59 Boundaries

Other SWMU Boundary

1) Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 150 300

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 2-2 SWMU 48, 49, 50, and 59 Sample Locations Radford Army Ammunition Plant, Radford, VA

RFAAP_001_Fig2-2_Workplan

SWMU 48, Oily Water Burial Area. Aerial photographs taken in 1971 and 1986 indicate that SWMU 48 consists of two sets of unlined trenches identified as the northern and southern trenches. Prior to off-post waste oil reclamation, approximately 200,000 gallons of oily wastewater removed from oil/water separators throughout RFAAP was reportedly disposed of in SWMU 48 (Dames and Moore, 1992). However, the results of environmental sampling to date indicate that the oily wastewater was likely disposed in the area associated with SWMU 49. Conversely, sampling indicates that the red water ash associated with SWMU 49 was disposed in the SWMU 48 disposal trenches. Interpretations of aerial photographs indicate that activity first occurred at SWMU 48 in 1970 (USEPA, 1992). The northern trench is visible in the 1971 aerial photograph as light colored east to west trending scars of disturbed soil that parallel the asphalt road. Re-vegetation had occurred by the time of the 1981 aerial photograph. The filled and revegetated southern trench is prominent in the 1986 aerial photograph, positioned at a slight angle below the northern trench. This trench is marked by the growth of grass visibly different from the surrounding vegetation (e.g., greener and thicker) and by extensive ground subsidence. Documentation for disposal activities in the southern trench is currently unknown, but observations during soil boring and test pit activities during the 1998 RFI indicate a layer of fine black material occurring at approximately 6-7 ft below ground surface (bgs). Explosives compounds were detected in samples of this material.

SWMU 49, Red Water Ash Burial No. 2. The location of SWMU 49 has been unclear in previous investigations, which essentially considered SWMU 49 to be contiguous or co-located with SWMU 48. In fact, previous sampling of this area was performed as part of SWMU 48 investigations. The location of SWMU 49 is defined in aerial photography by disturbed ground during the time of active disposal in the adjacent SWMUs 48 and 50. No signs of release were noted during the April 1987 visual site inspection performed during the RCRA Facility Assessment (RFA) (USEPA, 1987).

SWMU 49 reportedly received 10 tons of red water ash during its active period (USEPA, 1987). However, the results of environmental sampling to date indicate that the red water ash was likely disposed in the disposal trenches associated with SWMU 48. Conversely, sampling indicates that the oily wastewater associated with SWMU 48 was disposed in the SWMU 49 area. Red water ash is identified as a USEPA hazardous waste (K047) solely for its reactivity [40 Code of Federal Regulations (CFR) 261.32]. During the production and formulation of trinitrotoluene (TNT), an alkaline, red colored aqueous waste is generated (red water). This waste stream is composed of TNT purification filtrate, air pollution control scrubber effluent, washwater from cleaning of equipment and facilities, and washwater from product washdown operations. Red water was concentrated by evaporation and the sludge was burned in rotary kilns located in the TNT manufacturing area (USATHAMA, 1976). The ash from the burned red water sludge is known as red water ash.

SWMU 50, Calcium Sulfate Treatment/Disposal Area. Based on a review of historical aerial photographs (USEPA, 1992) and interviews with plant personnel, SWMU 50 was identified as the major disposal area at RFAAP, until 1982, for sludge removed from the calcium sulfate drying beds (SWMUs 35, 36, 37, 38, and Area Q). Activity at SWMU 50 was first noted in a 1962 aerial photograph as disturbed ground (USEPA, 1992). Re-vegetation of the disturbed ground was noted in 1971; however, renewed activity was identified in a 1981 aerial photograph as a trench, a ground scar, disturbed ground, light-toned material, and mounded material. In

1986, the surface of the excavated features seen in the 1981 photograph appeared to have been filled.

SWMU 59, Bottom Ash Pile. SWMU 59 was used to store bottom ash generated from the coal-fired power plant used to supply steam to the buildings in the HSA. Bottom ash is permitted to be buried in landfills on the Installation (in particular, Former Ash Landfill No. 2). Some bottom ash is apparently stored in piles around RFAAP for use on roadbeds and as landfill cover material (USEPA, 1987). It can be assumed that this pile or similar piles have existed at RFAAP since operation of the coal-fueled power plant began. Activity was first noted at the site in 1986 aerial photography, where a large area of dark-toned material was visible (USEPA, 1992). The storage pile of bottom ash was approximately 100 ft by 50 ft and 20 ft high (USEPA, 1987). The bottom ash pile is no longer visible at the site.

2.2 SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

A comprehensive discussion of the regional physiography, soil, geology, and groundwater at RFAAP is included in the RFAAP MWP (URS, 2003a) and therefore is not discussed in this report.

2.2.1 Site Soil

The soil type in this area is the Braddock Loam, which is described as yellowish-brown grading into yellowish-red and red clay extending to a depth of 60 inches or more. Permeability is moderate; natural fertility is low; organic matter content is moderately low. This soil type is acidic or very strongly acidic (SCS, 1985).

2.2.2 Site Geology

Stratigraphic characterization of the subsurface was performed during the advancement of soil and monitoring well borings at the sites, and geologic cross-sections were developed based on these borings. Boring Logs for the wells are presented in **Appendix B**. Plan view of cross-sectional lines A-A' and B-B' is presented on **Figure 2-3**. As depicted on **Figures 2-4 and 2-5**, the subsurface geology consists of alluvium and residual deposits comprised of clay and silt with some sand and gravel overlying bedrock. Depth to bedrock ranges from approximately 55 to 65 ft bgs.

Bedrock consists of the Cambrian-aged Elbrook Formation - a highly fractured, thickly bedded, blue-gray dolostone interspersed with blue-gray to white limestone and interbedded siltstone. It is locally described in nearby well borings as interbedded green and maroon shale and yellowish-brown dolostone (51MW2 and 16-4) and greenish- to grayish-brown limestone and dolostone (C-1). The Max Meadows Breccia is evident in outcrops along the slope leading to the river. In the outcrop along the slope, the tectonic breccia and the limestone and dolostone are highly weathered with many solution cavities.

A saprolitic layer of yellow to olive clay and silt with interbedded red shale, formed from *in situ* weathering of the carbonate bedrock, immediately overlies the bedrock. The saprolite is up to 25 ft in thickness.

The unconsolidated sediment immediately overlying the saprolite consists of interbedded alluvial deposits. Overbank deposits consisting primarily of silt and clay with varying amounts of fine sand are interbedded with alluvial channel deposits of fine- to coarse-grained, yellowish-brown sand and layers of large cobbles (river jack). These Paleo-channel deposits are incised into the

silt and clay deposits, and, in some cases, into the saprolite, so that in places the paleo-channel deposits rest directly on bedrock.

A detailed discussion of the geology and soil at RFAAP is presented in Sections 3.4 through 3.7 of the MWP (URS, 2003a) and in the Facility-Wide Background Study (IT, 2002a).

2.2.3 Site Hydrogeology

Within RFAAP, and particularly within the HSA, sinkholes and fractures, which may be associated with sinkhole development, are areas for groundwater recharge. The eastern half of the HSA contains a number of fracture traces and few sinkholes. This eastern area is also the topographically highest point in the HSA. The fracture traces in this area can be zones of high secondary porosity due to fissured and solutionally enhanced carbonate rock, allowing surface water to migrate very quickly into the subsurface.

Figure 2-6 illustrates the groundwater elevation contours in the bedrock aquifer for the eastern end of the HSA and gives an approximation as to where water is entering the HSA and its direction of flow through the study area. Stabilized groundwater depths measured in the four study area monitoring wells during April 2006 ranged from 80 ft bgs (48MW4) to 125 ft bgs (48MW2).

The groundwater elevation contours show a radial pattern with the gradient moving away in every direction from the groundwater high point at well 28MW1 (north of SWMUs 48 and 59) toward the New River. Based on topography, groundwater elevation contours and measured groundwater elevations (April 2006), groundwater flow in the combined study area is to the south towards the New River and roughly follows topography.

2.2.4 Surface Water Hydrology

There area no streams or ponds located within the study area. The four SWMUs are located in the southeastern corner of the HSA, with the New River closest in a southerly direction. Surface water resulting from precipitation on the sites is expected to infiltrate to the unconsolidated sediments underlying the sites, percolate to the bedrock through secondary porosity and eventually discharge to the New River near SWMU 13. During extremely heavy precipitation events, overland flow of surface water would be towards the New River south of the four SWMUs.

2.3 PREVIOUS INVESTIGATIONS

Five previous investigations have been conducted at the combined study area. A summary of samples collected during the previous investigations is presented in **Table 2-1**. In 1987, the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) conducted an RFA to evaluate potential hazardous waste or hazardous constituent releases and implement corrective actions, as necessary. In 1992, Dames and Moore performed a Verification Investigation (VI), which included surface and subsurface soil sampling and a soil gas survey to characterize the nature and extent of contamination. In 1996, Parsons Engineering Science, Inc. (Parsons) conducted an RFI to further delineate the extent of contamination identified during the 1992 VI sampling. ICF Kaiser Engineers, Inc. (ICF KE) also performed an RFI in 1998 to further refine the understanding of the nature and extent of contamination identified during the previous investigations. Additional sampling was conducted by IT Corporation/Shaw in 2002 and 2006 to collect sufficient data to complete human health and ecological risk assessments. These investigations and results of the chemical data are summarized below.

Table 2-1
Previous Soil Investigations Environmental Samples and Analyses at SWMUs 48, 49, 50, and 59

Media	Sample ID	Depth (ft bgs)	Analyses											
		SWMU	48											
	1992 Verif	fication Investigat	ion, Dames and Moore											
Subsurface Soil	48SB1	7.5-9.5	TAL metals, VOCs, SVOCs, TCLP metals											
	48SB1	13-15	TAL metals, VOCs, SVOCs, TCLP metals											
	48SB2	10-12	TAL metals, VOCs, SVOCs, TCLP metals											
	48SB2	20-22	TAL metals, VOCs, SVOCs, TCLP metals											
199	6 RCRA Facility	y Investigation, Pa	arsons Engineering Science, Inc.											
Surface Soil	48SS1	0-1	TAL metals, VOCs, SVOCs, explosives, TPH											
	48SS2	0-1	TAL metals, VOCs, SVOCs, explosives, TPH											
	48SS3	0-1	TAL metals, VOCs, SVOCs, explosives, TPH											
Subsurface Soil	48SB4A11	10-11	VOCs, SVOCs, explosives, TPH											
	48SB4B21	20-21	VOCs, SVOCs, explosives, TPH, TOC											
	1998 RCRA Fac	cility Investigation	, ICF Kaiser Engineers, Inc.											
Surface Soil	48SB6C	1-3	TAL metals, VOCs, SVOCs, PAHs,											
		-	explosives											
	48SB6C2	1-3	VOCs (methanol preservation)											
Subsurface Soil	48SB6A	6-7	TAL metals, VOCs, SVOCs, PAHs,											
		• ,	explosives											
	48SB6A2	6-7	VOCs (methanol preservation)											
	48SB6B	14-16	TAL metals, VOCs, SVOCs, PAHs,											
			explosives											
	48SB6B2	14-16	VOCs (methanol preservation)											
	48SB7A	8-9	TAL metals, VOCs, SVOCs, PAHs,											
	40CD7.4.2	0.0	explosives											
	48SB7A2	8-9	VOCs (methanol preservation)											
	48SB7B	10-11	TAL metals, VOCs, SVOCs, PAHs, explosives											
			TAL metals, VOCs, SVOCs, PAHs,											
	48TP1	6-6.5	explosives											
			TAL metals, VOCs, SVOCs, PAHs,											
	48TP2	6-6.5	explosives											
	407770		TAL metals, VOCs, SVOCs, PAHs,											
	48TP3	6-6.5	explosives											
	48TP4	6.65	TAL metals, VOCs, SVOCs, PAHs,											
	40174	6-6.5	explosives											

Table 2-1, Continued Previous Soil Investigations Environmental Samples and Analyses at SWMUs 48, 49, 50, and 59

M. P.	CI- ID	D41- (64 1)	A L
Media	Sample ID	Depth (ft bgs)	Analyses
			on, IT Corporation
Surface Soil	48SB08A	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans, TOC, grain size, pH
	48SB09A	0-0.5	Explosives, dioxins/furans
	48SB10A	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans
Subsurface Soil	48SB08B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals, dioxins/furans
	48SB08C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals, dioxins/furans, TOC, grain size,
	4000000	4.6	pH
	48SB09B	4–6	Explosives, dioxins/furans
	48SB09C	8–10	Explosives, dioxins/furans
	48SB10B	4-6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	40CD 10C	0.10	TAL metals, dioxins/furans
	48SB10C	8-10	TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals, dioxins/furans
	2006 E4-		,
C 1 .		ern Horsesnoe Arc	ea GW Sampling, Shaw
Groundwater	48MW4		TCL VOCs, SVOCs, PAHs, pest/PCBs,
		CHART	explosives, TAL metals
	1004 77 4	SWMU	
			tion, Dames and Moore
Subsurface Soil	48SB3	10-12	TAL metals, VOCs, SVOCs, TCLP metals
			arsons Engineering Science, Inc.
Surface Soil	48SS4	0-1	TAL metals, SVOCs, TPH
	48SS5	0-1	TAL metals, SVOCs, TPH
	48SS6	0-1	TAL metals, SVOCs, TPH
Subsurface Soil	48SB5A19	17-19	SVOCs, TPH
	48SB4B37	35-37	SVOCs, TPH, TOC
	48MW1A22	20-22	SVOCs, TPH
	48MW1B54	52-54	SVOCs, TPH, TOC
	48MW2A42	40-42	SVOCs, TPH
	48MW2B46	44-46	SVOCs, TPH, TOC
	48MW3A22	20-22	SVOCs, TPH
	48MW3B32	30-32	SVOCs, TPH, TOC

Table 2-1, Continued Previous Soil Investigations Environmental Samples and Analyses at SWMUs 48, 49, 50, and 59

Media	Sample ID	Depth (ft bgs)	Analyses
Media	•	1 , 0,	•
	1998 RCRA Fac	cility Investigation	, ICF Kaiser Engineers, Inc.
Subsurface Soil	49SB1A	8-10	TAL metals, VOCs, SVOCs, PAHs,
	1782111	0.10	explosives
	49SB1B	18-24	TAL metals, VOCs, SVOCs, PAHs,
			explosives
	49SB1B2	18-24	VOCs (methanol preservation)
	49SB1C	28-32	TAL metals, VOCs, SVOCs, PAHs,
			explosives
	49SB1C2	28-32	VOCs (methanol preservation)
	49SB1D	38-40	TAL metals, VOCs, SVOCs, PAHs,
	1000100	20.40	explosives
	49SB1D2	38-40	VOCs (methanol preservation)
	49SB1E	48-50	TAL metals, VOCs, SVOCs, PAHs,
			explosives
	49SB1F	58-60	TAL metals, VOCs, SVOCs, PAHs,
	2002 G		explosives
			on, IT Corporation
Surface Soil	49SS01	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans, TOC, grain size, pH
	49SB02A	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans
Subsurface Soil	49SB02B	4–6	TCL PCBs, PAHs, TAL metals, dioxins/furans
	49SB02C	8–10	TCL PCBs, PAHs, TAL metals, dioxins/furans
	49SB02D	17-19	TCL PCBs, PAHs, TAL metals,
			dioxins/furans, TPH, TOC, grain size, pH
	2006 Easte	ern Horseshoe Are	ea GW Sampling, Shaw
Groundwater	48MW1		TCL VOCs, SVOCs, PAHs, pest/PCBs,
			explosives, TAL metals
	48MW2		TCL VOCs, SVOCs, PAHs, pest/PCBs,
			explosives, TAL metals
	48MW3		TCL VOCs, SVOCs, PAHs, pest/PCBs,
			explosives, TAL metals
		SWMU	50
	1992 Verif	fication Investigat	ion, Dames and Moore
Subsurface Soil	50SL1	0-5	VOCs, SVOCs, TCLP metals
	50SL2	0-5	VOCs, SVOCs, TCLP metals
1			,

Table 2-1, Continued Previous Soil Investigations Environmental Samples and Analyses at SWMUs 48, 49, 50, and 59

34 1	g I ID	D (1 (6(1)	A 1
Media	Sample ID	Depth (ft bgs)	Analyses
			ion, IT Corporation
Surface Soil	50SS01	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			TOC, grain size, pH
	50SS02	0-0.5	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	500002	0.05	TAL metals
	50SS03	0–0.5	TCL VOCs, SVOCs, pesticides/PCBs,
-	50CD04A	0-0.5	herbicides, PAHs, explosives, TAL metals TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	50SB04A	0-0.5	TAL metals
-	50SB05A	0-0.5	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	JUSBUJA	0-0.3	TAL metals
Subsurface Soil	50SB04B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
Subsurface Soff	30 5B 0 4B	4-0	TAL metals
	50SB04C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	00020.0	0 10	TAL metals
	50SB05B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
	50SB05C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
	50SB04B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
	50SB04C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
		SWMU	
		fication Investigat	tion, Dames and Moore
Surface Soil	59SS1	0-1	TAL metals, SVOCs
	59SS2	0-1	TAL metals, SVOCs
		Site Characterizati	ion, IT Corporation
Surface Soil	59SS03	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans, TOC, grain size, pH
	59SS04	0-0.5	TAL metals
	59SS05	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
	50CD01 A	0.05	dioxins/furans
	59SB01A	0–0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals, dioxins/furans
Subsurface Soil	50CD01D	1 6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
Subsurface Soft	59SB01B	4–6	TAL metals, dioxins/furans
}	59SB01C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	JASBUIC	0-10	TAL metals, dioxins/furans
			TAL metais, divams/furans

2.3.1 RFA, USATHAMA, 1987

A site-wide assessment was conducted for RFAAP to evaluate potential hazardous waste or hazardous constituent releases and implement corrective actions, as necessary. The assessment consisted of a preliminary review and evaluation of available site information, personnel interviews, and a visual site inspection. Environmental samples were not collected from SWMUs 48, 49, 50, or 59 as part of the inspection.

The assessment indicated that the inactive SWMUs 48, 49, and 50 are contiguous, and no distinction can be made by visual observation. During a site inspection in April 1987, there were no visual signs of release; however, some residue of what appeared to be calcium sulfate was noted. For SWMU 59, the assessment indicated that active storage of bottom ash was occurring.

2.3.2 VI, Dames and Moore, 1992

The VI report was prepared for USATHAMA and covered many RFAAP SWMUs. The objective was to evaluate whether toxic or hazardous contaminants are present and are, or have the potential of, migrating beyond the boundaries of the identified SWMUs. Environmental samples were collected, analyzed for chemical constituents, and evaluated. Recommendations for further study or action (or no further action) were made. Environmental samples collected from the combined study area included:

- Two soil samples from within and two samples below disposed material at SWMU 48, analyzed for target analyte list (TAL) metals, toxicity characteristic leachate procedure (TCLP) metals, VOCs, and semivolatile organic compounds (SVOCs).
- One soil sample from a depth of 20 ft at SWMU 49, analyzed for TAL metals, TCLP metals, VOCs, and SVOCs.
- Two samples of disposed sludge at SWMU 50, analyzed for TCLP metals, VOCs, and SVOCs.
- Two shallow soil samples collected from immediately below bottom ash at SWMU 59, analyzed for TAL metals and SVOCs.

In addition, due to detections of SVOCs in soil and apparent fuel-like odors encountered from 13 to 22 ft in the soil boring from SWMU 49, a subsurface soil gas survey was conducted over a 100 ft x 100 ft area. Eight soil gas samples were collected at 50-foot spacing from a depth of 4 ft bgs and analyzed for pentane/MTBE, benzene, toluene, ethylbenzene, and xylenes. Concentrations were at or below detectable levels.

A summary of VI sampling is included as **Table 2-1**. Positive detections for VI sampling are summarized and screening level exceedances are identified in **Table 2-2**. Soil sampling locations are depicted on **Figure 2-2**. It should be noted that SWMU 49 was not distinguished in the report separately from SWMU 48. The area now considered to be SWMU 49 was sampled and discussed as "the lower disposal area" of SWMU 48. Therefore, samples from SWMU 49 have a "48" prefix.

The VI report concluded that contaminants of concern include:

• Explosive SVOC compounds detected within SWMU 48 that exceed health-based numbers. However, the report also noted that the explosives were not detected in the

Table 2-2 Verification Investigation SWMUs 48, 49, 50, and 59 Detected Soil Results - 1992

SITE ID	C	omparison Crit	eria	48SB1	48SB1	48SB2	48SB2	48SB3	50SL1	50SL2	50SL1	50SL2	59SS1	59SS2
SAMPLING DATE		•	Facility-Wide	19-AUG-91	19-AUG-91	16-AUG-91	16-AUG-91	19-AUG-91						05-MAR-92
DEPTH (ft)	i-RBC	r-RBC	Background	7.5-9.5	13-15	10-12	20-22	18-20	0-5	0-5	0-5	0-5	0-1	0-1
Metals (mg/kg)			8											
Aluminum	na	na	40041	2940	12200	15700	14600	16400	nt	nt	nt	nt	11500	6270
Arsenic	1.9	0.43	15.8	8.19	3.1	4.7	2.75	nd	nt	nt	nt			34
Barium	20000	1600	209	42.5	36.7	52.5	70.8	32.5	nt	nt	nt	nt	190	
Beryllium	200	16	1.02	0.767	1.73	2.15	4.98	2.98	nt	nt	nt			0.736
Calcium	na	na	na	240000	663	9740	198	nd	nt	nt	nt	nt	t 494	785
Chromium	310	23	65.3	7.78	27.3	29.5	31.9	13.2	nt	nt	nt	nt	22	14.4
Cobalt	na	na	72.3	3.01	6.34	11.3	17.9	25.7	nt	nt	nt	nt	10.1	3.03
Copper	4100	310	53.5	10.8	6.87	135	14.6	3	nt	nt	nt	nt	7.08	17
Iron	31000	2300	50962	8550	21200	25800	41600	23700	nt	nt	nt	nt	12700	20600
Lead	800	400	26.8	36.9	nd	154	nd	nd	nt	nt	nt	nt	15.3	30.6
Magnesium	na	na	na	130000	784	3390	763	751	nt	nt	nt	nt	t 523	528
Manganese	2000	160	2543	222	195	278	547	168	nt	nt	nt	nt	2560	38.9
Mercury	31	2.3	0.13	2.6	nd	0.2	nd	nd	nt	nt	nt	nt	t nd	0.575
Nickel	2000	160	62.8	4.91	6.57	25.6	24.5	30.8	nt	nt	nt	nt	t 8.59	6.31
Potassium	na	na	na	327	551	758	934	1890	nt	nt	nt	nt	t 377	530
Selenium	510	39	na	nd	nd	nd	nd	nd	nt	nt	nt	nt	t nd	0.646
Silver	510	39	na	1.03	nd	0.855	nd	nd	nt	nt	nt	nt	t nd	0.701
Sodium	na	na	na	551	372	391	2880	315	nt	nt	nt	nt	167	231
Vanadium	102	7.8	108	8.97	30	34.3	32.9	16.8	nt	nt	nt	nt	t 29.8	25.3
Zinc	31000	2300	202	38.2	23	71.3	29.9	23.9	nt	nt	nt	nt	t 24.4	41.6
Volatile Organics (µg/kg)														
1,1,1-Trichloroethane	29000000	2200000	na	nd	nd	nd	nd	nd	5150	nd	nt	nt	t nt	nt
Chloroform	1000000	78000	na	nd	nd	nd	nd	nd	1720	nd	nt	nt	t nt	nt
Ethylbenzene	10000000	780000	na	nd	nd	nd	nd	47	nd	nd	nt	nt	t nt	nt
Toluene	8200000	630000	na	nd	nd	1	nd		nd	nd	nt	nt	t nt	
Xylene (total)	20000000	1600000	na	nd	nd	nd	nd	252	nd	nd	nt	nt	t n	nt
Semivolatile Organics (µg/kg	3/													
2,4-Dinitrotoluene	200000	16000	na	nd	nd	3220	nd		nd	nd	nt	nt		
2,6-Dinitrotoluene	100000	7800	na	nd	nd	1220	nd	nd	nd	nd	nt	nt	1	
Dinitrotoluene Mix*	4200	940	na	nd	nd	4440	nd		nd	nd	nt	nt	t nd	
2-Methylnaphthalene	410000	31000	na	nd	nd	nd	nd	29200	469	nd	nt	nt	t nd	
Bis(2-Ethylhexyl)phthalate	200000	46000	na	nd	nd	1020	nd	nd	nd	nd	nt	nt	t nd	nd
Di-n-butylphthalate	10000000	780000	na	nd	nd	2940	189		nd	nd	nt	nt	t nd	nd
Fluorene	4100000	310000	na	nd	nd	nd	nd	8490	nd	nd	nt	nt	t nd	nd
Naphthalene	2000000	160000	na	nd	nd	275	nd		432	nd	nt	nt	t nd	
Phenanthrene	3100000	230000	na	208	nd	127	nd		150	nd	nt			
Pyrene	3100000	230000	na	318	nd	nd	nd	nd	nd	nd	nt	nt	t nd	nd
TCLP Metals (µg/L)		TCLP Criter	ia											
Arsenic		5000		293	264	131	289	nd	nt	nt	3.5		1	nt
Barium		100000		nd	nd	nd	nd	nd	nt	nt	140	133	1	nt
Chromium		5000		nd	nd	nd	nd	nd	nt	nt	40.8	22.5		
Lead		5000		30.5	nd	149	nd	nd	nt	nt	67	48	nt nt	nt

^{* &#}x27;Dinitrotoluene mix' RBC values were used for comparison where 2,4- and 2,6-DNT were detected in the same sample

deeper soil sample, indicating that downward migration had not occurred and impact to groundwater was unlikely.

- SVOCs deep in the soil column at SWMU 49 which created the potential for groundwater contamination.
- Metals, specifically arsenic, in coal bottom ash and the underlying soil at SWMU 59.

The report recommended further sampling and/or an RFI to address the source and extent of the contaminants of concern identified.

2.3.3 Draft RFI, Parsons, 1996

The 1996 RFI was performed for the U.S. Army Environmental Command (USAEC) (formerly USATHAMA) to support the Permit for Corrective Action and Incinerator Operation at RFAAP. The RFI was initiated to characterize the nature, extent, and potential migration of releases of hazardous waste or hazardous constituents from SWMUs 17, 31, 48, and 54. However, as with the VI report, sampling and evaluation of SWMU 48 included what is now considered to be SWMU 49. The following investigation activities were performed:

- Collection of six surface soil samples; three from SWMU 48 and three from SWMU 49.
 Samples were analyzed for metals, SVOCs, and total petroleum hydrocarbons (TPH);
 SWMU 48 samples were also analyzed for VOCs and explosives.
- Collection of two subsurface soil samples from each of two soil borings (one boring in SWMU 48 and one boring in SWMU 49). Samples were analyzed for SVOCs and TPH; SWMU 48 samples were also analyzed for VOCs and explosives.
- Collection and analysis of two subsurface soil samples from each of three well borings. Samples were analyzed for SVOCs and TPH.
- Collection and analysis of four groundwater samples from new monitoring wells. Samples were analyzed for metals, VOCs, SVOCs, and TPH.

A summary of sampling for the 1996 RFI is included as **Table 2-1**. Positive detections are summarized and screening level exceedances are identified in **Table 2-3**. Soil sampling locations are depicted on **Figure 2-2**. As with the VI sampling, the area now considered to be SWMU 49 was sampled and discussed as "the lower disposal area" of SWMU 48. Therefore, samples from SWMU 49 have a "48" prefix.

The draft RFI report, submitted in January 1996, included a human health risk assessment (HHRA) and identified the following risk drivers:

- Surface Soil Arsenic and beryllium.
- Subsurface Soil Not considered in the risk assessment because samples were collected from greater than 10 ft bgs.
- Groundwater Beryllium and carbon tetrachloride (CT).

The draft RFI report was never finalized. Further RFI characterization of the site continued in 1998 as discussed in the next section.

Table 2-3 SWMUs 48, 49, 50, and 59 1996 RFI Detected Results in Soil Page 1 of 2

FIELD ID	Co	mparison Crite	eria	48SS1	48SS2	48SS3	48SS4	48SS5	48SS6	48SB4A11	48SB4B21
SAMPLING DATE	i-RBC	r-RBC	Facility-Wide	16-DEC-94	16-DEC-94	16-DEC-94	16-DEC-94	16-DEC-94	16-DEC-94	17-DEC-94	17-DEC-94
DEPTH (ft)	I-KDC	1-KBC	Background	0-1	0-1	0-1	0-1	0-1	0-1	10-11	20-21
Metals (mg/kg)											
Arsenic	1.9	0.43	15.8	4.53	9.78	nd	4.35	nd	4.46	nt	nt
Barium	20000	1600	209	<u>757.62</u>	100.98	125.29	135.39	66.63	139.18	nt	nt
Beryllium	200	16	1.02	2.15	0.91	1.01	nd	0.77	0.87	nt	nt
Chromium	310	23	65.3	7.07	58.65	28.19	17.10	37.45	18.60	nt	nt
Lead	800	400	26.8	5.83	196.32	20.88	25.53	<u>27.19</u>	16.49	nt	nt
Mercury	31	2.3	0.13	1.47	<u>0.54</u>	nd	0.59	0.13	nd	nt	nt
Nickel	2000	160	62.8	8.93	25.4	6.13	7.17	12.73	6.75	nt	nt
Selenium	510	39	na	nd	1.07	nd	0.79	nd	nd	nt	nt
Silver	510	39	na	nd	0.0285	0.0245	0.03	nd	0.03	nt	nt
Volatile Organics (µg/kg)											
				nd	nd	nd	nt	nt	nt	nd	nd
Semivolatile Organics (µg/kg)											
bis(2-Ethylhexyl)phthalate	200000	46000	na	1990	1600	nd	nd	nd	1400	3570	4350
Chrysene	390000	87000	na	110	nd	nd	90	nd	80	nd	nd
Di-n-butylphthalate	10000000	780000	na	nd	12270	nd	nd	nd	nd	nd	7260
Naphthalene	2000000	160000	na	nd	nd	nd	nd	nd	nd	nd	nd
N-Nitrosodiphenylamine	580000	130000	na	nd	nd	nd	nd	nd	nd	1790	2060
Phenanthrene	3100000	230000	na	360	nd	nd	370	nd	330	nd	
Phenol	31000000	2300000	na	nd	nd	nd	nd	nd	nd	nd	nd
Pyrene	3100000	230000	na	nd	nd	nd	nd	nd	nd	nd	nd
Explosives (mg/kg)											
				nd	nd	nd	nt	nt	nt	nd	nd
TPH (mg/kg)		TPH Criteria									
Total petroleum hydrocarbons		100		nd	nd	nd	14	414	nd	nd	nd

Table 2-3 SWMUs 48, 49, 50, and 59 1996 RFI Detected Results in Soil Page 2 of 2

FIELD ID	Co	mparison Crite	eria	48SB5A19	48SB5B37	48MW1A22	48MW1B54	48MW2A42	48MW2B46	48MW3A22	48MW3B32
SAMPLING DATE	i-RBC	r-RBC	Facility-Wide	17-DEC-94	17-DEC-94	17-DEC-94	18-DEC-94	20-DEC-94	20-DEC-94	07-JAN-95	07-JAN-95
DEPTH (ft)	I-KDC	I-KDC	Background	17-19	35-37	20-22	52-54	40-42	44-46	20-22	30-32
Metals (mg/kg)											
Arsenic	1.9	0.43	15.8	nt							
Barium	20000	1600	209	nt							
Beryllium	200	16	1.02	nt							
Chromium	310	23	65.3	nt							
Lead	800	400	26.8	nt							
Mercury	31	2.3	0.13	nt							
Nickel	2000	160	62.8	nt							
Selenium	510	39	na	nt							
Silver	510	39	na	nt							
Volatile Organics (µg/kg)											
				nt							
Semivolatile Organics (µg/kg)											
bis(2-Ethylhexyl)phthalate	200000	46000	na	48600	12330	8140	7170	1960	nd	3770	2490
Chrysene	390000	87000	na	nd							
Di-n-butylphthalate	10000000	780000	na	nd	nd	nd	nd	nd	nd	2310	nd
Naphthalene	2000000	160000	na	24300	nd						
N-Nitrosodiphenylamine	580000	130000	na	nd							
Phenanthrene	3100000	230000	na	12150	nd						
Phenol	31000000	2300000	na	nd	nd	nd	nd	140	nd	nd	nd
Pyrene	3100000	230000	na	970	nd						
Explosives (mg/kg)											
				nt							
TPH (mg/kg)		TPH Criteria									
Total petroleum hydrocarbons		100		4337	nd						

2.3.4 RFI, ICF KE, 1998

The 1998 RFI was performed for the USAEC and included SWMUs 31, 39, 48, 49, and 58. The objective of the 1998 RFI was to further refine the understanding of the nature and extent of contamination associated with previous disposal and/or burial practices. To meet these objectives, the following field tasks were performed for SWMUs 48 and 49:

- Excavation of a test pit to identify waste disposal boundaries.
- Collection of four subsurface soil samples from the floor of the test pit, analyzed for metals, VOCs, SVOCs, and explosives.
- Collection of eleven subsurface soil samples from three soil borings, analyzed for metals, VOCs, SVOCs, and explosives.
- Collection of groundwater samples from the four monitoring wells installed during the 1996 RFI. Samples were analyzed for metals, VOCs, SVOCs, and explosives.

A summary of sampling for the 1998 RFI is included as **Table 2-1**. Positive detections are summarized and screening level exceedances are identified in **Table 2-4**. Soil sampling locations are depicted on **Figure 2-2**.

The analytical results confirmed the previous finding of explosives compounds in the SWMU 48 disposal trenches and confirmed the VOC contamination in groundwater. The draft RFI report was submitted in January 1999, but was never finalized. It recommended additional sampling to further define the nature and extent of contamination. Additional RFI characterization of the site continued in 2002, as presented below.

2.3.5 RFI, Shaw, 2002

Additional RFI characterization of these sites continued in 2002, with an additional round of sample collection. **Table 2-1** presents the depths and analytes for the 2002 samples. Results from these samples are presented in **Table 2-5**.

The preliminary draft RFI utilized the combined data set for the 1992, 1996, 1998, and 2002 investigations to complete an HHRA and a screening level ecological risk assessment (SLERA) for the combined study area. The preliminary draft RFI report was never submitted or finalized. The following discussion summarizes the results of the HHRA and SLERA.

The receptors and media evaluated in the HHRA included maintenance worker exposure to surface soil as the current scenario, and maintenance worker, excavation worker, adult resident, and child resident exposure to total soil (surface and subsurface combined) as the plausible future scenario. Groundwater exposures were not evaluated in the HHRA.

Upper-bound excess lifetime cancer risks and non-cancer Hazard Indices (HIs) were estimated for each receptor. The upper-bound excess lifetime cancer risks can be compared to USEPA's target risk range for health protectiveness at Superfund sites of 1×10^{-6} to 1×10^{-4} (USEPA, 2005). Non-cancer HIs that are less than 1 are not likely to be associated with health risks. The USEPA's directive clarifying the role of HHRA in the Superfund process states that, where the cumulative carcinogenic site risk to an individual based on reasonable maximum exposure for both current and future land use is less than 1×10^{-4} , and the noncarcinogenic HI is less than 1, action generally is not warranted unless there could be adverse environmental effects (USEPA, 1991). The HHRA results for each receptor are summarized below.

Table 2-4 SWMUs 48, 49, 50, and 59 1998 RFI Detected Results in Soil Page 1 of 3

															age 1 of	1.5																
			Sample ID		48SB6				48SB6				48SB6I					B6B2	2		48SB60			48SB6				48SB7A			48SB7A2	
Analyte			Sample Date		3/26/9	8			4/8/98				3/26/98					8/98			3/26/98	3		4/8/9				3/30/98	3		4/9/98	
	i-RBC	r-RBC	Sample Depth		6-7 Lab O Val O	N NOT	MDI I	D. 1/ T.	6-7	MDI A	m n	. T. 1	14-16		MDI	D 4		4-16	MDL MRL	D 1/	1-3	MDI MDI	D . 1/ T	1-3		m n	. 1/ 1 . 1 . 0	8-9	MDL MRI	D . 1/ T .	8-9	MDI MDI
VOCs (ug/kg)	1-KBC	r-RBC	Background	Kesuit	Lab Q Vai Ç	MDL .	MKL	Result La	ib Q Vai C	MDL N	IKL Resu	iit Lab	Q vai Q	MDL	MKL	Result	LabQ	ai Q	MDL MKL	Result	Lab Q Val Q	MDL MR	Result L	ib Q var	Q MDL M	IKL Ke	suit Lab Q	varQ	MDL MRI	Result Lai	Q valQ 1	MDL MKL
2-Butanone	61000000	4700000	na	NT		1 1	П	990	U U	990 9	990 NT	,				850	U	U	850 850	47	U U	47 47	1200	U U	1200 12	200	8 U	U	8 8	940 U	J U	940 940
Acetone	92000000	7000000	na	NT					ВВ	5	5 NT					1000		В	5 5	140	В	5 5		ВВ			8	В	5 5		ВВ	5 5
Benzene	52000	12000	na	17	J	5	5	990	U U	990	990 7	U	U	7	7	850	U	U	850 850	47	U U	47 47	1200	U U	1200 12	200	8 U	U	8 8	940 U	J U	940 940
Ethylbenzene	10000000	780000	na	8	U R	8	8	990	U U	990 9	990 7	U	U	7	7	850	U	U	850 850	490	K	5 5	1200	U U	1200 12	200	8 U	U	8 8	940 U	J U	940 940
Methylene Chloride	380000	85000	na	49	В	5			U U		990 2			5	5	850		U	850 850	48	В	5 5		U U			3 J	В	5 5	7.10		940 940
Toluene	8200000	630000	na	23	J	5			U U		990 7	_		7	7	850		U	850 850	47	U U	47 47		U U				U	8 8	940 U		940 940
Vinyl Chloride o-Xylene	4000 20000000	90 1600000	na na	8	U R U R	8		990 640	U U		5 7		_	7	7	850 850		U U	850 850 850 850	47 770	U U K	47 47 5 5	_	U U			8 U 8 U	U	8 8	940 U		940 940 940 940
PAHs (ug/kg)	20000000	1000000	na	0	UK	ō	o	040	3 3	3	5 /	U	U	/	/	650	U	U	030 030	770	K	3 3	1200	0 0	1200 12	200	0 0	U	0 0	9 4 0 C	, 0	940 940
Anthracene	31000000	2300000	na	2.9	U UL	2.9	2.9	NT			2	U	UL	2	2	NT				2	J J	3.2 3.2	NT			- 2	21 U	U	21 21	NT		
Benzo(a)anthracene	3900	220	na	2.9	U UL			NT			2	_		2	2	NT				5.1		3.2 3.2	NT				21 U	U	21 21	NT		
Benzo(a)pyrene	390	22	na	2.9	U UL	2.9	2.9	NT			2	U	UL	2	2	NT				5.6		3.2 3.2	NT			2	21 U	U	21 21	NT		
Benzo(k)fluoranthene	39000	2200	na	2.9	U UL			NT			2	_	_	2	2	NT				5.4		3.2 3.2	NT				21 U	U	21 21	NT		
Chrysene	390000	22000	na	2.9	U UL			NT			2			2	2	NT				3.2	U U	3.2 3.2	NT				21 U	U	21 21	NT		
Fluoranthene	4100000	310000	na	48	L L			NT			3.9		_	3.9	3.9	NT				8.2	77 77	6.4 6.4	NT				12 U	U	42 42	NT		
Fluorene Indeno(1,2,3-cd)pyrene	4100000 3900	310000 220	na na	5.8 2.9	U UL U UL			NT NT			3.9	_		3.9	3.9	NT NT				6.4	U U	6.4 6.4 3.2 3.2	NT NT				12 U 21 U	U	42 42 21 21	NT NT		_
Naphthalene	2000000	160000	na	2.9	U UL			NT			20		_	20	20	NT				32	U UL	32 32	NT				10 U	UL		NT		
Phenanthrene	3100000	230000	na	2.9	U UL			NT			2	_	_	2	2	NT				8.1	S CL	3.2 3.2	NT				21 U	U	21 21	NT		
Pyrene	3100000	230000	na	25	J			NT			2			2	2	NT				4.6	J	3.2 3.2	NT				21 U	U	21 21	NT		
SVOCs (ug/kg)																																
2-Methylnaphthalene	410000	31000	na	520				NT			450	_		450	450	NT				620	U U	620 620	NT				90 U	U	490 490	NT		
Bis(2-ethylhexyl)phthalate	200000	46000	na	130	J J			NT			450	_		450	450	NT				350	J J	620 620	NT				90 U	U	490 490	NT		
Di-n-butylphthalate Dibenzofuran	10000000	780000	na	360 520	J J U U	520 520		NT NT			450			450 450	450 450	NT NT				33000 620	U U	6200 6200 620 620	NT NT				90 U 90 U	UJ	490 490 490 490	NT NT		
N-nitrosodiphenylamine	na 580000	na 130000	na na	650	0 0			NT			450	_	_	450	450	NT				560	J J	620 620	NT				90 U	UJ	490 490	NT		-
Explosives (mg/kg)	300000	130000	III	050		520	320				450	, .	U	450	450	.,,				500	3 3	020 020	111				<i>y</i> 0 0	03	470 470	111		
1,3,5-Trinitrobenzene	3100	230	na	0.25	U UL	0.25	0.25	NT			0.2	4 U	UL	0.24	0.24	NT				0.25	U UL	0.25 0.25	NT			1	02	L	25 25	NT		
1,3-Dinitrobenzene	10	0.78	na	0.25	U UL	0.25	0.25	NT			0.2	4 U	UL	0.24	0.24	NT				0.25	U UL	0.25 0.25	NT			3	.6	L	0.25 0.25	NT		
2,4,6-Trinitrotoluene	51	3.9	na	0.25	U UL	0.25	0.25	NT			0.2	4 U	UL	0.24	0.24	NT				0.25	U UJ	0.25 0.25	NT			9	35	L	25 25	NT		
2,4-Dinitrotoluene	200	16	na	0.25	U UL	0.25	0.25	NT			0.2	4 U	UL	0.24	0.24	NT				3.8	L	0.25 0.25	NT			0.	.25 U	UL	0.25 0.25	NT		
2,6-Dinitrotoluene	100	7.8	na	0.25	U U	0.25	0.25	NT			0.2	4 U	U	0.24	0.24	NT				1.1	J	0.25 0.25	NT			0.	.25 U	UL	0.25 0.25	NT		
Dinitrotoluene Mix*	4.2	0.94	na																	4.9												
2-Amino-4,6-Dinitrotoluene	200	16	na	0.25	U U			NT			0.2			0.24		NT				0.25	U UL						.25 U	UL	0.25 0.25	NT		
4-Amino-2,6-Dinitrotoluene	200 5100	16	na	0.25	U UL			NT			0.2	_		0.24		NT				0.25	U UL	0.25 0.25					.25 U	UL	0.25 0.25	NT		
HMX Nitrobenzene	5100	390 3.9	na na	0.25	U UL			NT NT			0.2				_	NT NT				0.25	U UL U UL	0.25 0.25 0.25 0.25	NT NT				25 U	UL	0.25 0.25 0.25 0.25	NT NT		_
RDX	26	5.8	na	0.25	U UL			NT			0.2		_	0.24		NT				0.25	U UL	0.25 0.25	NT				25 U	UL	0.25 0.25	NT		-
Tetryl	410	31	na	1.3				NT			1.2	_		1.2	1.2	NT				1.3	U UJ	1.3 1.3	NT				.25 U	UL	0.25 0.25	NT		
Metals (mg/kg)								·																								
Aluminum	na	na	40041	15700		0.95		NT			3420			0.81		NT				11800		1.1 1.1	NT				600		0.88 0.88	NT		
Antimony	41	3.1	na 15.0	1.6	B J	0.79		NT			1.1		J	0.67	_	NT				0.94	U U	0.94 0.94					0.9 B	J	0.73 0.73	NT		
Arsenic	1.9 20000	0.43	15.8	2.8 83.4	T	0.95 0.16		NT NT			5.4 72.		т	0.81		NT NT				5 47	Y	1.1 1.1 0.19 0.19	NT NT				8 11	Y	0.88 0.88 0.15 0.15	NT NT		
Barium Beryllium	20000	1600 16	209 1.02	0.16	U U			NT			0.9				0.13					0.56	B B	0.19 0.19					.69 B	L B			+ +	-
Calcium	na	na	na	35800		3.6		NT			860		IX		3.1					1E+05	ם ם	4.3 4.3					540 B	В	3.4 3.4	NT		
Chromium	310	23	65.3	35.5		0.16		NT			42.				0.13					65.4		0.19 0.19					3.3		0.15 0.15			
Cobalt	na	na	72.3	7.6	B L	0.16		NT			11		L		0.13					4.2	B L	•					2.5	L	0.15 0.15			
Copper	4100	310	53.5	33.3	K			NT			15.				0.13					<u>149</u>		0.19 0.19					5.9	K		NT		
Iron	31000	2300	50962	18100		2.9		NT			3970	00			2.4					11700		3.4 3.4				45	600		2.6 2.6	NT		
Lead	800	400	26.8	<u>59.6</u>		0.32					8	_			0.27					<u>286</u>		0.38 0.38				2:	5.6		0.29 0.29			
Magnesium	na	na	na	4660		4.9		NT			144				4.2					4730		5.8 5.8					310		4.5 4.5			
Manganese	2000	160	2543	148		0.16					342				0.13					123		0.19 0.19					76		0.15 0.15			
Nickel	2000	160	62.8	18.8	K			NT			17.				0.13					39.2		0.19 0.19					4.4		0.15 0.15			_
Potassium Silver	na 510	na 39	na na	2200 0.16	U U	7 0.32		NT NT			0.1		K		5.9 0.27					805 0.38	B K U U	8.3 8.3 0.38 0.38					220 39 B	K J	6.5 6.5 0.29 0.29			
Sodium	na	na	na na	537				NT			180				4					339	B K						11 B	В				-
Thallium	7.2	0.55	2.11	0.79				NT			0.6				0.81					1.1		1.1 1.1					.88 U	U		NT		
Vanadium	102	7.8	108	33	K		0.16	NT			41.				0.13					16.2		0.19 0.19	NT				3.2	K	0.15 0.15	NT		
Zinc	31000	2300	202	54.5	K	0.32	0.32	NT			46.	6	K	0.27	0.27	NT				73.6	K	0.38 0.38	NT			6′	7.1	K	0.29 0.29	NT		
* 'Di-itt-1i-! DDC1																																

^{* &#}x27;Dinitrotoluene mix' RBC values were used for comparison where 2,4- and 2,6-DNT were detected in the same sample.

Table 2-4 SWMUs 48, 49, 50, and 59 1998 RFI Detected Results in Soil Page 2 of 3

														ge 2 or																
			Sample ID	4	48SB7I	3		4	8TP1			48TP2	2			48	TP3			48TP	4		49S	B1A		49SB	1B		49SB1B	.2
Analyte			Sample Date		3/30/98	3			/24/98			3/24/9					24/98			3/24/9				1/98		3/31/			4/9/98	
1211111, 10			Sample Depth		10-11				6-6.5			6-6.5					-6.5	_		6-6.5			8-			18-2			18-24	
NOC (/ /)	i-RBC	r-RBC	Background	Result Lab Q	Val Q	MDL MRI	L Result	Lab Q	Val Q MDI	MRL	Result La	ab Q Val Q	MDL N	MRL R	Result I	Lab Q	/al Q MDL	MRI	Result	Lab Q Val (MDL MRI	Result La	b Q V	al Q MDL MR	L Resul	t Lab Q Val	Q MDL	MRL	Result Lab Q Val Q	MDL MRL
VOCs (ug/kg)	61000000	4700000		6 11	ΤT	6 6	NIT				NT				NT		ı	_	NIT			12		T 5 5	1 11	т.	-	-	780 U U	780 780
2-Butanone Acetone	92000000	7000000	na na	6 U 8	U B	5 5	NT NT				NT NT				NT NT				NT NT			13 97		J 5 5 B 5 5	65	J B	5		780 U U T	780 780
Benzene	52000	12000	na	6 U	U	6 6	11	U	UI 11	11	-	U U	6			U	UJ 7	7	6	U U	6 6	-		UJ 6 6					780 U U	780 780
Ethylbenzene	10000000	780000	na	6 U	U	6 6	11	U	UJ 11	11		U U		6	7		UJ 7	7	6	UU	6 6	28	_	J 5 5	_				1700	5 5
Methylene Chloride	380000	85000	na	6	В	5 5	7	JB	B 5	5	2	J B	5	5	2	J	B 5	5	2	J B	5 5	4 .	J	B 5 5	9	В		5	780 U U	780 780
Toluene	8200000	630000	na	6 U	U	6 6	11	U	UJ 11	11	6	U U	6	6	7	U	UJ 7	7	6	U U	6 6	6 T	JI	UJ 6 6	6	U U	6	6	780 U U	780 780
Vinyl Chloride	4000	90	na	6 U	U	6 6	11	J		11	_	U U		6	7	U	UJ 7	7	6	U U	6 6		JI	UJ <u>6</u> 6					780 U U	
o-Xylene	20000000	1600000	na	6 U	U	6 6	11	U	UJ 11	11	6	U U	6	6	7	U	UJ 7	7	6	UU	6 6	86		J 5 5	200		5	5	710 J J	5 5
PAHs (ug/kg)																														
Anthracene	31000000	2300000	na	1.9 U	U	1.9 1.9		U	U 3	3	2.1	UU	2.1		2.2	U	U 2.2		2.1	U U	2.1 2.1	40 U	J	U 40 40	42		42		NT	
Benzo(a)anthracene	3900	220	na	1.9 U	U	1.9 1.9	_	U	U 3	3		U U			2.2	U	U 2.2			U U	2.1 2.1		J	U 40 40					NT	
Benzo(a)pyrene	390	22	na	1.9 U	U	1.9 1.9	_	U	U 3	3	2.1	U U		_	2.2	U	U 2.2			U U	2.1 2.1	40 U	J	U 40 40					NT	-
Benzo(k)fluoranthene Chrysene	39000 390000	2200 22000	na na	1.9 U 1.9 U	U	1.9 1.9 1.9 1.9	_	U	U 3	3	2.1	U U			2.2	U	U 2.2 U 2.2	2.2	2.1	U U	2.1 2.1 2.1 2.1	40 U	J	U 40 40 U 40 40		U U			NT NT	+ + -
Fluoranthene	4100000	310000	na	3.8 U	U	3.8 3.8		II	U 6	6	1	U U	4.2	_	4.4	II .	U 4.4	_	4.2	UU	4.2 4.2	80 U	_	U 80 80		UU			NT	
Fluorene	4100000	310000	na	3.8 U	U	3.8 3.8	_	U	U 6	6		U U			4.4	U	U 4.4		4.2	UU	4.2 4.2	1600	-	80 80					NT	
Indeno(1,2,3-cd)pyrene	3900	220	na	1.9 U	U	1.9 1.9	_	U	U 3	3		U U			2.2		U 2.2			U U			J	U 40 40					NT	
Naphthalene	2000000	160000	na	19 U	UL	19 19	30	U	U 30	30	21	U U	21	21	22	U	U 22	22	21	U U	21 21	920		L 400 400	2500	L		420	NT	
Phenanthrene	3100000	230000	na	1.9 U	U	1.9 1.9			J 3	3		U U			2.2	U	U 2.2		_	U U				U 40 40					NT	
Pyrene	3100000	230000	na	1.9 U	U	1.9 1.9	3	U	U 3	3	2.1	U U	2.1	2.1	2.2	U	U 2.2	2.2	2.1	U U	2.1 2.1	40 U	J	U 40 40	42	U U	42	42	NT	
SVOCs (ug/kg)																														
2-Methylnaphthalene	410000	31000	na	380 U	U	380 380		U	U 720			U U			440		U 440		430	U U	430 430	16000	,	2000 200					NT	\perp
Bis(2-ethylhexyl)phthalate	200000	46000	na	380 U	U	380 380		U	U 720	720		U U			440	U	U 440		430	U U	430 430			UJ 2000 200					NT	
Di-n-butylphthalate	10000000	780000	na	81 J	J	380 380	_	U	U 720			U U		_			U 440		_		430 430			UJ 2000 200					NT	+
Dibenzofuran N-nitrosodiphenylamine	na 580000	na 130000	na na	380 U 380 U	U	380 380 380 380		U	U 720 U 720			U U			440 440	U	U 440 U 440		430	U U	430 430 430 430	2000 U		U 2000 200 UJ 2000 200					NT NT	
Explosives (mg/kg)	360000	130000	na	380 0	U	300 300	720	U	0 720	720	430	0 0	430 .	430	440	U	0 440	440	430	0 0	430 430	2000	,	03 2000 200	410	0 03	410	410	141	
1,3,5-Trinitrobenzene	3100	230	na	0.53	L	0.25 0.25	1.4		J 0.25	0.25	0.25	U U	0.25	0.25	0.25	U	U 0.25	0.25	0.25	U U	0.25 0.25	0.24 U	1 I	UL 0.24 0.2	4 0.25	U UI	0.25	0.25	NT	
1,3-Dinitrobenzene	10	0.78	na		UL	0.25 0.25	2.7		J 0.25	_		UU			0.25	U		0.25	0.25	UU		-		UL 0.24 0.2					NT	
2,4,6-Trinitrotoluene	51	3.9	na	35.68	I.	1 1	0.25	IJ		0.25		U U		_	0.25	U	U 0.25			U U	0.25 0.25	0.4		L 0.24 0.2				_	NT	
2,4-Dinitrotoluene	200	16	na	0.25 U	UL	0.25 0.25			J 0.25			U U			0.25	U		0.25	_		0.25 0.25		J	UL 0.24 0.2	_				NT	
2,6-Dinitrotoluene	100	7.8	na		UL					0.25		U U						0.25				0.24 U		UL 0.24 0.2		U UI			NT	
Dinitrotoluene Mix*	4.2	0.94	na				8.0																				I			
2-Amino-4,6-Dinitrotoluene	200	16	na	0.25 U	UL	0.25 0.25	0.25	U	U 0.25	0.25	0.25	U U	0.25	0.25	0.25	U	U 0.25	0.25	0.25	U U	0.25 0.25	0.6		L 0.24 0.2	0.25	U UI	0.25	0.25	NT	
4-Amino-2,6-Dinitrotoluene	200	16	na	0.25 U	UL	0.25 0.25	5.5		J 0.25	0.25	0.25	U U	0.25	0.25	0.25	U	U 0.25	0.25	0.25	U U	0.25 0.25	0.24 U	J	UL 0.24 0.2	0.25	U UI	0.25	0.25	NT	
HMX	5100	390	na	0.25 U	UL	0.25 0.25	5.2		J 0.25	0.25	0.25	U U	0.25	0.25 (0.25	U	U 0.25	0.25	0.25	U U	0.25 0.25	0.24 U	JU	UL 0.24 0.2	4 0.25	U UI	0.25	0.25	NT	
Nitrobenzene	51	3.9	na	0.25 U	UL	0.25 0.25	_			0.25		U U	0.25			U		0.25	0.25			_		UL <u>0.24</u> 0.2					NT	
RDX	26	5.8	na	0.25 U	UL	0.25 0.25				0.25		U U	0.25			U		0.25	_				J	UL 0.24 0.2					NT	
Tetryl	410	31	na	0.25 U	UL	0.25 0.25	1.3	U	U 1.3	1.3	1.3	U U	1.3	1.3	1.3	U	U 1.3	1.3	1.3	U U	1.3 1.3	0.72		L 0.24 0.2	4 0.6	L	0.25	0.25	NT	
Metals (mg/kg)	ı	1	100.11	1,5500	1	0.00 0.00	0220	1 1		1.3	45.400		0.75	0.55	0700		0.70	0.70	45000		0.70 0.70	27200		0.72 0.7	1020		0.74	0.74	NITE	
Aluminum	na 41	na 3.1	40041	16500 0.57 U	U	0.69 0.69 0.57 0.57			U 1.1	1.3	1.3	В Ј			1.5	В		0.79			0.78 0.78 0.65 0.65	27300 0.6	J	U 0.6 0.6		0 U U	0.74		NT NT	
Antimony Arsenic	1.9	0.43	na 15.8	3.5	- 0	0.57 0.57	_	U		1.1	4.3	ט ט	0.02 0		4.8	ы		0.00		ы Ј	0.65 0.65	3.2	_	0.72 0.7			0.62		NT	+
Barium	20000	1600	209	49.8	L			В		0.22		T.	0.12		70.6				80.4	L	0.13 0.13	_		L 0.12 0.1			0.12		NT	
Beryllium	200	16	1.02	0.76		0.11 0.11		-		0.22	1	В К		_				0.13			_		3	B 0.12 0.1		J	0.12		NT	
Calcium	na	na	na	984		2.6 2.6			5	5	697						J 3		246		3 3			2.7 2.7		B J		2.8		
Chromium	310	23	65.3	37.4		0.11 0.11			0.22	0.22	28.4		0.12		33		0.13	0.13			0.13 0.13			0.12 0.1			0.12			
Cobalt	na	na	72.3	15	L	0.11 0.11				0.22		L			7.5			0.13		B L	0.13 0.13		3	L 0.12 0.1						
Copper	4100	310	53.5	9.6	В	0.11 0.11				0.22		K			19.7			0.13		K	0.13 0.13			K 0.12 0.1				0.12	NT	
Iron	31000	2300	50962	25300		2.1 2.1	16700)			51100		2.2	2.2 5.	55000		2.4	2.4	54800		2.3 2.3	33600		2.2 2.2			2.2		NT	
Lead	800	400	26.8	9		0.23 0.23	17.8			0.44	17		0.25					0.26			0.26 0.26			0.24 0.2			0.25	0.25	NT	
Magnesium	na	na	na	950		3.6 3.6	442			6.8	2310		3.9					4.1			4 4	1110		3.7 3.7			3.8		NT	
Manganese	2000	160	2543	613		0.11 0.11				0.22			0.12					0.13			0.13 0.13			0.12 0.1			0.12			
Nickel	2000	160	62.8	10.6	K	0.11 0.11				0.22			0.12						22	K				K 0.12 0.1				0.12	NT	\perp
Potassium	na	na	na	909	K	5.1 5.1					2910	K		5.5 2				5.8						K 5.3 5.3						
Silver	510	39	na	0.23 U	U					0.44		U U						0.26						U 0.24 0.2						+
Sodium Thallium	na 7.2	na 0.55	na 2.11	100 B 0.69 U	B U					6.6 1.3	323 1.9	B K			288			0.79						B 3.6 3.6 J 0.72 0.7		U U			NT NT	+ + -
Vanadium	102	7.8	108	23.1		0.09 0.09		U	K 0.22				0.73		100		K 0.13				0.78 0.78			K 0.12 0.1			0.74			+ +
Zinc	31000	2300	202	29		0.23 0.23			K 0.44				0.12		70.2		K 0.26				0.13 0.13			K 0.12 0.1 K 0.24 0.2			0.12			
* 'Dinitrotoluene mix' RRC values					- 11	5.25 0.23	50.7	1	0.77	5.77	55.0	- 12	0.20		. 0.2		-2 0.20	5.20	57.0	K	0.20			0.27 0.2	25.0	IX	5.25			

^{* &#}x27;Dinitrotoluene mix' RBC values were used for comparison where 2,4- and 2,6-DNT were detected in the same sample.

Table 2-4 SWMUs 48, 49, 50, and 59 1998 RFI Detected Results in Soil Page 3 of 3

													rage 3	01.0																		
			Sample ID		4	9SB1C	7			4	9SB1C	2			4	9SB1D)			49	SB1D	2			4	9SB1E	C			498	SB1F	
Analyte			Sample Date			3/31/98					4/9/98					3/31/98					1/9/98					3/31/98	;				31/98	
i i i i i i i i i i i i i i i i i i i			Sample Depth			28-32					28-32					38-40					38-40					48-50					8-60	
NOC (/ /)	i-RBC	r-RBC	Background	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q V	al Q	MDL MRL
VOCs (ug/kg)	61000000	4700000		6	J	T	5	-	770	TT	TT	770	770	6	TT	ΙI	6	6	740	ŢΤ	U	740	740	6	ŢŢ	TT	6	-	6	TT	U	6 6
2-Butanone Acetone	92000000	7000000	na na	6 58	J	J B	5	5	830	U B	U B	770 5	770 5	6 7	U	U B	5	5	1100	U B	В	740 5	740 5	6	U	U B	6 5	5	6	U	В	6 6 5 5
Benzene	52000	12000	na	6	U	UL	6	6	770	U	U	770	770	6	U	U	6	6	740	U	U	740	740	6	U	U	6	6	6		U	6 6
Ethylbenzene	10000000	780000	na	190	E	L	5	5	1100			5	5	6	U	U	6	6	740	U	U	740	740	6	U	U	6	6	6		U	6 6
Methylene Chloride	380000	85000	na	3	J	В	5	5	770	U	U	770	770	3	J	В	5	5	740	U	U	740	740	2	J	В	5	5	5	J	В	5 5
Toluene	8200000	630000	na	6	U	UL	6	6	770	U	U	770	770	6	U	U	6	6	740	U	U	740	740	6	U	U	6	6	6	U	U	6 6
Vinyl Chloride	4000	90	na	6	U	UL	6	6	770	U	U	770	-	6	U	U	6	6	740	U	U	740	740	6	U	U	6	6	6		U	6 6
o-Xylene	20000000	1600000	na	6	U	UL	6	6	770	U	U	770	770	6	U	U	6	6	740	U	U	740	740	6	U	U	6	6	6	U	U	6 6
PAHs (ug/kg)			T.					1			1						1											-				
Anthracene	31000000	2300000	na	21	U	U	21	21	NT					2	U	U	2	2	NT NT					2	U	U	2	2	2	U	U	2 2
Benzo(a)anthracene Benzo(a)pyrene	3900 390	220 22	na na	21 21	U	U	21 21	21	NT NT					2	U	U	2	2	NT					2	U	U	2	2	0.66		U	2 2
Benzo(k)fluoranthene	39000	2200	na	21	U	U	21	21	NT					2	U	U	2	2	NT					2	U	U	2	2	2		U	2 2
Chrysene	390000	22000	na	21	U	U	21	21	NT					2	U	U	2	2	NT					2	U	U	2	2	2		U	2 2
Fluoranthene	4100000	310000	na	41	U	U	41	41	NT					3.9	U	U	3.9	3.9	NT					3.9	U	U	3.9	3.9	3.9			3.9 3.9
Fluorene	4100000	310000	na	680			41	41	NT					11			3.9	3.9	NT					3.9	U	U	3.9	3.9	3.9	U	U	3.9 3.9
Indeno(1,2,3-cd)pyrene	3900	220	na	21	U	U	21	21	NT					2	U	U	2	2	NT					2	U	U	2	2	2		U	2 2
Naphthalene	2000000	160000	na	1500	* *	L	210	210	NT					20	U	UL	20	20	NT					20	U	UL	20	20	20			20 20
Phenanthrene	3100000	230000	na	21	U	U	21	21	NT					2	U	U	2	2	NT					2.9	**	TT	2	2	1.8	-	J	2 2
Pyrene SVOCs (ug/kg)	3100000	230000	na	21	U	U	21	21	NT					2	U	U	2	2	NT					2	U	U	2	2	2	U	U	2 2
2-Methylnaphthalene	410000	31000	na	11000			2000	2000	NT					390	U	U	390	390	NT					400	U	U	400	400	400	U	U	400 400
Bis(2-ethylhexyl)phthalate	200000	46000	na	410	U	U	410	410	NT					390	U	U	390	390	NT					64	J	J	400	400	400			400 400
Di-n-butylphthalate	10000000	780000	na	410	U	UJ	410	410	NT					390	U	U	390	390	NT					400	U	U	400	400	400			400 400
Dibenzofuran	na	na	na	410	U	U	410	410	NT					390	U	U	390	390	NT					400	U	U	400	400	400	U	U	400 400
N-nitrosodiphenylamine	580000	130000	na	410	U	UJ	410	410	NT					390	U	U	390	390	NT					400	U	U	400	400	400	U	U	400 400
Explosives (mg/kg)																																
1,3,5-Trinitrobenzene	3100	230	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25			0.25 0.25
1,3-Dinitrobenzene	10	0.78	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL		0.24	0.25		_	0.25 0.25
2,4,6-Trinitrotoluene	51	3.9	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25			0.25 0.25
2,4-Dinitrotoluene	200	16	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25			0.25 0.25
2,6-Dinitrotoluene	100	7.8	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25	U	UL	0.25 0.25
Dinitrotoluene Mix*	4.2	0.94	na	0.24	**	Y 7Y	0.24	0.24	NTT	1		1		0.24	**	T 17	0.24	0.24	NTT					0.24	* *	T TT	0.24	0.24	0.25	**	T 17	0.25 0.25
2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene	200 200	16 16	na na	0.24	U	UL	0.24	0.24	NT NT					0.24	U	UL	0.24	0.24	NT NT					0.24	U	UL	0.24	0.24	0.25			0.25 0.25 0.25 0.25
HMX	5100	390	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25			0.25 0.25
Nitrobenzene	51	3.9	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25			0.25 0.25
RDX	26	5.8	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25		_	0.25 0.25
Tetryl	410	31	na	0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	NT					0.24	U	UL	0.24	0.24	0.25	U	UL (0.25 0.25
Metals (mg/kg)																																
Aluminum	na	na	40041	22700	_		0.72	0.72	NT					19900		_	0.69	0.69	NT					14800			0.71	0.71	13000			0.7 0.7
Antimony	41 1.9	3.1	na 15.0	0.87	В	J	0.6	0.6	NT					0.75	В	J	0.58	0.58	NT					0.85	В	J	0.59	0.59	0.68	В		0.58 0.58
Arsenic Barium	20000	0.43 1600	15.8 209	3.8 53.4		L	0.72 0.12	0.72	NT NT					3.9 54.6		ĭ	0.69	0.69	NT NT					4.2 63.4		L		0.71	2.8 82	-+		0.7 0.7 0.12 0.12
Beryllium	2000	16	1.02	3		J	0.12	0.12	NT					1.6		J		0.12	NT					1.1		J		0.12	0.84	+		0.12 0.12
Calcium	na	na	na	771			2.8	2.8	NT					592			2.7	2.7	NT					1780			2.7	2.7	1710			2.7 2.7
Chromium	310	23	65.3	27.5			0.12	0.12	NT					35.3			0.12	0.12	NT					27.3				0.12	25.4			0.12 0.12
Cobalt	na	na	72.3	27.1		L	0.12	0.12	NT					22.3		L	0.12	0.12	NT					12.3		L	0.12	0.12	29		L	0.12 0.12
Copper	4100	310	53.5	7.6		J	0.12	0.12	NT					14.5		K	0.12	0.12	NT					12.6		В	0.12	0.12	37.5		K	0.12 0.12
Iron	31000	2300	50962	43000			2.2	2.2	NT					39000			2.1	2.1	NT					37700			2.1	2.1	33700			2.1 2.1
Lead	800	400	26.8	5.5			0.24	0.24	NT					6.9			0.23	0.23	NT					3			0.24	0.24	4.5			0.23 0.23
Magnesium	na	na	na	9610			3.7	3.7	NT					8640			3.6	3.6	NT					10300			3.7	3.7	9820			3.6 3.6
Manganese	2000	160	2543	449		**	0.12	0.12	NT					271		17		0.12	NT					532		17		0.12	421			0.12 0.12
Nickel Potassium	2000	160	62.8	48.2 2900		K K	0.12 5.3	0.12	NT NT					54.1 1950		K K	0.12	0.12	NT NT					42.7 1000		K K	0.12 5.2	<i>0.12 5.2</i>	45.1 1360			0.12 0.12 5.1 5.1
Potassium Silver	na 510	na 39	na na	0.24	U	U	0.24	5.3 0.24	NT					0.23	U	U	5.1 0.23	5.1 0.23	NT					0.24	U	U		0.24	0.23			5.1 5.1 0.23 0.23
Sodium	na	na	na	188	В	В	3.6	3.6	NT					122	В	В	3.5	3.5	NT					113	В	В	3.6	3.6	116			3.5 3.5
Thallium	7.2	0.55	2.11	0.72		U	0.72	0.72	NT					0.69	U	U		0.69	NT					0.93	В	J	0.71		0.7			0.7 0.7
Vanadium	102	7.8	108	21		K	0.12	0.12	NT					18.8		K		0.12						22.3		K	0.12		14.3			0.12 0.12
Zinc	31000	2300	202	28.7		K	0.24	0.24	NT					15.8		K	0.23	0.23	NT					17.2		K	0.24	0.24	13.3		K	0.23 0.23

^{* &#}x27;Dinitrotoluene mix' RBC values were used for comparison where 2,4- and 2,6-DNT were detected in the same sample.

Table 2-5a Analytes Detected in SWMU 48 Soil - 2002 RFI

			Sample ID	48	SSB08A	48SB08B	48SB08C	48SB09A	48SB09B	48SB09C	48SB10A	48SB10B	48SB10C
Analyte			Sample Date	6	5/24/02 0-0.5	6/24/02 4-6	6/24/02 8-10	6/24/02 0-0,5	6/24/02 4-6	6/24/02 8-10	6/24/02 0-0.5	6/24/02 4-6	6/24/02 8-10
	i-RBC		Background	Result Lab Q V			Result Lab Q Val Q MDL MRL	Result Lab Q Val Q MDL MRL	Result Lab Q Val Q MDL MRL				
VOCs (ug/kg) Acetone	92000000	7000000	na	26	B 2.2 4.9	5.6 U UJ 2.5 5.6	5.4 U UJ 2.4 5.4	NT	NT	NT	4.8 U UJ 2.1 4.8	5.4 U UJ 2.4 5.4	5.6 U UJ 2.5 5.6
Toluene	8200000	630000	na		B 2.2 4.9 B 0.32 4.9		5.4 U 0.35 5.4	NT NT	NT	NT	4.8 U 0.31 4.8	5.4 U 0.35 5.4	5.6 U 0.36 5.6
PAHs (ug/kg)	410000	21000		2.5	B 0.50 1.0			NW.	NW.	L NW			0.05
2-Methylnaphthalene Anthracene	410000 31000000	31000 2300000	na na	2.5 1.9 U	B 0.63 1.9 0.2 1.9		0.89 J B 0.69 2.1 2.1 U 0.23 2.1	NT NT	NT NT	NT NT	9.6 0.61 1.8 0.71 J J 0.2 1.8	2 U 0.69 2 2 U 0.22 2	0.95 J B 0.71 2.1 2.1 U 0.23 2.1
Benzo(a)anthracene	3900	220	na	4.4	0.25 1.9		2.1 U 0.27 2.1	NT	NT	NT	2.9 0.24 1.8	2 U 0.27 2	2.1 U 0.28 2.1
Benzo(a)pyrene Benzo(b)fluoranthene	390 3900	22	na na	7.9	0.21 1.9 0.35 1.9		2.1 U 0.23 2.1 2.1 U 0.39 2.1	NT NT	NT NT	NT NT	2.4 0.2 1.8 4.7 0.34 1.8	2 U 0.23 2 2 U 0.39 2	2.1 U 0.24 2.1 2.1 U 0.4 2.1
Benzo(g,h,i)perylene	3100000	230000	na	2.4	0.66 1.9	2.1 U 0.74 2.1	2.1 U 0.72 2.1	NT	NT	NT	1.4 J J 0.63 1.8	2 U 0.72 2	2.1 U 0.74 2.1
Benzo(k)fluoranthene Chrysene	39000 390000	2200	na na	4.7	0.33 1.9 0.3 1.9		2.1 U 0.36 2.1 2.1 U 0.33 2.1	NT NT	NT NT	NT NT	1.5 J J 0.31 1.8 4.6 0.29 1.8	2 U 0.36 2 2 U 0.33 2	2.1 U 0.37 2.1 2.1 U 0.34 2.1
Dibenz(a,h)Anthracene	390	22	na	1.9 U	0.64 1.9		2.1 U 0.7 2.1	NT	NT	NT	0.74 J J 0.61 1.8	2 U 0.69 2	2.1 U 0.72 2.1
Fluoranthene	4100000 4100000	310000 310000	na na	9.8 1.9 U	0.32 1.9 0.5 1.9		2.1 U 0.35 2.1 2.1 U 0.55 2.1	NT NT	NT NT	NT NT	6.3 0.31 1.8 1.1 J J 0.48 1.8	2 U 0.35 2 2 U 0.54 2	2.1 U 0.36 2.1 2.1 U 0.56 2.1
Fluorene Indeno(1,2,3-cd)pyrene	3900	220	na	2.9	0.6 1.9		2.1 U 0.66 2.1	NT	NT	NT	1.6 J J 0.58 1.8	2 U 0.65 2	2.1 U 0.68 2.1
Naphthalene	2000000	160000	na		B 0.72 1.9		1.5 JB B 0.79 2.1	NT NT	NT NE	NT	6.7 B 0.7 1.8	1.2 JB B 0.79 2	1.6 JB B 0.82 2.1
Phenanthrene Pyrene	3100000	230000 230000	na na	7.6 9.5	0.29 1.9 0.42 1.9		2.1 U 0.31 2.1 2.1 U 0.46 2.1	NT NT	NT NT	NT NT	18 0.28 1.8 8.2 0.41 1.8	2 U 0.31 2 2 U 0.46 2	2.1 U 0.32 2.1 2.1 U 0.48 2.1
SVOCs (ug/kg)													
Bis(2-ethylhexyl)phthalate Fluoranthene	200000 4100000	46000 310000	na na	190 U 11 J	J 6.1 190		210 U 14 210 210 U 6.7 210	NT NT	NT NT	NT NT	130 J B 12 180 7.9 J J 5.9 180	200 U 14 200 200 U 6.6 200	210 U 14 210 210 U 6.9 210
Phenanthrene	3100000	230000	na	10 J	J 5.8 190	210 U 6.5 210	210 U 6.4 210	NT	NT	NT	13 J J 5.6 180	200 U 6.3 200	210 U 6.5 210
Pyrene Posticides (no/les)	3100000	230000	na	7.9 J	J 5.7 190	210 U 6.4 210	210 U 6.2 210	NT	NT	NT	8.1 J J 5.5 180	200 U 6.2 200	210 U 6.4 210
Pesticides (ug/kg) 4,4'-DDD	12000	2700	na	0.389 J	J 0.155 0.733	3 NT	NT	NT	NT	NT	0.347 J J 0.15 0.708	NT	NT
4,4'-DDE	8400	1900	na	0.462 BJ	B 0.154 0.733	3 NT	NT	NT	NT	NT	0.525 BJ B 0.149 0.708	NT	NT
4,4'-DDT Endosulfan II	8400 610000	1900 47000	na na	0.733 U 0.733 U	0.259 0.733 0.262 0.733		NT NT	NT NT	NT NT	NT NT	2.31 0.251 0.708 0.418 J J 0.253 0.708	NT NT	NT NT
Endrin aldehyde	na	na	na	0.733 U	0.37 0.733	3 NT	NT	NT	NT	NT	0.55 J J 0.358 0.708	NT NT	NT
Methoxychlor PCBs (mg/kg)	510000	39000	na	0.567 J	J 0.559 0.733	3 NT	NT	NT	NT	NT	0.708 U 0.54 0.708	NT	NT
PCB-1254	1.4	0.16	na	0.0366 U	UJ 0.0108 0.036	6 0.0415 U UJ 0.0122 0.0415	0.0403 U UJ 0.0119 0.0403	NT	NT	NT	0.0769 J 0.0104 0.0354	0.04 U UJ 0.0118 0.04	0.0415 U UJ 0.0122 0.0415
Explosives (mg/kg)	•												
Nitroglycerine Herbicides (ug/kg)	None detect	130	na	0.12 J	J 0.11 0.33	0.374 U 0.124 0.374	0.363 U 0.121 0.363	0.324 U 0.108 0.324	0.382 U 0.127 0.382	0.389 U 0.129 0.389	0.15 J J 0.106 0.318	0.36 U 0.12 0.36	0.374 U 0.124 0.374
Metals (mg/kg)	rone detect	cu											
Aluminum Antimony	na 41	na 3.1	40041	12600 U I	6.1 22 JL 0.19 0.549		22500 6.7 24.2 0.605 U UL 0.2 0.605	NT NT	NT NT	NT NT	10900 5.9 21.2 0.531 U UL 0.18 0.531	24200 6.6 24 0.6 U UL 0.2 0.6	24100 6.9 24.9 0.623 U UL 0.21 0.623
Arsenic	1.9	0.43	na 15.8		L 0.38 0.549		0.846 L 0.42 0.605	NT NT	NT NT	NT NT	2.62 L 0.37 0.531	0.6 U UL 0.42 0.6	0.623 U UL 0.44 0.623
Barium	20000	1600	209	102	0.37 2.2		29.4 0.4 2.42	NT	NT	NT	73.3 0.36 2.12	164 0.4 2.4	63.4 0.42 2.49
Beryllium Calcium	200 na	16 na	1.02 na	0.73 415	J 3.1 11		0.701 0.0418 0.605 81.7 J 3.4 12.1	NT NT	NT NT	NT NT	0.44 B J 0.0366 0.531 15900 J 3 10.6	0.745 0.0414 0.6 26.8 B 3.4 12	1 0.043 0.623 16.8 B 3.5 12.5
Chromium	310	23	65.3	27.5	0.41 1.1	36.1 0.47 1.25	27.2 0.45 1.21	NT	NT	NT	30.7 0.4 1.06	17.6 0.45 1.2	27.6 0.47 1.25
Cobalt Copper	na 4100	na 310	72.3 53.5	10.3 5.39	J 0.89 5.49 0.68 2.2		4.6 B J 0.98 6.05 8.03 0.75 2.42	NT NT	NT NT	NT NT	5.98 J 0.86 5.31 6.59 0.66 2.12	58.2 J 0.97 6 13.7 0.74 2.4	18.6 J 1 6.23 15.7 0.77 2.49
Iron	31000	2300	50962	15500	J 3.7 5.49		27500 J 4.1 6.05	NT	NT	NT	12100 J 3.6 5.31	81800 J 4 6	61400 J 4.2 6.23
Lead	800	400	26.8	18.7 587	0.033 0.33		4.89 0.037 0.363 832 J 2.9 12.1	NT NT	NT NT	NT NT	17 0.032 0.318 1640 J 2.5 10.6	19.9 0.036 0.36 1040 J 2.8 12	10.5 0.038 0.374 1480 J 2.9 12.5
Magnesium Manganese	na 2000	na 160	na 2543	998	J 2.6 11 J 0.061 1.1		832 J 2.9 12.1 122 J 0.068 1.21	NT NT	NT NT	NT NT	1640 J 2.5 10.6 248 J 0.059 1.06	1040 J 2.8 12 2070 J 0.067 1.2	1480 J 2.9 12.5 508 J 0.07 1.25
Mercury	31	2.3	0.13	0.00	J 0.0218 0.054		0.033 B J 0.024 0.0605	NT NT	NT NT	NT	0.037 B J 0.021 0.0531	0.047 B J 0.0238 0.06	0.0623 U 0.0247 0.0623
Nickel Potassium	2000 na	160 na	62.8 na	7.16 673	J 1 4.4 37 330		7.85 J 1.1 4.84 1490 40 363	NT NT	NT NT	NT NT	5.54 J 0.97 4.25 642 36 318	11.3 J 1.1 4.8 1280 40 360	13 J 1.1 4.98 1720 42 374
Silver	510	39	na	1.1 U	0.54 1.1		1.21 U 0.6 1.21	NT	NT	NT	1.06 U 0.52 1.06	1.2 B B 0.59 1.2	0.87 B B 0.61 1.25
Sodium Thallium	na 7.2	na 0.55	na 2.11		B 4.1 22 J 0.033 0.33		14 B B 4.5 24.2 0.097 B J 0.036 0.363	NT NT	NT NT	NT NT	19 B B 4 21.2 0.14 B J 0.032 0.318	19 B B 4.5 24 0.27 B J 0.036 0.36	16 B B 4.7 24.9 0.21 B J 0.038 0.374
Vanadium	102	7.8	108	32.6	J 0.64 5.49	73.3 J 0.72 6.23	23.8 J 0.7 6.05	NT	NT	NT	30.8 J 0.61 5.31	55.9 J 0.69 6	63.7 J 0.72 6.23
Zinc Dioxins/Furans (ng/kg)	31000	2300	202	23.8	J 0.39 2.2	42.9 J 0.45 2.49	29 J 0.43 2.42	NT	NT	NT	24.4 J 0.38 2.12	42.2 J 0.43 2.4	53.9 J 0.45 2.49
2,3,7,8-TCDF	na	na	na	0.239	0.105 0.19	0.032 U 0.032 0.19	0.036 U 0.036 0.19	0.034 U 0.034 0.19	0.033 U 0.033 0.19	0.028 U 0.028 0.19		0.04 U 0.04 0.19	0.028 U 0.028 0.19
2,3,7,8-TCDD	19	4.3	na	0.136 X			0.054 U 0.054 0.13		0.049 U 0.049 0.13	0.052 U 0.052 0.13	0.366 X J 0.043 0.13	0.078 U 0.078 0.13	0.05 U 0.05 0.13
1,2,3,7,8-PECDD 1,2,3,4,7,8-HXCDD	na na	na na	na na	0.614 2.33	0.086 0.19 0.095 0.53		0.064 U 0.064 0.19 0.081 U 0.081 0.53	0.096 U 0.096 0.19 0.36 X J 0.079 0.53			0.869 0.081 0.19 2.622 0.09 0.53	0.103 U 0.103 0.19 0.11 U 0.11 0.53	0.057 U 0.057 0.19 0.067 U 0.067 0.53
1,2,3,6,7,8-HXCDD	na	na	na	4.764	0.077 0.57	U 0.068 U 0.068 0.57	0.065 U 0.065 0.57	0.544 0.063 0.57	0.057 U 0.057 0.57	0.049 U 0.049 0.57	6.14 0.073 0.57	0.089 U 0.089 0.57	0.054 U 0.054 0.57
1,2,3,7,8,9-HXCDD 1,2,3,4,6,7,8-HPCDD	460 na	100 na	na na	4.651 132	0.082 0.68 0.173 0.63			0.701 0.065 0.68 21.48 0.091 0.63	0.284 0.059 0.68 7.573 0.09 0.63		5.901 0.076 0.68 159 0.111 0.63	0.091 U 0.091 0.68 2.766 0.115 0.63	0.055 U 0.055 0.68 7.592 0.08 0.63
OCDD	na	na	na	1527 B	0.091 6.86	286.1 B 0.061 6.86	649.2 B 0.063 6.86	1155 B 0.046 6.86	1944 B 0.039 6.86	302.8 B 0.05 6.86	3244 B 0.057 6.86	422.5 B 0.098 6.86	1408 B 0.039 6.86
1,2,3,7,8-PECDF 2,3,4,7,8-PECDF	na na	na na	na na	0.248 0.192	0.058 0.28 0.062 0.56		0.048 U 0.048 0.28 0.053 U 0.053 0.56	0.039 U 0.039 0.28 0.043 U 0.043 0.56				0.06 U 0.06 0.28 0.066 U 0.066 0.56	0.038 U 0.038 0.28 0.042 U 0.042 0.56
1,2,3,4,7,8-HXCDF	na na	na na	na	0.976	0.058 0.34	0.051 U 0.051 0.34	0.052 U 0.052 0.34	0.211 0.049 0.34	0.045 U 0.045 0.34	0.035 U 0.035 0.34	1.088 0.06 0.34	0.058 U 0.058 0.34	0.04 U 0.04 0.34
1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	na	na	na	4.151 I 0.452	J 0.055 0.49 0.07 0.47		0.051 U 0.051 0.49 0.064 U 0.064 0.47	0.428 I J 0.048 0.49 0.06 U 0.06 0.47	0.044 U 0.044 0.49 0.055 U 0.055 0.47			0.057 U 0.057 0.49 0.071 U 0.071 0.47	0.038 U 0.038 0.49 0.048 U 0.048 0.47
2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	na na	na na	na na	0.452 0.078 U	0.078 0.25		0.064 U 0.064 0.47 0.068 U 0.068 0.25		0.055 U 0.055 0.47 0.059 U 0.059 0.25			0.071 U 0.071 0.47 0.076 U 0.076 0.25	0.048 U 0.048 0.47 0.052 U 0.052 0.25
1,2,3,4,6,7,8-HPCDF	na	na	na	21.56	0.098 0.33	0.281 0.031 0.33	0.045 U 0.045 0.33	2.581 0.04 0.33	0.38 0.035 0.33	0.083 X J 0.031 0.33	27.16 0.089 0.33	0.066 U 0.066 0.33	0.125 X J 0.029 0.33
1,2,3,4,7,8,9-HPCDF OCDF	na na	na na	na na	1.254 67.39 B	0.141 0.5 0.078 0.79		0.061 U 0.061 0.5 0.333 B B 0.048 0.79	0.054 U 0.054 0.5 6.751 B 0.064 0.79	0.048 U 0.048 0.5 0.915 B B 0.036 0.79	0.042 U 0.042 0.5 0.279 B B 0.038 0.79	1.09 0.121 0.5 86.22 B 0.052 0.79	0.09 U 0.09 0.5 0.252 B B 0.074 0.79	0.04 U 0.04 0.5 0.238 B B 0.029 0.79
TOTAL TCDD	na	na	na	0.52	0.067	0.047 U 0.047	0.054 U 0.054	0.036 U 0.036	0.049 U 0.049	0.052 U 0.052	0.648 0.043	0.078 U 0.078	0.05 U 0.05
TOTAL PECDD TOTAL HXCDD	na na	na na	na na	0.614 35.61	0.086	0.055 U 0.055 0.068 U 0.068	0.064 U 0.064 0.065 U 0.065	0.096 U 0.096 1.244 0.063	0.073 U 0.073 1.346 0.057	0.057 U 0.057 0.049 U 0.049	0.869 0.081 38.29 0.073	0.103 U 0.103 0.089 U 0.089	0.057 U 0.057 0.054 U 0.054
TOTAL HXCDD	na na	na na	na na	225.9	0.077	4.582 0.073	3.357 0.098	43.53 0.091	15.46 0.057	3.203 0.052	269.4 0.111	6.227 0.115	14.09 0.08
TOTAL TCDF	na	na	na	0.664	0.039	0.032 U 0.032	0.036 U 0.036	0.034 U 0.034	0.033 U 0.033	0.028 U 0.028	0.674 0.038	0.04 U 0.04	0.028 U 0.028
TOTAL PECDF TOTAL HXCDF	na na	na na	na na	3.237 24.39	0.058 0.055	0.04 U 0.04 0.05 U 0.05	0.048 U 0.048 0.051 U 0.051	0.172 0.039 2.199 0.048	0.047 U 0.047 0.044 U 0.044	0.036 U 0.036 0.034 U 0.034	5.03 0.045 22.85 0.058	0.06 U 0.06 0.057 U 0.057	0.038 U 0.038 0.038 U 0.038
TOTAL HPCDF	na	na	na	62.46	0.098	0.751 0.031	0.045 U 0.045	6.227 0.04	0.843 0.035	0.031 U 0.031	79.41 0.089	0.066 U 0.066	0.029 U 0.029
TCDD TE	19	4.3	na	4.330		0.2299	0.2784	0.7531	0.4892	0.2110	12.47	0.3477	0.3865

Table 2-5b Analytes Detected in SWMU 49 Soil - 2002 RFI

Analyte			Sample ID Sample Date Sample Depth			49SS 6/24 0-0	/02 .5				49SB 6/24 0-0	/02 .5				49SB0 6/24/0 4-6)2				49SB0 6/24/ 8-1	02 0				49SB0 6/24/0 17-19	02 9	
VOCs (ug/kg)	i-RBC	r-RBC	Background	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
Acetone Acetone	92000000	7000000	na	100		В	2.5	5.5	5.2	U	UJ	2.3	5.2	NT					NT					NT				
PAHs (ug/kg)					,		1			,		1			,		1											
2-Methylnaphthalene Acenaphthene	410000 6100000	31000 470000	na	5.1 1.9	U	В	0.63	1.9 1.9	2	U	В	0.67	2	2 15	U	В	0.68	2	12000 1100			0.73 1.2	2.2	11000 720			0.69	2
Acenaphthylene	3100000	230000	na na	1.9	U		0.25	1.9	2	U		0.26	2	7.1		ь	0.27	2	290			0.29	2.2	210			0.27	2
Anthracene	31000000	2300000	na	1	J	J	0.21	1.9	2	U		0.22	2	3.4			0.22	2	480			0.24	2.2	130			0.22	2
Benzo(a)anthracene	3900	220	na	6.1			0.25	1.9	2	U		0.26	2	1.5	J	J	0.27	2	34			0.29	2.2	2	U		0.27	2
Benzo(a)pyrene	390	22	na	4.9			0.21	1.9	2	U		0.22	2	1.3	J	J	0.23	2	2.2	U		0.24	2.2	2	U		0.23	2
Benzo(b)fluoranthene Benzo(g,h,i)perylene	3900 3100000	220 230000	na na	9.9			0.36	1.9 1.9	2	U		0.38	2	1.8	J	J	0.39	2	2.2	U		0.41	2.2	2	U		0.39	2
Benzo(k)fluoranthene	39000	2200	na	4.2			0.33	1.9	2	U		0.34	2	0.96	J	J	0.35	2	2.2	U		0.38	2.2	2	U		0.35	2
Chrysene	390000	22000	na	6.6			0.3	1.9	1.1	J	J	0.32	2	6.6			0.32	2	68			0.35	2.2	2	U		0.32	2
Dibenz(a,h)Anthracene	390	22	na	2.3			0.64	1.9	2	U		0.67	2	2	U		0.69	2	2.2	U		0.74	2.2	2	U		0.69	2
Fluoranthene Fluorene	4100000 4100000	310000 310000	na na	1.5	J	J	0.32	1.9 1.9	1.3	J U	J	0.34	2	16 2	U		0.35	2	120 1400		J	0.37	2.2	35 1200			0.35	2
Indeno(1,2,3-cd)pyrene	3900	220	na	3.4	,	,	0.6	1.9	2	U		0.63	2	2	U		0.65	2	2.2	U	,	0.69	2.2	2	U		0.65	2
Naphthalene	2000000	160000	na	3.8	В	В	0.73	1.9	2.6	В	В	0.76	2	1.7	JB	В	0.78	2	2100	В		0.84	2.2	1800	В		0.79	2
Phenanthrene	3100000	230000	na	14	**		0.29	1.9	2.6			0.3	2	14			0.31	2	4900			0.33	2.2	2400			0.31	2
Pyrene SVOCs (ug/kg)	3100000	230000	na	1.9	U		0.42	1.9	1.1	J	J	0.45	2	32			0.46	2	360			0.49	2.2	150			0.46	2
Benzoic acid	410000000	31000000	na	210	J	В	130	920	970	U		130	970	NT					NT	1				NT				
Fluoranthene	41000000	3100000	na	13	J	J	6.1	190	200	U		6.4	200	NT					NT					NT				
Phenanthrene	3100000	230000	na	13	J	J	5.8	190	200	U		6.1	200	NT					NT					NT				
Pyrene Posticides (ve/les)	3100000	230000	na	10	J	J	5.7	190	200	U		6	200	NT					NT					NT				
Pesticides (ug/kg) 4,4'-DDD	12000	2700	no	1.01			0.156	0.738	0.776	U		0.164	0.776	NT			1		NT	1				NT		1 1		
4,4'-DDE	8400	1900	na na	0.344	BJ	В	0.156	0.738	0.776	U		0.163	0.776	NT NT					NT					NT				
delta-BHC	na	na	na	0.738	U		0.128	0.738	0.687	BJ	В	0.135	0.776	NT					NT					NT				
Dieldrin	180	40	na	0.738	U		0.454	0.738	9.45		K	0.477	0.776	NT					NT					NT				
Endosulfan II	610000	47000	na	0.738	U		0.263	0.738	7.22			0.277	0.776	NT					NT					NT				
Endosulfan sulfate Endrin aldehyde	na na	na na	na na	0.738	U	J	0.232	0.738 0.738	6.64 0.776	U		0.244	0.776 0.776	NT NT					NT NT					NT NT				
Endrin	31000	2300	na	0.757		,	0.177	0.738	0.776	U		0.186	0.776	NT					NT					NT				
PCBs (mg/kg)														_														
PCB-1232	1.4	0.32	na	0.0368	U	UJ	0.0205	0.0368	0.0388	U	UJ	0.0215	0.0388	9.23		J	0.221	0.398	0.708		J	0.0236	0.0424	0.0399	U	UJ	0.0222	0.0399
	None detected																											
Herbicides (ug/kg)																												
	None detected																											
Metals (mg/kg)		na	40041	10200			6.1	22.1	28900			6.4	23.3	28200			6.6	23.9	33700			7	25.5	22100			6.6	24
	na 1.9	na 0.43	40041 15.8	10200 0.52	В	L	6.1 0.39	22.1 0.553	28900 0.771		L	6.4 0.41	23.3 0.582	28200 0.597	U	UL	6.6 0.42	23.9 0.597	33700 0.51	В	L	7 0.45	25.5 0.637	22100 0.599	U	UL	6.6 0.42	24 0.599
Metals (mg/kg) Aluminum Arsenic Barium	na 1.9 20000	0.43 1600	15.8 209	0.52 92.1			0.39 0.37	0.553 2.21	0.771 53		L	0.41 0.39	0.582 2.33	0.597 54.5	U	UL	0.42 0.4	0.597 2.39	0.51 56.8	В	L	0.45 0.43	0.637 2.55	0.599 33.2	U	UL	0.42 0.4	0.599 2.4
Metals (mg/kg) Aluminum Arsenic Barium Beryllium	na 1.9 20000 200	0.43 1600 16	15.8 209 1.02	0.52 92.1 0.54	В	J	0.39 0.37 0.0382	0.553 2.21 0.553	0.771 53 0.663			0.41 0.39 0.0402	0.582 2.33 0.582	0.597 54.5 0.679	U		0.42 0.4 0.0412	0.597 2.39 0.597	0.51 56.8 0.697	В		0.45 0.43 0.0439	0.637 2.55 0.637	0.599 33.2 <u>1.28</u>	U		0.42 0.4 0.0413	0.599 2.4 0.599
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium	na 1.9 20000 200 na	0.43 1600 16 na	15.8 209 1.02 na	0.52 92.1 0.54 321			0.39 0.37 0.0382 3.1	0.553 2.21 0.553 11.1	0.771 53 0.663 474		L	0.41 0.39 0.0402 3.3	0.582 2.33 0.582 11.6	0.597 54.5 0.679 133	U	UL	0.42 0.4 0.0412 3.3	0.597 2.39 0.597 11.9	0.51 56.8 0.697 258	В	L	0.45 0.43 0.0439 3.6	0.637 2.55 0.637 12.7	0.599 33.2 <u>1.28</u> 223	U	UL	0.42 0.4 0.0413 3.3	0.599 2.4 0.599 12
Metals (mg/kg) Aluminum Arsenic Barium Beryllium	na 1.9 20000 200	0.43 1600 16	15.8 209 1.02	0.52 92.1 0.54		J	0.39 0.37 0.0382	0.553 2.21 0.553	0.771 53 0.663	В		0.41 0.39 0.0402	0.582 2.33 0.582	0.597 54.5 0.679	U		0.42 0.4 0.0412	0.597 2.39 0.597	0.51 56.8 0.697	В		0.45 0.43 0.0439	0.637 2.55 0.637	0.599 33.2 <u>1.28</u>	U		0.42 0.4 0.0413	0.599 2.4 0.599
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium	na 1.9 20000 200 na 310	0.43 1600 16 na 23 na 310	15.8 209 1.02 na 65.3	0.52 92.1 0.54 321 13.6		J J	0.39 0.37 0.0382 3.1 0.41	0.553 2.21 0.553 11.1 1.11	0.771 53 0.663 474 24.9	В	J	0.41 0.39 0.0402 3.3 0.44	0.582 2.33 0.582 11.6 1.16	0.597 54.5 0.679 133 25.8		J	0.42 0.4 0.0412 3.3 0.45	0.597 2.39 0.597 11.9 1.19	0.51 56.8 0.697 258 23.1		J	0.45 0.43 0.0439 3.6	0.637 2.55 0.637 12.7 1.27	0.599 33.2 1.28 223 16.7 19.1 3.85	U	J	0.42 0.4 0.0413 3.3 0.45	0.599 2.4 0.599 12 1.2
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper	na 1.9 20000 200 na 310 na 4100 31000	0.43 1600 16 na 23 na 310 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962	0.52 92.1 0.54 321 13.6 5.75 5.49 9060		J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53	0.771 53 0.663 474 24.9 5.6 13.9 32600	В	J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82	0.597 54.5 0.679 133 25.8 5.3 13.7 31300		J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97	0.51 56.8 0.697 258 23.1 6.3 15.3 34500		J	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37	0.599 33.2 1.28 223 16.7 19.1 3.85 23200	U	J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead	na 1.9 20000 200 na 310 na 4100 31000 800	0.43 1600 16 na 23 na 310 2300 400	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4		J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4	В	J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8		J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1		J	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8	U	l l	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium	na 1.9 20000 200 na 310 na 4100 31000	0.43 1600 16 na 23 na 310 2300 400 na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512		J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080	В	J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962		J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 <u>34.1</u> 1120		J	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430	U	J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead	na 1.9 20000 2000 na 310 na 4100 31000 800 na	0.43 1600 16 na 23 na 310 2300 400	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4]]]]	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4	В]]]	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8		J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1		J J	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8	U]]]	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	na 1.9 20000 2000 na 310 na 4100 31000 800 na 2000 31	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33	В	1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7	В]]]	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9	В	J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 1.19 0.0597 4.78	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12		J J	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9]]]	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	na 1.9 20000 200 na 310 na 4100 31000 na 2000 na 2000 na	0.43 1600 16 na 23 na 310 2300 400 na 1600 2.3	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33	B]]]]]	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7]]]]]	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 349	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040	В	J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 1.19 0.0597 4.78	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420	В	l l	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850	U	l l l	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 39	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508	B B U	1 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59	В	J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 349	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19	B B	1 1 1 1	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 1.19 0.0597 4.78 358	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420 1.27		1 1 1 1	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1 382 1.27	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2	U	1 1 1 1 1	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 359 1.2
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	na 1.9 20000 200 na 310 na 4100 31000 na 2000 na 2000 na	0.43 1600 16 na 23 na 310 2300 400 na 1600 2.3	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33	B]]]]]	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7]]]]]	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 349	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040	В	J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 1.19 0.0597 4.78	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420	В	l l	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850	U	l l l	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 39 na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na na na 1.108	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3	B B U B	J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42 332 1.11 22.1 0.332	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13	B B	J J J J B B J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67	0.582 2.33 0.582 11.6 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 349 1.16 23.3 0.349 5.82	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3	B B U B	J J J J J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.5 0.5 0.05	0.597 2.39 0.597 11.9 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 358 1.19 2.3.9 0.358 5.97	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420 1.27 42.1 0.14 69.8	B	1 1 1 1 1 1 1	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.038	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1 382 1.27 0.0837 5.1 382 1.27	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067	U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 359 1.2 24 0.359 5.99
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc	na 1.9 20000 2000 na 310 na 4100 31000 800 na 2000 na 510 na 7.2	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 39	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na na na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11	B B U B	J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42 3.32 1.11 22.1	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13	B B	J J J J B B B	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035	0.582 2.33 0.582 11.6 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 349 1.16 23.3	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092	B B U B	J J J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 0.067 0.0237 1.1 40 0.59 4.5 0.036	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 1.19 23.9 0.358	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420 1.27 42.1 0.14	B	1 1 1 1 1	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 4.3 0.63 4.8 0.038	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1 382 1.27 2.5.5 0.382	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067	U	J J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 4.79 359 1.2 24 0.359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg)	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 31 2000 31 2000 31 2000 31 31 2000 31 31 3100	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 39 na 0.55 7.8	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na na 1.10 1.08	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 5.03 1.11 17 0.1 20.3 23.3	B B U B B	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42 22.1 0.332 1.11 22.1 0.332	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.0665 10.7 1120 0.59 18 0.13 63.9 39.7	B B	1 J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.64	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 4.69 1.16 23.3 0.349 5.82	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2	B B U B B	J B J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43	0.597 2.39 0.597 11.19 1.19 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 1.19 2.3.9 0.358 1.19	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 10,071 12 1420 1.27 42.1 0.14 69.8 50.1	B U B	1 1 1 1 1 1 1	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.033 0.071 0.0252 1.2 43 0.63 4.8 0.038 0.46	0.637 2.55 0.637 1.27 6.37 2.55 6.37 2.55 6.37 1.27 0.0637 5.1 2.55 0.382 1.27 2.55 0.382 0.	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9	U U B B	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.36 0.69 0.43	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 12 1.2 0.359 12 1.2 0.0599 4.79 359 1.2 24 0.359 2.4
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc	na 1.9 20000 2000 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 7.2 102 31000	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 25.43 0.13 62.8 na na 2.11 108 202	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 5.38 1.11 17 0.1 20.3 23.3	B B U B B	J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.53 0.033 0.04 4.1 0.033 0.64 0.4	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21	0.771 53 0.663 474 24.9 5.6 13.9 32600 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7	B B	J J J J B B J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.3,3 0.349 5.82 2.33	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 60.3 37.2	B B U B B	J B J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.0237 1.1 40 0.036 0.036 0.037 0.037 0.036 0.037 0.036 0.036 0.037 0.036 0.037 0.036 0.0	0.597 2.39 0.597 11.9 5.97 2.39 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 2.3.9 0.358 5.97 2.39	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 107 0.071 12 1420 1.27 42.1 0.14 69.8 50.1	B U U B	1 1 1 1 1 1 1	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.0252 1.2 43 0.038 0.74 0.46	0.637 2.55 0.637 12.7 6.37 2.55 6.37 0.382 1.27 0.0637 5.1 3.8 1.27 2.5.5 0.382 6.37 2.5.5	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1.430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25	U U B B B	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.59 4.5 0.036 0.69 0.43	0.599 2.4 0.599 12 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.359
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) I,2,3,4,7,8-HXCDD	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 31 2000 31 2000 31 2000 31 31 2000 31 31 3100	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 39 na 0.55 7.8	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na na 1.10 1.08	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 5.03 1.11 17 0.1 20.3 23.3	B B U B B	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42 22.1 0.332 1.11 22.1 0.332	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.0665 10.7 1120 0.59 18 0.13 63.9 39.7	B B	1 J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.64	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 4.69 1.16 23.3 0.349 5.82	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2	B B U B B	J B J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43	0.597 2.39 0.597 11.19 1.19 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 1.19 2.3.9 0.358 1.19	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 10,071 12 1420 1.27 42.1 0.14 69.8 50.1	B U B	1 1 1 1 1 1 1	0.45 0.43 0.0439 3.6 0.48 1 0.79 4.3 0.033 0.071 0.0252 1.2 43 0.63 4.8 0.038 0.46	0.637 2.55 0.637 1.27 6.37 2.55 6.37 2.55 6.37 1.27 0.0637 5.1 2.55 0.382 1.27 2.55 0.382 0.	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9	U U B B	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.36 0.69 0.43	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 12 1.2 0.359 12 1.2 0.0599 4.79 359 1.2 24 0.359 2.4
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 31 2000 31 2000 na 510 na 7.2 102 31000	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na na 2.11 108 202	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 23.3	B B U B B	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64 0.4	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 22.1 0.332 5.53 0.332	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 1.00665 10.7 1120 0.59 18 0.13 63.9 39.7 0.299 0.776 30.02	B B B	1 J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 23.3 0.349 5.82 2.33	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2	B B B U U U U U	J B J J J J	0.42 0.4 0.041 0.3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.74 0.036 0.067 0.037 0.037 0.036 0.036 0.037 0.037 0.037 0.036 0.037 0.037 0.036 0.037 0.	0.597 2.39 0.597 11.9 5.97 2.39 0.358 11.9 0.0597 4.78 358 1.19 2.3.9 0.358 5.97 2.3.9 0.358 5.97 2.3.9	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 10.071 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66	B U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.033 0.071 0.0252 1.2 43 0.63 4.8 0.038 0.74 0.46 3.593 2.814 2.726 6.279	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 0.0637 5.1 382 1.27 2.55 0.382 6.37 2.55 0.382 6.37 2.55 0.382 6.37 2.55 0.382 6.37 0.382 0.	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 25 25 20 25 26 27 28 28 28 28 28 28 28 28 28 28	U U B B B U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.45 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.97 0.036 0.05 0	0.599 2.4 0.599 12 1.2 5.99 0.359 12 1.2 0.0599 4.79 359 1.12 24 0.359 5.99 0.359 4.79 359 4.79 359 4.79 359 6.3
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HPCDD OCDD	na 1.9 20000 2000 na 310 na 4100 31000 800 na 2000 31 2000 na 510 10 10 10 10 10 10 10 10 10 10 10 10 1	0.43 1600 16 na 23 na 310 2300 400 na 160 0 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 55.962 26.8 na 25.43 0.13 62.8 na na na na na na na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3	B B B B B B	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.00219 1 37 0.54 4.1 0.033 0.64 0.4	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 22.1 0.332 5.53 2.21	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.299 0.727	B B B B	1 J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.063 1.1 39 0.57 4.3 0.035 0.67 0.42	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.349 5.82 2.33	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 60.3 37.2 0.099 0.08 0.080 6.561 1630	B B U U B B U U U U U B B	J B J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.0337 1.1 40 0.036 0.69 0.43 0.036 0.097 0.0037 0.0037 0.0037 0.0036 0.0036 0.0036 0.0037 0.0036 0.0	0.597 2.39 0.597 11.9 5.97 2.39 0.358 11.9 0.0597 4.78 358 1.19 0.0597 2.3.9 0.358 5.97 2.3.9 0.358 1.59 0.358 1.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930	B U U U U U U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 1.2 43 0.03 4.3 0.0252 1.2 43 0.038 0.74 0.46 0.46 0.48 0.74 0.46 0.48 0.74 0.46 0.47 0.48 0	0.637 2.55 0.637 12.7 6.37 2.55 6.37 0.382 12.7 1.27 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 25 25 25 27 20 20 20 20 20 20 20 20 20 20	U U B B U U U U B B	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.59 4.5 0.0237 1.1 40 0.59 4.5 0.036 0.45 0.97 0.74 4 0.036 0.0237 1.1 40 0.036 0.45 0.036 0.45 0.045 0.045 0.05 0.067 0.0237 1.1 40 0.036 0.69 0.69 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD	na 1.9 20000 200 na 310 na 4100 31000 na 2000 na 2000 na 2000 10 10 2000 na 510 na 4102 31000 na 510 na 7.2 102 31000	0.43 1600 16 na 23 na 310 2300 400 na 160 na 160 na 160 na 160 na 160 na 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na na 2.11 108 202	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3	B B B B B U	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.112 0.143 0.109	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42 332 1.11 0.22.1 0.332 5.53 2.21	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.776 30.02 4030 0.029	B B B B	1 J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 1.1 39 0.57 4.3 0.035 0.67 0.42 0.047 0.038 0.039 0.038 0.039 0.038 0.040 0.029	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 3.49 1.16 2.33 0.349 1.16 3.49 1.16 1.16 3.49 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.1	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06	B B U U U U U U U U U U U U U U U U U U	J B J J J J	0.42 0.4 0.041 0.33 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.59 4.5 0.036 0.69 0.43 0.099 0.08 0.082 0.085 0.082 0.085 0.085 0.097	0.597 2.39 0.597 11.19 5.97 2.39 5.97 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.39 0.358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 2.39 0.0597 0.	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 10.071 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 69.66 69.66 69.69 14930 1.982	B U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.74 0.46 3.593 2.814 2.726 6.279 7.206 1.982	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 1.27 3.82 1.27 2.5.5 0.382 1.27 2.5.5 0.382 1.27 0.0637 2.5.5 0.382	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.926 1.236 1.926 1.237 1.948 1.956	U U B B B U U U U B B U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.988 1.926 2.363 3.747 0.559	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 0.0599 4.79 359 1.2 24 0.359 2.4 0.359 1.2 2.4 0.359 0.0599 3.59 0.0599
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HPCDD OCDD	na 1.9 20000 2000 na 310 na 4100 31000 800 na 2000 31 2000 na 510 10 10 10 10 10 10 10 10 10 10 10 10 1	0.43 1600 16 na 23 na 310 2300 400 na 160 0 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 55.962 26.8 na 25.43 0.13 62.8 na na na na na na na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3	B B B B B U	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.00219 1 37 0.54 4.1 0.033 0.64 0.4	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 22.1 0.332 5.53 2.21	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.299 0.727	B B B B	1 J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.063 1.1 39 0.57 4.3 0.035 0.67 0.42	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.349 5.82 2.33	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 60.3 37.2 0.099 0.08 0.080 6.561 1630	B B U U B B U U U U U B B	J B J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.0337 1.1 40 0.036 0.69 0.43 0.036 0.097 0.0037 0.0037 0.0037 0.0036 0.0036 0.0036 0.0037 0.0036 0.0	0.597 2.39 0.597 11.9 5.97 2.39 0.358 11.9 0.0597 4.78 358 1.19 0.0597 2.3.9 0.358 5.97 2.3.9 0.358 1.59 0.358 1.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930	B U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 1.2 43 0.03 4.3 0.0252 1.2 43 0.038 0.74 0.46 0.46 0.48 0.74 0.46 0.48 0.74 0.46 0.47 0.48 0	0.637 2.55 0.637 12.7 6.37 2.55 6.37 0.382 12.7 1.27 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 6.37 6.37 6.37 6.37 6.37 6.37 6.37 6.37	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 25 25 25 27 20 20 20 20 20 20 20 20 20 20	U U B B B U U U U B B	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.59 4.5 0.0237 1.1 40 0.59 4.5 0.036 0.45 0.97 0.74 4 0.036 0.0237 1.1 40 0.036 0.45 0.036 0.45 0.045 0.045 0.05 0.067 0.0237 1.1 40 0.036 0.69 0.69 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zine Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HYCDD 1,2,3,4,7,8-PECDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 4102 31000	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 39 na 100 na na na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.0938	B B U B B U I I	1 B 1 1 1 1	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64 0.4	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 1.11 0.332 1.11 0.332 5.53 2.21	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.727 0.727 0.727 0.729 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029	B B B U U U	1 B B 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 0.0582 4.66 349 1.16 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.3	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2	B B U U U U U U U U U	J B J J J J	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.037 1.1 40 0.59 4.5 0.036 0.69 0.43	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 358 1.19 23.9 0.358 5.97 2.39 0.557 0.68 0.63 6.86 0.28 0.56	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493	B U U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.043 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.74 0.46 3.593 2.814 2.726 6.279 7.206 1.982 2.074	0.637 2.55 0.637 1.27 1.27 6.37 2.55 0.382 12.7 1.27 0.0637 5.1 382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 1.27 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.05599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 1.2.37 188.3 0.559 0.559 0.559 0.588 2.248 2.188	U U B B B U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.926 2.363 3.747 0.559 0.559 0.559	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 12 1.2 0.0559 12 1.2 0.0559 1.2 24 0.359 2.4 5.90 3.59 1.2 2.4 0.0599 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HCDD 0,2,3,7,8-PECDF 2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 510 na 460 na na na na na	0.43 1600 16 na 23 na 310 2300 400 na 160 na 160 na 0.55 7.8 2300 na 100 na na na na na na	15.8 209 1.02 na 65.3 72.3 53.5 50.962 26.8 na 25.43 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.249 0.55	B B B B U I I X	1 J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.0629 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.112 0.143 0.095 0.09	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 1.11 0.0553 4.42 332 1.11 22.1 0.332 5.53 2.21	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.776 30.02 4030 0.029 0.032 0.029 0.032 0.217 0.768 0.11	B B B U U U	J J J J J J J J J J J J J J J J J J J	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 1.1 39 0.57 4.3 0.035 0.67 0.42 0.047 0.038 0.039 0.066 0.069 0.066 0.069 0.066 0.069 0.066 0	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 1.16 2.33 0.349 1.16 2.33 0.349 5.82 2.33 0.57 0.68 0.68 0.68 0.28 0.56 0.349	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06 0.065 0.076	B B B U U U U U U U U U U U	J B J J J J	0.42 0.4 0.041 0.041 0.33 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.59 4.5 0.036 0.69 0.43 0.082 0.082 0.082 0.082 0.085 0.08	0.597 2.39 0.597 11.9 1.19 5.97 2.39 5.97 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 5.97 2.39 0.358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 0.3	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.6 69.6 69.6 69.6 14930 1.982 2.074 7.7 7.493 8.766	B U U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.043 3.6 0.48 1 0.7 0.7 0.039 3 0.071 0.025 1.2 43 0.63 4.8 0.038 0.74 0.46 0.46 0.46 0.74 0.46 0.74 0.46 0.74 0.46 0.74 0.74 0.74 0.75 0	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 1.27 2.55 0.0637 5.1 382 1.27 2.55 0.382 6.37 2.55 0.382 6.37 2.55 0.382 0.57 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.926 1.23 0.559 0.585 2.248 2.188 2.559	U U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.988 1.926 2.363 2.3747 0.559 0.588 2.248 2.248 2.2559	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 24 0.359 5.99 2.4 0.359 1.2 24 0.359 6.86 6.86 6.28 0.56 0.34 0.47
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 7.2 102 31000 na na na na na na na na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300 na na na na na na na na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 23.3 27.1 1.220 1.408 28.16 1027 0.024 0.056 0.938 0.255 0.255 0.128	B B B B U I I X	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.112 0.143 0.095 0.095 0.090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 22.1 0.332 5.53 0.68 0.63 0.63 0.63 0.63 0.64 0.056 0.28	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.776 30.02 4030 0.029 0.029 0.029 0.029 0.032 0.217 0.768 0.11 0.042	B B B U U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.65 0.0231 0.047 0.047 0.047 0.049 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	0.582 2.33 0.582 11.6 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 23.3 0.349 5.82 2.33 0.53 0.53 0.53 0.53 0.53 0.53	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.066 0.065 0.078 0.078 0.078	B B U U U U U U U U U	J B J J J J	0.42 0.4 0.41 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 0.082 0.159 0.28 0.082 0.082 0.159 0.28 0.082 0.159 0.082 0.159 0.082 0.159 0.087 0.097 0.09	0.597 2.39 0.597 11.9 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 358 1.19 2.39 0.358 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 5.97 0.358 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 0.358 5.97 0.358 0.358 0.63 0.63 0.63 0.63 0.63 0.63 0.75 0	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829	B U U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.043 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.74 0.46 3.593 2.814 2.726 6.279 7.206 1.982 2.074 7.7 7.493 8.766 8.829	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 1.27 0.0637 5.1 382 1.27 2.55 0.382 6.37 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 0.53 0.53 0.53 0.68 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.63 0.64 0.65 0.65 0.68 0.76	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 25 1.928 1.928 1.237 188.3 0.559 0.585 2.248 2.188 2.188 2.188 2.188	U U B B U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.36 0.69 0.43 2.538 1.988 1.986 2.363 3.747 0.5555 2.248 2.188 2.188	0.599 2.4 0.599 2.4 0.599 12 1.2 5.99 0.359 12 1.2 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.359 6.86 0.63 6.86 0.63 6.86 0.34 0.49 0.47 0.25
Metals (mg/kg)	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 31 2000 31 2000 na 510 na 460 na na na na na na na na	0.43 1600 16 na 23 na 310 2300 400 na 16 0.2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 23.3 1.408 28.16 1027 0.085 0.249 0.56 0.938 0.938 0.925 0.128 0.938	B B U U B B B U U I X U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.033 0.64 0.4 1 0.033 0.64 0.4 0.135 0.102 0.143 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.099 0.	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 22.1 0.332 5.53 0.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.65 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.299 0.727 0.776 30.02 4030 0.029 0.039 0.029 0.039 0.039 0.068 0.076 0.0	B B B U U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42 0.047 0.047 0.039 0.065 0.086 0.086 0.093	0.582 2.33 0.582 11.6 5.82 2.33 0.349 11.6 0.0582 4.66 349 1.16 2.3.3 0.349 5.82 2.33 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0	0.597 54.5 0.679 133 25.8 5.3 131300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06 0.065 0.078 0.076 0.095 0.102 0.291	B B U U U U U U U U U U U U U U U U U U	J B J J J J	0.42 0.4 0.041 0.042 0.4 0.042 0.4 0.03.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.036 0.69 0.43 0.099 0.08 0.099 0.08 0.082 0.159 0.287 0.065 0.065 0.078 0.076	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 0.0597 4.78 358 1.19 23.9 0.358 5.97 23.9 0.358 5.97 23.9 0.358 5.97 23.9 0.358 5.97 4.78 3.58 5.97 4.78 3.58 5.97 4.78 3.58 5.97 4.78 3.58 5.97 6.35	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 10.071 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.814 2.814 2.97 4.98 5.93 2.814 2.74 7.7 7.493 8.766 8.829 3.341	B U U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 1.2 43 0.038 0.74 0.46 0.38 0.74 0.46 0.74 0.46 0.74 0.74 0.74 0.75 0.77 0.79	0.637 2.55 0.637 1.27 6.37 2.55 6.37 2.55 6.37 0.382 12.7 1.27 1.27 1.27 2.55 0.382 1.27 2.55 0.382 6.37 2.55 0.382 6.37 2.55 0.382 6.37 6.382 6.382 6.37 6.37 6.382 6.37 6.382 6.37 6.37 6.382 6.37 6.37 6.37 6.382 6.37	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 12.37 188.3 0.555 0.585 2.248 2.188 2.559 2.578 1.12	U U B B U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.8 0.05 0.7 4.7 0.05	0.599 2.4 0.599 2.4 0.599 1.2 1.2 5.99 2.4 5.99 0.359 1.2 1.2 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.53 0.57 0.68 0.63 6.86 0.28 0.56 0.34 0.49 0.47 0.47 0.47 0.25 0.33
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 7.2 102 31000 na na na na na na na na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300 na na na na na na na na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 23.3 27.1 1.220 1.408 28.16 1027 0.024 0.056 0.938 0.255 0.255 0.128	B B B U I X U U U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.112 0.143 0.095 0.095 0.090 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	0.553 2.21 0.553 11.1 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 22.1 0.332 5.53 0.68 0.63 0.63 0.63 0.63 0.64 0.056 0.28	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.776 30.02 4030 0.02 4030 0.02 4030 0.02 0.032 0.02 0.032 0.032 0.032 0.042	B B B U U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.65 0.0231 0.047 0.047 0.047 0.049 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032	0.582 2.33 0.582 11.6 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 23.3 0.349 5.82 2.33 0.53 0.53 0.53 0.53 0.53 0.53	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.066 0.065 0.078 0.078 0.078	B B B U U U U U U U U U U U	J B J J J J	0.42 0.4 0.41 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 0.082 0.159 0.28 0.082 0.082 0.159 0.28 0.082 0.159 0.082 0.159 0.082 0.159 0.087 0.097 0.09	0.597 2.39 0.597 11.9 5.97 2.39 5.97 0.358 11.9 0.0597 4.78 358 1.19 2.39 0.358 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 5.97 0.358 5.97 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 5.97 0.358 0.358 5.97 0.358 0.358 0.63 0.63 0.63 0.63 0.63 0.63 0.75 0	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829	B U U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.043 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.74 0.46 3.593 2.814 2.726 6.279 7.206 1.982 2.074 7.7 7.493 8.766 8.829	0.637 2.55 0.637 12.7 1.27 6.37 2.55 6.37 0.382 12.7 1.27 1.27 0.0637 5.1 382 1.27 2.55 0.382 6.37 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 1.27 2.55 0.382 0.53 0.53 0.53 0.68 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.63 0.64 0.65 0.65 0.68 0.76	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 25 1.928 1.928 1.237 188.3 0.559 0.585 2.248 2.188 2.188 2.188 2.188	U U B B U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.36 0.69 0.43 2.538 1.988 1.986 2.363 3.747 0.5555 2.248 2.188 2.188	0.599 2.4 0.599 12 1.2 5.99 2.4 5.99 0.359 12 1.2 0.0599 4.79 359 1.2 24 0.359 5.99 0.359 4.79 3.59 0.359 6.059 6.069 6.063 6.063 6.063 6.063 6.064 6.064 6.064 6.065 6.066
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPC	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 510 na 460 na na na na na na na na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50.962 26.8 na 25.43 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 23.3 23.3 28.16 1027 0.249 0.56 0.928	B B U U I X X U U B B U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.60 0.60 0.60 0.60 0.60 0.60 0.61 0.135 0.109 0.112 0.143 0.109 0.098 0.098 0.096 0.101 0.128 0.101 0.138 0.081	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 7 0.776 30.02 4030 0.029 0.0217 0.768 0.11 0.042 3.188 0.273 10.1	B B B U U U I X U U B B U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42 0.047 0.038 0.065 0.086 0.093 0.094	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 6.561 1630 0.06 0.065 0.078 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.0291 0.102 0.291 0.102 0.291 0.103	B B U U U U U U U U U U U U B B U U	1 1 1 1 1 1 1 1	0.42 0.4 0.041 0.041 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.336 0.69 0.43 0.082 0.159 0.287 0.065 0.078 0.078 0.078 0.079 0.070 0.002	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 0.071 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135	B B U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.043 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.025 1.2 43 0.03 4.8 0.74 0.46 2.814 2.726 6.279 7.206 1.982 2.074 7.7 7.493 3.696 8.829 3.341 4.318 1.202 1.358	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.926 1.237 188.3 0.5595 2.248 2.188 2.188 2.159 2.578 1.12 1.447 5.075 5.603	U U B B U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.36 0.69 0.43 2.538 1.988 1.986 2.363 3.747 0.559 2.248 2.189 2.194 2.1447 2.1447 2.1447 2.1447 2.1447	0.599 2.4 0.599 2.4 1.2 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 1.2 5.99 0.359 2.4 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.53 0.57 0.68 0.68 0.68 0.28 0.56 0.34 0.49 0.47 0.25 0.33 0.5
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 7.2 102 31000 na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	B B U U I X X U U B B U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.033 0.64 0.4 0.135 0.109 0.112 0.143 0.109 0.083 0.098 0.098 0.098 0.098 0.128 0.101 0.138 0.081 0.168	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.7 1120 0.0665 10.7 1120 0.13 63.9 39.7 0.299 0.727 0.776 30.02 4030 0.029 0.032 0.017 0.768 0.11 0.768 0.11 0.042 3.188 0.273 10.1 0.023	B B B U U U I X U U B B	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.0231 1.1 39 0.025 0.0231 1.1 39 0.035 0.0231 0.023 0.032 0.043 0.042 0.042 0.043 0.043 0.043 0.044 0.043 0.043 0.043 0.044 0.043 0.044 0.043 0.044 0.044 0.045	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 131300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06 0.065 0.078 0.076 0.095 0.102 0.291 0.104 1.423 0.051	B B B B B U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.42 0.4 0.041 0.042 0.4 0.042 0.4 0.03.3 0.45 0.97 0.74 4 0.036 0.667 0.067 0.0237 1.1 40 0.036 0.69 0.43 0.099 0.08 0.099 0.08 0.080 0.0	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135 2.066	B B U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 1.2 43 0.038 0.74 0.46 0.46 0.46 0.46 0.74 0.46 0.74 0.46 0.74 0.46 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.77 0.78 0.78 0.78 0.78 0.78 0.79	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.5 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 12.37 188.3 0.555 2.248 2.188 2.559 2.578 1.12 1.447 5.075 5.603 1.032	U U U U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.926 0.69 0.43 2.188 2.2578 2.188	0.599 2.4 0.599 2.4 1.2 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 1.2 5.99 0.359 2.4 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.53 0.57 0.68 0.68 0.68 0.28 0.56 0.34 0.49 0.47 0.25 0.33 0.5
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,4,6,7,8-HPCDD OCDD 1,2,3,4,6,7,8-HPCDD DI,2,3,4,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HYCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,8,4,8-HPCDF 1,2,3,4,8,4,8-HPCDF 1,2,3,4,8,4,8-HPCDF 1,2,3,4,8,4,8-HPCDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 510 na 460 na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.33 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50.962 26.8 na 25.43 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.255 0.255 0.128 3.974 0.138 10.16 0.081 0.168	B B U U I X X U U B B U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.00219 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.085 0.098 0.099 0.098 0.0	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.727 0.776 30.02 4030 0.029 0.032 0.021 0.727 0.768 0.11 0.042 3.188 0.273 10.1 0.043 4.008	B B B U U U I X U U B B U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.044 0.043 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.045	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06 0.065 0.078 0.078 0.078 0.078 0.078 0.078 0.095 0.102 0.291 0.104 1.423 0.051	B B U U U U U U U U U U U U B B U U	1 1 1 1 1 1 1 1	0.42 0.4 0.041 0.041 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.036 0.69 0.43 0.097 0.08 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135 1.202 1.216 1.202 1.216 1.202 1.203 1.20	B B U U U U U U U U U U U U U U U U U U	J J J J J J J	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 2.12 43 0.03 0.0252 1.2 43 0.038 0.74 0.46 2.726 6.279 7.206 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135 1.135 1.206 1.135 1.206 1.207 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.207 1.206 1.	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 1.2.37 188.3 0.559 0.585 2.248 2.188 2.290	U U B B U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.59 4.5 0.036 0.69 0.43 2.8 0.067 1.1 40 0.59 4.5 0.036 0.69 0.43 1.988 1.	0.599 2.4 0.599 2.4 1.2 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 1.2 5.99 0.359 2.4 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.53 0.57 0.68 0.68 0.68 0.28 0.56 0.34 0.49 0.47 0.25 0.33 0.5
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 7.2 102 31000 na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.3 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.56 0.249 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	B B U U I X X U U B B U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.033 0.64 0.4 0.135 0.109 0.112 0.143 0.109 0.083 0.098 0.098 0.098 0.098 0.128 0.101 0.138 0.081 0.168	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 10.7 1120 0.0665 10.7 1120 0.13 63.9 39.7 0.299 0.727 0.776 30.02 4030 0.029 0.032 0.017 0.768 0.11 0.768 0.11 0.042 3.188 0.273 10.1 0.023	B B B U U U I X U U B B U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.0231 1.1 39 0.025 0.0231 1.1 39 0.035 0.0231 0.023 0.032 0.043 0.042 0.042 0.043 0.043 0.043 0.044 0.043 0.043 0.043 0.044 0.043 0.044 0.043 0.044 0.044 0.045	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 131300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06 0.065 0.078 0.076 0.095 0.102 0.291 0.104 1.423 0.051	B B B B B U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.42 0.4 0.041 0.042 0.4 0.042 0.4 0.03.3 0.45 0.97 0.74 4 0.036 0.667 0.067 0.0237 1.1 40 0.036 0.69 0.43 0.099 0.08 0.099 0.08 0.080 0.0	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135 2.066	B B U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 1.2 43 0.038 0.74 0.46 0.46 0.46 0.46 0.74 0.46 0.74 0.46 0.74 0.46 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.77 0.78 0.78 0.78 0.78 0.78 0.79	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.5 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 12.37 188.3 0.555 2.248 2.188 2.559 2.578 1.12 1.447 5.075 5.603 1.032	U U U U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.926 0.69 0.43 2.188 2.2578 2.188	0.599 2.4 0.599 2.4 1.2 1.2 5.99 2.4 5.99 0.359 12 1.2 1.2 1.2 5.99 0.359 2.4 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.53 0.57 0.68 0.68 0.68 0.28 0.56 0.34 0.49 0.47 0.25 0.33 0.5
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,6,7,8	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 na 510 na 510 na 460 na	0.43 1600 16 na 23 na 310 2300 400 na 160 2.33 160 na 0.55 7.8 2300	15.8 209 1.02 na 65.3 72.3 53.5 50.962 26.8 na 25.43 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.249 0.53 0.128 3.974 0.168 1.1	B B U U I X X U U B B U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.382 0.37 0.382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.112 0.135 0.093 0.098 0.093 0.098 0.12 0.128 0.101 0.138 0.081 0.109 0.143	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.776 30.02 4030 0.029 0.032 0.17 0.768 0.11 0.042 3.188 0.273 10.1 0.028 0.028 0.048 4.008 55.94	B B B U U U I X U U B B U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 1.1 39 0.57 4.3 0.035 0.67 0.42 0.047 0.038 0.039 0.032 0.040 0.042 0.043 0.042 0.042 0.042 0.042 0.043 0.042 0.042 0.042 0.043 0.042 0.044 0.042 0.044 0.042 0.044 0.045 0.045 0.045 0.046 0.047 0.047 0.038 0.039 0.032 0.047 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.045 0.045 0.046 0.047 0.042 0.042 0.042 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.043 0.043 0.045 0.05 0	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 13.7 31300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 6130 0.06 0.065 0.076 0.095 0.102 0.291 0.104 1.423 0.051 0.008	B B U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.42 0.4 0.0412 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 0.082 0.159	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.6 69.6 69.6 69.6 69.6 8.829 3.341 1.982 2.074 7.7 7.493 8.766 8.829 3.341 1.35 2.066 1.35 2.266 1.35 2.266 1.35 2.366 2.376 2.366 2.3766 2.3	B B U U U U U U U U U U U U U U U U U U	J J J J J J J	0.45 0.43 0.043 0.043 3.6 0.48 1 0.79 0.79 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.74 0.46 0.74 0.46 0.74 0.46 0.74 0.46 0.74 0.77 0.77 0.79 0.74 0.77 0.71 0.74 0.75 0.74 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.77	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.248 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 1.238 1.926 2.578 1.12	U U U U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.988 1.926 2.363 2.248 2.559 2.578 1.12 1.1447 5.075 0.44 1.032 1.147 5.075 0.444 1.032 1.147 1.032 1.147 1.14	0.599 2.4 0.599 1.2 1.2 5.99 2.4 5.99 0.359 1.2 1.2 1.2 1.2 5.99 0.359 1.2 1.2 1.2 1.2 1.2 1.2 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.359 5.99 2.4 0.53 0.57 0.68 0.63 0.68 0.28 0.58 0.59 0.59 0.49 0.47 0.25 0.33 0.55
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Vanadium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,4,6,7,8-HPCDD OCDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HYCDF 1,2,3,4,6,7,8-HPCDF 1,2,3,4,8,4,8-HPCDF 1,2,3,4,8,4,8-HPCDF 1,2,3,4,8,4,8-HPCDF 1,2,3,4,	na 1.9 20000 200 na 310 na 4100 31000 na 2000 na 2000 na 2000 na 510 na 7.2 102 31000	0.43 1600 16 na 23 na 310 2300 400 na 160 2.33 160 na 0.55 7.8 2300 na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.255 0.128 3.974 0.138 10.16 0.081 0.168 13 59.79 1.905 1.221 1.366	B B U U I X X U U B B U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.0382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.002 0.012 0.0219 1 37 0.54 4.1 0.033 0.64 0.4 0.135 0.109 0.113 0.109 0.085 0.096 0.12 0.128 0.101 0.138 0.083 0.081 0.109 0.143 0.085 0.096 0.101 0.138 0.083	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 13.9 32600 15.4 1080 130 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.727 0.776 30.02 4030 0.029 0.032 0.029 0.032 0.011 0.042 3.188 0.273 10.1 0.042 3.188 0.273 10.1 0.023 4.008 55.94 0.07 0.343 3.62	B B B U U U I X U U B B U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.065 0.0231 1.1 39 0.57 4.3 0.035 0.67 0.42 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.043 0.055 0.086 0.029 0.032 0.032 0.040	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 13.7 131300 14.8 962 131 0.053 9.9 1040 1.19 16 0.092 60.3 37.2 0.099 0.08 0.082 6.561 1630 0.06 0.065 0.078 0.076 0.095 0.102 0.291 0.104 1.423 0.051 0.073 0.08 12.88 0.031 0.06 0.076	B B U U U U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.42 0.4 0.041 0.041 0.097 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.036 0.69 0.43 0.097 0.08 0.08 0.08 0.08 0.097 0.109 0.09 0.08 0.095 0.109 0.095 0.102 0.076	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135 1.202 1.13 1.202 1.13 1.223 1.243 1.243 1.253	B B U U U U U U U U U U U U U U U U U U	J J J J J J J	0.45 0.43 0.043 0.043 0.043 3.6 0.48 1 0.79 4.3 0.039 3 0.071 0.0252 1.2 43 0.63 4.8 0.038 0.74 0.46 2.726 6.279 7.493 8.766 8.829 3.341 4.318 12.02 1.135 2.066 2.726 6.279 1.223 1.982 7.493	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.85 23200 4.8 1430 286 0.0599 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 1.2.37 188.3 0.559 0.585 2.248 2.188 2.248 2.188 2.248 2.248 2.248 2.259 2.288 2.288 2.288 2.288 2.288 2.288 2.288 2.288 2.288 2.599 2.288	U U U U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 1.1 40 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.988 1.926 2.363 3.747 0.559 0.585 2.248 2.188 2.559 2.188 2.1926 2.363 0.44 1.032 1.12 1.447 5.075 0.44 1.032 1.926 2.363 0.428 0.529	0.599 2.4 0.599 1.2 1.2 5.99 2.4 5.99 0.359 1.2 1.2 1.2 1.2 5.99 0.359 1.2 1.2 1.2 1.2 1.2 1.2 0.0599 4.79 359 1.2 24 0.359 5.99 2.4 0.359 5.99 2.4 0.53 0.57 0.68 0.63 0.68 0.28 0.58 0.59 0.59 0.49 0.47 0.25 0.33 0.55
Metals (mg/kg) Aluminum Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Silver Sodium Thallium Zinc Dioxins/Furans (ng/kg) 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,6,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HYCDF 1,2,3,4,6,7,8-HYCDF 1,2,3,4,7,8-HYCDF 1,2,	na 1.9 20000 200 na 310 na 4100 31000 800 na 2000 31 2000 31 2000 31 2000 31 2000 na 510 na 7.2 102 31000 na	0.43 1600 16 na 23 na 310 2300 400 na 16 0.2.3 160 na 0.55 7.8 2300 na	15.8 209 1.02 na 65.3 72.3 53.5 50962 26.8 na 2543 0.13 62.8 na	0.52 92.1 0.54 321 13.6 5.75 5.49 9060 18.4 512 570 0.048 5.33 508 1.11 17 0.1 20.3 23.3 23.3 0.717 1.222 1.408 28.16 1027 0.085 0.249 0.56 0.249 0.56 0.249 0.56 0.128 0.138 0.168 1.11 0.168 1.37 0.0168 1.37 0.0168 1.37 0.0168 1.39 0.0168 0	B B U U B B U I X U U B U U U U B U U U B U U U U U U U	J J J J J J J J J J J J J J J J J J J	0.39 0.37 0.382 3.1 0.41 0.9 0.68 3.7 0.033 2.6 0.062 0.0219 1 37 0.033 0.64 0.4 1 0.033 0.64 0.4 0.135 0.101 0.143 0.098 0.098 0.098 0.098 0.098 0.101 0.138 0.083 0.083 0.081 0.168 0.109 0.143 0.168 0.109	0.553 2.21 0.553 11.1 1.11 5.53 2.21 5.53 0.332 11.1 0.0553 4.42 332 1.11 0.332 5.53 2.21 0.332 5.53 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0.771 53 0.663 474 24.9 5.6 10.7 1120 0.0665 10.7 1120 0.59 18 0.13 63.9 39.7 0.299 0.727 0.776 30.02 4030 0.029 0.031 0.0768 0.11 0.0768 0.11 0.042 3.188 0.273 10.1 0.028 0.043 4.008 55.94 0.077 0.343	B B B U U U I X U U B B U U	1 1 1 1 1 1 1	0.41 0.39 0.0402 3.3 0.44 0.94 0.72 3.9 0.035 2.8 0.0231 1.1 39 0.0231 1.1 39 0.042 0.023 0.024 0.024 0.029 0.044 0.029 0.042 0.029 0.042 0.042 0.029 0.044 0.029 0.042 0.029 0.043 0.029 0.044 0.029 0.042 0.029 0.043 0.029 0.043 0.029 0.044 0.029 0.043 0.029 0.043 0.029 0.043 0.029 0.043 0.029 0.043 0.028 0.028 0.029 0.029 0.043 0.028 0.028 0.028 0.029 0.043 0.028 0.028 0.028 0.029 0.043 0.028 0.028 0.028 0.028 0.028 0.029 0.043 0.028 0.029 0.043 0.028 0.028 0.029 0.043 0.029 0.043 0.023 0.023 0.023 0.023 0.023 0.024 0.025	0.582 2.33 0.582 11.6 1.16 5.82 2.33 5.82 0.349 11.6 0.0582 4.66 349 1.16 2.33 0.349 5.82 2.33 0.57 0.63 6.86 0.28 0.59 0.49 0.47 0.47	0.597 54.5 0.679 133 25.8 5.3 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13	B B B B B U U U U U U U U U U U U U U U	1 1 1 1 1 1 1 1	0.42 0.4 0.041 0.042 0.4 0.042 0.4 0.042 0.4 0.033 0.45 0.97 0.74 4 0.036 0.28 0.063 1.1 40 0.0237 1.1 40 0.036 0.69 0.43 0.08 0.092 0.08 0.082 0.159 0.287 0.06 0.065 0.078 0.076 0.095 0.077 0.104 0.457 0.068 0.159 0.088 0.159 0.092 0.077 0.104 0.457 0.068 0.073 0.08 0.159 0.093 0.093 0.093 0.093 0.095 0.007 0.007 0.104 0.457 0.005 0.073 0.008 0.159 0.0031 0.006	0.597 2.39 0.597 11.9 1.19 5.97 2.39 0.358 11.9 1.19 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 2.3.9 0.0597 4.78 358 1.19 2.3.9 0.358 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.0597 4.78 3.58 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 1.19 0.358 0.358 0.358 0.358 0.63 0.63 0.63 0.63 0.64	0.51 56.8 0.697 258 23.1 6.3 15.3 34500 34.1 1120 107 12 1420 1.27 42.1 0.14 69.8 50.1 3.593 2.814 2.726 69.66 14930 1.982 2.074 7.7 7.493 8.766 8.829 3.341 4.318 12.02 1.135 2.066 2.726 12.13 1.223 1.223 1.982	B B U U U U U U U U U U U U U U U U U U	J J J J J J J	0.45 0.43 0.043 0.0439 3.6 0.48 1 0.79 4.3 0.039 3 0.071 1.2 43 0.0252 1.2 43 0.038 0.74 0.46 1.982 2.074 7.7 7.493 8.766 8.829 8.829 8.829 8.829 8.820 8.831 1.135 1.135 1.135 1.126 1.126 1.135 1.126 1.135 1.126 1.135 1.126 1.135 1.126 1.135 1.126 1.135 1.135 1.135 1.135 1.126 1.126 1.126 1.126 1.135 1.135 1.126 1.126 1.126 1.127 1.135 1.135 1.126 1.126 1.126 1.126 1.127 1.135 1.135 1.126 1.126 1.126 1.127 1.135 1.126 1.127 1.126 1.127 1.135 1.135 1.126 1.127 1.126 1.127 1.126 1.127 1.127 1.127 1.127 1.128 1.	0.637 2.55 0.637 12.7 6.37 2.55 6.37 2.55 6.37 0.0637 5.1 382 12.7 1.27 5.1 382 1.27 2.5.5 0.382 6.37 2.5.5 0.382 6.37 2.5.5 0.382 0	0.599 33.2 1.28 223 16.7 19.1 3.29 16.9 14.9 3850 1.2 20 0.067 13.9 25 2.538 1.988 1.926 12.37 188.3 0.555 2.248 2.188 2.559 2.578 1.12 1.447 5.075 5.603 1.032 1.926 22.13 0.428 0.559	U U U U U U U U U U U U U U U U U U U	J J J J	0.42 0.4 0.0413 3.3 0.45 0.97 0.74 4 0.036 2.8 0.067 0.0237 1.1 40 0.59 4.5 0.036 0.69 0.43 2.538 1.926 3.747 0.559 0.585 2.248 2.188 2.2578 1.12 1.447 5.075 0.44 1.032 1.926 2.363 0.428 0.559	0.599 2.4 0.599 1.2 1.2 5.99 2.4 5.99 0.359 1.2 1.2 1.2 1.2 5.99 0.359 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Table 2-5c Analytes Detected in SWMU 50 Soil - 2002 RFI Page 1 of 2

Analyte			Sample ID Sample Date ample Depth		50SS0 6/25/0 0-0.5	2			50SS0 6/25/0 0-0.5	02			50SS0 6/25/0 0-0.5	2			50SB04 6/25/02 0-0.5	2		6/2	B04B 25/02 1-6			50SB04C 6/25/02 8-10			6	SB05A /25/02 0-0.5			50SB0 6/25/ 4-6	02			50SB05 6/25/0 8-10	02	
WOO (A)	i-RBC	r-RBC	Background	Result Lab	Q Val Q	MDL	MRL	Result Lab	Q Val Q	MDL	MRL	Result Lab	Q Val Q	MDL	MRL	Result La	ab Q Val Q	MDL MR	RL Resu	lt Lab Q Val	Q MDL	MRL	Result Lab Q	Q Val Q	MDL M	RL Resu	lt Lab Q Va	l Q MDL	MRL	Result Lab	Q Val Q	MDL	MRL	Result Lab	Q Val Q	MDL	MRL
VOCs (ug/kg) Acetone	92000000	7000000	na	41	В	2.5	5.6	5.7 U	J UJ	2.6	5.7	5.7 U	UJ	2.6	5.7	17	В	2.5 5.5	5 01	UU	J 4.1	9.1	12 U	UJ	5.4	2 6	UU	JJ 2.7	6	5.7 L	1 111 1	2.5	5.7	6.4 U	TIT	2.0	6.4
Carbon Disulfide	10000000	780000	na	5.6 U		0.38	5.6	5.7 U		0.39	5.7	5.7 U	03	0.39	5.7			0.38 5.5				9.1	12 U			2 0.64			6	5.7 U		0.39	5.7	0.48 J			6.4
PAHs (ug/kg)																												l e									
2-Methylnaphthalene	410000	31000	na	9.1		0.71	2.1	48		0.74	2.2	45		0.74	2.2	16		0.69 2.1	1 4.6	U	1.6	4.6	190		2.2 6	7 400		0.69	2.1	2.8 U	J	0.93	2.8	29	\Box	0.93	2.8
Acenaphthene	6100000	470000	na	2 J	В	1.1	2.1	2.4	В	1.2	2.2	1.9 J	В	1.3	2.2	3.8	В	1.1 2.1	1 7	В	2.6	4.6	6.2 J	В	3.8 6	7 16		1.1	2.1	2.8 L	J	1.5	2.8	2.8 U	į.	1.5	2.8
Acenaphthylene	3100000	230000	na	2.2		0.28	2.1	10		0.3	2.2	3.1		0.3	2.2	4.4		0.28 2.1			0.61	4.6	3.6 J			7 20		0.27		5.1		0.37	2.8	2.8 U			2.8
Anthracene	31000000	2300000	na	2.1 U		0.23	2.1	6.2		0.24	2.2	3		0.24	2.2	9.5		0.22 2.1		J J	0.51	4.6	6.3 J			7 11		0.22		2.8 U		0.31	2.8	2.8 U			2.8
Benzo(a)anthracene	3900 390	220	na	3.6		0.28	2.1	42 54		0.3 0.25	2.2	14 12		0.3	2.2	15 12		0.28 2.1			0.61	4.6	23 17			7 36 7 19		0.27	2.1	2.8 U		0.37	2.8	1.6 J 2.8 U			2.8
Benzo(a)pyrene Benzo(b)fluoranthene	3900	220	na na	6.5		0.23	2.1	81		0.23	2.2	21		0.25 0.42	2.2	32		0.23 2.1 0.4 2.1			0.88	4.6 4.6	27			7 19 7 34		0.23	2.1	2.8 U		0.31	2.8	2.8 U 1.8 J	1		2.8
Benzo(g,h,i)perylene	3100000	230000	na	3.4	J	0.75	2.1	59		0.77	2.2	15		0.77	2.2	21		0.73 2.1	_		1.6	4.6	16			7 17		0.71	2.1	2.8 U	-	0.97	2.8	1.1 J	J		2.8
Benzo(k)fluoranthene	39000	2200	na	2 J	J	0.37	2.1	29		0.39	2.2	6.7		0.39	2.2	7.7		0.36 2.1	3.6	J J	0.81	4.6	7.5		1.2 6	7 7.1		0.35	2.1	2.8 L	J	0.48	2.8	0.55 J	J	0.48	2.8
Chrysene	390000	22000	na	6.1		0.33	2.1	61		0.35	2.2	19		0.35	2.2	21		0.33 2.1	1 8.5		0.74	4.6	29		1.1 6	7 49		0.33	2.1	2.8 U	J	0.43	2.8	2.6 J	J	0.45	2.8
Dibenz(a,h)Anthracene	390	22	na	1.6 J	J	0.71	2.1	14		0.75	2.2	3.5		0.75	2.2	2.3		0.7 2.1		U	1.6	4.6	3.4 J			7 3.3		0.69	2.1	2.8 U		0.94	2.8	2.8 U	i		2.8
Fluoranthene	4100000	310000	na	9	-	0.37	2.1	73	-	0.37	2.2	26	-	0.38	2.2	110		0.35 2.1			0.79	4.6	36			7 41		0.35	2.1	2.8 U		0.47	2.8	1.6 J	J		2.8
Fluorene Indeno(1,2,3-cd)pyrene	4100000 3900	310000 220	na	1.1 J 2.3	J	0.56	2.1	5.4	J	0.58	2.2	9.7	J	0.58 0.71	2.2	8.4 15	J	0.55 2.1 0.66 2.1			1.2	4.6 4.6	10			7 18 7 6.9		J 0.54 0.66	2.1	2.8 U		0.73	2.8	1 J 2.8 U			2.8
Naphthalene	2000000	160000	na na	4.2	В	0.68	2.1	27		0.7	2.2	27	+ +	0.71	2.2	8.4		0.66 2.1			_	4.6	11 120			7 270		0.66	2.1	2.8 U		0.88	2.8	2.8 U	+		2.8
Phenanthrene	3100000	230000	na	11		0.32	2.1	65		0.34	2.2	38		0.34	2.2	70		0.79 2.1			0.71	4.6	120			7 260		0.79	2.1	2.8 U	-	0.42	2.8	13	+		2.8
Pyrene	3100000	230000	na	7.5	+	0.48	2.1	85		0.49	2.2	27		0.5	2.2	240		0.46 2.1			1	4.6	41		1.5 6			0.46	2.1	2.8 U		0.62	2.8	2.3 J	J		2.8
SVOCs (ug/kg)	•						-								•						•					-		•					•				
1,2-Dichlorobenzene	9200000	700000	na	190 U		5.3	190	11 J	J	5.4	190	190 U		5.4	190	190	U	5.3 190	0 280	U	7.9	280	16 J	J	9.5 3	10 370		10	370	220 U		6.1	220	220 U			220
1,3-Dichlorobenzene	310000	23000	na	190 U		5.8	190	8.6 J	J	5.9	190	190 U		5.9	190	190	U	5.8 190			8.6	280	16 J			10 370		11	370	220 U		6.7	220	220 U			220
1,4-Dichlorobenzene	120000	27000	na	190 U		6.4	190		J	6.5	190	190 U		6.5	190	-,,,	U	6.3 190			9.5		16 J			370		13		220 U		7.3		220 U			220
2,4-Dinitrotoluene 2,6-Dinitrotoluene	200000 100000	16000	na	190 U 190 U	:	6.3 4.7	190 190		J	6.5 4.8	190 190	190 J 190 U		6.5 4.8	190	2500 410		6.3 190 4.6 190			9.4 6.9	280	140 J 30 J			60 510 60 46		12 J 9.2	370 370	220 U 220 U	-	7.2 5.3	220	220 U 220 U			220 220
2-Methylnaphthalene	410000	7800 31000	na na	8.4 J	J	7.2	190		J	7.3	190	84 J		7.3	190 190		J J	4.6 190 7.1 190			0.9	280	460 J			40 46 40 870		9.2	370	220 U	-	8.2	220 220	55 J			220
2-Methylphenol	5100000	390000	na	190 U	UL	7.6	190		J UL	7.7	190	190 U		7.7	190	190	U III.	7.5 190			_	280	21 J			10 370			370		J UL	8.7	220	220 U			220
4-Methylphenol	510000	39000	na	190 U		6.6	190		J UL	6.7	190	190 U		6.8	190	190	U UL	6.5 190				280	29 J			10 370			370		J UL	7.6	220	220 U			220
Acenaphthene	6100000	470000	na	190 U		5.2	190	12 J	J	5.3	190	190 U		5.3	190	8.5	J J	5.1 190	0 280	U	7.7	280	28 J	J	9.3 3	40 370	U	10	370	220 U	J	5.9	220	220 U	j	6	220
Acenaphthylene	3100000	230000	na	190 U		5	190	9.7 J	J	5.1	190	190 U		5.2	190	75	J J	5 190	0 280	U	7.5	280	340 U		9 3	10 370	U	9.9	370	220 L	J	5.8	220	220 U	i .	5.8	220
Anthracene	31000000	2300000	na	190 U		5.5	190		J	5.6	190	190 U		5.6	190		J J	5.4 190			8.1	280	23 J			10 24		J 11	370	220 L		6.3	220	220 U			220
Benzo(a)anthracene	3900	220	na	190 U		5.4	190		J	5.5	190	27 J	J	5.5	190		J J	5.3 190	_		8	280	41 J			10 54			370	220 U		6.2	220	220 U			220
Benzo(a)pyrene	390	22	na	190 U		4.6	190	53 J	J	4.7	190	23 J	J	4.7	190		J J	3.9 190			6.9	280	340 U		0.5	32		J 9.1	370	220 U		5.3	220	220 U			220
Benzo(b)fluoranthene Benzo(g,h,i)perylene	3900 3100000	230000	na na	190 U 190 U		5.3	190 190	70 J 43 J	J	4.1 5.4	190 190	39 J 190 U	J	4.1 5.4	190 190		J J	3.9 190 5.2 190		U	5.9 7.8	280 280	340 U 340 U			10 53 10 370		J 7.8	370 370	220 U 220 U		4.6 6	220 220	220 U 220 U			220 220
Benzo(k)fluoranthene	39000	2200	na	190 U		5.3	190		J	5.4	190	11 J		5.4	190		I I	5.3 190			7.9	280	340 U			10 370		10	370	220 U		6.1	220	220 U			220
Bis(2-ethylhexyl)phthalate	200000	46000	na	190 U		13	190		В	13	190	65 J	В	13	190	2500		12 190			19	280	200 J			10 120			370	220 U		14	220	220 U	,		220
Butylbenzylphthalate	20000000	1600000	na	190 U		7.3	190	190 U	J	7.5	190	39 J	В	7.5	190	190	U	7.2 190	0 280	U	11	280	340 U		13 3	40 370	U	14	370	220 U	J	8.4	220	220 U	j	8.4	220
Carbazole	140000	32000	na	190 U	UJ	8.2	190		J	8.3	190	11 J	J	8.3	190		J J	8.1 190			J 12	280	23 J			10 28		J 16	370		J UJ	9.3	220	220 U			220
Chrysene	390000	87000	na	190 U		4.3	190		J	4.4	190	37 J		4.4	190		J J	4.3 190			6.4	280	32 J			100		J 8.5	370	220 U		4.9	220	220 U			220
Di-n-butylphthalate	10000000	780000	na	190 U		54	190		В	55	190	420	В	55	190	61000	В	1100 370			80	280	2200 II			10 5000			370	220 L		62	220	220 U			220
Di-n-octylphthalate Dibenzofuran	na na	na na	na na	190 U 190 U		8.4 5.4	190 190	190 U 30 J	J	8.5 5.5	190 190	190 U 20 J		8.6 5.5	190 190		J J	8.3 190 5.3 190			12 8	280 280	340 U 92 J			10 370 10 200		16 J 11	370 370	220 U 220 U		9.6 6.1	220 220	220 U 12 J			220 220
Diethylphthalate	82000000	6300000	na	190 U		5.4	190		В	5.5	190	8 J		5.6	190		J B	5.4 190			8.1	280	340 U			10 200 10 88			370	220 U		6.2	220	220 U			220
Dimethylphthalate	na	na	na	190 U		4.9	190	190 U		5	190	190 U		5	190	1500	+ - +	4.9 190	_		7.3	280	340 U			10 370		9.7	370	220 U		5.6	220	220 U			220
Fluoranthene	4100000	310000	na	11 J	J	6.1	190	83 J	J	6.3	190	48 J	J	6.3	190	120	J J	6.1 190	0 18	J J	9.1	280	45 J	J	11 3	10 64	J	J 12	370	220 U	J	7	220	220 U	j .	7	220
Fluorene	4100000	310000	na	190 U		6.1	190		J	6.2	190	190 U		6.3	190		J J	6.1 190			9.1	280	43 J			40 35		J 12	370	220 U		7	220	220 U			220
Indeno(1,2,3-cd)pyrene	3900	220	na	190 U		7.2	190		J	7.4	190	190 U		7.4	190	190	U	7.1 190			11	280	340 U			10 370		14	370	220 L	-	8.2	220	220 U			220
N-nitrosodiphenylamine	580000	130000	na	190 U	т .	8.9	190		J	9.1	190	170 J		9.1	190	1100	т т	8.8 190			13	280	150 J			190		J 17	370	220 U		10	220	220 U			220
Naphthalene Phenanthrene	2000000 3100000	160000 230000	na na	7.2 J 14 J		6.9 5.8	190 190		J		190 190	44 J 73 J		7	190 190			6.8 190 5.8 190		J J	10 8.7	280	340 190 J			490 40 470		13 11		220 U 220 U		7.8 6.7	220	30 J		7.9 6.7	220
Pyrene	3100000	230000	na	8.9 J		5.7	190		J		190	50 J	J	5.9		250		5.7 190			8.5	280	56 J			10 78		J 11	370	220 U		6.6				6.6	
Pesticides (ug/kg)	_															-		,	-	· · ·		•						•	•								
4,4'-DDD	12000	2700	na	0.41 J			0.743	NT				0.447 J	J	0.16		NT			NT				NT			NT				NT				NT			
4,4'-DDE	8400	1900	na	0.657 J			0.743	NT				3.37		0.159	0.759				NT				NT			NT				NT				NT			
4,4'-DDT	8400	1900	na	0.743 U		0.263		NT				12.9	\perp		0.759		\perp		NT				NT			NT			1	NT	\perp			NT	\bot		
Endosulfan II	610000	47000	na	0.636 J		0.265		NT	4			2.24			0.759				NT		-		NT			NT		_	1	NT	\perp			NT	+		
Endrin Methoxychlor	31000 510000	2300 39000	na na	0.288 J 0.743 U		0.178 0.567	0.743	NT NT				0.759 U 1.29	+ +	0.182 0.579	0.759 0.759	NT NT			NT NT				NT NT			NT NT			1	NT NT	+			NT NT	+		
PCBs (mg/kg)	210000	37000	пä	0.743 U		0.50/	0.743	11/1				1.47		0.3/9	0.739	14.1			INI		_1		14.1	1		11/1			1	11/1				11/1		$-\!-\!\!-\!\!\!-$	—
PCB-1254	1.4	0.16	na	0.0254 J	1 1	0.0109	0.0371	0.467		0.0112	0.0378	0.0387	1	0.0112	0.0379	0.963		0.0108 0.03	66 12	,	0.0162	0.055	0.75	n	.0195 0.0	661 0.37	б	0.0108	0.0364	0.0424 L	ı I	0.0125	0.0424	0.0425	$\overline{\Box}$	0.0125 0	2.0425
Explosives (mg/kg)	2	5.10	****										<u> </u>			00		0.03	1.2		3.0102	2.000		0.		3.37	-	5.5100	2.0004			5125				20 0	
2,4,6-Trinitrotoluene	51	3.9	na	0.2 U		0.0187	0.2	0.4 U	J	0.0374	0.4	0.2 U		0.0187	0.2	0.075	Ј Ј	0.0187 0.2	2 0.2	U	0.0187	0.2	0.2 U	0.	.0187 0	2 0.2	U	0.0187	0.2	0.2 L	J	0.0187	0.2	0.2 U	\top	0.0187	0.2
2,4-Dinitrotoluene	200	16	na	0.2 U		0.0163	0.2	0.4 U		0.0326	0.4	0.443		0.0163		1.96		0.0163 0.2		U	0.0163		0.094 J		.0163 0			0.0163	0.2	0.2 L	J	0.0163		0.2 U		0.0163	0.2
2,6-Dinitrotoluene	100	7.8	na	0.2 U		0.0246	0.2	0.4 U	J	0.0492	0.4	0.2 U		0.0246	0.2			0.0246 0.2		U	0.0246	0.2	0.2 U	0.	.0246 0	2 0.2	U	0.0246	0.2	0.2 U		0.0246		0.2 U		0.0246	0.2
Dinitrotoluene Mix*	4.2	0.94	na													2.335																					
												_						_	_														_	_			

Table 2-5c Analytes Detected in SWMU 50 Soil - 2002 RFI Page 2 of 2

			Sample ID Sample Date			SS01 25/02				0SS02 5/25/02				SS03 5/02			50SB 6/25				50SB 6/25				50SB0				50SB 6/25				50SB 6/25				50SB0 6/25/		
Analyte			Sample Depth			-0.5				0-0.5				0.5			0-0				4-				8-1				0-0					.6			8-1		
	i-RBC	r-RBC	Background	Result	Lab Q Val		DL MRI	L Re	sult Lab Q V		MRL	Result	Lab Q Val		MRI	L Result L			MRL	Result	Lab Q Val Q		MRL	Result 1	ab Q Val Q	-	MRL	Result La		MDL	MRL	Result	Lab Q Val Q	-	MRL	Result	Lab Q Val Q	-	MRL
Herbicides (ug/kg)																																	·						
2,4,5-T	1000000	78000	na	8.18	J J	3	1 11.1	N	ЛТ			114	U	31.6	114	NT				NT				NT				NT				NT				NT			
2,4-D	1000000	78000	na	22.3	U	9.9	9 22.3	N	lТ			142	J J	102	228	NT				NT				NT				NT				NT				NT		1	
Dicamba	3100000	230000	na	6.29	J B	2.3	3 22.3	R N	T			228	U	23.8	228	NT				NT				NT				NT				NT				NT			
Metals (mg/kg)																																							
Aluminum	na	na	40041	11400		6.2	2 22.3	20	100	6.3	22.7	24300		6.3	22.8	20900		6.1	22	16700		9.1	33.1	17500		11	39.7	13300		6	21.9	37900		7	25.4	38400		7	25.5
Antimony	41	3.1	na	0.19	B B	0.1	9 0.55	7 0.6	591	L 0.19	0.568	0.25	B B	0.19	0.569	0.55	U UL	0.19	0.55	0.56	B B	0.28	0.826	1.46	L	0.33	0.992	0.547 U	U UL	0.18	0.547	0.636	U UL	0.21	0.636	0.22	ВВ	0.21	0.638
Arsenic	1.9	0.43	15.8	1.03	J	0.3	9 0.55	7 3.	24	J 0.4	0.568	4.33	J	0.4	0.569	2.33	J	0.38	0.55	13.7	J	0.58	0.826	5.02	J	0.69	0.992	4.5	J	0.38	0.547	2.78	J	0.44	0.636	1.67	J	0.45	0.638
Barium	20000	1600	209	141		0.3	7 2.23	70	0.9	0.38	2.27	97.4		0.38	2.28	111		0.37	2.2	68		0.55	3.31	60.4		0.66	3.97	92.5		0.37	2.19	66.8		0.43	2.54	60.6		0.43	2.55
Beryllium	200	16	1.02	0.756	В	0.03	84 0.55	7 0.8	885	B 0.0392	0.568	0.85	В	0.0392	0.569	0.74	В	0.038	0.55	0.77	ВВ	0.057	0.827	0.97	B B	0.0685	0.992	0.841	В	0.0377	0.547	0.877	В	0.0439	0.636	0.816	В	0.0439	0.638
Cadmium	51	3.9	0.69	0.058	B B	0.0.	53 0.11.	1 0.1	143	0.054	0.114	0.074	B B	0.054	0.114	4 0.062	В В	0.052	0.11	0.12	B J	0.079	0.165	0.15	B J	0.094	0.198	0.127		0.052	0.109	0.127	U	0.06	0.127	0.128	U	0.061	0.128
Calcium	na	na	na	484	J	3	1 11.1	280	600	J 3.2	11.4	13700	J	3.2	11.4	1280	J	3.1	11	163000	J	4.6	16.5	136000	J	5.5	19.8	1720	J	3.1	10.9	27.3	В	3.6	12.7	59.5	J	3.6	12.8
Chromium	310	23	65.3	18.6	J	0.4	2 1.11	28	3.5	J 0.43	1.14	43.7	J	0.43	1.14	43.5	J	0.41	1.1	50.8	J	0.62	1.65	<u>255</u>	J	0.74	1.98	22.5	J	0.41	1.09	29.4	J	0.48	1.27	33.1	J	0.48	1.28
Cobalt	na	na	72.3	6.4		0.9	9 5.57	9.	73	0.92	5.68	11		0.92	5.69	16.7		0.89	5.5	7.7	B J	1.3	8.26	13.7		1.6	9.92	10.5		0.89	5.47	13.6		1	6.36	6.1	B J	1	6.38
Copper	4100	310	53.5	7.95		0.6	9 2.23	31	1.5	0.7	2.27	22.7		0.7	2.28	9.96		0.68	2.2	120		1	3.31	163		1.2	3.97	22.6		0.68	2.19	14.5		0.79	2.54	18.6		0.79	2.55
Iron	31000	2300	50962	9580		3.:	7 5.57	7 200	600	3.8	5.68	28300		3.8	5.69	22200		3.7	5.5	13600		5.6	8.26	23800		6.7	9.92	17800		3.7	5.47	32800		4.3	6.36	40900		4.3	6.38
Lead	800	400	26.8	21.7		0.0.	34 0.33	4 <u>1</u> 4	48	0.034	0.341	98.1		0.034	0.34	1 19.8		0.033	0.33	138		6.1	16.5	<u>585</u>		7.3	19.8	31.9		0.033	0.328	14.2		0.038	0.382	15.8		0.039	0.383
Magnesium	na	na	na	525		2.0	6 11.1	202	200	2.7	11.4	9430		2.7	11.4	1080		2.6	11	3100		3.9	16.5	4110		4.7	19.8	1630		2.6	10.9	967		3	12.7	1150		3	12.8
Manganese	2000	160	2543	1320		0.00	62 1.11	3	72	0.064	1.14	558		0.064	1.14	1580		0.062	1.1	199		0.092		223		0.11	1.98	553		0.061	1.09	375		0.071	1.27	104		0.071	1.28
Mercury	31	2.3	0.13	0.041	B J	0.0	22 0.055	7 0.0	837	0.0225	0.0568	0.0984		0.0225	0.056	9 0.0987		0.0218	0.055	0.16		0.0327	0.0826	0.524		0.0393	0.0992	0.816		0.0217	0.0547	0.061	B J	0.0252	0.0636	0.205		0.0253	0.0638
Nickel	2000	160	62.8	7.09		1	4.45	16	5.3	1	4.54	14.9		1	4.55	9.89		1	4.4	24.7		1.5	6.61	<u>181</u>		1.8	7.94	13		1	4.38	12.2		1.2	5.09	12.6		1.2	5.1
Potassium	na	na	na	465		37	7 334	20	050	38	341	1550		38	341	966		37	330	631		55	496	1070		66	595	923		37	328	1380		43	382	1450		43	383
Selenium	510	39	na	1.11	U UI	0.3	6 1.11	1.	14 U	UL 0.37	1.14	1.14	U UI	0.37	1.14	1.1	U UL	0.36	1.1	0.57	B L	0.54	1.65	1.98	U UL	0.65	1.98	1.09 U	U UL	0.36	1.09	1.27	U UL	0.42	1.27	1.28	U UL	0.42	1.28
Silver	510	39	na	1.11	U	0.5	5 1.11	0.	61 B	J 0.56	1.14	0.58	B J	0.56	1.14	1.1	U	0.54	1.1	1.65	U	0.81	1.65	1.1	B J	0.98	1.98	0.89 I	В Ј	0.54	1.09	1.27	U	0.63	1.27	0.74	B J	0.63	1.28
Sodium	na	na	na	13	В В	4.1	2 22.3	61	1.7	J 4.2	22.7	72.5	J	4.2	22.8	28.8	В	4.1	22	75.8	J	6.2	33.1	78.7	J	7.4	39.7	64.9	J	4.1	21.9	35.2	J	4.8	25.4	29.2	В	4.8	25.5
Thallium	7.2	0.55	2.11	0.24	ВВ	0.0.	34 0.33	4 0.	18 B	B 0.034	0.341	0.15	В В	0.034	0.341	0.15	В В	0.033	0.33	0.25	ВВ	0.05	0.496	0.595	U	0.06	0.595	0.13 I	В В	0.033	0.328	0.18	ВВ	0.038	0.382	0.16	ВВ	0.038	0.383
Vanadium	102	7.8	108	24		0.6	5.57	7 41	1.2	0.66	5.68	47		0.66	5.69	46.7		0.64	5.5	21.5		0.96	8.26	24.5		1.2	9.92	33.9		0.63	5.47	56.7		0.74	6.36	77		0.74	6.38
Zinc	31000	2300	202	23.9	J	0.4	4 2.23	93	3.3	J 0.41	2.27	54.8	J	0.41	2.28	88.1	J	0.39	2.2	50.9	J	0.59	3.31	79.2	J	0.71	3.97	42.8	J	0.39	2.19	47.1	J	0.46	2.54	47.7	J	0.46	2.55

^{* &}quot;Dinitrotoluene mix" screening levels used for comparison where 2,4- and 2,6-dinitrotoluene were detected in the same sample

Table 2-5d Analytes Detected in SWMU 59 Soil - 2002 RFI Page 1 of 2

Analyte			Sample ID Sample Date Sample Depth		59S 6/27 0-0	//02			59SS04 6/27/02 0-0.5			6	9SS05 /27/02 0-0.5			6/2	B01A 7/02 0.5			59SB 6/27 4-	7/02			59SB0 6/27/ 8-1	/02	
	i-RBC	r-RBC	Background	Result	Lab Q Val Q	MDL	MRL	Result L	ab Q Val Q MDL	MRL	Result	Lab Q V	al Q M	DL MRL	Result	Lab Q Val 0	Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result La	ab Q Val Q	MDL	MRL
VOCs (ug/kg)								-			-				-		_		-							
Acetone	92000000	7000000	na	5.4	U	2.4	5.4	NT			17		B 3		8.5	U UJ	3.9	8.5	6	U	2.7	6		U	2.8	6.1
Carbon Disulfide	10000000	780000	na	5.4	U	0.37	5.4	NT			7	U		48 7	2.2	J B	0.58	8.5	6	U	0.42	6		U	0.42	6.1
Toluene	8200000 20000000	630000	na	5.4	U	0.35	5.4	NT			7	U		45 7	15	J J	0.56	8.5	6	U	0.39	6		U	0.4	6.1
o-Xylene	20000000	1600000	na	5.4	U	1.1	5.4	NT			/	U	1	.4 7	2.5	J J	1.8	8.5	6	U	1.3	6	6.1	U	1.3	6.1
PAHs (ug/kg) 2-Methylnaphthalene	410000	31000		3.7	D	0.69	2	NT			110	T T	1 0	67 2	210		0.65	1.9	6		0.77	2.3	2.1	U	0.7	2.1
Acenaphthene	6100000	470000	na na	6.5	B B	1.1	2	NT			3.1		B 1		4	В	0.65	1.9	2.3	U	1.3	2.3		U	1.1	2.1
Acenaphthylene	3100000	230000	na	2	U	0.27	2	NT			2			26 2	2.9	В	0.26	1.9	2.3	U	0.3	2.3		U	0.27	2.1
Anthracene	31000000	2300000	na	20	Ü	0.22	2	NT			3.5			22 2	4.4		0.21	1.9	2.3	U	0.25	2.3		U	0.23	2.1
Benzo(a)anthracene	3900	220	na	60		0.27	2	NT			12		0.	26 2	13		0.26	1.9	2.3	U	0.3	2.3	2.1	U	0.27	2.1
Benzo(a)pyrene	390	22	na	46		0.23	2	NT			7.3		0.	22 2	6.6		0.22	1.9	2.3	U	0.26	2.3	2.1	U	0.23	2.1
Benzo(b)fluoranthene	3900	220	na	63		0.39	2	NT			12		0.	38 2	13		0.37	1.9	2.3	U	0.43	2.3	2.1	U	0.39	2.1
Benzo(g,h,i)perylene	3100000	230000	na	25	J	0.72	2	NT			8.2		J 0	.7 2	15	J	0.68	1.9	2.3	U	0.8	2.3		U	0.73	2.1
Benzo(k)fluoranthene	39000	2200	na	33		0.35	2	NT			2.3			34 2	3		0.34	1.9	2.3	U	0.4	2.3		U	0.36	2.1
Chrysene	390000	22000	na	57		0.32	2	NT			16			32 2	18		0.31	1.9	2.3	U	0.36	2.3		U	0.33	2.1
Dibenz(a,h)Anthracene Fluoranthene	390 4100000	22 310000	na	6.4		0.69	2	NT NT			1.8	J		67 2	1.9		0.66	1.9	2.3	U	0.78	2.3		U U	0.71	2.1
Fluorantnene Fluorene	4100000	310000	na na	9.1	I	0.35 0.54	2 2	NT NT			13 4.3			34 2 53 2	15 5.8	J	0.33	1.9 1.9	2.3	U	0.39	2.3		U	0.36 0.55	2.1
Indeno(1,2,3-cd)pyrene	3900	220	na	23	J	0.65	2	NT			3.7			63 2	3.6	, , ,	0.62	1.9	2.3	U	0.01	2.3		U	0.55	2.1
Naphthalene	2000000	160000	na	4.5	В	0.78	2	NT			60			76 2	130		0.75	1.9	4.7	В	0.88	2.3		U	0.8	2.1
Phenanthrene	3100000	230000	na	83		0.31	2	NT			71		0		97		0.3	1.9	2.4		0.35	2.3		U	0.32	2.1
Pyrene	3100000	230000	na	92		0.46	2	NT			16			45 2	20		0.44	1.9	2.3	U	0.51	2.3		U	0.47	2.1
SVOCs (ug/kg)	=	-			· · · · · · · · · · · · · · · · · · ·			<u> </u>			=======================================				=				-	·				· · · · · · · · · · · · · · · · · · ·		
2-Methylnaphthalene	410000	31000	na	200	U	7.7	200	NT			120	J	J 7	.5 200	95	J J	7.3	190	230	U	8.7	230	210	U	7.9	210
Acenaphthene	6100000	470000	na	24	J J	5.6	200	NT			200	U	5	.4 200	190	U	5.3	190	230	U	6.3	230	210	U	5.7	210
Anthracene	31000000	2300000	na	61	J J	5.9	200	NT			200	U	5		190	U	5.6	190	230	U	6.6	230		U	6	210
Benzo(a)anthracene	3900	220	na	180	J J	5.8	200	NT			19	J	J 5		190	U	5.5	190	230	U	<u> </u>	230		U	5.9	210
Benzo(a)pyrene	390	22	na	140	J J	5	200	NT			200	U	4	.8 200	190	U	4.7	190	230	U	5.6	230	210	U	5.1	210
Benzo(b)fluoranthene	3900	220	na	210		4.3	200	NT			200	U	4		190	U	4.1	190	230	U	4.8	230		U	4.4	210
Benzo(g,h,i)perylene	3100000	230000	na	91	J J	5.7	200	NT			200	U	5		190	U	5.4	190	230	U	6.4	230		U	5.8	210
Benzo(k)fluoranthene Carbazole	39000 140000	2200 32000	na	60 73	J J	5.7 8.8	200	NT NT			200	UUU	J J 8		190 190	U UJ	5.4 8.3	190 190	230 230	U UJ	6.4 9.8	230 230		U UJ	5.8 8.9	210 210
Chrysene	390000	22000	na na	150	J J	4.7	200	NT			21		J 4		190	U	4.4	190	230	U	5.2	230		U	4.7	210
Dibenzofuran	na	na	na	16	J J	5.8	200	NT			32		J 5		23	J J	5.5	190	230	U	6.5	230		U	5.9	210
Fluoranthene	4100000	310000	na	320		6.6	200	NT			18		J 6		9.3	J J	6.3	190	230	U	7.4	230		U	6.7	210
Fluorene	4100000	310000	na	37	J J	6.6	200	NT			200	U	6	.4 200	190	U	6.3	190	230	U	7.4	230	210	U	6.7	210
Indeno(1,2,3-cd)pyrene	3900	220	na	96	J J	7.8	200	NT			200	U	7	.6 200	190	U	7.4	190	230	U	8.7	230	210	U	7.9	210
Naphthalene	2000000	160000	na	9.6	J J	7.4	200	NT			75	J	J 7		69	J J	7	190	230	U	8.3	230		U	7.5	210
Phenanthrene	3100000	230000	na	290		6.3	200	NT			86	J	-		52	J J	6	190	230	U	7.1	230		U	6.4	210
Pyrene	3100000	230000	na	240		6.2	200	NT			18	J	J	5 200	8.2	J J	5.9	190	230	U	6.9	230	210	U	6.3	210
Pesticides (ug/kg)	12000	2700		0.676		0.160	0.700) ITE			0.777	**	1 0		0.76	**	1 0 161	0.75	NE		1) III			
4,4'-DDD	12000	2700	na	0.676	J J	0.169	0.798	NT			0.777	U	0.1		_	U	0.161	0.76	NT				NT			
4,4'-DDE 4,4'-DDT	8400 8400	1900 1900	na na	0.768 4.41	J B	0.167 0.282	0.798 0.798	NT NT	+ +		0.777 1.97	U		163 0.777 275 0.777	0.76	В	0.159	0.76 0.76	NT NT		+		NT NT			
Dieldrin	180	40	na	0.798	U	0.282	0.798	NT			4.52		0.4				0.269	0.76	NT			ŀ	NT			
Endosulfan II	610000	47000	na	0.798	U	0.285	0.798	NT			3.33		0.2			-	0.271	0.76	NT				NT			
Endosulfan I	610000	47000	na	0.798	U	0.124	0.798	NT			0.777	U	0.1				0.118	0.76	NT				NT			
Endrin aldehyde	na	na	na	0.428	J J	0.403	0.798	NT			0.777	U		393 0.777		U	0.384	0.76	NT				NT			
Endrin Ketone	na	na	na	1.66		0.644	0.798	NT			2.9		0.6				0.613	0.76	NT				NT			
gamma-Chlordane	8200	1800	na	1.1		0.185	0.798	NT			0.777	U	0.1			U	0.177	0.76	NT				NT			
Heptachlor Epoxide	310	70	na	0.798	U	0.483	0.798	NT			0.777	U	0.4				0.46	0.76	NT				NT			
Methoxychlor	510000	39000	na	2.82		0.609	0.798	NT			10.2		0.5	593 0.777	9.99		0.58	0.76	NT				NT			
PCBs (mg/kg)	1.4	0.16	200	0.061		0.0110	0.0200	NT	I		0.0200	TT	1 00	115 0.0200	0.0270	IT I	0.0113	0.0270	0.0449	TI	0.0122	0.0440	0.0407	TT	0.012	0.0407
PCB-1254 Explosives (mg/kg)	1.4	0.16	na	0.061		0.0118	0.0398	NT			0.0388	U	0.0	115 0.0388	0.0379	U	0.0112	0.0379	0.0448	U	0.0132	0.0448	0.0407	U	0.012	0.040/
1,3,5-Trinitrobenzene	3100	230	no	0.1	U	0.0246	0.1	NT			0.138	T 1	0.0	246 0.1	0.134	T T	0.0246	0.1	0.1	U	0.0246	0.1	0.1	U	0.0246	0.1
Herbicides (ug/kg)	3100	430	na	0.1	U	0.0240	0.1	1 1 1	<u> </u>		0.136		0.0	∠ 7 ∪ U.1	0.134	1 1	0.0240	0.1	0.1	U	0.0240	U. I	0.1	J	0.0240	0.1
2,4,5-T	1000000	78000	na	120	U	33.3	120	NT	I		36.6] 2	24 11.7	114	U	31.7	114	NT			Т	NT			
Metals (mg/kg)	1000000	70000	114	120	U	33.3	120	111			30.0	1	J.	ω· 11./	114	U	31./	117	141				111			
Aluminum	na	na	40041	14700	J	6.6	23.9	12200	J 6.6	23.9	3180		J 6	.4 23.3	3120	J	6.3	22.8	38100	T	7.4	26.9	18800	I	6.7	24.4
Antimony	41	3.1	na	0.598	U UL	0.0	0.598		B B 0.2	0.598	_	UU	JL o					0.569	0.672	U UL				U UL	0.21	0.611
Arsenic	1.9	0.43	15.8	2.58	J	0.42	0.598	4.52	J 0.42		_		J 0.		_	J	0.4	0.569	2.94	J			1.81	J		0.611
Barium	20000	1600	209	88		0.4	2.39	71.1	0.4	2.39			_	39 2.33	_		0.38	2.28	68.4				35.7		0.41	2.44
Beryllium	200	16	1.02	0.748		0.0413	0.598	0.51	B J 0.041.			В	J 0.0	402 0.583			0.0393	0.569	0.673					В Ј		0.611
							_	_	<u> </u>	_						_	_	_		_						

Table 2-5d Analytes Detected in SWMU 59 Soil - 2002 RFI Page 2 of 2

Analyte		;	Sample ID Sample Date Sample Depth			59SS0 6/27/0 0-0.5)2				59SS 6/27/0 0-0.3	02				59SS0 6/27/0 0-0.5	02				59SB 6/27 0-0	//02			6/2	5B01B 27/02 4-6				59SB01 6/27/02 8-10)2	
	i-RBC	r-RBC	Background	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q Val	Q MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
Cadmium	51	3.9	0.69	0.11	В	J	0.057	0.12	0.11	В	J	0.057	0.12	0.117	U		0.055	0.117	0.114	U		0.054	0.114	0.134	U	0.064	0.134	0.122	U		0.058	0.122
Calcium	na	na	na	2680			3.3	12	1660			3.3	12	437			3.3	11.7	432			3.2	11.4	781		3.8	13.4	162			3.4	12.2
Chromium	310	23	65.3	23.2			0.45	1.2	21.1			0.45	1.2	8.89			0.44	1.17	8.82			0.43	1.14	30.9		0.5	1.34	33.6			0.46	1.22
Cobalt	na	na	72.3	9.18			0.97	5.98	6.36			0.97	5.98	6.22			0.94	5.83	7.22			0.92	5.69	4.3	B J	1.1	6.72	5.9	В	J	0.99	6.11
Copper	4100	310	53.5	11		J	0.74	2.39	9.07		J	0.74	2.39	11.7		J	0.72	2.33	15.3		J	0.7	2.28	16.2	J	0.83	2.69	7.48		J	0.75	2.44
ron	31000	2300	50962	19300			4	5.98	18700			4	5.98	4200			3.9	5.83	5790			3.8	5.69	38600		4.5	6.72	21900			4.1	6.11
ead	800	400	26.8	30.9			0.036	0.359	22.6			0.036	0.359	5.37			0.035	0.35	6.84			0.034	0.342	14.2		0.041	0.403	8.52			0.037	0.366
Magnesium	na	na	na	2270			2.8	12	1320			2.8	12	272			2.8	11.7	227			2.7	11.4	1080		3.2	13.4	1020			2.9	12.2
Manganese	2000	160	2543	289			0.067	1.2	213			0.067	1.2	140			0.065	1.17	128			0.064	1.14	132		0.075	1.34	360			0.068	1.22
Mercury	31	2.3	0.13	0.45	В	J	0.0237	0.0598	0.153			0.0237	0.0598	0.109			0.0231	0.0583	0.282			0.0226	0.0569	0.0902		0.0266	0.0672	0.0611	U		0.0242	0.0611
Nickel	2000	160	62.8	12.8			1.1	4.78	5.74			1.1	4.78	8.65			1.1	4.66	10.3			1	4.56	12.9		1.2	5.38	7.11	-		1.1	4.88
Potassium	na	na	na	945			40	359	684			40	359	330	В	J	39	350	300	В	J	38	342	1230		45	403	773		-	41	366
Selenium	510	39	na	1.2	U	UL	0.39	1.2	0.39	В	J	0.39	1.2	0.72		J	0.38	1.17	1.14		UL	0.37	1.14	1.34	U UI		1.34	1.22	U	UL	0.4	1.22
Sodium	na	na	na	30		B	4.5	23.9	35.4	В	<u> </u>	4.5	23.9	60.6			4.4	23.3	72.8	-	CL	4.3	22.8	40.5	0 01	5	26.9	17	В	В	4.6	24.4
Thallium	7.2	0.55	2.11	0.16	В		0.036	0.359	0.21	В	J	0.036	0.359	0.092	В	J	0.035	0.35	0.073	В	T	0.034	0.342	0.13	В Ј		0.403	0.11	В		0.037	0.366
/anadium	102	7.8	108	36.1	Б	3	0.69	5.98	34.4	ь	3	0.69	5.98	12.1	Б	3	0.67	5.83	14.4	ь	3	0.66	5.69	68.1	Б	0.78	6.72	25.2	ь		0.037	6.11
Zinc	31000	2300	202	76.3		J	0.43	2.39	38.3		ī	0.43	2.39	7.74		T	0.42	2.33	7.23		T	0.41	2.28	56.2	J		2.69	23.2		J	0.44	2.44
Dioxins/Furans (ng/kg)	31000	2300	202	70.5		3	0.43	2.37	30.3		,	0.43	2.37	7.74		J	0.72	2.33	7.23		,	0.71	2.20	30.2	3	0.70	2.07	23.2			0.77	2.77
.2.3.7.8-PECDD	na	na	na	1.158	X	J	0.19	0.283	NT					0.358	U	1	0.19	0.358	0.156	U		0.19	0.156	0.148	U	0.19	0.148	0.169	U	$\overline{}$	0.19	0.169
.2.3.4.7.8-HXCDD	+	na	na na	2.868	Λ	J	0.19	0.285	NT					0.338	U		0.19	0.338	0.158	U		0.19	0.158	0.148	U	0.19	0.148	0.169	U		0.19	0.169
,2,3,6,7,8-HXCDD	na		 	6.39			0.57	0.275	NT					0.232	U		0.57	0.232	0.138			0.57	0.138	0.343	U	0.57	0.269	0.138	U		0.57	0.138
.2.3.7.8.9-HXCDD	na 460	na 100	na	7.918			0.57	0.213	NT						U		0.57	0.198	0.124	U		0.57	0.124	0.269	U	0.57	0.269	0.124	U		0.57	0.124
,2,3,4,6,7,8-HPCDD			na	213.5			0.63		NT					0.191	U	J	0.63			U		0.63	0.12	1.436	U	0.63	0.26	0.12	U		0.63	0.12
 	na	na	na		D			0.495							D	-		0.248	11.63	ъ					D				D			
OCDD	na	na	na	2768	В		6.86	0.288	NT					260.2	В	J	6.86	0.355	111	В		6.86	0.201	254.7	В	6.86	0.246	116.3	В		6.86	0.262
,2,3,7,8-PECDF	na	na	na	0.221	U		0.28	0.221	NT					0.161	U		0.28	0.161	0.107	U		0.28	0.107	0.117	U	0.28	0.117	0.113	U		0.28	0.113
2,3,4,7,8-PECDF	na	na	na	0.231	U		0.56	0.231	NT					0.168	U		0.56	0.168	0.112	U		0.56	0.112	0.122	U	0.56	0.122	0.119	Ü		0.56	0.119
,2,3,4,7,8-HXCDF	na	na	na	0.21	U		0.34	0.21	NT					0.168	U		0.34	0.168	0.13	U	_	0.34	0.13	0.119	U	0.34	0.119	0.11	U		0.34	0.11
,2,3,6,7,8-HXCDF	na	na	na	0.205	U		0.49	0.205	NT					0.164	U		0.49	0.164	0.497	X	J	0.49	0.127	0.116		0.49	0.116	0.108	U		0.49	0.108
2,3,4,6,7,8-HXCDF	na	na	na	0.24	U		0.47	0.24	NT					0.192	U		0.47	0.192	0.148	U		0.47	0.148	0.135		0.47	0.135	0.126	U		0.47	0.126
,2,3,7,8,9-HXCDF	na	na	na	0.241	U		0.25	0.241	NT					0.193	U		0.25	0.193	0.149	U		0.25	0.149	0.136		0.25	0.136	0.127	U		0.25	0.127
,2,3,4,6,7,8-HPCDF	na	na	na	29.22			0.33	0.139	NT					1.896		J	0.33	0.167	1.952			0.33	0.093	0.096	U	0.33	0.096	0.112	U		0.33	0.112
,2,3,4,7,8,9-HPCDF	na	na	na	1.229			0.5	0.179	NT					0.216	U		0.5	0.216	0.121	U		0.5	0.121	0.124	U	0.5	0.124	0.144	U		0.5	0.144
OCDF	na	na	na	71.1			0.79	0.296	NT					8.541		J	0.79	0.347	6.303			0.79	0.245	0.317	U	0.79	0.317	0.301	U		0.79	0.301
TOTAL TCDD	na	na	na	0.18	U			0.18	NT					0.066	U			0.066	0.124				0.124	0.181	U		0.181	0.187	U			0.187
TOTAL PECDD	na	na	na	0.283	U			0.283	NT					0.358	U			0.358	0.156				0.156	0.148	U		0.148	0.169	U			0.169
TOTAL HXCDD	na	na	na	35.79				0.209	NT					1.478		J		0.191	0.12	U			0.12	0.26	U		0.26	0.12	U	L		0.12
TOTAL HPCDD	na	na	na	400				0.495	NT					24.69		J		0.248	19.15				0.254	3.33			0.146	1.867				0.174
TOTAL TCDF	na	na	na	0.235	U			0.235	NT					0.257	U			0.257	0.139	U			0.139	0.148			0.148	0.183	U			0.183
TOTAL PECDF	na	na	na	2.207				0.221	NT					0.161	U			0.161	0.107	U			0.107	0.117	U		0.117	0.113	U			0.113
TOTAL HXCDF	na	na	na	27.5			·	0.205	NT					0.164	U			0.164	1.468				0.127	0.116	U		0.116	0.108	U			0.108
TOTAL HPCDF	na	na	na	86.5				0.139	NT					7.273		J		0.167	6.149				0.093	0.295			0.096	0.112	U			0.112
		4.3		6.019	-				NT													1		0.5905			+	0.5492		-		

Note: Refer to the Master Table Legend following this table for a list of definitions and table notes.

Receptor	Media	Carcinogenic Risk	Non-Carcinogenic Hazard
Current Times	frame		
Maintenance Worker	Surface Soil	1.2×10 ⁻⁶ (Within target risk range)	Total HI <1
Future Timefr	rame		
Maintenance Worker	Total Soil	1.6×10 ⁻⁶ (Within target risk range)	Total HI <1
Excavation Worker	Total Soil	<1.0×10 ⁻⁶ (Below target risk range)	Total HI = 1.5. No individual chemical HI was equal to or exceeded 1 and no sum of chemicals grouped by target organ equaled or exceeded 1.
Adult Resident	Total Soil	1.1×10 ⁻⁵ (Within target risk range)	Total HI <1
Child Resident	Total Soil	2.0×10 ⁻⁵ (Within target risk range)	Total HI = 3.3, primarily due to 2,4,6-TNT and iron. The margin-of-exposure evaluation indicated that the intake of iron was within the allowable range.

The SLERA was performed to provide an estimate of current and future ecological risk associated with potential hazardous substance releases at the combined study area. Conclusions were based on assessment results for food chain exposure and direct contact results for terrestrial invertebrates, which may serve as a food source for wildlife. The food chain assessment suggests potential adverse impacts to terrestrial wildlife, especially shrews, robins, and voles for modeled contact with the hazard drivers (primarily chromium, barium, Aroclor-1254) in surface soil. The direct contact assessment suggests a potential reduction in wildlife food supply due to mercury in surface soil.

The conclusions of this RFI, based on review of site data, the HHRA, and the SLERA, were as follows:

- VOCs, SVOCs, pesticides, herbicides, and dioxins/furans were sporadically detected in soil samples; however, none of these compounds were identified by the HHRA or SLERA as posing a significant risk to human health or the environment. Based on an evaluation of the extent of contamination and comparison to soil screening levels, no VOCs, SVOCs, pesticides, herbicides, or dioxins/furans were identified as posing a migration concern.
- VOCs were detected in site groundwater wells at concentrations in excess of maximum contaminant levels (MCLs). Specifically, CT and trichloroethene (TCE) were detected at concentrations of up to 180 micrograms per liter (μ g/L) and 37 μ g/L, respectively. The MCL for both these compounds is 5 μ g/L.
- The HHRA identified potential risk from exposure to 2,4,6-TNT in total soil by hypothetical future child residents, with an estimated hazard quotient (HQ) of 1.7.

Review of site data reveals that 2,4,6-TNT is not widely distributed in the combined study area, with 4 detections in 45 samples. The two highest concentrations [935 and 35.7 milligrams per kilogram (mg/kg)] were found in two samples collected from a single soil boring at depths of 8-9 and 10-11 ft bgs. The two other detections were below 0.5 mg/kg. The HHRA conservatively estimated that a receptor would be exposed to an average 2,4,6-TNT concentration of 52.1 mg/kg based on the 95% upper confidence limit (UCL). However, it is believed that this exposure point concentration overestimates the risk for the entire site because the contaminant is limited to a much smaller area.

- The HHRA identified potential risk from exposure to iron in total soil by hypothetical future child residents. However, the HHRA also conducted a margin-of-exposure evaluation and concluded that the intake of iron was within the allowable range.
- The SLERA suggested potential adverse impacts to wildlife due to modeled contact with barium, chromium, mercury, and Aroclor-1254 in surface soil. However, remedial measures solely to address ecological concerns are not considered warranted due to uncertainties of toxicity, the fact that no wildlife rare, threatened, or endangered species have been confirmed at the study area, and the relatively small size of the combined study area (4.1 acres). Furthermore, it is not clear that barium and chromium are significantly elevated above naturally occurring background levels.

2.3.6 Eastern HSA Groundwater Data Report, Shaw, 2006

Groundwater samples were collected from 13 wells located in the eastern end of the HSA as a data collection effort requested by the USAEC to support the performance-based contract acquisition process. Four wells (48MW1, 48MW2, 48MW3, and 48MW4) from the combined study area were sampled for target compound list (TCL) VOCs, TCL SVOCs, polynuclear aromatic hydrocarbons (PAHs), TCL pesticides/polychlorinated biphenyls (PCBs), explosives, TAL metals, and dioxins/furans. Results from the wells in the study area are shown in **Table 2-6** and are briefly discussed below.

SVOCs, including PAHs, pesticides, PCBs and explosives were not detected in the wells. Ten VOCs were detected. CT and TCE each exceeded their MCLs in two wells. CT exceeded its MCL (5 μ g/L) in wells 48MW2 (29.2 μ g/L) and 48MW3 (51.2 μ g/L). TCE exceeded its MCL (5 μ g/L) in wells 48MW1 (5.5 μ g/L) and 48MW3 (7.4 μ g/L). These compounds were also detected during the 1998 RFI sampling. Concentrations have decreased from 180 μ g/L (CT) and 37 μ g/L (TCE) in 1998. As shown in **Table 2-6**, chloroform and tetrachloroethene exceeded their tap water risk-based concentrations (tw-RBCs) in two and four wells, respectively. Three metals (aluminum, iron, and manganese) exceeded secondary MCLs and antimony, iron, and vanadium exceeded their tw-RBCs in one well each.

2.4 CONCEPTUAL SITE MODEL – SWMUs 48, 49, 50, AND 59

Potentially affected media include surface and subsurface soil, surface water, sediment, and groundwater. The SWMUs are located near the top of a hill in the eastern end of the HSA. A steep slope to the south separates the sites from the river terrace where SWMU 13 is located. Surface and subsurface soil are potentially impacted from former disposal practices at the four SWMUs. Groundwater is also potentially impacted from downward migration of constituents from the soil. Surface water and sediment are not present at the sites. Precipitation is expected to flow down the hill towards the south and infiltrate into the ground. Site workers, hypothetical

Table 2-6 2006 Groundwater Results SWMUs 48, 49, 50, and 59 Radford AAP, Radford Virginia

Analyte		Sample ID Sample Date ample Depth			48MW1 4/13/06 135-136				4	8MW2 4/13/06 32-133				48MV 4/13/ 115-1	06			48MV 4/11/0 90-9	06			4	148MW 1/13/06 35-136	1	
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q Val 0	Q MDL	MRL	Result	Lab Q Val (Q MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)																									
1,1,1-Trichloroethane	200	170	1.3		J	0.5	1	1	U		0.5	1	1	U	0.5	1	1	U	0.5	1	1.2		J	0.5	1
1,1-Dichloroethane	na	90	1.3		J	0.5	1	1	U		0.5	1	1	U	0.5	1	1	U	0.5	1	1.4		J	0.5	1
1,1-Dichloroethene	7	35	0.55	J	J	0.5	1	1	U		0.5	1	1	U	0.5	1	1	U	0.5	1	0.56	J	J	0.5	1
2-Butanone	na	700	5	U		2.5	5	4.5	J	В	2.5	5	5	U	2.5	5	5	U	2.5	5	5	U		2.5	5
Acetone	na	550	25	U		5	25	61.5		В	5	25	25	U	5	25	25	U	5	25	25	U		5	25
Carbon tetrachloride	5	0.16	1	U		0.5	1	29.2			0.5	1	51.2		0.5	1	1	U	0.5	1	1	U		0.5	1
Chloroform	80	0.15	1	U		0.5	1	5.9		В	0.5	1	5.5	В	0.5	1	1	U	0.5	1	1	U		0.5	1
cis-1,2-Dichloroethene	70	6.1	0.71	J	J	0.5	1	1	U		0.5	1	1	U	0.5	1	1	U	0.5	1	0.77	J	J	0.5	1
Tetrachloroethene	5	0.1	1.1		J	0.5	1	1.1		J	0.5	1	0.54	J J	0.5	1	0.66	J J	0.5	1	1		J	0.5	1
Trichloroethene	5	0.026	5.5			0.5	1	3			0.5	1	7.4		0.5	1	1	U	0.5	1	5.5			0.5	1
PAHs (ug/L)	•	•	None Detect	ted				=											man .						
SVOCs (ug/L)			None Detect	ted																					
Pesticides (ug/L)			None Detect	ted																					
PCBs (ug/L)			None Detect	ted																					
Explosives (ug/L)			None Detect	ted																					
Herbicides (ug/L)			Samples we	re not te	sted for	this group	0.																		
Metals (ug/L)																									
Aluminum	50	na	606			16	200	2630			16	200	82.6	J B	16	200	113	J B	16	200	452		В	16	200
Antimony	6	1.5	2.2	U		2.2	5	2.2	U		2.2	5	4.3	J B	2.2	5	2.2	U	2.2	5	2.2	U		2.2	5
Barium	2000	730	105	J	J	0.5	200	615			0.5	200	50.4	J J	0.5	200	167	J J	0.5	200	92.6	J	J	0.5	200
Beryllium	4	7.3	1.8	J	В	0.7	4	2	J	В	0.7	4	2.2	J B	0.7	4	2.1	J B	0.7	4	2	J	В	0.7	4
Calcium	na	na	67400			26	1000	89700			26	1000	102000		26	1000	58600		26	1000	69900			26	1000
Chromium	100	11	1.7	J	J	0.5	10	6.4	J	J	0.5	10	1	J J	0.5	10	0.86	J J	0.5	10	1.2	J	J	0.5	10
Cobalt	na	na	0.4	U		0.4	50	1.3	J	В	0.4	50	0.4	U	0.4	50	0.4	U	0.4	50	0.4	U		0.4	50
Copper	1300	150	0.8	U		0.8	25	0.83	J	В	0.8	25	0.8	U	0.8	25	0.8	U	0.8	25	0.8	U		0.8	25
Iron	300	1100	617			7.5	300	2960			7.5	300	8.9	J B	7.5	300	62.8	J B	7.5	300	387			7.5	300
Lead	15	na	2	J	В	1.2	5	1.3	J	В	1.2	5	2.7	J B	1.2	5	1.2	U	1.2	5	1.2	U		1.2	5
Magnesium	na	na	35300			5.8	5000	44800			5.8	5000	42800		5.8	5000	49600		5.8	5000	35400			5.8	5000
Manganese	50	73	10.3	J	J	0.2	15	50.7			0.2	15	1.8	J B	0.2	15	2.6	J B	0.2	15	5.6	J	J	0.2	15
Nickel	na	73	1.2	J	J	1.1	40	4.9	J	J	1.1	40	1.1	U	1.1	40	1.1	U	1.1	40	1.1	U		1.1	40
Potassium	na	na	2020	J	J	36	5000	1690	J	J	36	5000	1230	J J	36	5000	1600	J J	36	5000	2060	J	J	36	5000
Selenium	50	18	3.2	J	J	2.4	10	2.4	J	J	2.4	10	5.2	J J	2.4	10	2.4	U	2.4	10	2.4	U		2.4	10
Sodium	na	na	13700			77	5000	311	J	В	77	5000	1030	J B	77	5000	8230	L	77	5000	14900			77	5000
Vanadium	na	3.7	1.3	J	В	0.6	50	6.3	J	В	0.6	50	0.91	J B	0.6	50	0.6	U	0.6	50	1.2	J	В	0.6	50

future residents, and terrestrial biota are considered receptors. **Table 2-7** presents the exposure pathways for each human receptor. Ecological and human exposure pathways are shown on **Figure 2-7** (current) and **Figure 2-8** (future). The exposures pathways associated with each media type are described in more detail in the following paragraphs.

The potential presence of constituents in soil indicates that site workers and ecological receptors could be impacted through incidental ingestion of soil, dermal absorption through direct contact with impacted soil, and the inhalation of dust.

Subsurface soil is also potentially impacted. Site workers could be negatively impacted through the inhalation of dust during removal/construction activities. Incidental ingestion and dermal absorption may also affect site workers during construction activities that expose the subsurface soil. Groundwater is also impacted and may impact future site workers or residents if groundwater were developed as a resource.

2.5 DATA GAP ANALYSIS

This section identifies data gaps in the current understanding of the sites and is the basis for the investigation approach described in the next section. Due to the small size and proximity of the sites, groundwater data gaps are considered for the entire study area. Soil data gaps are addressed at the individual sites within the study area. Surface water and sediment are not present at these four sites.

Groundwater: Data gaps exist in the locations of monitoring wells at the sites. With the current wells at the sites, it is difficult to assess the source and the extent of VOCs detected in groundwater. Additional wells are required to fill this data gap. Recent groundwater sampling (April 2006) analyzed samples for the full suite of analytes (TCL VOCs, SVOCs, PAHs, pesticides/PCBs, TAL metals, and dioxin/furans) with the exception of perchlorate and herbicides. These parameters are data gaps. Existing wells should also be samples for VOCs when the proposed wells are installed and sampled so that concentrations can be compared between wells at a single period if time.

Soil:

<u>SWMU 48:</u> The soil is considered sufficiently characterized to complete an RFI/CMS at this site. Screening level exceedances of explosives (2,4,6-TNT and DNT), metals (iron) and dioxin/furan TEs were either sporadically detected (dioxin/furans) or have been bound (explosives, metals).

<u>SWMU 49:</u> Additional soil samples are required at SWMU 49 to assess the extent of a PCB exceedance in surface soil. The data gaps for this site are the spatial distribution of samples. The data gap is primarily for TCL PCBs, however, samples should be analyzed for TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, and dioxins/furans to provide a more complete data set for the site.

<u>SWMU 50:</u> This is the largest of the four sites and the data gap at this site is insufficient coverage of the site for surface and subsurface soil. Data gaps for soil in these areas include TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, and dioxins/furans.

<u>SWMU 59</u>: Arsenic exceeded its industrial screening level in a surface soil sample at this site. A data gap exists in the horizontal and vertical extent of elevated arsenic. Additional samples

Table 2-7 Selection of Exposure Pathways - SWMUs 48, 49, 50, 59

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current	Surface Soil	Surface Soil	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface soil at SWMUs 48, 49, 50, 59 on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface soil at SWMUs 48, 49, 50, 59 on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMUs 48, 49, 50, 59.
				Industrial Worker	Adult	Inhalation	On-site	None	There are no workers currently exposed to airborne volatiles or particulates from surface soil at SWMUs 48, 49, 50, 59 on a daily basis.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMUs 48, 49, 50, 59	None	None	None	On-site	None	Current excavation or construction activities are not occurring at SWMUs 48, 49, 50, 59.
	Groundwater	Groundwater	SWMUs 48, 49, 50, 59	None	None	None	On-site	None	Groundwater is not currently being used at SWMUs 48, 49, 50, 59. Therefore, there is currently no direct exposure to groundwater.
	-	Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
Future	Surface Soil	Surface Soil	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact surface soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact surface soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMUs 48, 49, 50, 59.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMUs 48, 49, 50, 59.

Table 2-7 Selection of Exposure Pathways - SWMUs 48, 49, 50, 59

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Surface Soil	Surface Soil	SWMUs 48, 49, 50, 59	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact soil at SWMUs 48, 49, 50, 59 and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
					Child	Ingestion	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from soils at SWMUs 48, 49, 50, 59.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from soils at SWMUs 48, 49, 50, 59.
				Excavation Worker	Adult	Inhalation	On-site	Quant	Excavation workers could be exposed to airborne volatiles or particulate matter released from soils at SWMUs 48, 49, 50, 59.
				Resident	Adult	Inhalation	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
					Child	Inhalation	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.

Table 2-7 Selection of Exposure Pathways - SWMUs 48, 49, 50, 59

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Total Soil (Surface and Subsurface)	Air	SWMUs 48, 49, 50, 59	Trespasser	Adolescent	Inhalation	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Groundwater	Groundwater	SWMUs 48, 49, 50, 59	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers would not contact groundwater at SWMUs 48, 49, 50, 59.
						Dermal	On-site	None	Maintenance workers would not contact groundwater at SWMUs 48, 49, 50, 59.
				Industrial Worker	Adult	Ingestion	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for industrial purposes and groundwater wells were installed at the site, site workers could be exposed to COPCs in groundwater via ingestion.
						Dermal	On-site	None	Although site worker dermal exposures to groundwater could occur, the exposed body surface area of a worker (i.e., hands and arms) would be small and exposures would be infrequent.
				Excavation Worker	Adult	Ingestion	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at SWMUs 48, 49, 50, 59.
						Dermal	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at SWMUs 48, 49, 50, 59.
				Resident	Adult	Ingestion	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMUs 48, 49, 50, 59 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
		Homegrown fruits and	SWMUs 48, 49, 50, 59	Resident	Adult	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		vegetables			Child	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into a construction or utility trench via vapor intrusion.

Table 2-7 Selection of Exposure Pathways - SWMUs 48, 49, 50, 59

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Air	Volatiles at Showerhead	Resident	Adult	Inhalation	On-site	Quant	If groundwater wells were installed for residential purposes, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	On-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
					Child	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Groundwater	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Homegrown fruits and vegetables	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
					Child	Ingestion	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, volatiles could be released from groundwater into ambient air. Off-site maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into an off-site construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate to off-site wells in the future, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	Off-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.

Table 2-7 Selection of Exposure Pathways - SWMUs 48, 49, 50, 59

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Future (cont.)	Groundwater	Air	Indoor Vapors	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
					Child	Inhalation	Off-site	Quant	If COPCs from SWMUs 48, 49, 50, 59 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	Off-site	None	The maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Indicates pathway/receptor combinations to be evaluated

Shaw™ Shaw Environmental, Inc.

O Indicates pathway/receptor combinations incomplete or no source

Figure 2-7. Current Land Use Conceptual Site Model for SWMUs 48, 49, 50, 59 Radford Army Ammunition Plant, Virginia

DRAWING	JIS, III	CHECKED BY	СН	2/20/07	DRAWING NO.
BY	1/24/07	APPROVED BY	СН	2/20/07	S-123461-1/07-w

Indicates pathway/receptor combinations to be evaluated

Shaw™ Shaw Environmental, Inc.

O Indicates pathway/receptor combinations incomplete or no source

Figure 2-8. Future Land Use Conceptual Site Model for SWMUs 48, 49, 50, 59 Radford Army Ammunition Plant, Virginia

DRAWING	JIS, III	CHECKED BY	СН	2/20/07	DRAWING NO.
BY	1/24/07	APPROVED BY	СН	2/20/07	S-123461-1/07-w

should be analyzed for TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, and dioxins/furans to ensure adequate coverage of the site for these parameter groups.

2.6 INVESTIGATION APPROACH

The approach for these sites will consist of additional sampling to complete RFI/CMSs for four sites. Additional sampling is required to collect sufficient samples to complete risk assessments, further delineate identified "hotspots" in soil, provide additional coverage in lateral and vertical dimensions at the sites and further characterize groundwater so that a groundwater component can be added to the HHRA. **Table 2-8** provides a summary of the additional samples that will be collected. Proposed sample locations are presented on **Figure 2-2**.

Groundwater: Because the sites are fairly small and close together, the groundwater component of the investigations has been combined so that the extent of VOCs in groundwater can be assessed. Seven additional wells will be installed at the four SWMUs. These wells are intended to assess the groundwater conditions at each of the SWMUs and identify potential source areas. The wells will also be used to assess whether constituents in soil identified at the four SWMUs are migrating to groundwater. Proposed well locations are presented on **Figure 2-2**. Drilling and monitoring well installation will be performed in accordance with Section 5.2 and Standard Operating Procedures (SOPs) 20.1, 20.2, and 20.11 of the MWP (URS, 2003a).

One well (48MW07) will be installed upgradient of SWMU 48 and one well (59MW01) will be installed upgradient of SWMU 59. These wells will be used to assess groundwater entering the combined study area.

Two wells (48MW05 and 48MW06) will be installed downgradient of SWMU 48 and upgradient of SWMU 50. These wells are intended to:

- define the western extent of the VOCs detected in the existing wells.
- separate influences from SWMU 48 and SWMU 50 soil to area groundwater.

Two wells will be installed downgradient of SWMU 50 (and downgradient of the study area) to identify any impacts on groundwater from SWMU 50. One well will be installed at SWMU 49 (49MW01) to assess the impacts of the TPH detected in subsurface soil at that site.

Drilling will be performed with Hollow Stem Augers (HSA) to allow split spoon sampling. If water is encountered in the overburden, the well will be installed through the augers. If additional drilling into the bedrock is required, drilling will switch to Air rotary drilling and will continue until water is encountered. Wells will be constructed of two inch Schedule 40 PVC with 0.01 inch slot size screen. Ten feet of screened material will be used unless the rate of water production is low, in which case 15 to 20 ft of screen may be used. Number 1 sand will be used as a filter pack. The wells will be developed using a high capacity submersible pump, and will be periodically surged during development. Water quality parameters will be measured and recorded during development.

After well installation and development, the new wells and the four existing wells will be sampled for TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, dioxins/furans, and perchlorate.

Table 2-8 Proposed Sampling and Analysis Plan SWMUs 48, 49, 50, and 59 Radford AAP, Radford, VA Page 1 of 2

Media	Sampling ID	Depth	Location	Analytes
			SWMU 48	
Groundwater	48MW4	84 ft bgs	existing onsite well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans, perchlorate
	48MW05	screened at first	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
		encountered water		TAL metals, dioxins/furans, perchlorate
	48MW06	screened at first	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
		encountered water		TAL metals, dioxins/furans, perchlorate
	49MW07	screened at first	proposed upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
		encountered water		TAL metals, dioxins/furans, perchlorate
			SWMU 49	
Surface Soil	49SS02	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	49SS03	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	493303	0-0.5 It bgs	onsite surface son	TAL metals, dioxins/furans
	49SS04	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	7,5507	0-0.5 ft bgs	onsite surface son	TAL metals, dioxins/furans
	49SS05	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	493303	0-0.5 It bgs	olisite surface soff	TAL metals, dioxins/furans
Subsurface Soil	49MW01A	4-6 ft bgs	well boring 49MW01	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
Subsurface Soil	49W W U I A	4-0 It bgs	well bornig 491vi w 01	TAL metals, dioxins/furans
	49MW01B	10-12 ft bgs	well boring 49MW01	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	49WW01B	10-12 it bgs	well borning 491VI W 01	TAL metals, dioxins/furans
	49MW01C	18-20 ft bgs	well boring 49MW01	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	49WIW01C	16-20 It bgs	well bornig 491vi w 01	TAL metals, dioxins/furans
Groundwater	48MW1	125 ft bgs	existing upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
Groundwater	401VI VV 1	123 It 0gs	existing upgradient wen	TAL metals, dioxins/furans, perchlorate
	48MW2	123.7 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	46IVI W 2	125.7 It bgs	existing downgradient wen	TAL metals, dioxins/furans, perchlorate
	48MW3	110 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	40IVI W 3	110 It ogs	existing downgradient wen	TAL metals, dioxins/furans, perchlorate
	49MW01	screened at first	proposed onsite well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	491V1 VV 01	encountered water	proposed offsite wen	TAL metals, dioxins/furans, perchlorate
		cheountered water	SWMU 50	TAE metals, dioxins/turans, peremorate
Surface Soil	50SB06A	0.0564	onsite surface soil	TOL VOCa SVOCa DALLa massinidas/DCDa bashinidas analogius
Surface Soil	JUSBUOA	0-0.5 ft bgs	onsite surface soff	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives TAL metals, dioxins/furans
	50SB07A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB08A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB09A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB10A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB11A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB12A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
		1		TAL metals, dioxins/furans
	50SB13A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB14A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans
	50SB15A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
				TAL metals, dioxins/furans

Table 2-8 Proposed Sampling and Analysis Plan SWMUs 48, 49, 50, and 59 Radford AAP, Radford, VA Page 2 of 2

Media	Sampling ID	Depth	Location	Analytes
Subsurface Soil	50SB06B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
Subsurface Soil	303В00В	4-0 it bgs	onsite subsurface son	TAL metals, dioxins/furans
	50SB07B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	50SB08B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	50SB09B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	50SB10B	4-6 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	50SB11B	4-6 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	50SB12B	4-6 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
		Ü		TAL metals, dioxins/furans
	50SB13B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	50SB14B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	50SB15B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
Groundwater	50MW01	screened at first encountered water	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	50MW02	screened at first	proposed downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	501111102	encountered water	proposed downgradent wen	TAL metals, dioxins/furans, perchlorate
			SWMU 59	
Surface Soil	59SS06	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
				TAL metals, dioxins/furans
	59SS07	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SS08	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SS09	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SS10	0-0.5 ft bgs	onsite surface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB02A	0-0.5 ft bgs	onsite surface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB03A	0-0.5 ft bgs	onsite surface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB04A	0-0.5 ft bgs	onsite surface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
		Ŭ		TAL metals, dioxins/furans
	59SB05A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SB06A	0-0.5 ft bgs	onsite surface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
Subsurface Soil	59SB02B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SB02C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB03B	4-6 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB03C	8-10 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB04B	4-6 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
		Ü		TAL metals, dioxins/furans
	59SB04C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SB05B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SB05C	8-10 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	59SB06B	4-6 ft bgs	onsite subsurface soil	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
	59SB06C	8-10 ft bgs	onsite subsurface soil	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
Croundwater	59MW01	screened at first	proposed ungradient well	TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives,
Groundwater	331VI VV () I	encountered water	proposed upgradient well	TAL metals, dioxins/furans, perchlorate

Groundwater sampling will be performed using low-flow sampling techniques and a submersible pump in accordance with SOP 30.2 of the MWP (URS, 2003a). Water quality parameters will be monitored until stabilized (3 consecutive readings within 10%), the flow cell will be removed, the flow rate will be reduced to 100 ml/min and then sampling will be performed

Soil: Additional soil samples will be collected at three of the four SWMUs and are described below. The proposed samples and analyses are presented in **Table 2-8** and locations are shown on **Figure 2-2**. Sufficient samples have been collected at SWMU 48 to characterize the site for an RFI/CMS.

SWMU 49

Four surface soil samples and soil samples from three depths in the proposed well will be collected to provide sufficient sample coverage of the site for a statistical analysis of the on-site samples and the background dataset, as described in Section 1.2. The soil samples will be analyzed for TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, and dioxins/furans. Soil sampling will follow the procedures in Section 5.2.9 and SOP 30.1 of the MWP (URS, 2003a).

SWMU 50

Advancement of ten soil borings to collect ten surface soil samples and ten subsurface soil samples to provide sufficient sample coverage for surface and subsurface soil for a statistical analysis of the on-site samples and the background dataset, as described in Section 1.2. These samples will be analyzed for TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, and dioxins/furans. Soil sampling will follow the procedures in Section 5.2.9 and SOP 30.1 of the MWP (URS, 2003a).

SWMU 59

Ten surface soil samples and five soil borings are proposed for this site. The five soil borings will be located at five of the surface soil locations with subsurface samples collected from 4-6 and 8-10 ft bgs at each soil boring. These samples are intended to characterize the subsurface and to delineate the extent of elevated arsenic in surface soil. These samples will be analyzed for TCL VOCs, TCL SVOCs, PAHs, TCL pest/PCBs, explosives, herbicides, TAL metals, and dioxins/furans. Soil sampling will follow the procedures in Section 5.2.9 and SOP 30.1 of the MWP (URS, 2003a).

3.0 SWMU 41 RED WATER ASH BURIAL

3.1 SITE DESCRIPTION AND HISTORY

3.1.1 Site Description

SWMU 41 is located in the southeast section of the MMA at RFAAP (**Figure 3-1**). **Figure 3-2** shows the layout of the site, which consists of two non-contiguous disposal areas (Areas A & B) for red water ash, a byproduct of combustion of TNT production wastewater (i.e., "red water").

Area A is an approximate 0.19-acre (approximately 93 ft by 109 ft) former unlined lagoon area, which has been backfilled with up to 15 ft of fill. This lagoon received rinsate from ashtransport vehicle rinsing (USEPA, 1987).

Area B is a natural clay-lined landfill, approximately 225 ft by 70 ft, containing red water ash. Clayey fill has been placed in an approximately 1.08 acre area at Area B. Prior to the construction of the red water treatment plant, red water was concentrated by evaporation and burned in four rotary kilns located in the TNT manufacturing area. The ash produced from these kilns was disposed of in SWMU 41 Area B from 1967 to 1971.

The closest structures to the site are two equalization basins located approximately 100 ft northwest of Area B and approximately 50 ft south-southwest of Area A. Each equalization basin consists of contiguous below grade reinforced concrete tanks. These units currently receive storm water from the inactive TNT Area (ATK, 2003). The equalization basins subsequently discharge to the RFAAP Industrial Wastewater Treatment Plant (ATK, 2003). Piping and associated appurtenances from the equalization basins traverse along the

southern boundary of Area A. Other structures near SWMU 41 include a maintenance shop area adjacent to the north of Area A comprised of several small structures and storage areas (**Figure 3-2**).

Topography in the site area is characterized by gently to steeply sloping ridges and a general downward slope to the north (**Figure 3-2**). Area A is located approximately 100 ft west of Stroubles Creek at an elevation of approximately 1,730 to 1,735 ft msl. The ground surface slopes steeply from the edge of Area A toward the north and east toward Stroubles Creek. The burial area in Area B is approximately 550 ft southwest of Area A and approximately 70 to 100 ft west of an unnamed tributary of Stroubles Creek. The ground surface in Area B slopes toward the north, northeast, and northwest from an elevation of approximately 1,800 ft msl to a minimum elevation of approximately 1,776 ft msl. The land east and northwest of Area B slopes steeply toward a drainage ditch and an unnamed tributary of Stroubles Creek, respectively.

3.1.2 Site History

The RFA conducted by the USEPA in 1987 identified the site as having the potential to release contaminants into the environment. The site is included in the RFAAP RCRA Permit for Corrective Action (USEPA, 2000b). From approximately 1967 to 1974 and again from 1983 to 1986, RFAAP manufactured TNT by the continuous-type process (ATK, 2003), which employed

LEGEND

SWMU 41 and 43, and Area O and P Boundaries

Other SWMU Boundary

Installation Boundary

Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 2,000 1,000

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 3-1 SWMU 41 and 43, and Areas O and P Site Location Map

Radford Army Ammunition Plant, Radford, VA

chemical recycling and resulted in a smaller quantity of more concentrated waste than older batch-type operations. In TNT manufacture, a red-colored wastewater known as "red water" is produced (Department of the Army, 1987). Red water ash is identified as a USEPA hazardous waste (K047) solely for its reactivity (40 CFR 261.32). Red water generated from continuous-type TNT manufacturing (versus batch-type manufacture) at RFAAP was concentrated by evaporation and the residue burned in rotary kilns located in the former TNT manufacturing area (USATHMA, 1976). The ash produced from these kilns was disposed of in SWMU 41 from 1967 to 1971. Beginning in 1972, the red water was concentrated by evaporation to a 35%-liquor and sold to the paper industry (USATHMA, 1976).

3.2 SITE GEOLOLOGY, HYDROGEOLOGY AND HYDROLOGY

A comprehensive discussion of the regional physiography, soil, geology, and groundwater at RFAAP is included in the RFAAP MWP (URS, 2003a) and therefore is not discussed in this report.

3.2.1 Site Soil

Caneyville-Opequon-Rock Outcrop Complex is mapped within upland areas of the site and the Weaver soil is mapped along the floodplain of Stroubles Creek (URS, 2003b). The Caneyville-Opequon-Rock Outcrop Complex (25 to 60% slopes) consists of shallow, dominantly plastic clay soil with moderate organic content, slow to moderate permeability, and strongly acidic to neutral reaction. Weaver soil is present along the floodplain of Stroubles Creek and consists of moderately well drained and deep silt and clay loam soil, with low to moderate organic content, moderate permeability, and neutral to moderately alkaline reaction. A seasonally high water table occurs in the Weaver soil and the depth to bedrock is greater than 40 inches. Historical site activities have resulted in disturbance of native soil and placement of clayey fill [lean clay (CL) to fat clay (CH)] within Areas A and B. Soil samples are classified as lean to fat clay (CL to CH), with acidic to slightly alkaline pH (4.9 to 7.9 with distilled water), and low permeability (2.0E- 07 to 1.2E-08 centimeters per second). Total organic content of the soil samples range from 2.5 to 5.1%.

Fill material and residual soil at the site primarily consists of brown to reddish-yellow lean to fat clay (CL and CH) containing variable sand and gravel. Fill material covers both Areas A and B. The thickness of fill material at Area A is approximately 15 ft or less. At Area B, the thickness of fill ranges from 7 to approximately 20 ft with an increased thickness toward the north and northwest following the slope of bedrock and surface topography. A layer of clayey gravel (GC) or residual soil with saprolitic texture was encountered above bedrock in several borings completed at the site. A burial area of red water ash is present within Area B below approximately 4 to 9 ft of soil cover (clay). The observed thickness of this buried material ranged from approximately 0.1 to 4 ft.

3.2.2 Site Geology

Site geologic conditions were characterized during the 2005 RFI by completing 11 direct push soil borings at Area A (16 to 33 ft bgs) and 29 direct push soil borings at Area B (1 to 30 ft bgs) and physical testing of four soil samples. A geophysical survey was also completed at Area B prior to the RFI field investigation. Five of the borings at Area A and 19 of the borings at Area B were completed to refusal (presumed bedrock). A previous RCRA VI was conducted at the site in 1992 by Dames and Moore and included the completion of six borings (15 to 125 ft bgs),

installation of bedrock monitoring wells in three of the borings (41MW1, 41MW2, and 41MW3), and physical testing of two soil samples. VI and RFI boring locations are shown on **Figure 3-2**. Subsurface data from site borings were used to construct two geologic cross-sections. A plan view of the cross section lines is presented on **Figure 3-2**. Cross-section A-A' is orientated northeast southwest across the site (**Figure 3-3**) and cross-section B-B' is orientated northwest southeast across Area B (**Figure 3-4**). Well construction diagrams and boring logs for the wells are presented in **Appendix B**.

The site is underlain by the Cambrian Elbrook Formation, which consists of medium-gray, limestone and dolomite (collectively, carbonate rock). Bedrock cores in site borings were described as an interbedded argillaceous gray limestone and dolomite, with greenish-gray shale encountered in the uppermost 13 ft of bedrock in borings 41MW3 and 41MW3B. This shale was variably weathered with calcite veins and occasional layers of siltstone and pitted limestone. The limestone and dolomite has brecciated and conglomeratic zones and vuggy and pitted surfaces. Evidence of faulting and deformation of the limestone/dolomite bedrock is found in rock core samples and nearby road cuts, and is likely the result of intense deformation associated with the geologic thrust sheet fenster located immediately south and southeast of SWMU 41 (Dames and Moore, 1992). Bedrock outcrops south of Area B and along the access road northwest of Area B. The Draft Geologic Map of the Radford North Quadrangle indicates that the strike of bedrock at the southern outcrop near Area B is N45°W with an 80-degree dip (DMR, 2000). The bedrock surface slopes from the outcrop toward the north and northwest (Figures 3-3 and 3-4), and the depth to bedrock also increases in the same direction to a maximum observed depth of 32.5 ft in Area A and 30 ft bgs in Area B.

3.2.3 Site Hydrogeology

Groundwater at the site is present within fractured carbonate bedrock. Three bedrock monitoring wells (41MW1, 41MW2, and 41MW3) were installed within and downgradient of Area B as part of the 1992 VI conducted by Dames and Moore. Monitoring wells 41MW1 and 41MW2 were installed immediately upgradient and downgradient of the burial area, respectively, while 41MW3 was installed approximately 220 ft north of 41MW2. Stabilized potentiometric levels measured during the RFI ranged from 1,727.16 ft msl (41MW3) to 1,761.06 (41MW1). In the burial area, the potentiometric surface was approximately 23 to 25 ft below the top of bedrock, and downgradient of Area B it was approximately at the elevation of bedrock at 41MW3. The inferred groundwater flow direction in the area of monitoring wells 41MW1 and 41MW2 is toward the northeast at a hydraulic gradient in excess of 0.30 ft/ft based on limited triangulation between the three wells (**Figure 3-2**). Local groundwater flow patterns are likely a reflection of surface topography with local discharge occurring at Stroubles Creek and its unnamed tributary, which are perennial streams that receive their base flow from groundwater discharge.

3.2.4 Surface Water Hydrology

Stroubles Creek is a perennial stream located approximately 50 ft west of Area A. This creek splits into two channels approximately 150 ft upstream of Area A (southeast) and flows north past the site for a distance of approximately 250 ft before merging back into a single wider channel where it continues to flow north for approximately 2,800 ft until it discharges into the New River. Overland drainage from Area A flows toward the north, east, and south down a moderately sloped grass surface and then flows east toward Stroubles Creek. Overland storm water flow originates upgradient from the west of Area A in well-defined storm water drainage

Figure 3-3 SWMU 41 Geologic Cross Section A-A'

> Radford AAP Radford, Virginia

Source: RCRA Facility Investigation Report for Solid Waste Management Unit 41 (URS, 2005)

US Army Corps of Engineers ® Baltimore District

Shaw Environmental, Inc. 2113 Emmorton Park Road Edgewood, MD (410) 612-6350 Figure 3-4 SWMU 41 Geologic Cross Section B-B'

> Radford AAP Radford, Virginia

Source: RCRA Facility Investigation Report for Solid Waste Management Unit 41 (URS, 2005)

ditches that flow along the perimeter of the equalization basins and on paved road surfaces along the western perimeter of Area A.

Overland drainage in the eastern half of Area B is toward the northeast and an unnamed tributary of Stroubles Creek located 70 to 100 ft northeast of Area B. This tributary originates approximately 0.7 miles southeast of the site and flows into Stroubles Creek approximately 150 ft upstream (southeast) of Area A. Overland drainage in the western half of Area B is northwest toward a storm water drainage ditch located south of the equalization basins, which receive storm water from the inactive TNT area (ATK, 2003). This drainage ditch discharges into the unnamed tributary approximately 375 ft north of Area B. Overland flow into Area B is from north via diffuse flow along vegetated surfaces. Seeps have occasionally flowed during prolonged wet periods at several locations along the base of the hill northwest of Area B. Discharges from these seeps were not observed during numerous site visits conducted during the RFI field program with the exception of one intermittent flowing seep observed at the northwest corner of Area B during the RFI; this seep emanated from the hillside where a small area of fill material has slumped away from the hillside.

Surface water flow measurements and water quality data were collected during the URS 2005 RFI. Measured flow in Stroubles Creek ranged from 0.6 cubic feet per second (ft³/s) at station 41SW6/41SD6, where the creek was split into two channels, to 34.4 ft³/s at the farthest downstream location. In the unnamed tributary, flow measurements ranged from 0.16 ft³/s in the upstream sample to 0.90 ft³/s in the farthest downstream sample. Measured levels of pH ranged from 8.13 to 8.72. Dissolved oxygen levels were in the range of 9.29 to 13.35 milligrams per liter with temperatures of 10 to 12.5°C. Specific conductance levels ranged from 0.285 to 0.376 siemens per centimeter.

3.3 PREVIOUS INVESTIGATIONS

In 1992, monitoring wells were installed and sampled and soil and surface water samples were collected. In 1997, sampling of Stroubles Creek for surface water and sediment near SWMU 41 was conducted. In 2002, a geophysical survey was performed to characterize both the lateral and vertical extent of the former burial area (Area B). In 2004, an RFI was conducted that defined the nature and extent of previous waste management practices through the collection and analysis of soil, groundwater, surface water, and sediment samples.

3.3.1 Installation Assessment (Air Photo Interpretation), 1992

Under the direction of USEPA, the Environmental Photographic Interpretation Center performed an assessment of multiple SWMUs at RFAAP (including SWMU 41) using selected aerial photographs from 1937 to 1986 (USEPA, 1992). Activity at SWMU 41 was first noted in a 1970 photograph and reportedly continued through the 1986 photographs (USEPA, 1992). A trench, a possible trench scar, and mounded material were visible on the 1971 photographs. The report noted that, "The trench appears to be empty at this time" (USEPA, 1992). "Between 1975 and 1981, the lagoon in the northern portion of this site had undergone filling and by 1981, [no more than] a small ground scar was visible in the southern portion of the site, which was undergoing revegetation" (USEPA, 1992). It was also noted that, "Between 1981 and 1986, the southern area had received a considerable amount of fill material" (USEPA, 1992). The 1986 photograph indicated that the majority of the site was "devoid of vegetation and significant filling appeared to have taken place" (USEPA, 1992).

3.3.2 VI, Dames and Moore, 1992

The VI completed by Dames and Moore in 1992 included sampling of soil, groundwater, and surface water as described below. Sample locations are shown on **Figure 3-2**.

<u>Soil</u> – One soil boring (41SB1) was completed to a depth 15 ft bgs near the center of Area A (**Figure 3-2** and **Table 3-1a**), and two soil samples were collected from this boring for chemical analysis of TAL metals, SVOCs, and explosives. Fill material described as potential red water ash was encountered in 41SB1 from approximately 6-13 ft bgs (Dames and Moore, 1992). One soil sample was collected at a depth of 8-10 ft bgs from this material and a second soil sample was collected below this material at the boring termination (14-15 ft bgs). Detected constituents included 16 metals and two tentatively identified compounds (TICs) in the SVOC library scan. Aluminum, chromium, manganese, and vanadium were detected at concentrations above current adjusted USEPA Region III residential risk-based concentrations (R-RBCs), and arsenic and iron were detected at concentrations above current adjusted USEPA Region III industrial risk-based concentrations (I-RBCs). Metals concentrations were below their RFAAP background point estimates (95% UTLs).

Groundwater – Three groundwater-monitoring wells (41MW1, 41MW2, and 41MW3) were installed at Area B to evaluate the potential impact of buried red water ash on the groundwater quality. Monitoring wells 41MW-1 and 41MW2 were installed immediately south and north of the burial area, respectively, and 41MW3 was installed approximately 220 ft north of 41MW2 (**Figure 3-2**). Groundwater samples were collected from these monitoring wells for analysis of TAL Metals, SVOCs, explosives, total organic carbon (TOC), total organic halides (TOX), and pH. Constituents detected in one or more groundwater samples included 11 metals, bis(2-ethylhexyl)phthalate, TOC, and TOX (**Table 3-1b**). Concentrations of antimony, vanadium and bis(2-ethylhexyl)phthalate in sample 41MW2 were above their adjusted tw-RBCs. Antimony also exceeded its MCL in the sample from 41MW2. Vanadium was also detected in sample 41MW3 at a concentration above its adjusted tw-RBC.

Surface Water – The planned VI program at Area A included the collection of a surface water sample from a seep along the bank of Area A prior to the seep entering Stroubles Creek. However, this seep was not active during the VI program, so a substitute sample of surface water was collected from Stroubles Creek for analysis of TAL metals, SVOCs, explosives, TOC, TOX, and pH. Detected constituents included seven metals, 2,4,6-TNT, TOC, and TOX (**Table 3-1c**). TNT was detected at a concentration (1.38 μ g/L) below its current adjusted tw-RBC and USEPA Region III Biological Technical Assistance Group (BTAG) freshwater screening value. Metals concentrations were below adjusted tw-RBCs and BTAG screening values, with the exception of barium (55.9 μ g/L), which was above its BTAG screening level.

3.3.3 New River and Tributaries Study, Parsons, 1997

Surface water and sediment sampling of Stroubles Creek near SWMU 41 was conducted by Parsons to support RFIs conducted at SWMUs 17, 31, 48, and 54. Sampling of Stroubles Creek was conducted in January 1995 (samples SCSW2/SCSE2) and November 1996 (samples SCSW4/SCSE4), and sampling results were reported in the New River and Tributaries Study dated December 1997 (Parsons, 1997). Results from this study cannot necessarily be attributed to a particular site, but are described in the section below.

Table 3-1a 1992 VI Detected Results for Soil at SWMU 41

SITE ID				41SB1	41SB1
FIELD ID	i-RBC	r-RBC	Background	RVFS*44	RVFS*45
SAMPLING DATE	11120	11120	Duenground	25-OCT-91	25-OCT-91
DEPTH (ft)				8	14
Metals (mg/kg)					
Aluminum	na	na	40041	25400	20600
Arsenic	1.9	0.43	15.8	8.1	11.5
Barium	20000	1600	209	140	84.4
Calcium	na	na	na	62800	821
Chromium	310	23	65.3	32.6	60
Cobalt	na	na	72.3	12.8	15.9
Copper	4100	310	53.5	19.7	21.8
Iron	31000	2300	50962	24400	40000
Lead	800	400	26.8	74.7	37.3
Magnesium	na	na	na	40800	4950
Manganese	2000	160	2543	1560	885
Nickel	2000	160	62.8	20.8	25.2
Potassium	na	na	na	2080	1440
Sodium	na	na	na	2040	887
Vanadium	102	7.8	108	48.7	54.3
Zinc	31000	2300	202	241	87.7

Table 3-1b 1992 VI Detected Analytes for Groundwater at SWMU 41

SITE ID			41MW1	41MW2	41MW3	41MW3				
			RDWC*69	41WW 2 RDWC*70	41WW 5 RDWC*68	RDWC*71				
FIELD ID	MCL	tw-RBC	,							
SAMPLING DATE			03-MAR-92	03-MAR-92	04-MAR-92	04-MAR-92				
DEPTH (ft)			65	100	45	45				
Metals (ug/L)										
Antimony	6	1.5	nd	68	nd	nd				
Barium	2000	730	19.9	81.8	16.5	15.7				
Calcium	na	na	24000	232000	121000	122000				
Lead	15	na	nd	1.41	nd	3.58				
Magnesium	na	na	31400	214000	64000	65000				
Manganese	50	73	45.4	39	10.1	10.2				
Potassium	na	na	938	1710	2560	2940				
Silver	100	18	0.321	0.962	nd	nd				
Sodium	na	na	960000	6500000	221000	224000				
Vanadium	na	3.7	nd	34.1	14.6	15.3				
Zinc	5000	1100	nd	31.8	nd	nd				
Organics (ug/L)			_		_					
Bis(2-ethylhexyl)phthalate	6	4.8	nd	5.6	nd	nd				
Wet Chemistry				-	-					
рН	na	na	7.87	7.08	7.07	7.13				
TOC	na	na	38000	82100	24400	23300				
TOX	na	na	77.8	89.2	36.1	95				

Table 3-1c 1992 VI Detected Results for Surface Water at SWMU 41

	_			
SITE ID			41SW1	
FIELD ID	MCL	tw-RBC	RDWC*76	
SAMPLING DATE	WICE	tw-KBC	10-MAR-92	
DEPTH (ft)			na	
Metals (ug/L)				
Barium	2000	730	55.9	
Calcium	na	na	58500	
Iron	300	1100	199	
Magnesium	na	na	29200	
Manganese	50	73	27.8	
Potassium	na	na	1850	
Sodium	na	na	14900	
Organics (ug/L)				
2,4,6-Trinitrotoluene	na	2.2	1.38	
Wet Chemistry				
pН	1/1	na	7.99	
TOC	1/1	1000.0	6010	
TOX	1/1	1000.0	82.4	

1995 Sample Results – One explosive, HMX, was detected in surface water sample SCSW2 collected from Stroubles Creek downstream from SWMU 41 at a concentration (5.3 μ g/L) below its current tw-RBC and BTAG screening level. Dissolved metals were detected at concentrations below their tw-RBCs and BTAG screening levels. In the sediment sample (SCSE2), chromium was detected above its R-RBC and arsenic was detected above its I-RBC. Lead and nickel were detected in this sample at a concentrations above their BTAG screening levels.

1996 Sample Results – HMX was not detected in surface water sample SCSW4 collected from the same downstream location sampled in 1995 (SCSW2). Di-n-butylphthalate was detected in sample SCSW4 at a concentration above its BTAG screening level. Dissolved metals were detected in the 1996 samples at concentrations below their tw-RBCs and BTAG screening levels. Organic constituents were not detected in sediment sample SCSE4. In the sediment sample (SCSE4), manganese and vanadium were detected at concentrations above their R-RBCs, and arsenic and iron were detected at concentrations above their I-RBCs. Iron also exceeded its BTAG screening level.

3.3.4 Geophysical Survey, Argonne National Laboratory (ANL), 2002

ANL performed a geophysical survey of Area B during August and September 2002 to assist in the delineation of potential red water ash burial locations within Area B. Subsurface information obtained by the geophysical surveys was used to refine the CSM and focus RFI field investigations on characterizing the nature and extent of burial areas at Area B. Surface geophysical surveys were conducted using two-dimensional resistivity profiling, seismic refraction tomography, and electromagnetic-31 (EM-31) terrain-conductivity mapping. Vertical seismic profiles were also conducted in existing monitoring wells 41MW1, 41MW2, and 41MW3 at Area B to assist in guiding the seismic interpretations. USACE New England District personnel collected downhole electrical and natural-gamma logs to aid in constraining the resistivity models. The ANL geophysical report detailing the results of the surveys and methods used is included in the URS RFI report (URS, 2005). Figure 3-5 is an EM-31 conductivity anomaly map that identifies two anomaly areas of higher electrical conductivity interpreted by ANL in their report as potential red water ash burial areas. The western anomaly area is approximately 120 ft in length and 20 to 30 ft in width and is orientated along a north-northwest south-southeast axis. The eastern area is approximately 30 ft in diameter. ANL estimated a 10 ft or less depth for the buried material based on the results of the conductivity survey and twodimensional resistivity profiling. **Figure 3-6** shows seismic refraction profiling results that mapped bedrock at Area B as a surface sloping towards the north and northwest, with a slight decrease in velocity in the 50X and 115X on seismic profile 41-Seis-L1, which is also observed on seismic profile 41-Seis-L2. ANL interpreted this velocity change as a potential lithologic or structural break (consistent with a weaker bedrock zone modeled by 2D-ERI profile 41-Resist-L1). Other significant structural features were not indicated for the bedrock.

3.3.5 RFI, URS Corporation, 2005

The draft RFI was submitted to the Army, but the report was never submitted to the regulatory agencies. The RFI was designed to characterize chemical concentrations in soil at Areas A and B and the nature and extent of buried red water ash at Area B, evaluate potential releases to groundwater, surface water, and sediment in the site area, and evaluate potential risks to human health and the environment from identified chemicals of potential concern (COPCs). The chemical sampling and analysis program at Area A included 15 soil samples and three surface

This figure was reproduced from the RCRA Facility Investigation Report for Solid Waste Management Unit 41 (URS, 2005)

FIGURE 3-6 Seismic Refraction Profiling Results Area B

Date:	UR8 Project #:
August 2005	21354683
Prepared by:	Approved by:
LAM \ DBC	JOS
Scale:	File Name:
As Shown	Fig. 2-13

SWMU 41

RCRA Facility Investigation Radford Army Ammunition Plant Radford, Virginia

water/sediment sample pairs from nearby Stroubles Creek. At Area B, the chemical sampling and analysis program included: 22 samples of soil and buried material, three groundwater samples from existing monitoring wells 41MW1, 41MW, and 41MW3, and three surface water/sediment samples from the nearby unnamed tributary of Stroubles Creek. Results from these samples are presented in **Tables 3-2 through 3-5**, separated by media.

Nature and Extent Assessment at Area A

COPCs identified in Area A soil were aluminum, arsenic, barium, manganese, 1,1,2,2-tetrachloroethane (1,1,2,2-TCA), TCE, and total 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) equivalents concentration (TEQ).

Exceedances of adjusted R-RBCs for organic chemicals at Area A were limited to one "B" sample (41SB2B at 7.5 to 8 ft bgs) for total 2,3,7,8-TCDD as TEQ. No individual congener exceeded the applicable criteria in the sample. Vertical delineation of this exceedance was provided by the deeper "C" sample at this location (41SB2C at 15 to 16.5 ft bgs), which had a TEQ concentration below the adjusted R-RBC.

One soil sample for barium exceeded the USEPA Region III adjusted R-RBC. Other metal COPC concentrations were below their background point estimates, except for aluminum and arsenic in one terminal depth sample. 1,1,2,2-TCA and TCE were identified as COPCs based on single detections in soil samples at concentrations above their USEPA Region III default soiltransfer-to-groundwater screening level (SSL). It was concluded that 1,1,2,2-TCA and TCE were unlikely to leach to groundwater at levels of concern based on the lack of exceedances of calculated site-specific SSLs. Low-level organic detections and metal COPC concentrations in site soil were not indicative of significant impact from historical red water ash washout activities in the lagoon. No evidence of residual waste in the former lagoon area was observed in the 13 soil borings completed within Area A. Metals and dioxins concentrations in samples were not positively correlated, with metals concentrations below the background point estimate at the boring location of the R-RBC exceedance for total 2,3,7,8-TCDD as TEQ. Well-defined concentration patterns or trends were not apparent from the COPC data that would facilitate presentation of the soil data as isoconcentration maps. Surface water and sediment data from Stroubles Creek proximate to Area A were not indicative of significant impact from previous site activities at Area A. Human health COPCs were not identified in surface water samples, and metals COPCs were detected in sediment samples at concentrations below their soil background point estimates except for one slight exceedance of the arsenic background point estimate.

Nature and Extent Assessment at Area B

Four to nine feet of low permeability clay caps an estimated of 509 cubic yards of buried red water ash material within two adjacent burial areas with a combined area of 7,168 ft² (0.16 acre). At the northeast corner of Area B, a small area of buried material (less than 1 foot thick and 3 ft wide) is exposed underneath an overhang of fill material where a small area of fill material has slumped away. This exposed area has a seep, which intermittently flows after prolonged heavy precipitation events. A sample of this seep did not indicate detectable levels of organic constituents leaching from the buried material or levels of dissolved metals at concentrations above adjusted tw-RBCs. COPCs identified in Area B soil and/or buried material were aluminum, arsenic, iron, manganese, 1,2-dibromo-3-propane (SSL), 1,3-dichlorobenzene (SSL), benzene (SSL), TCE (SSL), and total 2,3,7,8-TCDD as TEQ. Metals were the primary COPCs in soil with the highest concentrations detected in intermediate depth samples that contained

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 1 of 8

												Page 1 of 8																
Analyte	Sample II Sample Date	41SB2/ 3/30/0		41SB2 3/30/0			41SB2C 3/30/04		41SB3A 3/31/04				41SB3F 3/31/04			ISB3C /31/04		41SB4 3/31/				SB4B 31/04		41SB4 3/31/0				41SB5A 3/31/04
Analyte	Sample Deptl	0-1		7.5-8			31-32.9		0-1	•			9.8-10.			0.4-30.4		0-1				7-8		15-1				0-1
	i-RBC r-RBC Background	Result Lab Q Val Q	MDL MRL Result	Lab Q Val Q	Q MDL M	RL Result Lab	Q Val Q MDL MRL	Result	Lab Q Val Q	MDL	MRL	Result La	ab Q Val Q	MDL MRL	Result Lab Q	Val Q MDL MRL	Result	Lab Q Val (Q MDL MI	L Result	Lab Q V	Val Q MDL MRI	Result	Lab Q Val Q	Q MDL	MRL	Result Lab Q	Val Q MDL MRL
VOCs (ug/kg) 1,1,2,2-Tetrachloroethane	14000 3200 na	5 U	0.084 5 5	U	0.084	; 5 11	0.084 5	- 5	п	0.084	5	0.97	T	0.084 5	5 11	0.084 5		U	0.084 5	- 5	11	0.084 5	- 5	П	0.084	5	5 111	0.084 5
1,2-Dibromo-3-chloropropane	3600 200 na	10 U	0.307 10 10		0.307 1	0 10 U	J 0.307 10	10	U		10		U	0.307 10	10 U	0.307 10	10	U	0.307 10) 10	U	0.307 10	10	U	0.084	10	10 U	0.307 10
1,2-Dibromoethane (EDB)	1400 320 na	5 U	0.134 5 5	U	0.134	5 U	J 0.134 5	5	U	0.134	5	5	U	0.134 5	5 U	0.134 5	5	U	0.134 5	5	U	0.134 5		U	0.134	5	5 U	0.134 5
1,2-Dichloroethane	31000 7000 na	5 U	0.18 5 5	U	0.18	5 U	J 0.18 5	5	U	0.18	5	5	U	0.18 5	5 U	0.18 5	5 5.3 10 10	U	0.18 5		U	0.18 5	_	U	0.18	5	5 U 4.7 J	0.18 5
2-Butanone 2-Hexanone	61000000 4700000 na 4100000 310000 na	5.5 J B	0.393 10 4.6	J B U	0.393 1		B 0.393 10 J 0.37 10	9.3 10	J	0.393		5.8	J	0.393 10	8.8 J	0.393 10	5.3	J	0.393 10		U	0.393 10		II	0.393		4.7 J 10 U	0.393 10
2-Hexanone 4-Methyl-2-pentanone	4100000 310000 na 8200000 630000 na	10 U		U	0.37 1		0.37 10 0.181 10	10		0.37		10 10		0.37 10	10 U 10 U	0.37 10 0.181 10	10	II	0.37 10			0.37 10		U			10 U	0.37 10
Acetone	92000000 7000000 na	37 J		J	18.5 6			55		18.5		31		18.5 60	42 J		28	J J			J		74	J	18.5			J 18.5 60
Benzene	52000 12000 na	0.24 J		J	0.136	, ,	J 0.136 5	0.52		0.136			U	0.136 5	0.59 J	0.136 5	0.47	J	0.136 5		J	0.136 5	0.120	J	0.136	5	0.27 J	0.136 5
Bromoform	360000 81000 na	5 U	0.101 5 5	U	0.101			5	U	0.101		5	U	0.101 5	5 U	0.101 5	5	U	0.101 5		U	0.101 5		U	0.101	5	5 U	0.101 5
Bromomethane Carbon disulfide	140000 11000 na 10000000 780000 na	5 U 1.3 J	0.158 5 5 0.172 5 3.7	U J	0.158 : 0.172 :	5 U	J 0.158 5 J 0.172 5	5 3.4	Ü	0.158	5	5 2.1	U I	0.158 5 0.172 5	5 U 0.46 J	0.158 5 0.172 5	5 2.7	I I	0.158 5 0.172 5	5	U J	0.158 5 0.172 5	2.7 2.4	J	0.158 0.172	5	5 U 1.4 J	0.158 5 0.172 5
Chlorobenzene	2000000 160000 na	5 U		U	0.0475	5 U		5		0.0475	5	5	U	0.0475 5	5 U		5	U	0.0475 5			0.0475 5	5	U	0.0475		5 U	0.0475 5
cis-1,2-Dichloroethene	1000000 78000 na	5 U	0.123 5 5	U	0.123	1.2 J		5	U	0.123		5		0.123 5	5 U	0.123 5		U	0.123 5	5	U	0.123 5	5	U	0.123		5 U	
cis-1,3-Dichloropropene	29 6.4 na	5 U		U	0.0423			5	U	0.0423	5	5	U	0.0423 5	5 U		5	U	0.0423 5		U	0.0423 5		U	0.0423	5	5 U	
Dibromochloromethane Ethylbenzene	34000 7600 na 10000000 780000 na	5 U 5 U	0.0527 5 5	U	0.0527	5 U		5	U	0.0527	5	5	U	0.0527 5 0.145 5	5 U	0.0527 5 0.145 5		U	0.0527 5	_	U	0.0527 5 0.145 5	5	U	0.0527 0.145	5	5 U 5 U	0.0527 5 0.145 5
Methylene chloride	10000000 780000 na 380000 85000 na	5 U	0.145 5 5 0.857 5 5	U	0.145			5	U	0.145		5	U U	0.145 5	5 U	0.857 5	5	U	0.145 5 0.857 5		U	0.145 5	5	U	0.145	5	5 U 5 U	0.145 5
Styrene	20000000 1600000 na	5 U	0.128 5 5	U	0.128	5 U		5	Ü	0.128		5	U	0.128 5	5 U		5	Ü	0.128 5		U	0.128 5	5	U	0.128	5	5 U 5 U	0.128 5
Tetrachloroethene	5300 1200 na	5 U		U	0.129	5 U		5		0.129		5		0.129 5	5 U		5	U	0.129 5		U	0.129 5	5	U	0.129		5 U	0.129 5
Toluene	8200000 630000 na 29 6.4 na	0.18 J		J	0.122	5 U		0.49		0.122		5		0.122 5	0.55 J	0.122 5		J	0.122 5		J	0.122 5	0.02	J	0.122		0.24 J	
trans-1,3-Dichloropropene Trichloroethene	29 6.4 na 7200 1600 na	5 U	0.159 5 5 0.154 5 5	U	0.159 : 0.154 :	5 11	I 0.154 5	5	U	0.159 0.154		5		0.159 5 0.154 5	5 U	0.159 5 0.154 5		U	0.159 5 0.154 5	5	U	0.159 5 0.154 5	5	U	0.159	5	5 U	0.159 5 0.154 5
Trichlorofluoromethane	31000000 2300000 na	5 U 5 U	0.1 5 5	U	0.134	5 U	J 0.1 5	5	U	0.134	5	5	U	0.1 5	0.36 J	0.1 5	5 5 5	U	0.1 5	0.38	J	0.1 5		U	0.134	5	5 U 5 U	0.134 5
Vinyl chloride	4000 90 na	5 U	0.115 5 5	U	0.115	5 U	J 0.115 5	5	U	0.115	5	5	U	0.115 5	5 U	0.1 5 0.115 5	5	U	0.115 5		U	0.115 5	5	U	0.115	5	5 U	0.115 5
Xylenes (total)	20000000 1600000 na	5 U	0.139 5 1.3	J	0.139	5 U	J 0.139 5	0.41	J	0.139	5	5	U	0.139 5	5 U	0.139 5	5	U	0.139 5	5	U	0.139 5	5	U	0.139	5	5 U	0.139 5
PAHs (ug/kg)	£100000 470000	100 ***	10.2 100 100	1 77 1	1112	100 1	1 1 122 1	100	T T T	11.2	100	100	TT 1	10.2	100 11	122	100	**	10.2	0 100	1 77	10.2	100	T TT	122	100	100	10.2
Acenaphthene Anthracene	6100000 470000 na 31000000 2300000 na	100 U 21 U	10.3 100 100 0.77 21 21	U	0.84 2	00 100 U 1 21 U	J 11.3 100 J 0.84 21	100 21	U	11.3 0.84		100 21		10.3 100 0.77 21	100 U 21 U	12.2 100 0.91 21		U	10.3 10 0.77 2		U	10.3 100 0.77 21	100 21	U	0.98		100 U 21 U	10.3 100 0.77 21
Benz(a)anthracene	3900 220 na	21 U	0.88 21 21	U	0.96 2	1 21 U		21	U	0.96		21	U	0.88 21	21 U	1.04 21	21	U	0.88 2		U	0.88 21		U	1.12		21 U	
Benzo(a)pyrene	390 22 na	21 U	1.1 21 21	U	1.2 2	1 21 U	J 1.2 21	21	U	1.2	21	21	U	1.1 21	21 U	1.3 21	21	U	1.1 2.	21	Ü	1.1 21	21	U	1.4	21	21 U	1.1 21
Benzo(b)fluoranthene	3900 220 na	21 U		U	1.56 2		J 1.56 21	21	U	1.56		21		1.43 21	21 U		21	U	1.43 2.		U	1.43 21			1.82		21 U	1.43 21
Benzo(g,h,i)perylene Benzo(k)fluoranthene	3100000 230000 na 39000 2200 na	60 U 21 U		U	15 6 1.2 2		J 15 60 J 1.2 21		U	15 1.2		60 21		13.8 60 1.1 21	60 U 21 U	16.3 60 1.3 21		U	13.8 60 1.1 2.		U	13.8 60 1.1 21		U	17.5 1.4		60 U 21 U	
Chrysene	39000 2200 na 390000 22000 na	21 U	1.1 21 21 1.32 21 21	U	1.2 2	1 21 U		21	U	1.2		21		1.1 21	21 U	1.56 21	21	U	1.1 2.			1.1 21		U	1.4		21 U	1.1 21
Fluoranthene	4100000 310000 na	6.4 J	1.87 21 21	U	2.04 2	1 21 U	J 2.04 21	21	Ü	2.04	21	21	U	1.87 21	21 U	2.21 21	21	U U U	1.87 2.	21	U	1.87 21	21	Ü	2.38	21	21 U	1.87 21
Indeno(1,2,3-cd)pyrene	3900 220 na	21 U 21 U	0.77 21 21	U	0.84 2	1 21 U	J 0.84 21	21	U	0.84		21 21	U	0.77 21	21 U 21 U	0.91 21	21 21	U	0.77 2 0.66 2	21	U	0.77 21		U	0.98		21 U 21 U 21 U	0.77 21 0.66 21
Phenanthrene Pyrene	3100000 230000 na 3100000 230000 na	21 U 3.8 J	0.66 21 21 0.99 21 21	U	0.72 2 1.08 2	1 21 U 1 21 U 1 21 U		21 21 21	U	0.72 1.08		21	U U	0.66 21 0.99 21	21 U 21 U	0.91 21 0.78 21 1.17 21	21	U	0.66 2. 0.99 2.	21	U	0.66 21 0.99 21	21	U	0.84 1.26		21 U 21 U 21 U	0.66 21 0.99 21
SVOCs (ug/kg)	3100000 230000 Ha	3.0	0.99 21 21	U	1.00 2	21 0	1.00 21	21	U	1.00	21	2.1	U	0.99 21	21 0	1.17 21	21	U	0.99 2.	21	U	0.99 21	21	U	1.20	21	21 0	0.99 21
2,4-Dinitrotoluene	200000 16000 na	170 U	11 170 24	J	12 1:	70 170 U	J 12 170	170	U	12	170	170	U	11 170	170 U	13 170	170	U	11 17	0 170	U	11 170	170	U	14	170	170 U	11 170
2,6-Dinitrotoluene	100000 7800 na	170 U		U	11.9 13	0 170 0	J 11.9 170	170	U	11.9	170	18	J	10.9 170	170 U	12.9 170	170	U	10.9 17	170	U	10.9 170	170		13.9	170	170 U	10.9 170
2-Methylnaphthalene	410000 31000 na	170 U	9.72 170 170		10.6 1		J 10.6 170	170	U		170	170	U	9.72 170	170 U	11.5 170	170	U	9.72 17		U	9.72 170		U			170 U	9.72 170
4-Chloro-3-methylphenol 4-Methylphenol	na na na 510000 39000 na	170 U 170 U	7.28 170 170 4.24 170 170	U	7.94 1: 4.62 1:			170 170	U	7.94 4.62		170 170		7.28 170 4.24 170	170 U 170 U	8.61 170 5.01 170	8	J II	7.28 17 4.24 17		J U	7.28 170 4.24 170			9.27 5.39		170 U 170 U	7.28 170 4.24 170
Benz(a)anthracene	3900 220 na	170 U	10 170 170	U	10.9		J 10.9 170	170		10.9		170		10 170	170 U	5.01 170 11.8 170	170	U	10 17		U	10 170		U	12.7		170 U	10 170
Benzo(b)fluoranthene	3900 220 na	170 U	8.44 170 170	U	9.2	70 170 U	J 9.2 170	170	U	9.2		170	U	8.44 170	170 U	9.97 170	170	U	8.44 17	0 170	U	8.44 170	170	U	10.7	170	170 U	8.44 170
Benzo(g,h,i)perylene	3100000 230000 na	170 U		U	6.65 1		J 6.65 170	170		6.65		170	U	6.09 170	170 U	7.2 170		U	6.09 17		U	6.09 170			7.76		170 U	6.09 170
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	39000 2200 na 200000 46000 na	170 U 200	4.49 170 170 10.4 170 99	U	4.9 11 11.3 11		J 4.9 170 11.3 170	170 22	U	4.9 11.3	170 170	170 22	U I	4.49 170 10.4 170	170 U 28 J	5.3 170 12.3 170		U	4.49 17 10.4 17		U	4.49 170 10.4 170		U	5.71 13.2	170 170	170 U 19 J	4.49 170 10.4 170
Butylbenzylphthalate	2000000 460000 na 20000000 16000000 na	170 U		U	9.48 1		J 9.48 170	170	U	9.48		170	U	8.69 170	170 U	12.3 170 10.3 170		U	8.69 17		U	8.69 170		U	11.1		19 J 170 U	8.69 170
Chrysene	390000 22000 na	170 U	8.06 170 170	U	8.8 1	70 170 U	J 8.8 170	170	U	8.8	170	170	U	8.06 170	170 U	9.53 170	170	U	8.06 17	0 170	U	8.06 170	170		10.3	170	170 U	8.06 170
Diethylphthalate	82000000 6300000 na	170 U		U	12.1 13			170		12.1		170		11.1 170	170 U	13.1 170		U	11.1 17		U	11.1 170		U	14.1		170 U	
Di-n-butylphthalate	10000000 780000 na 4100000 310000 na	36 J		J	8.53 1: 5.27 1:	0 00 3		50 170	J	8.53	170 170	34	J	7.82 170 4.83 170	55 J 170 U				7.82 17 4.83 17		J	7.82 170 4.83 170		J	9.95		40 J 170 U	
Fluoranthene Indeno(1,2,3-cd)pyrene	4100000 310000 na 3900 220 na	7 J 170 U	4.83 170 170 6.96 170 170	U	7.6 I		J 5.27 170 J 7.6 170		U	5.27 7.6		170 170	U	4.83 170 6.96 170	170 U	5.71 170 8.23 170	170	U	4.83 17 6.96 17		U	4.83 170 6.96 170		U	6.15 8.86	170 170	170 U	4.83 170 6.96 170
Phenanthrene	3100000 230000 na	170 II	8.37 170 170	U	9.13 13	70 170 U	J 9.13 170	170	U	0.13	170	170 170	Ü	8.37 170			170	U U U	8.37 17	0 170	U	8.37 170	170	U	10.7	170	170 U 170 U 170 U	8.37 170
Pyrene	3100000 230000 na	6 J	5.61 170 170	U	6.12 13	70 170 U	J 6.12 170	170	U	6.12	170	170	U	5.61 170	170 U	6.63 170	170	U	5.61 17	0 170	U	5.61 170	170	U	7.14	170	170 U	5.61 170
Pesticides (ug/kg)		-																					1100					
4,4'-DDT	8400 1900 na 8200 1800 na	1.2 J J 1.5 J J	0.538 20 NT 0.449 20 NT		1	NT NT		NT NT				NT NT			NT NT		NT NT	+	+	NT NT	+		NT NT	\vdash			20 U 20 U	0.538 20
alpha-Chlordane Dieldrin	8200 1800 na 180 40 na	1.5 J J 1.4 J J	0.449 20 N1 0.471 20 NT		1	NT NT		NT NT				NT			NT NT		NT NT		+ +	NT NT	+		NT NT				20 U	0.449 20 0.471 20
Endosulfan II	610000 47000 na	1 J J	0.315 20 NT			NT		NT				NT			NT		NT			NT			NT				20 U	0.315 20
Endrin aldehyde	na na na	20 U	0.434 20 NT			NT		NT				NT			NT		NT			NT			NT				20 U	0.434 20
Endrin ketone	na na na	1.7 J J	0.457 20 NT		1	NT		NT	$\sqcup\sqcup$			NT	-		NT		NT	\perp	+	NT			NT	\perp	1 1		20 U	0.457 20
Endrin Hentachlor epoxide	31000 2300 na 310 70 na	6.4 J J 1.8 J J			1	NT NT		NT NT				NT NT	-		NT NT		NT NT	+	+	NT NT	+		NT NT				20 U	0.5 20 0.692 20
Heptachlor	640 140 na	1.8 J J 20 U	0.692 20 N1 0.492 20 NT		1	NT NT		NT NT				NT			NT NT		NT NT		 	NT NT	+		NT NT				20 U 20 U	0.692 20
Methoxychloi	510000 39000 na	20 U	0.933 20 NT			NT		NT				NT			NT		NT		1 1	NT	+		NT				20 U	0.933 20
PCBs (ug/kg)							· · · · · · · · · · · · · · · · · · ·										-						•					
PCB-1254	1400 156 na	150	7.48 33 NT			NT		NT				NT			NT		NT			NT			NT				33 U	7.48 33
Explosives (mg/kg)	None detected																											-
Herbicides (ug/kg)	None detected																											

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 2 of 8

	1		CI- ID		41SB2	14		1	41SB2	D			41SB2C		1	41SB	2 4		41SB	2D	_	1	41SB3C			41SB4A			41SB4	D			41SB4C		41	ISB5A
Analyte			Sample ID Sample Date	(3/30/				3/30/0				3/30/04			3/31/			3/31/				3/31/04			3/31/04			3/31/0				3/31/04			3/31/04
Analyte			Sample Depth		0-1				7.5-8.				31-32.9			0-1			9.8-1				29.4-30.4			0-1			7-8				15-16			0-1
	i-RBC		Background	Result	Lab Q Val (MRL	Result	Lab Q Val Q		MRL	Result L		MDL MRI	Result			MRL	Result Lab Q Val		MRL	Result Lab	Q Val Q MDL	MRL	Result 1		MDL MRL	Result	Lab Q Val Q		MRL	Result Lab	Val Q MDL	MRL Res		Val Q MDL MRL
Metals (mg/kg)																												•								
Aluminum	na	na	40041	31100		21	250	27100		21	250	25900		21 250	23600		4.2	50	22200	4.2	50	27400	21	250	29600		42 500	19300		4.2	50	40600	42	500 188	00	4.2 50
Antimony	41	3.1	na	1.5		0.0386	0.5	0.24	J	0.0386	0.5	0.2	J 0.	0386 0.5	0.36	J	0.0386	0.5	0.34 J	0.0386	0.5	0.29	0.0386	0.5	0.44	J	0.0386 0.5	0.28	J	0.0386	0.5	0.64	0.0386	0.5 0.3	33 J	0.0386 0.5
Arsenic	1.9	0.43	15.8	12		0.058	0.4	4.3		0.058	0.4	2.8	0	.058 0.4	7.5		0.058	0.4	6.5	0.058	0.4	11	0.058	0.4	9.8		0.058 0.4	8		0.058	0.4	19	0.058	0.4 6.	9	0.058 0.4
Barium	20000	1600	209	113		0.103	5	100		0.103	5	100	0	.103 5	432		0.103	5	318	0.103	5	136	0.103	5	124		0.103 5	128		0.103	5	74	0.103	5 55	3	0.515 25
Beryllium	200	16	1.02	0.73	J	0.0267	1	0.48	J	0.0267	1	1.1	0.	0267 1	0.57	J	0.0267	1	0.79 J	0.0267	1	1.1	0.0267	1	1.2		0.0267 1	0.74	J	0.0267	1	1.8	0.0267	1 0.3	34 J	0.0267 1
Cadmium	51	3.9	0.69	2.2		0.25	1	1.7		0.25	1	1.6		0.25	2.4		0.25	1	1.9	0.25	1	1.7	0.25	1	2.6		0.25	1.5		0.25	1	3	0.25	1 2.	6	0.25
Calcium	na	na	na	59600		87.5	1250	23800		87.5	1250	1790		17.5 250	115000		175	2500	83500	175	2500	5230	17.5	250	53700		175 2500	2190		17.5	250	1720	17.5	250 1560	000	438 6250
Chromium	310	23	65.3	23		0.998	_	22		0.998	5	32		.998 5	17		0.998	5	18	0.998		30	0.998	5	23		0.998 5	19		0.998	5	35	0.998		3	0.998 5
Cobalt	na	na	72.3	11	J	0.233		12	J	0.233	1	13		.233 1	8.7	J	0.200	1	12 J	0.233	1	21	J 0.233	1	14		0.233 1	14	J	0.233	1	12	J 0.233		8	J 0.233 1
Copper	4100	310	53.5	<u>69</u>		0.516		18		0.516	5	26		.516 5	27		0.516	5	16	0.516	5	33	0.516	5	35		0.516 5	18		0.516	5	<u>63</u>	0.516)	0.516 5
Iron	31000	2300	50962	43200		36.6		29100		36.6	500	20300		18.3 250	20000			500	21100	18.3	250	35400		500	37900		36.6 500	33200		36.6	500	<u>75500</u>	73.1	1000 243		36.6 500
Lead	800	400	26.8	125		1.94		<u>37</u>		0.0776	1	25		0776 1	143		1.57	25	<u>58</u>	0.776		36	0.0776	1	99		1.94 25	<u>82</u>		0.776	10	49	0.0776		5	1.94 25
Magnesium	na	na	na	33300		38.4		14200		7.67		9350		7.67 250					32700	76.7		12300		250	34000		76.7 2500	2700		7.67	250	9100	7.67	250 828		192 6250
Manganese	2000	160	2543	517		0.474		961		0.474		92		.474 5	017		0.474	5	1170	2.37		873	0.17.1	5	826		0.474 5	1700		2.37	25	1330	2.37	25 91	8	0.474 5
Nickel	2000	160	62.8	21		0.0775		15		0.0775		24		0775 0.5				0.5	21	0.0775	0.5	31		0.5	26		0.0775 0.5	17		0.0775	0.5	31			3	0.0775 0.5
Potassium	na	na	na	2200		7.79	100	1650		7.79	100	2600		7.79 100	2220			100	3420	7.79	100	2660	7.77	100	2680		7.79 100	1180		7.79	100	1550	7.79	100 193		7.79 100
Selenium	510	39	na	0.67	J	0.0486		0.51	J	0.0486	1	0.61		0486 1	0.8	J			0.89 J	0.0486	1	0.83	0.0486	1	0.77		0.0486 1	0.62	J	0.0486	1	1.3	0.0486		78 J	0.0486 1
Silver	510	39	na	0.086	J	0.0178		0.068	J	0.0178	3	0.12		0178 3	0.77	J	0.0178		0.094 J	0.0178	3	0.14	0.0178	3	0.12		0.0178 3	0.08	J	0.0178	3	0.13 J	0.0178	3 0.1		0.0178 3
Sodium	na	na	na	1730		157		36	J		100	221		31.4 100					215	31.4	100	71		100	70		31.4 100	46	J L	31.4	100	51	UL 31.4		6	31.4 100
Thallium	7.2	0.55	2.11	0.22	J	0.0733		0.24	J	0.0755	0.5	0.18		0733 0.5		J	0.0755	0.5	0.22 J	0.0733		0.24 J		0.5	0.26		0.0733 0.5	0.18 34	J	0.0733	0.5	0.44 J			15 J	0.0733 0.5 0.401 1.2
vanadium 7:	102 31000	7.8 2300	108 202	50 1490		0.401 19.7	1.2	54 102		0.401 3.95	1.2	86		.401 1.2 1.789 4	3/		0.401 3.95	20	35 99	0.401	1.2	120	0.401 3.95	1.2	51 242		0.401 1.2 3.95 20	65	 	0.401 3.95	1.2	69 94	0.401	1.2 25 4 48		0.401 1.2 7.89 40
Misc. (mg/kg)	31000	2300	202	1490		19.7	100	102		3.93	20	80	0	.709 4	331		3.93	20	33	0.769	7	120	3.93	20	242		3.93 20	0.5		3.95	7	94	0.789	4 <u>40</u>	0	7.09 40
Cyanide	2000	160	na	0.05	I R	0.000	0.5	0.35	J	0.000	0.5	0.02	I B 0	000 0.5	0.07	1 1	0.000	0.5	0.42 J	0.000	0.5	0.05	B 0.009	0.5	0.06	I B	0.009 0.5	0.02	J B	0.000	0.5	0.03	B 0.009	0.5	06 J	0.009 0.5
Dioxins/Furans (ng/kg)	2000	100	****	0.05	, ,	0.007	0.5	0.55	1 -	0.00)	0.5	0.02	, B	.00)	0.07		0.00)	0.5	0.12	0.00)	0.5	0.05	D 0.00)	0.5	0.00	, ,	0.009	0.02	, , ,	0.00)	0.5	0.05	D 0.009	0.0		0.009 0.3
2.3.7.8-TCDF	na	na	na	NT		1 1		4.65	T T	0.154	1.24	1.1 U	0	.136 1.1	NT		1 1		NT	1 1		NT			NT			NT	T	I		NT		N'	г	\neg
2,3,7,8-TCDD	19	4.3	na	NT				0.327	J		1.24	1.1 U		.104 1.1					NT			NT			NT			NT				NT		N'	Г	
1,2,3,7,8-PECDD	na	na	na	NT				1.78	J	0.332	6.2	5.5 U	0	.294 5.5	NT				NT			NT			NT			NT				NT		N'	Γ	
1,2,3,4,7,8-HXCDD	460	100	na	NT				2.89	J	0.267	6.2	5.5 U	0	.237 5.5	NT				NT			NT			NT			NT				NT		N'	Т	
1,2,3,6,7,8-HXCDD	460	100	na	NT				7.09		0.455	6.2	0.482 J	0	.404 5.5	NT				NT	İ		NT			NT			NT				NT		N'	Г	
1,2,3,7,8,9-HXCDD	460	100	na	NT				7.13			6.2	1.11 J		.495 5.5					NT			NT			NT			NT				NT		N'		
1,2,3,4,6,7,8-HPCDD	na	na	na	NT				159			6.2	6.7		.374 5.5					NT			NT			NT			NT				NT		N'		
OCDD	na	na	na	NT				2790	E J	1.12		245		.992 11					NT			NT			NT			NT				NT		N'		
1,2,3,7,8-PECDF	na	na	na	NT	1 1			1.88	J	0.193	6.2	5.5 U		.171 5.5					NT			NT			NT			NT				NT		N	-	
2,3,4,7,8-PECDF	na	na	na	NT	\perp			3.46	J	0.232		5.5 U		.206 5.5					NT	1		NT	+		NT			NT		<u> </u>		NT		N'	-	\perp
1,2,3,4,7,8-HXCDF	na	na	na	NT		1		2.07 1.38	J		6.2	5.5 U		.203 5.5 .103 5.5		+			NT	1		NT	+		NT			NT		 		NT	+	N'	-	+
1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	na na	na na	na na	NT NT	+	1 -	-	1.38	J T	0.116		5.5 U 5.5 U							NT NT	1		NT NT	+		NT NT			NT NT	+	 	-	NT NT		N N		-
2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	na na	na na	na na	NT NT	+	1 -	-	6.2	T.T.	0.45	6.2	5.5 U		0.4 5.5					NT NT	1		NT NT	+		NT			NT NT	+	 	-	NT NT		N N		-
1,2,3,7,8,9-HXCDF 1,2,3,4,6,7,8-HPCDF	na na	na na	na na	NT NT		+ -		29.2	U	0.553		5.5 U		.491 5.5 .433 5.5					NT NT	+ +		NT NT	+	_	NT	-		NT NT	1-1-	 		NT NT	+	N N	•	-
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	na na	na na	na na	NT	+ + -	1 -	-	1.86	T	0.435	6.2	5.5 U		386 5.5					NT			NT	+		NT	-+		NT	+ + -	1	1	NT		N N		-+-+-1
OCDF	na na	na na	na na	NT	+ + -	1 -	-	143	1	0.433		3.3 U		.628 11					NT			NT	+		NT	-+		NT	+ + -	1	1	NT		N N	-	-+-+-1
TOTAL TCDD	na	na	na	NT	+	+ -		12.5			1.24	1.1 U		.104 1.1					NT	+ -		NT			NT			NT	+	 	 	NT	+ + + + + + + + + + + + + + + + + + + +	N N		
TOTAL PECDD	na	na	na	NT				16.2		0.332		0.671 J		.294 5.5					NT			NT			NT			NT				NT		N'		
TOTAL HXCDD	460	100	na	NT				47.6		0.267		7.21		.237 5.5					NT			NT			NT			NT		l	l	NT		N'		
TOTAL HPCDD	na	na	na	NT				278			6.2	19.9		.374 5.5					NT			NT			NT			NT				NT		N'		
TOTAL TCDF	na	na	na	NT				70.9			1.24	1.1 U		.136 1.1					NT			NT			NT			NT		l		NT		N'		
TOTAL PECDF	na	na	na	NT				31.8		0.193	6.2	5.5 U	0	.171 5.5	NT				NT			NT			NT			NT				NT		N'	Г	
TOTAL HXCDF	na	na	na	NT				40.6		0.116	6.2	0.244 J	0	.103 5.5	NT				NT			NT			NT			NT				NT		N'	Г	
TOTAL HPCDF	na	na	na	NT				128		0.435	6.2	5.5 U	0	.386 5.5	NT				NT			NT			NT			NT				NT		N	Г	

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 3 of 8

STATEMEN SECTION 1 STATEMEN SECT													age 3 of 8																
The column The	A 14																												
Series Fig. 1 (a)	Analyte																												
Series Se					20 2		IRL Result Lab	Q Val Q MDL MRL	Result	017 211		MRL	Result La			Result Lal	b Q Val Q MDL	MRL	Result	21.2		Result Lab		MRL Re	sult Lab Q	Val Q N	MDL MR	L Result	0.12
THE PARTY NAME AND ALL	VOCs (ug/kg)																								*				
THE PARTY NAME AND ASSESSMENT ASSESSMENT AS A SECTION AS	1,1,2,2-Tetrachloroethane								5	U		5	5	U		5 U						5 L						5	
										U																			
See	1,2 Dioromoculane (LDD)		, ,			0.157				U	0.154	5		U		5 I			5	U				,	0		7.157		
See	2-Butanone				3 J		10 27	J 0.393 10		J		10		В		2.9			2.9	J B				10 7	.1 J	J 0.			J 0.393 10
See	2-Hexanone	4100000 310000 na		0.37 10 10	U		10 10	0.37 10		U			10		0.37 10	10 U	J 0.37	10	10	U	0.37 10	10 U	0.37	10 1	0 U	(0.37 10	10	U 0.37 10
Section 1.										U									10	U									
Exercise Service Servi										I D																			J 18.5 60
September 1909 1910 1910 1910 1910 1910 1910 191		52000 12000 III					5 0.26 J			II D									5	II								=	II 0.101 E
September 1909 1910 1910 1910 1910 1910 1910 191				0.158 5 5			£ 17 I	D 0.150 5		J B			1.6	J B					5	U	0.158 5	5 U	0.158	5 1				1.8	J B 0.158 5
September 1909 1910 1910 1910 1910 1910 1910 191	Carbon disulfide	10000000 780000 na			U		5 5 U	UJ 0.172 5		В							J 0.172	5	5	U	0.172 5	5 U	0.172	, ,				17	J 0.172 5
TATION OF THE PARTY OF THE PART				0.0175 5			5 0.28 J	B 0.0475 5		U									5	U				5 .					
STATE					_					U														5 :					
September 1989 1989 1989 1989 1989 1989 1989 198							5 0.52 J			II						5 I			5	II									
September 1989 1989 1989 1989 1989 1989 1989 198	Ethylbenzene	0.000	5 U	0.145 5 5	U		5 0.2 J	B 0.145 5		Ü				J		5 T	J 0.145	5	5	Ü	0.145 5	5 U			5 U	0.		5	U 0.145 5
September 1989 1989 1989 1989 1989 1989 1989 198	Methylene chloride	380000 85000 na	5 U	0.857 5 5	U		5 2.8 J	B 0.857 5	5	U	0.857	5	4.2	J B		,	J 0.857	5	5	U	0.857 5	5 U	0.857	5	5 U	UJ 0.	0.857 5	5	U UJ 0.857 5
THE STATE OF	Styrene																		5	U					5 U				
							5 5 U	0.129 5																					
Calculation					Ü														5	U									
Very Market 1980 1980 1981 1981 1981 1981 1981 1981							5 5 U	0.154 5	5	Ü		5		Ŭ		5 U			5	U				5		-		5	U 0.154 5
Very Market 1980 1980 1981 1981 1981 1981 1981 1981	Trichlorofluoromethane	31000000 2300000 na	5 U	0.1 5 5	U	0.1	5 5 U	0.1 5	5	U	0.1	5	0.91	J	0.1 5		J 0.1	5	5	U	0.1 5	5 U	0.1	5 0.	17 J		0.1 5	5	U 0.1 5
*** **********************************	Vinyl chloride			0.115 5 5	U		5 5 U					5	5	U					5	U	0.115 5	5 U	0.115	5	5 U			5	U 0.115 5
Securing Sec		20000000 1600000 na	5 U	0.139 5 5	U	0.139	5 0.71 J	В 0.139 5	0.51	J B	0.139	5	0.83	J	0.139 5	0.49	0.139	5	5	U	0.139 5	5 U	0.139	5 0.	86 J	0.	0.139 5	5	U 0.139 5
Mines Service		6100000 470000 pg	100 11	11.2 100 10	0 111	112 1	00 100 11	11.2 100	100	TT .	11.2	100	100	п	14.1 100	100 1	1 122	100	100	TI I	12.2 100	100 1	1 122	100 10	00 11	- 1	11.2 10/	20	I 11.2 100
The content						0.84				U																			
Tell Programs 1900			21 U			0.96				U									21	U						(0.96 21
Tell Programs 1900		570 22 na	21 U		U		21 21 U	1.2 21	21	U		21	21	U			J 1.4	21	21	U	1.4 21			21 2	!1 U				J 1.2 21
March Marc			21 U				21 21 U	1.56 21	21	U						21 U	J 1.82	21	21	U	1.82 21			21 2	1 U	1			J 1.56 21
The part of the pa								15 60											6U 21	U									
From Proper (1980) 1980 a. 21 U 100 170 170 U 100	Chrysene																		21	U									
From Proper (1980) 1980 a. 21 U 100 170 170 U 100			21 U		U		21 21 U	2.04 21	21	U		21	21			21 U	J 2.38	21	21	Ú		21 U						33	2.04 21
From Proper (1980) 1980 a. 21 U 100 170 170 U 100	Indeno(1,2,3-cd)pyrene	3900 220 na	21 U	0.84 21 2	U	0.84	21 21 U	0.84 21	21	U		21	21	U		21 U	J 0.98	21	21	U	0.98 21	21 U			21 U	C		13	J 0.84 21
With complex Section S	Phenanthrene Purrana			0.72 21 2		0.72	21 21 U		21	U	0.72	21	6.9	J		21 U	J 0.84	21	21	U	0.84 21	21 U		21 2			0.72 21	12	
Second 1900 Second 190	SVOCs (ng/kg)	5100000 230000 na	21 U	1.00 21 2.	U	1.08	., 21 U	1.08 21	- 21	U	1.00	21	1.1	-	1.33 21	21 U	1.20	41	∠1	U	1.20 21	ــا لـــ	1.20	21 2	.1 U		1.00 21	21	1.08 21
2. A Description of The Control of T		200000 16000 na	170 U	12 170 17	0 U	10 1	70 170 II	12 170	170	U	12	170	170	U	15 170	170 I	J 14	170	170	U	14 170	170 I	14	170 1'	70 U		12 170	9 170	U 12 170
Company properties Section Properties Section Properties Section Properties Section Properties Section Section Properties Properties Section Properties	2,6-Dinitrotoluene	100000 7800 na	170 U	11.9 170 17	0 U	9.94 1	70 170 U	11.9 170	170			170	170	U	14.9 170	170 U	J 13.9	170	170	U		170 U	13.9	170 11	70 U			9 170	U 11.9 170
State Stat	2-Methylnaphthalene							10.6 170		J				U			J 12.4	170	170	U									U 10.6 170
Record Description 1900				7.94 170 17	0 U					U							J 9.27	170	170	U		170 U	9.27					0 11	J 7.94 170
Record Description 1900			170 U	4.62 170 17 10.9 170 17	0 11		70 170 U	4.62 170				170			211.0	170 U	J 5.39	170	170	U II		170 U			70 U			0 170	U 4.62 170
Research Approaches 190000 25000 as 170 U 452 770 U 458 770 U 458 770 U 459 470 U 459	Benzo(b)fluoranthene	3900 220 na																170	170	U									
Bears/Allerandene 3000 2000 100 100 U 4.9 170 U U 4.9 170 U 4.0 U				6.65 170 17	0 U				170	U		170	170	U					170	U	7.76 170							9	J 6.65 170
Since-Descripted helper 1980 23	Benzo(k)fluoranthene	39000 2200 na		4.9 170 17	0 U		70 7 J	4.9 170		Ü		170	170	U			J 5.71	170	170	U							11.5	9	J 4.9 170
Chrysteen								11.3 170		J				J			J 13.2	170	16	J								9 45	J 11.3 170
Delicy highestables																			170	U II								0 16	U 9.48 170
Dis-blay-phthalate 100000000000000000000000000000000000										J							3 10.3												
Indeposit_G22-Schlyprores 3900 220 ns 170 U 7,6 170 U 0,6,33 770 170 U 7,6 U	Di-n-butylphthalate	10000000 780000 na	33 J	8.53 170 38	J		70 400	8.53 170	48	J		170	83		10.7 170	26			35	J		44 J	9.95	170 2	.9 J	8	8.53 170	9 48	J 8.53 170
Independ 1,23-edgyperger 3900 220 na 170 U 7,6 170 U 6,32 170 U 7,6 170 U 7,	Fluoranthene							5.27 170		U	5.27			U			J 6.15	170	170	U								9 23	J 5.27 170
Perficiency Performance	Indeno(1,2,3-cd)pyrene		170 U	7.6 170 17	0 U		70 170 U	7.6 170				170	170	U		170 U	J 8.86	170	170	U		170 U	8.86	170 11	70 U			0 170	U 7.6 170
Perficiency Performance			170 U	9.13 170 17	0 11	7.61 1	70 19 J 70 26 T	9.13 170	16	U	9.13 6.12	170	170	U	7.65 170	170 U	J 10.7	170	170	U		170 U	10.7	170 11	70 U	- 5	9.13 170	0 170	U 9.13 170 I 6.12 170
44-DDT	- /	230000 Ha	1.0	0.12 1/0 1/	- -	I	20 J	5.12 170	.70		0.12	.70	-10		7.00 170	2,0	7.14	27.0	1.0	Ü	170	1.0	/.17	1.0			1/0	. 32	3.12 1/0
Apha-Chordane S200 1800 na NT NT NT NT NT NT NT N	4,4'-DDT			N	Γ		NT		NT				NT	1 1		20 U	J 0.538	20	NT			NT		N	T			NT	
Endos alfalf 61000 4700 na NT NT NT NT NT NT NT N	alpha-Chlordane	8200 1800 na															J 0.449	20											
Endrin aldehyde	Dieldrin															20 U	J 0.471	20											
Endrin ketone						+								-		20 U							+						
Endrin 3100 2300 na NT	Endrin didenyde					+								-			0.151				 		1 1						
Heptachlor epoxide 310 70 ma NT						+ +		+ + -						+							 								
Methoxychlor 51000 3900 na NT	Heptachlor epoxide		NT	N	Γ		NT		NT				NT			20 U	J 0.692	20	NT			NT		N	T			NT	
PCBs (ug/kg) PCB-1254																													
PCB-1254 1400 156 na NT		510000 39000 na	NT	N'	r		NT		NT				NT			20 U	J 0.933	20	NT			NT		N	IT			NT	
Explosives (mg/kg) None detected																-													
Lexpinsives (ingragy None detected Herbicides (ug/kg) None detected	PCB-1254		NT	N	ľ		NT		NT				NT			33 U	9.52	33	NT			NT		N	T			NT	
turnano tegragi turi statas	Explosives (mg/kg)																												
	rici meiues (ug/kg)	None detected																											

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 4 of 8

			Sample II)	41SB5	5B			41SB5	C			41SB6A			41SB6	В		4.	1SB6C			41SB7A		41Sl	B7B		41SB7C	C			41SB8A		<i>-</i>	41SB8B
Analyte			Sample Dat	е	3/31/	04			3/31/0)4			4/2/04			4/2/04	Į.		4	4/2/04			3/30/04		3/30	0/04		3/30/04	4			4/1/04		4	4/1/04
		5	Sample Dept	h	15-1	16			28-29	9			0-1			0.7-2.	1		2	21-21.5			0-1		14	-16		23-24				0-1		ı	8-12
	i-RBC	r-RBC	Background	Result	Lab Q Val (Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result La	Q Val Q MD	MRL	Result	Lab Q Val Q	MDL	MRL	Result Lab Q	Val Q MDL	MRL	Result Lab	Q Val Q MDL M	RL Result	Lab Q Va	1 Q MDL MRL	Result	Lab Q Val Q	MDL	MRL	Result Lal	Q Val Q MD	L MRL	Result Lab	Q Val Q MDL MRL
Metals (mg/kg)																																			
Aluminum	na	na	40041	22700		4.2	50	20000		4.2	50	22500	4.2	50	17000		4.2	50	32500	42	500	26500	21 2	50 42400		21 250	20500		4.2	50	17300	4.2	50	24100	21 250
Antimony	41	3.1	na	0.77		0.0386	0.5	0.18	J	0.0386	0.5	0.54	B 0.038	6 0.5	0.57	В	0.0386	0.5	0.69	B 0.0386	0.5	0.66	0.0386 0	1.5		0.0386 0.5	0.94		0.0386	0.5	0.7	B 0.038	36 0.5	1.1	0.0386 0.5
Arsenic	1.9	0.43	15.8	11		0.058	0.4	7.3		0.058	0.4	14	0.05	8 0.4	18		0.058	0.4	17	0.058	0.4	21	0.058 0	.4 31		0.058 0.4	27		0.058	0.4	19	0.05	8 0.4	13	0.058 0.4
Barium	20000	1600	209	293		0.103	5	118		0.103	5	143	0.10	3 5	156		0.103	5	147	0.103	5	85	0.103	5 178		0.103 5	139		0.103	5	58	0.10	3 5	165	0.103 5
Beryllium	200	16	1.02	0.93	J	0.0267	1	0.93	J	0.0267	1	0.81	0.026	7 1	0.68	J	0.0267	1	1.6	0.0267	1	0.77 J	0.0267	1 0.92		0.0267 1	1.4		0.0267	1	0.57	0.026	57 1	1	0.0267 1
Cadmium	51	3.9	0.69	2.2		0.25	1	2		0.25	1	1.6	0.25	1	2.1		0.25	1	2.7	0.25	1	2.3	0.25	1 0.6	J I	0.25	3.2		0.25	1	3	0.25	i 1	2.5	0.25
Calcium	na	na	na	77400		175	2500	2360		17.5	250	28400	175	2500	20700		17.5		5350	17.5	250	88700	J 175 25	500 751		17.5 250	6230		17.5	250	138000	87.5	12500	44700	87.5 1250
Chromium	310	23	65.3	19		0.998	5	22		0.998	5	19	K 0.99	3 5	16	K	0.998	5	26	K 0.998	5	22	0.998	5 23		0.998 5	39		0.998	5	15	K 0.99	8 5	23	K 0.998 5
Cobalt	na	na	72.3	15	J	0.233	1	17	J	0.233	1	11		3 1	11		0.233	1	18	0.233		11	J 0.233	1 18		J 0.233 1	13	J	0.233	1	7.5	0.23	3 1	20	0.233 1
Copper	4100	310	53.5	29		0.516	5	24		0.516	5	38	0.51	5 5	38		0.516	5	41	0.516	5	<u>55</u>	0.516	5 47		0.516 5	43		0.516	5	42	0.51	6 5	41	0.516 5
Iron	31000	2300	50962	37400		366	5000	28200		36.6	500	31700	36.6	500	29000		36.6	500	47100	73.1	1000	45200	73.1 10	000 <u>66200</u>		73.1 1000	47000		36.6	500	34000	36.6	500	36400	36.6 500
Lead	800	400	26.8	41	J	0.0776	1	21		0.0776		41	0.077	6 1	39		0.0776	1	132	1.94	25	44	0.0776	1 86		0.776 10	230		1.94	25	33	0.077	76 1	143	1.94 25
Magnesium	na	na	na	16200		7.67	250	6530		7.67	250	20900	K 7.67	250	13100	K	7.67	250	17300	K 7.67	250	40300	38.4 12			7.67 250	9660		7.67	250	57100	K 38.4	1250	23200	K 7.67 250
Manganese	2000	160	2543	1060		2.37	25	273		0.474	5	912	0.47	1 5	873		2.37	25	1110	2.37	25	1630	2.37 2	25 1500		2.37 25	1200		2.37	25	1190	2.37	7 25	1420	2.37 25
Nickel	2000	160	62.8	35		0.0775	0.5	24		0.0775	0.5	17	0.077	5 0.5	18		0.0775	0.5	25	0.0775	0.5	27	0.0775 0	.5 20		0.0775 0.5	41		0.0775	0.5	16	0.077	75 0.5	19	0.0775 0.5
Potassium	na	na	na	2690		7.79	100	1800		7.79	100	1400	7.79	100	1120		7.79	100	1170	7.79	100	1190	7.79 1	00 924		7.79 100	839		7.79	100	664	7.79	100	1440	7.79 100
Selenium	510	39	na	0.62	J	0.0486	1	0.54	J	0.0486	1	0.61	0.048	6 1	0.68	J	0.0486	1	0.47 J	0.0486	1	0.9 J	0.0486	1 0.42	J	0.0486 1	1.4		0.0486	1	0.5	0.048	36 1	0.62 J	0.0486 1
Silver	510	39	na	0.099	J	0.0178	3	0.093	J	0.0178	3	0.083	0.017	8 3	0.076	J	0.0178	3	0.089 J	0.0178	3	0.13 J	0.0178	3 0.067	J	0.0178 3	0.16	J	0.0178	3	0.064	0.017	78 3	0.093 J	0.0178 3
Sodium	na	na	na	514		31.4	100	95	J L	31.4	100	98	L 31.4	100	198		31.4	100	432	31.4	100	103	31.4	00 2140		157 500	48	J L	31.4	100	122	31.4	100	1550	157 500
Thallium	7.2	0.55	2.11	0.16	J	0.0733	0.5	0.16	J	0.0733	0.5	0.27	0.073	3 0.5	0.17	J	0.0733	0.5	0.25 J	0.0733	0.5	0.13 J	0.0733 0	.5 0.27	J	0.0733 0.5	0.34	J	0.0733	0.5	0.0733 U	J 0.073	33 0.5	0.26 J	0.0733 0.5
Vanadium	102	7.8	108	34		0.401	1.2	34		0.401	1.2	47	0.40	1.2	36		0.401	1.2	59	0.401	1.2	42	0.401 1	.2 70		0.401 1.2	68		0.401	1.2	29	0.40	1 1.2	53	0.401 1.2
Zinc	31000	2300	202	109		3.95	20	83		0.789	4	110	K 3.95	20	96	K	3.95	20	<u>521</u>	<u>K</u> 7.89	40	218	3.95 2	20 357		3.95 20	1440		39.5	200	156	K 3.95	5 20	140	K 3.95 20
Misc. (mg/kg)																																			
Cyanide	2000	160	na	0.07	J B	0.009	0.5	0.01	J B	0.009	0.5	0.07	B 0.00	0.5	1.1		0.009	0.5	0.08 J	B 0.009	0.5	0.11 J	0.009 0	.5 0.13	J	0.009 0.5	0.27	J	0.009	0.5	0.08	B 0.00	9 0.5	0.1 J	B 0.009 0.5
Dioxins/Furans (ng/kg)																																			
2,3,7,8-TCDF	na	na	na	1.15	U	0.141		1.21	U	0.149		NT			NT				NT			NT		1.42		0.175 1.42	1.19	U	0.147		NT			NT	
2,3,7,8-TCDD	19	4.3	na	1.15	U	0.108		1.21	U	0.114		NT			NT				NT			NT		1.42		0.134 1.42	1.19	U	0.113		NT			NT	
1,2,3,7,8-PECDD	na	na	na	5.73	U	0.307		6.03	U	0.322		NT			NT				NT			NT		7.09		0.379 7.09	5.97	U	0.319	5.97	NT			NT	
1,2,3,4,7,8-HXCDD	460	100	na	5.73	U	0.247		6.03	U	0.26		NT			NT		ļ		NT			NT		7.09		0.306 7.09	0.44	J	0.258		NT			NT	+
1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD	460 460	100	na	5.73 10.5	U	0.421		6.03 1.21	U	0.442		NT NT			NT NT				NT NT			NT NT		7.09 1.05		0.52 7.09 0.638 7.09	5.97 0.98	U	0.438	5.97	NT NT			NT NT	
1,2,3,7,8,9-HXCDD 1,2,3,4,6,7,8-HPCDD	460 na	100 na	na na	11.2		0.316		9.79	,	0.542		NT NT	_		NT NT				NT NT			NT NT		20.8		0.638 7.09		J	0.538		NT NT			NT NT	+
OCDD	na na	na na	na na	1200		1.03		394		1.09	12.1	NT			NT				NT			NT NT		3590		J 1.28 14.2	1490		1.08	3.97	NT			NT	+
1.2.3.7.8-PECDF	na na	na na	na na	5.73	TT	0.178		6.03	TT.	0.187		NT			NT		-		NT			NT		7.09		0.22 7.09	5.97	TT.	0.186	5.97	NT			NT	++
2.3.4.7.8-PECDF	na	na	na	5.73	II	0.178		6.03	п			NT			NT				NT			NT		7.09		0.265 7.09	5.97	ii -	0.223	5.97	NT			NT	+ +
1.2.3.4.7.8-HXCDF	na	na	na	5.73	U	0.214		6.03	U	0.223		NT	+ + -		NT				NT			NT		7.09		0.262 7.09	5.97	U	0.223		NT		-	NT	+ + + + + + + + + + + + + + + + + + + +
1,2,3,6,7,8-HXCDF	na	na	na	5.73	Ü	0.107		6.03	Ū	0.113		NT			NT		 		NT			NT		7.09		0.133 7.09	5.97	Ü	0.112		NT			NT	+++++
2.3.4.6.7.8-HXCDF	na	na	na	5.73	Ü	0.417		6.03	Ú	0.438		NT			NT				NT			NT		7.09	U	0.515 7.09	5.97	U	0.434	5.97	NT			NT	
1,2,3,7,8,9-HXCDF	na	na	na	5.73	U	0.511		6.03	Ú	0.537		NT			NT				NT			NT		7.09	Ü	0.632 7.09	5.97	U	0.533		NT			NT	
1,2,3,4,6,7,8-HPCDF	na	na	na	5.73	U	0.452		6.03	U	0.475	6.03	NT			NT				NT			NT		7.09		0.558 7.09	5.97	U	0.47	5.97	NT			NT	
1,2,3,4,7,8,9-HPCDF	na	na	na	5.73	U	0.402		6.03	U	0.423		NT			NT				NT			NT		7.09	U	0.497 7.09	5.97	U	0.419	5.97	NT			NT	
OCDF	na	na	na	11.5	U	0.654	11.5	12.1	U	0.688	12.1	NT			NT				NT			NT		14.2	U	0.809 14.2	11.9	U	0.682	11.9	NT			NT	
TOTAL TCDD	na	na	na	1.15	U	0.108	1.15	1.21	U	0.114	1.21	NT			NT				NT			NT		1.42	U	0.134 1.42	1.19	U	0.113	1.19	NT			NT	
TOTAL PECDD	na	na	na	0.619	J	0.307		0.528	J	0.322		NT			NT				NT			NT		7.09	-	0.379 7.09	5.97	U	0.319	5.97	NT			NT	
TOTAL HXCDD	460	100	na	12.7		0.247	5.73	11.8		0.26		NT			NT				NT			NT		3.86	J	0.306 7.09	8.26		0.258	5.97	NT			NT	
TOTAL HPCDD	na	na	na	25.4		0.39	5.73	30.5		0.41	6.03	NT			NT				NT			NT		46.6		0.482 7.09	28		0.406	5.97	NT			NT	
TOTAL TCDF	na	na	na	1.15	U	0.141		1.21	U			NT			NT				NT			NT		1.42		0.175 1.42	1.19	U	0.147	1.19	NT			NT	
TOTAL PECDF	na	na	na	5.73	U	0.178		6.03	U	0.187	6.03	NT			NT				NT			NT		7.09		0.22 7.09	5.97	U	0.186	5.97	NT			NT	
TOTAL HXCDF	na	na	na	0.346	J	0.107		0.248	J	0.113		NT			NT				NT			NT		7.09		0.133 7.09	5.97	U	0.112	5.97	NT			NT	
TOTAL HPCDF	na	na	na	5.73	U	0.402	5.73	6.03	U	0.423	6.03	NT		1	NT	1 1		1	NT		1	NT	1 1	7.09	U	0.497 7.09	5.97	U	0.419	5.97	NT			NT	1 1 1 1

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 5 of 8

														Page 5 of 8																
A 1.	Sample		41SB8C 4/1/04		41SB9A 4/1/04			41SB9B 4/1/04			41SB9				41SB 3/30			B10B 0/04		41SB1 3/30/			41SB11A			41SB1				41SB11C
Analyte	Sample D Sample De		4/1/04 18-21		4/1/04 0-1			4/1/04 8-12			4/1/04 11.5-12				3/30		3/3			3/30/ 15-1			4/1/04 0-1			4/1/0- 8-12				4/1/04 16-18.4
	i-RBC r-RBC Backgroun		Val Q MDL MRL	Result	Lab Q Val Q	MDL !	MRL Result	Lab Q Val Q MDL	MRL	Result	Lab Q Val Q		MRL	Result		al Q MDL MRL	Oil	al Q MDL MRL	Result	10 1	Q MDL M	RL Result L	ab Q Val Q MDI	L MRL	Result	0 12	Q MDL	MRL	Result Lab	Q Val Q MDL MRL
VOCs (ug/kg)														•																
1,1,2,2-Tetrachloroethane	14000 3200 na	5 U			U	0.084	5 5	U 0.084		5	U	0.084	5	5	U	0.084 5	5 U	0.084 5	5	U	0.084	5	U 0.08		5	U	0.084	5	5 U	0.084 5
1,2-Dibromo-3-chloropropane 1.2-Dibromoethane (FDR)	3600 200 na 1400 320 na	10 U		10 5	U			J B 0.307 U UJ 0.134	10 5	10 5	U	0.307	10	10 5	U	0.307 10	10 U 5 U	0.307 10 0.134 5		U	0.307 1		U 0.30		10 5	U	0.307	10	10 U 5 U	
1,2-Dichloroethane	31000 7000 na	5 U	UJ 0.18 5		U UJ	0.134	, ,	U 0.18		5	U UJ	0.134	5		U	0.18 5	5 U	0.18 5	5	U	0.18		U UJ 0.18	, ,	5	U UJ	0.157	5	5 U	UJ 0.18 5
2-Butanone	61000000 4700000 na	23	J 0.393 10	8.8	J J		10 8	J 0.393	10	12		0.393	10	6.7	J F	B 0.393 10	15	0.393 10	6.6	U J B	0.393 1	7.3	J J 0.39.		16	J	0.393	10	14	J 0.393 10
2-Hexanone	4100000 310000 na	10 U					10 10	U 0.37	10	10	U	0.37		10		0.37 10	10 U	0.37 10	10	U	0.37 1				10	U	0.37		10 U	0.37 10
4-Methyl-2-pentanone Acetone	8200000 630000 na 92000000 7000000 na	10 U 95	UJ 0.181 10 J 18.5 60		U UJ			U UJ 0.181 U UJ 18.5	10	10 36	U J J	0.181 18.5		10 49		0.181 10 J 18.5 60	10 U	0.181 10 J 18.5 60			0.181 1 18.5 6		U UJ 0.18	31 10 5 60	10 52		0.181 18.5			UJ 0.181 10 J 18.5 60
Benzene	92000000 7000000 na 52000 12000 na	0.3 J		0.84			5 0.92		5	5	II J		5	1.6		0.136 5	0.32 J	0.136 5			0.136		J J 18.3		0.65	J	0.136	5	5 U	
Bromoform	360000 81000 na	5 U			U	0.101			5	5	U	0.101	5	5		0.101 5	5 U	0.101 5	5	U	0.101		U 0.10		5	U	0.101	5	5 U	0.101 5
Bromomethane	140000 11000 na	1.9 J			J B	0.158		J B 0.158		1.4	J B	0.158	5	5 2.4	U	0.158 5	2.1 J	0.158 5	5 5	U	0.158		J B 0.15		1.9	J B	0.158	5	1.9 J 1.1 J	B 0.158 5
Carbon disulfide	10000000 780000 na	2.7 J		1.1		0.172	5 5.1		5	12	**	0.172		2.4	J	0.172 5	1.1 J	0.172 5	5	U	0.172				0.96	J B	0.172		1.1 J	B 0.172 5
Chlorobenzene cis-1,2-Dichloroethene	2000000 160000 na 1000000 78000 na	5 U 5 U		5	U	0.0475 0.123		U 0.0475 U 0.123		5	U	0.0475 0.123		5	U	0.0475 5 0.123 5	5 U	0.0475 5 0.123 5		U	0.0475 : 0.123 :		U 0.047 U 0.12.		5	U	0.0475 0.123		5 U	
cis-1,2-Dichloropropene	29 6.4 na	5 U				0.123	5 5		5 5	5		0.123		5		0.0423 5	5 U	0.0423 5	5	II	0.0423				5	U	0.123		5 U	
Dibromochloromethane	34000 7600 na	5 U	0.0527 5	5	U	0.0527	5 5	U 0.0527	7 5	5	U	0.0527	5	5	Ü	0.0527 5	5 U	0.0527 5	5	Ü	0.0527	5	U 0.052	27 5	5	U	0.0527	5		
Ethylbenzene	10000000 780000 na	5 U	0.145 5	5	U	0.145	5 0.3	J 0.145	5	5	U	0.145		5	U	0.145 5	5 U	0.145 5	1.7	J	0.145	5	U 0.14.	15 5	5	U	0.145	5	5 U 5 U	0.145 5
Methylene chloride	380000 85000 na	5 U 5 U	UJ 0.857 5		U UJ	0.857	5 1.2 5 5	J 0.857		5	U	0.857		5	U	0.857 5	5 U 5 U	0.857 5 0.128 5	0.98	J	0.857		U UJ 0.85		5	U UJ	0.857	5	5 U	UJ 0.857 5 0.128 5
Styrene Tetrachloroethene	20000000 1600000 na 5300 1200 na	5 U		5		0.128			5	5		0.128	_	5		0.128 5 0.129 5	5 U 0.51 J	0.128 5 0.129 5	5	U	0.128					U	0.128	_	5 U	
Toluene	8200000 630000 na	0.44 J				0.129	5 58	J 0.122		1		0.129		1.6		0.129 5	5 U	0.129 5		-	0.129				0.26	J	0.129		5 U	
trans-1,3-Dichloropropene	29 6.4 na	5 U	0.159 5	5	U	0.159	5 5	U 0.159	5	5		0.159		5	U	0.159 5	5 U	0.159 5	5	U	0.159	5	U 0.15	9 5	5	U	0.159		5 U	0.159 5
Trichloroethene	7200 1600 na	5 U 5 U	0.154 5	5 5	Ü	0.154	5 4.3	J 0.154		0.22	J	0.154	5	5 5	U	0.154 5	2.5 J	0.154 5	5	U	0.154	5 5	U 0.15		5	U	0.154	5	5 U 5 U	0.154 5
Trichlorofluoromethane	31000000 2300000 na 4000 90 na	5 U 5 U	0.1 5 0.115 5	5	U	0.1	5 0.55 5 5	J 0.1 U 0.115	5	0.23	J	0.1		5	U	0.1 5 0.115 5	5 U	0.1 5 0.115 5	5 5 5	U	0.115	5	U 0.11 U 0.11.		0.87 5	J	0.11		5 U	0.1 5 0.115 5
Vinyl chloride Xylenes (total)	4000 90 na 20000000 1600000 na	5 U			U	0.115		U 0.115 J J 0.139		5	U	0.115	5	5 0.9	J	0.115 5 0.139 5	5 U	0.115 5 0.139 5	6.3	U	0.115		J 0.11.		5	U	0.115		5 U	
PAHs (ug/kg)	20000000 1000000 1111	3 0	0.139 3	, ,	· ·	0.139	3 1.1	3 3 0.159			· ·	0.159		0.7	,	0.139 3	3 0	0.139	0.5		0.139	0.7	5 0.15	, ,	,	U	0.139		3 0	0.139 3
Acenaphthene	6100000 470000 na	100 U	11.3 100	100	U	11.3	100 100	U 12.2	100	100	U	11.3	100	100	U	13.2 100	100 U	12.2 100	100	U	11.3 10	0 100	U 11.3	3 100	100	U	11.3	100	100 U	13.2 100
Anthracene	31000000 2300000 na	21 U	0.84 21	21	U		21 21	U 0.91	21	21	U	0.84	21	21	U	0.98 21	21 U	0.91 21	21	U	0.84 2	21	U 0.84	4 21	21	U	0.84	21	21 U	0.98 21
Benz(a)anthracene	3900 220 na	21 U			U	0.96			21	21	U	0.96	21		U	1.12 21	21 U	1.04 21		U	0.96 2		U 0.96		21	U	0.96		21 U 21 U	
Benzo(a)pyrene Benzo(b)fluoranthene	390 22 na	21 U 21 U	1.2 21		U	1.2	21 21 21	U 1.3	21	21	U	1.2	21	21 21	U	1.4 21 1.82 21	21 U	1.3 21	21	U	1.2 2 1.56 2		U 1.2		21 21	U	1.2	21	21 U 21 U	1.4 21 1.82 21
Benzo(b)fluoranthene Benzo(g,h,i)perylene	3900 220 na 3100000 230000 na	60 U	1.56 21	60					21 60	60		1.56		60		1.82 21 17.5 60	21 U 60 U	1.69 21 16.3 60	60	U	1.56 2 15 6					U	1.56	60	60 U	1.82 21 17.5 60
Benzo(k)fluoranthene	39000 2200 na	21 U			U		21 21	U 1.3	21	21		1.2		21		1.4 21	21 U	1.3 21	21	U	1.2 2				21	U	1.2		21 U	
Chrysene	390000 22000 na	21 U	1.44 21	21	U	1.44	21 21	U 1.56	21	21	U	1.44	21	21	U	1.68 21	21 U	1.56 21	21	U	1.44 2	21	U 1.44	4 21	21	U	1.44	21	21 U	1.68 21
Fluoranthene	4100000 310000 na	21 U	2.04 21	21	U		21 21	U 2.21	21	2.4	J	2.04		5	J	2.38 21	21 U	2.21 21	21	U U U	2.04 2		U 2.04		21	U	2.04		21 U	2.38 21
Indeno(1,2,3-cd)pyrene Phenanthrene	3900 220 na 3100000 230000 na	21 U 21 U	0.84 21	21	U U		21 21 21 21	U 0.91 U 0.78	21	21	U	0.84		21 1.7	U J	0.98 21 0.84 21	21 U 21 U	0.91 21	21 21	U	0.84 2 0.72 2	21 21	U 0.84 U 0.72		21 1.7	U	0.84 0.72	21	21 U	0.98 21 0.84 21
Pyrene	3100000 230000 na 3100000 230000 na	21 U		21	U	1.08			21	21 3.3 21	U	1.08	21	3.8	J	1.26 21	21 U	0.91 21 0.78 21 1.17 21	21	U	1.08 2	21 21	U 0.72	8 21	3.2	J	1.08	21	21 U 21 U 21 U 21 U	1.26 21
SVOCs (ug/kg)				•											- 1							•		-						
2,4-Dinitrotoluene	200000 16000 na	170 U		170					170	170		12		170	U	14 170	170 U	13 170		U	12 1:						12		170 U	
2,6-Dinitrotoluene	100000 7800 na	170 U				****	170 170		170	170	U	11.9		170	U	13.9 170	170 U				11.9 1:	0 170			170	-	11.9		170 U	
2-Methylnaphthalene 4-Chloro-3-methylphenol	410000 31000 na na na na	170 U 170 U	10.6 170 7.94 170		U J		170 170 170 170	U 11.5 U 8.61	170 170	170 170	U	10.6 7.94	170	170 170	U	12.4 170 9.27 170	170 U 170 U	11.5 170 8.61 170	170	U	7.94		U 10.6	6 170 4 170	170 10	U J	10.6 7.94		170 U	12.4 170 9.27 170
4-Methylphenol	510000 39000 na			170	U		170 170	II 5.01	170	170	U	4.62		170		5.39 170	170 U	5.01 170		U	4.62		U 4.62	2 170	170		4.62		12 J 170 U	5.39 170
Benz(a)anthracene	3900 220 na	170 U	10.9 170	170	U	10.9	170 170	U 11.8	170	170	U	10.9	170	170	U	12.7 170	170 U	11.8 170	170	U	10.9	0 170	U 10.9	9 170	170	U	10.9	170	170 U	12.7 170
Benzo(b)fluoranthene	3900 220 na	170 U					170 170	U 9.97	170	170		9.2		170		10.7 170	170 U	9.97 170	170	U	9.2			! 170	170		9.2		170 U	
Benzo(g,h,i)perylene	3100000 230000 na	170 U					170 170	U 7.2	170	170 170		6.65		170	U	7.76 170 5.71 170	170 U	7.2 170		U	6.65 1			5 170	170 170		6.65		170 U	7.76 170
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	39000 2200 na 200000 46000 na	170 U 170 U		170 39	U I		170 170 170 20	U 5.3	170 170	170	I	4.9 11.3	170 170	170 240	U	5.71 170 13.2 170	170 U 460	5.3 170 12.3 170	170 21	I	4.9 1: 11.3 1:		U 4.9 J 11.3		170 46	I	4.9 11.3	170 170	170 U 23 J	5.71 170 13.2 170
Butylbenzylphthalate	2000000 1600000 na	20 J	9.48 170		U		170 170	U 10.3	170	170	U	9.48		170	U	11.1 170	170 U	10.3 170	170	Ü	9.48 1					U	9.48		170 U	11.1 170
Chrysene	390000 22000 na	170 U	8.8 170	170	U		170 170	U 9.53	170	170		8.8		170			170 U	9.53 170	170	U	8.8 1	0 170	U 8.8		170	U	8.8	170	170 U	10.3 170
Diethylphthalate	82000000 6300000 na	170 U			J		170 170		170	170	U	12.1			U	14.1 170	170 U	13.1 170		U	12.1 1			1 170	13	J	12.1		170 U	
Di-n-butylphthalate	10000000 780000 na 4100000 310000 na	170 U 170 U				0.55	170 56 170 170		170	480 170	TI	8.53	170 170	55 170	J	9.95 170 6.15 170	320 170 U	9.24 170	27	J	8.53 I:				55 170	J	8.53		39 J 170 U	
Fluoranthene Indeno(1,2,3-cd)pyrene	4100000 310000 na 3900 220 na	170 U	5.27 170 7.6 170		U		170 170 170 170	U 5.71	170 170	170	E NJ	5.27 7.6			U	8.86 170	170 U	5.71 170 8.23 170	170 170	U			U 5.27 U 7.6	7 170 i 170	170	U	5.27 7.6	170 170	170 U	6.15 170 8.86 170
Phenanthrene	3100000 230000 na		9.13 170 6.12 170	170 170	Ü	9.13	170 170	U 9.89	170	170	U	9.13 6.12	170	170 170	Ü	10.7 170		9.89 170 6.63 170	170	U U U	9.13 1: 6.12 1:	0 170 0 170 0 170	U 9.13	3 170	170 170	U	9.13	170	170 U	8.86 170 10.7 170 7.14 170
Pyrene	3100000 230000 na	170 U	6.12 170	170	U	6.12	170 170	U 6.63	170	170	U	6.12	170	170	U	7.14 170	170 U	6.63 170	170	U	6.12	0 170	U 6.12	2 170	170	U	6.12	170	170 U	7.14 170
Pesticides (ug/kg)														**													,			
4,4'-DDT	8400 1900 na 8200 1800 na	NT NT	+	NT NT			NT NT		1 1	NT NT				20 3.8	U	0.538 20 I 0.440 20	NT NT	1	NT NT		+ -	NT NT	-		NT NT		1		NT NT	
alpha-Chlordane Dieldrin	8200 1800 na 180 40 na	NT NT		NT NT			NT		+	NT					U	J 0.449 20 0.471 20	NT NT		NT NT	+	+ +	NT NT			NT NT		1		NT NT	
Endosulfan II	610000 47000 na	NT		NT			NT		1 1	NT				0.42	J J	J 0.315 20	NT		NT	+		NT			NT		1		NT	
Endrin aldehyde	na na na	NT		NT			NT			NT				0.6	J J	0.757	NT		NT			NT			NT				NT	
Endrin ketone	na na na	NT		NT			NT			NT				20	U	0.457 20	NT		NT			NT			NT				NT	
Endrin Hentachlor epoxide	31000 2300 na	NT NT		NT NT	$\sqcup \sqcup$		NT NT			NT NT	\vdash				U	0.5 20	NT NT		NT NT	+	+	NT NT	-		NT NT		 		NT NT	
Heptachlor epoxide Heptachlor	310 70 na 640 140 na	NT NT		NT NT	\vdash		NT NT	- - 	+	NT NT				20 20	U	0.692 20 0.492 20	NT NT	+	NT NT	+-	+	NT NT			NT NT		1		NT NT	
Methoxychloi	510000 39000 na	NT NT		NT NT	\vdash		NT		1 1	NT				1.1	J 1	J 0.933 20	NT NT	1	NT NT	+	1	NT			NT NT				NT NT	
PCBs (ug/kg)			· · · · · · · · · · · · · · · · · · ·												- -															1 1
PCB-1254	1400 156 na	NT		NT			NT			NT				41		9.52 33	NT		NT			NT			NT				NT	
Explosives (mg/kg)	None detected																						•							
Herbicides (ug/kg)	None detected																													
·	·			· · · · · · · · · · · · · · · · · · ·	·					· ·				_													_	_		

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 6 of 8

-																																	
			Sample II	9	41SB				41SI				41SB9B			41SB9C			SB10A			41SB10B		41SB1			41SB11				41SB11B		41SB11C
Analyte			Sample Date Sample Deptl		4/1/0 18-2				4/1				4/1/04 8-12			4/1/04 11.5-12.5			/30/04 0-1			3/30/04 8.5-11		3/30/ 15-1			4/1/04 0-1				4/1/04 8-12		4/1/04 16-18.4
	i-RBC		Background	Pocult	Lab Q Val (MDI	Parult	Lab Q Val		MDI	Pacult Lab	Q Val Q MDL	MDI Para		Val Q MDL	MDI			MDI	Pacult I ab i	0.3-11 O Val Q MDL MRL	Pacult		Q MDL MRL	Posult	Lab Q Val Q		MRL	Pacult Lab	O Val O MDL N	IDI Parult	Lab Q Val Q MDL MRL
Metals (mg/kg)	PRDC	1-KBC	Dackground	Kesuit	Lab Q Val (Q MDL	MIKL	Result	Lab Q van	IQ MDL	MIKL	Result Lab	Q varQ MDL	WIKL Kesu	it Lab Ç	var Q MDL	MIKL	Result Lab Q	vai Q MDL	MIKE	Result Lab	Val Q MIDE MIKE	Result	Lab Q var	Q MDL MKL	Result	Lab Q vai Q	MDL	MKL	Result Lab	Q var Q MDL 1	IKL Kesuit	Eas Q Val Q MISE MIKE
Aluminum	na	na	40041	14400		42	500	21500		4.2	50	23900	J 21	250 3900	n	42	500	24300	210	2500	35500	21 250	2770	T T	4.2 50	14400	1 1	4.2	50	23900	4.2	50 26400	21 250
Antimony	41	3.1	na	0.76	B			0.59		3 0.0386		0.98		0.5 0.55		B 0.0386		0.47 J	0.0386			0.0386 0.5	0.5		0.0386 0.5	0.56	B	0.0386	0.5		B 0.0386		0.0386 0.5
Arsenic	1.9	0.43	15.8	20	Б		0.4	22			0.4	32	0.058			0.058	_	14	0.058			0.058 0.4	13		0.058 0.4	23		0.058		6.5	0.058		0.058 0.4
Barium	20000	1600	209	215		0.103	_	79		0.103		204	_	5 145		0.103		82	0.103		130	0.103 5	35		0.103 5	64		0.103	5	100	0.103	5 335	0.103 5
Beryllium	2000	16	1.02	1.1		0.0267		0.97	ī	0.0267		0.996 J	0.0267	1 1		0.0267		0.44 J	0.0267		1.1	0.0267 1	0.057	I R		0.097	I R	0.0267	1	0.74 J	0.0267	1 1.4	0.0267 1
Cadmium	51	3.9	0.69	2.2		0.25		2.7		0.25		2.9	0.25	1 3		0.25		1.8	0.25		1.9	0.25	1.7	, ,	0.25	2.8	1 2	0.25	1	2.5	0.25	1 3.2	0.25
Calcium	na	na	na	1550			250				2500	51500	J 175	2500 2610	0		2500	70700		12500		17.5 250	185000		438 6250	154000			6250	78700		500 30100	87.5 1250
Chromium	310	23	65.3	20	K	0.998		17	K	(0.998		19	K 0.998	5 26		K 0.998		23	0.998		20	0.998 5	0.998	U	0.998 5	12	K	0.998	5	23	K 0.998	5 22	K 0.998 5
Cobalt	na	na	72.3	20		0.233	1	7.9		0.233	1	10	J 0.233	1 17		0.233	1	12	J 0.233	1	12	J 0.233 1	5.8	J	0.233 1	7.2		0.233	1	12	0.233	1 10	0.233 1
Copper	4100	310	53.5	29		0.516	5	<u>57</u>		0.516	5	<u>54</u>	0.516	5 52		0.516	5	38	0.516	5	66	0.516 5	12		0.516 5	37		0.516	5	30	0.516	5 48	0.516 5
Iron	31000	2300	50962	27600		366	5000	39300		73.1	1000	43300	73.1	1000 4260	0	73.1	1000	39500	366	5000	61400	73.1 1000	12500		18.3 250	29500		36.6	500	28100	36.6	00 43700	73.1 1000
Lead	800	400	26.8	70		1.94		34		0.0776		62		10 149		1.94	_	41	0.0776		55	0,776 10	22		0.0776 1	38		0.0776	1	45	0.0776	ı <u>57</u>	0.776 10
Magnesium	na	na	na	1470	K	7.67		45700	K	76.7		30500	-	2500 2580		K 76.7		24700	384		3540	7.67 250	107000		192 6250	58000	K	192	6250	33900		500 20300	K 7.67 250
Manganese	2000	160	2543	3140			50	1360		2.37		1070		25 776		0.474		1020		25	637	0.474 5	472		0.474 5	1080		2.37	25	671	0.474	5 1390	2.37 25
Nickel	2000	160	62.8	11		0.0775		19		0.0775		20		0.5 27		0.0775		22	0.0775		26	0.0775 0.5	8.4		0.0775 0.5	16	1-1-	0.0775	0.5	18		0.5 21	0.0775 0.5
Potassium	na	na	na	456		7.79		944			100	862		100 392		7.79		1130	7.79		1210	7.79 100	198		7.79 100	546		7.79	100	2300		00 913	7.79 100
Selenium	510	39	na	0.68	J	0.0486		0.58	J	0.0486		0.87 J	0.0486	1 0.74		0.0486		0.76 J	0.0486		0.74 J	0.0486 1	0.96	1	0.0486 1	0.56	J	0.0486	1	0.58 J	0.0486	1 0.93	J 0.0486 1
Silver	510	39	na	0.071	I	0.0178		0.088	J	0.0178		0.086 J	0.0178	3 0.15		0.0178		0.067 J	0.0178		0.083 J	0.0178 3	0.072	I	0.0178 3	0.079	J	0.0178	3	0.05 J		3 0.15	
Sodium	na	na	na	31.4	U UL	31.4	100	86	J I	31.4	100	2000	157	500 226)	157	500	647	31.4	100	24200	785 2500	6290		314 1000	143		31.4	100	1730	157	00 4660	785 2500
Thallium	7.2	0.55	2.11	0.25	J	0.0733	0.5	0.095	J	0.0733	0.5	0.26 J	0.0733	0.5 0.3	J	0.0733	0.5	0.19 J	0.0733	0.5	0.32 J	0.0733 0.5	0.092	J	0.0733 0.5	0.0733	U	0.0733	0.5	0.18 J	0.0733	0.5 0.25	J 0.0733 0.5
Vanadium	102	7.8	108	37		0.401	1.2	34		0.401	1.2	53	0.401	1.2 64		0.401	1.2	44	0.401	1.2	60	0.401 1.2	16		0.401 1.2	26		0.401	1.2	47	0.401	.2 56	0.401 1.2
Zinc	31000	2300	202	85	K	0.789	4	179	K	3.95	20	186	K 3.95	20 295		K 3.95	20	138	3.95	20	380	3.95 20	357		7.89 40	174	K	3.95	20	126	K 3.95	20 126	K 3.95 20
Misc. (mg/kg)		•			•					•	•						•			•													
Cyanide	2000	160	na	0.04	J B	0.009	0.5	0.06	J E	0.009	0.5	0.18 J	0.009	0.5 0.19) J	0.009	0.5	0.22 J	0.009	0.5	4.9	0.018 0.5	0.07	J	0.009 0.5	0.14	J	0.009	0.5	0.09 J	B 0.009	0.03	J B 0.009 0.5
Dioxins/Furans (ng/kg)				-																													
2,3,7,8-TCDF	na	na	na	NT				NT				NT		NT				NT			4.14	0.175 1.41	1.06	U	0.131 1.06	NT				NT		NT	
2,3,7,8-TCDD	19	4.3	na	NT				NT				NT		NT				NT			0.22 J	J 0.133 1.41	1.06	U	0.1 1.06	NT				NT		NT	
1,2,3,7,8-PECDD	na	na	na	NT				NT				NT		NT				NT			0.882 J	0.377 7.05	5.31	U	0.284 5.31	NT				NT		NT	
1,2,3,4,7,8-HXCDD	460	100	na	NT				NT				NT		NT				NT			1.53 J	0.304 7.05	5.31	U	0.229 5.31	NT				NT		NT	
1,2,3,6,7,8-HXCDD	460	100	na	NT				NT				NT		NT				NT			3.71 J	0.517 7.05	5.31	U	0.39 5.31	NT				NT		NT	
1,2,3,7,8,9-HXCDD	460	100	na	NT				NT				NT		NT				NT			3.91 J	0.634 7.05	1.45	J	0.478 5.31	NT				NT		NT	
1,2,3,4,6,7,8-HPCDD	na	na	na	NT		_		NT				NT		NT				NT			98.5	0.479 7.05	3.1	J	0.361 5.31	NT				NT		NT	
OCDD	na	na	na	NT				NT NT	-			NT		NT		\Box		NT			3930 E 0.984 J	J 1.27 14.1	245	ļ., l	0.958 10.6	NT	1 1			NT		NT NT	
1,2,3,7,8-PECDF 2,3,4,7,8-PECDF	na na	na na	na na	NT NT	+		1	NT NT	+		1	NT NT		NT NT		1 1		NT NT		1	0.984 J 1.29 J	0.219 7.05 0.264 7.05	5.31 5.31	U	0.165 5.31 0.199 5.31	NT NT		1		NT NT		NT NT	
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF	na na	na na	na na	NT NT		-		NT NT				NT NT		NT NT		 		NT NT			2.01 J	0.264 7.05	5.31	U	0.199 5.31	NT NT				NT NT		NT NT	
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF	na na	na na	na na	NT NT		+	-	NT NT		_		NT NT	+	NT NT			_	NT NT		1	2.01 J	0.26 7.05	5.31	II	0.196 5.31	NT NT	1			NT NT		NT NT	
2.3.4.6.7.8-HXCDF	na na	na na	na na	NT NT			+	NT		_	1	NT		NT		1	+	NT NT		1	1.41 J	0.512 7.05	5.31	П	0.0995 5.31	NT	1	1		NT		NT	
1,2,3,7,8,9-HXCDF	na	na	na	NT		+		NT				NT		NT		 		NT	- 1		7.05 U	0.628 7.05	5.31	II	0.474 5.31	NT				NT		NT	
1,2,3,7,8,9-HACDF 1,2,3,4,6,7,8-HPCDF	na	na	na	NT	 	+	+	NT		-	-	NT		NT		1 1	+	NT	- 1	1	31.5	0.555 7.05	5.31	II.	0.418 5.31	NT				NT		NT	
1,2,3,4,0,7,8-HPCDF	na	na	na	NT		+	+	NT	+			NT	+	NT		+ + -	-	NT			1.78 J	0.494 7.05	5.31	U	0.373 5.31	NT		+		NT		NT	
OCDF	na	na	na	NT		+	+	NT		_	1	NT		NT		1 1	1	NT		1	88.8	0.804 14.1	10.6	U	0.606 10.6	NT	1 1			NT		NT	
TOTAL TCDD	na	na	na	NT		1		NT			1	NT		NT			-	NT		1	0.22 J	J 0.133 1.41	1.06	U	0.1 1.06	NT				NT		NT	
TOTAL PECDD	na	na	na	NT			1	NT				NT		NT				NT		1	2.62 J	0.377 7.05	5.31	Ü	0.284 5.31	NT				NT		NT	
TOTAL HXCDD	460	100	na	NT				NT				NT		NT				NT			25.3	0.304 7.05	3.09	J	0.229 5.31	NT				NT		NT	
TOTAL HPCDD	na	na	na	NT		1		NT				NT		NT				NT		1	172	0.479 7.05	5.75		0.361 5.31	NT				NT		NT	
TOTAL TCDF	na	na	na	NT				NT				NT		NT				NT			20.5	0.174 1.41	1.06	U	0.131 1.06	NT				NT		NT	
TOTAL PECDF	na	na	na	NT				NT				NT		NT				NT			13.8	0.219 7.05	5.31	U	0.165 5.31	NT				NT		NT	
TOTAL HYODE	na	na	na	NT	1 1	_	+	NT		1	t	NT		NT		 		3.700		+	40.8	0.132 7.05	5.31	r r	0.0993 5.31	NT		1		NT	1 1	NT	
TOTAL HXCDF	IIa	11a	11a	1 1 1				IN I				19.1		IN I				NT			40.6	0.132 7.03	5.31	U	0.0993 3.31	IN I				INI		INI	

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 7 of 8

														Page 7 o																	
			Sample ID		41SC2				41SC2					C20C			41SP2				41TP					1TP2B			41TP20		
Analyte			Sample Date		4/8/0 0-1				4/8/0					8/04			4/14/				4/8/					4/8/04			4/8/04		
	i.RRC	r-RRC	Sample Depth Background	Result	Lab O Val C		MRI	Result I	4.2-5.		MRI	Result		-11.6 'al Q MDL	MRI	Result	0-1		MRI	Result	0-1		MRL	Result		11-13 Val O MDL	MRI	Result	30.5-31 Lab O Val O		MRI
VOCs (ug/kg)																	2														
1,1,2,2-Tetrachloroethane	14000	3200	na	5	U	0.084	5	83	U	39.1	83	5	U	0.084	5	5	U	0.084	5	5	U	0.084	5	5	U	0.084	5	5	U	0.084	5
1,2-Dibromo-3-chloropropane	3600	200	na	10	U	0.307	10		U		83	10	U			10	U	0.307		10	U	0.307		10	U	UJ 0.307	10	10	U	0.307	10
1,2-Dibromoethane (EDB) 1,2-Dichloroethane	1400 31000	320 7000	na	5	U	0.134	5		U UJ		5	5	U	0.134	5	5	U	0.134		5	U	0.134		5	U	0.134	5	5	U	0.134	5
2-Butanone	61000000	7000	na na	40	U	0.18	10	30	U UJ	0.18	10	16	U	0.18 B 0.393	10	33	U B	0.18		38	U B	0.18		16	U	0.18 B 0.393	10	2.8	U B	0.18	10
2-Hexanone	4100000	310000	na	10	U UJ	0.37	10		U UJ	-1070	10	10	U	0.37	10	10	U UJ	0.37	10	10	U UJ	0.37		10	U	0.37	10	10	U	0.37	10
4-Methyl-2-pentanone	8200000	630000	na	10	U UJ	0.181	10		U UJ	0.181	10	10	U	0.181	10	10	U UJ	0.181	10	10	U UJ	0.181		10	U	0.181	10	10	U	0.181	10
Acetone	92000000	7000000	na	60	U	18.5	60 5	5.2	J	18.5	60	47	J	J 18.5	60	73		18.5		24 5	J	18.5	60	57	J	J 18.5	60	60 5	U	18.5	60 5
Benzene Bromoform	360000	81000	na na	0.6	U	0.136	5		U UJ	0.136	5	0.45	J U	0.136	5	2.8	J U	0.136		5	U	0.136	5	0.26	J U	0.136 0.101	5	5	U	0.136	5
Bromomethane	140000	11000	na	5	U	0.158	5		J B		5	5	U	0.158	5	5	U	0.158		5	U	0.158	5	5	U	0.158	5	1.3	J B	0.158	5
Carbon disulfide	10000000	780000	na	4.2	J B	0.172	5	5.8	J	0.172	5	3.6	J	0.172	5	6	В	0.172		5	В	0.172	5	5.7		0.172	5	5	U	0.172	5
Chlorobenzene cis-1.2-Dichloroethene	2000000	160000 78000	na	5	U	0.0475	5		U UJ	0.0475	5	5	U	0.0475	5	5	U	0.0475	5	5	U	0.0475	5	5	U	0.0475	5	5	U	0.0475	5
cis-1,2-Dichloropropene	29	6.4	na na	0.78	U	0.123	5	١	U UJ	0.123	5	5	U	0.123	5	5	U	0.123		11 5	U	0.123	5	5	U	0.123	5	5	U	0.123	- 5
Dibromochloromethane	34000	7600	na	5	U	0.0527	5	-	U UJ	0.0527	5	5	U	0.0527	5	5	U	0.0527		5	U	0.0527	5	5	U	0.0527	5	5	U	0.0527	5
Ethylbenzene	10000000		na	5	U	0.145	5		U UJ	0.145	5	0.15	J	0.145	5	5	U	0.145	5	5	U	0.145		5	U	0.145	5	5	U	0.145	5
Methylene chloride	380000	85000	na	4.4	J B	0.857	5		J B	0.857	5	1.6	-	B 0.857	5	4.7	J B	0.857		5.9	В	0.857		3.6	J	B 0.857	5	9.1	B	0.857	5
Styrene Tetrachloroethene	20000000	1600000	na na	5	U	0.128	5		U UJ	0.128 0.129	5	5	U	0.128 0.129		5	U	0.128 0.129		5.1	U	0.128	5	5	U	0.128 0.129	5	5	U UJ	0.128	5
Toluene	8200000	630000	na	0.53	J	0.129	5	6.5	J	0.129	5	12	U	0.129	5	3.3	J	0.129		0.28	J	0.129	5	1.3	J	0.129	5	0.15	J	0.129	5
trans-1,3-Dichloropropene	29	6.4	na	5	U	0.159	5		U UJ	0.159	5	5	U	0.159	5	5	U	0.159		5	U	0.159	5	5	U	0.159	5	5	U	0.159	5
Trichloroethene	7200	1600 2300000	na	5	U	0.154	5		J J	0.154	5	5	U	0.154	5	5	U	0.154		0.89	J	0.154	5	5	U	0.154	5	1.4	J	0.154	5
Trichlorofluoromethane Vinyl chloride	31000000 4000	2300000	na na	0.52	J U	0.1	5		J J U UJ	0.1	5	0.45	J	0.1	5	0.44	J U	0.1	_	0.57	J	0.1	5	0.64	J	0.1	5	0.73	J U	0.1	5
Xylenes (total)	20000000	1600000	na	0.54	J	0.139	5	-	J J	0.139	5	0.55	J	0.119	5	1.9	J	0.119		5	Ü	0.119	_	0.67	J	0.119	5	5	U	0.139	5
PAHs (ug/kg)									•					•									•							•	
Acenaphthene	6100000		na	100	U	11.3	100		U	16	100	100	U	9.4	100	100	U	14.1		100	U	11.3	100	100	U	11.3	100	100	U	11.3	100
Anthracene Benz(a)anthracene	31000000	2300000	na na	21	U	0.84	21		U	1.19	21	21	U	0.7	21	21 21	U	1.05		21	U	0.84	21	21	U	0.84	21	21	U	0.84	21
Benzo(a)pyrene	390	22	na	21	U	1.2	21		U	1.7	21	21	U	1	21	21	U	1.5		21	U	1.2	21	21	U	1.2	21	21	U	1.2	21
Benzo(b)fluoranthene	3900	220	na	21	U	1.56	21	21	U	2.21	21	21	U	1.3	21	21	U	1.95		21	U	1.56	21	21	U	1.56	21	21	U	1.56	21
Benzo(g,h,i)perylene Benzo(k)fluoranthene	3100000 39000	230000	na	60 21	U	15 1.2	60 21		U	21.3 1.7	60 21	60 21	U	12.5	60 21	60 21	U	18.8		60 21	U	15 1.2	60	60 21	U	1.2	60 21	60 21	U	15 1.2	60 21
Chrysene	390000	22000	na na	21	U	1.44	21		U	2.04	21	21	U	1.2	21	21	U	1.8	21	21	U	1.44	21	21	U	1.44	21	21	U	1.44	21
Fluoranthene	4100000	310000	na	21	U	2.04	21		U	2.89	21	21	Ü	1.7	21	21	U	2.55		21	U	2.04	21	21	U	2.04	21	21	U	2.04	21
Indeno(1,2,3-cd)pyrene	3900	220	na	21	U	0.84	21		U	1.19	21	21	U	0.7	21	21	U	1.05		21	U	0.84	21	21	U	0.84	21	21	U	0.84	21
Phenanthrene Pyrene	3100000 3100000	230000 230000	na na	21 21	U	0.72 1.08	21		U	1.02	21	21	U	0.6	21	21 21	U	0.9 1.35	21	21 21	U	0.72 1.08	21	21	U	0.72 1.08	21 21	21	U	0.72 1.08	21
SVOCs (ug/kg)	3100000	230000	na	- 21	U	1.00	21	21	U	1.55	21	- 21		0.9	2.1	2.1	U	1.55	2.1	2.1	U	1.00	21	2.1	-	1.00	21	21	· ·	1.00	-21
2,4-Dinitrotoluene	200000	16000	na	170	U	12	170	170	U	17	170	170	U	10	170	170	U	15	170	170	U	12	170	170	U	12	170	170	U	12	170
2,6-Dinitrotoluene	100000	7800	na	170	U	11.9	170		U	16.9	170	170	U	9.94	170	170	U	14.9		170	U	11.9	170	170	U	11.9	170	170	U	11.9	170
2-Methylnaphthalene 4-Chloro-3-methylphenol	410000 na	31000 na	na na	170 170	U	10.6 7.94	170 170		U	15 11.3	170 170	170 170	U	8.84 6.62	170 170	170 170	U	13.3 9.93	170 170	170 170	U	10.6 7.94	170 170	170 170	U	10.6 7.94	170 170	170 170	U	10.6 7.94	170 170
4-Methylphenol	510000	39000	na	170	U	4.62	170		U		170	170	U	3.85	170	170	U	5.78		170	U	4.62	170	170	U	4.62	170	170	U	4.62	170
Benz(a)anthracene	3900	220	na	170	U	10.9	170	170	U	15.5	170	170	U	9.09	170	170	U	13.6	170	170	U	10.9	170	170	U	10.9	170	170	U	10.9	170
Benzo(b)fluoranthene	3900	220	na	170	U	9.2	170		U	13	170	170	U	7.67	170	170	U	11.5		170	U	9.2	170	170	U	9.2	170	170	U	9.2	170
Benzo(g,h,i)perylene Benzo(k)fluoranthene	3100000 39000	230000	na na	170 170	U	6.65 4.9	170 170		U	9.42 6.94	170 170	170 170	U	5.54 4.08	170 170	170 170	U	8.31 6.12		170 170	U	6.65 4.9	170 170	170 170	U	6.65	170 170	170 170	U	6.65 4.9	170 170
bis(2-Ethylhexyl)phthalate	200000	46000	na	19	J	11.3	170		J	16	170	10	J	9.44	170	170	J	14.2		16	J	11.3	170	13	J	11.3	170	170	J	11.3	170
Butylbenzylphthalate	20000000	1600000	na	170	U	9.48	170	1,0	U	13.4	170	170	U	7.9	170	170	U	11.9	170	170	U	9.48	170	170	U	9.48	170	170	U	9.48	170
Chrysene	390000	22000	na	170	U	8.8	170		U		170	170	U	7.33	170	170	U	11		170	U	8.8	170	170	U	8.8	170	170	U	8.8	170
Diethylphthalate Di-n-butylphthalate	82000000 10000000	6300000 780000	na na	170 29	U J	12.1 8.53	170 170		U J		170 170	170 19	U	7.11	170 170	170 24	U J	15.2 10.7		170 210	U	12.1 8.53	170 170	170 24	U	12.1 8.53	170 170	170 200	U	12.1 8.53	170 170
Fluoranthene	4100000	310000	na	170	U	5.27	170		U	7.46	170	170	U	4.39	170	170	U	6.59		170	U	5.27	170	170	Ü	5.27	170	170	U	5.27	170
Indeno(1,2,3-cd)pyrene	3900	220	na	170	U	7.6	170		U	10.8	170	170	U	6.33	170	170	U	9.5	170	170	U	7.6	170	170	U	7.6	170	170	U	7.6	170
Phenanthrene Pyrene	3100000 3100000	230000 230000	na na	170 170	U	9.13	170 170		U	12.9 8.67	170 170	170 170	U	7.61 5.1	170 170	170 170	U	7.65	170 170	170 170	U	9.13	170 170	170 170	U	9.13	170 170	170 170	U	9.13	170 170
Pesticides (ug/kg)	3100000	230000	na	170	U	0.12	1/0	1/0	U	8.07	170	170	U	3.1	1/0	1/0	U	7.03	1/0	170	U	0.12	1/0	170	U	0.12	170	170	U	0.12	170
4,4'-DDT	8400	1900	na	NT				20	U	0.898	20	NT				20	U	0.538	20	NT				20	U	0.646	20	NT			$\overline{}$
alpha-Chlordane	8200	1800	na	NT					U	0.75	20	NT				20	U	0.449		NT				20	U	0.539	20	NT			
Dieldrin Endosulfan II	180 610000	40 47000	na na	NT NT		1			U	0.787 0.526	20	NT NT	+		-	20 0.44	U J	0.471		NT NT		1	-	20 20	U	0.565	20	NT NT			
Endosultan II Endrin aldehyde	610000 na	47000 na	na na	NT		1			U	0.526	20	NT	+		1	0.44	J J	0.315		NT NT		1	1	20	U	0.378	20	NT			
Endrin ketone	na	na	na	NT				20	U	0.763	20	NT				0.86	J J	0.457	20	NT		1		20	U	0.548	20	NT			
Endrin	31000	2300	na	NT					U	0.835	20	NT				20	U	0.5	20	NT				20	U	0.6	20	NT			
Heptachlor epoxide	310	70 140	na	NT NT					U	1.16	20	NT	+			20	U	0.692		NT		 		20	U	0.83	20	NT			
Heptachlor Methoxychlor	510000	39000	na na	NT NT		1			U	0.822 1.56	20	NT NT	+		1	20 20	U	0.492		NT NT		1	1	20	U	0.59 1.12	20	NT NT			
PCBs (ug/kg)	210000	3,000			1 1	•		20		1.50	20				-	20		0.700	20			-	1	20		1.12	20		1 1		-
PCB-1254	1400	156	na	NT				66	U	11.6	66	NT	ЦΤ			33	U	10.2	33	NT		1		66	U	8.16	66	NT			
Explosives (mg/kg)		None detec																								•					
Herbicides (ug/kg)		None detec	ted																												

Table 3-2 2004 RFI Detected Results for Soil at SWMU 41 Page 8 of 8

														1 age o or																	
			Sample ID		41SC2				41SC2				41SC				41SP2 s				41TP2				41T				41TP20		
Analyte			Sample Date	:	4/8/0				4/8/0				4/8/				4/14/0				4/8/0					8/04			4/8/04		
			Sample Depth		0-1				4.2-5				11-1				0-1				0-1					-13			30.5-31		
	i-RBC	r-RBC	Background	Result	Lab Q Val () MDL	MRL	Result	Lab Q Val 0	Q MDL	MRL	Result	Lab Q Val	Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Va	al Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL
Metals (mg/kg)	1		10011	4 #200				4 4500				22200		1		21100				25000		1						22100			
Aluminum	na	na 2.1	40041	15300		4.2		16700	*	4.2	2500	23200		4.2	50	21100		105	1250	25900	Y	21		24400		4.2		22400	 	4.2	50
Antimony	41	3.1	na	0.52		0.0386	0.5	0.49	J	0.0386	0.5	0.11	J	0.0386	0.5	0.499	J	0.0386	0.5	0.21	J	0.0386	_	0.4	J	0.0386	0.5	0.089	J	0.0386	0.5
Arsenic	1.9	0.43	15.8	20	1	0.058	0.4	21	1	0.058	0.4	3.2	J	0.058	0.4	21		0.058	0.4	6	J	0.058	_	8.2		J 0.058	0.4	3.5	J	0.058	0.4
Barium	20000	1600	209	84		0.103	5	326	J	0.515	25	102		0.103	5	281		0.103	125	110		0.103		72		0.103	5	89	<u> </u>	0.103	5
Beryllium	200	16	1.02	0.18	J	0.0267	1	0.56	J	0.0267	1	0.97	J	0.0267	1	0.95	J	0.0267	1	0.44	J	0.0267	_	0.49	J	0.0267	1	0.81	J	0.0267	1
Cadmium	51	3.9	0.69	3.5		0.25	1	1.3		0.25	1	2.3		0.25	1	3.5		0.25	1	2.9		0.25		2.5		0.25	1	2.2	 _'	0.25	1
Calcium	na	na	na	140000		1750	25000	39000	J	175	2500	1290		17.5	250	68800		438	6250	33100		87.5		15400		17.5	250	1180	\vdash	17.5	250
Chromium	310	23	65.3	14		0.998	5	23		0.998	5	30		0.998	5	22		0.998	5	25		0.998		25		0.998	5	29	\vdash	0.998	5
Cobalt	na	na	72.3	7.6		0.233	1	12		0.233	1	13		0.233	1	12		0.233	1	11		0.233		14		0.233	1	13		0.233	1
Copper	4100	310	53.5	50		0.516	5	27		0.516	5	25		0.516	5	31		0.516	5	26		0.516		19		0.516	5	23	\vdash	0.516	5
Iron	31000	2300	50962	33500		73.1	1000	35800		73.1	1000	24700		73.1	1000	39400		73.1	1000	30600		73.1		30200		73.1	1000	22400	<u> </u>	73.1	1000
Lead	800	400	26.8	<u>42</u>		0.0776	1	<u>74</u>	J	1.94	25	21		0.0776	1	75		1.94	25	<u>89</u>		0.776		234		1.94	25	20	<u> </u>	0.0776	1
Magnesium	na	na	na	39200		38.4	1250	20400		76.7	2500	8120		7.67	250	36000		192	6250	23000		38.4		16300		7.67	250	8300		7.67	250
Manganese	2000	160	2543	1430		2.37	25	<u>2660</u>	J	4.74	50	99		0.474	5	2340		11.9	125	835		0.474	5	659		0.474	5	97		0.474	5
Nickel	2000	160	62.8	17	J	0.0775	0.5	18	J	0.0775	0.5	20	J	0.0775	0.5	20		0.0775	0.5	17	J	0.0775		19		J 0.0775	0.5	19	J	0.0775	0.5
Potassium	na	na	na	711		7.79	100	990	J	7.79	100	2040		7.79	100	1440		7.79	100	1890		7.79	100	2140		7.79	100	2130		7.79	100
Selenium	510	39	na	0.54	J	0.0486	1	0.74	J	0.0486	1	0.44	J	0.0486	1	0.65	J	0.0486	1	0.52	J	0.0486	1	0.56	J	0.0486	1	0.4	J	0.0486	1
Silver	510	39	na	0.22	J	0.0178	3	0.25	J	0.0178	3	0.17	J	0.0178	3	0.075	J	0.0178	3	0.14	J	0.0178	3	0.16	J	0.0178	3	0.81	J	0.0178	3
Sodium	na	na	na	99.6	J J	31.4	100	2960	J	314	1000	1270	J	157	500	3730		785	2500	50	J J	31.4		1640		J 157	500	1160	J	157	500
Thallium	7.2	0.55	2.11	0.092	J L	0.0733	0.5	0.16	J L	0.0733	0.5	0.19	J L	0.0733	0.5	0.17	J	0.0733	0.5	0.23	J L	0.0733		0.19	J	L 0.0733	0.5	0.14	J L	0.0733	0.5
Vanadium	102	7.8	108	28		0.401	1.2	38		0.401	1.2	35		0.401	1.2	43		0.401	1.2	49		0.401	1.2	41		0.401	1.2	33		0.401	1.2
Zinc	31000	2300	202	159		3.95	20	187	J	3.95	20	81		0.789	4	234		19.7	100	<u>324</u>		3.95	20	<u>337</u>		3.95	20	76		0.789	4
Misc. (mg/kg)																															
Cyanide	2000	160	na	0.04	J B	0.009	0.5	0.23	J	0.009	0.5	0.06	J	0.009	0.5	0.37	J	0.009	0.5	0.06	J B	0.009	0.5	0.01	J	B 0.009	0.5	0.03	J B	0.009	0.5
Dioxins/Furans (ng/kg)																															
2,3,7,8-TCDF	na	na	na	NT				0.458	J	0.239	1.93	NT				0.322	J	0.186	1.5	NT				0.176	J	0.154	1.24	NT			
2,3,7,8-TCDD	19	4.3	na	NT				1.93	U	0.183	1.93	NT				0.168	J	0.142	1.5	NT				0.157	J	0.118	1.24	NT			
1,2,3,7,8-PECDD	na	na	na	NT				9.66	U	0.516	9.66	NT				7.5	U	0.401	7.5	NT				0.371	J	0.333	6.22	NT			
1,2,3,4,7,8-HXCDD	460	100	na	NT				0.464	J	0.416	9.66	NT				7.5	U	0.323	7.5	NT				0.68	J	0.268	6.22	NT			
1,2,3,6,7,8-HXCDD	460	100	na	NT				9.66	U	0.708	9.66	NT				7.5	U	0.55	7.5	NT				0.886	J	0.457	6.22	NT			
1,2,3,7,8,9-HXCDD	460	100	na	NT				2.03	J	0.869	9.66	NT				2.6	J	0.675	7.5	NT				2.67	J	0.56	6.22	NT			
1,2,3,4,6,7,8-HPCDD	na	na	na	NT				14.2		0.657	9.66	NT				20.3		0.51	7.5	NT				44.1		0.423	6.22	NT	<u> </u>		
OCDD	na	na	na	NT				1040		1.74	19.3	NT				2010		1.35	15	NT				6520	E	J 1.12	12.4	NT	<u> </u>		
1,2,3,7,8-PECDF	na	na	na	NT	\perp	-	-	9.66	U	0.3	9.66	NT				0.258	J	0.233	7.5	NT				6.22	U	0.194	6.22	NT			
2,3,4,7,8-PECDF	na	na	na	NT	+	-	-	9.66	U	0.361	9.66	NT	+			7.5	U	0.281	7.5	NT				6.22	U	0.233	6.22	NT			
1,2,3,4,7,8-HXCDF	na	na	na	NT		1	1	9.66	U	0.357	9.66	NT				0.294	J	0.277	7.5	NT		1	-	6.22	U	0.23	6.22	NT			
1,2,3,6,7,8-HXCDF	na	na	na	NT	+	1	1	0.29	J	0.181	9.66	NT	+	-		0.261	J I	0.261	7.5	NT		1	-	0.189	U	0.452	6.22	NT		-	
2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	na	na	na	NT	+	1	1	9.66	U	0.702	9.66	NT	+	-		7.5	T.T	0.545	7.5	NT		1	-	6.22	U	0.452	6.22	NT		-	
1,2,3,7,8,9-HXCDF 1,2,3,4,6,7,8-HPCDF	na	na	na	NT NT	+	1	1	9.66 1.3	ı ı	0.861	9.66	NT NT	+	-		7.5 1.93	T I		7.5	NT NT		1	-	6.22 0.769	U	0.555		NT NT			
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	na	na	na	NT NT		+		9.66	J	0.761	9.66 9.66						J II	0.591	7.5					6.22	T.	0.436	6.22				
1,2,3,4,7,8,9-HPCDF OCDF	na na	na na	na na	NT NT	+	+	+	3.05	T I	1.1	9.66 19.3	NT NT	+	-		7.5 5.17	ī	0.526	7.5 15	NT NT				2.09	U .	0.436	6.22 12.4	NT NT			
TOTAL TCDD	na na	na na	na na	NT	+ -	1	1	1.93	II	0.183	19.3	NT				0.168	ī	0.836	1.5	NT NT		-		0.157	ı		1.24	NT	+-+		
TOTAL PECDD	na na	na na	na na	NT	+	+	1	9.66	П	0.183	9.66	NT	+ +	-		0.714	ī	0.142	7.5	NT		+	-	0.137	J.		6.22	NT	+		
TOTAL HXCDD	460	100	na na	NT	+	+	1	7.51	I	0.316	9.66	NT	+ +	-		6.49	ī	0.323	7.5	NT		+	-	15.3	,		6.22	NT	+		
TOTAL HACEDD TOTAL HPCDD	na	na	na na	NT	+ +	1	1	29.9	,	0.416	9.66	NT				41.4	1	0.525	7.5	NT		1	+	102			6.22	NT			
TOTAL TCDF	na	na	na	NT	+	+	+	2.17		0.037	1.93	NT				0.948	T	0.185	1.5	NT		1		0.172	T		1.24	NT			
TOTAL PECDF	na	na	na	NT	+	+	+	1.65	J	0.238	9.66	NT	+			1.33	I .	0.233	7.5	NT		1		0.172	j		6.22	NT			
TOTAL HXCDF	na	na	na	NT	+ +	1	1	2.26	J	0.181	9.66	NT		_		2.44	I	0.14	7.5	NT		1	_	0.896	Í	_	6.22	NT	$\vdash\vdash\vdash$		-
TOTAL HPCDF	na	na	na	NT	+ +	+	+	3.06	ī	0.677	9.66	NT		1		5.16	ī	0.526	7.5	NT	_	+		0.769	Í	_	6.22	NT			
· · · · · · · · · · · · · · · · · · ·	1161	114	1144	111	1 1	1	1	5.00	-	0.077	2.00	141	1 1		ı	5.10	1"	0.520	//	111	1		1	0.709	10	1	0.22	171	1 1 '		

Table 3-3 2004 RFI Detected Results for Groundwater at SWMu 41 Page 1 of 2

Analyte	S	Sample ID Sample Date			41MW 4/13/04					AW1-I 4/13/04					1MW2 4/13/04		
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)																	
1,2,4-Trichlorobenzene	70	6.1	1	U		0.223	1	NT					1	U		0.223	1
PAHs (ug/L)		None detect	ed														
SVOCs (ug/L)																	
bis(2-Ethylhexyl)phthalate	6	4.8	5	U		1.07	5	NT					2.7	J		1.07	5
Diethylphthalate	na	2900	0.66	J		0.15	5	NT					0.3	J		0.15	5
Explosives (ug/L)		None detect	ed														
Metals (ug/L)																	
Aluminum	50	na	200	U	UL	41.1	200	200	U	UL	41.1	200	200	U	UL	41.1	200
Arsenic	10	0.045	1.7			0.209	1	0.95	J		0.209	1	3.2			0.209	1
Barium	2000	730	20			4.69	20	28			4.69	20	8	J		4.69	20
Calcium	na	na	48000			464	5000	53000			464	5000	134000			1160	12500
Chromium	100	11	4			0.261	1	1.9			0.261	1	5.3			0.261	1
Copper	1300	150	20	U		6.6	20	20	U		6.6	20	11	J		6.6	20
Iron	300	1100	110			7.72	100	23	J	K	7.72	100	220			7.72	100
Lead	15	na	0.7	J		0.231	1	1	U		0.231	1	1.5			0.231	1
Magnesium	na	na	67000			635	50000	65000			635	5000	130000			1590	12500
Manganese	50	73	48			1.64	10	23		L	1.64	10	28			1.64	10
Nickel	na	73	5.3			0.23	1	3.2			0.23	1	7			0.23	1
Potassium	na	na	990		J	51.5	200	730		J	51.5	200	2400		J	51.5	200
Selenium	50	18	0.9	J		0.249	2	0.7	J		0.249	2	2	U		0.249	2
Sodium	na	na	1300000			46200	140000	916000			23100	70000	3950000		$oxed{oxed}$	231000	700000
Thallium	2	0.26	0.3	J		0.041	1	0.2	J		0.041	1	0.5	J		0.041	1
Zinc	5000	1100	6	J	В	4.44	20	11	J	В	4.44	20	15	J	В	4.44	20
Misc. (ug/L)			-					-									
Cyanide	200	73	2	J	В	0.9	10	NT			·		4	J	В	0.9	10

Table 3-3 2004 RFI Detected Results for Groundwater at SWMu 41 Page 2 of 2

Analyte	S	Sample ID			MW2-1 4/13/04					11MW: 4/14/04	-				AW3-I 4/14/04		
,	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)																	
1,2,4-Trichlorobenzene	70	6.1	NT					0.59	J		0.223	1	NT				
PAHs (ug/L)		None detect															
SVOCs (ug/L)																	
bis(2-Ethylhexyl)phthalate	6	4.8	NT					5	U		1.07	5	NT				
Diethylphthalate	na	2900	NT					0.24	J		0.15	5	NT				
Explosives (ug/L)		None detect															
Metals (ug/L)																	
Aluminum	50	na	200	U	UL	41.1	200	99	J	L	41.1	200	200	U	UL	41.1	200
Arsenic	10	0.045	3.7			0.209	1	1	U		0.209	1	1	U		0.209	1
Barium	2000	730	7	J		4.69	20	24			4.69	20	18	J		4.69	20
Calcium	na	na	137000			1160	12500	126000			1160	12500	124000			1160	12500
Chromium	100	11	2.1			0.261	1	3.1			0.261	1	1.7			0.261	1
Copper	1300	150	14	J		6.6	20	20	U		6.6	20	20	U		6.6	20
Iron	300	1100	25	J	K	7.72	100	240			7.72	100	51	J	K	7.72	100
Lead	15	na	0.3	J		0.231	1	2.4			0.231	1	0.5	J		0.231	1
Magnesium	na	na	132000			1590	12500	66000			635	5000	68000			635	5000
Manganese	50	73	27			1.64	10	10	U	UL	1.64	10	10	U	UL	1.64	10
Nickel	na	73	5.4			0.23	1	5.6			0.23	1	4.7			0.23	1
Potassium	na	na	2100		J	51.5	200	2100		J	51.5	200	2000		J	51.5	200
Selenium	50	18	2	U		0.249	2	0.5	J		0.249	2	0.7	J		0.249	2
Sodium	na	na	4150000			231000	700000	182000			5780	17500	185000			5780	17500
Thallium	2	0.26	0.5	J		0.041	1	1	U		0.041	1	1	U		0.041	1
Zinc	5000	1100	12	J	В	4.44	20	18	J	В	4.44	20	21		В	4.44	20
Misc. (ug/L)													<u> </u>				
Cyanide	200	73	NT					2	J	В	0.9	10	NT				

Table 3-4 2004 RFI Detected Results for Surface Water at SWMU 41 Page 1 of 5

Analyte		Sample ID Sample Date			41SW2 4/6/04					SW2-I 4/6/04					41SW3 4/6/04	}	
T/O.G. (. 15.)	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)		0.45	0.70														
Chloroform	80	0.15	0.59	J		0.241	1	NT					0.35	J		0.241	1
PAHs (ug/L)		None detect	ted														
SVOCs (ug/L)				,			ı			1	1	ı					
Diethylphthalate	na	2900	0.32	J	В	0.15	5	NT					0.21	J	В	0.15	5
Explosives (ug/L)		None detect	ted														
Metals (ug/L)																	
Aluminum	50	na	110	J		41.1	200	200	U	UL	41.1	200	110	J		41.1	200
Arsenic	10	0.045	0.24	J		0.209	1	1	U		0.209	1	1	U		0.209	1
Barium	2000	730	60			4.69	20	60			4.69	20	62			4.69	20
Beryllium	4	7.3	4	U		0.27	4	4	U		0.27	4	4	U		0.27	4
Cadmium	5	1.8	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5
Calcium	na	na	49000			464	5000	51000			464	5000	52000			464	5000
Chromium	100	11	0.7	J		0.261	1	0.99	J		0.261	1	1.1			0.261	1
Copper	1300	150	20	U		6.6	20	20	U		6.6	20	20	U		6.6	20
Iron	300	1100	280			7.72	100	100	U		7.72	100	230			7.72	100
Lead	15	na	0.4	J		0.231	1	0.3	J		0.231	1	0.3	J		0.231	1
Magnesium	na	na	30000			635	5000	32000			635	5000	31000			635	5000
Manganese	50	73	24			1.64	10	10	U	UL	1.64	10	20		L	1.64	10
Nickel	na	73	1	U	UL	0.23	1	0.4	J	В	0.23	1	1	U	UL	0.23	1
Potassium	na	na	1500			51.5	200	1600		J	51.5	200	1600			51.5	200
Selenium	50	18	2	U		0.249	2	2	U		0.249	2	2	U		0.249	2
Sodium	na	na	4300			231	700	4400			231	700	7600			231	700
Thallium	2	0.26	1	U		0.041	1	1	U		0.041	1	1	U		0.041	1
Vanadium	na	3.7	25	U		7.93	25	25	U		7.93	25	25	U		7.93	25
Zinc	5000	1100	20	U		4.44	20	20	U		4.44	20	20	U		4.44	20
Misc. (ug/L)	· •	-											_				
Hardness	na	na	253000			1620	5000	NT					251000			1620	5000
Cyanide	200	73	2	J	В	0.9	10	NT					2	J	В	0.9	10

Table 3-4 2004 RFI Detected Results for Surface Water at SWMU 41 Page 2 of 5

Analyte	S	Sample ID Sample Date			SW3-I 4/6/04					41SW4 4/6/04	1			41	SW4-D 4/6/04	Piss	
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)																	
Chloroform	80	0.15	NT					0.3	J		0.241	1	NT				
PAHs (ug/L)		None detect					•				_	·-					
SVOCs (ug/L)																	
Diethylphthalate	na	2900	NT					0.23	J	В	0.15	5	NT				
Explosives (ug/L)		None detect															
Metals (ug/L)																	
Aluminum	50	na	200	U	UL	41.1	200	170	J		41.1	200	200	U	UL	41.1	200
Arsenic	10	0.045	1	U		0.209	1	0.22	J		0.209	1	1	U		0.209	1
Barium	2000	730	65			4.69	20	62			4.69	20	62			4.69	20
Beryllium	4	7.3	4	U		0.27	4	4	U		0.27	4	4	U	UL	0.27	4
Cadmium	5	1.8	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5
Calcium	na	na	52000			464	5000	51000			464	5000	53000			464	5000
Chromium	100	11	0.8	J		0.261	1	1.1			0.261	1	0.7	J		0.261	1
Copper	1300	150	20	U		6.6	20	20	U		6.6	20	20	U		6.6	20
Iron	300	1100	100	U		7.72	100	350			7.72	100	100	U		7.72	100
Lead	15	na	1	U		0.231	1	0.6	J		0.231	1	0.3	J		0.231	1
Magnesium	na	na	33000			635	5000	31000			635	5000	32000			635	5000
Manganese	50	73	10	U	UL	1.64	10	29			1.64	10	10	U	UL	1.64	10
Nickel	na	73	1	U	UL	0.23	1	1	U	UL	0.23	1	1	U	UL	0.23	1
Potassium	na	na	1600		J	51.5	200	1600			51.5	200	1700		L	51.5	200
Selenium	50	18	2	U		0.249	2	2	U		0.249	2	2	U		0.249	2
Sodium	na	na	7900			231	700	9200			231	700	9800			231	700
Thallium	2	0.26	1	U		0.041	1	1	U		0.041	1	1	U		0.041	1
Vanadium	na	3.7	25	U		7.93	25	25	U		7.93	25	25	U		7.93	25
Zinc	5000	1100	4.5	J		4.44	20	20	U		4.44	20	7	J	L	4.44	20
Misc. (ug/L)	-																
Hardness	na	na	NT					255000			1620	5000	NT				
Cyanide	200	73	NT					2	J	В	0.9	10	NT				

Table 3-4 2004 RFI Detected Results for Surface Water at SWMU 41 Page 3 of 5

Analyte		Sample ID Sample Date			41SW: 4/6/04	5			41	SW5-I 4/6/04				1	41SW6 4/6/04		
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)																	
Chloroform	80	0.15	1	U		0.241	1	NT					1	U		0.241	1
PAHs (ug/L)	-	None detect						-					=				
SVOCs (ug/L)																	
Diethylphthalate	na	2900	0.18	J	В	0.15	5	NT					0.18	J	В	0.15	5
Explosives (ug/L)		None detect															
Metals (ug/L)																	
Aluminum	50	na	200	U	UL	41.1	200	200	U	UL	41.1	200	83	J	L	41.1	200
Arsenic	10	0.045	1	U		0.209	1	1	U		0.209	1	1	U		0.209	1
Barium	2000	730	48			4.69	20	49			4.69	20	59			4.69	20
Beryllium	4	7.3	4	U		0.27	4	4	U		0.27	4	4	U		0.27	4
Cadmium	5	1.8	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5
Calcium	na	na	40000			464	5000	40000			464	5000	53000			464	5000
Chromium	100	11	0.9	J		0.261	1	1.1			0.261	1	0.9	J		0.261	1
Copper	1300	150	20	U		6.6	20	20	U		6.6	20	20	U		6.6	20
Iron	300	1100	66	J		7.72	100	100	U		7.72	100	200			7.72	100
Lead	15	na	1	U		0.231	1	0.3	J		0.231	1	0.3	J		0.231	1
Magnesium	na	na	18000			318	2500	18000			318	2500	32000			635	5000
Manganese	50	73	2.1	J	L	1.64	10	10	U	UL	1.64	10	10		L	1.64	10
Nickel	na	73	1	U	UL	0.23	1	1	U	UL	0.23	1	1	U	UL	0.23	1
Potassium	na	na	2000			51.5	200	2100		J	51.5	200	1500			51.5	200
Selenium	50	18	2	U		0.249	2	2	U		0.249	2	2	U		0.249	2
Sodium	na	na	15000			1160	3500	15000			1160	3500	11000			462	1400
Thallium	2	0.26	1	U		0.041	1	1	U		0.041	1	1	U		0.041	1
Vanadium	na	3.7	25	U		7.93	25	25	U		7.93	25	25	U		7.93	25
Zinc	5000	1100	20	U	UL	4.44	20	20	U	UL	4.44	20	20	U	UL	4.44	20
Misc. (ug/L)																	
Hardness	na	na	161000			1620	5000	NT					261000			1620	5000
Cyanide	200	73	2	J	В	0.9	10	NT					2	J	В	0.9	10

Table 3-4 2004 RFI Detected Results for Surface Water at SWMU 41 Page 4 of 5

Analyte	5	Sample ID Sample Date			SW6-I 4/6/04					41SW′ 4/6/04				41	SW7-D 4/6/04	iss	
-	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)																	
Chloroform	80	0.15	NT					1	U		0.241	1	NT				
PAHs (ug/L)	-	None detect											=				
SVOCs (ug/L)																	
Diethylphthalate	na	2900	NT					0.21	J	В	0.15	5	NT				
Explosives (ug/L)		None detect															
Metals (ug/L)																	
Aluminum	50	na	200	U	UL	41.1	200	200	U	UL	41.1	200	200	U	UL	41.1	200
Arsenic	10	0.045	1	U		0.209	1	1	U		0.209	1	1	U		0.209	1
Barium	2000	730	59			4.69	20	50			4.69	20	45			4.69	20
Beryllium	4	7.3	4	U		0.27	4	4	U		0.27	4	4	U		0.27	4
Cadmium	5	1.8	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5	0.5	U		0.0568	0.5
Calcium	na	na	54000			464	5000	41000			464	5000	37000			464	5000
Chromium	100	11	0.9	J		0.261	1	0.98	J		0.261	1	1.1			0.261	1
Copper	1300	150	20	U		6.6	20	20	U		6.6	20	20	U		6.6	20
Iron	300	1100	100	U		7.72	100	54	J		7.72	100	100	U		7.72	100
Lead	15	na	0.3	J		0.231	1	1	U		0.231	1	1	U		0.231	1
Magnesium	na	na	32000			635	5000	18000			318	2500	16000			318	2500
Manganese	50	73	10	U	UL	1.64	10	10	U	UL	1.64	10	10	U	UL	1.64	10
Nickel	na	73	1	U	UL	0.23	1	1	U	UL	0.23	1	1	U	UL	0.23	1
Potassium	na	na	1600		J	51.5	200	2100			51.5	200	1900		J	51.5	200
Selenium	50	18	2	U		0.249	2	2	U		0.249	2	2	U		0.249	2
Sodium	na	na	11000			462	1400	16000			1160	3500	14000			1160	3500
Thallium	2	0.26	1	U		0.041	1	1	U		0.041	1	1	U		0.041	1
Vanadium	na	3.7	25	U		7.93	25	25	U		7.93	25	25	U		7.93	25
Zinc	5000	1100	9.9	J	L	4.44	20	20	U	UL	4.44	20	7	J	L	4.44	20
Misc. (ug/L)	-																
Hardness	na	na	NT					165000			1620	5000	NT				
Cyanide	200	73	NT					3	J	В	0.9	10	NT				

Table 3-4 2004 RFI Detected Results for Surface Water at SWMU 41 Page 5 of 5

Analyte		Sample ID Sample Date			41SP2 4/13/04					SP2-D 4/13/04		
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)												
Chloroform	80	0.15	1	U		0.241	1	NT				
PAHs (ug/L)	<u>-</u>	None detect										
SVOCs (ug/L)												
Diethylphthalate	na	2900	5	U		0.15	5	NT				
Explosives (ug/L)		None detect										
Metals (ug/L)												
Aluminum	50	na	9270			82.2	400	200	U	UL	41.1	200
Arsenic	10	0.045	7.1			0.209	1	1	U		0.209	1
Barium	2000	730	230			4.69	20	110			4.69	20
Beryllium	4	7.3	0.6	J	L	0.27	4	4	U	UL	0.27	4
Cadmium	5	1.8	0.3	J		0.0568	0.5	0.5	U		0.0568	0.5
Calcium	na	na	89000			1160	12500	65000			464	5000
Chromium	100	11	9.4			0.261	1	0.6	J	K	0.261	1
Copper	1300	150	19	J		6.6	20	20	U		6.6	20
Iron	300	1100	10400			193	2500	23	J	K	7.72	100
Lead	15	na	29			0.231	1	1	U		0.231	1
Magnesium	na	na	32000			635	5000	21000			635	5000
Manganese	50	73	410			1.64	10	10	U	UL	1.64	10
Nickel	na	73	10			0.23	1	1	U		0.23	1
Potassium	na	na	1100		J	51.5	200	180	J	L	51.5	200
Selenium	50	18	0.4	J		0.249	2	2	U		0.249	2
Sodium	na	na	13000			462	1400	15000			1160	3500
Thallium	2	0.26	0.09	J		0.041	1	1	U		0.041	1
Vanadium	na	3.7	17	J		7.93	25	25	U		7.93	25
Zinc	5000	1100	75			4.44	20	14	J	В	4.44	20
Misc. (ug/L)	- -	•					•					
Hardness	na	na	NT					NT				
Cyanide	200	73	2	J	В	0.9	10	NT				

Table 3-5 2004 RFI Detected Results in Sediment at SWMU 41

Analyte			Sample ID Sample Date Sample Depth			41SD2 4/6/04 0-1					41SD3 4/6/04 0-1				41SD 4/6/0- 0-1				41SD 4/6/0 0-1				41SD 4/6/0 0-1				41SD 4/6/0 0-1		
	i-RBC	r-RBC	Background	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q		MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL M	RL R	Result 1	Lab Q Val Q	MDL	MRL
VOCs (ug/kg)	•																	•											
1,2,4-Trichlorobenzene	1000000	78000	na	5	U	D	0.732	5	5	U	ъ.	0.732	5	5	U	0.732	5	5	U	0.732	5	3.9	J B	0.732		7.7	J B	0.732	5
2-Butanone Benzene	61000000 52000	4700000 12000	na na	0.2	J	В	2.91 0.178	10 5	16 0.22	J	В	2.91 0.178	10 5	27 5	U	2.91 0.178	10 5	30 0.28	J	2.91 0.178	10 5	0.2	J	2.91 1 0.178 3		26 0.28	I B	2.91 0.178	10
Bromomethane	140000	11000	na	5	U		0.176	5	5	U		0.176	5	5	U	0.176	5	5	U	0.154	5	5	U	0.154		1.5	J B	0.176	5
Carbon disulfide	10000000	780000	na	5	U		0.0742	5	5.7		В	0.0742	5	5	U	0.0742	5	6.7	В	0.0742	5	5	U	0.0742		5.5	В	0.0742	5
Chloroform	1000000	78000	na	1.8	J		0.0915	5	5	U		0.0915	5	5	U	0.0915	5	5	U	0.0915	5	0.54	J	0.0915		5	U	0.0915	5
Methylene chloride	380000	85000	na	4.2	J	В	0.117	5	7.1		В	0.117	5	4.5	J B	0.117	5	3.8	J B	0.117	5	7.8	В	0.117		5.2	В	0.117	5
Toluene	8200000	630000	na	5	U		0.258	5	0.31	J		0.258	5	5	U	0.258	5	1.1	J	0.258	5	0.26	J	0.258	(0.48	J	0.258	5
PAHs (ug/kg)	6100000	470000	no	100	U		12.2	100	100	II		14.1	100	100	II	12.2	100	17	T	14.1	100	100	II	13.2 10	00	100	U	14.1	100
Acenaphthene Anthracene	31000000	2300000	na na	21	U		13.2 0.98	21	21	U		1.05	21	21	U	13.2 0.98	21	19	J	14.1	21	1.1	J	0.98 2			J	1.05	21
Benz(a)anthracene	3900	220	na	21	U		1.12	21	21	U		1.2	21	21	U	1.12	21	67	,	1.2	21	18	J	1.12 2			J	1.2	21
Benzo(a)pyrene	390	22	na	21	U		1.4	21	21	U		1.5	21	21	U	1.4	21	79		1.5	21	20	J	1.4 2	1	17	J	1.5	21
Benzo(b)fluoranthene	3900	220	na	21	U		1.82	21	21	U		1.95	21	21	U	1.82	21	78		1.95	21	21		1.82 2	1	21	U	1.95	21
Benzo(g,h,i)perylene	3100000	230000	na	60	U		17.5	60	60	U		18.8	60	60	U	17.5	60	100		18.8	60	32	J	17.5 6		31	J	18.8	60
Benzo(k)fluoranthene	39000	2200	na	21	U		1.4	21	21	U		1.5	21	21	U	1.4	21	47		1.5	21	9.1	J	1.4 2		8.4	J	1.5	21
Chrysene	390000	22000	na	21	U		1.68	21	21	U		1.8	21	21	U	1.68	21	67		1.8	21	19	J	1.68 2		-	J	1.8	21
Fluoranthene Fluorene	4100000 4100000	310000 310000	na na	21 21	U		2.38 1.82	21	21	U	+	2.55 1.95	21	21	U	2.38	21	200 10	J	2.55 1.95	21	34 21	U	2.38 2 1.82 2		50 21	U	2.55 1.95	21
Indeno(1,2,3-cd)pyrene	3900	220	na na	21	U		0.98	21	21	U	+	1.95	21	21	U	1.82 0.98	21	52	J	1.95	21	17	J	0.98 2		15	J	1.95	21
Phenanthrene	3100000	230000	na	21	U		0.84	21	21	U	+	0.9	21	1.6	J	0.98	21	110		0.9	21	6.3	J	0.84 2		32	-	0.9	21
Pyrene	3100000	230000	na	21	U		1.26	21	21	U		1.35	21	21	U	1.26	21	150		1.35	21	28		1.26 2		33		1.35	21
SVOCs (ug/kg)																"													
4-Chloro-3-methylphenol	na	na	na	170	U		9.27	170	170	U		9.93	170	170	U	9.27	170	17	J	9.93	170	170	U	9.27 17	70	170	U	9.93	170
Benz(a)anthracene	3900	220	na	170	U		12.7	170	170	U		13.6	170	170	U	12.7	170	42	J	13.6	170	170	U	12.7 17		170	U	13.6	170
Benzo(a)pyrene	390	22	na	170	U		17.2	170	170	U		18.5	170	170	U	17.2	170	42	J	18.5	170	170	U	17.2			U	18.5	170
Benzo(b)fluoranthene	3900	220	na	170	U		10.7	170	170	U		11.5	170	170	U	10.7	170	84	J	11.5	170	170	U	10.7 17		-	J	11.5	170
Benzo(g,h,i)perylene	3100000	230000	na	170	U		7.76	170	170	U		8.31	170	170	U	7.76	170	29	J	8.31	170	170	U	7.76 17		-	J	8.31	170
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	39000 200000	2200 46000	na na	170 30	U		5.71 13.2	170 170	170 44	U		6.12 14.2	170 170	170 22	U J	5.71 13.2	170 170	32 47	J	6.12 14.2	170 170	170 23	J	5.71 17 13.2 17			J J	6.12 14.2	170 170
Butylbenzylphthalate	2000000	1600000	na	170	U		11.1	170	14	J		11.9	170	170	U	11.1	170	170	U	11.9	170	170	U	11.1 17		170	U	11.9	170
Chrysene	390000	22000	na	170	U		10.3	170	170	U		11.5	170	170	U	10.3	170	54	J	11.9	170	170	U	10.3		14	J	11.7	170
Di-n-butylphthalate	10000000	780000	na	44	J		9.95	170	240			10.7	170	57	J	9.95	170	69	J	10.7	170	48	J	9.95 17		49	J	10.7	170
Fluoranthene	4100000	310000	na	170	U		6.15	170	8	J		6.59	170	170	U	6.15	170	100	J	6.59	170	10	J	6.15 17	70	25	J	6.59	170
Indeno(1,2,3-cd)pyrene	3900	220	na	170	U		8.86	170	170	U		9.5	170	170	U	8.86	170	21	J	9.5	170	170	U	8.86 17			U	9.5	170
Phenanthrene	3100000	230000	na	170	U		10.7	170	170	U		11.4	170	170	U	10.7	170	45	J	11.4	170	170	U	10.7 17		170	U	11.4	170
Pyrene Pesticides (ug/kg)	3100000	230000	na	170	U		7.14	170	13	J		7.65	170	170	U	7.14	170	120	J	7.65	170	9	J	7.14	v	29	J	7.65	170
4,4'-DDT	8400	1900	na	20	U		0.753	20	3.23	Т	T I	0.807	20	20	U	3.71	20	20	U	3.93	20	1.04	J J	3.66 2	0 1	1.98	J J	0.807	20
Endrin aldehyde	na	na	na	1.74	J	J	0.608	20	2.19	J	J	0.651	20	20	U	2.99	20	20	U	3.17	20	20	U	2.95 2		2.45	J J	0.651	20
PCBs (mg/kg)																				1									
PCB-1254	1.4	0.16	na	66	U		9.52	66	23	J		10.2	66	66	U	9.52	66	66	U	10.2	66	66	U	9.52 6	6	66	U	10.2	66
Explosives (mg/kg)																													
Nitroglycerin	1700	130	na	10	U		1.69	10	10	U		1.82	10	10	U	1.69	10	10	U	1.82	10	5.8		1.69 1	0	10	U	1.82	10
Herbicides (ug/kg)		None detec	ted																										
Metals (mg/kg)																				1									
Aluminum	na	na	40041	15900			4.2	50	14600			4.2	50	14700		210	2500	7460		4.2	50	14600		4.2 5		.5500		4.2	50
Antimony	1.9	3.1 0.43	na 15.8	0.36	J	J	0.0386	0.5	0.25	J	т	0.0386	0.5	0.23	J	0.0386	0.5	0.18	J	0.0386	0.5	0.45 18	J	0.0386 0. 0.058 0.		0.38 6.8	J J	0.0386	0.5
Arsenic	20000	1600	209	183		J	0.058	0.4 5	136		J	0.058	0.4 5	146	J J	0.058	0.4 5	5.2 83		0.058	0.4 5	195	<u> 1</u>	-		130	J	0.058	5
Barium Beryllium	20000	1600	1.02	0.66	J		0.103 0.0267	1	0.69	J	+	0.103 0.0267	1	0.73	J	0.103 0.0267	1	0.23	J	0.103 0.0267	1	0.86	J	0.103		0.72	J	0.103 0.0267	1
Cadmium	51	3.9	0.69	1.7	,		0.0207	1	2.2	,	+	0.0207	1	2.5		0.0207	1	0.23	J	0.0207	1	2.2		0.25		2.1	-	0.0207	1
Calcium	na	na	na	9330		J	17.5	250	31900		J	87.5	1250	35200	J	175	2500	10100	J	17.5	250	19200	J	17.5 25		4700	J	17.5	250
Chromium	310	23	65.3	32		L	0.998	5	31		L	0.998	5	32	L	0.998	5	12	L	0.998	5	33	L	0.998	i	22	L	0.998	5
Cobalt	na	na	72.3	20			0.233	1	16			0.233	1	17		0.233	1	9.1		0.233	1	20		0.233		14		0.233	1
Copper	4100	310	53.5	30			0.516	5	29			0.516	5	30		0.516	5	13		0.516	5	26		0.516		24		0.516	5
Iron	31000	2300	50962	40000			73.1	1000	35900			73.1	1000	42800		73.1	1000	20900		18.3	250	47900		73.1 10		31000		73.1	1000
Lead Magnesium	800 na	400	26.8 na	26 6840		J	0.0776 7.67	250	3 <u>1</u> 18500		J	0.0776 7.67	250	<u>42</u> 19000	т	0.0776 76.7	2500	15 4720	J	0.0776 7.67	250	2 <u>8</u> 10900	I	7.67 25		<u>35</u> .0700	J	0.0776 7.67	250
Manganese	2000	na 160	2543	2100		,	2.37	250	1600		3	2.37	250	2100		23.7	250	359	- J	0.474	5	1640		2.37 2		935	J	0.474	230 5
Mercury	31	2.3	0.13	0.037	J		0.0077	0.1	0.031	J	1	0.0077	0.1	0.037	J	0.0077	0.1	0.03	J	0.0077	0.1	0.024	J	0.0077 0.		0.033	J	0.0077	0.1
Nickel	2000	160	62.8	21		J	0.0775	0.5	22		J	0.0775	0.5	17	J	0.0775	0.5	15	J	0.0775	0.5	25	J	0.0775 0.		19	J	0.0775	0.5
Potassium	na	na	na	1880			7.79	100	1750			7.79	100	1660		7.79	100	968		7.79	100	1630		7.79 10		1820		7.79	100
Selenium	510	39	na	0.68	J		0.0486	1	0.5	J		0.0486	1	0.54	J	0.0486	1	0.34	J	0.0486	1	0.37	J	0.0486			J	0.0486	1
Silver	510	39	na	0.11	J		0.0178	3	0.11	J		0.0178	3	0.1	J	0.0178	3	0.16	J	0.0178	3	0.12	J	0.0178			J	0.0178	3
Sodium Thallium	na 7.2	na 0.55	na 2.11	51	J	т	31.4	100	71	J	т	31.4	100	79	J	31.4	100	36	J II III	31.4	100	54	J	31.4 10			J	31.4	100
Thallium Vanadium	7.2 102	0.55 7.8	2.11	0.11 29	J	L	0.0733	0.5	0.12 32	J	L L	0.0733	0.5	0.13 39	J L	0.0733	0.5	0.5	U UL	0.0733	0.5	0.088 36	J L	0.0733 0. 0.401 1.		0.13	J L	0.0733 0.401	0.5
Zinc	31000	2300	202	96		ь	0.401	4	107		L	3.95	20	155	L	3.95	20	58	L	0.789	4	121	L	3.95 2		94	L	0.401	4
Misc. (mg/kg)	51000	2500	202	//			5.762	7	107		1	5.75	20	155	1 1	5.75	20	20		3.707	7	121	1 1	2.73 2		, ·	1	0.707	
Cyanide	2000	160	na	2			0.009	0.5	0.15	J	В	0.009	0.5	0.17	J	0.009	0.5	0.08	J B	0.009	0.5	0.13	J B	0.009 0.	5 (0.13	J B	0.009	0.5
<u> </u>	-									<u> </u>									1 1 1	•							1		

buried material and at the same depth interval adjacent to the burial areas. One sample of buried material exceeded the adjusted R-RBC for total 2,3,7,8-TCDD as TEQ. COPCs identified in groundwater samples collected from Area B were arsenic and thallium; these metals were detected in the two groundwater samples collected from the burial area at concentrations above their adjusted tw-RBCs but below MCLs. COPCs detected in soil at concentrations above default SSLs were not detected in groundwater; this data coupled with the lack of detections above calculated site-specific SSLs and/or vertical bounding of default SSL exceedances indicated that leaching of organic constituents to groundwater was unlikely to occur at levels of concern. Dissolved arsenic and thallium concentrations in groundwater in the immediate burial area were potentially attributable to leaching from soil or buried material based on soil data and the lack of detections of these COPCs in the groundwater sample collected downgradient of Area B. Comparison of the 1992 VI and 2004 RFI groundwater sample results indicated stable or decreasing chemical concentrations in groundwater. Surface water and sediment samples collected from the unnamed tributary of Stroubles Creek proximate to Area B were not indicative of significant impact from former site activities at Area B. Dissolved metals COPCs were not identified in surface water and organic COPCs related to the site were not identified.

Human Health Risk Assessment

An HHRA was performed to evaluate the potential human health effects associated with previous activities at the site. Media evaluated for the HHRA included soil, groundwater, surface water, and sediment. Receptors evaluated for HHRA included: current/future maintenance worker, future excavation worker, future adult resident, and the future child resident. The total risk calculated for each receptor was below or within USEPA's target risk range for Superfund sites (1E-06 to 1E-04), and the total HI for all receptors except the future Area A and Area B child residents were equal to or below the USEPA reference HI of 1E+00. Both Area A and Area B passed margin of exposure evaluations for iron for the future child resident scenario. When excluding metals COPCs detected below background at Area A, the HI decreased to less than 1E+00 for the future excavation worker and future adult resident and decreased to 2E+00 for future child resident. Target organ HIs for the future child resident at Area A were below 1E+00. When excluding metals COPCs detected below background at Area B, the HI decreased to less than 1E+00 for the future adult resident. Target organ HIs for the future child resident at Area B were 3E+00 for blood and 2E+00 gastrointestinal (GI) tract, with the remaining HIs less than or equal to 1E+00. When incorporating the passing margin of exposure results for iron into the hazard calculation at Area B, the child resident HI decreased from 5E+00 to 3E+00; the segregated HIs for blood, liver, and GI tract were reduced to 1E+00 or less, with skin and vascular remaining at 2E+00. In summary for Area A, the results of the HHRA indicate that the calculated cancer risks and hazards are within USEPA target ranges for each of the receptors evaluated when considering background and target organs. Thus, the risk assessment results would support future commercial/industrial or residential use of Area A without restriction. At Area B, the results of the risk assessment indicate that the calculated cancer risks and hazards are within USEPA target ranges for each of the receptors evaluated, except for the future child resident, when considering background and target organs. Thus, the risk assessment results would support future commercial/industrial use of Area B without restriction; however, future development of Area B for residential use would require implementation of measures to limit exposure of future residents.

Screening Level Ecological Risk Assessment

A SLERA was performed to evaluate potential ecological risks associated with previous activities at the site. Direct contact and wildlife ingestion pathways were evaluated for soil, surface water, and sediment. Terrestrial receptors evaluated included: soil invertebrates and microbes, American robin, red-tailed hawk, meadow vole, fox, and short-tailed shrew. Aquatic and semi-aquatic receptors evaluated included: aquatic macroinvertebrates, benthic invertebrates, mallard duck, belted kingfisher, and raccoon. The SLERA did not identify any elevated risks (HQ > 1) to ecological receptors in Area A. After consideration of chemical bioavailability, spatial distribution of data at the site and mean concentrations, the only chemical/receptor combination with an HQ of greater than one was exposure of the short-tail shrew to arsenic in surface soil in Area B. The HQs for the 95% UCL and mean site arsenic concentrations were 2.9 and 2.6, respectively. When arsenic bioavailability was considered, the mean HQ value was reduced to 2.5. Based on the spatial distribution of the data and fill characteristics, the arsenic levels in surface soil at Area B were potentially ambient levels contained in the off-site fill material used to cap the 1.08 acre area rather than related to historical waste disposal activities. Based on this information, the potential for lower adverse effects to the shrew, lack of potential risk to higher trophic level receptors, and severe short-term disruption of habitat from remedial activities, the SLERA recommended no action be taken to remediate soil at Area B to mitigate potential risks posed by arsenic in soil.

3.4 CONCEPTUAL SITE MODEL

Potentially affected media at SWMU 41 include surface and subsurface soil, surface water, sediment, and groundwater. Surface and subsurface soil are potentially impacted in Areas A and B from disposal activities and vehicle washdown. Groundwater is potentially impacted from downward migration of constituents from soil. Area A at SWMU 41 is adjacent to a small stream that drains into Stroubles Creek. This stream is the likely discharge point for groundwater from the site. Surface water and sediment are present in the stream and are potentially impacted by groundwater discharge to the stream. Precipitation is expected to follow topography and infiltrate into the ground. Site workers, hypothetical future residents, and terrestrial and aquatic biota are considered receptors. **Table 3-6** presents the exposure pathways for human receptors. Exposure pathways for human and ecological receptors are presented in **Figure 3-7** (current) and **Figure 3-8** (future).

The potential presence of red water ash constituents in soil near the leak area indicates that site workers and ecological receptors could be impacted through incidental ingestion of soil, dermal absorption through direct contact with impacted soil, and the inhalation of dust.

Subsurface soil is also potentially impacted. Site workers could be negatively impacted through the inhalation of dust during removal/construction activities. Incidental ingestion and dermal absorption may also affect site workers during construction activities that expose the subsurface soil. Groundwater is also impacted and may impact future site workers or residents if groundwater were developed as a resource. Surface water and sediment in the stream could also potentially impact site workers, terrestrial biota and future residents through incidental ingestion, dermal absorption or inhalation of dust or volatiles.

The CSM will be refined using information gathered during the current investigation and updated, if necessary, for the resulting RFI report.

Table 3-6 Selection of Exposure Pathways - SWMU 41

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current	Surface Soil	Surface Soil	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at SWMU 41 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface soil at SWMU 41 on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface soil at SWMU 41 on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMU 41	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMU 41.
				Industrial Worker	Adult	Inhalation	On-site	None	There are no workers currently exposed to airborne volatiles or particulates from surface soil at SWMU 41 on a daily basis.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMU 41	None	None	None	On-site	None	Current excavation or construction activities are not occurring at SWMU 41.
	Sediment	Sediment	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact sediment at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact sediment at SWMU 41 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to sediment at SWMU 41 on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to sediment at SWMU 41 on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Surface Water	Surface Water	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers could contact surface water at SWMU 41 while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Maintenance workers could contact surface water at SWMU 41 and be exposed to COPCs via dermal absorption while wading.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface water at SWMU 41 on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface water at SWMU 41 on a daily basis.

Table 3-6 Selection of Exposure Pathways - SWMU 41

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current (cont.)	Surface Water	Surface Water	SWMU 41	Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Groundwater	Groundwater	SWMU 41	None	None	None	On-site	None	Groundwater is not currently being used at SWMU 41. Therefore, there is currently no direct exposure to groundwater.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
Future	Surface Soil	Surface Soil	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at SWMU 41 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact surface soil at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact surface soil at SWMU 41 and be exposed to COPCs via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMU 41	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMU 41.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMU 41.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact soil at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact soil at SWMU 41 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact soil at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact soil at SWMU 41 and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact soil at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact soil at SWMU 41 and be exposed to COPCs via dermal absorption.

Table 3-6 Selection of Exposure Pathways - SWMU 41

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Future (cont.)	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMU 41	Resident	Adult	Ingestion	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
					Child	Ingestion	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMU 41	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from soils at SWMU 41.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from soils at SWMU 41.
				Excavation Worker	Adult	Inhalation	On-site	Quant	Excavation workers could be exposed to airborne volatiles or particulate matter released from soils at SWMU 41.
				Resident	Adult	Inhalation	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
					Child	Inhalation	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
				Trespasser	Adolescent	Inhalation	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Sediment	Sediment	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact sediment at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact sediment at SWMU 41 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact sediment at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact sediment at SWMU 41 and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact sediment at SWMU 41 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact sediment at SWMU 41 and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	Adult residents could contact sediment at SWMU 41 and be exposed to COPCs via incidental ingestion during wading or swimming.

Table 3-6 Selection of Exposure Pathways - SWMU 41

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Sediment	Sediment	SWMU 41	Resident	Adult	Dermal	On-site	Quant	Adult residents could contact sediment at SWMU 41 and be exposed to COPCs via dermal absorption during wading or swimming.
					Child	Ingestion	On-site	Quant	Child residents could contact sediment at SWMU 41 and be exposed to COPCs via incidental ingestion during wading or swimming.
						Dermal	On-site	Quant	Child residents could contact sediment at SWMU 41 and be exposed to COPCs via dermal absorption during wading or swimming.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Surface Water	Surface Water	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers could contact surface water at SWMU 41 while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Maintenance workers could contact surface water at SWMU 41 and be exposed to COPCs via dermal absorption while wading.
				Industrial Worker	Adult	Ingestion	On-site	None	Industrial workers could contact surface water at SWMU 41 while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Industrial workers could contact surface water at SWMU 41 and be exposed to COPCs via dermal absorption while wading.
				Excavation Worker	Adult	Ingestion	On-site	None	Excavation workers could contact surface water at SWMU 41 while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Excavation workers could contact surface water at SWMU 41 and be exposed to COPCs via dermal absorption while wading.
				Resident	Adult	Ingestion	On-site	Quant	Residents could contact surface water at SWMU 41 while wading or swimming. Surface water ingestion while wading is considered unlikely.
						Dermal	On-site	Quant	Adult residents could contact surface water at SWMU 41 and be exposed to COPCs via dermal absorption while wading or swimming.
					Child	Ingestion	On-site	Quant	Residents could contact surface water at SWMU 41 while wading or swimming. Surface water ingestion while wading is considered unlikely. Surface water ingestion while swimming is evaluated.
						Dermal	On-site	Quant	Child residents could contact surface water at SWMU 41 and be exposed to COPCs via dermal absorption while wading or swimming.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Table 3-6 Selection of Exposure Pathways - SWMU 41

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Groundwater	SWMU 41	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers would not contact groundwater at SWMU 41.
						Dermal	On-site	None	Maintenance workers would not contact groundwater at SWMU 41.
				Industrial Worker	Adult	Ingestion	On-site	Quant	If SWMU 41 were to be further developed for industrial purposes and groundwater wells were installed at the site, site workers could be exposed to COPCs in groundwater via ingestion.
						Dermal	On-site	None	Although site worker dermal exposures to groundwater could occur, the exposed body surface area of a worker (i.e., hands and arms) would be small and exposures would be infrequent.
				Excavation Worker	Adult	Ingestion	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at SWMU 41.
						Dermal	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at SWMU 41.
				Resident	Adult	Ingestion	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMU 41 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
		Homegrown fruits and	SWMU 41	Resident	Adult	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		vegetables			Child	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into a construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	On-site	Quant	If groundwater wells were installed for residential purposes, adult residents could contact volatiles in groundwater via showering.
				•	Child	Inhalation	On-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.

Table 3-6 Selection of Exposure Pathways - SWMU 41

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Air	Indoor Vapors	Resident	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
					Child	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Groundwater	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
		11				Dermal	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Homegrown fruits and vegetables	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
					Child	Ingestion	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, volatiles could be released from groundwater into ambient air. Off-site maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into an off-site construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate to off-site wells in the future, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	Off-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
					Child	Inhalation	Off-site	Quant	If COPCs from SWMU 41 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	Off-site	None	The maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

3.5 DATA GAP ANALYSIS

This section identifies data gaps in the current understanding of the sites and is the basis for the investigation approach described in the next section.

<u>Area A:</u> Although groundwater is unlikely to have been impacted based on soil and surface water data, the lack of groundwater data is a data gap. The following analyte classes are data gaps for Area A groundwater: TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, and perchlorate.

Soil is adequately characterized at Area A. Surface water is also adequately characterized at Area A. Additional surface water samples that are contemporaneous with the groundwater samples would allow for an analysis of the relationship between groundwater and the adjacent creek.

Area B: There are no data gaps associated with Area B. Additional samples from the wells and the seep at Area B can be compared to existing data to establish trends in the groundwater concentrations over time.

3.6 INVESTIGATION APPROACH

The following sections summarize the proposed samples at SWMU 41. Sample locations are presented on **Figure 3-2** and the analytical parameters are presented in **Table 3-7**.

<u>Area A:</u> Three groundwater samples will be collected with a direct push rig to demonstrate that site soil is not impacting groundwater. One sample will be collected from the center of the former lagoon area (41GW01) and two samples will be collected downgradient from the site, between Stroubles Creek and the former lagoon area (41GW02 and 41GW03). The advantage of the direct push sampling is that it will allow samples to be collected from closer to the edge of the steep slope at the downgradient edge of the site. As shown in **Table 3-7**, these samples will be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, and perchlorate. Direct push groundwater sampling will be conducted in accordance with Section 5.2 and SOP 20.11 of the MWP (URS, 2003a).

Three collocated surface water/sediment samples (41SW/SD08 – 41SW/SD10) from the unnamed tributary to Stroubles Creek will also be collected to evaluate groundwater conditions at Area A. Due to its proximity to Area A and the steep bank adjacent to the site, this unnamed tributary is the expected groundwater discharge point for Area A groundwater and these samples are intended to characterize any impacts from groundwater to surface water. These samples will be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, and perchlorate.

<u>Area B:</u> Site media is currently well characterized at Area B. The three existing wells and the seep (41SW11) will be resampled to obtain current groundwater data in Area B to complete the RFI/CMS. A sediment sample (41SD11) will also be collected from the seep. These samples will be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, and perchlorate.

Table 3-7 Proposed Sampling and Analysis Plan SWMU 41 Radford AAP, Radford, VA

Media	Sampling ID	Depth	Location	Analytes
			SWMU 41	
Groundwater	41GW01	at water table	Area A, direct push GW	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41GW02	at water table	Area A, direct push GW	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41GW03	at water table	Area A, direct push GW	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41MW1	70 ft bgs	Area B, existing upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41MW2	113 ft bgs	Area B, existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41MW3	52.5 ft bgs	Area B, existing downgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
SurfaceWater	41SW08	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41SW09	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41SW10	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	41SW11	NA	Area B, seep sample	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
Sediment	41SD08	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	41SD09	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	41SD10	NA	Area A, downgradient stream	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans
	41SD11	NA	Area B, seep sample	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans

4.0 AREA O – UNDERGROUND FUEL OIL SPILL

4.1 SITE DESCRIPTION AND HISTORY

4.1.1 Site Description

Area O (RAAP-038) consists of one 269,000-gallon fuel oil aboveground storage tank (AST) that is situated on a concrete base and surrounded by a concrete secondary containment system. The site is located in the east section of the MMA, southwest of the Inert Gas Plant (**Figure 4-1**), located on the southeast side of a northeastward sloping drainage valley. Elevations range from

1,775 ft msl near well P-1 to 1,740 ft msl at the asphalt road northeast of the tanks. The base of the tank containment structure has an elevation of 1,771 ft msl.

The southeast side of the valley remains relatively level for 300 ft north of the tanks. The ground surface drops more abruptly at that point and the scarp in the hillside has a 30-foot drop over approximately 150 ft. A road cuts across the valley at the base of this scarp and there is a drainage ditch along the road where oily water reportedly discharged from the hillside in the 1980s.

4.1.2 Site History

An Oil Audit was conducted by USACE in 1982. This audit placed fuel leakage of an underground pipeline connecting a filling station to the fuel tank at approximately 3,000 gallons. In 1983, four monitoring wells were installed to characterize groundwater flow and quality at the site. A Facility Visit by plant personnel in 1990 indicated that the leaking fuel line was not connected to the filling station as described in 1982, but was a discharge line connecting the northeastern-most fuel tank to a pumping station. This line was replaced with an above ground line. In 1992, an RFI was conducted that performed a soil gas survey, sampled soil, groundwater, surface water, and sediment. In 1994, during Phase II of the RFI, additional soil and groundwater samples were collected from the site.

4.2 SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

A comprehensive discussion of the regional physiography, soil, geology, and groundwater at RFAAP is included in the RFAAP MWP (URS, 2003a) and therefore is not discussed in this report.

4.2.1 Site Soil

The U.S. Department of Agriculture has mapped Unison-Urban soils as underlying Area O with slope modifiers of two to seven percent at the tank area and 15 to 25 percent under the hill and steep slope area to the northeast (SCS, 1985). Unison soil makes up roughly half, Urban land a quarter, and other soils a quarter of the total unit. A typical profile of Unison soil has a surface layer of dark brown and brown loam about 15 inches thick, a yellowish-red sticky and plastic clay subsoil about 43 inches thick, and the substratus is red sandy clay loam below 58 inches. The surface soil layer is classified in the Unified Soil Classification System (USCS) as CL, ML,

LEGEND

SWMU 41 and 43, and Area O and P Boundaries

Other SWMU Boundary

Installation Boundary

Notes:

Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 2,000 1,000

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 4-1 SWMU 41 and 43, and Areas O and P Site Location Map

> Radford Army Ammunition Plant, Radford, VA

and CL-ML; the subsoil is CL and CH; and the substratum classifications are CL-ML, CL, ML, and GM-GC (USCS).

4.2.2 Site Geology

A cross-section running roughly north-south through the site (Figure 4-2) is presented on Figure **4-3**. Boring logs for the wells at Area O are presented in **Appendix B**. The site is underlain by 10 to 37 ft of unconsolidated soil deposits consisting principally of terrace alluvial deposits. The primary unconsolidated soil deposits below Area O consist of a brown to yellowish-brown, finegrained, plastic silt and clay. These deposits are highly interbedded in most locations below the site with occasional thin sand and gravel zones. Unconsolidated soil deposits were usually described as being stiff in consistency and moist. Where the silts and clays exhibited a higher plasticity (MH-CH), the soils were usually more soft and moist. Borings performed in the area of the ASTs (OMW1, OSB4, OSB2, OSB10) encountered fill associated with the construction of the ASTs and the parking lot bordering the site to the east. The deposits of river jack overlying bedrock which were encountered in boring S4W-1 during a previous investigation were noticeably absent from the exploratory borings performed for RFI (USAEHA, 1981). However, a 3-foot layer of gravel and cobbles was encountered above bedrock in boring OSB13 performed about 10 ft west of monitoring well P-4. Thin layers of river jack were encountered in borings OSB11 and OSB19. Minor amounts of gravel were encountered in other borings; therefore, it is likely that the thicker gravel deposits encountered in S4W-1 are localized along the steep slope in the vicinity of the scarp at the north end of the site.

Underlying the terrace deposits in some areas of the site (noticeably in the area of OSB5 and OSB8) are fine-grained residual soils weathered from the underlying limestone/dolostone bedrock. Residual soils usually consist of a yellowish-brown, silt (ML) which is stiff in consistency. The extent of residual deposits is apparently limited due to the erosion and deposition of alluvial deposits over bedrock in most areas below the site.

Underlying the unconsolidated soils in Area O is the gray limestone/dolostone of the Elbrook Formation. Previous investigations at Area O penetrated from 7 to 25 ft of bedrock using NX rock coring. The limestone/dolostone below the site is finally laminated, argillaceous, with frequent brecciated, conglomeratic, and vuggy zones. The bedrock is highly weathered and fractured with small quartz and calcite veins (BCM, 1984; USACE, 1988). The observation of bedrock outcropping at the western border of the site along a steep scarp confirms the above descriptions of bedrock below the site. The apparent dip of bedrock from this outcrop is approximately 30 degrees to the southeast with a strike trending northeast-southwest. Extensive exposures of bedrock were also observed in the excavation for the new neutralization basins in the Hazardous Waste Management Unit (HWMU) 4 area. Bedrock was penetrated during the RFI to a depth of 3 ft during the installation of monitoring well OMW1. The bedrock was soft and highly weathered as indicated by the rapid penetration of the roller bit used during drilling.

The bedrock surface below Area O generally follows the surface topography. Two apparent bedrock lows are present below Area O; the first near the southwestern end of the ASTs, the second in the vicinity of borings OSB12 and OSB16. The depth to bedrock in these areas ranges from about 33 to 37 ft bgs, significantly greater than other areas at Area O.

300

GIS File:

4.2.3 Site Hydrogeology

A relatively shallow groundwater table is present below the site at a depth ranging from 2 to 24 ft bgs. Based on groundwater measurements obtained on March 13, 1992, the unconfined water table gradient slopes northeast at an average gradient of 5 percent in the southern half of the site, and an average gradient of 2 percent in the northern half of the site, except at the extreme northern border of the site where the gradient steepens to approximately 11 percent. Because of the low hydraulic gradient over most of the site and the considerable bedrock elevation differences below the site, water table conditions may be found in either unconsolidated-consolidated materials or only within consolidated bedrock. Groundwater flow occurs through bedrock only in the areas of highest bedrock elevation. The measured water table does not appear to be significantly affected by whether it is in soil or bedrock.

A local groundwater discharge zone for the site occurs along the steep scarp bordering the site on the north. Several seeps/springs discharge along nearly the entire length of this scarp. This seep/spring has apparently been formed as the result of an outcropping of a gravel and cobble lens present between the clay soil and the bedrock. Based on information from previous investigations conducted at the site, this discharge zone (seep/spring) was created when the scarp hillside was excavated after the discovery of liquid hydrocarbons in monitoring well S4W-1. Apparently, the surging during development of this well flushed liquid hydrocarbons out of the seep and into the drainage ditch bordering Area O (BCM, 1984; USACE, 1988). Another possible groundwater discharge zone is located just west of the site across the asphalt road in the drainage ditch area. Wells located in this area have groundwater levels close to the ground surface with water frequently observed in this drainage ditch.

Because groundwater is present within the unconsolidated deposits above bedrock at the suspected source area for liquid and dissolved phase petroleum hydrocarbon contamination at Area O, knowing the flow velocity for the saturated sediment layer and consolidated bedrock is important for evaluating potential contaminant pathways from the source area at Area O.

4.2.4 Surface Water Hydrology

Area O is located on the southeast side of a northeastward sloping drainage valley in the east section of the MMA, southwest of the Inert Gas Plant. Elevations at the site range from 1,775 ft msl near well P-1 to 1,740 ft msl at the asphalt road northeast of the tanks. The base of the tank containment structure has an elevation of 1,771 ft msl.

The southeast side of the valley remains relatively level for 300 ft north of the tanks. The ground surface drops more abruptly at that point and the scarp in the hillside has a 30-foot drop over approximately 150 ft. A road cuts across the valley at the base of this scarp and there is a drainage ditch along the road where oily water reportedly discharged from the hillside in the 1980s. Across the road from the scarp is the site of the former Acidic Wastewater Lagoon (HWMU 4).

Surface water drainage at the site is expected to flow northeastward down the valley towards Stroubles Creek and ultimately the New River. There are several engineered drainage ditches along the roads near the site that would channel storm water runoff in the same general direction.

4.3 PREVIOUS INVESTIGATIONS

There has been one previous investigation conducted at Area O. Contamination was originally detected when wells were installed for the 1982 investigation of downgradient HWMU 4, The

Former Acidic Wastewater Lagoon. Dames and Moore incorporated relevant data from HWMU 4 investigations into their 1994 RFI report (Dames and Moore, 1994), and it is discussed below.

4.3.1 RFI, Dames and Moore, 1994

Samples were collected from groundwater, soil, surface water, and sediment to evaluate the migration of oil constituents for the 1994 RFI. Results from these samples are presented in **Tables 4-1 through 4-4**. The results of the RFI boring and well installation program, in conjunction with data acquired in previous investigations, have been used to define the hydrogeologic conditions at the site. The RFI made the following conclusions:

- The most likely path for contaminant migration appears to have been first via shallow groundwater through unconsolidated soil (near the source area) and then second via groundwater flowing through fractured bedrock downgradient of the source area. Contaminants flowing through bedrock eventually became trapped in gravelly and low permeability sediments which intersected the water table in the hillside area near well S4W-1. Based on the boring and well sampling program, the migration pathway extended in a nearly straight line from the source area through the area of borings OSB12 and OSB15 until reaching the hillside in the vicinity of well S4W-1.
- Several VOCs were detected in the 1992 groundwater samples but only sporadically at concentrations below MCLs. TCL SVOCs were only detected in the groundwater sample from well S4W-1 with five of the eight SVOCs exceeding tw-RBCs (n-nitrosodiphenylamine, phenanthrene, fluorene, fluoranthene, and 2-methylnaphthalene). SVOC TICs were detected in eight of the nine wells sampled.
- Several SVOCs were detected in two of the three 1993 groundwater samples (OMW1 and S4W-1) with dibenzofuran, fluorene, naphthalene, and 2-methylnaphthalene slightly exceeding their tw-RBCs. SVOC TICs were identified in samples OMW1 and S4W-1. Unknown TICs were identified in all three samples collected.
 - TOC was reported in 1993 samples OMW1 and S4W-1 at concentrations about four times less than the results reported for corresponding 1992 samples. TOX was reported in all three 1993 samples, but at concentrations about three to four times greater than the results reported for corresponding 1992 samples. TPH was also reported in samples OMW1 (175 μ g/L) and S4W-1 (6,610 μ g/L). The elevated concentrations of TPH and TOC reported in downgradient sample S4W-1 indicate that middle to high boiling point petroleum hydrocarbons associated with the oil leak remain in groundwater near the oil seep location.
- Nitrite/nitrate was reported at concentrations about 3 times greater than its MCL (10,000 μg/L) in 1993 samples OMW1 and S4W-1. Nitrite/nitrate was reported at concentrations of about one order of magnitude less than the MCL criterion in sample OMW-2.
- Of the 23 soil samples collected during the 1991/1992 boring program, only those next to the tanks and two downgradient of the tanks had detectable VOCs and SVOCs.
- Seven VOCs and 35 SVOCs, including VOC and SVOC TICS, were detected in the sample from the seep adjacent to well S4W-1.
- Only trace levels (near the practical quantitation limit) of a few VOCs and SVOCs were detected in sediment collected from the ditch near the seep.

Table 4-1
Detected Results for Soil at Area O
1994 RFI - Dames and Moore

SITE ID			OSB2	OSB3	OSB4	OSB10	OSB10	OSB12	OSB15	OSB17	OSB20		
FIELD ID	i-RBC	r-RBC	RFIS*88	RFIS*90	RFIS*92	RFIS*101	RFIS*104	RDSX*43	RDSX*46	RDSX*48	RDSX*51		
SAMPLING DATE	I-KDC	I-KDC	23-OCT-91	23-OCT-91	02-NOV-91	24-OCT-91	24-OCT-91	18-AUG-93	18-AUG-93	20-AUG-93	19-AUG-93		
DEPTH (ft)			14-16	16-18	20.5-22.5	30-32	14-16	31-33	27-29	10.5-12.5	15-17		
Organics (ug/kg)													
2-Chlorophenol	510000	39000	nd	nd	nd	nd	nd	190	nd	nd	nd		
2-Methylnaphthalene	410000	31000	nd	291	26500	144	10500	330	nd	nd	nd		
Acenaphthene	6100000	470000	nd	nd	2300	nd	nd	nd	nd	nd	nd		
Acenaphthylene	3100000	230000	nd	nd	nd	nd	184	nd	nd	nd	nd		
Acetone	92000000	7000000	nd	nd	nd	28	nd	nt	nt	nt	nt		
Anthracene	31000000	2300000	nd	nd	808	nd	nd	nd	nd	nd	nd		
Bis(2-ethylhexyl)phthalate	200000	46000	nd	nd	nd	nd	nd	nd	2200	nd	nd		
Chloroform	1000000	78000	2	nd	nd	nd	nd	nt	nt	nt	nt		
Dibenzofuran	100000	7800	nd	nd	991	nd	425	nd	nd	nd	nd		
Di-n-butylphthalate	10000000	780000	nd	nd	nd	nd	nd	nd	140	130	520		
Ethylbenzene	10000000	780000	nd	nd	nd	nd	3	nt	nt	nt	nt		
Fluorene	4100000	310000	nd	99	3080	87	1030	110	130	nd	nd		
Naphthalene	2000000	160000	nd	nd	2220	nd	1890	210	nd	nd	nd		
Phenanthrene	3100000	230000	nd	205	4680	230	1980	380	310	nd	nd		
Pyrene	3100000	230000	nd	nd	399	nd	122	nd	nd	nd	nd		

Table 4-2
Detected Results for Groundwater at Area O
1994 RFI - Dames and Moore
Page 1 of 2

SITE ID	Ī		8B	P-1	P-2	P-3	P-4
FIELD ID			8B RDWC*47	RDWC*43	P-2 RDWC*48		P-4 RDWC*50
SAMPLING DATE	MCL	tw-RBC	25-FEB-92	24-FEB-92	20-FEB-92	RDWC*49 20-FEB-92	20-FEB-92
DEPTH (ft)			25-FEB-92 25	24-FEB-92 23	20-FEB-92 13	20-FEB-92 15	20-FEB-92 26
			25	23	13	15	26
Organics (ug/L)	_	1					
2-Methylnaphthalene	na	2.4	nd	nd	nd	nd	nd
Acenaphthene	na	36	nd	nd	nd	nd	nd
Benzene	5	0.34	nd	nd	nd	nd	nd
Bis(2-ethylhexyl)phthalate	6	4.8	nd	nd	nd	nd	nd
Carbon disulfide	na	100	4.8	nd	nd	nd	nd
Chloroform	80	0.15	nd	2.67	nd	nd	nd
Chloromethane	na	19	6.8	nd	nd	nd	nd
Dibenzofuran	na	3.7	nd	nd	nd	nd	nd
Ethylbenzene	700	130	nd	nd	nd	nd	nd
Fluoranthene	150	0.04	nd	nd	nd	nd	nd
Fluorene	24	3	nd	nd	nd	nd	nd
N-Nitrosodiphenylamine	na	14	nd	nd	nd	nd	nd
Naphthalene	na	0.65	nd	nd	nd	nd	nd
Phenanthrene	na	18	nd	nd	nd	nd	nd
Pyrene	na	18	nd	nd	nd	nd	nd
Toluene	1000	75	nd	5.2	nd	nd	nd
Total petroleum hydrocarbons	na	na	nd	nd	nd	nd	nd
Wet Chemistry							
Chlorine	na	na	nd	nd	nd	nd	nd
Nitrate/Nitrite	10000	na	nd	nd	nd	nd	nd
рН	na	na	7.67	6.96	7.04	7.02	7.27
Phosphate	na	na	nd	nd	nd	nd	nd
Sulfate	na	na	nd	nd	nd	nd	nd
TOC	na	na	6570	6340	1940	2060	nd
TOX	na	na	102	41.2	58.8	60.7	134

Table 4-2
Detected Results for Groundwater at Area O
1994 RFI - Dames and Moore
Page 2 of 2

	1	_							
SITE ID			OMW1	OMW1	OMW2	WC1-2	S4W-1	S4W-1	S4W-4
FIELD ID	MCL	tw-RBC	RDWC*51	RDWX*46	RDWX*47	RDWC*45	RDWC*44	RDWX*48	RDWC*46
SAMPLING DATE			24-FEB-92	28-JUL-93	29-JUL-93	28-FEB-92	24-FEB-92	28-JUL-93	28-FEB-92
DEPTH (ft)			30	35	25	43	13	13	17
Organics (ug/L)			_		_	_			
2-Methylnaphthalene	na	2.4	nd	4	nd	nd	53.3	nd	6
Acenaphthene	na	36	nd	2.7	nd	nd	18	nd	nd
Benzene	5	0.34	2.18	nd	nd	nd	nd	nd	nd
Bis(2-ethylhexyl)phthalate	6	4.8	nd	nd	nd	nd	4.45	nd	nd
Carbon disulfide	na	100	nd	nd	nd	nd	nd	nd	0.794
Chloroform	80	0.15	0.697	nd	nd	nd	nd	nd	nd
Chloromethane	na	19	nd	nd	nd	5.99	nd	nd	nd
Dibenzofuran	na	3.7	nd	3.8	nd	nd	nd	nd	nd
Ethylbenzene	700	130	0.895	nd	nd	nd	nd	nd	nd
Fluoranthene	150	0.04	nd	nd	nd	nd	4.02	nd	nd
Fluorene	24	3	nd	5.3	nd	nd	42.7	8.2	nd
N-Nitrosodiphenylamine	na	14	nd	nd	nd	nd	46	nd	nd
Naphthalene	na	0.65	nd	6.6	nd	nd	nd	0.84	nd
Phenanthrene	na	18	nd	3.1	nd	nd	87	3.4	nd
Pyrene	na	18	nd	nd	nd	nd	5.53	nd	nd
Toluene	1000	75	nd						
Total petroleum hydrocarbons	na	na	nd	175	nd	nd	nd	6610	nd
Wet Chemistry									
Chlorine	na	na	nd	46000	53000	nd	nd	30400	nd
Nitrate/Nitrite	10000	na	nd	30000	1200	nd	nd	33000	nd
рН	na	na	7.13	nt	nt	7.42	7.28	nt	7.49
Phosphate	na	na	nd	86		nd	nd	110	nd
Sulfate	na	na	nd	16400	156000	nd	nd	nd	nd
TOC	na	na	7110	1760	nd	18300	9930	2500	14900
TOX	na	na	36	176	232	60.3	46.1	150	75

Table 4-3
Detected Results for Surface Water Samples at Area O
1994 RFI - Dames and Moore

SITE ID FIELD ID SAMPLING DATE DEPTH (ft)	MCL	tw-RBC	OSP1 RDWA*37 26-SEP-91 na
Organics (ug/L)			
2-Methylnaphthalene	na	2.4	2.1
Acenaphthene	na	36	2.4
Chloromethane	na	19	10
Dibenzofuran	na	3.7	1.8
Fluorene	na	24	5.2
Methylene Chloride	5	4.1	4.9
Naphthalene	na	0.65	2.3
Phenanthrene	na	18	2.2

Table 4-4
Detected Results for Sediment at Area O
1994 RFI - Dames and Moore

SITE ID			OSE1	OSE2
FIELD ID	i-RBC	r-RBC	RFIS*106	RFIS*107
SAMPLING DATE	I-KBC	I-KBC	26-SEP-91	26-SEP-91
DEPTH (ft)			0-0.5	0-0.5
Organics				
Acetone	92000000	7000000	61	122

- Soil contamination appears to be limited to three areas at Area O which include: the tank
 area and points immediately downgradient (northeast), the bedrock low in the vicinity of
 borings OSB12 and OSB15, and the seepage area near well S4W-1. Except for the
 seepage area where oil probably remains trapped in sediments, the levels of soil
 contamination are generally low and limited to SVOCs that are associated with weathered
 petroleum products.
- No health or environmental risk was identified for RFAAP workers under current or expected future conditions.

4.4 CONCEPTUAL SITE MODEL

Potentially affected media include surface and subsurface soil, surface water, sediment, and groundwater. Area O is located in on the southeast side of a drainage valley that slopes gently to the northeast. At the northern edge of Area O there is a steep scarp that cuts across the drainage valley. Surface and subsurface soil are potentially impacted in the area of the former leaking pipe. Groundwater is potentially impacted between the leak area and the steep scarp to the north. Surface water and sediment are present in the drainage ditch at the base of the scarp that appears to be a groundwater discharge point. Precipitation is expected to flow down the hill sides and infiltrate into the ground. Site workers, hypothetical future residents, and terrestrial biota are considered receptors. **Table 4-5** presents the exposure pathways for each human receptor. **Figure 4-4** (current) and **Figure 4-5** (future) present exposure pathways for ecological and human receptors. The exposures pathways associated with each media type are described in more detail in the following paragraphs.

The potential presence of oil constituents in soil near the leak area indicates that site workers and ecological receptors could be impacted through incidental ingestion of soil, dermal absorption through direct contact with impacted soil, and the inhalation of dust.

Subsurface soil is also potentially impacted. Oil constituents are mobile in the environment and would negatively impact the subsurface soil. Site workers could be negatively impacted through the inhalation of dust during removal/construction activities. Incidental ingestion and dermal absorption may also affect site workers during construction activities that expose the subsurface soil. Groundwater is also impacted and may impact future site workers or residents if groundwater were developed as a resource. Surface water and sediment in the ditch could also potentially impact site workers, terrestrial biota and future residents through incidental ingestion, dermal absorption or inhalation of dust or volatiles. The ditch is man-made, is bordered by a road, and is unlikely to provide habitat for aquatic biota.

4.5 DATA GAP ANALYSIS

This section identifies data gaps in the current understanding of the site and is the basis for the investigation approach described in the next section.

Characterization of the soil (surface and subsurface) in the area where the pipe leaked is a data gap. Previous investigations have focused on groundwater contamination and identification of flow pathways. Soil samples in this area will identify whether oil-contaminated soil is acting as a continuing source for groundwater. Data gaps for soil include TCL VOCs, TCL SVOCs, and PAHs.

Table 4-5 Selection of Exposure Pathways - Area O

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current	Surface Soil	Surface Soil	Area O	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at Area O and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface soil at Area O on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface soil at Area O on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	Area O	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at Area O.
				Industrial Worker	Adult	Inhalation	On-site	None	There are no workers currently exposed to airborne volatiles or particulates from surface soil at Area O on a daily basis.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	Area O	None	None	None	On-site	None	Current excavation or construction activities are not occurring at Area O.
	Sediment	Sediment	Area O	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact sediment at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact sediment at Area O and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to sediment at Area O on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to sediment at Area O on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Surface Water	Surface Water	Area O	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers could contact surface water at Area O while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Maintenance workers could contact surface water at Area O and be exposed to COPCs via dermal absorption while wading.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface water at Area O on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface water at Area O on a daily basis.

Table 4-5 Selection of Exposure Pathways - Area O

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current (cont.)	Surface Water	Surface Water	Area O	Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Groundwater	Groundwater	Area O	None	None	None	On-site	None	Groundwater is not currently being used at Area O. Therefore, there is currently no direct exposure to groundwater.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
Future	Surface Soil	Surface Soil	Area O	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at Area O and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact surface soil at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact surface soil at Area O and be exposed to COPCs via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	Area O	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at Area O.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from surface soil at Area O.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	Area O	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact soil at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact soil at Area O and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact soil at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact soil at Area O and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact soil at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact soil at Area O and be exposed to COPCs via dermal absorption.

Table 4-5 Selection of Exposure Pathways - Area O

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	Area O	Resident	Adult	Ingestion	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
		Air			Child	Ingestion	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
			Area O	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from soils at Area O.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from soils at Area O.
				Excavation Worker	Adult	Inhalation	On-site	Quant	Excavation workers could be exposed to airborne volatiles or particulate matter released from soils at Area O.
				Resident	Adult	Inhalation	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
					Child	Inhalation	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
				Trespasser	Adolescent	Inhalation	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Sediment	Sediment	Area O	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact sediment at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact sediment at Area O and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact sediment at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact sediment at Area O and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact sediment at Area O and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact sediment at Area O and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	Adult residents could contact sediment at Area O and be exposed to COPCs via incidental ingestion during wading or swimming.

Table 4-5 Selection of Exposure Pathways - Area O

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Sediment	Sediment	Area O	Resident	Adult	Dermal	On-site	Quant	Adult residents could contact sediment at Area O and be exposed to COPCs via dermal absorption during wading or swimming.
					Child	Ingestion	On-site	Quant	Child residents could contact sediment at Area O and be exposed to COPCs via incidental ingestion during wading or swimming.
						Dermal	On-site	Quant	Child residents could contact sediment at Area O and be exposed to COPCs via dermal absorption during wading or swimming.
			Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.	
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Surface Water	Surface Water	Area O	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers could contact surface water at Area O while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Maintenance workers could contact surface water at Area O and be exposed to COPCs via dermal absorption while wading.
				Industrial Worker	Adult	Ingestion	On-site	None	Industrial workers could contact surface water at Area O while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Industrial workers could contact surface water at Area O and be exposed to COPCs via dermal absorption while wading.
				Excavation Worker	Adult	Ingestion	On-site	None	Excavation workers could contact surface water at Area O while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Excavation workers could contact surface water at Area O and be exposed to COPCs via dermal absorption while wading.
				Resident	Adult	Ingestion	On-site	Quant	Residents could contact surface water at Area O while wading or swimming. Surface water ingestion while wading is considered unlikely.
						Dermal	On-site	Quant	Adult residents could contact surface water at Area O and be exposed to COPCs via dermal absorption while wading or swimming.
					Child	Ingestion	On-site	Quant	Residents could contact surface water at Area O while wading or swimming. Surface water ingestion while wading is considered unlikely. Surface water ingestion while swimming is evaluated.
						Dermal	On-site	Quant	Child residents could contact surface water at Area O and be exposed to COPCs via dermal absorption while wading or swimming.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Table 4-5 Selection of Exposure Pathways - Area O

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Groundwater	Area O	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers would not contact groundwater at Area O.
						Dermal	On-site	None	Maintenance workers would not contact groundwater at Area O.
				Industrial Worker	Adult	Ingestion	On-site	Quant	If Area O were to be further developed for industrial purposes and groundwater wells were installed at the site, site workers could be exposed to COPCs in groundwater via ingestion.
						Dermal	On-site	None	Although site worker dermal exposures to groundwater could occur, the exposed body surface area of a worker (i.e., hands and arms) would be small and exposures would be infrequent.
				Excavation Worker	Adult	Ingestion	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at Area O.
						Dermal	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at Area O.
				Resident	Adult	Ingestion	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area O were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
		Homegrown fruits and	Area O	Resident	Adult	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		vegetables			Child	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into a construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	On-site	Quant	If groundwater wells were installed for residential purposes, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	On-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.

Table 4-5 Selection of Exposure Pathways - Area O

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Air	Indoor Vapors	Resident	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
					Child	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Groundwater	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Homegrown fruits and vegetables	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
					Child	Ingestion	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, volatiles could be released from groundwater into ambient air. Off-site maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into an off-site construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from Area O groundwater were to migrate to off-site wells in the future, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	Off-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
					Child	Inhalation	Off-site	Quant	If COPCs from Area O groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	Off-site	None	The maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Groundwater sampling has not been conducted recently at the site. The lack of current groundwater data from existing wells at the site is a data gap. An additional groundwater data gap is in the area between the source area and the drainage ditch (identified as "Area of proposed direct push groundwater sampling" on **Figure 4-2**). Additional groundwater sampling in this area will further define the groundwater flow pathway. Data gaps for groundwater (existing wells and direct push samples) include TCL VOCs, TCL SVOCs, and PAHs.

Surface water and sediment exist in the drainage ditch downgradient from the site. The data gaps for these media are the lack of recent sampling. Data gaps for surface water and sediment include TCL VOCs, TCL SVOCs, and PAHs.

4.6 INVESTIGATION APPROACH

In order to complete the RFI/CMS at the site, additional samples need to be collected to characterize the current state of potentially impacted media. Proposed samples and analyses are presented in **Table 4-6**. Proposed sample locations are shown on **Figure 4-2**.

<u>Soil</u>: Soil samples will be collected at five locations with samples at three depth intervals per location around the AST and former leak area to confirm that a contaminated soil is not acting as a continuing source for groundwater contamination. Soil samples will be collected using direct push methods. At each location, a sample will be collected at the surface (0-0.5 ft bgs; "A" interval); at the depth of the leak (assumed to be no greater than 4-6 ft bgs; "B" interval) and beneath any impacted soil that is encountered (assumed to be no greater than 8-10 ft bgs; "C" interval). The depth of the leak will be determined in the field by the presence of visible contamination or the highest photoionization detector reading measured during boring advancement. If evidence of contamination is not encountered, the "C" interval will be collected immediately above the water table and the "B" interval will be collected halfway between the surface and the water table. This sample strategy is designed to bound the extent of fuel-containing soil in both horizontal and vertical dimensions so that the volume can be measured for the CMS. Soil samples will be analyzed for TCL VOCs, SVOCs, and PAHs.

Groundwater: Existing wells at Area O and downgradient HWMU 4 will be resampled to evaluate the current concentrations of fuel-related constituents in groundwater. It is anticipated that samples will be obtained from ten existing wells (S4W-1, P-1, P-2, P-3, P-4, OMW-1, OMW2, WC1-1, WC1-2, and B8). Current data will allow an analysis of concentration trends over time by comparison to existing groundwater data. Groundwater samples will be analyzed for TCL VOCs, SVOCs, PAHs, and monitored natural attenuation (MNA) parameters. The MNA parameters will examine changes in geochemical parameters that directly correlate to the indigenous microbiology. Field parameters (DO, ORP, pH, temperature, and conductivity) will be collected during groundwater sampling as part of the low-flow sampling procedures. Biodegradation parameters (nitrate, sulfate, ferrous iron, chloride, methane, ethene, ethane, alkalinity, TOC, and DHC) will be collected from the monitoring wells to be analyzed.

In addition to the monitoring wells, groundwater samples will also be collected from ten direct push borings located downgradient from the spill area and upgradient from monitoring well S4W-1. These samples will be used to establish whether pockets of contamination are present in sand and gravel stringers within the silt and clay overburden layers. These samples will also be analyzed for TCL VOCs, SVOCs, PAHs, and MNA parameters.

<u>Surface Water/Sediment:</u> Two surface water/sediment sample pairs will be collected from the drainage ditch that appears to be the groundwater discharge point for the area. Oily water was reported to discharge to the ditch from the steep scarp downgradient from Area O after periods of heavy rain up through 1994 (Dames and Moore, 1994). During a recent site visit, RFAAP personnel indicated that oily water no longer visibly discharged to the ditch. The surface water/sediment samples will be analyzed for TCL VOCs, SVOCs, and PAHs to assess the sediment at the seep location and the surface water within the ditch.

Table 4-6 Proposed Sampling and Analysis Plan Area O Radford AAP, Radford, VA

Media	Sampling ID	Depth	Location	Analytes
			Area O	
Surface Soil	AOSB01A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB02A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB03A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB04A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB05A	0-0.5 ft bgs	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
Subsurface Soil	AOSB01B	4-6 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB01C	8-10 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB02B	4-6 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB02C	8-10 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB03B	4-6 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB03C	8-10 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB04B	4-6 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB04C	8-10 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB05B	4-6 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
	AOSB05C	8-10 ft bgs*	Around AST and former leak area	TCL VOCs, SVOCs, PAHs
Groundwater	AOGW01	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, Monitored Natural
			Figure 4-2)	Attenuation Parameters (MNA), TOC
	AOGW02	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
			Figure 4-2)	
	AOGW03	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
			Figure 4-2)	
	AOGW04	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
			Figure 4-2)	
	AOGW05	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
			Figure 4-2)	
	AOGW06	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
	4 O CW 107	11	Figure 4-2)	TICK MOC GMOC PAN ARM TOC
	AOGW07	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW08	rvotou toblo	Figure 4-2) Direct Push GW Sample Area (see	TCL VOCa SVOCa DALLA MNA TOC
	AOGW08	water table	Figure 4-2)	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGW09	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
	AOGWO	water table	Figure 4-2)	TCL VOCS, 5 VOCS, TATIS, WIVA, TOC
	AOGW10	water table	Direct Push GW Sample Area (see	TCL VOCs, SVOCs, PAHs, MNA, TOC
			Figure 4-2)	
	S4W-1	10	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	WC1-1	39	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	WC1-2	25	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	8B	25 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-1	25 ft bgs	exising upgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-2	11 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-3	18 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	P-4	23 ft bgs	existing downgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	OMW1	31 ft bgs	existing onsite well	TCL VOCs, SVOCs, PAHs, MNA, TOC
	OMW2	31 ft bgs	existing upgradient well	TCL VOCs, SVOCs, PAHs, MNA, TOC
Surface Water	AOSW01	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
	AOSW02	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
Sediment	AOSD01	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs
	AOSD02	NA	downgradient drainage ditch	TCL VOCs, SVOCs, PAHs

^{*} Subsurface soil sample depths are estimated. Actual depths will be determined based on field conditions (PID readings, odors, visible contamination).

5.0 FORMER LEAD FURNACE AREA

5.1 SITE DESCRIPTION AND HISTORY

5.1.1 Site Description

The FLFA is an approximately 1,100 ft² area located in the MMA at the bottom of a steeply

sloping hillside in the southeast portion of SWMU 17A, the Stage and Burn Area (**Figure 5-1**). Building foundations and surrounding soil have been removed and replaced by clean fill. The FLFA was built into the sloping side of the sinkhole. The elevation of the top of the slope above the FLFA is approximately 1,892 ft msl, while the bottom of the slope is approximately 1,874 ft msl. The location of the former waste oil tank (SWMU 76) is upslope to the east of the FLFA at an elevation of approximately 1,895 ft msl. The area immediately

surrounding the FLFA is a maintained grassy area and the gravel burn area of SWMU 17A. There are paved and gravel roads in the vicinity.

5.1.2 Site History

The primary function of the lead furnace was to melt and cast recovered lead into ingots for salvage. Although little is known about the operations at the FLFA, typical smelter operations involved melting the lead in a tank with an overhead heater, then pouring the molten lead into molds. The location of lead slag remnants suggests that the lead was off-loaded at the top of the hill. Although exact furnace operation dates are not available, the historical records and document search conducted in conjunction with the VI (Dames and Moore, 1992) date its operation during World War II. A concrete retaining wall was visible at the base of the slope at the commencement of the 1998 RFI site activities. Additional structures discovered during the 1998 RFI included a foundation, brick flue, cement retaining wall, and a stone retaining wall. Based on 1998 RFI soil and debris removal activities, it was determined that the FLFA structures encompassed an area that was 35 ft long (north-south) by 30 ft wide (east-west). These structures more clearly delineate the area of former lead furnace activities.

Environmental interest in the FLFA occurred as the result of underground storage tank (UST) removal activities that occurred in 1991 at SWMU 76 (Waste Oil UST). Solid lead slag was observed in the soil around and below the tank at the time of the UST removal. Associated soil samples were found to contain lead at concentrations of 3,200 and 63,000 mg/kg. It was assumed that the high lead concentrations were attributed to the FLFA because of the proximity to the lead furnace. Based on these observations, additional activity was performed at the FLFA between March and May of 1998. Structure, debris, and soil removal was performed to assess lead contamination at the site and to access subsurface soil at the level of the furnace structures, where lead associated with the operations of the lead furnace would be expected to be present. Structure and debris removal was required to adequately characterize the extent of FLFA-related lead contamination.

LEGEND

Former Lead Furnace Area Boundary

Other SWMU Boundary

Installation Boundary

Notes:

Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 3,000 1,500

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 5-1 Former Lead Furnace Area Site Location Map Radford Army Ammunition Plant,

Radford, VA

5.2 SITE GEOLOLGY, HYDROGEOLOGY AND HYDROLOGY

A comprehensive discussion of the regional physiography, soil, geology, and groundwater at RFAAP is included in the RFAAP MWP (URS, 2003a) and therefore is not discussed in this report.

5.2.1 Site Soil

Soil at the FLFA has been extensively reworked during the history of the site. The majority of the existing soil is fill that has been brought in during construction activities and clean-up activities at the site. Soil at the site is mapped as Unison-Urban Land Complex (SCS, 1985). It is described as having moderate permeability, low organic content and medium acidity. In unworked areas, the soils have a 15-inch thick top soil of dark brown loam, and a 43-inch subsoil of yellowish-red sticky clay, which is underlain by red sandy clay to a depth of 58 inches.

5.2.2 Site Geology

Stratigraphic characterization of the subsurface in the vicinity of the FLFA was performed during the advancement of soil borings. Three geologic cross-sections (A-A', B-B' and C-C') were developed based on data from previous investigations. A plan view of the cross-section lines is presented on **Figure 5-2**. The cross-sections are presented as **Figure 5-3** (A-A'), **Figure 5-4** (B-B'), and **Figure 5-5** (C-C'). Well boring logs are presented in **Appendix B**.

Cross-section A-A' depicts the geology of the overburden on a line crossing through the sinkhole. Cross-section B-B' is parallel to A-A', but crosses directly through the 1998 RFI excavation and shows the extent of clean fill at the FLFA. Cross-section C-C' is perpendicular to A-A' and shows a cut across the side of the sinkhole wall. Bedrock under the site is a grayishbrown argillaceous limestone. Depth to bedrock ranges from less than 2 ft at the top of the slope to the east of the site (e.g., LFSB8 and LFSB9) to more than 10 ft at the base of the slope (e.g., LFSB1). The top 10 ft of bedrock has turned to saprolite – a dense, clay-rich, weathered limestone. The overburden at the FLFA has been extensively reworked during the history of the site. Native material was excavated during initial construction of the furnace, which was anchored to bedrock. Fill material was added to fill in the foundation after the furnace was no longer used. Railroad ties, ash, and other man-made debris were encountered during the 1998 RFI excavation. The installation and removal of the waste oil tank at the adjacent SWMU 76 caused further reworking of the soil. The excavation at the FLFA during the 1998 RFI resulted in another excavation and fill at the site. Finally, soil was reworked throughout the entire sinkhole area, including the FLFA, during the construction of the burn cap at SWMU 17A in 2002. Fill material used during the various excavations ranged from debris and ash (initial filling of the furnace foundation) to yellowish-brown and orange brown silt and clay with varying amounts of sand and fine gravel (possibly during the SWMU 76 closure) to a red compactable clay and silt (1998 RFI). Deeper samples from the base of the sinkhole (boring LFSB1) suggest that the original, native material at the site was brownish-yellow clay with moderate plasticity. This material is present now at deeper intervals from borings within the sinkhole.

5.2.3 Site Hydrogeology

There have been no hydrogeologic studies conducted specifically for the FLFA. A dye-trace study was conducted at adjacent SWMU 17A (Engineering Science, Inc, 1994). This study injected dye using an injection point located within the sinkhole where SWMU 17A (and the FLFA) is located. Dye was recovered in a spring (SPG3) along the New River and showed a

<u>LEGEND</u>

FILL, SILT, SOME SAND, SOME CLAY, ORANGE-BROWN (ML)

LIMESTONE, GRAY-BROWN, ARGILLACEOUS (LMSN)

SILT AND CLAY (ML/CL)

RADFORD AAP

PREPARED BY: SHAW TASK NO: 12346110000002

CHECKED BY: MT SHAW DWG NO:

DATE:REVISED AUGUST 2005

FIGURE 5-4

GEOLOGIC CROSS-SECTION B-B' FORMER LEAD FURNACE AREA

FIG5-5.dwg

DATE:REVISED AUGUST 2005

direct link between the sinkhole and the New River. Groundwater in the vicinity of the FLFA is expected to follow this flow path (likely a solutionally-enhanced west-northwest trending fracture) and discharge

5.2.4 Surface Water Hydrology

Based on topography, surface water in the area of the FLFA would flow from the surrounding hillsides to the base of the new burn cap where stage and burn activities currently occur on an intermittent, emergency basis at SWMU 17A (located over the previous SWMU 17A burning area). This water runoff would probably percolate into the hillsides and subsurface and eventually enter the water table or would migrate to the adjacent sink hole, ultimately discharging to the New River. RFAAP utility maps predate the construction of the burn cap at SWMU 17A and do not show manholes, catch basins, or storm drains in the vicinity of the FLFA. The engineered burn cap contains porous pipe to collect precipitation that falls on the capped area. The piping system directs runoff into a 7,000-gallon tank that can be pumped out through a manhole adjacent to the cap. The drainage system for the burn cap; however, does not collect runoff from the hill sides adjacent to the burn cap, where the FLFA is located.

5.3 PREVIOUS INVESTIGATIONS

There have been three previous investigations at the FLFA: the 1992 VI, the 1998 RFI, and the 2002 draft RFI. These investigations are discussed in the following sections.

5.3.1 VI, Dames and Moore, 1992

Three borings were drilled for subsurface soil sampling at SWMU 17A during the VI. Two of the soil borings for this investigation (17SB1 and 17SB2) were advanced upslope of the FLFA. The third boring (17SB3) was advanced downslope from the FLFA. 17SB2 was advanced to 10 ft bgs and samples were collected from 4-6 ft bgs and 8-10 ft bgs. The other borings were advanced to depths of 9 ft bgs (17SB1) and 7 ft bgs (17SB3). Two samples were collected from each of these borings as well. A Baseline Risk Assessment (BRA) was also performed during the VI program. VI sample locations are presented on **Figure 5-6**. Soil samples were analyzed for TAL metals and TCLP metals. Detected analytical results are presented in **Table 5-1**. Sample results indicated that concentrations of antimony, lead, mercury, and thallium exceeded industrial screening levels. Antimony, lead, and mercury exceeded their respective industrial screening levels of 41 mg/kg, 800 mg/kg, and 31 mg/kg in one sample [17SB2 (7.5-10 ft bgs)], with reported concentrations of 249 mg/kg (antimony), 100,000 mg/kg (lead), and 64 mg/kg (mercury).

The lead concentration in the 7.5-10 ft bgs sample from 17SB2 (100,000 mg/kg) was greater than the residential screening level (400 mg/kg). The TCLP concentration for lead in this sample also exceeded the Toxicity Characteristic Leachate Procedure Regulatory Limit (TCLPRL; 5,000 µg/L). The TCLP results demonstrated that lead, when present at high concentrations in soil (100,000 mg/kg), can be mobilized at a high concentration and may have impacted underlying soil or groundwater at the site. TCLP results for the remaining samples were below the TCLPRL. Thallium exceeded its industrial screening level (7.2 mg/kg) and background (2.11 mg/kg) in five of the six samples, with a maximum reported concentration of 96.7 mg/kg. Aluminum and copper exceeded their respective background concentrations, as well as the residential screening levels.

Table 5-1 Former Lead Furnace Area - VI Detected Soil Results - 1992

SITE ID FIELD ID			arison Criteria		17SB1 RFIS*75	17SB1 RFIS*80	17SB2 RFIS*82	17SB2 RFIS*83	17SB3 RFIS*84	17SB3 RFIS*85
SAMPLING DATE DEPTH (ft)	Industrial RBC	Residential RBC	Facility-Wide Background	SSL Transfers Soil to GW	05-NOV-91 6.5-8	05-NOV-91 8-9	05-NOV-91 2.5-5	05-NOV-91 7.5-10	05-NOV-91 2.5-5	05-NOV-91 5.5-7
Metals (mg/kg)								110 20		
Aluminum	100000	7800	40041	na	15800	23400	15500	7460	33200	42300
Antimony	41	3.1	na	13	nd	nd	nd	249	nd	nd
Arsenic	1.9	0.43	15.8	0.026	3.46	3.06	5.6	5.77	2.65	3.84
Barium	7200	550	209	2100	93	70.9	27	183	73.6	106
Beryllium	200	16	1.02	1200	1.09	1.09	nd	nd	2.45	<u>2.71</u>
Cadmium	51	3.9	0.69	27	nd	nd	nd	2.57	nd	nd
Calcium	na	na	na	na	3910	2000	1150	13900	1860	3890
Chromium	310	23	65.3	42	43.2	38.7	24.1	36.1	45.3	50.4
Cobalt	2000	160	72.3	na	14.5	21.2	2.97	7.92	15.4	10.3
Copper	4100	310	53.5	11000	19.7	16.3	4.95	<u>2260</u>	38.2	23.8
Iron	31000	2300	50962	na	20700	33900	22200	22200	45300	49000
Lead	800	400	26.8	na	25.3	19.9	20.9	100000	<u>372</u>	nd
Magnesium	na	na	na	na	12400	13900	846	11100	8880	49100
Manganese	2000	160	2543	950	426	577	130	246	453	575
Mercury	31	2.3	0.13	na	nd	nd	0.0615	<u>64</u>	0.104	nd
Nickel	2000	160	62.8	na	22.4	25.8	4.13	52	45.3	35.2
Potassium	na	na	na	na	1450	1980	494	855	2580	8210
Silver	510	39	na	31	0.985	0.97	nd	23.9	nd	nd
Sodium	na	na	na	na	300	171	180	278	172	227
Thallium	7.2	0.55	2.11	3.6	<u>12.9</u>	<u>14.2</u>	nd	<u>96.7</u>	<u>21.5</u>	<u>26.9</u>
Vanadium	102	7.8	108	730	56.6	67.2	53.8	26.5	83.3	90.5
Zinc	31000	2300	202	14000	68.6	60	23.5	<u>801</u>	124	67.6
TCLP Metals (ug/L)		TCLP	Criteria (ug/L)							
Barium			100000		311	209	222	1240	329	220
Lead			5000		nd	nd	nd	500000	2230	63.3

For an explanation of symbols and codes, see the soil/sediment master legend.

The BRA conducted during the VI stated that workers do not frequently enter the area; however, burn activities occurred approximately once per week at SWMU 17A. Due to the nature of operations conducted in this area, the dust inhalation pathway was considered to be the most viable and significant exposure pathway; exposure via incidental ingestion and dermal absorption was expected to be low. Lead exposure to site workers via inhalation was expected to be moderate to high because of the high lead concentrations assumed to be present in the surface soil.

Conclusions from the BRA indicated that because this site is located in a sinkhole at the bottom of a steep hill within an active, weekly burn area, it is unlikely that environmental receptors frequent this area. Therefore, potential exposure to environmental receptors was estimated to be low.

5.3.2 RFI, ICF KE, 1998

An RFI was performed to delineate the extent of lead-contaminated soil associated with the FLFA. Several assumptions guided FLFA activities, including:

- Lead contamination associated with the furnace was limited to the FLFA boundaries.
- Lead was the principal contaminant of concern at the area.
- Removal of contaminated soil would result in reduction in risk through source elimination.

A phased-focused approach was selected to investigate lead contamination at the FLFA and to ensure that project schedules and objectives were met. Four phases representing critical process junctures associated with the CSM were identified and are depicted in **Figure 5-7**.

Phase 4 Phase 2 Phase 1 Phase 3 Exploratory Site Restoration Preliminary Structure Removal Advancement and Delineation and Confirmatory Delineation Sampling Backfilling Soil borings · Soil and debris removal · Structure and debris · Soil and debris removal removal FLFA structure/boundary Grading delineation · Second round screening Seeding · First round screening Confirmatory sampling

Figure 5-7
Flowchart of 1998 RFI Activities

5.3.2.1 Phase 1: Preliminary Delineation

The purpose of this activity was to assess (1) the lateral and vertical extent of lead contamination at the FLFA, and (2) the appropriate test pit dimensions necessary to remove the affected soil. Site activities conducted in support of this phase included:

- Shallow and deep subsurface soil sampling.
- Preliminary soil and debris removal for additional subsurface sampling.

Seven soil borings (LFSB1 through LFSB7) were advanced to delineate the lateral and vertical extent of lead contamination (**Figure 5-6**). Sampling locations were selected based on previous

investigation results, field observations, and topographic constraints. Samples were analyzed for lead content; the results are presented in **Table 5-2a**.

Preliminary soil and debris removal north of the retaining wall (northeast view).

Preliminary soil and debris removal phase completed.

(southeast view)

Preliminary soil and debris removal was then performed. This was necessary to provide access to subsurface soil for lead field screening purposes. An area of soil and debris north and east of the exposed lower retaining wall was removed using a trackhoe. Several items, which appeared to be remnants of the Former Lead Furnace, were unearthed behind the retaining wall (i.e., into the slope, east-southeast) including a piece of lead slag, railroad ties, round wooden poles, and a metal pipe.

Based on the presence of debris items encountered in soil behind the exposed lower retaining wall, it was determined that the soil was fill material and not native soil. This theory is further supported by the observations made in boring 17SB2, in which contamination was present at 10 ft bgs, but not at the surface in the boring (i.e., contamination was deposited and fill material added later).

As the excavation progressed eastward into the hillside, another concrete retaining wall, roughly the size and shape of the lower wall, was discovered buried in the hillside. It was also discovered that the exposed lower retaining wall was attached to a horizontal concrete slab, which extended into the hillside and appeared to be a building foundation.

Although no lead slag was observed on the surface (as reported during the waste oil tank removal), a large piece of lead slag, approximately 1.5 ft long, was unearthed in the fill material between the retaining walls at approximately 6 ft bgs. Bedrock was encountered at approximately 8 ft bgs on the north side of the foundation and was at an elevation higher than the floor of the sinkhole.

The preliminary delineation and removal results demonstrated that:

• Lead concentrations exceeding the residential screening criterion were found at 0-2 ft bgs (two of four samples at this depth interval) and at the 4-6 ft bgs (one of three samples collected between 2 and 7 ft bgs). Samples collected at intervals below 7 ft bgs had lead concentrations less than the background concentration.

Table 5-2a Former Lead Furnace Area - RFI Preliminary Soil Delineation Results - 1998

Sample	Sample Depth (ft)	Lead (mg/kg)
LFSB1A	0-1	<u>128</u>
LFSB1B	10-12	18
LFSB2A	0-2	<u>580</u>
LFSB2B	6-7	10.2
LFSB3A	0-2	<u>51.1</u>
LFSB3B	12-14	23.4
LFSB4A	8-10	15
LFSB5A	4-6	<u>2070</u>
LFSB5B	8-10	22.4
LFSB6A	2-4	<u>27.5</u>
LFSB6B	10-12	10
LFSB7A	0-2	<u>943</u>

Table 5-2b Former Lead Furnace Area - RFI Soil Confirmation Results - 1998

	Associated	Sample	Lead
Sample	Screening Sample	Depth (ft)	(mg/kg)
LFTP1	SS11	5-6	15.3
LFTP2	SS1	4-5	<u>29.2</u>
LFTP3	SS3	6-8	10.8
LFTP4	SS7	5-7	<u>103</u>
LFTP5	SS9/SS10	5-7	12.8
LFTP6	na	8-10	12.5
LFTP7	na	8-10	11
LFTP8	SS5	5-6	<u>866</u>

Table 5-2c Former Lead Furnace Area - RFI Boundary Delineation Soil Boring Results - 1998

Sample	Sample Depth (ft)	Lead (mg/kg)	TCLP Lead (µg/L)
LFSB8A	0.5-1	<u>86.9</u>	507
LFSB9A	0.5-1	<u>189</u>	NA
LFSB10A	0.5-1	<u>279</u>	NA
LFSB10B	2-2.5	<u>326</u>	NA
LFSB11A	0.5-1	<u>179</u>	NA

For an explanation of symbols and codes, see the soil/sediment master legend.

- Additional (unknown) FLFA structures existed besides the exposed lower retaining wall.
- Soil and debris removal was necessary to further enhance the CSM and access the subsurface soil for lead field screening.

5.3.2.2 Phase 2: Exploratory Advancement and Delineation

The purpose of this phase was to (1) further enhance the CSM by delineating FLFA structures, (2) identify visible contamination and debris related to FLFA activities, and (3) to qualitatively define the presence of lead within FLFA-related soil. Site activities conducted in support of this phase included:

- Soil and debris removal
- On-site lead screening

Based on the discovery of the buried upper retaining wall and debris items encountered during the preliminary phase, soil and debris removal was required on the east and south/southeast sides of the retaining walls and foundation to further identify FLFA structures and related soil contamination.

This phase began with the removal of soil in a southeast to a southerly direction around the upper retaining wall. As the upper retaining wall was being uncovered, it was discovered that the wall was anchored directly into the bedrock. South of the wall, a brick structure, approximately 6 ft by 6 ft, was discovered at the rear of the foundation. The brick structure contained coal, coal ash, and black ash, and appeared to be a flue that was once connected to the cement foundation.

A layer of black material about 0.5-foot thick originated at the flue and extended under the foundation slab. Several steel I-beams, assumed to be railroad track sections, were found in the rubble of the flue. The flue was flanked on the north by the upper retaining wall and on the south by a thick stone wall. Soil was removed to a depth of 4 ft bgs on the south side of the foundation; bedrock was not encountered.

View of concrete retaining walls during soil removal activities (northeast view)

Exposed building foundation attached to lower retaining wall (northeast view)

Lead field-screening was used to refine the CSM as removal progressed to avoid removing uncontaminated soil and to track the subsurface location of contaminants. Samples with concentrations of lead below 400 mg/kg (FL2 and FL6) were collected from the black layer encountered beneath the foundation and from the southern portion of the site (west of the rock wall), respectively. Lead was detected above the residential screening criterion in screening samples from soil above and north of the foundation.

The exploratory advancement and delineation results demonstrated that:

- Lead contamination existed above and north of the foundation.
- Additional soil removal and lead screening was required to adequately characterize the extent of lead contamination.

5.3.2.3 Phase 3: Structure Removal and Confirmatory Sampling

Foundation destruction and removal (northwest view)

Soil removal from beneath and surrounding the foundation (northeast view).

Destruction and removal of upper retaining wall. (northeast view)

The purpose of this phase was to quantitatively verify the removal of lead-contaminated soil following Phase 2 screening and removal activities. Site activities conducted in support of this phase included:

- Structure, debris, and contaminated soil removal.
- On-site lead screening (second round).
- Confirmatory sampling.

FLFA structures, remaining debris, and soil with lead concentrations exceeding the residential screening criterion (as indicated during Phase 2 field screening) were removed during this phase. Structure and debris removal was required to adequately characterize the extent of FLFA-related lead contamination.

Structures and associated soil and debris were removed with a trackhoe. During destruction and removal of the flue, it was discovered that the flue was constructed directly onto bedrock. Rubble, including bricks and cinders uncovered east of the flue, which remained from Phase 2 activities, was removed. The 0.5-foot thick layer of black ash discovered in the soil surrounding the hole where the flue had been was traced laterally for several feet and removed.

A substantial amount of debris, including cinder blocks and burned metal pieces, was uncovered and removed from soil north of the former flue and east of the upper retaining wall. A 0.3- to 0.5-foot layer of soil with a silver sheen and petroleum odor (probably attributable to the former waste oil tank of SWMU 76) was uncovered in this area. This soil was traced and removed until the layer pinched out and the odor was no longer present.

Eight confirmation samples (LFTP1 through LFTP8) were collected for laboratory analysis from the bottom and sidewalls of the removal area to verify that soil with lead concentrations exceeding the residential screening level had been removed (**Figure 5-6**). The results from this sampling are presented in **Table 5-2b**. Results demonstrated that the samples exhibited lead concentrations below residential screening level, except LFTP8 (866 mg/kg), which was collected from the northern side wall of the excavation.

In response to the elevated lead detection in confirmation sample LFTP8, four soil borings (LFSB8, LFSB9, LFSB10, and LFSB11) were advanced to the north of the excavation to assess whether elevated lead concentrations existed beyond the FLFA boundary (**Figure 5-6**). The borings were advanced into the hill slope at approximately 10-foot intervals (perpendicular to the boundary) beginning 3 ft north of the northern border of the removal area.

Lead confirmatory sampling north of the FLFA (northeast view)

Lead confirmatory sample locations (south view).

Clean soil backfill and grading activities (east view)

Topsoil backfill and grading activities (northeast view).

Samples were collected at 0.5-1 ft bgs from each boring and an additional sample was collected from 2-2.5 ft bgs from boring LFSB10. Borings were advanced with a hand auger; and were terminated at refusal. The samples were analyzed for lead content; the results are presented in **Table 5-2c**. Lead concentrations were reported below the residential screening criterion (400 mg/kg). The deeper sample from boring LFSB10 (2-2.5 ft bgs) had the highest lead concentration (326 mg/kg). Based on these results, it was concluded that the lead-containing soil

(as indicated by sample LFTP8), was primarily present at the same horizon as the FLFA structures and pinches out at the bedrock surface north of the excavated area. Surface and near surface samples collected outside the excavated area (LFSB8-LFSB11) contained lead at concentrations below the residential screening level and approximately one half the concentration detected in LFTP8. Conclusions from this phase were:

- Lead-contaminated soil was removed from areas impacted by lead furnace activities.
- Additional low concentrations of lead exist beyond the FLFA boundary and may be present at these locations due to other sources and the extensive filling and reworking of soil in the vicinity of the FLFA.

5.3.2.4 Phase 4: Site Restoration

The objective of this phase was to restore the site to an aesthetic state, natural with the local surroundings. Activities conducted in support of this phase included backfilling, grading, and seeding.

Following the completion of FLFA structure, debris, and contaminated soil removal, the removal area was backfilled with highly compactable clay, and graded to a slope less than 45 degrees. The slope terminated approximately 7 ft from the edge of the asphalt road located east of the site. A layer of topsoil was added and the slope was seeded to complement the local flora and fauna and maintain slope stability.

5.3.3 RFI, Shaw, 2002

Additional samples were collected by Shaw during the 2002 RFI to further delineate lead-containing soil and characterize site media for previously untested parameters. The draft RFI report was submitted to the Army in August 2005, but was never finalized. This assessment indicated that VOCs, SVOCs, PAHs, pesticides, herbicides, and explosives compounds did not exceed industrial (or residential) screening levels. Metals (including lead), dioxins/furans, and PCBs, mostly in surface soil, are the constituents of concern at the FLFA based on exceedances of residential screening criteria. Results from the 2002 sampling are presented in **Tables 5-3** and 5-4 (dioxin/furan results). The relatively lower concentrations of lead (maximum of 3,150 mg/kg) detected in the 2002 investigation as compared to a previous lead concentration of 100,000 mg/kg (source removed), and the lack of elevated concentrations in subsurface soil indicate that the major source area is no longer present. The extensive reworking of soil in the area, and the close association with SWMU 17A, has lead to a mix of constituents in surface soil in the area from both sites. Metals in the soil are likely the result of operations at both sites. Organic constituents (dioxins/furans and PCBs) are likely due to burning operations at the adjacent SWMU 17A.

An HHRA was conducted at the FLFA to identify potential risks at the site for the following scenarios: current maintenance workers, future maintenance workers, future industrial workers, future excavation workers, future adult residents, and future child residents. The potential cumulative risk for each scenario was within the USEPA's target risk range. The potential cumulative HI for the current and future maintenance worker, the future industrial worker (total soil), and the adult resident were less than 1. The potential cumulative HI for the future industrial worker (surface soil) was equal to 1; no individual chemical HI was equal to or greater than 1. The potential cumulative HI for the future excavation worker and child resident was greater than 1. For the industrial worker scenario, site concentrations of lead in surface soil were

Table 5-3 Analytes Detected in Soil - 2002 RFI Page 1 of 4

	1			Sample II	D		LFSS01	1			LFSS02			LFSS03		<u> </u>	LFSB12	2.4	1	ı	LFSB1	2R	1		LFS	R12C	1		LFSB13	A .		1.5	SB14A	——
Analyte			:	Sample Dat			6/26/02				6/26/02			6/26/02			6/26/0				6/26/0					6/02			6/26/02				26/02	
				ample Dept	th		0-0.5				0-0.5			0-0.5			0-0.5				2-4					5.4			8.3-9				5.5-7	
VOCs (ug/kg)	i-RBC	r-RBC	Backgrour	dSSL Transf	fei Result	Lab Q	Q Val Q	MDL	MRL	Result	Lab Q Val Q MDL	MRL	Result	Lab Q Val Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Va	al Q MDL	MRL	Result	Lab Q Val Q	MDL MRI	Re	esult Lab Q V	'al Q MDL	MRL
Toluene	2000000	0 1600000) na	8800	5.7	U	Т	0.37	5.7	5.2	U 0.34	5.2	0.77	J B 0.53	8.1	5.1	U	0.33	5.1	6.6	U	0.43	6.6	5.5	U	0.36	5.5	6.5	U	0.42 6.5		5.3 U	0.34	5.3
PAHs (ug/kg)											1 0 1 1 1 1 1 1						-								-									
2-Methylnaphthalene	410000	31000	na	4400	4.2			0.59	1.8	9	0.59	1.8	46	0.58	1.7	62		0.58	1.7	2.2	U	0.75	2.2	2.1	U	0.7	2.1	2.4	В	0.83 2.4		1 J	B 0.67	2
Acenaphthene	6100000	_	na	100000		J	В	0.97	1.8	1.2	J B 0.97	1.8	1.5	J B 0.96	1.7	1.7	U	0.96	1.7	2.2	U	1.2	2.2	2.1	U	1.2	2.1	1.7	J B	1.4 2.4		2 U	1.1	
Acenaphthylene	3100000	230000	na	680000	0.76	J	J	0.23	1.8	1.8	U 0.23	1.8	2.6	0.23	1.7	1.1	J J	0.23	1.7	2.2	U	0.3	2.2	2.1	U	0.28	2.1	1.5	J J	0.32 2.4		2 U	0.26	
Anthracene Benzo(a)anthracene	31000000	2300000	na na	470000 1500	3.3			0.19	1.8	2.2 12	0.19	1.8 1.8	5.6 24	0.19	1.7	1.9		0.19	1.7	2.2	U	0.25	2.2	2.1	U	0.23	2.1	2.4	U	0.27 2.4 0.32 2.4		2 U 2 U	0.22 0.26	
Benzo(a)pyrene	390	87	na	370	25			0.23	1.8	11	0.23	1.8	28	0.19	1.7	9.7		0.19	1.7	2.2	U	0.25	2.2	2.1	U	0.23	2.1	2.4	U	0.32 2.4	_	2 U	0.20	
Benzo(b)fluoranthene	3900	870	na	4500	44			0.33	1.8	18	0.33	1.8	67	0.33	1.7	21		0.33	1.7	2.2	U	0.43	2.2	2.1	U	0.4	2.1	2.4	U	0.47 2.4		2 U	0.38	
Benzo(g,h,i)perylene	3100000	230000	na	680000	17		L	0.62	1.8	4.8	L 0.62	1.8	25	L 0.61	1.7	5.9	L	0.61	1.7	2.2	U UL	0.79	2.2	2.1	UU		2.1	2.4	U UL	0.86 2.4	_	2 U		
Benzo(k)fluoranthene	39000	8700	na	45000				0.31	1.8	7.4	0.31	1.8	15	0.3	1.7	5.9		0.3	1.7	2.2	U	0.39	2.2	2.1	U	0.36	2.1	2.4	U	0.43 2.4	_	2 U	0.35	
Chrysene Dibenz(a.h)anthracene	390000	87000	na	150000 1400	3.4		ī	0.28	1.8	1.8	U 0.28	1.8	37 3.5	0.28 I 0.59	1.7	1.7	U	0.28	1.7	2.2	U	0.36	2.2	2.1	U	0.33	2.1	2.4	U	0.39 2.4 0.83 2.4	_	2 U 2 U	0.32	2
Fluoranthene	4100000	310000	na na	6300000	0 41		J	0.6	1.8	1.8	0.6	1.8	3.5	J 0.59	1.7	1.7	U	0.59	1.7	2.2	U	0.76	2.2	2.1	U	0.71	2.1	2.4	U	0.83 2.4		2 U	0.68	_
Fluorene	4100000	310000	na	140000	1.3	J	J	0.46	1.8	1.2	J J 0.47	1.8	4.4	0.46	1.7	1.4	J J	0.46	1.7	2.2	U	0.59	2.2	2.1	U	0.55	2.1	1.2	J J	0.65 2.4	_	.86 J	J 0.53	2
Indeno(1,2,3-cd)pyrene	3900	870	na	13000	_			0.56	1.8	6.3	0.56	1.8	26	0.55	1.7	6.8		0.55	1.7	2.2	U	0.72	2.2	2.1	U	0.67	2.1	2.4	U	0.78 2.4		2 U	0.64	2
Naphthalene	2000000	160000	na	150	3		В	0.68	1.8	5.4	B 0.68	1.8	34	0.67	1.7	22		0.67	1.7	2.2	U	0.86	2.2	2.1	U	0.8	2.1	1.5	J B	0.95 2.4	().9 J	B 0.77	2
Phenanthrene	3100000	230000	na	680000	19		1 1	0.27	1.8	17	0.27	1.8	55	0.26	1.7	28		0.27	1.7	2.2	U	0.34	2.2	2.1	U	0.32	2.1	2.4	U	0.37 2.4		2 U	0.3	
Pyrene SVOCs (ng/lvg)	3100000	230000	na	680000	40			0.39	1.8	19	0.4	1.8	37	0.39	1.7	22		0.39	1.7	2.2	U	0.5	2.2	2.1	U	0.47	2.1	2.4	U	0.55 2.4		2 U	0.45	2
SVOCs (ug/kg) 1,2,4-Trichlorobenzene	1000000	78000	na	280	170	U	Т	7.2	170	170	U 7.2	170	170	U 7.1	170	170	II	7.1	170	220	U	9.1	220	200	U	8.5	200	240	п	10 240	1 2	200 U	8.1	200
1,2-Dichlorobenzene	9200000	700000	na na	4600		U		4.9	170	170	U 5	170	170	U 4.9	170	170	U	4.9	170	220	U	6.3	220	200	U	5.9	200	240	U	6.9 240		200 U	5.6	
1,3-Dichlorobenzene	310000	23000	na	290	170	U		5.4	170	170	U 5.4	170	170	U 5.3	170	170	U	5.3	170	220	U	6.9	220	200	U	6.4	200	240	U	7.5 240		200 U	6.1	
1,4-Dichlorobenzene	120000	27000	na	7.1	170	U		5.9	170	170	U 6	170	170	U 5.8	170	170	U	5.9	170	220	U	7.6	220	200	U	7.1	200	240	U	8.3 240	2	200 U	6.7	
2,4,5-Trichlorophenol	10000000			na	170	U		6.3	170	170	U 6.3	170	170	U 6.2	170	170	U	6.2	170	220	U	8.1	220	200	U	7.5	200	240	U	8.8 240		200 U	7.2	200
2,4,6-Trichlorophenol 2,4-Dichlorophenol	260000 310000	58000 23000	na	na 1200	170 170	U		4.9 4.1	170 170	170 170	U 5 U 4.1	170 170	170 170	U 4.9 U 4	170 170	170 170	U	4.9	170 170	220 220	U	6.3 5.2	220 220	200	U	5.9 4.9	200 200	240 240	U	6.9 240 5.7 240		200 U	5.6 4.6	
2,4-Dinitrotoluene	200000		na na	570	170	J	1	5.9	170	7.6	J J 5.9	170	36	J J 5.8	170	7.2	I I	5.8	170	220	U	7.5	220	200	U	7	200	240	U	8.2 240		200 U	6.7	200
2-Chloronaphthalene	8200000		na	32000		U		4.4	170	170	U 4.5	170	170	U 4.4	170	170	U	4.4	170	220	U	5.7	220	200	U	5.3	200	240	U	6.2 240		200 U	5	200
2-Chlorophenol	510000		na	na	170	U		4.1	170	170	U 4.2	170	170	U 4.1	170	170	U	4.1	170	220	U	5.3	220	200	U	4.9	200	240	U	5.8 240	2	200 U	4.7	200
2-Methylnaphthalene	410000	0.000	na	4400		U		6.6	170	170	U 6.7	170	69	J J 6.6	170	170	U	6.6	170	220	U	8.5	220	200	U	7.9	200	240	U	9.3 240		200 U	7.5	
2-Methylphenol	5100000	370000	na	na	170		UL	7	170	170	U UL 7	170	170	U UL 6.9	170	170	U UL	6.9	170	220	U UL		220	200	UU		200	240	U UL	9.8 240		200 U		200
2-Nitrophenol 4-Chloro-3-methylphenol	na na	na na	na na	na na	170 170	U		5.7 8.3	170 170	170	U 5.8	170 170	170 170	U 5.7	170 170	170 170	U	5.7 8.2	170 170	220 220	U	7.3	220 220	200	U	6.8 9.9	200 200	240	U	8 240 12 240		200 U	6.5 9.4	
4-Chlorophenyl phenyl ether	na	na	na	na	170	U		5.4	170	170	U 5.5	170	170	U 5.4	170	170	U	5.4	170	220	U	7	220	200	U	6.5	200	240	U	7.6 240	_	200 U	6.2	
4-Methylphenol	510000	39000	na	na	170	U	UL	6.1	170	170	U UL 6.1	170	170	U UL 6	170	170	U UL	6.1	170	220	U UL	7.8	220	200	UU		200	240	U UL	8.6 240	2	200 U	UL 7	200
Acenaphthene	6100000	470000	na	100000	170	U		4.8	170	170	U 4.8	170	170	U 4.8	170	170	U	4.8	170	220	U	6.2	220	200	U	5.7	200	240	U	6.7 240	_	200 U	5.5	200
Acenaphthylene	3100000	230000	na	680000	170	U J		4.7	170	170	U 4.7	170	170	U 4.6	170	170	U	4.6	170	220	U	6	220	200	U	5.6	200	240	U	6.5 240 7 240		200 U	5.3	200
Benzo(a)anthracene Benzo(a)pyrene	3900	870	na na	1500 370	30 27	J	J	5 4.3	170 170	14 11	J J 5 J J 4.3	170 170	32 39	J J 4.9 J J 4.2	170 170	13 8.1	J J	4.9 4.2	170 170	220 220	U	6.4 5.5	220 220	13 200	U .	J 5.9 5.1	200	240 240	U	7 240 6 240		200 U	5.7 4.9	200
Benzo(b)fluoranthene	3900	870	na	4500	42	J	J	3.7	170	17	J J 3.7	170	53	J J 3.6	170	13	JJ	3.6	170	220	U	4.7	220	200	U	4.4	200	240	U	5.2 240		200 U	4.2	
Benzo(g,h,i)perylene	3100000	230000	na	680000	30	J	J	4.9	170	170	U 4.9	170	50	J J 4.8	170	10	J J	4.8	170	220	U	6.2	220	200	U	5.8	200	240	U	6.8 240		200 U	5.6	
Benzo(k)fluoranthene	39000	8700	na	45000		J	J	4.9	170	7.1	J J 4.9	170	19	J J 4.9	170	5	J J	4.9	170	220	U	6.3	220	200	U	5.9	200	240	U	6.9 240		200 U	5.6	
bis(2-Chloroethoxy)methane	na 2600	na 580	na	na 0.044	170	U		5.3	170	170	U 5.3	170	170	U 5.2	170	170	U	5.3		220	U	6.8	220	200	U	6.3	200	240	U	7.4 240	_	200 U	6	
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	41000	9100	na na	1.7	170 170	U		3.9 3.9		170 170	U 3.9 U 3.9	170 170	170 170	U 3.9 U 3.8	170 170	170 170	U		170 170	220 220	U	5	220 220	200	U	4.7 4.6	200	240 240	U	5.5 240 5.4 240	_	200 U	4.4	
bis(2-Ethylhexyl)phthalate	200000	46000	na	2900000		J		12	170	27	J B 12	170	32	J B 11	170	27	J B	12	170	18	J B	15	220	18		B 14	200	17	J B	16 240		13 J	B 13	
Butylbenzylphthalate	1500000	340000	na	81000	170	U	<u>_</u> t	6.8	170	170	U 6.8	170	14	J B 6.7	170	170	U	6.7	170	8.8	J B	8.7	220	200	U	8.1	200	240	U	9.5 240	2	200 U	7.7	
Chrysene	390000	87000	na	150000	33	J		4	170	10	J J 4	170	40	J J 4	170	8.9	J J	4	170	220	U	5.1	220	8.8	J.	J 4.8	200	240	U	5.6 240		200 U	4.6	200
Dibenzofuran	200000		na	3800	170	U		5	170	170	U 5	170	13 170	J J 4.9	170	170	U	4.9	170	220 220	U	6.3	220	200	U	5.9	200	240	U	6.9 240 7 240		200 U	5.6 5.7	200
Diethylphthalate Di-n-butylphthalate	82000000 10000000	0 6300000		450000 5000000		J		50	170 170	170 170	U 5.1 U 50	170 170	160	J B 50	170 170	170 170	U	50	170 170	220	U	6.4 64	220 220	200 200	U	60	200 200	240 240	U	7 240 70 240	_	200 U	5.7	200 200
Di-n-octylphthalate	4100000			4.9E+09		U		7.8	170	170	U 7.8	170	170	U 7.7	170	170	U	7.7	170	220	U	9.9	220	200	U	9.2	200	240	U	11 240		200 U	8.8	
Fluoranthene	4100000			6300000		J	J	5.7	170	9.4	J J 5.7	170	38	J J 5.6	170	16	J J	5.6	170	220	U	7.3	220	200	U	6.8	200	240	U	8 240		200 U	6.5	
Fluorene	4100000		_	140000		U		5.7	170	170	U 5.7	170	170	U 5.6	170	170	U	5.6	170	220	U	7.2	220	200	U	6.7	200	240	U	7.9 240		200 U	6.4	
Hexachlorobenzene	1800 20000	400	na	52 1800	170	U		6.5	170	170	U 6.5	170	170	U 6.4	170	170	U	6.4	170	220	U	8.2	220	200	U	7.7	200	240	U	9 240		200 U	7.3	
Hexachlorobutadiene Hexachloroethane	102000	7800	na na	1800 360	170 170	U		5.8 4.6	170 170	170 170	U 5.8 U 4.6	170 170	170 170	U 5.7 U 4.6	170 170	170 170	U	5.7 4.6	170 170	220 220	U	7.4 5.9	220 220	200	U	6.9 5.5	200	240 240	U	8.1 240 6.5 240		200 U	6.6 5.2	
Indeno(1,2,3-cd)pyrene	3900	870	na na	13000		J		6.7	170	170	J J 6.7	170	41	J J 6.6	170	9.4	JJ	6.6	170	220	U	8.5	220	200	U	3.3	200	240	U	9.3 240		200 U	7.6	
Isophorone	3000000	670000	na	410	170	U	-	4.3	170	170	U 4.3	170	170	U 4.3	170	170	U	4.3	170	220	U	5.5	220	200	U	5.2	200	240	U	6.1 240		200 U	4.9	
Naphthalene	2000000	160000	na	150	170	U		6.4	170	170	U 6.4	170	53	J J 6.3	170	170	U	6.3		220	U	8.1	220	200	U	7.6	200	240	U	8.9 240		200 U	7.2	200
Nitrobenzene	51000	3900	na	23	170	U		8.5	170	170	U 8.6	170	170	U 8.4	170	170	U	8.5	170	220	U	11	220	200	U	10	200	240	U	12 240		200 U	9.7	
N-nitrosodiphenylamine	580000 3100000	130000	na	760 680000	170	U	T	8.2	170	170	U 8.3	170	150 57	J J 8.1	170	170	U	8.1	170	220	U	11	220	200	U	9.8	200	240	U	12 240		200 U	9.4	200
Phenanthrene Pyrene	3100000	250000	na na	680000	_	J	J	5.4 5.3	170 170	12 8.2	J J 5.4 J J 5.3	170 170	57 38	J J 5.3 J J 5.2	170 170	9.3 17	J J	5.4 5.2	170 170	220 220	U	6.9	220 220	200 12	U J	6.4 J 6.3	200 200	240 240	U	7.6 240 7.4 240		200 U	6.1	200
1 yiene	5100000	230000	ma	000000	, 4/	3	J	J.J	1/0	0.2	3.5 و و	1/0	50	3 3 3.2	1/0	1/	, ,	J.2	170	220	U	0.0	220	14	,	0.5	200	240	U	7.4 240		JU U	U	200

Table 5-3 Analytes Detected in Soil - 2002 RFI Page 2 of 4

			-	Sample ID		LFSS	01			LFSS	02			LFSS	03			LFSB	24			LFS	B12B			LFS	R12C			LFSB1	134			LFSB	144	
Analyte				mple Date		6/26/0				6/26/0				6/26/				6/26/					6/02			6/2				6/26/0				6/26/		
,				nple Depth		0-0.5				0-0.5				0-0.				0-0.					-4			4-				8.3-9				5.5-		
	i-RBC	r-RBC	Background	SSL Transfer	Result Lab	Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Val 0	MDL	MRL	Result	Lab Q Val 0	Q MDL	MRL	Result	Lab Q Va	al Q MDL	MRL	Result	Lab Q Va	al Q MDL	MRL	Result	Lab Q Val (Q MDL	MRL	Result	Lab Q Val	Q MDL	MRL
Pesticides (ug/kg)			•	•			•					-					•															-				
4,4'-DDD	12000	2700	na	11000	NT				NT				0.863		0.143	0.679	0.423	J J	0.144	0.68	NT				NT				NT				NT			
4,4'-DDE	8400	1900	na	35000	NT				NT				2.32		0.142	0.679	0.83	В	0.143	0.68	NT				NT				NT				NT			
4,4'-DDT	8400	1900	na	1200	NT				NT				83.2		2.4	6.79	15.4		0.241	0.68	NT				NT				NT				NT			
delta-BHC	na	na	na	na	NT				NT				0.679	U	0.118	0.679	0.495	BJ B	0.118	0.68	NT				NT				NT				NT			
Endosulfan II	610000	47000	na	20000	NT				NT				19.9		0.242	0.679	4.2		0.243	0.68	NT				NT				NT				NT			
Endrin aldehyde	na	na	na	na	NT				NT				33.4		0.343	0.679	6.3		0.344	0.68	NT				NT				NT				NT			
Endrin ketone	na	na	na	na	NT				NT				6.79	U	5.47	6.79	0.68	U	0.548	0.68	NT				NT				NT				NT			
gamma-Chlordane	8200	1800	na	920	NT				NT				0.679	U	0.158	0.679	0.68	U	0.158	0.68	NT				NT				NT				NT			
Methoxychlor	510000	39000	na	310000	NT				NT				0.679	U	0.518	0.679	0.68	U	0.519	0.68	NT				NT				NT				NT			
PCBs (mg/kg)																																_				
PCB-1248	1.4	0.32	na	na	0.0343 U	J	0.0163	0.0343	0.0345	U	0.0164	0.0345	0.0339	U	0.0161	0.0339	0.0339	U	0.016	1 0.0339	0.0439	U	0.0208	0.0439	0.0409	U	0.0194	0.0409	0.048	U	0.0228	0.048	1.42		0.0185	0.039
PCB-1254	1.4	0.16	na	1.1	0.138		0.0101	0.0343	0.0404		0.0102	0.0345	1.58		0.01	0.0339	0.129		0.01	0.0339	0.0439	U	0.013	0.0439	0.0409	U	0.0121	0.0409	0.048	U	0.0142	0.048	0.039	U	0.0115	0.039
Explosives (mg/kg)			-	•	·			-							-		•															-				
2,4-Dinitrotoluene	200	16	na	0.57	0.062 J	J	0.0163	0.2	0.2	U	0.0163	0.2	0.12	J J	0.0163	0.2	0.2	U	0.016.	3 0.2	0.2	U	0.0163	0.2	0.2	U	0.0163	0.2	0.2	U	0.0163	0.2	0.2	U	0.0163	0.2
Herbicides (ug/kg)			-	•	·			-				-					•															-				
Metals (mg/kg)																																				
Aluminum	100000	7800	40041	na	24000		5.7	20.6	22300		5.7	20.7	19600		5.6	20.3	17400		5.6	20.4	31600		7.3	26.4	37700		6.8	24.5	20300		8	28.8	22500		6.5	23.4
Antimony	41	3.1	na	13	0.47 B	J	0.17	0.515	0.518	U UL	0.17	0.518	24	J	0.17	0.509	0.43	В Ј	0.17	0.51	0.22	В 1	B 0.22	0.659	0.613	UU	JL 0.21	0.613	0.27	В В	0.24	0.72	0.585	U UL	0.2	0.585
Arsenic	1.9	0.43	15.8	0.026	7.4	J	0.36	0.515	3.02	J	0.36	0.518	19.4	J	0.36	0.509	3.12	J	0.36	0.51	3.49		J 0.46	0.659	1.39		J 0.43	0.613	2.82	J	0.5	0.72	2.79	J	0.41	0.585
Barium	7200	550	209	2100	62.5		0.34	2.06	58.9		0.35	2.07	2630		0.34	2.03	59.3		0.34	2.04	74.4		0.44	2.64	102		0.41	2.45	59		0.48	2.88	51.6		0.39	2.34
Beryllium	200	16	1.02	1200	1.18		0.0356	0.515	0.4	В Ј	0.0357	0.518	1.01		0.0351	0.509	1.25		0.0352		1.96		0.0455	0.659	2.09		0.0423	0.613	2.02		0.0497	0.72	1.49		0.0404	0.585
Cadmium	51	3.9	0.69	27	0.177		0.049	0.103	0.072	B J	0.049	0.104	9.81		0.048	0.102	0.111		0.048		0.132	U	0.063	0.132	0.123	U	0.058		0.08	ВВ	0.068	0.144	0.117	U	0.056	0.117
Calcium	na	na	na	na	61600	J	2.9	10.3	4660	J	2.9	10.4	20300	J	2.8	10.2	21600	J	2.8		11200	-	J 3.7	13.2	23300	-	J 3.4	12.3	7460	J	4	14.4	8220	J	3.3	11.7
Chromium	310	23	65.3	42	59.8	ī	0.39	1.03	33.1	ī	0.39	1.04	299	Ī	0.38	1.02	31.1	I	0.38		43.2		J 0.49	1.32	41.5		J 0.46	1.23	26.6	I	0.54	1.44	35.1	T	0.44	1.17
Cobalt	2000	160	72.3	na	7.83	ı	0.83	5.15	3.7	B J	0.84	5.18	22.5	I	0.82	5.09	19.7	I	0.83		9.65			6.59	9.2		J 0.99	6.13	7.65	J	1.2	7.2	12.5	1	0.95	5.85
	4100	310	53.5	11000	521	, j	0.64	2.06	37.9	J J	0.64	2.07	1670	1	0.63	2.03	57.5	, T	0.63		29.5			2.64	23.7		J 0.76	2.45	26.4	I	0.89	2.88	21.1	J	0.72	2.34
Copper	31000	2300	50962		22800	<u> </u>	-	_	25100	I		5.18	61400	<u> </u>	3.4		22000	<u>J</u>	3.4		35700		_	_	39800		J 4.1		33100	J	4.8		29200	J	3.9	5.85
Iron				na		J	3.5	5.15		J	3.5				_	5.09		J					J 4.4	6.59				6.13		J		7.2		J		
Lead	800	400	26.8	na	<u>50.9</u>		0.031	0.309	89.3	7	3.8	10.4	<u>3150</u>	7	3.7	10.2	<u>60.7</u>		0.031		12.3		0.04	0.395	14.4		0.037	0.368	14.6		0.044	0.432	25.1		0.035	0.351
Magnesium	na 2000	na	na	na	41600		2.4	10.3	2280	1 .	2.4	10.4	15500	-	2.4	10.2	20400		2.4		45500		3.1	13.2	51400		2.9	12.3	7940	-	3.4	14.4	15200	-	2.8	11.7
Manganese		160	2543	950	277	J	0.058	1.03	183	J	0.058	1.04	1250	J	0.057	1.02	333	J D I	0.057		214	D	J 0.074	1.32	496	D	J 0.069	1.23	373	J	0.081	1.44	263	D 7	0.066	1.17
Mercury	31	2.3	0.13	na	0.0555	+.	0.0204	_	0.141	1 -	0.0205		0.875		0.0201	0.0509	0.038	B J	0.0202		0.031	В	J 0.0261	0.0659	0.035	В.			0.121		0.0285	_	0.036	B J	0.0232	0.0585
Nickel	2000	160	62.8	na	18.8	J	0.94	4.12	8.44	J	0.95	4.14	121	1	0.93	4.07	18.2	J	0.93		30.5		J 1.2	5.27	27.9	1 1	J 1.1	4.91	28.9	J	1.3	5.76	26.1	J	1.1	4.68
Potassium	na	na	na	na	4400		34	309	883	1	35	311	3260		34	305	2310		34		8670		44	395	4200	 	41	368	2020		48	432	1770		39	351
Silver	510	39	na	31	1.03 U	J	0.51	1.03	1.04	U	0.51	1.04	44.4	J	0.5	1.02	1.02	U	0.5		1.32	U	0.65	1.32	1.23	U	0.6	1.23	1.44	U	0.71	1.44	1.17	U	0.58	1.17
Sodium	na	na	na	na	58.8		3.9	20.6	61.9		3.9	20.7	996		3.8	20.3	39.5		3.8		75.7		4.9	26.4	129		4.6	24.5	24	B B	5.4	28.8	39.7		4.4	23.4
Thallium	7.2	0.55	2.11	3.6	0.361		0.031	0.309	0.16	B J	0.031	0.311	0.15	B J	0.031	0.305	0.22	B J	0.031		0.29	В		0.395	0.25	В .	J 0.037	0.368	0.27	B J	0.043	0.432	0.21	B J	0.035	0.351
Vanadium	102	7.8	108	730	39.3	J	0.6	5.15	48.4	J	0.6	5.18	35	J	0.59	5.09	41.1	J	0.59		62.1		J 0.76	6.59	66	1 .	J 0.71	6.13	47.8	J	0.83	7.2	47.5	J	0.68	5.85
Zinc	31000	2300	202	14000	<u>232</u>	J	0.37	2.06	63.6	J	0.37	2.07	<u>5080</u>	J	0.36	2.03	115	J	0.37	2.04	56.4		J 0.47	2.64	50.7		J 0.44	2.45	75.1	J	0.52	2.88	40	J	0.42	2.34
Misc.																																				
Total Organic Carbon (mg/kg)	na	na	na	na	NT				NT				NT				14500		172		NT				3740		207	1230	NT				NT			
pH	na	na	na	na	NT				NT				NT				7.57	J	+/-0.1	1 +/-0.1	NT				7.56		J +/-0.1	+/-0.1	NT				NT			

Table 5-3 Analytes Detected in Soil - 2002 RFI Page 3 of 4

	1			Cample ID		LFSB14B		1	LFSB15	- 4			LFSB15B				LFSB15	C			LFSB16A		1	LFSB16B		1	LFSB16C	,		LFSB17A			110	SB17B	—
Analyte			S	Sample ID ample Date		6/26/02			6/26/02				6/26/02				6/26/02				6/26/02			6/26/02			6/26/02	•		6/26/02				26/02	,
,			Sa	mple Depth		7-8.8			0-0.5	_			2-4				4-6				0-0.5			1-3			3-5			0-0.5				1-3	
	i-RBC	r-RBC	Background	dSSL Transfer	Result Lab	b Q Val Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL !	MRL	Result	Lab Q Val Q	MDL	MRL	Result Lab	Q Val Q	MDL MRL	Result	Lab Q Val Q M	DL MRL	Result I	Lab Q Val Q	MDL MRL	Result	Lab Q Val Q	MDL MR	L Resul	Lab Q V	/al Q MDL	MRL
VOCs (ug/kg)	200			05					**				**	'		-) III															
Toluene	2000000	1600000	na	8800	6.5 U	J 0.42	6.5	12	U	0.78	12	5.7	U	0.37	5.7	6.4	U	0.41	6.4	NT			NT			NT			NT			NT	$\bot\bot\bot$		
PAHs (ug/kg)	110000	21000		1400	2.2		1					2.4				4.0) I'm					1	N.T.						1			
2-Methylnaphthalene	410000 6100000	31000 470000	na	4400 100000	2.2 U 2.2 U			8.9	D	0.69	2	2.1			2.1	1.8		0.73		NT NT	-		NT NT			NT NT			NT NT			NT			
Acenaphthene Acenaphthylene	3100000	230000	na na	680000	2.2 U 2.2 U			1.2	I I	1.1 0.27	2	2.1	~		2.1	1.3 0.98	J B J J	1.2 0.29	2.2	NT	+ +		NT			NT			NT			NT NT			-
Anthracene	3100000	250000		470000	2.2 U			3.4	, ,	0.27	2				2.1	0.98	JJ		2.2	NT			NT			NT			NT			NT			
Benzo(a)anthracene	3900	870	na	1500	2.2 U			14		0.27	2		-		2.1	2.2	U		2.2	NT			NT			NT			NT			NT			
Benzo(a)pyrene	390	87	na	370	2.2 U			15		0.23	2				2.1	2.2	Ü		2.2	NT			NT			NT			NT			NT			-
Benzo(b)fluoranthene	3900	870	na	4500	2.2 U			27		0.39	2			0.41	2.1	2.2	U		2.2	NT			NT			NT			NT			NT			
Benzo(g,h,i)perylene	3100000	230000	na	680000	2.2 U	J UL 0.78	2.2	7.7	L	0.72	2	2.1	U UL	0.75	2.1	2.2	U UL	0.76	2.2	NT			NT			NT			NT			NT			
Benzo(k)fluoranthene	39000	8700	na	45000	2.2 U	J 0.38	2.2	9.1		0.35	2	2.1	U	0.37	2.1	2.2	U	0.38	2.2	NT			NT			NT			NT			NT			
Chrysene	390000	87000	na	150000	2.2 U	0.55	2.2	17		0.32	2	2:1		,,,,,	2.1	2.2	U		2.2	NT			NT			NT			NT			NT			
Dibenz(a,h)anthracene	390	87	na	1400	2.2 U		2.2	2.7	J	0.69	2				2.1	2.2	U		2.2	NT			NT			NT			NT			NT			
Fluoranthene	4100000	310000	na	6300000	2.2 U			25		0.35	2	2.1			2.1	2.2	U	0.37	2.2	NT			NT			NT			NT			NT			
Fluorene	4100000	310000		140000 13000	2.2 U			2.6	+	0.54	2	2.1			2.1	1.3	J J	0.57	2.2	NT NT	+		NT NT	+		NT NT	\rightarrow		NT NT	+++		NT NT			
Indeno(1,2,3-cd)pyrene Naphthalene	2000000	870 160000	na na	13000 150	2.2 U 2.2 U			9.5 7.4	+	0.65	2		-	,	2.1	2.2	U	0.69	2.2		+		NT NT	+ + +		NT NT	-+-+		NT NT	+++		NT NT			
Phenanthrene	3100000	230000	na na	680000	2.2 U			23	+ + -	0.79	2				2.1	1.2	J B J J	0.84	2.2	NT NT	+		NT NT	+ + +		NT NT			NT NT			NT NT			
Pyrene Pyrene	3100000	250000		680000	2.2 U			23		0.46	2				2.1	2.2	U		2.2	NT	+		NT	 		NT			NT			NT			
SVOCs (ug/kg)	5100000	250000		000000	2.2	- 0.5	2.2	23		0.70		2	- '			2.2	-		2.2	.,.			12			.,,						.,,1			
1,2,4-Trichlorobenzene	1000000	78000	na	280	220 U	J 9	220	200	U	8.3	200	210	U	8.8	210	210	U	8.8	210	200 U		8.4 200	31	J J 8.	8 210	220	U	9.2 220	12	ј ј	7.6 180	200	U	8.4	200
1,2-Dichlorobenzene	9200000	700000		4600	220 U	J 6.2			U	5.7	200				210	210	Ü	6.1		200 U		5.8 200	30		1 210			6.3 220		U	5.2 180			5.8	
1,3-Dichlorobenzene	310000	23000	na	290	220 U	J 6.8	220	200	U	6.3	200	210	U	6.6	210	210	U	6.7	210	200 U	r	6.4 200	32	J J 6.	5 210	220	U	6.9 220	12	J J	5.7 180	200	U	6.3	200
1,4-Dichlorobenzene	120000	27000	na	7.1	220 U	J 7.5	220	200	U	6.9	200	210	U	7.3	210	210	U	7.3	210	200 U		7 200	34	J J 7.	3 210	220	U	7.6 220	13	J J	6.3 180	200	U	7	200
2,4,5-Trichlorophenol	1000000	780000	na	na	220 U	7.2	220	200	U	7.3	200	210			210	210	U		210	200 U		7.4 200	12		7 210	220		8.1 220	100	0	6.7 180	200		7.4	200
2,4,6-Trichlorophenol	260000	58000	na	na	220 U	0.2		200	U	5.7	200	210			210	210	U	6.1		200 U		5.8 200	18		1 210	220		6.4 220		-	5.2 180	200	Ü	5.8	200
2,4-Dichlorophenol	310000	23000	na	1200	220 U		220	200	U	4.8	200	210	-		210	210	U		210	200 U		4.8 200	22	J J				5.3 220	180		4.3 180			4.8	200
2,4-Dinitrotoluene	200000			570	220 U				J J	6.8	200				210	210	U		210	200 U		6.9 200	210		2 210			7.5 220			6.2 180			6.9	200
2-Chloronaphthalene 2-Chlorophenol	8200000 510000	630000 39000		32000	220 U 220 U	J 5.6 J 5.2	220	200	U	5.1 4.8	200	210 210			210 210	210 210	U		210	200 U		5.2 200 4.9 200	20	J J 5.	4 210 1 210			5.7 220 5.3 220	8.2		4.7 180 4.4 180			5.2	200
2-Methylnaphthalene	410000	31000	na na	na 4400	220 U		220	14	I I	7.7	200	210			210	210	II		210	200 I		7.8 200	23	J J 8.				8.5 220 8.5 220	12	I I	7 180			7.8	200
2-Methylphenol	5100000	390000	na	na		J UL 8.8	220	200	U UL	8.2	200		Ü		210	210	U UL		210			8.3 200	21	J B 8.			v	9 220	180	5 5	7.4 180	200	Ü		200
2-Nitrophenol	na	na	na	na	220 U	5 CE 0.0	220	200	U	6.7	200		C CL		210	210	U		210	200 U		6.8 200	26	J J			0 02	7.4 220	11	0 02	6.1 180			6.7	200
4-Chloro-3-methylphenol	na	na	na	na	220 U		220	200	U	9.6	200	210			210	210	U	10	210	200 U		9.8 200	14	J J 1				11 220	180		8.8 180			9.7	200
4-Chlorophenyl phenyl ether	na	na	na	na	220 U	J 6.8	220	200	U	6.3	200	210	U	6.7	210	210	U	6.7	210	200 U		6.4 200	12	J J 6.	7 210	220	U	7 220	180	U	5.8 180	200	U	6.4	200
4-Methylphenol	510000	39000	na	na		J UL 7.7	220		U UL	7.1	200		U UL	7.5	210	210	U UL	7.6	210	200 U	UL	7.2 200	19	J B 7.	5 210		U UL	7.9 220	180	U UL	6.5 180			UL 7.2	200
Acenaphthene	6100000	470000	na	100000	220 U		220	200	U	5.6	200				210	210	U		210	200 U		5.7 200	13	J J 5.		220		6.2 220	180	-	5.1 180	200		5.7	200
Acenaphthylene	3100000	230000	na	680000	220 U		220	200	U	5.4	200		~		210	210	U		210	200 U		5.5 200	13	J J 5.		220		6 220	180	_	4.9 180	200		5.5	200
Benzo(a)anthracene	3900	870	na	1500		J 6.3	_		J J	5.8	200				210	210	U		210	7.9 J		5.9 200	210		1 210			6.4 220			5.3 180				200
Benzo(a)pyrene Benzo(b)fluoranthene	390 3900	87	na	370 4500	220 U 220 U	J 5.4 J 4.6		18	J J	5 4.3	200	210 210			210	210 210	U	5.3		200 U		5.1 200	210 210	U 5.			-	5.5 220 4.7 220	22		4.5 180 3.9 180			4.3	200 200
Benzo(g,h,i)perylene	3100000	230000	na na	680000	220 U		220	13	I I	5.7	200				210	210	U		210 210	200 U		4.3 200 5.8 200	210	U 4.				4.7 220 6.3 220	25		5.2 180			5.7	200
Benzo(k)fluoranthene	39000	8700	na	45000	220 U	0.1			JJ	5.7	200		Ü		210	210	U		210	200 U		5.8 200	210	U 6.			Ü	6.3 220	7.1		5.2 180			5.8	200
bis(2-Chloroethoxy)methane	na	na	na	na	220 U		220	200	U	6.2	200	210	Ü		210	210	U		210	200 U		6.3 200	13	J J 6.			v	6.8 220	180	5 5	5.6 180			6.2	200
bis(2-Chloroethyl)ether	2600	580	na		220 U	J 4.9		200	U	4.5	200				210	210	U	4.8		200 U		4.6 200	19	J J 4.			U	5 220	180		4.1 180			4.6	
bis(2-Chloroisopropyl)ether	41000	9100	na	1.7	220 U			200	U	4.5	200	210			210	210	U	4.8	210	200 U		4.6 200	21	J J 4.		220	U	5 220	8.8	J J	4.1 180	200			200
bis(2-Ethylhexyl)phthalate	200000	46000	na	2900000		J B 15		68	J B	14	200				210	210	U		210			14 200	210		210		-	15 220	36		12 180				200
Butylbenzylphthalate	1500000	340000	na	81000		J B 8.5	220	200	U	7.9	200	210			210	210	U		210	200 U		8 200	210		3 210	220		8.7 220	180		7.2 180				200
Chrysene	390000	87000	na	150000		J 5	220		J J	4.7	200				210	210	U		210	200 U		4.7 200	210		9 210			5.2 220	21		4.2 180			4.7	200
Dibenzofuran	200000 8200000	16000	na	3800	220 U 220 U		220 220	200 9.1	J B	5.8 5.8	200				210 210	210 210	U		210 210	200 U		5.8 200 5.9 200	14 210	J J 6.			~	6.4 220 6.5 220		-	5.2 180 5.3 180			5.8 5.9	200
Diethylphthalate Di-n-butylphthalate	1000000	780000	na na	450000 5000000		J 6.3 J 63	220	200	U	5.8	200	210			210	210	U		210	200 t		5.9 200 59 200	210	U 6.				6.5 220	180	U	5.3 180			5.9	200
Di-n-butyiphthalate Di-n-octylphthalate	4100000	310000	na na	4.9E+09	220 U		220	200	U	9	200		-		210	210	U		210	200 U		9.1 200	210	U 9.			-	10 220	20		8.2 180			9.1	200
Fluoranthene	4100000	310000	na	6300000	220 U	, ,,,,,	220	30	J J	6.6	200	210	~	,	210	210	U		210	200 U		6.7 200	210	U				7.3 220	21	JJ	6 180			6.7	200
Fluorene	4100000		na	140000	220 U		220	200	U	6.6	200				210	210	U		210	200 U		6.7 200	9	J J				7.3 220	180	U	6 180			6.7	200
Hexachlorobenzene	1800	400	na	52	220 U		_	20	J J	7.5	200				210	210	U	8	210	200 U		7.6 200	210	U 7.				8.3 220	180		6.8 180			7.6	
Hexachlorobutadiene	20000	1600	na	1800	220 U	J 7.3	220	200	U	6.7	200	210	U	7.1	210	210	U		210	200 U		6.8 200	30	J J 7.	1 210		U	7.5 220	10	Ј Ј	6.1 180			6.8	200
Hexachloroethane	102000	7800	na	360	220 U		220	200	U	5.4	200	210			210	210	U	5.7	210	200 U		5.4 200	13	J J 5.				5.9 220	180		4.9 180			5.4	200
Indeno(1,2,3-cd)pyrene	3900	870	na	13000	220 U				J J	7.8	200				210	210	U		210	200 U		7.9 200	210	U 8.		220		8.6 220	15		7.1 180	200		7.8	200
Isophorone	3000000	670000	na	410	220 U			200		5	200				210	210	U		210	200 U		5.1 200	10	J J 5.				5.6 220	7.4		4.6 180			5.1	200
Naphthalene	2000000	160000	na	150 23	220 U 220 U		220		J J	7.4	200				210	210	U		210	200 U		7.5 200	24	J J 7.	8 210 2 210			8.2 220 11 220	12	J J	6.7 180 9 180				200
Nitrobenzene N-nitrosodiphenylamine	51000	3900	na na	760		J 11 J 10	220	200	U	9.9	200		~		210 210	210 210	U		210	200 U		9.7 200	210				_	11 220 11 220	180	_	9 180 8.7 180		_ ~	9.7	200
N-nitrosogipnenyiamine Phenanthrene	3100000	230000	na na	680000		J 6.8	220		J J	6.3	200				210	210	U		210	200 t		6.4 200	210	U 6.			Ü	7 220	14		5.7 180			6.4	200
Pyrene	3100000	230000		680000		J 6.7			JJ		200				210	210	U		210	200 U		6.3 200	210		5 210			6.8 220			5.6 180			6.2	200
1 2 · -																																			

Table 5-3 Analytes Detected in Soil - 2002 RFI Page 4 of 4

	1			Cl- ID		LFSB	14D	1		I ECD15	•	1		TEC	7D 1 5 D			I ECD1	5C			I ECD1	(A			I ECD:	LCD.			I ECD1	166		T T:	CD17A		1	LECT	(7D
Analyte				Sample ID ample Date		6/26/				LFSB15 6/26/02					SB15B 26/02			LFSB1 6/26/0				LFSB1 6/26/0				LFSB1 6/26/				LFSB1 6/26/0				SB17A /26/02			LFSB 6/26	
Analyte				mple Date		7-8.				0-0.5					26/02 2-4			4-6				0-0.5				1-3				3-5				0-0.5			0/20	
	i-RBC	r-RRC	Background		Result La		O MDL	MRI	Result	Lab O Val O		MRI	Result		al Q MDL	MRL	Result	Lab Q Val Q		MRI	Result I			MRI	Result	Lab O Val O		MRI	Result		MDL M	IRI	Result Lab O		DI MRI	Result		MDL MRL
Pesticides (ug/kg)	PRDC	1-KBC	Dackground	BSL Transici	Result La	ab Q var	Q MDL	MICL	Result	Lab Q vai Q	MDL	WIKE	Result	Lab Q V	ai Q IVIDI	MIKE	Result	Lab Q Vai Q	MIDL	WIKE	Result	zao Q van Q	MDL	WIKE	Result	Lab Q var c	MDL	MIKL	Result	Lab Q var (Q MDL M	IKL	Result Lab Q	vai Q IV	DL MIKE	Result	Lao Q vai	Q MDE MIKE
4.4'-DDD	12000	2700	na	11000	NT	-	1 1		5.93		0.169	0.799	NT	т т			NT		1	1	NT		T		NT	1 1	1	т т	NT		1		NT	- 1		NT	T T	1
4,4'-DDE	8400	1900	na	35000	NT				49.3		1.68	7.99	NT				NT				NT				NT				NT				NT			NT		
4,4'-DDT	8400	1900	na	1200	NT				45.6		2.83	7.99	NT				NT				NT				NT				NT				NT			NT		
delta-BHC	na	1900 na	na	na	NT				0.799	II		0.799	NT				NT				NT				NT				NT				NT			NT		
Endosulfan II	610000	47000	na	20000	NT				1.23	U		0.799	NT				NT				NT				NT		1		NT				NT			NT		
Endrin aldehyde	na	na	na	na	NT				1.87		0.404		NT				NT				NT				NT				NT				NT			NT		
Endrin addenyde Endrin ketone	na	na	na	na	NT				4.46		0.644	0.799	NT				NT				NT				NT				NT				NT			NT		
gamma-Chlordane	8200	1800	na	920	NT				2.81		0.186	0.799	NT				NT				NT				NT				NT				NT			NT		
Methoxychlor	510000	39000	na	310000	NT				0.728	J J		0.799	NT				NT				NT				NT				NT				NT			NT		
PCBs (mg/kg)																		1 1								1 1				1	1 1						1 1	-
PCB-1248	1.4	0.32	na	na	0.0432	U	0.0205	0.0432	0.0399	U	0.0189	0.0399	0.042	U	0.019	9 0.042	0.0424	U	0.0201	0.0424	NT			1	NT		1		NT				NT			NT		
PCB-1254	1.4	0.16	na	1.1	0.0432	II	0.0127	0.0432	0.335		0.0118		0.042	II	0.012		0.0424	II		0.0424	NT		1	1 1	NT	+	1		NT		1		NT			NT		
Explosives (mg/kg)	1.4	0.10	na	1.1	0.0432	U	0.0127	0.0432	0.555		0.0110	0.0577	0.042		0.012	0.042	0.0424	U	0.0123	0.0727	111				.,,,		1		.,,,		· · · · · · · · · · · · · · · · · · ·		111			.,,,		
2.4-Dinitrotoluene	200	16	na	0.57	0.2	U	0.0163	0.2	0.4	II	0.0326	0.4	0.2	U	0.016	3 0.2	0.2	U	0.0163	0.2	NT				NT		1		NT		1		NT			NT		
Herbicides (ug/kg)	200	10	па	0.57	0.2	U	0.0103	0.2	0.4	U	0.0320	0.4	0.2	0	0.010.	3 0.2	0.2	U	0.0103	0.2	111		<u> </u>		141		<u> </u>		111		1		141			111		
Metals (mg/kg)																																						
Aluminum	100000	7800	40041	na	38300		7.2	25.0	47800		6.6	24	18500		7	25.2	29300		7	25.5	26600		6.7	24.3	25800		7	25.3	47900		7.3 26	5.5	13800		6 21.8	20900	1 1	6.7 24.2
Antimony	41	3.1	na	13		U UL	0.22	0.649	47.6	T	0.2	0.599	0.631	TT T	UL 0.21	0.631	0.29	ВВ	0.21			в в	0.2	0.608	0.633	11 111	0.21	0.633		U UL	0.22 0.6		1.73	I 0	18 0.545	0.605	11 111	0.7 24.2
	1.9	0.43	15.8	0.026	1.52	0 01	0.45		26.2	J	0.42		2.09			0.631	1.59	D D		0.637	1.96	I B		0.608	5.45	U UL	0.21	0.633	4.27	U UL	0.46 0.6		2.22	_	38 0.545	1.79	0 01	0.42 0.605
Arsenic						J			2200	<u>J</u>								J				J				J				J							J	
Barium	7200	550	209	2100	72.7		0.43	2.59	<u> 2300</u>		0.4	2.4	46		0.42	_	71			2.55	73.8		0.41	2.43	69.3		0.42	2.53	104		0.44 2.		52.5		36 2.18	25.3		0.4 2.42
Beryllium	200	16	1.02	1200	2.36		0.0447	0.649	0.726		0.0413	0.599	<u>1.34</u>		0.043		<u>1.84</u>			0.637	0.946		0.0419		<u>1.72</u>		0.0437	0.633	3		0.0457 0.6		0.588		376 0.545	<u>1.06</u>		0.0418 0.605
Cadmium	51	3.9	0.69	27	0.10	U	0.062	0.13	19.8		0.057	0.12	0.126	U	0.06		0.127	U	0.061		0.122	U	0.058	0.122	0.127	U	0.06	0.127	0.132	U	0.063 0.1		0.11 B	J 0.0	0.109	0.121	U	0.058 0.121
Calcium	na	na	na	na	11800	J	3.6	13	18000	J	3.3	12	488		J 3.5	12.6	1910	J	3.6	12.7	2050	J	3.4	12.2	1280	J	3.5	12.7	1830	J	3.7 13	3.2	12100	J	3 10.9	55700	J	3.4 12.1
Chromium	310	23	65.3	42	44.1	J	0.49	1.3	<u>281</u>	J	0.45	1.2	30.9		J 0.47	1.26	45.9	J	0.48	1.27	28.4	J	0.45	1.22	32.5	J	0.47	1.27	58.5	J	0.5 1	32	24.3	J 0.	41 1.09	35.5	J	0.45 1.21
Cobalt	2000	160	72.3	na	8.63	J	1.1	6.49	47	J	0.97	5.99	9.81		J 1	6.31	10.8	J	1	6.37	20.5	J	0.98	6.08	12.5	J	1	6.33	9.26	J	1.1 6.	62	6.88	J 0.	88 5.45	9.24	J	0.98 6.05
Copper	4100	310	53.5	11000	32.6	J	0.8	2.59	2890	J	0.74	2.4	18.9		J 0.78	2.52	36.7	J	0.79	2.55	23.6	J	0.75	2.43	23.6	J	0.78	2.53	35.2	J	0.82 2.	65	39.3	J 0.	67 2.18	10.8	J	0.75 2.42
Iron	31000	2300	50962	na	42500	J	4.4	6.49	99900	<u>J</u>	4	5.99	24600		J 4.2	6.31	30700	J	4.3	6.37	36200	J	4.1	6.08	30800	J	4.3	6.33	49100	J	4.5 6.	62	15900	J 3	.7 5.45	19600	J	4.1 6.05
Lead	800	400	26.8	na	11.9		0.039	0.389	1650	J	4.4	12	13.2		0.038	0.378	26.6		0.039	0.382	23.8		0.037	0.365	22.1		0.038	0.38	16.5		0.04 0.3	397	1670	J	4 10.9	18.3		0.037 0.363
Magnesium	na	na	na	na	33700		3.1	13	7510		2.8	12	12300		3	12.6	40900		3	12.7	5030		2.9	12.2	11000		3	12.7	20300		3.1 13	3.2	13200	2	.6 10.9	60400		2.9 12.1
Manganese	2000	160	2543	950	298	J	0.073	1.3	2230	J	0.067	1.2	285		J 0.071	1.26	358	J	0.071		574	J	0.068	1.22	418	J	0.071	1.27	270	J	1	32	230		061 1.09	137	J	0.068 1.21
Mercury	31	2.3	0.13	na	0.135		0.0257	0.0649	2.11		0.0237	0.0599	0.039	В	J 0.025	0.0631	0.05	B J	0.0252	0.0637	0.047	B J	0.0241	0.0608	0.0982		0.0251	0.0633	0.15		0.0262 0.0	662	0.037 B	J 0.0	216 0.0545	0.0605	U	0.024 0.0605
Nickel	2000	160	62.8	na	36.4	J	1.2	5.19	404	J	1.1	4.79	23.3		J 1.2	5.04	36.4	J	1.2	5.1	15.6	J	1.1	4.86	28.6	J	1.2	5.06	47.4	J	1.2 5.	.3	11.6	J	1 4.36	20.4	J	1.1 4.84
Potassium	na	na	na	na	4540		43	389	2870		40	359	2810		42	378	7210		43	382	2440		41	365	2520		42	380	5190		44 39	97	1960	ž	327	7870		40 363
Silver	510	39	na	31	1.3	U	0.64	1.3	18.9	J	0.59	1.2	1.26	U	0.62	1.26	0.95	B J	0.63	1.27	1.22	U	0.6	1.22	1.27	U	0.62	1.27	1.32	U	0.65 1.	32	1.09 U	0.	54 1.09	1.21	U	0.6 1.21
Sodium	na	na	na	na	77.4		4.8	25.9	2460		4.5	24	27		B 4.7	25.2	131		4.8		44.2		4.5	24.3	29.2	В	4.7	25.3	47.1		4.9 26	5.5	52.9	4	.1 21.8	104		4.5 24.2
Thallium	7.2	0.55	2.11	3.6	0.26	В Ј	0.039	0.389	0.099	В Ј	0.036	0.359	0.22	В	J 0.038	0.378	0.23	B J	0.038	0.382	0.15	В Ј	0.037	0.365	0.26	B J	0.038	0.38	0.34	В Ј	0.04 0.3	397	0.12 B	J 0.0	0.327	0.19	В Ј	0.036 0.363
Vanadium	102	7.8	108	730	69.5	J	0.75	6.49	31	J	0.69	5.99	43.7		J 0.73	6.31	52.9	J	0.74	6.37	53.6	J	0.7	6.08	50	J	0.73	6.33	71.7	J	0.77 6.	62	28.5	J 0.	63 5.45	41	J	0.7 6.05
Zinc	31000	2300	202	14000	55	J	0.46	2.59	5600	J	0.43	2.4	39.7		J 0.45	2.52	80.7	J	0.46	2.55	52.2	J	0.44	2.43	50.6	J	0.45	2.53	64.2	J	0.47 2.	65	87.4	J 0.	39 2.18	26	J	0.43 2.42
Misc.					J.												•		•			1							ı			-			-			
Total Organic Carbon (mg/kg)	na	na	na	na	NT				NT				NT				NT				NT		1	T 1	NT		1		NT				NT			NT		
рН	na	na	na	na	NT				NT				NT				NT		1		NT				NT		1		NT		1		NT			NT		
								•											•				•				•				•					-		•

Table 5-4 Dioxins/Furans Detected in Soil - 2002 RFI

Analyte				Sample ID Sample Date Sample Depth		LFSS0 6/26/0 0-0.5)2			LFSS0 6/26/02 0-0.5	2			LFSS0 6/26/02 0-0.5			LFSI 6/20 0-0	6/02			LFSB1 6/26/0 2-4)2			LFSB 6/26/ 4-5.	02			LFSB13 6/26/0 8.3-9	2
	i-RBC	r-RBC	Background	SSL Transfer	Result	Lab Q Val Q	MDL MF	L Resu	ılt Lab (Q Val Q	MDL	MRL	Result	Lab Q Val Q	MDL MF	Result	Lab Q Va	I O MDI	L MRL	Result	Lab O Val C	MDL I	MRL	Result	Lab O Val	O MDL	MRL	Result	Lab Q Val Q	MDL MRL
Dioxins/Furans (ng/kg)																														
2.3.7.8-TCDF	na	na	na	na	1.615	J	0.19 0.1.	54 0.43	37	J	0.19	0.163	25.96	J	0.19 0.2	6 1.211		J 0.19	0.543	0.094	U	0.19	0.094	0.213	U	0.19	0.213	0.193	U	0.19 0.193
2,3,7,8-TCDD	19	4.3	na	8.6	1.366	X J	0.13 0.0	_		J	0.13	0.076	12.07	X I	0.13 0.02		U	0.13		0.254	U		0.254	0.272	U	0.13	0.272	0.27	U	0.13 0.27
1,2,3,7,8-PECDD	na	na	na	na	2.777	J J				J	0.19	0.145	8.679	1 I	0.19 0.69	-	X	J 0.19		0.208	U		0.208	0.225	U	0.19	0.225	0.173	U	0.19 0.173
1.2.3.4.7.8-HXCDD	na	na	na	na	7.05	J	,	_		J	0.13	0.12	15.64	J	0.53 0.50		Α .	0.53		0.200	U		0.291	0.223	U	0.53	0.223	0.173	U	0.53 0.278
1,2,3,6,7,8-HXCDD	na	na	na	na	9.289	J				J	0.57	0.096	22.35	J	0.57 0.4.			0.57		0.228	U		0.228	0.25	U	0.57	0.25	0.218	U	0.57 0.218
1,2,3,7,8,9-HXCDD	460	100	na	na	15.01	J			-	J	0.68	0.099	36.04	J	0.68 0.4			0.68		0.221	U		0.221	0.242	U	0.68	0.242	0.211	U	0.68 0.211
1,2,3,4,6,7,8-HPCDD	na	na	na	na	153	J		_		J	0.63	0.112	220.5	J	0.63 0.3.			0.63		5.233	-		0.238	2.494	X J	0.63	0.277	0.221	U	0.63 0.221
OCDD	na	na	na	na	873.4	J					6.86	0.087	1313	J	6.86 0.2			6.86		35.21			0.334	30.78	11 0	6.86	0.307	50.02	-	6.86 0.216
1,2,3,7,8-PECDF	na	na	na	na	1.013	J		_		J	0.28	0.067	18.52	J	0.28 0.5		X J	_		0.262	U		0.262	0.161	U	0.28	0.161	0.13	U	0.28 0.13
2,3,4,7,8-PECDF	na	na	na	na	2.803	J	0.56 0.2			J	0.56	0.074	46.47	J	0.56 0.5			0.56		0.274	U		0.274	0.169	U	0.56	0.169	0.136	U	0.56 0.136
1,2,3,4,7,8-HXCDF	na	na	na	na	7.171	J	0.34 0.1.	_		J	0.34	0.059	176.4	J	0.34 0.2	_		0.34		0.121	U		0.121	0.191	U	0.34	0.191	0.148	U	0.34 0.148
1,2,3,6,7,8-HXCDF	na	na	na	na	2.008	J	0.49 0.11	_		J	0.49	0.058	49.9	I J	0.49 0.20		I J	J 0.49		0.118	U		0.118	0.186	U	0.49	0.186	0.144	U	0.49 0.144
2,3,4,6,7,8-HXCDF	na	na	na	na	2.87	J			-	J	0.47	0.072	7.765	J	0.47 0.3			0.47		0.138	U		0.138	0.217	U	0.47	0.217	0.168	U	0.47 0.168
1,2,3,7,8,9-HXCDF	na	na	na	na	0.15	U UJ		5 0.07	77 U	UJ	0.25	0.077	3.205	J	0.25 0.3.	2 0.294	U	0.25		0.139	U		0.139	0.219	U	0.25	0.219	0.169	U	0.25 0.169
1,2,3,4,6,7,8-HPCDF	na	na	na	na	26.17	J				J	0.33	0.062	323.7	J	0.33 0.14			0.33		0.924			0.119	0.498	X J	0.33	0.149	0.119	U	0.33 0.119
1,2,3,4,7,8,9-HPCDF	na	na	na	na	2.095	J		34 0.68	35	J	0.5	0.084	22.47	J		3 1.167		0.5		0.153	U		0.153	0.192	U	0.5	0.192	0.153	U	0.5 0.153
OCDF	na	na	na	na	49.59	J		53 17.9	93	J	0.79	0.07	181.7	J	0.79 0.2.	1 29.75		0.79	0.354	3.081		0.79	0.532	0.394	U	0.79	0.394	0.274	U	0.79 0.274
TOTAL TCDD	na	na	na	na	1.463	J	0.0	72 0.07	'6 U	UJ		0.076	4.198	J	0.0	4 1.913			0.165	0.254	U	0	0.254	0.272	U		0.272	0.27	U	0.27
TOTAL PECDD	na	na	na	na	14.59	J	0.20	0.62	22	J		0.145	19.81	J	0.69	6 0.393			0.203	0.208	U	0	0.208	0.225	U		0.225	0.173	U	0.173
TOTAL HXCDD	na	na	na	na	115.8	J	0.1.	33 18.7	1	J		0.096	263.4	J	0.42	5 29.92			0.223	0.221	U	0	0.221	0.242	U		0.242	0.211	U	0.211
TOTAL HPCDD	na	na	na	na	312	J	0.09	96 94.3	32	J		0.112	415.3	J	0.3.	5 141.7			0.422	5.233		0	0.238	2.044			0.277	1.138		0.221
TOTAL TCDF	na	na	na	na	27.09	J	0.19	94 6.86	51	J		0.073	314	J	0.20	3 15.68			0.242	0.094	U	0	0.094	0.213	U		0.213	0.193	U	0.193
TOTAL PECDF	na	na	na	na	22.15	J	0.2	11 3.94	17	J		0.067	305	J	0.5	11.33			0.161	0.262	U	0	0.262	0.161	U		0.161	0.13	U	0.13
TOTAL HXCDF	na	na	na	na	33.69	J	0.12	27 14.0	8	J		0.058	597.3	J	0.20	2 24.93			0.25	0.118	U	0	0.118	0.186	U		0.186	0.144	U	0.144
TOTAL HPCDF	na	na	na	na	61.85	J	0.10	04 24.9	8	J		0.062	444.8	J	0.1	9 20.39			0.194	0.924		6	0.119	0.149	U		0.149	0.119	U	0.119
TCDD TE	19	4.3	na	8.6	12.02		I I	3.40)1				84.45			4.985				0.8140				0.8082				0.6804		
TCDD RME	19	4.3	na	8.6	12.01			3.39	07				84.45			4.888				0.4397				0.4206				0.3427		
					-																									
				Sample ID		LFSB1	4A		I	LFSB14	4B			LFSB15	A		LFSI	B15B			LFSB1	5C			LFSB	16A			LFSB1	'A
Analyte				Sample Date	:	6/26/0	12			6/26/02	2			6/26/0	2		6/20	6/02			6/26/0)2			6/26/	02			6/26/0	2
-				Sample Depth	L	5.5-7	,			7-8.8				0-0.5			2-	-4			4-6				0-0.	.5			0-0.5	
	i-RBC	r-RBC	Background	SSL Transfer	Result	Lab Q Val Q	MDL MF	tL Resu	ılı Tb.4	O Val O	MDL	MRL	Result	Lab O Val O	MDL ME	Result	Lab Q Va	l Q MDI	L MRL	Result	Lab Q Val Q) MDL	MRL	Result	Lab O Val	O MDL	MRL	Result	Lab Q Val Q	MDL MRL
Dioxins/Furans (ng/kg)	I-KBC	r-kbC	background	SSE Transici	Result	Lab Q Vai Q	MDL MF	L Kest	iit Lab	Q vai Q	MDL	MKL	Resuit	Lab Q Vai Q	MDL MI	Result	Lab Q Va	I Q MDI	L MKL	Result	Lab Q Val Q	MDL	MKL	Result	Lab Q vai	Q MDL	WIKL	Resuit	Lab Q Vai Q	MDL MRL
2,3,7,8-TCDF	na	na	na	na	0.172	U	0.19 0.1	72 0.07	'6 U		0.19	0.076	39.08	I	0.19 0.50	9 0.294	U	0.19	0.294	0.233	U UJ	0.19	0.233	0.229	U U.	0.19	0.229	1.315	I	0.19 0.355
2,3,7,8-TCDD	19	4.3	na	8.6	0.166	II	0.13 0.16				0.13	0.23	5.232	, ,	0.13 0.14		U	0.13	_	0.291	II U		0.291	0.166	U	0.13	0.166	0.041	U UJ	0.13 0.041
1,2,3,7,8-PECDD				-						_								_		+										
1,2,3,4,7,8-PECDD 1,2,3,4,7,8-HXCDD	na	na	na	na	0.162	U	0.19 0.10	_			0.19	0.176	33.8 76.1		0.19 0.22		U	0.19		0.236	U		0.236	0.255	U	0.19	0.255	0.997	J	0.19 0.211
1,2,3,6,7,8-HXCDD	na	na	na na	na	0.171 0.134	U	0.53 0.13 0.57 0.1.				0.53 0.57	0.178 0.14	160.5	+ +	0.53 0.3. 0.57 0.20		U	0.53		0.24 0.188	U		0.24 0.188	0.211	U	0.53 0.57	0.211 0.165	1.733 3.003	J	0.53 0.196 0.57 0.154
	na 460	na 100	na	na												_	II	_	_	1	U				v i				J	
1,2,3,7,8,9-HXCDD		100	na	na	0.13	U	0.68 0.1				0.68	0.135	190.5		0.68 0.2.		U	0.68		0.182	U	I	0.182	1.159	X J	0.68	0.16	5.006	J	0.68 0.149
1,2,3,4,6,7,8-HPCDD	na	na	na	na	3.527		0.63 0.10	_		-	0.63	0.147	2967		0.63 0.3			0.63		3.429	-		0.135	22.77		0.63	0.288	63.5	J	0.63 0.152
OCDD 1,2,3,7,8-PECDF	na	na	na	na	90.87		6.86 0.1		-	J	6.86	0.162	7298	J	6.86 0.3		**	6.86		57.36	J		0.227	1468	**	6.86	0.219	1420	J	6.86 0.146
	na	na	na	na	0.123	U	0.28 0.13	_			0.28	0.133	49.17		0.28 0.4		U	0.28		0.142	U		0.142	0.181	U	0.28	0.181	1.033	J	0.28 0.16
	na	na	na na	na	0.128	U	0.56 0.13		-		0.56	0.139	124.9	+ -	0.56 0.50		U	0.56		0.148	U		0.148	0.189	U I	0.56	0.189	1.599	X J	0.56 0.168
2,3,4,7,8-PECDF				na	0.095	U	0.34 0.09		-		0.34	0.103	756.9 168.1	I J	0.34 0.4 0.49 0.44		U	0.34		1.981 0.683			0.109 0.106	1.2 0.141	X J U	0.34	0.144	5.912 1.749	J	0.34 0.12 0.49 0.117
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF	na	na			0.002	TT	0.40										1 1 1													
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF	na	na	na	na	0.093	U	0.49 0.09				0.49	0.1		1 3			U									_	0.141		J	
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	na na	na na	na na	na	0.109	U	0.47 0.10	0.11	.7 U		0.47	0.117	287.5	1 J	0.47 0.52	3 0.139	U	0.47	0.139	0.977	TI	0.47	0.124	0.165	U	0.47	0.165	2.404	J	0.47 0.137
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	na na na	na na na	na na na	na na	0.109 0.109		0.47 0.10 0.25 0.10	09 0.11 09 0.11	.7 U		0.47 0.25	0.117 0.118	287.5 11.22	1 3	0.47 0.52 0.25 0.52	3 0.139 7 0.14	U	0.47 0.25	0.139 0.14	0.977 0.125	U	0.47 0 0.25 0	0.124 0.125	0.165 0.166		0.47 0.25	0.165 0.166	2.404 0.138	U UJ	0.47 0.137 0.25 0.138
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,4,6,7,8-HPCDF	na na na na	na na na na	na na na na	na na na	0.109 0.109 1.217	U	0.47 0.10 0.25 0.10 0.33 0.00	09 0.11 09 0.11 09 0.26	7 U 8 U 55 X	J	0.47 0.25 0.33	0.117 0.118 0.076	287.5 11.22 1660	1 3	0.47 0.55 0.25 0.55 0.33 0.15	3 0.139 7 0.14 9 0.653	U	0.47 0.25 0.33	0.139 0.14 0.085	0.977 0.125 4.843	U	0.47 0 0.25 0 0.33	0.124 0.125 0.1	0.165 0.166 5.907	U U	0.47 0.25 0.33	0.165 0.166 0.139	2.404 0.138 16.55		0.47 0.137 0.25 0.138 0.33 0.095
2.3.4.7,8-PECDF 1.2.3.4.7,8-HXCDF 1.2.3.6.7,8-HXCDF 2.3.4.6.7,8-HXCDF 1.2.3.7,8.9-HXCDF 1.2.3.7,8.9-HXCDF 1.2.3.4.6.7,8-HPCDF	na na na na	na na na na na	na na na na	na na na na	0.109 0.109 1.217 0.128	U	0.47 0.10 0.25 0.10 0.33 0.09 0.5 0.11	09 0.11 09 0.11 09 0.26 28 0.09	7 U 8 U 55 X 98 U	J	0.47 0.25 0.33 0.5	0.117 0.118 0.076 0.098	287.5 11.22 1660 147.1	1 J	0.47 0.5 0.25 0.5 0.33 0.1 0.5 0.10	3 0.139 7 0.14 9 0.653 6 0.109	U U	0.47 0.25 0.33 0.5	0.139 0.14 0.085 0.109	0.977 0.125 4.843 0.517		0.47 0 0.25 0 0.33 0.5 0	0.124 0.125 0.1 0.129	0.165 0.166 5.907 0.563	U	0.47 0.25 0.33 0.5	0.165 0.166 0.139 0.18	2.404 0.138 16.55 1.115	U UJ	0.47 0.137 0.25 0.138 0.33 0.095 0.5 0.123
2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,4,6,7,8-HPCDF	na na na na	na na na na	na na na na	na na na	0.109 0.109 1.217	U	0.47 0.10 0.25 0.10 0.33 0.00	09 0.11 09 0.11 09 0.26 28 0.09 57 0.9	7 U 8 U 65 X 98 U	J	0.47 0.25 0.33	0.117 0.118 0.076	287.5 11.22 1660	J	0.47 0.55 0.25 0.55 0.33 0.15	3 0.139 7 0.14 9 0.653 6 0.109 0 0.279	U	0.47 0.25 0.33	0.139 0.14 0.085 0.109	0.977 0.125 4.843	U	0.47 0 0.25 0 0.33 0.5 0 0.79 0	0.124 0.125 0.1	0.165 0.166 5.907	U U	0.47 0.25 0.33	0.165 0.166 0.139	2.404 0.138 16.55	U UJ	0.47 0.137 0.25 0.138 0.33 0.095

396.3

1741

6654

1048

1123

2202

2015

0.176

0.135

0.147

0.076

0.133

0.1

0.076

0.255 U

0.232 U 6.77

0.294 U

0.244 U

0.653

1.039

0.5774

0.119 U

0.223

0.253

0.347

0.483

0.485

0.447

0.129

0.236 U

1.452

3.429

2.463

2.137

5.745

5.36

1.163

0.8105

0.255

0.232

0.235

0.294

0.244

0.119

0.085

na

na

na

na

na

na

19

TOTAL PECDD

TOTAL HXCDD

TOTAL HPCDD

TOTAL TCDF

TOTAL PECDF

TOTAL HXCDF

TOTAL HPCDF

TCDD TE

TCDD RME

na

na

na

na

na

na

na

4.3

19 4.3

na

8.6

8.6

0.162 U

6.197

0.172 U

0.123 U

0.13

0.396

4.908

0.5584

0.3080

0.162

0.13

0.161

0.172

0.123

0.093

0.099

0.176 U

0.135 U

2.839

0.076 U

0.133 U

0.076 U

0.6037

0.3138

0.1 U

0.255 U

3.85

43.92

0.938

2.19

14.94

1.373

1.065

0.239

0.236

0.182

0.135

0.22

0.142

0.106

0.1

0.255

0.16

0.288

0.239

0.181

0.141

0.139

2.253

27.49

127.5

23.59

13.82

22.38

32.06

4.971

4.944

J

0.211

0.149

0.152

0.182

0.16

0.117

0.095

slightly above the health protective criterion for lead. For the residential scenario, site concentrations of lead in total soil were above the health protective criterion for lead. These results indicate that for current scenarios, health risks are limited, but are more elevated for future scenarios, especially residential scenarios. Industrial scenarios are more appropriate as long as SWMU 17A is active.

A SLERA was also conducted at the FLFA to identify risks to ecological receptors. The Tier 2 food chain assessment suggests potential adverse impacts to terrestrial wildlife, especially shrews, robins, and voles for modeled contact with the hazard drivers (primarily organic compounds: 2,3,7,8-TCDD-TE and 4,4-DDT, and inorganic constituents: chromium, copper, and barium) in surface soil. The direct contact assessment Tier 2 results suggest a potential reduction in wildlife food supply due to copper, mercury, zinc, lead, chromium, barium, and nickel in surface soil. Analysis of the site and background data indicates that one of the Tier 2 inorganic chemical of potential ecological concern drivers, cobalt, is statistically related to naturally occurring surface soil concentrations. Risks would be somewhat mitigated by the small size of the site (0.36 acres) and the fact that the FLFA is within the footprint of an active burn area, making this area less attractive to ecological receptors.

5.4 CONCEPTUAL SITE MODEL

Potentially affected media at the FLFA include surface and subsurface soil; groundwater; surface water and sediment. The FLFA is located in a steeply sloping depression formed by a sinkhole. Based on the occurrence of lead slag, lead was most likely off-loaded at the rim of the sinkhole and transported to the furnace located at the bottom of the depression. Precipitation is expected to flow down the hill sides of the depression towards the FLFA and infiltrate into the ground. Site workers and terrestrial biota are considered receptors. **Table 5-5** presents the exposure pathways for each human receptor. Ecological and human exposure pathways are shown on **Figure 5-8** (current) and **Figure 5-9** (future). The exposures pathways associated with each media type are described in more detail in the following paragraphs.

Surface soil was impacted by operations at the lead furnace. In 1998, this pathway was mitigated by the removal of the furnace structure and lead-containing soil immediately around the structure. Confirmatory sampling indicated that there was at least one remaining area of soil with an elevated lead concentration. The presence of lead in soil beyond the limits of the FLFA indicate that site workers and ecological receptors could be impacted through incidental ingestion of soil, dermal absorption through direct contact with impacted soil, and the inhalation of ash or dust.

Subsurface soil was also potentially impacted by the lead smelting operations. The 1998 removal of the furnace structure and lead-containing soil around it mitigated this pathway by removing the main source of lead. The concentration of leachable lead was initially 500,000 μ g/L. After the removal of the soil and furnace, the leachable lead concentration was 500 μ g/L, a thousand fold decrease in concentration. Site workers could be negatively impacted through the inhalation of dust during removal/construction activities. Incidental ingestion and dermal absorption may also affect site workers during construction activities that expose the subsurface soil.

Table 5-5 Selection of Exposure Pathways - FLFA

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current	Surface Soil	Surface Soil	FLFA	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at FLFA and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface soil at FLFA on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface soil at FLFA on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	FLFA	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at FLFA.
				Industrial Worker	Adult	Inhalation	On-site	None	There are no workers currently exposed to airborne volatiles or particulates from surface soil at FLFA on a daily basis.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	FLFA	None	None	None	On-site	None	Current excavation or construction activities are not occurring at FLFA.
	Groundwater	Groundwater	FLFA	None	None	None	On-site	None	Groundwater is not currently being used at FLFA. Therefore, there is currently no direct exposure to groundwater.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
Future	Surface Soil	Surface Soil	FLFA	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at FLFA and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact surface soil at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact surface soil at FLFA and be exposed to COPCs via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Table 5-5 Selection of Exposure Pathways - FLFA

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Surface Soil	Air	r FLFA	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at FLFA.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from surface soil at FLFA.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	FLFA	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact soil at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact soil at FLFA and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact soil at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact soil at FLFA and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact soil at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact soil at FLFA and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
					Child	Ingestion	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	Air FLFA	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from soils at FLFA.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from soils at FLFA.
				Excavation Worker	Adult	Inhalation	On-site	Quant	Excavation workers could be exposed to airborne volatiles or particulate matter released from soils at FLFA.

Table 5-5 Selection of Exposure Pathways - FLFA

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Total Soil (Surface and Subsurface)	Air	FLFA	Resident	Adult	Inhalation	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
					Child	Inhalation	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
				Trespasser	Adolescent	Inhalation	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Sediment	Sediment	FLFA - Spring (Assumes the spring will increase in size)	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact sediment at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact sediment at FLFA and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact sediment at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact sediment at FLFA and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact sediment at FLFA and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact sediment at FLFA and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	Adult residents could contact sediment at FLFA and be exposed to COPCs via incidental ingestion during wading or swimming.
						Dermal	On-site	Quant	Adult residents could contact sediment at FLFA and be exposed to COPCs via dermal absorption during wading or swimming.
					Child	Ingestion	On-site	Quant	Child residents could contact sediment at FLFA and be exposed to COPCs via incidental ingestion during wading or swimming.
						Dermal	On-site	Quant	Child residents could contact sediment at FLFA and be exposed to COPCs via dermal absorption during wading or swimming.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Surface Water	Surface Water	ter FLFA - Spring (Assumes the spring will increase in size)	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers could contact surface water at FLFA while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Maintenance workers could contact surface water at FLFA and be exposed to COPCs via dermal absorption while wading.
				Industrial Worker	Adult	Ingestion	On-site	None	Industrial workers could contact surface water at FLFA while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Industrial workers could contact surface water at FLFA and be exposed to COPCs via dermal absorption while wading.

Table 5-5 Selection of Exposure Pathways - FLFA

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Surface Water	Surface Water	FLFA - Spring (Assumes the spring will increase in size)	Excavation Worker	Adult	Ingestion	On-site	None	Excavation workers could contact surface water at FLFA while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Excavation workers could contact surface water at FLFA and be exposed to COPCs via dermal absorption while wading.
				Resident	Adult	Ingestion	On-site	Quant	Residents could contact surface water at FLFA while wading or swimming. Surface water ingestion while wading is considered unlikely.
						Dermal	On-site	Quant	Adult residents could contact surface water at FLFA and be exposed to COPCs via dermal absorption while wading or swimming.
					Child	Ingestion	On-site	Quant	Residents could contact surface water at FLFA while wading or swimming. Surface water ingestion while wading is considered unlikely. Surface water ingestion while swimming is evaluated.
						Dermal	On-site	Quant	Child residents could contact surface water at FLFA and be exposed to COPCs via dermal absorption while wading or swimming.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Groundwater	Groundwater	FLFA	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers would not contact groundwater at FLFA.
						Dermal	On-site	None	Maintenance workers would not contact groundwater at FLFA.
				Industrial Worker	Adult	Ingestion	On-site	Quant	If FLFA were to be further developed for industrial purposes and groundwater wells were installed at the site, site workers could be exposed to COPCs in groundwater via ingestion.
						Dermal	On-site	None	Although site worker dermal exposures to groundwater could occur, the exposed body surface of a worker (i.e., hands and arms) would be small and exposures would be infrequent.
				Excavation Worker	Adult	Ingestion	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at FLFA.
						Dermal	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at FLFA.
				Resident	Adult	Ingestion	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
				_		Dermal	On-site	Quant	If FLFA were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.

Table 5-5 Selection of Exposure Pathways - FLFA

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe	Wedium	Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Groundwater	FLFA	Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
		Homegrown fruits and	FLFA	Resident	Adult	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		vegetables			Child	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into a construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	On-site	Quant	If groundwater wells were installed for residential purposes, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	On-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
					Child	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Groundwater	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	Off-site	None	The residential scenario would be protective of the limited exposure that would be experienced by a trespasser.
						Dermal	Off-site	None	The residential scenario would be protective of the limited exposure that would be experienced by a trespasser.
		Homegrown fruits and vegetables		Resident	Adult	Ingestion	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
					Child	Ingestion	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.

Table 5-5 Selection of Exposure Pathways - FLFA

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway						
Future (cont.)	Groundwater	Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, volatiles could be released from groundwater into ambient air. Off-site maintenance workers could be exposed via inhalation.						
			Indoor Vapors	Industrial Worker	Adult	Inhalation	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site buildings via vapor intrusion.						
									Trench Vapors	Excavation Worker	Adult	Inhalation	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into an off-site construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from FLFA groundwater were to migrate to off-site wells in the future, adult residents could contact volatiles in groundwater via showering.						
					Child	Inhalation	Off-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.						
			Indoor Vapors	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.						
					Child	Inhalation	Off-site	Quant	If COPCs from FLFA groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.						
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	Off-site	None	The maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.						

O Indicates pathway/receptor combinations incomplete or no source

Shaw™ Shaw Environmental, Inc.

Figure 5-8. Current Land Use Conceptual Site Model for FLFA Radford Army Ammunition Plant, Virginia

DRAWING	JIS, III	CHECKED BY	СН	2/20/07	DRAWING NO.
BY	1/24/07	APPROVED BY	СН	2/20/07	S-123461-1/07-w

Groundwater is potentially impacted form downward migration of constituents form site soil. A dye-trace study showed a link between the sinkhole and a spring on the New River. Surface water and sediment in the spring are potentially impacted through groundwater discharge in this area.

5.5 DATA GAP ANALYSIS

This section identifies data gaps in the current understanding of the site and is the basis for the investigation approach described in the next section.

Several previous investigations have been conducted at the FLFA and the majority of the source area has been removed. Small areas of elevated lead remained after the removal of the furnace and soil in 1998 and the 2002 investigation identified two other areas of elevated lead. Complete characterization of the site soil for lead, PCBs and dioxin/furans is a data gap that will be addressed through an on-site X-ray fluorescence (XRF) survey combined with fixed-laboratory confirmation sampling for TAL metals, TCL PCBs and dioxins/furans.

Previous investigations have not incorporated a groundwater component. Groundwater is a data gap for TCL VOCs, SVOCs, PAHs, pest/PCBs, explosives, herbicides, TAL metals, dioxins/furans, and perchlorate.

Although there is no surface water or sediment on site, the spring (SPG3) where the 1994 dye trace showed discharge from the FLFA/SWMU 17A area has not been sampled and is a potential data gap.

5.6 INVESTIGATION APPROACH

In order to complete the characterization of the FLFA, additional sampling is required to fully delineate the extent of lead, PCBs, and dioxins/furans in soil and investigate the groundwater in the area. A summary of the proposed samples and analyses is presented in **Table 5-6** and are shown on **Figure 5-6**.

<u>Soil:</u> An XRF survey will be used to complete the delineation of lead in soil. XRF analysis provides a field analytical method for analysis of lead in soil. XRF is capable of detecting lead in soil down to 20 mg/kg. By obtaining real-time data for lead concentrations, new sample locations can be guided by results from previous samples. XRF sampling will be conducted in accordance with SOP 30.13, located in **Appendix A**. A 220 ft by120 ft grid will be superimposed over the site with grid line intersections at 5-foot intervals. Initially, samples will be collected from 12 locations around the perimeter of elevated lead defined by previous samples. Approximately 12 samples can be collected and analyzed by XRF in a day. Samples will be collected, stepping outward along grid lines, until sample concentrations are below the residential screening level of 400 mg/kg. It is assumed that approximately 60 XRF samples (LFXR01-LFXR60) will be collected at the FLFA; however, sampling will continue until the extent of lead is bound or the limits of the site, as defined by RFAAP and USACE, have been reached. Soil outside the FLFA boundary is be addressed as part of a separate, future effort related to SWMU 17A.

Once the limits of lead above the residential clean-up criteria have been defined with the XRF, confirmation samples will be collected at the perimeter of the delineated area and analyzed at a fixed-base laboratory. It is anticipated that ten samples (LFSS05-LFSS14) will be sufficient to confirm the XRF results. The confirmation samples will be analyzed for PCBs and dioxins/furans in addition to TAL metals, since these parameters were also elevated in site soil.

Table 5-6
Proposed Sampling and Analysis Plan
Former Lead Furnace Area
Radford AAP, Radford, VA

Media	Sampling ID	Depth	Location	Analytes
			Former Lead Furnace Area (FL	JFA)
Surface Soil	LFXR01-60	0-0.5 ft bgs		XRF Lead. A sufficient number of samples will be collected and screened to define the extent of lead in soil.
	LFSS04-14	0-0.5 ft bgs	At boundiaries of lead containing soil defined by XRF	TAL metals, TCL PCBs, dioxins/furans (assume 10 samples)
	LFSS15-21	0-0.5 ft bgs	Random grid samples within area defined by XRF	TAL metals, TCL PCBs, dioxins/furans (6 samples)
Groundwater	LFMW01	water table	in sinkhole near original furnace location.	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	17PZ01	water table	exisiting upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	17MW2	water table	exisiting upgradient well	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
	17MW3	water table	_	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
Surface Water	LFSW01	NA	at spring discharge on New River	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate
Sediment	LFSD01	NA		TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, dioxins/furans, perchlorate

In addition to the confirmation samples, six samples (LFSS15-LFSS21) from within the boundary of the lead-containing soil will be analyzed for PCBs and dioxins/furans to assess the soil for these constituents. These samples will be collected from randomly picked grid cells in accordance with systematic grid sampling strategy as defined in SOP 30.7 of the MWP (URS, 2003a).

<u>Groundwater:</u> In order to characterize the groundwater at the FLFA, a monitoring well (LFMW01) will be installed in the sinkhole by the original furnace location.

Drilling will be performed with HSA to allow split spoon sampling. If water is encountered in the overburden, the well will be installed through the augers. If additional drilling into the bedrock is required, drilling will switch to Air rotary drilling and will continue until water is encountered. The well will be constructed of two inch Schedule 40 PVC with 0.01 inch slot size screen. Ten feet of screened material will be used unless the rate of water production is low, in which case 15 to 20 ft of screen may be used. Number 1 sand will be used as a filter pack. The wells will be developed using a high capacity submersible pump, and will be periodically surged during development. Water quality parameters will be measured and recorded during development. Drilling and monitoring well installation will be performed in accordance with Section 5.2 and SOPs 20.1, 20.2 and 20.11 of the MWP (URS, 2003a).

Groundwater sampling from the existing wells and the newly installed well will be performed using low-flow sampling techniques and a submersible pump. Water quality parameters will be monitored until stabilized (3 consecutive readings within 10%), the flow cell will be removed, the flow rate will be reduced to 100 ml/min and then sampling will be performed. Groundwater samples will be obtained from the newly installed well and existing wells 17PZ1, 17MW2, and 17MW3. Samples from these wells will be analyzed for TCL VOCs, SVOCs, PAHs, pest/PCBs, explosives, herbicides, TAL metals, dioxins/furans, and perchlorate.

A surface water/sediment sample will be collected from the spring on the New River where a dye-trace study (Engineering Science, 1994) indicated discharge from the FLFA/SWMU 17A sinkhole. These samples will also be analyzed for TCL VOCs, SVOCs, PAHs, pest/PCBs, explosives, herbicides, TAL metals, dioxins/furans, and perchlorate.

Any available groundwater data from new or existing wells at SWMU 40/71 will be incorporated into the groundwater analysis for the FLFA as well since these sites are in the expected downgradient direction from the FLFA.

6.0 SWMU 43 – SANITARY LANDFILL NO. 2

6.1 SITE DESCRIPTION AND HISTORY

6.1.1 Site Description

SWMU 43 is a closed unlined sanitary landfill consisting of two adjacent two-acre cells located immediately adjacent to the New River in the northeast section of the MMA (**Figure 6-1**).

SWMU 43 is a flat level area at an approximate elevation of 1,700 ft msl. A drainage ditch located in the center of the SWMU divides the area into east and west sections. Based on aerial photography, the landfill apparently extends eastwest approximately 600 ft on either side of the drainage ditch. The north-south boundaries are the riverbank and paved roadway, respectively.

The western section is mostly grassy but has a small concrete pad and a gravel parking area, which are currently used to store office and

equipment trailers. Former descriptions of the site noted a pile of soil located adjacent to the roadway at the western end of the site that is no longer present. The eastern section is covered entirely with grass. Elongated depressions, which corresponded to the disposal trenches, were filled in and the site was regarded in accordance with the 1992 VI recommendation for the site.

6.1.2 Site History

The former trench-fill operation reportedly received at least 300 tons of paper and refuse over its active life. Borings along the fence to the north encountered sanitary landfill material consisting of paper, rubber, and plastic debris down to 18 ft bgs.

It was reported by RFAAP personnel that this landfill was operated from about 1967 through the early 1970s. A previous report (USATHAMA, 1976) described a sanitary landfill in the same location as having operated from 1958 to 1969.

6.2 SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

A comprehensive discussion of the regional physiography, soil, geology, and groundwater at RFAAP is included in the RFAAP MWP (URS, 2003a) and therefore is not discussed in this report.

6.2.1 Site Soil

6.2.2 Site Geology

The geology of the SWMU was investigated during the VI (Dames and Moore, 1992) through the drilling of two soil and rock borings south of the SWMU and four soil and rock borings north of the SWMU. Boring logs are presented in **Appendix B**. Subsurface conditions consist of fine-to coarse-grained alluvial deposits, which progressively thicken away from the New River. Alluvial deposits encountered in the vicinity consist mainly of fine-grained micaeous brown, sandy silts and silty sand with some interbedded silty clays.

6-1

SWMU 41 and 43, and Area O and P Boundaries

Other SWMU Boundary

Installation Boundary

Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 2,000 1,000

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 6-1 SWMU 41 and 43, and Areas O and P Site Location Map

Radford Army Ammunition Plant, Radford, VA

Eighteen feet of sanitary landfill material was encountered during the drilling of two downgradient borings drilled along the fence bordering the SWMU. Under the landfill material, a relatively thin layer of undisturbed fine grain silt to silty sand over weathered limestone rock was encountered. Where sediments were thicker in the upgradient borings, a basal layer of either river jack (silty gravel) or silty clay was present above weathered limestone bedrock.

Bedrock encountered in the vicinity of SWMU 43 generally consisted of highly argillaceous gray limestone and gray conglomeratic and brecciated limestone. Typically, limestone in this area was weathered to highly weathered, and fractured with vuggy and pitted zones and occasional clay seams.

During rock coring, large quantities of water were lost in fractured and weathered zones within the bedrock. The observed depth to limestone rock ranged from 23 to 30 ft in southern well bores and 17 to 23 ft in northern well bores.

6.2.3 Site Hydrogeology

Groundwater flows northward toward the New River at a hydraulic gradient of approximately 0.5 to 1 percent. An unconfined groundwater table was encountered from 18 to 23 ft bgs within the overburden soils in the upgradient well. Groundwater was encountered within the limestone bedrock at wells installed within the landfill and in downgradient wells.

Several groundwater seeps were observed discharging from the base of the embankment north of SWMU 43 along the New River. The seeps were detected at an elevation of approximately 1,681 ft msl.

6.2.4 Surface Water Hydrology

SWMU 43 is located adjacent to the New River at an elevation of approximately 1,700 ft msl. Surface water runoff from the SWMU is expected to flow towards a drainage ditch located in the center of the SWMU and is assumed to flow northward to the New River. Trench depressions also collect surface water that has the potential for infiltrating into the landfill.

6.3 PREVIOUS INVESTIGATIONS

There has been one previous investigation at SWMU 43. The investigation and sample results are summarized below.

6.3.1 VI, Dames and Moore, 1992

SWMU 43 was identified in the RFA (USEPA, 1987) as having a potential for releasing contaminants into the environment and was included in the RCRA Permit for Corrective Action and Incineration Operation (USEPA, 1989) as warranting investigation. Subsequently, a VI was conducted by Dames and Moore in 1992 to evaluate whether toxic or hazardous contaminants are present and are migrating, or have the potential to migrate beyond the boundaries of the identified SWMU. The VI program at SWMU 43 involved the installation and sampling of monitoring wells and the sampling of groundwater seeps in the vicinity of the unit.

6.3.1.1 Groundwater

One well was installed upgradient of each section of the landfill (43MW1 and 43MW2), and two wells were installed downgradient of each section (43MW3, 43MW4, 43MW5, and 43MW6) (**Figure 6-2**). The maximum depth of these six wells is 42 ft.

- Monitoring Well Location
- **Previous Investigation** Seep Sample Location
- Proposed Soil Sample Location

Proposed Surface Water Sample Location

10 ft Contour Line

SWMU 43 Boundaries

Other SWMU Boundary

1) Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 500

U.S. Army Corps of Engineers

FIGURE 6-2

SWMU 43 Sample Locations

Radford Army Ammunition Plant, Radford, VA

During installation of the monitoring wells, water levels were documented. In the two upgradient wells, the water table was encountered within the overburden soils from 18 to 23 ft bgs. In the two eastern downgradient wells (43MW5 and 43MW6), the water table was encountered at the overburden/bedrock interface, around 20 ft bgs. In the two western downgradient wells (43MW3 and 43MW4), it was encountered within the limestone bedrock. After groundwater levels stabilized, the hydraulic gradient confirmed that the general direction of groundwater flow is north toward the New River. Stabilized measurements also showed that groundwater elevations were 2 to 3 ft higher downgradient of the eastern unit. Groundwater elevations were 1682.41 and 1682.98 ft msl at 43MW3 and 43MW4, and 1685.17 and 1684.85 ft msl at 43MW5 and 43MW6. This is probably related to increased surface water recharge in the eastern unit. Visible trench depressions observed on the surface of the unit were very soft and contained standing water. This water slowly infiltrates the soil and recharges the aquifer, producing a higher water table under the eastern unit.

Groundwater samples were collected from the six wells and analyzed for metals, VOCs, SVOCs, TOC, TOX, and pH. Results of the chemical analyses indicated the presence of metals and VOCs in groundwater at SWMU 43 (**Table 6-1**). Three metals (arsenic, iron, and manganese) exceeded both tw-RBCs and MCLs in the downgradient wells. Two VOCs (1,2-dichloroethane and benzene) exceeded tw-RBCs in downgradient wells 43MW3 and 43MW6. Groundwater concentrations were below screening levels in both upgradient wells. TOC, TOX, and pH were generally similar in upgradient and downgradient samples.

6.3.1.2 Surface Water

Two surface water samples were collected from the groundwater seeps and were analyzed for metals, VOCs, SVOCs, TOC, and TOX. Results of the chemical analyses indicated the presence of 10 metals and one VOC in the surface water samples (**Table 6-2**). Four metals (arsenic, iron, manganese, and vanadium) were detected at concentrations above tw-RBCs and four metals (aluminum, arsenic, iron, and manganese) exceeded MCLs. No SVOCs were detected.

6.4 CONCEPTUAL SITE MODEL

Potentially affected media at SWMU 43 include surface and subsurface soil, groundwater, surface water, and sediment. SWMU 43 is located in a relatively gently sloping area on the south bank of the New River. Surface water runoff is expected to flow towards the New River to the north or towards the drainage ditch that bisects the site. The drainage ditch also flows north. Site workers, hypothetical future residents, and terrestrial biota are considered receptors. **Table 6-3** presents the exposure pathways for each human receptor. Ecological and human exposure pathways are shown on **Figure 6-3** (current) and **Figure 6-4** (future). The exposures pathways associated with each media type are described in more detail in the following paragraphs.

Surface soil is potentially impacted by landfill operations. Site workers, hypothetical future residents and ecological receptors could be impacted through incidental ingestion of soil, dermal absorption through direct contact with impacted soil, and the inhalation of dust.

Subsurface soil is also potentially impacted by the landfill operations. Previous investigation borehole data encountered 18 ft of landfill debris. Leachable constituents from the landfill would negatively impact the subsurface soil. Site workers could be negatively impacted through the inhalation of dust during removal/construction activities. Incidental ingestion and dermal

Table 6-1 SWMU 43 1992 VI Detected Results for Groundwater

T								
SITE ID	Screeni	no Level	43MW1	43MW2	43MW3	43MW4	43MW5	43MW6
FIELD ID	Screening Level		RDWB*1	RDWB*2	RDWB*3	RDWB*4	RDWB*5	RDWB*6
SAMPLING DATE	MCL	tw-RBC	29-OCT-91	29-OCT-91	30-OCT-91	30-OCT-91	31-OCT-91	01-NOV-91
DEPTH (ft)	WICL	tw-KBC	13-28	19.5-34.5	22.5-37.5	13.5-28.5	32.3-42.3	28-38
Metals (ug/L)				_				
Arsenic	10	0.045	nd	nd	5.5	4.2	3.1	14
Barium	2000	730	55.6	86.9	45.7	152	44.2	165
Calcium	na	na	55900	47200	139000	85800	113000	111000
Iron	300	1100	nd	nd	659	6630	84.5	14500
Magnesium	na	na	23800	20500	58400	30900	42300	47900
Manganese	50	73	4.8	nd	41.7	974	41	208
Potassium	na	na	779	1020	1300	827	1060	1410
Sodium	na	na	10400	5980	23000	10200	11100	27900
VOCs (ug/L)						_		
1,2-Dichloroethane	5	0.12	nd	nd	0.58	nd	nd	1.4
Benzene	5	0.34	nd	nd	0.5	nd	nd	nd
Carbon disulfide	na	100	nd	nd	6	nd	nd	2.3
Wet Chemistry (ug/l	L)							
TOC	na	na	2820	5330	4620	14300	7620	6690
TOX	na	na	141	14.8	65.7	52.5	66.5	59.8

Table 6-2 SWMU 43 1992 VI Detected Results for Surface Water

SITE ID FIELD ID	Screeni	ng Level	43SP1 RDWB*7	43SP2 RDWB*10
SAMPLING DATE DEPTH (ft)	MCL	tw-RBC	31-OCT-91 0-0	31-OCT-91 0-0
Metals (ug/L)				
Aluminum	50	na	403	nd
Arsenic	10	0.045	15.2	3.9
Barium	2000	730	194	84
Calcium	na	na	92000	72300
Iron	300	1100	32300	1730
Magnesium	na	na	41100	28300
Manganese	50	73	1300	98.1
Potassium	na	na	856	1510
Sodium	na	na	20800	9170
Vanadium	na	7	13.2	nd
VOCs (ug/L)		•		
Carbon disulfide	na	100	3.3	nd
Wet Chemistry (ug/L)				
TOC	na	na	12200	6140

Table 6-3 Selection of Exposure Pathways - SWMU 43

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current	Surface Soil	Surface Soil	SWMU 43	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at SWMU 43 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface soil at SWMU 43 on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface soil at SWMU 43 on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMU 43	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMU 43.
				Industrial Worker	Adult	Inhalation	On-site	None	There are no workers currently exposed to airborne volatiles or particulates from surface soil at SWMU 43 on a daily basis.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMU 43	None	None	None	On-site	None	Current excavation or construction activities are not occurring at SWMU 43.
	Groundwater	Groundwater	SWMU 43	None	None	None	On-site	None	Groundwater is not currently being used at SWMU 43. Therefore, there is currently no direct exposure to groundwater.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
Future	Surface Soil	Surface Soil	SWMU 43	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at SWMU 43 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact surface soil at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact surface soil at SWMU 43 and be exposed to COPCs via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Table 6-3 Selection of Exposure Pathways - SWMU 43

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Surface Soil	Air	SWMU 43	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMU 43.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from surface soil at SWMU 43.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	SWMU 43	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact soil at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact soil at SWMU 43 and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact soil at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact soil at SWMU 43 and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact soil at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact soil at SWMU 43 and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
					Child	Ingestion	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	SWMU 43	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from soils at SWMU 43.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from soils at SWMU 43.
				Excavation Worker	Adult	Inhalation	On-site	Quant	Excavation workers could be exposed to airborne volatiles or particulate matter released from soils at SWMU 43.

Table 6-3 Selection of Exposure Pathways - SWMU 43

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Total Soil (Surface and Subsurface)	Air	SWMU 43	Resident	Adult	Inhalation	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
					Child	Inhalation	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
				Trespasser	Adolescent	Inhalation	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Sediment	Sediment from Spring/Seep	SWMU 43	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact sediment at SWMU 43 and be exposed to COPCs via incidental ingestion.
		(assumes area will increase in size)				Dermal	On-site	Quant	Maintenance workers could contact sediment at SWMU 43 and be exposed to COPCs via dermal absorption.
		size)		Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact sediment at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact sediment at SWMU 43 and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact sediment at SWMU 43 and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact sediment at SWMU 43 and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	Adult residents could contact sediment at SWMU 43 and be exposed to COPCs via incidental ingestion during wading or swimming.
						Dermal	On-site	Quant	Adult residents could contact sediment at SWMU 43 and be exposed to COPCs via dermal absorption during wading or swimming.
					Child	Ingestion	On-site	Quant	Child residents could contact sediment at SWMU 43 and be exposed to COPCs via incidental ingestion during wading or swimming.
						Dermal	On-site	Quant	Child residents could contact sediment at SWMU 43 and be exposed to COPCs via dermal absorption during wading or swimming.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Surface Water	Surface Water from Spring/Seep (assumes area	SWMU 43	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers could contact surface water at SWMU 43 while wading. However, surface water ingestion is unlikely.
		will increase in size)				Dermal	On-site	Quant	Maintenance workers could contact surface water at SWMU 43 and be exposed to COPCs via dermal absorption while wading.
				Industrial Worker	Adult	Ingestion	On-site	None	Industrial workers could contact surface water at SWMU 43 while wading. However, surface water ingestion is unlikely.
						Dermal	On-site	Quant	Industrial workers could contact surface water at SWMU 43 and be exposed to COPCs via dermal absorption while wading.

Table 6-3 Selection of Exposure Pathways - SWMU 43

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion		
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway		
Future (cont.)	Surface Water	Surface Water from Spring/Seep	SWMU 43	Excavation Worker	Adult	Ingestion	On-site	None	Excavation workers could contact surface water at SWMU 43 while wading. However, surface water ingestion is unlikely.		
		(assumes area will increase in size)				Dermal	On-site	Quant	Excavation workers could contact surface water at SWMU 43 and be exposed to COPCs via dermal absorption while wading.		
		size)			Resident	Adult	Ingestion	On-site	Quant	Residents could contact surface water at SWMU 43 while wading or swimming. Surface water ingestion while wading is considered unlikely.	
						Dermal	On-site	Quant	Adult residents could contact surface water at SWMU 43 and be exposed to COPCs via dermal absorption while wading or swimming.		
					Child	Ingestion	On-site	Quant	Residents could contact surface water at SWMU 43 while wading or swimming. Surface water ingestion while wading is considered unlikely. Surface water ingestion while swimming is evaluated.		
						Dermal	On-site	Quant	Child residents could contact surface water at SWMU 43 and be exposed to COPCs via dermal absorption while wading or swimming.		
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.		
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.		
	Groundwater	Groundwater	SWMU 43	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers would not contact groundwater at SWMU 43.		
						Dermal	On-site	None	Maintenance workers would not contact groundwater at SWMU 43.		
				I		Industrial Worker	Adult	Ingestion	On-site	Quant	If SWMU 43 were to be further developed for industrial purposes and groundwater wells were installed at the site, site workers could be exposed to COPCs in groundwater via ingestion.
						Dermal	On-site	None	Although site worker dermal exposures to groundwater could occur, the exposed body surface area of a worker (i.e., hands and arms) would be small and exposures would be infrequent.		
				Excavation Worker	Adult	Ingestion	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at SWMU 43.		
						Dermal	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at SWMU 43.		
				Resident	Adult	Ingestion	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.		
						Dermal	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.		
					Child	Ingestion	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.		
						Dermal	On-site	Quant	If SWMU 43 were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.		

Table 6-3 Selection of Exposure Pathways - SWMU 43

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion			
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway			
Future (cont.)	Groundwater	Groundwater	SWMU 43	Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely.			
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely.			
		Homegrown fruits and	SWMU 43	Resident	Adult	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.			
		vegetables			Child	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.			
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.			
			Indoor Vapors	Industrial Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into buildings via vapor intrusion.			
			Trench Vapors	Excavation Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into a construction or utility trench via vapor intrusion.			
			Volatiles at Showerhead	Resident	Adult	Inhalation	On-site	Quant	If groundwater wells were installed for residential purposes, adult residents could contact volatiles in groundwater via showering.			
					Child	Inhalation	On-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.			
			Indoor Vapors	Resident	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.			
									Child	Inhalation	On-site	Quant
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would			
		Groundwater	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.			
						Dermal	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.			
					Child	Ingestion	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.			
						Dermal	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.			
				Trespasser	Adolescent	Ingestion	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.			
						Dermal	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.			
		Homegrown fruits and vegetables	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.			
					Child	Ingestion	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.			

Table 6-3 Selection of Exposure Pathways - SWMU 43

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Future (cont.)	Groundwater	Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, volatiles could be released from groundwater into ambient air. Off-site maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into an off-site construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate to off-site wells in the future, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	Off-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
					Child	Inhalation	Off-site	Quant	If COPCs from SWMU 43 groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	Off-site	None	The maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Shaw™ Shaw Environmental, Inc.

O Indicates pathway/receptor combinations incomplete or no source

Figure 6-3. Current Land Use Conceptual Site Model for SWMU 43 Radford Army Ammunition Plant, Virginia

DRAWING	JIS, III	CHECKED BY	СН	2/20/07	DRAWING NO.
BY	1/24/07	APPROVED BY	СН	2/20/07	S-123461-1/07-w

absorption may also affect site workers during construction activities that expose the subsurface soil.

Groundwater is also potentially impacted by the landfill operations. Groundwater was encountered at approximately 20 ft bgs at the site and leachable constituents that have potentially impacted subsurface soil would also have impacted groundwater. Future development of groundwater resources in the area could potentially impact site workers and future residents through ingestion, inhalation of vapors or dermal absorption.

Surface water/sediment in the ditch that bisects the site and in the adjacent New River is potentially impacted by runoff from the landfill or discharge of site groundwater. Site workers, hypothetical future residents and ecological receptors could be impacted through incidental ingestion, inhalation of sediment dust during dry periods, inhalation of volatiles from surface water or absorption through direct contact with impacted sediment or surface water.

6.5 DATA GAP ANALYSIS

This section identifies data gaps in the current understanding of the site and is the basis for the investigation approach described in the next section.

The complete extent of the landfill has not been defined at this site. This is a data gap that will be addressed with a geophysical survey. The previous investigation focused on whether constituents were migrating from the landfill into groundwater and ultimately the New River. The VI did not address characterization of the landfill material or the soil in and under the landfill. The absence of soil samples is a data gap for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, and TAL metals.

Although groundwater and surface water were investigated during the VI, the existing data is 12 years old. Current chemical data that can be compared to soil data is a data gap and the groundwater monitoring wells and seeps will be re-sampled to obtain current data for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals and perchlorate.

6.6 INVESTIGATION APPROACH

Additional investigative activities will be performed to augment the existing data and fill data gaps. Soil samples will be collected to characterize landfill material and the vertical extent of the landfill. Groundwater and surface water samples collected during previous investigations suggest potential impacts to these media from metals and VOCs. Groundwater samples collected during the VI identified three metals (arsenic, iron, and manganese) and two VOCs (1,2-dichloroethane and benzene) at concentrations exceeding screening levels in downgradient monitoring wells. Results from New River seep samples collected during the VI indicated that five metals (aluminum, arsenic, iron, manganese, and vanadium) were detected at levels exceeding MCLs and tw-RBCs.

A data gap analysis for the SWMU indicated that there are data needs related to chemical groups that have not been investigated at this site. The chemical parameters needed include PAHs, explosives, TCL pesticides/PCBs, herbicides, dioxins/furans, and perchlorate.

Proposed samples and analyses are summarized in **Table 6-4**. Proposed sample locations are presented on **Figure 6–2**. Specific site investigation elements include:

Table 6-4 Proposed Sampling and Analysis Plan SWMU 43 Radford AAP, Radford, VA

Media	Sampling ID	Depth	Location	Analytes
			SWMU 43	
Surface Soil	43SB01A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB02A	0-0.5 ft bgs	in east cell	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	433B02A	0-0.5 It bgs	in cast cen	explosives, TAL metals
	43SB03A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB04A	0-0.5 ft bgs	in east cell	explosives, TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	+35B0+11	0 0.5 11 0gs	in cust cen	explosives, TAL metals
	43SB05A	0-0.5 ft bgs	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB06A	0-0.5 ft bgs	in west cell	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB07A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals
	43SB08A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals, dioxins/furans
	43SB09A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals
	43SB010A	0-0.5 ft bgs	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	1000010			explosives, TAL metals
Subsurface Soil	43SB01B	in waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals
	43SB01C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	42CD02D		:	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB02B	in waste	in east cell	explosives, TAL metals
	43SB02C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB03B	in waste	in east cell	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	4555055	iii waste	iii east ceii	explosives, TAL metals, dioxins/furans
	43SB03C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB04B	in waste	in east cell	explosives, TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	-35B0-1B	iii waste	in cust cen	explosives, TAL metals
	43SB04C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB05B	in waste	in east cell	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB05C	below waste	in east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB06B	in waste	in west cell	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB06C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals
	43SB07B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	42CD07C	1 1		explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB07C	below waste	in west cell	explosives, TAL metals
	43SB08B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB08C	below waste	in west cell	explosives, TAL metals, dioxins/furans TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	433B08C	below waste	iii west een	explosives, TAL metals, dioxins/furans
	43SB09B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	43SB09C	below waste	in west cell	explosives, TAL metals TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
				explosives, TAL metals
	43SB10B	in waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals
	43SB10C	below waste	in west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
_				explosives, TAL metals
Groundwater	43MW1	21	exsiting well - upgradient, east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	43MW2	27	exsiting well - upgradient, west	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	423 6372	20	cell	explosives, TAL metals, perchlorate
	43MW3	30	exsiting well - downgradient, west cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	43MW4	21	exsiting well - downgradient,	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
	42MW/5	27	west cell	explosives, TAL metals, perchlorate
	43MW5	37	exsiting well - downgradient, east cell	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	43MW6	33	exsiting well - downgradient, east	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
Surface Water	43SW01	NA	cell At seep on New River (collocated	explosives, TAL metals, perchlorate TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
puriace water	735 1101	1873	with 43SP1)	explosives, TAL metals, perchlorate
	43SW02	NA	At seep on New River (collocated	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides,
			with 43SP2)	explosives, TAL metals, perchlorate

- Geophysics: A geophysical survey to define landfill boundaries will be conducted prior to the collection of soil samples so that boring locations can be adjusted to investigate anomalies identified in the geophysical survey. An EM survey will be conducted in accordance with Section 5.5 and SOP 20.7 of the MWP (URS, 2003a).
- <u>Surface Water Sampling:</u> Two surface water samples will be collected from the seeps where previous samples 43SP1 and 43SP2 were collected. These samples will be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, and perchlorate. These samples are intended to characterize groundwater that is leaving the site and entering the New River. If additional seeps are located near the western cell, samples will also be collected at these locations (up to three).
- <u>Soil Sampling:</u> Five soil borings with three samples per boring ("A" surface soil [0-0.5 ft bgs]; "B" in waste sample [depth will be determined in the field]; and "C" below waste sample [depth will be determined in the field]) in each cell so that there are five samples from each distinct layer (surface soil, waste, below waste) at each cell for statistical comparisons. 43SB01 43SB05 will be collected from the east landfill cell and 43SB06 43SB10 will be collected from the west landfill cell. 43SB06 is located near the concrete pad and former soil pile at the west end of the site. These samples will be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, and TAL metals. Samples collected from borings 43SB03 and 43SB08 will also be analyzed for dioxins/furans to characterize each landfill cell for these constituents.
- <u>Groundwater Sampling:</u> Groundwater samples will be collected from the six existing wells (43MW1 43MW6) to assess potential contaminant migration. These samples will also be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals and perchlorate.

7.0 AREA P – BATTERY STORAGE AREA

7.1 SITE DESCRIPTION AND HISTORY

7.1.1 Site Description

The Spent Battery Storage Area, Area P (Figure 7-1), is a 50 ft by 200 ft long fenced gravel area

located adjacent to the New River. The site is generally level, sloping gently towards the north to the river, which is 200 ft from the storage area. No site-specific subsurface or hydrogeologic studies have been conducted at this site; however, groundwater is expected to flow north to the river.

7.1.2 Site History

Area P is in the center of a scrap metal yard that was formerly used for storage of shredded scrap metal, decommissioned tanks, powder cans, and batteries prior to off-post shipment. The sole

previous investigation (Dames and Moore, 1992) at the site was intended to assess whether the site was impacted by the spillage of spent battery acid.

7.2 SITE GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

A comprehensive discussion of the regional physiography, soil, geology, and groundwater at RFAAP is included in the RFAAP MWP (URS, 2003a) and therefore is not discussed in this report.

7.2.1 Site Soil

The surface of the site is a gravel pad. Soil at the site is mapped as Unison-Urban Land Complex (SCS, 1985) and has been reworked through activities at RFAAP. It is described as having moderate permeability, low organic content and medium acidity. In unworked areas, the soils have a 15-inch thick top soil of dark brown loam, and a 43-inch subsoil of yellowish-red sticky clay, which is underlain by red sandy clay to a depth of 58 inches.

7.2.2 Site Geology

There have been no subsurface investigations at the site. The site is located on a river terrace deposit and the subsurface soil is expected to consist of a mixture of sands, silts, and clays with occasional gravel "riverjack" stringers where former channels existed.

7.2.3 Site Hydrogeology

There are no monitoring wells installed at the site and no site-specific groundwater investigations have been conducted. The site is located on a river terrace deposit of unconsolidated sediments. Groundwater is expected to flow north through the unconsolidated sediments and discharge to the New River.

7.2.4 Surface Water Hydrology

Area P is a generally flat area that slopes gently towards the north in the direction of the New River. The elevation at the site ranges from approximately 1,710 ft msl at the south edge of the

SWMU 41 and 43, and Area O and P Boundaries

Other SWMU Boundary

Installation Boundary

Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

Scale: 2,000 1,000

U.S. Army Corps of Engineers

Shaw Environmental, Inc.

FIGURE 7-1

SWMU 41 and 43, and Areas O and P Site Location Map Radford Army Ammunition Plant,

Radford, VA

site to approximately 1,700 ft msl at the northwest corner of the site. Surface water runoff is expected to follow topography towards the New River. According to RFAAP utility maps, there are no storm drains or other engineered drainage systems at the site.

7.3 PREVIOUS INVESTIGATIONS

There has been one previous investigation at Area P. Results are summarized below.

7.3.1 VI, Dames and Moore, 1992

In 1992, soils at Area P were evaluated to determine if they had been impacted from the possible spillage of spent battery acid. At each of five locations, one surface (0-0.5 ft bgs) and one subsurface soil sample (4-5 ft bgs) was collected and analyzed for TAL metals and pH. Arsenic, beryllium, and cobalt were detected at concentrations greater than screening criteria at the time of the investigation. However, a current review of the metals results indicates that these concentrations are below the RFAAP Facility-Wide Background inorganic screening levels (IT, 2002a).

Compared to current RBCs, antimony and copper each exceeded the R-RBC in sample PSB2A (0-0.5 ft bgs). The remaining metals were below screening criteria. Results from the samples are presented in **Table 7-1**. Sample locations are presented on **Figure 7-2**. pH results indicated that soil samples varied from neutral to slightly basic.

7.4 CONCEPTUAL SITE MODEL

Potentially affected media at Area P include surface and subsurface soil and groundwater. Area P is located in a relatively gently sloping area on the south bank of the New River. Surface water runoff is expected to flow towards the New River to the north. Site workers, hypothetical future residents, and terrestrial biota are considered receptors. **Table 7-2** presents the exposure pathways for each human receptor ecological and human exposure pathways are shown on **Figure 7-3** (current) and **Figure 7-4** (future). The exposures pathways associated with each media type are described in more detail in the following paragraphs.

Surface soil is potentially impacted by past operations. Site workers, hypothetical future residents and ecological receptors could be impacted through incidental ingestion of soil, dermal absorption through direct contact with impacted soil, and the inhalation of dust.

Subsurface soil is also potentially impacted by past site operations. Leachable constituents would migrate down through the soil column and negatively impact the subsurface soil. Site workers could be negatively impacted through the inhalation of dust during removal/construction activities. Incidental ingestion and dermal absorption may also affect site workers during construction activities that expose the subsurface soil.

Groundwater is also potentially impacted by past site operations. Groundwater is expected to be shallow at the site due to its proximity to the New River and leachable constituents that have potentially impacted subsurface soil would also have impacted groundwater. Future development of groundwater resources in the area could potentially impact site workers and future residents through ingestion, inhalation of vapors or dermal absorption.

7.5 DATA GAP ANALYSIS

This section identifies data gaps in the current understanding of the site and is the basis for the investigation approach described in the next section.

Groundwater has not been investigated at the site. Although previous investigation soil data does not indicate that constituents are migrating downward, the absence of previous groundwater sampling makes this a data gap for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides explosives, TAL metals, and perchlorate.

Soil samples (surface and subsurface) from the previous investigation at the site were analyzed for TAL metals and pH because these constituents were the most likely to be elevated due to the past history of battery storage at the site. A data gap exists for other analyte classes (TCL VOCs, SVOCs, pesticides/PCBs, herbicides, and explosives) in both surface and subsurface soil.

7.6 INVESTIGATION APPROACH

In order to complete the characterization of Area P, additional samples need to be collected to fill data gaps. A summary of the proposed samples is presented in **Table 7-3** and sample locations are presented on **Figure 7-2**. The samples are briefly described in the following subsections.

<u>Soil</u>: The collection of five surface soil (APSB6A – APSB10A) and five subsurface soil samples (APSB6B – APSB10B). Surface soil samples will be collected from 0-0.5 ft bgs and subsurface soil samples will be collected from 4-6 ft bgs. Samples will be collected using a direct push rig, and will be collected in accordance with Section 5.2 and SOP 30.1 of the MWP (URS, 2003a). These samples are intended to fill data gaps and will be analyzed for the following previously untested analyte classes: TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides and explosives.

<u>Groundwater:</u> Groundwater at the site has not been analyzed. Based on the site history and previous sampling at the site, it is expected that groundwater has not been impacted by site activities. Five direct push groundwater samples will be collected to demonstrate that groundwater is not impacted. These samples will be analyzed for TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, and perchlorate to characterize Area P groundwater. Direct push groundwater sampling will follow Section 5.2 and SOP 20.12 of the MWP (URS, 2003a).

Table 7-1 1992 VI Detected Results for Soil - Area P

SITE ID FIELD ID SAMPLING DATE	i-RBC	r-RBC	Background	PSB1 RVFS*76 05-MAR-92	PSB1 RVFS*77 05-MAR-92	PSB2 RVFS*78 05-MAR-92	PSB2 RVFS*79 05-MAR-92	PSB2 RVFS*105 05-MAR-92	PSB3 RVFS*80 05-MAR-92	PSB3 RVFS*81 05-MAR-92	PSB4 RVFS*82 05-MAR-92	PSB4 RVFS*83 05-MAR-92	PSB5 RVFS*84 05-MAR-92	PSB5 RVFS*85 05-MAR-92
DEPTH (ft)				0-0.5	4-5	0-0.5	4-5	4-5	0-0.5	4-5	0-0.5	4-5	0-0.5	4-5
Metals (mg/kg)	•													
Aluminum	na	na	40041	12500	16600	3620	15800	15300	11000	18200	10400	6350	13200	5580
Antimony	41	3.1	na	nd	nd	10.5	nd	nd	nd	nd	nd	nd	nd	nd
Arsenic	1.9	0.43	15.8	3.4	1.5	2.0	1.2	1.5	1.7	1.3	0.9	0.7	2.44	0.6
Barium	20000	1600	209	138	113	73.1	126	104	132	187	<u>257</u>	176	189	145
Beryllium	200	16	1.02	0.6	nd	nd	0.7	0.7	0.8	0.9	nd	nd	0.69	nd
Calcium	na	na	na	3350	1330	160000	2740	1540	2080	2300	1510	815	5000	1120
Chromium	310	23	65.3	59.6	28.3	7.6	25.6	27.1	22.2	33.5	22.7	12.7	27.7	12.6
Cobalt	na	na	72.3	12.6	13.5	2.6	11.6	12.2	10.5	11.8	10.1	5.8	11.4	5.7
Copper	4100	310	53.5	71.3	15.1	<u>347</u>	125	65.3	15.7	34.9	25.1	6.6	76.2	10.3
Iron	31000	2300	50962	24900	27500	6880	24400	25700	19600	24700	17200	11600	23400	10400
Lead	800	400	26.8	37.6	nd	105	21.9	23.5	29.1	49.2	43.7	nd	150	nd
Magnesium	na	na	na	4110	4860	83000	4720	4100	3210	4770	3260	2000	5670	1940
Manganese	2000	160	2543	608	493	130	447	457	625	430	582	253	497	308
Nickel	2000	160	62.8	33.4	18.4	9.0	16.8	17.8	13.0	20.3	15.9	9.1	17.2	8.9
Potassium	na	na	na	1400	1920	932	1880	1810	1260	1890	1220	996	1740	626
Silver	510	39	na	nd	0.68	1.8	0.7	0.8	nd	nd	nd	nd	0.7	nd
Sodium	na	na	na	206	185	281	200	163	179	198	261	218	222	188
Vanadium	102	7.8	108	40.2	49.8	12.1	46.4	49.6	31.3	44.0	27.5	17.2	41.4	15.2
Zinc	31000	2300	202	155	73.6	115	89.1	81.4	128	84.9	121	51.3	159	53.4
Wet Chemistry														
pН	na	na	na	8	6.9	8.7	7.6	7.6	7.8	6.9	7.5	7.3	8	7.6

- Previous Investigation Soil Sample Location
- Proposed Soil Sample Location
- Proposed Geoprobe Groundwater Sample Location
- 10 ft Contour Line
- Area P Boundary

1) Aerial photo, dated 25 May 2000, was obtained from the Army Topographic Engineering Center.

U.S. Army Corps of Engineers

Shaw[®] Shaw Environmental, Inc.

FIGURE 7-2

Area P Sample Locations

Radford Army Ammunition Plant, Radford, VA

.Workplan_SWMU41_Sample

Table 7-2 Selection of Exposure Pathways - Area P

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Current	Surface Soil	Surface Soil	Area P	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at Area P and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at Area P and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	None	There are no workers currently exposed to surface soil at Area P on a daily basis.
						Dermal	On-site	None	There are no workers currently exposed to surface soil at Area P on a daily basis.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	Area P	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at Area P.
				Industrial Worker	Adult	Inhalation	On-site	None	There are no workers currently exposed to airborne volatiles or particulates from surface soil at Area P on a daily basis.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	Area P	None	None	None	On-site	None	Current excavation or construction activities are not occurring at Area P.
	Groundwater	Groundwater	Area P	None	None	None	On-site	None	Groundwater is not currently being used at Area P. Therefore, there is currently no direct exposure to groundwater.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
Future	Surface Soil	Surface Soil	Area P	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact surface soil at Area P and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact surface soil at Area P and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact surface soil at Area P and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact surface soil at Area P and be exposed to COPCs via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

Table 7-2 Selection of Exposure Pathways - Area P

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Surface Soil	Air	Area P	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from surface soil at Area P.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from surface soil at Area P.
				Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Total Soil (Surface and Subsurface)	Total Soil (Surface and Subsurface)	Area P	Maintenance Worker	Adult	Ingestion	On-site	Quant	Maintenance workers could contact soil at Area P and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Maintenance workers could contact soil at Area P and be exposed to COPCs via dermal absorption.
				Industrial Worker	Adult	Ingestion	On-site	Quant	Industrial workers could contact soil at Area P and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Industrial workers could contact soil at Area P and be exposed to COPCs via dermal absorption.
				Excavation Worker	Adult	Ingestion	On-site	Quant	Excavation workers could contact soil at Area P and be exposed to COPCs via incidental ingestion.
						Dermal	On-site	Quant	Excavation workers could contact soil at Area P and be exposed to COPCs via dermal absorption.
				Resident	Adult	Ingestion	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
					Child	Ingestion	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in total soil via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Air	Area P	Maintenance Worker	Adult	Inhalation	On-site	Quant	Maintenance workers could be exposed to airborne volatiles or particulate matter released from soils at Area P.
				Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers could be exposed to airborne volatiles or particulate matter released from soils at Area P.
				Excavation Worker	Adult	Inhalation	On-site	Quant	Excavation workers could be exposed to airborne volatiles or particulate matter released from soils at Area P.

Table 7-2 Selection of Exposure Pathways - Area P

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Total Soil (Surface and Subsurface)	Air	Area P	Resident	Adult	Inhalation	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
					Child	Inhalation	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to airborne volatiles or particulate matter released from total soil.
				Trespasser	Adolescent	Inhalation	On-site	None	Given the industrial nature of the site, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
	Groundwater	Groundwater	Area P	Maintenance Worker	Adult	Ingestion	On-site	None	Maintenance workers would not contact groundwater at Area P.
						Dermal	On-site	None	Maintenance workers would not contact groundwater at Area P.
				Industrial Worker	Adult	Ingestion	On-site	Quant	If Area P were to be further developed for industrial purposes and groundwater wells were installed at the site, site workers could be exposed to COPCs in groundwater via ingestion.
						Dermal	On-site	None	Although site worker dermal exposures to groundwater could occur, the exposed body surface area of a worker (i.e., hands and arms) would be small and exposures would be infrequent.
					Excavation Worker	Adult	Ingestion	On-site	None
						Dermal	On-site	None	Based on the depth to groundwater, excavation workers would not contact groundwater at Area P.
				Resident	Adult	Ingestion	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via ingestion. The residential scenario is not considered to be a reasonably anticipated land use; however, it is being included in this evaluation to meet "clean closure" requirements under RCRA.
						Dermal	On-site	Quant	If Area P were to be further developed for residential purposes, residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
						Dermal	On-site	None	Due to security at the installation, trespasser exposures are unlikely.
		Homegrown fruits and	Area P	Resident	Adult	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		vegetables			Child	Ingestion	On-site	Quant	Residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.

Table 7-2 Selection of Exposure Pathways - Area P

Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
Future (cont.)	Groundwater	Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	On-site	Quant	Volatiles could be released from groundwater into ambient air. Maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into a construction or utility trench via vapor intrusion.
			Volatiles at Showerhead	Resident	Adult	Inhalation	On-site	Quant	If groundwater wells were installed for residential purposes, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	On-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
					Child	Inhalation	On-site	Quant	Volatiles in groundwater could potentially migrate into residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	On-site	None	Due to security at the installation, trespasser exposures are unlikely. However, the maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Groundwater	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
					Child	Ingestion	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via ingestion.
						Dermal	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, off-site residents could be exposed to COPCs in groundwater via dermal absorption.
				Trespasser	Adolescent	Ingestion	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
						Dermal	Off-site	None	The residential scenario would be protective of the limited exposures that would be experienced by a trespasser.
		Homegrown fruits and vegetables	Off-site	Resident	Adult	Ingestion	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
					Child	Ingestion	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, off-site residents could ingest COPCs in groundwater that had been taken up by homegrown fruits and vegetables.
		Air	Volatile groundwater COPCs released to ambient air	Maintenance Worker	Adult	Inhalation	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, volatiles could be released from groundwater into ambient air. Off-site maintenance workers could be exposed via inhalation.
			Indoor Vapors	Industrial Worker	Adult	Inhalation	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site buildings via vapor intrusion.
			Trench Vapors	Excavation Worker	Adult	Inhalation	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into an off-site construction or utility trench via vapor intrusion.

Table 7-2 Selection of Exposure Pathways - Area P

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Future (cont.)	Groundwater	Air	Volatiles at Showerhead	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from Area P groundwater were to migrate to off-site wells in the future, adult residents could contact volatiles in groundwater via showering.
					Child	Inhalation	Off-site	None	Children are assumed to bathe rather than shower. Therefore, inhalation exposure is assessed using only indoor air.
			Indoor Vapors	Resident	Adult	Inhalation	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
					Child	Inhalation	Off-site	Quant	If COPCs from Area P groundwater were to migrate off-site in the future, volatiles in groundwater could potentially migrate into off-site residences via vapor intrusion.
			Volatile groundwater COPCs released to ambient air	Trespasser	Adolescent	Inhalation	Off-site	None	The maintenance worker scenario would be protective of the limited exposures that would be experienced by a trespasser.

O Indicates path combinations

Shaw™ Shaw Environmental, Inc.

O Indicates pathway/receptor combinations incomplete or no source

Figure 7-3. Current Land Use Conceptual Site Model for Area P Radford Army Ammunition Plant, Virginia

DRAWING	JIS, III	CHECKED BY	СН	2/20/07	DRAWING NO.
BY	1/24/07	APPROVED BY	СН	2/20/07	S-123461-1/07-w

1	DRAWING	JIS, III	CHECKED BY	СН	2/20/07	DRAWING NO.
	BY	1/24/07	APPROVED BY	СН	2/20/07	S-123461-1/07-w

Table 7-3 Proposed Sampling and Analysis Plan Area P Radford AAP, Radford, VA

Media	Sampling ID	Depth	Location	Analytes
			Area P	
Surface Soil Subsurface Soil	APSB06A	0-0.5 ft bgs	upgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB07A	0-0.5 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB08A	0-0.5 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB09A	0-0.5 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB10A	0-0.5 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
Subsurface Soil	APSB06B	4-6 ft bgs	upgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB07B	4-6 ft bgs	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB08B	4-6 ft bgs	central area within former battery storage area	explosives
	APSB09B	4-6 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
	APSB10B	4-6 ft bgs	downgradient end of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives
Groundwater	APGW01	water table	upgradient of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW02	water table	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW03	water table	central area within former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW04	water table	downgradient of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate
	APGW05	water table	downgradient of former battery storage area	TCL VOCs, SVOCs, PAHs, pesticides/PCBs, herbicides, explosives, TAL metals, perchlorate

8.0 REFERENCES

- Alliant TechSystems (ATK), 2000. Safety, Security and Environmental Rules for Contractors and Subcontractors.
- Alliant TechSystems (ATK), 2003. Responses to URS Group SWMU 41 questions.
- Argonne National Laboratory (ANL), 2003. *Geophysical Survey: SWMU 41, Radford Army Ammunition Plant*. Prepared for U.S. Army Corps of Engineers Baltimore District, Baltimore, Maryland.
- BCM Eastern (BCM), 1984. Groundwater Quality and Site Assessment Study of Hazardous Waste Management Sites 4, 5, 6 and 7; Solid Waste Management Sites 8 and 9, Pollution Spill Area, at the Radford Army Ammunition Plant, Radford Virginia.
- Dames and Moore, 1992. *Draft Verification Investigation (VI) Report for the Radford Army Ammunition Plant, Virginia*. Prepared for the U.S. Army Toxic and Hazardous Materials Agency.
- Dames and Moore, 1994. Final Draft RCRA Facility Investigation (RFI) Report for the Radford Army Ammunition Plant, Virginia. Prepared for the U.S. Army Toxic and Hazardous Materials Agency.
- Department of the Army, 1987. Technical Manual TM 5-814-8, Evaluation Criteria Guide for Water Pollution Prevention, Control, and Abatement Programs.
- Virginia Department of Mines, Minerals, and Energy, Division of Mineral Resources (DMR), (2000). *Draft Geologic Map of Radford, North, Virginia Quadrangle*. M.J. Bartholamew and A. Schultz.
- Engineering Science, Inc., 1994. *Dye-Tracing Study Report, Radford Army Ammunition Plant*. Prepared for U.S. Army Environmental Center.
- ICF Kaiser Engineers, Inc. (ICF KE), 1999. Draft RCRA Facility Investigation Report for SWMUs 31, 39, 48, 49, and 58. January 1999.
- IT Corporation (IT), 2002a. *Facility-Wide Background Study*. Prepared for U.S. Army Corps of Engineers, Baltimore District.
- IT Corporation (IT), 2002b. *Radford Army Ammunition Plant, Master Work Plan Addendum* 012. Draft Final document. February 2002. Delivery Order No. 0013, Contract No. DACA31–94–D–0064.
- Parsons Engineering Science, Inc. (Parsons), 1996. Draft RCRA Facility Investigation for Solid Waste Management Units 17, 31, 48, 54 at Radford Army Ammunition Plant, Virginia. Prepared for U.S. Army Environmental Center. January 1996.
- Parsons Engineering Science, Inc. (Parsons), 1997. New River and Tributaries Study. Radford Army Ammunition Plant, Virginia. Prepared for U.S. Army Environmental Center.
- Shaw Environmental, Inc. (Shaw), 2006. *Eastern HSA Groundwater Data Report*. Prepared for U.S. Army Corps of Engineers Baltimore District. May 2006.
- Soil Conservation Service (SCS), 1985. Soil Surveys of Montgomery and Pulaski Counties, Virginia. U.S. Department of Agriculture. September 1985.

- URS Corporation (URS), 2003a. *Master Work Plan, Quality Assurance Plan, Health and Safety Plan: Document, Radford Army Ammunitions Plant, Radford, Virginia.* Prepared for U.S. Army Corps of Engineers, Baltimore District.
- URS Corporation (URS), 2003b. RCRA Facility Investigation at Solid Waste Management Unit 41, Work Plan Addendum No. 18. Radford Army Ammunition Plant, Radford, Virginia. December.
- URS Corporation (URS), 2005. *Radford Army Ammunition Plant RCRA Facility Investigation Report for Solid Waste Management Unit 41*. Prepared for U.S. Army Corps of Engineers Baltimore District. September 2005.
- U.S. Army Corps of Engineers (USACE), 1988. Feasibility Study for Hazardous Waste Management Sites 4, 5, 7 and 16, Radford Army Ammunition Plant, Radford Virginia. U.S. Army Engineer Waterways Experimentation Station, Vicksburg, Mississippi.
- U.S. Army Environmental Hygiene Agency (USAEHA), 1981. Army pollution Abatement Study, Installation of Monitoring Wells. Radford Army Ammunition Plant, Radford, Virginia (USAEHA no. 81-26-8252-81).
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1976. *Installation Assessment of Radford Army Ammunition Plant*. Records Evaluation Report No. 103.
- U.S. Environmental Protection Agency (USEPA), 1987. RCRA Facility Assessment for Radford Army Ammunition Plant, Radford, Virginia, VAD-21-002-0730.
- U.S. Environmental Protection Agency (USEPA), 1989. Draft Permit for Corrective Action and Incinerator Operation, Radford Army Ammunition Plant, Radford, Virginia, VAD-21-002-0730.
- U.S. Environmental Protection Agency (USEPA), 1991. *Role of Baseline Risk Assessment in Superfund Remedy Selection Decisions*. OSWER Directive 9355.0-30. Memo from Don R. Clay. April 22, 1991.
- U.S. Environmental Protection Agency (USEPA), 1992. *Installation Assessment, Radford Army Ammunition Plant, Radford, Virginia*. Environmental Photographic Interpretation Center (EPIC).
- U.S. Environmental Protection Agency (USEPA), 1994. *Guidance for the Data Quality Objectives Process*. EPA/600/R-96/055. September.
- U.S. Environmental Protection Agency (USEPA), 1997. Test Methods for Evaluating Solid Waste Physical/Chemical Methods. 3rd Edition, Update III, July.
- U.S. Environmental Protection Agency (USEPA), 2000a. *Guidance for Data Quality Objectives for Hazardous Waste Sites*. EPA/300/R-00/007. Office of Solid Waste and Emergency Response.
- U.S. Environmental Protection Agency (USEPA), 2000b. Permit for Corrective Action and Waste Minimization; Pursuant to the Resource Conservation and Recovery Act as Amended by the Hazardous and Solid Waste Amendments of 1984, Radford Army Ammunition Plant, Radford, Virginia, VA1210020730.

- U.S. Environmental Protection Agency (USEPA), 2005. *Guidelines for Carcinogen Risk Assessment*, Final. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. EPA/630/P-03/001A, NCEA-F-0644. March.
- U.S. Environmental Protection Agency (USEPA), 2006a. *USEPA Region III Risk-Based Concentration Table*. October 2006.
- U.S. Environmental Protection Agency (USEPA), 2006b. *Drinking Water Standards*. Office of Water. Washington, D.C.

APPENDIX A XRF Standard Operating Procedure

STANDARD OPERATING PROCEDURE 30.13 SCREENING FOR METALS VIA X-RAY FLUORESCENCE (XRF) SPECTROMETRY

1.0 SCOPE AND APPLICATION

The purpose of this standard operating procedure (SOP) is to provide general guidance for the analysis of samples using X-Ray Fluorescence (XRF) methods. XRF can be used to screen for a variety of metals (**Attachment 1**) in environmental sample matrices that include soil, air filters, solid surfaces, materials including dried filter papers, and to screen for lead-based paint. The XRF technique has been accepted by the U.S. Environmental Protection Agency (EPA) for screening of samples during investigative and remediation actions and is published in USEPA SW-846 as Method 6200.

This procedure is applicable to efforts where metals are to be assessed using XRF methods. It is intended to act primarily as a guideline for the use and applicable Quality Control (QC) requirements of this technique. This procedure is not intended to replace the applicable manufacturer's information/procedures or those in SW-846, and it also does not present expanded detail on sample preparation. XRF is a surface analysis technique and as such, higher confidence data is achieved when solid samples, especially soil samples, are homogenized and reduced to consistent particle-size mixtures by drying, grinding, and sieving.

2.0 MATERIALS

- NITON Model XL-703 XRF system;
- Applicable source (Cd-109, Am-241);
- Filter holder assembly;
- System blank;
- Energy blank;
- System reference material (SRM);
- Sample cup; and,
- Field logbook and log sheets.

3.0 PRECAUTIONS

- XRF instruments contain radioactive source(s), and the electron beam is hazardous. Do not remove shielding or disassemble instruments beyond the user maintenance dictated in the instrument manual.
- Never place a hand or other body part in the path of the detector, and always operate it either with its shield closed or with the sensor window held tight against a surface; do not look directly at the beam.
- Some systems utilize cryogenic cooling systems, and appropriate precautions should be taken during operation.
- These instruments are regulated radioactive sources and require licensing and specific radioactive licensee procedures for use. In several states, some units, especially those containing Cd109 sources, are considered controlled sources and subject to state radioactive regulations including specific training for persons using the instrument, posting of radioactive safety procedures, isolation of work areas, and issuance of state radioactive licenses and permits. The Commonwealth of Virginia allows

the use of Niton Corporation's Radioactive Materials License. The Virginia State Department of Health must be informed (804-786-5932) that a "generally licensed source" is being used. Personnel using this type of instrument for the first time must attend the manufacturer's Safety Training course or be trained by a certified representative. Manufacturers will not send instruments containing radioactive sources to a project site without a competent person as required by their Specific License and General License with an Agreement State where analysis will be performed. The Commonwealth of Virginia requires the instrument to be shipped to the site directly. For additional information or assistance in dealing with licensing and/or shipment issues, contact the manufacturer, or leasing agent.

4.0 PROCEDURE

4.1 GENERAL INFORMATION

Method sensitivity is a function of the count time. Consult the manufacturer's manual to establish a count time that provides the needed sensitivity while allowing for sample throughput efficiency. Typical count times are 60 to 180 seconds.

Soil samples will be analyzed by using *ex situ* methods. *Ex situ* analysis involves thorough drying, grinding, mixing, and sieving of the sample, placing it into a sample cup for introduction to the instrument, and collecting data. Soil samples are analyzed by placing the sample cup into the manufacturer's holder and read by the instrument. The average of two readings should be calculated for each result.

XRF instruments are essentially semi-quantitative screening instruments and in most instances provide non-definitive screening data that must be confirmed by definitive methods. In well defined remedial actions governed by detailed approved plans, XRF has been used as a confirmatory tool. Use of the method for confirmatory purposes requires site-specific calibration over multiple points, regular QC checks, adjustments of the site-specific curve/Definitive method relationship via split sample analysis, and defined confidence windows for grey-area data.

4.2 GENERAL OPERATION

- 4.2.1 **Record** data onto a log sheet using the XRF Calibration Log (**Attachment 2**) and XRF Sample Collection Log (**Attachment 3**).
- 4.2.2 Allow the instrument to warm-up for 15 to 30 minutes before use.
- 4.2.3 **Perform** manufacturer-specified background (scatter) and internal self-calibration checks using the supplied materials. The XRF Calibration Log should be **completed daily** to record the date, time, sample no., leakage current (Pa), and resolution (eV). If the resolution reads above 900 eV or the leakage current is above 160 milliamps, the detector is not performing adequately. If the system fails the background check, **clean** the window and repeat. Do not use an instrument that fails either the background check or internal calibration criteria. **Contact** the manufacturer if the instrument does not pass calibration.
- 4.2.4 Prior to analyzing samples, **analyze** each of the required QC samples to include SRM and blanks and **compare** to the project criteria. Do not proceed to project samples until QC meets criteria. QC samples in sample cups should be **tilted** to **remix** the contents before analysis.
- 4.2.5 For *ex situ* samples, **place** approximately 5-10 grams of soil on a drying pan or tin and **place** in 103°C oven for 2-4 hours.
- 4.2.6 Using a 60 mesh sieve, **sift** out any coarse material. **Mix and grind** the sample using a mortar and pestle until a fine consistency is reached.

- 4.2.7 **Fill** each sample cup with the soil matrix. **Analyze** in duplicate and **average** the results. Higher confidence data from soils in sample cups is achieved if each cup is analyzed in duplicate.
- 4.2.8 **Tilt** the cup to **remix** the material between each analysis. **Report** the result as the average of the two values, provided they differ by less than 20%. If they differ by more than 20%, sample preparation methods should be reviewed.
- 4.2.9 **Analyze** a calibration check standard (SRM) and instrument blank after every ten sample analyses, following an extended down period, and at the end of the analysis day/shift.

4.3 QUALITY CONTROL

QC requirements include analysis of blanks (instrument, method), calibration checks (SRMs or known value samples), and replicate samples. Blanks should be less than the instrument detection limits in **Attachment 1**. Instrument blank is clean sand or lithium carbonate. The SRM and continuing calibration should be $\pm 20\%$ D of certified value.

Confirmatory use requires more extensive QC efforts. A site-specific calibration should be performed by split analyzing prepared samples in duplicate by XRF and off-site definitive methods. The results are used to develop a site-specific XRF/Definitive method correlation and calibration curve. Daily QC should include the analysis of blanks, at least three of the site-specific calibration standards bracketing the expected concentration ranges, replicates, and a check sample or SRM. The correlation should be verified and if necessary adjusted on a defined sample analysis or time frequency.

5.0 REFERENCES

Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, Method 6200, Revision 0, 1998, Test Methods for Evaluating Solid Waste Physical/Chemical Methods, SW-846, Third Edition, January.

Instrument Manual for Spectrace Model 9000 XRF, TN Technologies.

Instrument Manual for Niton 700 Series Systems, Niton Inc.

Attachment 1 List of XRF Analytes and Instrument Detection Limits^a

Element	Typical Reporting Lin	nits for Each Radioactive Source (mg/kg)
	Cd-109	Am-241
Sulfur		
Chlorine		
Potassium		
Calcium		
Titanium		
Chromium	260	
Manganese	205	
Iron	110	
Cobalt	100	
Nickel	65	
Copper	45	
Zinc	35	
Mercury	30	
Arsenic	25	
Selenium	15	
Lead	15	
Rubidium	5	
Strontium	4	
Zirconium	3	
Molybdenum	4	
Cadmium		50
Tin		85
Antimony		45
Barium		30
Silver		9

^a Typically achievable in a clean, silica sand matrix. Actual sample detection limits will be higher due to the sample matrix interferences.

Attachment 2 XRF Calibration Log

XRF Model Number	er:	XRF Serial Number:						
			Instrument Self-Calibration					
Date	Time	Sample No.	Leakage Current (Pa)	Resolution (eV)				

Notes: If the Resolution reads above 900 eV, contact Niton Corporation.

If leakage current is above 160 milliamps, the detector is not performing adequately.

Attachment 3 XRF Sample Collection Log

Client:		XRF Model:		XRF Serial								
Site:		Samplers:										
					Parameters/Readings (ppm)							
Date	Time	Sample No.	Media	Arsenic	Chromium	Copper	Iron	Lead	Remarks			

APPENDIX B

Monitoring Well Boring Logs and Construction Diagrams

CONTRACTOR: CT & E BORING NO: 48MW1 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 NW OF LOWER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: DAMP, 45' F DTW FROM TOC: 122 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/17/94 1545 CLIENT: US AEC DATE/TIME: 12/19/94 1200 PROJECT NO.: 722843 DATE/TIME FINISH: 12/19/94 1255 (FT) SAMPLE TYPE COUNT AT (FT) SAMPLE 1D RECOVERY (mad) READING SSS DEPTH DEPTH LITHOLOGY/REMARKS LITHOLOGIC WELL BLOW PIO **COLUMN** COMPLETION SILT, SOME CLAY, SOME SAND, TOC ORANGE-BROWN 2-1819.95 -2 3-2.2' -3 STICK UP 4--4 5-**-**5 6-1 100 11,9 SS 3.4 SS ML -6 5'-7' 7-7,14 -7 8-. -8 9-. -0 SILT AND SAND, GRAVEL, 10--10 ORANGE-BROWN, SLIGHT ODOR 11-2 100 3.5 HS GM/SM 3,3 SS -11 10'-12' 12-4,6 12 SILT AND CLAY, ORANGE-BROWN TO 13--13 YELLOW-BROWN 14-44 15-45 16--16 17-**-17** 18-48 SILT BECOMING MORE COMPETENT. 19~ MORE RED, WEATHERED, LAYERED . 19 20--20 3× 95 11.8 4.0 HS SS ML 21--21 22-7,10 20'-22 -22 23--23 24 -24 **GROUT** 25 <u>-25</u> TO 95 HS 26-4 8,7 1.1 SS SURFACE -26 27-8,10 25'-27 -27 28--28 29--29 30--30 31-5 80 13,9 0.0 HS SS -31 30'-32 32-10,11 -32 33--33 34--34 35~ -35 36-6 75 9,12 4.0 HS SS -36 37-35'-37 9,9 -37 38--38 39--39 40-40 41-7 95 7,9 0.0 HS SS -41 40'-42 42-10,9 -42 43--43 44--44 45 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE Y = WATER LEVEL 0.01 INCH SLOT SCREEN

CONTRACTOR: CT & E BORING NO: 48MW1 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE. INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: DAMP, 45' F DTW FROM TOC: 122 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/17/94 1545 CLIENT: US AEC DATE/TIME: 12/19/94 1200 PROJECT NO .: 722843 DATE/TIME FINISH: 12/19/94 1255 (FT) COUNT (FT) RECOVERY (mdd) READING SAMPLE 1 **NSCS** DEPTH щ DEPTH LITHOLOGIC LITHOLOGY/REMARKS BLOW WELL ᄗ **COLUMN** COMPLETION CLAY AND SILT, TRACE SAND, 8 100 46-9.70 2.8 HS SS -46 BROWN, SLIGHTLY DAMP AT 52 FEET. 47-17,16 45'-47 -47 WEATHERED 48-48 49--49 50--50 9 75 9,9 HS SS 51-6.0 CL -51 9,9 50'-52 52 . -52 53-10× 75 16.8 6.0 HS SS . -53 52'-54 54 9,8 . -54 55 . -55 56 . -56 57 -57 GROUT 58--58 TO SURFACE 59--59 60--60 SWITCHED TO AIR ROTARY DRILLING 61-11 60 10,10 4.5 HS SS AT 60 FEET -61 60'-62 62-10,10 -62 63--63 SILTSTONE, GREEN-BROWN, 64 -64 **WEATHERED, VERY DAMP AT 66** 65 -65 **FEET** 100 66-12 12,28 3.9 HS SS SLSN -66 31,75 67-65'-67 67 68--68 69--69 70--70 71--71 DISTINCT CHANGE AT 72 FEET 72--72 LIMESTONE, DARK BROWN CUTTINGS. 73-BENTONITE -73 **ARGILLACEOUS** 74-SEAL -74 75--75 | 76 76-77-77 78--78 79-. -79 80-LMSN 80 81-TOP OF -81 SAND PACK 82--82 AT 76'. 83-83 SCREEN 84-84 **FROM 110'** 85--85 TO 140' 86--86 87--87 88--88 89--89 90-7 -90 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN ¥ = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW1 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE. INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: DAMP, 45' F DTW FROM TOC: 122 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/17/94 1545 CLIENT: US AEC DATE/TIME: 12/19/94 1200 PROJECT NO.: 722843 DATE/TIME FINISH: 12/19/94 1255 F **BLOW COUNT** READING AT (FT) RECOVERY (mdd) SAMPLE 1 SAMPLE JSCS **DEPTH** DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL P10 COLUMN COMPLETION 91-91 LIMESTONE, DARK BROWN CUTTINGS, 92--92 **ARGILLACEOUS** 93--93 94-**LMSN** STOPPED OVERNIGHT AT 94 FEET, 94 95-. -95 **NO WATER IN HOLE 12-19-94** 96--96 97-. -97 98--98 DRILLING RATE IS APPROXIMATELY 1 99--99 FOOT/1.5 MINUTES 100-100 DOLOMITE, GRAY, WEATHERED, SOFT 101-H01 102--102 103-103 104 -104 105 -105 106 -106 107 -107 108-408 DRILLING RATE IS APPROXIMATELY 1 109-H09 FOOT/2.5 MINUTES 110--110 TOP OF 111--111 SAND PACK 112-AT 76', 112 113-**SCREEN H13 FROM 110'** 114-H14 TO 140' 115--115 116--116 117-417 118-418 119--119 120-DLMT 120 121-121 122-122 123-123 124-124 125 -125 126-126 127 -127 128--128 129-129 130--130 131--131 132-**-132** 133-**-133** 134 HSA = HOLLOW STEM AUGER BH = BORE HOLE SS = SPLIT SPOON HS = HEADSPACE **COMMENTS:** CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE **▼** = WATER LEVEL 0.01 INCH SLOT SCREEN

CONTRACTOR: CT & E						-		PARSONS	BORING NO: 48MW1			
GEOLOGIST: BACHOVCHIN/GLENNIE						- EI	NGIN	NEERING-SCIENCE, INC.	LOCATION: SWMU 48			
DRILLING METHOD: HSA/AIR ROTARY					DTARY	_		DRILLING RECORD	-	,		
חדש	FROM	TOC	122 FT	(FROM	SURFACE	PRO.	JECT N	NAME: RAAP	WEATHER: D	AMP, 45° F		
"	INOM	100				1		S AEC	DATE/TIME !	START: 12/17/94 154	45	
DAT	E/TIM	E: 12/1	19/94 12	200				10.: 722843	1	12/10/04 12	EE	
	r				,		JECT N	10	DATE/TIME	FINISH: 12/19/94 12		
ОЕРТН (FT)	SAMPLE ID	RECOVERY %	BLOW COUNT	PIO (ppm)	READING AT	SAMPLE TYPE	SOSO	LITHOLOGY/REMARKS	LITHOLOGIC	WELL COMPLETION	DEPTH (FT)	
136-137-138-139-140-141-142-143-144-145-151-151-151-151-151-151-151-151				T. C.		20	DLMT	DOLOMITE, GRAY, WEATHERED, SOFT BECOMES HARDER AT 148 FEET, NO WATER TO END OF BORING, THEN WATER TO 122 FEET AFTER 1.5 HOURS END OF BORING AT 154 FEET COON BH = BORE HOLE HS = HEADSPA			136 137 138 139 140 141 142 143 144 145 145 145 145 145 145 145 145 145	
CAL = CALIBRATION A =						A = AU(TTINGS GS = GRAB SAMPLE	4 INC	ENTS: CH ID PVC, SCH 40 NCH SLOT SCREEN		

CONTRACTOR: CT & E BORING NO: 48MW2 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 SW OF LOWER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: CLEAR, 25' F DTW FROM TOC: 126 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/19/94 1630 CLIENT: US AEC DATE/TIME: 1/07/95 0830 PROJECT NO.: 722843 DATE/TIME FINISH: 1/07/95 1200 (FT) BLOW COUNT (FT) RECOVERY (mdd) READING SAMPLE SCS DEPTH SAMPLE DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL ä COLUMN COMPLETION SILT, SOME SAND AND CLAY, TOC RED-BROWN 2-1818.88 3-1.3' 4 STICK UP 56 5-6-1 60 8,12 0.0 HS SS ML 7-15,16 5'-7' 8--8 -0 Ω-10--10 SILT AND SAND, BROWN 11-2 75 0.0 HS SS SM 7,5 -11 12-5.4 10'-12' -12 13--13 14-44 15--15 16--16 17-47 **VERY HARD DRILLING AT 17 FEET** 18-. -18 (GRAVEL) 19--19 20--20 SILT AND CLAY, SOME SAND, LIGHT 5 100/ 0.0 HS SS GM/ML 21--21 BROWN, GRAVEL 22-2.5 20'-22' -22 23--23 24--24 **GROUT** 25 -25 TO 26--26 SURFACE 27 <u>-</u>27 28 -28 29 . -29 30--30 31-30 10,8 0.0 HS SS 4 -31 30'-32 32-5,4 . -32 33--33 34-. -34 35-. -35 36--36 37--37 38--38 39 -39 40 -40 90 41-5× 18.25 SS 41 DOLOMITE, WEATHERED, LIGHT 40'-42 DLMT 25,28 42--42 GRAY, ARGILLACEOUS, 43--43 INTERBEDDED SILTSTONE 44 44 5 100/1 45 45 6× SS SWITCHED TO AIR HAMMER AT 44 FT 46-44'-46 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: A = AUGER CUTTINGS GS = GRAB SAMPLE CAL = CALIBRATION 2 INCH ID PVC. SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN **▼** = WATER LEVEL

CON	TRACT	OR: C	T & E			-		PARSONS	BORING N	10: 48MW2			
GEO	LOGIS	T:BA	CHOVCH:	IN/GLE	NNIE	_ F	NGIN	NEERING-SCIENCE, INC.		LOCATION: SWMU 48			
DRILLING METHOD: HSA/AIR ROTARY								DRILLING RECORD	LUCATION: SHIPO 40				
·								_	WEATHER: C	CLEAR, 25° F			
WTD	FROM	TOC:_	126 FT	(FROM	SURFACE	- I		IAME: RAAP	DATE/TIME	START: 12/19/94 163	30		
DATI	E/TIM	E: 1/0	7/95 08	30			ENT: U	0.: 722843	1	FINISH: 1/07/95 120			
		×	 -	1	 -	1	1		DATE/TIME	INISH			
DEPTH (FT)	SAMPLE 1D	RECOVERY	BLOW COUNT	PID (ppm)	READING AT	SAMPLE TYPE	SOSA	LITHOLOGY/REMARKS	LITHOLOGIC	WELL COMPLETION	DEPTH (FT)		
47- 48- 49-				,				DOLOMITE, WEATHERED, LIGHT GRAY			47 48		
50- 51- 52- 53- 54-							SLSN	SILTSTONE, LIGHT BROWN, WEATHERED, INTERBEDDED GRAY DOLOMITE DRILLING RATE (1 FOOT/3 MINUTES)			49 55 52 53 54 55		
55- 56- 57- 58- 59- 60-								SHIZZING HATZ (IT GOT/S MINOTES)			55 56 57 58 59 60		
61- 62- 63- 64-							DLMT	DOLOMITE, WEATHERED, LIGHT GRAY, ARGILLACEOUS			61 62 63 64		
65- 66- 67- 68- 69-								DRILLING RATE (1 FOOT/2.3 MINUTES)		GROUT TO	65 66 67 68 69		
70- 71- 72- 73- 74- 75-			-	•				NOTE: SOFT FORMATION NOT RETURNING CUTTINGS UP HOLE. MUST SET TEMPORARY CASING. HOLE IS STOPPED AT 80 FEET OVER HOLIDAY, RESUME DRILLING ON 1-5-95.		SURFACE	-70 -71 -72 -73 -74 -75		
76- 77- 78- 79-											-76 -77 -78 -79		
80- 81- 82- 83- 84-							LMSN	LIMESTONE, WEATHERED, GRAY-BROWN			80 81 82 83		
85- 86- 87- 88- 89-			·					·			84 85 86 87 88		
90- 91- 92-											89 90 91 92		
CAL =	CALI	BRATI	EM AUGI ON SOIL CL			A = AU(PLIT SPO GER CUT B SAMPL	TINGS GS = GRAB SAMPLE	2 INC	ENTS: H ID PVC, SCH 40 NCH SLOT SCREEN			

CONTRACTOR: CT & E BORING NO: 48MW2 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: CLEAR, 25° F DTW FROM TOC: 126 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 12/19/94 1630 CLIENT: US AEC DATE/TIME: 1/07/95 0830 PROJECT NO.: 722843 DATE/TIME FINISH: 1/07/95 1200 COUNT (FT) (FT RECOVERY (mdd) READING USCS SAMPLE DEPTH SAMPLE DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL BLOW P10 COLUMN COMPLETION LIMESTONE, WEATHERED, 93--93 GRAY-BROWN 94--94 GROUT 95-LMSN . -95 DRILLING RATE (1 FOOT/1.7 TO 96--96 MINUTES) SURFACE 97-97 98--08 99--99 100-100 101-BENTONITE 101 102-SEAL 102 103-103 104-104 105--105 106-106 107-107 108-408 109-109 110--110 DOLOMITE, LIGHT GRAY, 111--111 WEATHERED, ALTERNATING HARD 112--112 AND SOFT, GRAY AND BROWN, 113-413 **LAYERS** 114--114 DLMT 115-415 116--116 TOP OF 117--117 SAND PACK 118-H18 AT 104'. 119--119 SCREEN 120-FROM 113.7' -120 121-TO 133.7' -121 122-122 123-123 124-124 125-DRILLING RATE (1 FOOT/3.3 125 126-MINUTES) 126 127--127 128-128 129-129 130-430 131-431 132-132 133-433 134-134 **END OF BORING AT 133.7 FEET** 135--135 136-**-136** 137--137 138-438 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 2 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN Y = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW3 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 SE OF LOWER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: WET, COLD, 40° F DTW FROM TOC: 119 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 1/07/95 1237 CLIENT: US AEC DATE/TIME: 1/08/95 1430 PROJECT NO.: 722843 DATE/TIME FINISH: 1/08/95 1430 COUNT AT (FT) RECOVERY (mdd) READING SOSO SAMPLE DEPTH SAMPLE DEPTH LITHOLOGIC LITHOLOGY/REMARKS WELL BLOW P10 COLUMN COMPLETION SILT AND CLAY, LITTLE SAND, TOC ORANGE-BROWN 2-1812.17" 3--2.2' 3 STICK UP 4-ML 5--5 6--6 7-8--8 9-9 10-10 SILT, LITTLE SAND AND CLAY, 1 95 2,5 HS SS 11-2.0 -11 ORANGE-BROWN 12-8,6 -12 13--13 14--14 ML/SM 15-**-1**5 16--16 17--17 18--18 19--19 20--20 SILT AND SAND, LITTLE CLAY, 21-2× 95 2,6 3.5 SS SS SM -21 **ORANGE** 22--22 23--23 24--24 **GROUT** GRAVEL, SILTY 25--25 TO SURFACE GM 26--26 27--27 28--28 29--29 30--30 CLAY AND SILT, YELLOW-BROWN. 3× 90 8.26 HS SS 31-1.1 CL -31 SWITCHED TO AIR HAMMER AT 32 50/2" 32--32 **FEET** 33-DLMT -33 34-DOLOMITE, WEATHERED, LIGHT GRAY -34 35--35 SILTSTONE, BROWN, INTERBEDDED 36--36 WITH GRAY DOLOSTONE 37--37 38--38 39--39 40-SLSN -40 DOLOMITE, WEATHERED, GRAY, 41-41 **ARGILLACEOUS** 42--42 43-DLMT -43 44-45-HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN ¥ = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW3 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: WET, COLD, 40' F DTW FROM TOC: 119 FT (FROM SURFACE) PROJECT NAME: RAAP DATE/TIME START: 1/07/95 1237 CLIENT: US AEC DATE/TIME: 1/08/95 1430 PROJECT NO.: 722843 DATE/TIME FINISH: 1/08/95 1430 (FT) COUNT (FT) RECOVERY (mdd) READING SAMPLE 1 USCS SAMPLE DEPTH DEPTH BLOW . LITHOLOGY/REMARKS LITHOLOGIC WELL **P1**0 COLUMN COMPLETION 46-DOLOMITE, WEATHERED, GRAY. -46 47-**ARGILLACEOUS** -47 48-48 DRILLING RATE FROM 40-60 FEET 49-49 (1 FOOT/1.8 MINUTES) 50--50 51--51 52--52 53--53 54-DLMT -54 55--55 56--56 57-. -57 58--58 59--59 60--60 61--61 LESS CLAY, LESS WEATHERING 62--62 63--63 64-64 DRILLING RATE FROM 60-90 FEET **GROUT** 65-(1 FOOT/6.3 MINUTES) TO -65 66-SURFACE -66 67--67 68--68 69--69 70--70 71--71 72--72 73--73 74--74 75--75 76-**-7**6 77 78--78 79--79 80--80 81--81 DOLOMITE, LIGHT GRAY 82--82 83--**8**3 84--84 85-. -85 86-. -86 87-BENTONITE -87 88-SEAL -88 89-E89 90-] HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40-USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE ¥ = WATER LEVEL 0.01 INCH SLOT SCREEN

CON	TDAC	rop. C	TRF			i -			T T		
CONTRACTOR: CT & E GEOLOGIST: BACHOVCHIN/GLENNIE						-		PARSONS	BORING NO: 48MW3		
GEO	LOGIS	T: BAC	CHOVCH	IN/GLE	NNIE	- E	NGI	NEERING-SCIENCE, INC.	LOCATION: SWMU 48		
DRILLING METHOD: HSA/AIR ROTARY						_		DRILLING RECORD			
DTW	FROM	TOC:	119 FT +	(FROM S	SURFACE) PRO	JECTA	NAME: RAAP	WEATHER:_M	NET, COLD, 40° F	
ļ								S AEC	DATE/TIME	START: 1/07/95 1237	
DATE	E/TIM	E: 1/00	3/95 14	30		- PRO	JECT N	10.: 722843	DATE/TIME	FINISH: 1/08/95 1430	
ытетн (FT)	SAMPLE ID	RECOVERY X	BLOW COUNT	PID (ppm)	READING AT	SAMPLE TYPE	SOSO	LITHOLOGY/REMARKS	LITHOLOGIC COLUMN	MELL COMPLETION THE	
91- 92- 93- 93- 94- 95- 98- 99- 100- 102- 103- 105- 106- 107- 108- 109- 111- 115- 121- 121- 121- 121- 121- 121							DLMT	DOLOMITE, LIGHT GRAY, POSSIBLE WET ZONE AT 112 FEET DRILLING RATE (1 FOOT/3.5 MINUTES) END OF BORING AT 122 FEET		TOP OF SAND PACK AT 90'. SCREEN FROM 100' TO 120' 111 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	
HSA = CAL =	HSA = HOLLOW STEM AUGER SS CAL = CALIBRATION A =						PLIT SPO SER CUT S SAMPL	TINGS GS = GRAB SAMPLE	4 INC		

CONTRACTOR: CT & E BORING NO: 48MW4 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION:_SWMU 48 CENTER OF UPPER DISPOSAL AREA DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: RAIN, 85' F DTW FROM TOC: 78.19 FT PROJECT NAME: RAAP DATE/TIME START: 7/18/95 1100 CLIENT: US AEC DATE/TIME: 7/22/95 1200 PROJECT NO .: 722843 DATE/TIME FINISH: 7/20/95 1830 COUNT (FT READING AT 7 (FT) RECOVERY (mdd) SAMPLE 1 **NSCS** SAMPLE DEPTH LITHOLOGIC BLOW (LITHOLOGY/REMARKS WELL ᄗ COLUMN COMPLETION CLAY AND SILT, LITTLE SAND, TOC 2-RED-BROWN <u> ጕኯ</u>፞፞፟፟፟፟ኯኯኯኯኯ 1832.6 3-2.06' 0.1 BH CL STICK UP 5-6-8-SILT AND GRAVEL, LITTLE SAND, 9-10-ORANGE-BROWN 0.0 BH GM 11--11 12-12 CLAY AND SILT, LITTLE SAND. 13-. ⊣3 RED-BROWN, MOIST 14-. -14 15--15 16 -16 17 . -17 18-0.0 BH CL -18 19 49 20--20 21 -21 22--22 23--23 24. -24 25--25 26--26 GROUT 27-0.0 BH TO -27 28-SURFACE -28 29--29 30-F-30 SILT AND CLAY, ORANGE-BROWN, 31--31 MOIST ZONE AT 40-41 FEET 32--32 0.0 BH ML 33--33 34 -34 35--35 36--36 37--37 38--38 39--39 40--40 41-41 SAND AND GRAVEL, SOME SILT. 42--42 BROWN, MOIST, GRAVEL LAYER AT 43-43 49 FEET 44-44 45-0.0 BH GM 45 46-46 47-47 48-48 لـ49 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE 0.01 INCH SLOT SCREEN ¥ = WATER LEVEL

CONTRACTOR: CT & E BORING NO: 48MW4 **PARSONS** GEOLOGIST: BACHOVCHIN/GLENNIE ENGINEERING-SCIENCE, INC. LOCATION: SWMU 48 DRILLING RECORD DRILLING METHOD: HSA/AIR ROTARY WEATHER: RAIN, 85' F DTW FROM TOC: 78.19 FT PROJECT NAME: RAAP DATE/TIME START: 7/18/95 1100 CLIENT: US AEC DATE/TIME: 7/22/95 1200 PROJECT NO .: 722843 DATE/TIME FINISH: 7/20/95 1830 (FT) COUNT READING AT (FT) RECOVERY (mad) SCS SAMPLE SAMPLE DEPTH DEPTH LITHOLOGY/REMARKS LITHOLOGIC BLOW WELL P10 COLUMN COMPLETION SILT, BROWN, BECOMING MORE 50 -50 51-COMPETENT, SWITCHED TO AIR -51 52-0.0 BH ML ROTARY DRILLING AT 55 FEET .52 53--53 54 -54 55. -55 GROUT SILTSTONE, WEATHERED, 56 -56 TO 57-ALTERNATING RED AND GREEN -57 SURFACE LAYERS, INTERBEDDED DOLOMITE 58--58 59-(SLIGHT HCL FIZZ) -59 60-0.0 BH SLSN -60 61--61 62--62 63--63 64-64 65--65 66-BENTONITE -66 67-SEAL 67 68--68 69-69 70-70 71-0.0 BH 72-72 73-73 74--74 75--75 76--76 77--77 78-78 79-TOP OF -79 80-SAND PACK 80 81-AT 69', -81 82-SCREEN 82 83-**FROM 74'** 83 84-0.0 BH TO 94' 84 85--85 86--86 87-87 88--88 89--89 90--90 DOLOMITE, GREEN-GRAY, AND 91~ -91 92-INTERBEDDED DARK GRAY -92 93-SILTSTONE, SOFT ZONE AT 100-108 93 94-0.0 BH DLMT FEET (WATER?) 94 95--95 SAND PACK 96--96 TO 120' -97 98--98 HSA = HOLLOW STEM AUGER SS = SPLIT SPOON BH = BORE HOLE HS = HEADSPACE COMMENTS: CAL = CALIBRATION A = AUGER CUTTINGS GS = GRAB SAMPLE 4 INCH ID PVC, SCH 40 USCS = UNIFIED SOIL CLASS. SYS. * = LAB SAMPLE ¥ = WATER LEVEL 0.01 INCH SLOT SCREEN

COI	NTRAC	TOR:_C	T&E			<u> </u>		DADCONC	DODING N			
GE	n neis	T. BA	СНОУСН	IN/GLE	NNIE		NICTN	PARSONS	BORING NO: 48MW4 LOCATION: SWMU 48			
DRILLING METHOD: HSA/AIR ROTARY						_ _		NEERING-SCIENCE, INC. DRILLING RECORD	LOCATION:_3	5WMU 48		
DRI	LLING	METHO	D: HSA	/AIR RO	DTARY		· ·	חטורוואם עברמעם	WEATHER: R	AIN. 85° F		
DTI	r FROM	TOC:_	78.19 F	<u>r</u>		1		IAME:_RAAP				
DAT	F/TIM	F. 7/2	2/95 12	200			ENT:_U		1	START: 7/18/95 1100		
							JECT N	0.: 722843	DATE/TIME F	INISH: 7/20/95 183	0	
DEPTH (FT)	SAMPLE 10	RECOVERY X	BLOW COUNT	PIO (ppm)	READING AT	SAMPLE TYPE	SOSO	LITHOLOGY/REMARKS	LITHOLOGIC COLUMN	WELL COMPLETION	DEPTH (FT)	
	= HOL		TEM AUC	0.0	ВН	SS = S	DLMT	DOLOMITE, GREEN-GRAY, AND INTERBEDDED DARK GRAY SILTSTONE, SOFT ZONE AT 100-108 FEET (WATER?) END OF BORING AT 120 FEET COON BH = BORE HOLE HS = HEADSPA	ACE COMM	SAND PACK TO 120'	99 100 1 102 1 103	
CAL	= CAL	IBRAT:				A = AU		TTINGS GS = GRAB SAMPLE	4 INC	IENTS: CH ID PVC, SCH 40 INCH SLOT SCREEN		

PLATE LOG OF BORING

WELL INSTALLATION DIAGRAM FOR VERIFICATION INVESTIGATION RADFORD AAP, VIRGINIA

Location: 41MW2 Installation Date: 9/6/91

Surface Elevation: 1795.4 Feet Top of PVC Elevation: 1797.45 Feet

WELL INSTALLATION DIAGRAM FOR VERIFICATION INVESTIGATION RADFORD AAP, VIRGINIA

Location: 41MW3 Installation Date: 10/17/91 Surface Elevation: 1757.3 Feet

Top of PVC Elevation: 1759.35 Feet

WELL INSTALLATION DIAGRAM FOR RCRA FACILITY INVESTIGATION RADFORD AAP, VIRGINIA

Location: OMW1

Installation Date: 11/11/91 Surface Elevation: 1777.6 Feet Top of SS Elevation: 1780.04 Feet

Location: OMW2 Installation Date: 6/5/93 Surface Elevation: 1776.1 Feet Top of St. Elevation: 1778.60 Feet

BOM

weathered blue-grey sandy dolomite; clay seams; grades to top of rock at 26'; noticeable water above rock grey conglomeratic dolomite, angular to subangular clasts;

clasts coarse sand to cobble gravel; clay seam from

Drilling Log

			J
Well Number	P-1		
Client Con	rps of Eng	ineers/Rād	ford AAP Project No. 00-0008-01
Well Locati	on upslop	e from tan	k farm - POL area
Driller/Com	nany Dean	/Cunningha	m
Drilling Me	thod NX c	ore	Hole Diameter <u>Nominal 4"</u> Date(s) Drilled 2/4 - 7/83 Imple Interval <u>spoon 5'*</u> No. Samples Retained 6 Issing Top Elevation 1779.77' Total Well Depth 33
Sample Type	solit so	oon/core Sa	imple Interval spoon 5'* No. Samples Retained 6
Surface Ele	vation 1	777 02' Ca	asing Top Elevation 1779.77' Total Well Depth 33
Casing Mate	rial and	Size 2" In	PVC ** Cased Interval(s) 0-18 (+2' stickup
Grouting Ty			Grouted Interval 0 - 17
Screening !	laterial a	nd Size 2	" ID DVC · O 010" slots ** Screened Interval(s) 18 - 22
Packing Hat	terial and	Size No.	1 sand Packed Interval 17 - 33
Packing Hat Depth to Si	tatic Wate	r 12 50!	*** Date 2/24/83 Approx Well Yield 3 - 4 gpm
Development	Method	' <u>16.30</u>	*** Date 2/24/83 Approx Well Yield 3 - 4 gpm Development Time 1.5 hours
Logged by:	Dotes D	Jacobson	20.01.0buretto 1 ture 11.0 tiont 2
roaden pl.	FELEI N.	uaconzon	
Comments		SKE	TCH MAP WELL DETAIL PROF STEEL
			Hwm Phot Steel
* continu		 	THE CANADI GRAZE
samplin	g		
** threade	d couples		TO SCHOOL PUC CANAGE
		(NI	
*** Measur		p of C	18 - Hement Growt
PVC ca	sing		Marie Bentonite Seal
			- Strew Coupling
		 /	' /
·			/ /o ⁰ /
***************************************			/ / / Screen
		//	
		— / 2	
· 		- /-	First Softon Kay
Depth	C1-	Spoon	Description of Materials
Scale	Sample	Blows	Description of Materials
0 - 1.5	spoon	5-12-6	medium to dark brown, dry, silty clay; very thin sand
			lenses
5 - 6.5	spoon	5-12-15	orange brown sandy clay, black/brown specks; some
			fine gravel
10 - 11.5	spoon	3-7-9	mottled grey-green and orange-brown sandy clay; occasional
·			pebbles
13			coarse gravel
15 - 16.5	spoon	1-1-3	moist orange-brown to yellow-brown clay; thin silt and
			sand stringers
20 - 21.5	spoon	1-1-1	soft, moist, mottled orange-brown/vellow-brown sandy

31.5 to 32.5

25 - 26.5

end of hole @ 33'

26 - 33

1-10-7

spoon

core

BCM	

Drilling Log

Well number	r <u>P-2</u>		
Client Co	rps of End	ineers/Rad	Iford AAP Project No. 00-0008-01
			nmost tank - POL area
Oriller/Co	npany <u>Dea</u>	n/Cunningh	nam
orilling M	ethod <u>N</u> X	core	Hole Diameter nominal 4" Date(s) Drilled 2/3 - 4/83
Sample Type	esplit spo	on/core Sa	ample Interval _{Spoons} 5'* No. Samples Retained 3
Surface Ele	evation 1	756.20' Ca	asing lop Elevation 1758.61' Total Well Depth 21
Casing Mate	erial and	Size 2" ID	$Cased Interval(s) \cap 1 (+2! s+ickup)$
			tonite seal Grouted Interval 0-1 (0.5' bentoni
creening	Material a	nd Size 2"	ID: 0.010 slots Screened Interval(s) 1 - 21
Packing Ha	terial and	Size No.	1 sand Packed Interval 1 - 21
Penth to S	tatic Wate	r 4.21' **	* Praite 2/24/83 Approx Well Yield 4 - 5 qpm
Developmen	t Method -	. <u>7.61 </u>	Development Time 4 hours
			beveropiliene 1 file 4 nours
Logged by:	Peter K.	Jacobson	
Comments		SKI	ETCH MAP A PHIN MALL DETAIL ANTES
		3/1	
* continu	ous core		Prof. Steel
samplin		——— 1	
** all ioi	nto throad	tod A	1/ 1/ Kement Group
<u>^^ all]0]</u>	nts threat		
4444	ad from f	(N)	~{ 1
	ed from to	<u> </u>	7 0-2 FD 0-0 SI-F
PVC ca	Ising		A Screen
			67
			/
	*-		/ / V/ Sand
			
			Wind Hom Cad
		— / 	
Depth	C	Spoon	Decemination of Materials
Scale	Sample	Blows	Description of Materials
Jeare			
0 - 1.5	spoon	2-4-3	damp silty clay, minor sand, occasional pebbles; medium
			brown occasional orange/brown streaks; friable in zones
5 - 6.5	spoon	3-4-9	damp medium brown to orange brown silty clay with thin

Depth Scale	Sample	Spoon Blows	Description of Materials
0 - 1.5	spoon	2-4-3	damp silty clay, minor sand, occasional pebbles; medium
		<u> </u>	brown occasional orange/brown streaks; friable in zones
5 - 6.5	spoon	3-4-9	damp medium brown to orange brown silty clay with thin
			coarse sandy zones, minor pebbles
10 - 11.5	spoon	50/3"	wet clayey sand, yellow brown, gravel at 11'
13 - 14	core		top of rock at 13'; yuggy, grey, thinly laminated dolomite
14 - 15	core		orange brown/greenish grey dolomite, thin veins of quartz;
			irregular fracturing, small vugs
15 - 16	core		crumbly grey dolomite; small yugs; slightly brecciated
16 - 21	core		grey/white/buff thinly laminated dolomite; small quartz
			veins
end of ho	le @ 21'		
<u> </u>			
			
		<u> </u>	
	 		
1	 		
	1		
 	1		
L	1	<u> </u>	L

Drilling Log

Well Humb	er <u> </u>	3	- Distring Log	·	•
Client <u>Co</u> Well Loca	orps of Enc tion POL	ineers/Rad	ford AAP	Project No.	00-0008-01
Driller/Co	ompany	Dean/Cunni	nahan	·	
ו האחרוו ריינוו	IDTOOG WV		lie ie Dee-ster	Doda/a\ Doda	
Sample Tv	ne colit co	2007/2000	ample Interval 5' spoon * asing Top Elevation 1754	Date(s) Drilled	2/2 - 3/83
Surface E	levation 1	1752 541 C	asing Top Flevation	No. Samples Reta	ned 4 spoon *
Casing Mai	terial and	Size 2" I	nasing top Elevation 1/54	1.5/ lotal Well D	epth25'
Grouting	Type and	cement aro	U_PVL	Cased Interval(s	
Screening	Material a	cement gro	" ID PVC: 0.010 slots	Grouted Interval	0 - 8
Packing Ha	aterial and	1 5176 1	" 10 PVC: 0.010 slots	Screened Interva	i(s) <u>10 - 25</u>
Penth to	Static Wate	7 04 **	1 sand * Nate 2/24/83	Packed Interval	9 - 25
Developmer	nt Method	· / · 34 _ · ·	*	Approx Well Yield	d 1 - 2 apm
Logged by	Poten D	Jacobson		Development Time	4 hours
	· _ CLPF R		ETCH MAP	WELL DETAIL	Paota Strai
* continu	ous core s	amples			3778
all cor	e recovere	, , , , , , , , , , , , , , , , , , , 			C 121.42
retaine	d			- 	TO SCHOOL
	·*				THE CASING
** plus 2'	stickup	— K	7/2/22		ement Grout
			19913	¥ 19 19 8	ENTRAIR SEA
Note: all	screen an	d cas-			CTEL COUNTING
ing joint	s by threa	ded	/27 / 3 		
couples	o by omea				" ID 0.01
		/		15'.	THE PARTY OF THE P
No petrol	eum odors		/ / 9/		No. 1 Sand
no petror	euii ouors	HOLEO /			
*** Meacu	red from t				[
		<u> </u>			Sattom Eag
UPV	C casing		<u>' </u>		
Depth		Spoon			···
Scale	Sample	Blows	Description	on of Materials	
36818		DIOWS			
0 - 1.5	spoon	2-4-3	dark grey to brown silt	v clav minor cand	
5 - 6 5	cocon	10 20 20		T AIML MILLOL Salla	

	Nepth Scale	Sample	Spoon Blows	Description of Materials
tale ber eine eine eine eine eine eine eine ei	0 - 1.5 5 - 6.5 6.5 - 10 10 - 10'3 10'3.5" - 15 - 20 20 - 25 end of hol	15 core core	2-4-3 18-28-38 5-/3.5"	dark grey to brown silty clay, minor sand medium brown clay, silty sandy lenses, occasional gravel; soil is damp, not saturated cobble gravel, mostly white/buff sandstone brown/buff clay and silt grading to decomposed dark grey limestone brecciated dolomite; matrix is silt and clay, clasts are sand to coarse gravel; most clasts are buff/grey dolomite subangular to rounded same as above to 18'; at 18' sharp contact from brown matrix to grey, clasts more angular coarse same as above becoming coarser and more angular with depth; 6" - 8" zones of vuggy dolomite separated by brecciated angular grey dolomite
!	·			

Drilling Log

well number P-4	
Client Corps of Engineer/Radford AAP	Project No. <u>00-0008-01</u>
Well Location POL site	
Driller/Company <u>Dean/Cunningham</u>	
Drilling Method <u>NX core</u> Hole Diameter nominal 4"	Date(s) Drilled 2/17/83
Sample Type split spoon/core Sample Interval 5: spoon *	No. Samples Retained 5
Surface Elevation 1771.12' Casing Top Elevation 1773.1	16' Total Well Depth 30'
Casing Material and Size 2" ID PVC sched. 80 threaded ju	offased Interval(s)-15 (+2' stickup
OLULLING LYDE CANN/CAMANT	Grouted Interval 0 1/
Screening Material and Size 2" PVC 0.010" slots	Screened Interval(s) 15 - 30
Packing Material and Size No. 1 sand	Packed Interval 14 - 30
Depth to Static Water 25.75'*** Date 2/24/83 Development Method air	Approx Well Yield **
Logged by: Peter R. Jacobson	Development Time 1 hour
Loggett by: PPIPE R. DACHDEDI	•
comments SKETCH MAP / HWM	WELL DETAIL DETAIL
	Met Delait Prot Steel
sampling ** very poor yield during	
development, 0.1 qpm,	- 5.44
	TO SCA 80
but water cleared up	5/11 2/2 24:17
Note: slight ether odor	a + Cement Group
detected	Bentonite feel
	A . Serew Coupling
*** measured from top of	
PVC casing // 40/	15' - 1" ID 0.01
	Screen
	SENO. 1 Sand
<u> </u>	V 1 3 40 C20
Ponth Spoon	

Nepth Scale	Sample	Spoon Blows	Description of Materials
0 1.5	spoon	1-1-2	moist brown silty clay
5 - 6.5	spoon	16-16-18	medium brown, fissile, hard silt and clay
10 - 11.5	spoon	1-2-4	soft moist brown clay, minor fine sand and silt
15 - 16.5	spoon	1-1-2	same as above with occasional medium to coarse sand
<u> </u>			lost water at 15'
20 - 21.5	spoon	31-50/1.5	" blue grey weathered bedrock - wet, pebbly, sandy, silty
			clay
22			top of solid rock
22 - 30			thinly laminated grey-buff dolomite: thin brecciated
 			zones, many white quartz veins: lost water at 26'
end of ho	le at 30'		
			•
	-		
 		<u></u>	
 			

US ARMY ENVIRONMENTAL HYGIENE AGENCY

DRILLING LOG

ROJECT	RAAP 81	L-26-8251-81	DATE —	6 April 81			
OCATION	Backgro	ound well southwest	DRILLERS	Smithson, Hodd	linott, Craig		
	May be	contaminated from old	Gates (logger)				
RILL RIG	Acker	POC spill.	BORE HOL				
continuous	flight a	auger	TD - 13 f	t el initial - l	.0 ft		
	SAMP LE TYPE		24 hr - 1	ø' 9"			
l E	BLOWS PER 6 IN	DESCRIPTION		REMA	rks		
		Reddish brown gravely (4 - 4 in) wet	clay	3.75 ft of concrete grout	8 ft of 2 in ID, Schedule 40, PVC Casing		
				1.5 ft of Bentonite			
5 ft				7.5 ft of sand pack			
		Brown gravely clay - POL smell - No. 2 fue	1 oil		5 ft of slotted 2 in ID		
		very strong	1 011		PVC screen		
10 ft	•	Gravel layer (1-11 in Large cobbles at 12 f very difficult drilli	:t				
15 ft		Refusal TD 13 ft (Riverjack)			Depth of well 13 ft		

HSE-ES Form 78, 1 Jun 80

Replaces USAEHA Form 95, 12 Aug 74, which will be used.

BORING LOG

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES . ENGINEERING/CHEMICAL ONE HUNDRED YEARS OF SERVICE

DATE May 1987 Report No. 0-62084 Hercules Inc. Client: Radford Army Ammunition Plant Radford, Virginia Project: Location: See Location Plan Elevation: Total Depth: 50.0 WCI-2 Boring No.: Driller: D. Fralin Started: 3/18/87 Completed: 3/18/87 Type of Boring. Hollow Stem Auger % Core DESCRIPTION OF MATERIALS REMARKS Depth Depth Elevation Recovery (Classification) (Feet) Stiff yellow brown clayey SILT, trace medium GROUNDWATER DATA to fine sand (ML) manganese stains 1.5 555 3.0 to 4.5 Very loose mottled to gray medium to fine 248 to fine sandy SILT, trace clay (ML) 6.0 Increased fine gravel content at depth 8.5 2* *12 inch spoon penetration on 10.0 1 hammer blow 13.5 *1₁ *weight of hammer 15.0 18.5 -RESIDUUM-113 20.0 23.5 4± 24.4 *30/4" 24.0 25.0 Medium hard to hard light gray to light brown limestone, with dolomitic and shaley intervals 65.0 ROD = 22yuggy, fractured: occasional intervals of dolomite and shale clasts in a calcareous matrix: moderately well developed calcium 30.0 crystals in vugs: possible flow structure 90.0 **RQD = 47** 35.0 100.d **RQD = 55**

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERING/CHEMICAL *ONE HUNDRED YEARS OF SERVICE*

DATE May 1987 Report No. 0-62084 Hercules Inc. Radford Army Ammunition Plant Radford, Virginia Project: Location: See Location Plan Total Depth: 50.0 Elevation: Boring No.: 3/18/87 Oriller: D. Fralin 3/18/87 Completed: Type of Boring: Hollow Stem Auger Started: DESCRIPTION OF MATERIALS % Core Depin REMARKS Elevation 40.0 (Classification) Blows (Feet) 40.0 GROUNDWATER DATA 81.7 RQD = 42WC1-2 Continued 45.0 81.7 RQD = 850. 50.0 Boring terminated at 50.0 ft.

	Sand Size: D(10)= 0.45-0.55 mm Bore/ Core Size: 6 inch/ NX	1 11 1	Elev. = 2.0 ft	Ground Elev.=		Depth to Bentonite (ft.)= 16.75 ft. Elev. =	Depth to Sand Filter(ft.)= Elev. =	Depth to Well Bottom(ft.)= 45.75 ft.	
Project: Radford Army Ammunition Plant Location: Radford, Virginia	Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen Riser Description: 2.0" I.D. Teflon Riser and PVC Riser			Subsurface Conditions Summary	Yellow Brown to Gray medium to fine sandy SILT, trace clay (SM)	Auger refusal at 24.0 ft.			

DRILLING RECORD STELLING RECORD TOTAL DEPTH (reelt): 173 BORRIOLE DIAM - 8 in. CLENT: SMMU TY BORRIOLE DIAM - 9 in. BORRIOLE DIAM - 9 in. BORRIOLE DIAM - 9 in. BORRIO	DRILLER: T. Lynch				ENGINEERING-SCIEN	BORING/WELL ID: 17MW2			
NETHOD: Air Hammer SITE: SMMU 17 CLIENT: USAEC CLIENT: USAEC CLIENT: USAEC CASING DIAM: 4 in. TOC ELEV: 1908.29 ft. msl TOC EL	GEOLOGIST: J. Titus								
MATER LEVEL MEASUREMENT CASING PLANE.	⊤ Y!	PE: Mobile	B-80		INSTALLATION: MAAP		_ TOTAL DE	PTH (feet): 1/3	
### ##################################	-	METHOD:	Air Hammer		SITE: SHOULD		BOREHOLE	DIAM.: 8 in.	
### ### #### #########################	-			REMENT	CLIENI: USAEU		CASING D	IAM.: 4 in.	
EPTH TO MATER. 78.83 ft. DATE/TIME END: 20-May-93; 1505 ES ELEV: 1803.99 ft. msl ES ELEV: 1803						0745	.		
LITHOLOGY/REMARKS BE					DATE/TIME START: 15 May - 93,	0145 05	-1		
DRILLING NITH IO-INCH AIR ROTARY BIT SILT and CLAY; color; dark yellowish brown (10/RA/4) BEDROCK SHITCH TO 8-INCH AIR HAMMER 10- Iftl/4min +pwd interbedded DOLOTONE and argillaceous DOLOSTONE DOLOSTONE: massive, hard color; gray (10/R5/1 to 2.5YR6/0) argillaceous DOLOSTONE: weathered, soft weathered color; light, yellowish brown (2.5Y7/6) unweathered color; gray (2.5Y6/0) 11t1/5min 20- 11t1/7min 11t1/7min 30- 11t1/7min 30- 30- 30- 30- 30- 30- 30- 30		U WATER:	1		DATE/TIME END: 20 may 35, 15	00	GS ELEV.:.	1903.99 ft. msi	
DRILLING NITH IO-INCH AIR ROTARY BIT SILT and CLAY; color: dark yellowish brown (10YRA/4) BEDROCK SHITCH TO 8-INCH AIR HAMMER Interbedded DOLOTONE and argiliaceous DOLOSTONE DOLOSTONE: massive, hard color: gray (10YR5/1 to 2.5YR6/0) argiliaceous DOLOSTONE: weathered color: light, yellowish brown (2.5YY7/6) uniweathered color: gray (2.5Y6/0) MI1/5min VOID, filled with fine SAND and SILT color: reddish brown 15 WOID, filled with fine SAND and SILT color: reddish brown 16 WI1/7min 17 WI1/7min 18 WI1/7min WI1/7min WI1/7min	DEPTH (FEE	DRILL RATE	+CI TEST	LI	THOLOGY/REMARKS	LITHOLOGIC COLUMN		WELL COMPLETION	PTH (FEET)
	20-	1ft/4min 1ft/4min		SILT and CL (10YR4/4) BEDROCK SW DOLOTO DOLOSTONE: massive color: g argillaceous I weather weather (2.5Y7/ unweath	AY; color: dark yellowish brown ITCH TO 8-INCH AIR HAMMER interbedded ONE and argillaceous DOLOSTONE , hard ray (10YR5/1 to 2.5YR6/0) DOLOSTONE: red, soft red color: light, yellowish brown 6) hered color: gray (2.5Y6/0)			8-inch borehole grout 4-inch ID PVC	-5 -10 -20 -25

DRILL CONTR.: EDI			ENGINEERING-SCIE	NCE, INC.	BORING/WELL ID: 17MW2			
DRILLER: T. Lynch			DRILLING RECO	DONING/ MELL I	U			
EOLOGIST: J. Titu			INSTALLATION: RAAP	TOTAL DEPTH (feet):_	173			
TYPE: Mobile B	Air Hammer		SITE: SWMU 17		BOREHOLE DIAM .: 8 in	١.		
· · · · · · · · · · · · · · · · · · ·	VEL MEASURE	MENT	CLIENT: USAEC		CASING DIAM: 4 in.			
EASUREMENT POINT:	TOC	-MEN I	PROJECT NO.: FB517	D. 07.45	.i	mel		
ATE/TIME: 10-Jun-	93; 0956		DATE/TIME START: 19-May-93	F. 0/45	TOC ELEV .: 1906.29 ft			
EPTH TO WATER: 79	9.63 11.		DATE/TIME END: 20-May-93;		GS ELEV.: 1903.99 ft.	MSI		
OEPTH (FEET) ORILL RATE	HCI TEST	LI	THOLOGY/REMARKS	NHUJOO JIDOLOGIC	WELL COMP	'LETION	DEPTH (FEET)	
45- 50- 65- 75-	+pwd+	DOLOSTONE massive color: g argillaceous weather weather (2.577)	DOLOSTONE red, soft red color: light, yellowish brown (6) hered color: gray (2.5Y6/0)			—4-inch ID PVC riser	-50 -55 -65 -70	
80-			layey SILT n brown (7.5YR6/8)	6		seal (78–80)	80	

TOTAL DEPTH (teet): 173 SOREHOLE DIAN: 8 in.	URILING RECURI				BORING	/WEL	L ID: 17MW2			
STE_SMM_IT SOMEONE S					· · · · · · · · · · · · · · · · · · ·		TOTAL DEP	TH (fe	eet): 173	
NATION COLOR COL	TOTY				SITE: SWMU 17		1			
ASSISTENCY ASSISTED ASSISTE		METHOD:	Air Hammer		CLIENT: USAEC		1		•	
DATE/TIME 19-May-93, 0745 TO ELEV. 800.89 ft. set				EMENT	PROJECT NO · FB517		CASING DIA	AM.:4	in.	
### 10 NATER 1983 ft. DATE/TIME END: 20-May-93; 1505 SS ELEV: 1803.89 ft. ast #### INDIVIDUAL SET OF THE PROPERTY OF THE	EASURE	EMENT POIN	7: 100 -93: 0956		DATE/TIME START: 19-May-93;	0745	TOC ELEV.:	1906	.29 ft. msl	
ES BE	PTH T	O WATER	79.83 ft.		DATE/TIME FND: 20-May-93; 150	05	CC ELEV.	1903.9	99 ft. msi	
interbedded DOLOSTONE and argillaceous DOLOSTONE DOLOTONE massive, hard color: gray (0VR5/1 to 2.5YR8/0) argillaceous DOLOSTONE weathered, soft weathered color: light, yellowish brown (2.5YY8/0) unweathered color: gray (2.5Y8/0) 105- 116- 116- 116- 117- 118-		O MATERIAL			SATE/THE ENG.					
interbedded DOLOSTONE and argillaceous DOLOSTONE DOLOTONE massive, hard color: gray (10YRS/1 to 2.5YR8/0) argillaceous DOLOSTONE weathered, soft weathered color: light, yellowish brown (2.5Y7/6) Unweathered color: gray (2.5Y6/0) 116- 116- 116- 116- 116- 117- 118- 108- 109- 109- 109- 109- 109- 109- 109- 10	DEPTH (FEE	DRILL RATE	HCI TEST	LI	THOLOGY/REMARKS	COLUMN		NELL (COMPLETION	DEPTH (FEE)
120	90-100-100-1		+pwd	DOLOTONE massive color: g argillaceous l weather weather (2.5Y7)	ONE and argillaceous DOLOSTONE , hard ray (10YR5/1 to 2.5YR6/0) DOLOSTONE red, soft red color: light, yellowish brown (6)				no grout present (80-142) due to formation bridging 4-inch ID PVC	-85 -90 -95 -105 -105

ORILLER: T. Ly	nch		ENGINEERING-SCIENG DRILLING RECOR	-	BORI	NG/V	VELL I	D: 17MW2	
SEOLCBIST: J. Titus TYPE: Mobile B-80			INSTALLATION: RAAP		TOTAL	DEPTH	(feet):_	173	
			SITE: SWMU 17		BOREH	OLE DI	<u>ам: 8 і</u>	n.	
	D: Air Hammer		CLIENT: USAEC		ł				
WATER EASUREMENT PO	R LEVEL MEASUR	EMENT	PROJECT NO.: FB517		.]		. 4 in.		14
ATE/TIME: 10-	Jun-93; 0956		DATE/TIME START: 19-May-93;	0745	TOC EL	.EV.:1	906.29 f	t. msl	
EPTH TO WATER:			DATE/TIME END: 20-May-93; 15	05	GS ELE	v. 19	03.99 ft.	msl	
DEPTH (FEET)	HCI TEST	LI	THOLOGY/REMARKS	COLUMN				PLETION	DEPTH (FEET)
OE P	오			5°					l e
125-								8-inch borehole	
130-1 130-1		VOID, some (WATER PROD	CLAY and v. fine SAND MAJOR UCING ZONE			•	-	no grout present (80-142) due to	-130
~ it/5.5mi	in +pwd	DOLOS"	interbedded FONE and argillaceous DOLOSTONE					formation bridging 4-inch ID PVC riser	H35
140		argillaceous	ray (10YR5/1 to 2.5Y6/0)						H40
145		(2.5Y7)	red color: light, yellowish brown /6) hered color: gray (2.5Y6/0)					bentonite seal (144-147) Baroid,	-145 -
150							•	3/8" pellets sand filter pack Morie, #1	- 150
155- Ift/1.3mir	n		,					screen (150-170) PVC, 0.010 inch slot	- 1 55
160					<u>1</u>		<u> </u>	Page 4	-14 60 4 of 5

ORILL CONTR. EDI	ENGINEERING-SCIENCE,	INC.	BORING/WELL ID: 17MW2	
PRILLER: T. Lynch	DRILLING RECORD	· .		
SEOLCGIST: J. Titus	INSTALLATION: RAAP			
Mobile B-80	SITE: SWMU 17		TOTAL DEPTH (feet): 173 BOREHOLE DIAM.: 8 in.	
METHOD: Air Hammer	CLIENT: USAEC			
WATER LEVEL MEASUREMENT EASUREMENT POINT: TOC	PROJECT NO.: FB517		CASING DIAM.: 4 in.	
ATE/TIME: 10-Jun-93; 0956	DATE/TIME START: 19-May-93; 074	45	TOC ELEV .: 1906.29 ft. msl	
EPTH TO WATER: 79.83 ft.	DATE/TIME END: 20-May-93; 1505		GS ELEV.: 1903.99 ft. msl	
DRILL RATE HCI TEST	LITHOLOGY/REMARKS	COLUMN	WELL COMPLETION	DEPTH (FEET)
DOLOSTON mass color argillaceou weat weat (2.5)	ve, hard gray (10YR5/1 to 2.5YR6/0) s DOLOSTONE hered, soft hered color: light, yellowish brown		screen (150-170) PVC, 0.010 inch slot sand filter pack Morie, #1	- - - - - - - - - - - - - -
				⊣75
180-				- -180 -
185-1				-185 -
190-				H90
195 -				- 1 95
200-			Page 5	200 of 5

INSTALLATION: TARK TOTAL DEPTH (relet): 180	ORILL CONTR.: EDI ORILLET: T. Lynch			ENGINEERING-SCIEN DRILLING RECOR	-	INC.	BORING	6/WELL	ID: 17MW3	
STE: SMM 17	EOLCAIST: J. Titus						TOTAL DEPTH (feet): 190			
### ATTENDED AND TOPING TO CLEMENT ONLY TO CHARGE CONTROL TO CHARG				CTTE SWMII 17						
### ATTEM CEVEL NEADISCHMENT #### ATTEM CEVEL NEADISCHMENT ##### ATTEM CEVEL NEADISCHMENT ##### ATTEM CEVEL NEADISCHMENT ###### ATTEM CEVEL NEADISCHMENT ########## ATTEM CEVEL NEADISCHMENT ####################################						·				·
DATE/TIME START: 21-May-93; 63.0 DATE/TIME START: 21-May-93; 63.0 DATE/TIME END: 24-May-93; 63.0 DATE/TIME END: 24-May-93; 09.25 SELEV: 804.27 ft. sist			MENT				CASING DI	AM.: 4 in.	· · · · · · · · · · · · · · · · · · ·	
### DATE/TIME END; 24-May-93; 0825 SELEV: 180427 ft. ast	EASUFEMENT POINT:_ .tc/TBG: 10-Jun-9	3: 0956			1630		TOC ELEV.	1906.78	ft. msl	
EDUCATION DRILLING WITH 10-INCH AIR ROTARY BIT SILT and CLAY: color: dark yellowish brown (INTERPORT A) BEDROCK SWITCH TO 8-INCH AIR HAMMER Interbedded DOLOSTONE: massive, hard color: gray (10/185/1 to 2.5/186/0) If you weathered color: light, yellowish brown (2.5/17/6) If you weathered color: gray (2.5/186/0) If you filled with sity CLAY VOID, filled with sity CLAY VOID, filled with sity CLAY VOID, filled with sity CLAY Color: reddish brown (7.5/186/8) If you have been color: gray (10/186/8) If you have been color:				DATE/TIME FND: 24-May-93; 09	925		CC ELEV.	1904.27 ft	msi	
DRILLING WITH 10-INCH AIR ROTARY BIT SILT and CLAY; color; dark yellowish brown (Interbedded DDLOSTONE: massive, hard color; gray (IOYRS/1 to 2.5YR8/0) ED- argillaceous DOLOSTONE weathered, soft weathered color; light, yellowish brown (2.5YYR8) UNDEATH SILY CLAY VOID, filled with sity CLAY VOID, filled with sity CLAY VOID, filled with sity CLAY Color; reddish brown (7.5YR8/8) 20- ift/Idmin ift/Amin				T					-	
SILT and CLAY; color: dark yellowish brown (10Y8A/a) BEDROCK SHITCH TO 8-INCH AIR HAMMER interbedded ODUSTONE and argillaceous DOLOSTONE DOLOSTONE: massive, hard color: gray (10Y85/1 to 2.5Y88/0) argillaceous DOLOSTONE: weathered, soft weathered, soft weathered color: light, yellowish brown (2.5Y78/0) VOID, filled with sitty CLAY VOID, filled with sitty CLAY voilor: reddish brown (7.5Y88/8) 25- Ift./14min 1ft./4min 36- 1ft./4.5min Calcite veim Calcite veim A-inch 1D PVC riser 435 36- 13.8min 1ft./6min	DEPTH (FE)	HCI TEST	LI	THOLOGY/REMARKS		LITHOLOGIC COLUMN		WELL COM	PLETION	DEPTH (FEET)
40	10- 20- 1ft/10min 25- 1ft/14min 1ft/4min 30- 1ft/4.5min 35- '3.8min	, , , , , , , , , , , , , , , , , , ,	SILT and CL/ (10YR4/4) BEDROCK SW DOLOST DOLOSTONE: massive color: gi argillaceous [weather weather (2.5Y7/ unweath VOID, filled wi color: reddish	AY; color: dark yellowish brown ITCH TO 8-INCH AIR HAMMER interbedded ONE and argillaceous DOLOSTONE , hard ray (10YR5/1 to 2.5YR6/0) DOLOSTONE: ed, soft ed color: light, yellowish brown 6) pered color: gray (2.5Y6/0) ith silty CLAY		Declared W. C. Vers			B-inch ID PVC surface casing 8-inch borehole grout 4-inch ID PVC	

JRILLE	ONTR.: E	h		ENGINEERING-SCIEN DRILLING RECOR	•	BORING	/WELL ID: 17MW3	-
	EOLOMIST: J. Titus			INSTALLATION: RAAP		TOTAL DEP	TH (feet):190	
-	· ·-·	Air Hammer		SITE: SWMU 17		BOREHOLE	DIAM.: 8 in.	
· -		EVEL MEASUR	EMENT	CLIENT: USAEC		CASING DIA		
	DIENT POIN	T: TOC	LINGIA	PROJECT NO.: FB517	.000			
ATE/T	ME: 10−Jur	-93; 0956		DATE/TIME START: 21-May-93;	1630	ŀ	1906.78 ft. msl	.
	10 WATER:	147.33 ft.		DATE/TIME END: 24-May-93; 0	925	GS ELEV.:_	1904.27 ft. msl	
OEPTH (FEET)	DRILL RATE	HCI TEST	L	ITHOLOGY/REMARKS	COLUMN	h	ELL COMPLETION	DEPTH (FEET)
	1ft/4min 't/6min 1ft/5.8 1ft/5min	+pwd	DOLOS DOLOSTONE massive color: g argillaceous weathe weathe (2.577 unweat	pray (10YR5/1 to 2.5YR6/0) DOLOSTONE red, soft red color: light, yellowish brown			8-inch borehole grout 4-inch ID PVC riser	-45 -50 -55 -60 -70 -75
8C	:ft/3.5min :		·		/// ////-			

	ONTR: ED			ENGINEERING-SCIEN	CE, INC.	BORTN	G/WELL	ID: 17MW3	
				DRILLING KECOKD				.U.	
	OLC IST: J. Titus The Be Mobile 8-80			INSTALLATION: RAAP TOTAL DEPTH (feet): 190					
()		Air Hammer		SITE: SWMU 17			E DIAM: 8		
			LIENIT	CLIENT: USAEC					
(EASU:	HATER LE TMENT POINT	EVEL MEASURS TOC	IMEN I	PROJECT NO.: FB517	· · · · · · · · · · · · · · · · · · ·	CASING D	IAM.: 4 in.		
DATE/T	E: 10-Jun-	-93; 0956		DATE/TIME START: 21-May-93;	1630	TOC ELEV	. 1906.78 1	t. msl	
	→ WATER:14	47.33 ft.		DATE/TIME END: 24-May-93; 0	925	GS ELEV.:	1904.27 ft	. msi	
(FEET)	ATE	_			61C		WELL COM	PLETION	E
OEPTH (FEET)	ORILL RATE	HCI TEST	LI	THOLOGY/REMARKS	LITHOLOGIC				DEPTH (FEET)
90 100 105 115	Ift/2min Ift/Imin Ift/2min Ift/2min Ift/2min Ift/Imin Ift/Imin		DOLOSTONE massive, color: gr argillaceous E weather weather (2.5Y7/ unweath DOLOSTONE massive, color: gr argillaceous D weathere weathere (2.5Y7/6	ay (10YR5/1 to 2.5YR6/0) OLOSTONE ed, soft ed color: light, yellowish brown interbedded ONE and argillaceous DOLOSTONE hard ay (10YR5/1 to 2.5Y6/0) OLOSTONE ed, soft ed color: light, yellowish brown				8-inch borehole grout 4-inch ID PVC riser	85 . 90 . 105 . 105 . 15

DRILL	NTR: E			ENGINEERING-SCI DRILLING REC		BORING/WELL ID:_	17MW3
	LC IST: J. Tit IS		TAICTALLATION, RAAP				
	- Mobile			SITE: SWMU 17		TOTAL DEPTH (feet): 190 BOREHOLE DIAM: 8 in.	
۷		Air Hammer		CLIENT: USAEC			
E A CHI	WATER L	EVEL MEASURE	MENT	PROJECT NO .: FB517		CASING DIAM.: 4 in.	
IATE/T	10-Ju	-93; 0956		DATE/TIME START: 21-May-	93; 163 0	TOC ELEV.: 1906.78 ft. msi	
	0 WATER:			DATE/TIME END: 24-May-93	3; 0925	GS ELEV.: 1904.27 ft. msl	
DEPTH (FEET)	ORILL RATE	HCI TEST	LI	THOLOGY/REMARKS	NH0100 219010H11	WELL COMPLET	ON (FEE)
125- 136-							H25
	'ft/5min					bo gro	inch H40 PVC
1 45	1ft/5min :					₽	- -145 - -
15 0-	:ft/ 3.2 min					sea (15 Bar 3/8	60-153) roid, 3"
155 -						sar filte	er ck rie, #1
160 -							Page 4 of 5

T. Lyr			ENGINEERING-SCIENC DRILLING RECORD	•	BORING/WELL ID: 17MW3	}
ST: <u>J.</u>			INSTALLATION: RAAP		TOTAL DEPTH (feet): 190	
- Mobil			SITE: SWMU 17		- BOREHOLE DIAM.: 8 in.	
	Air Hammer		CLIENT: USAEC		†	
	LIVEL MEASUR	EMENT	PROJECT NO.: FB517		CASING DIAM.: 4 in.	
	-93; 0956		DATE/TIME START: 21-May-93; 1	630	TOC ELEV.: 1906.78 ft. msl	
WATER:	:47.33 ft.		DATE/TIME END: 24-May-93; 09:	25	GS ELEV.: 1904.27 ft. msl	
DRILL RATE	HCI TEST		LITHOLOGY/REMARKS	LITHOLOGIC	WELL COMPLETION	
1ft/1min (1/2.5mi) /1.3mi)		DOLOSTOI wet at 167	soft—highly weathered argillaceous NE cuttings are moist, becoming more 7 feet ming harder at 168 feet no return of oss of circulation due to void (161.5—168		screen (159–179) PVC, 0.010 inch slot sand filter pack Morie, #1	H65
111/2mir 111/40sc 111/1.5min		VOID little retur	n on cuttings some cuttings coming out ble damp to wet		OOO debris in	-180 -185
		VOID END OF B	ORING AT 190 FEET		bottom of borehole	- - - - 190

PIEZOMETER INSTALLATION DIAGRAM FOR RCRA FACILITY INVESTIGATION RADFORD AAP, VIRGINIA

Location: 17PZ1

Installation Date: 11/1/91

Surface Elevation: 1906.1 Feet

Top of PVC Elevation: 1907.02 Feet

Location: 43MW1 Installation Date: 8/13/91 Surface Elevation: 1703.9 Feet Top of PVC Elevation: 1705.87 Feet

PLATE LOG OF BORING

Location: 43MW2 Installation Date: 8/14/91 Surface Elevation: 1705.0 Feet Top of PVC Elevation: 1707.62 Feet

Location: 43MW3 Installation Date: 8/19/91

Surface Elevation: 1701.2 Feet

Top of PVC Elevation: 1703.35 Feet

PLATE LOG OF BORING

Location: 43MW4
Installation Date: 8/19/91
Surface Elevation: 1700.9 Feet
Top of PVC Elevation: 1702.78 Feet

Depth (Feet) Sampling Method Sample No. Blows/Foot Core Run No. % Recovery RQD % Sample Interval	Surf Loca Start	RING 43MW5 ace Elevation: 1,700.4 Feet, MSL ation: Radford AAP, Virginia :: 07: 46 ON 8/15/91 h: 11: 07 ON 8/15/91 Description
NO SAMPLES	ML	BROWN(7.5YR 5/4)CLAY AND SILT, CLAY
- COLLECTED BECAUSE - DRILLED THROUGH - LANDFILL - 5		BOWNISH YELLOW(10YR 5/6) CLAY AND SILT, WITH LANDFILL MATERIAL INCLUDING PAPER, CARDBOARD, BANDAIDS METAL, RAGS
10		DARK OLIVE GRAY(5YR 3/2) CLAYEY FINE SAND STILL IN LANDFILL
	SM	
- 15 - -		THIN SEAM OF DARK GRAY (2.5YR 10/4) CLAYEY, GRAVELLY SILT OVERLYING WEATHERED BEDROCK
SPT 1 0 0		DARK GRAY TO GRAY HIGHLY WEATHERED LIMESTONE CONGLOMERATE
— 20 — i		NO NX CORE RECOVERY DUE TO SOFT, HIGHLY WEATHERED ROCK.
NX 1 0 0	LS	
- 25 - NX 2 40		GRAY (2.5YR N/5)LIMESTONE CONGLOMERATE, MEDIUM GRAINED,5 OF 4, POORLY CEMENTED, MUCH CLAY DUE TO IN FILLING AND WEATHERING,
- - 30		BLACK CLAYEY MEDIUM GRAVEL LIMESTONE CONGLOMERATE, SLIGHTLY HARDER BUT HIGHLY WEATHERED AND FRACTURED, WITH BLACK CLAY IN FILLING OF CRACKS
- NX 3 70		BECOMING HIGHLY CRACKED AND RE-CEMENTED WITH CALCITE; HIGHLY WEATHERED TO CLAYSTONE AT 34FEET.
- 35 - NX 4 76 0		CONTINUED SOFT, HIGHLY WEATHERED LIMESTONE WITH HIGH CLAY CONTENT AND ABUNDANT CALCITE.
- - 40		BORING TERMINATED AT A DEPTH OF 42.8 FEET
		PLATE OF BORING Dames & Moore

Location: 43MW5

Installation Date: 8/15/91 Surface Elevation: 1700.4 Feet Top of PVC Elevation: 1702.94 Feet

Location: 43MW6 Installation Date: 8/14/91 Surface Elevation: 1701.2 Feet

Top of PVC Elevation: 1703.88 Feet

