RADFORD ARMY AMMUNITION PLANT, VIRGINIA

Eastern Horseshoe Area HWMU 16 and SWMUs 13, 48, 49, 50, 51, and 59 April 2006 Sampling Event Groundwater Data Summary Report

Prepared for:

USACE Baltimore District 10 S. Howard St. Baltimore, MD 21201

Prepared by:

Shaw Environmental, Inc. 2113 Emmorton Park Rd. Edgewood, MD 21040 Contract No. DACA31-01-F-0085

TABLE OF CONTENTS

Secti	on		Page
1.0	INT	RODUCTION	1-1
	1.1	PREVIOUS INVESTIGATIONS	1-1
	1.2	GROUNDWATER SUMMARY	
2.0	FIE	LD METHODS	2-1
	2.1	FIELD MEASUREMENTS	2-1
	2.2	WATER LEVEL MEASUREMENTS	2-1
	2.3	LABORATORY ANALYSIS	2-2
	2.4	SAMPLE COLLECTION	
3.0	QUA	ALITY ASSURANCE/QUALITY CONTROL AND DATA MANA	GEMENT 3-1
	3.1	OVERVIEW OF QUALITY ASSURANCE PROGRAM	3-1
	3.2	REVIEW OF DOCUMENTATION	
	3.3	ANALYTICAL SERVICES AND METHODOLOGY	3-2
	3.4	DATA MANAGEMENT	
	3.5	DATA REDUCTION AND VALIDATION	3-4
	3.6	DATA QUALITY OBJECTIVES	3-5
		3.6.1 Precision	3-6
		3.6.2 Accuracy	3-6
		3.6.3 Representativeness	3-9
		3.6.4 Completeness	3-9
		3.6.5 Comparability	3-10
		3.6.6 Sensitivity	3-10
4.0	RES	SULTS	4-1
	4.1	REVIEW OF WATER LEVEL MEASUREMENT DATA	4-1
	4.2	GROUNDWATER ANALYTICAL RESULTS	4-1
		4.2.1 VOC Results	4-1
		4.2.2 PAH Results	4-3
		4.2.3 SVOC Results	4-3
		4.2.4 Pesticide Results	4-3
		4.2.5 PCB Results	4-3
		4.2.6 Explosive Results	
		4.2.7 Metal Results	
		4.2.8 Dioxin Furan Results	4-6
5.0	REF	FERENCES	5-1

LIST OF FIGURES

Figures 1-1 Eastern Horseshoe Area Site Location Map 1-2 Eastern Horseshoe Area Bedrock Groundwater Elevation Contour Map 2-1 Eastern Horseshoe Area Groundwater Sampling Locations, April 2006 2-2 Eastern Horseshoe Area Groundwater Positive Exceedances, April 2006

Eastern Horseshoe Area April 2006 Groundwater Elevation Contour Map

4-2 Eastern Horseshoe Area April 2006 Geological Cross Section

LIST OF TABLES

Tables

4-1

- 1-1 Previous Soil Investigations Environmental Samples at Horseshoe Area
- 2-1 Eastern Horseshoe Area Monitoring Well Information, April 2006
- 2-2 Analytical Samples Collected for Groundwater Analysis, April 2006
- 3-1 Chemical Detections in Rinse and Trip Blank Samples, April 2006
- 4-1 Chemical Detections in Groundwater Samples, April 2006

LIST OF APPENDICES

Appendix

- A Well Purging Forms
- B Chain of Custody Records
- C Data Validation Reports

LIST OF ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
	micrograms per liter
bgs	below ground surface
CVAA	cold vapor atomic absorption
	Chemical Oxygen Demand
	continuing calibration verification
DI	distilled water
	de-ionized ultra-filtered water
	data quality objectives
~	electron capture detector
	Environmental Photographic Interpretation Center
ft	
	gas chromatograph
	high pressure liquid chromatograph
	high resolution gas chromatograph
	high resolution mass spectrometer
	Horseshoe Area
	Hazardous Waste Management Unit
	investigation derived waste
	inductively coupled plasma
	IT Corporation
	liters per minute
	laboratory control sample
	Methods for Chemical Analysis of Water and Wastes
	Maximum Contaminant Level
	method detection limit
ml	
	method reporting limit
MS	
	mass spectrometer
	matrix spike duplicate
	mean sea level
	Master Work Plan
	Nitroglycerine
	nanograms per liter
	National Geodetic Vertical Datum
	Polynuclear Aromatic Hydrocarbon
	Parsons Engineering Science, Inc.
	Polychlorinated Biphenyl
	Pentaerythritol tetranitrate
	photoionization detector
	quality assurance
Α,	Again apparamen

OC	quality control
	Risk Based Concentration
RCRA	Resource Conservation and Recovery Act
	RCRA Facility Assessment
	Radford Army Ammunition Plant
RFI	RCRA Facility Investigation
	Remedial Investigation
	relative percent difference
Shaw	Shaw Environmental, Inc.
SIM	selective ion monitoring
SOP	standard operating procedure
SVOC	Semivolatile Organic Compound
SWMU	Solid Waste Management Unit
	Target Analyte List
TCL	Target Compound List
TOC	top of casing
tw-RBC	Tap Water Risk Based Concentration
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
UV	ultraviolet
	Verification Investigation
VOC	Volatile Organic Compound
VPDES	Virginia Pollutant Discharge Elimination System
WPA	Work Plan Addendum

1.0 INTRODUCTION

The United States Army Corps of Engineers (USACE) has tasked Shaw Environmental, Inc. (Shaw) to perform groundwater environmental sampling at Radford Army Ammunition Plant (RFAAP), located in Radford, Virginia (Figure 1-1). The work reported in this document is being conducted to determine the current nature and extent of groundwater contamination in the RFAAP Eastern Horseshoe Area (HSA) (Figure 1-2) and to determine if any future investigation is warranted. Work for this assignment is being performed under Contract No. DACA31-01-F0085. The combined study area includes groundwater monitoring wells in Hazardous Waste Management Unit (HWMU) 16 and Solid Waste Management Units (SWMUs) 13, 28, 48, 49, 50, 51, and 59. This area is located in the southeastern portion of the RFAAP HSA, east of the main bridge over the New River. As illustrated on Figure 2-1, the HWMU/SWMUs are co-located, with SWMU 28 in the northern portion of the combined study area. SWMU 51 consists of one trench, approximately 140 ft long by 23 ft wide, located immediately to the southwest of SWMU 28 and adjacent to SWMU 30 (Closed Asbestos Waste Site). A barbed-wire fence surrounds SWMU 51. HWMU 16 is located adjacent on the southeast border of SWMU 28. SWMU 48 is located south of SWMU 51 and is approximately 30 feet (ft) north of SWMU 50, 75 ft west of SWMU 59, and 200 ft northwest of SWMU 49. SWMU 13 and the New River are located approximately 120 ft below the bluff of SWMU 48. The land surface in the combined study area gently slopes from approximately 1,830 ft above mean sea level (msl) on the north side of SWMUs 48 and 59, to approximately 1,814 ft msl on the south of SWMU 50. Based on topography, surface water runoff is expected to flow approximately 700 ft southwest to the New River.

1.1 PREVIOUS INVESTIGATIONS

Previous groundwater investigative activities in the HSA were conducted in conjunction with Installation permit requirements and included the analysis of inorganic and organic compounds chemicals of concern. The chemicals of concern are classified as explosives, metals, semivolatile organic compounds, and volatile organic compounds. The following discussion data set does not include the quarterly groundwater monitoring data collected in conjunction with the VPDES permit. Results of the chemical data included sporadic hits with no real trends observed. Previous groundwater investigations indicated the presence of 2,6-dinitrotoluene at SWMUs 28, 51, and 52; antimony at SWMUs 31, 39, and 54; barium for SWMUs 31 and 48; beryllium for SWMU 54; chromium at SWMUs 31 and 39; bis(2-ethylhexyl)phthalate at SWMUs 26, 28, 48, 51, and 52; compounds 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, and methylene chloride at SWMUs 28, 51, and 52; and carbon tetrachloride and trichloroethene at SWMUs 13 and 48. A brief description of the previous groundwater investigations that have been conducted within the HSA are provided below.

- A RCRA Facility Assessment (RFA) was conducted to assess water quality parameters of groundwater samples from monitoring wells in SWMUs 27, 29, and 53 (USEPA, 1987);
- A Verification Investigation (VI) was performed in three portions of the HSA. The investigation included installation and/or sampling of groundwater monitoring wells within SWMUs 26, 32, 39, 54, 57, and 74 (Dames & Moore, 1992);

- A RCRA Facility Investigation (RFI) was conducted in two portions of the HSA. The
 investigation included installation of groundwater monitoring wells and analysis of the
 associated groundwater samples from SWMUs 13, 28, 51, and 52 (Dames & Moore,
 1992);
- A Phase II VI was performed at three neighboring SWMUs (SWMUs 27, 29, and 53) and for SWMU 39. The investigation included the collection and analysis of groundwater samples from these SWMUs and the installation and sampling of groundwater monitoring wells within SWMU 39 (Dames & Moore, 1994);
- An RFI was conducted at SWMUs 31, 48, and 49. The investigation included the installation of groundwater monitoring wells, analysis of the associated groundwater sample, and aquifer testing of selected wells (Parsons, 1996);
- A supplemental RFI (dye tracing study) was conducted in the vicinity of SWMU 48. A dye tracing study was performed as a result of data gaps identified in assessing groundwater flow at SWMU 48 and to provide better identification of groundwater discharge points from SWMU clusters (Parsons, 1996).
- An RFI was conducted at SWMUs 31, 39, 48, and 49. The investigation included sampling and analysis of groundwater samples (ICF KE, 1999).
- An RFI study was conducted at SWMU 31. The investigation included sampling and analysis of groundwater samples to assess potential contaminant migration (IT, 2002a).

Several previous soil investigations have been conducted at the combined HSA study area. In 1987, the USEPA conducted an RFA to evaluate potential hazardous waste or hazardous constituent releases and implement corrective actions, as necessary. In 1992, Dames & Moore performed a VI which included surface and subsurface soil sampling and a soil gas survey to characterize the nature and extent of contamination of SWMUs 48, 49, 50, & 59 as well as RFI sampling to evaluate potential contamination resulting from site activities of SWMU 51. Also in 1992, Environmental Photographic Interpretation Center provided aerial photographic analysis of SWMU 51. In 1996, Parsons Engineering Science conducted an RFI to further delineate the extent of contamination identified during the 1992 VI sampling of SWMUs 48, 49, 50, & 59. ICF Kaiser Engineers (ICF KE) also performed an RFI in 1998 to further refine the understanding of the nature and extent of contamination identified during the previous investigations. In 2002, Argonne National Laboratory performed a geophysical survey of SWMU 51 to delineate both the lateral and vertical extent of the former trench. IT Corporation performed a site characterization at the main manufacturing area for SWMUs 39, 48, 49, 50, 58, 59, FLFA, and Building 4343 in 2002 to address data gaps that were identified from a desktop audit for each site. These soil investigations pertinent to the eastern HSA are summarized in **Table 1-1**.

1.2 GROUNDWATER SUMMARY

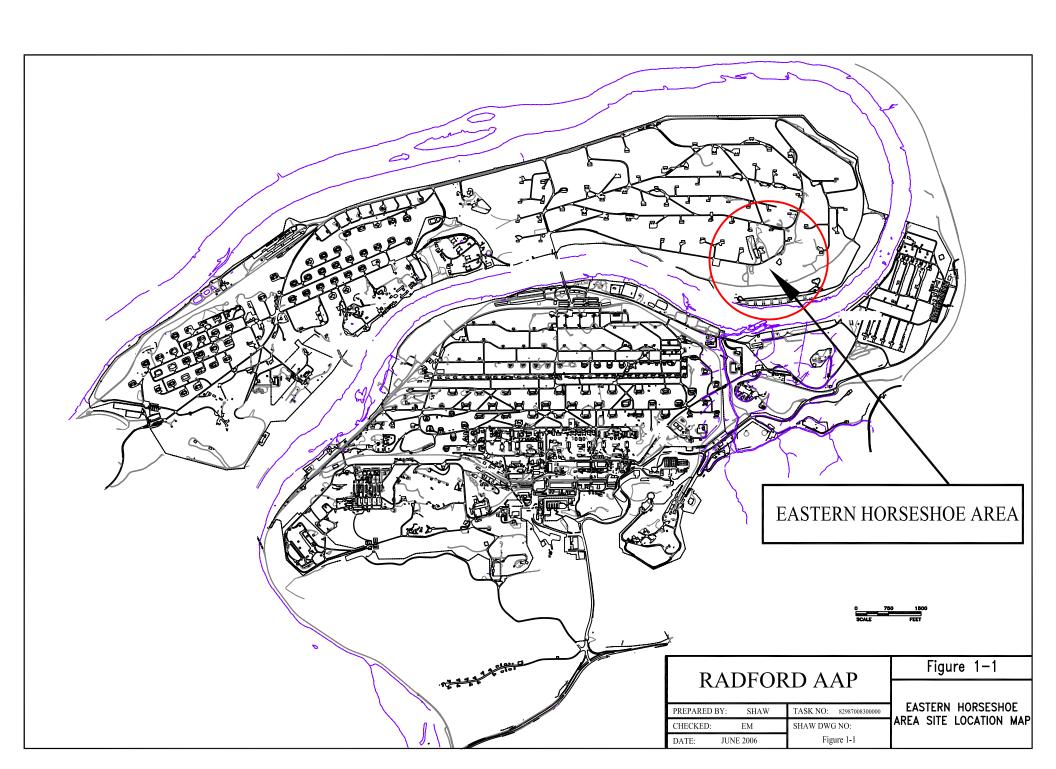
Within RFAAP, and particularly within the HSA, sinkholes and fractures, which may be associated with sinkhole development, are areas for groundwater recharge. The western half of the HSA contains a number of sinkholes observed from the aerial photographs (circa 1937) and topographic maps, most of which have been covered due to site development. The eastern half of the HSA contains a number of fracture traces and few sinkholes. This eastern area is also the topographically highest point in the HSA. The fracture traces in this area can be zones of high secondary porosity due to fissured and solutionally enhanced carbonate rock, allowing surface water to migrate very quickly into the subsurface. **Figure 1-2** illustrates the groundwater elevation contours in the bedrock aquifer for the eastern end of the HSA and gives an approximation as to where water is entering the HSA. The contours show a radial pattern with the gradient moving away in every direction from the groundwater high point at well 28MW1 toward the New River. Recharge in the eastern HSA occurs through karst features in the region of the topographic highs near SWMUs 28, 51, and 30 and, to a smaller extent, through porous infiltration at lower elevations.

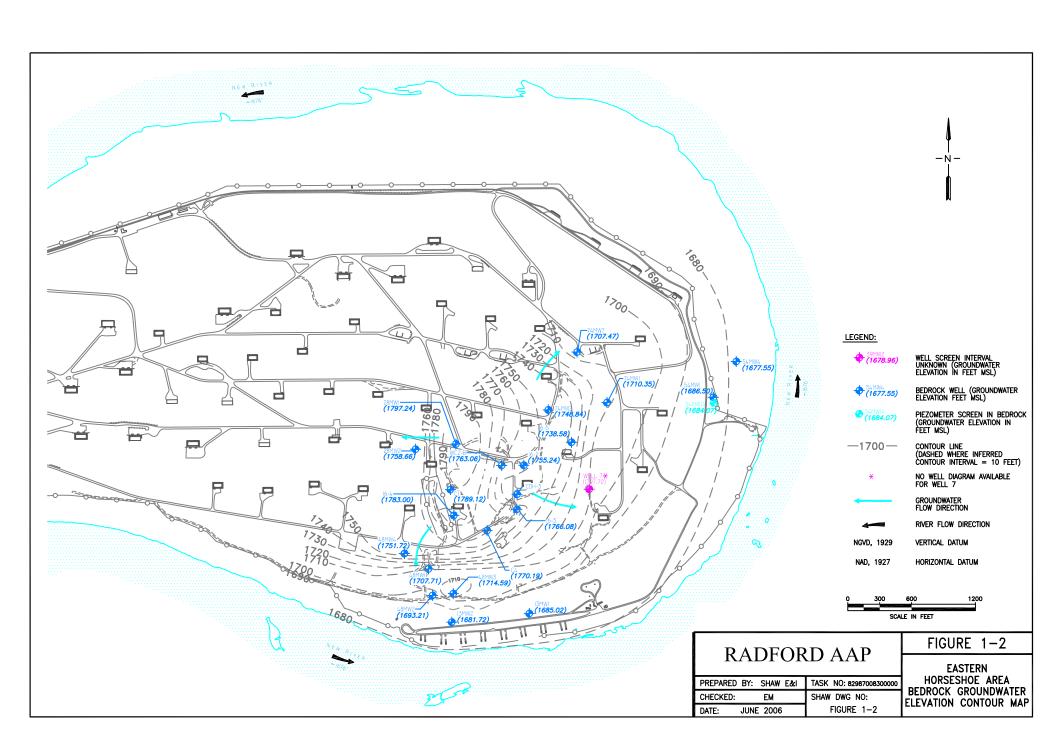
The monitoring well information for the sampled eastern HSA may be found in **Table 2-1**. As part of continuing investigation, groundwater samples have been collected and analyzed in the eastern HSA to assess current nature and extent of any contaminant in the groundwater. The remedial data is intended to supply current groundwater information for future actions at RFAAP. Complete results and comparisons of data gathered throughout the sampling program will be presented in a future investigation reports. This document presents a summary of the data for use prior to further investigations.

Table 1-1
Previous Soil Investigations Environmental Samples
and Analyses at Horseshoe Area

Media	Sample ID	Depth (ft bgs)	Analyses
iviedia	Sample ID	1 , 0,	Analyses
1003 77 100 11	T (1 (1 T	SWMU 48	
1992 Verification	Investigation, D	ames & Moore	This is the grant of
Subsurface Soil	40CD 1	7.5.0.5	TAL metals, VOCs, SVOCs,
	48SB1	7.5-9.5	TCLP metals TAL metals, VOCs, SVOCs,
	48SB1	13-15	TCLP metals
	403D1	13-13	TAL metals, VOCs, SVOCs,
	48SB2	10-12	TCLP metals
	+0DD2	10 12	TAL metals, VOCs, SVOCs,
	48SB2	20-22	TCLP metals
1996 RCRA Faci			
Surface Soil	48SS1	0-1	TAL metals, VOCs, SVOCs, explosives, TPH
	48SS2	0-1	TAL metals, VOCs, SVOCs, explosives, TPH
	48SS3	0-1	TAL metals, VOCs, SVOCs, explosives, TPH
Subsurface Soil	48SB4A11	10-11	VOCs, SVOCs, explosives, TPH
	48SB4B21	20-21	VOCs, SVOCs, explosives, TPH, TOC
1998 RCRA Faci	lity Investigation	, ICF Kaiser Eng	ineers
Surface Soil	48SB6C	1-3	TAL metals, VOCs, SVOCs, PAHs,
	485B0C	1-3	explosives
	48SB6C2	1-3	VOCs (methanol preservation)
Subsurface Soil	48SB6A	6-7	TAL metals, VOCs, SVOCs, PAHs,
			explosives
	48SB6A2	6-7	VOCs (methanol preservation)
	48SB6B	14-16	TAL metals, VOCs, SVOCs, PAHs,
			explosives
	48SB6B2	14-16	VOCs (methanol preservation)
	48SB7A	8-9	TAL metals, VOCs, SVOCs, PAHs,
	48SB7A2	8-9	explosives VOCs (methanol preservation)
			TAL metals, VOCs, SVOCs, PAHs,
	48SB7B	10-11	explosives
			TAL metals, VOCs, SVOCs, PAHs,
	48TP1	6-6.5	explosives
	407770	6.65	TAL metals, VOCs, SVOCs, PAHs,
	48TP2	6-6.5	explosives
	48TP3	6-6.5	TAL metals, VOCs, SVOCs, PAHs,
	40113	0-0.3	explosives
	48TP4	6-6.5	TAL metals, VOCs, SVOCs, PAHs,
	40114	0-0.5	explosives

Table 1-1
Previous Soil Investigations Environmental Samples and Analyses at Horseshoe Area, Continued


36.11	a 1 m	D (1 (9)1)	
Media	Sample ID	Depth (ft bgs)	Analyses
2002 Site Charac			
Surface Soil	48SB08A	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans, TOC, grain size, pH
	48SB09A	0-0.5	Explosives, dioxins/furans
	48SB10A	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
G 1	1000000	1.5	dioxins/furans
Subsurface Soil	48SB08B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	1000000	0.10	TAL metals, dioxins/furans
	48SB08C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals, dioxins/furans, TOC, grain size, pH
	48SB09B	4–6	Explosives, dioxins/furans
	48SB09B	8–10	Explosives, dioxins/furans Explosives, dioxins/furans
	48SB10B	4-6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	403D10D	4-0	TAL metals, dioxins/furans
48SB10C		8-10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	.022100	0 10	TAL metals, dioxins/furans
		SWMU 49	
1992 Verification	Investigation, D	ames & Moore	
Subsurface Soil	,		TAL metals, VOCs, SVOCs,
	48SB3	10-12	TCLP metals
1996 RCRA Faci	lity Investigation	, Parsons Engine	ering Science
Surface Soil	48SS4	0-1	TAL metals, SVOCs, TPH
	48SS5	0-1	TAL metals, SVOCs, TPH
	48SS6	0-1	TAL metals, SVOCs, TPH
Subsurface Soil	48SB5A19	17-19	SVOCs, TPH
	48SB4B37	35-37	SVOCs, TPH, TOC
	48MW1A22	20-22	SVOCs, TPH
	48MW1B54	52-54	SVOCs, TPH, TOC
	48MW2A42	40-42	SVOCs, TPH
Subsurface soil	48MW2B46	44-46	SVOCs, TPH, TOC
(continued)	48MW3A22	20-22	SVOCs, TPH
	48MW3B32	30-32	SVOCs, TPH, TOC


Table 1-1
Previous Soil Investigations Environmental Samples and Analyses at Horseshoe Area, Continued

1998 RCRA Facility Investigation, ICF Kaiser Engineers	und ilidiyada de iloladande ili ed, continued						
Subsurface Soil		_		· ·			
49SB1B	1998 RCRA Faci	lity Investigation	, ICF Kaiser Eng	ineers			
49SB1B2	Subsurface Soil	49SB1A	8-10				
49SB1C		49SB1B	18-24				
498B1C 28-32 explosives		49SB1B2	18-24	VOCs (methanol preservation)			
49SB1D 38-40 TAL metals, VOCs, SVOCs, PAHs, explosives		49SB1C	28-32				
49SB1D 38-40 explosives 49SB1D 38-40 VOCs (methanol preservation) 49SB1E 48-50 TAL metals, VOCs, SVOCs, PAHs, explosives 49SB1F 58-60 TAL metals, VOCs, SVOCs, PAHs, explosives 49SB1F 58-60 TAL metals, VOCs, SVOCs, PAHs, explosives 2002 Site Characterization, IT Corporation Surface Soil 49SS01 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, dioxins/furans, TOC, grain size, pH 49SB02A 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, dioxins/furans 50SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans 50SL1 0-5 VOCs, SVOCs, TCLP metals 50SL2 0-5 VOCs, SVOCs, TCLP metals 50SS1 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals, TOC, grain size, pH 50SS01 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals, TOC, grain size, pH 50SS03 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS04 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals		49SB1C2	28-32	VOCs (methanol preservation)			
49SB1D2		49SB1D	38-40				
A9SB1E		49SB1D2	38-40				
A9SB1F		49SB1E	48-50				
Explosives 2002 Site Characterization, IT Corporation Surface Soil 49SS01 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, dioxins/furans, TOC, grain size, pH 49SB02A 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, dioxins/furans TCL PCBs, PAHs, explosives, TAL metals, dioxins/furans 49SB02C 8-10 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans TCL PCBs, PAHs, TAL metals, dioxins/furans, TPH, TOC, grain size, pH TCL PCBs, PAHs, TAL metals TCL PCBs, PAHs, Explosives, TAL metals TCL PCBs, PAHs, explosives, TAL metals, herbicides, PAHs, explosives, TAL metals, TOC, grain size, pH TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals TCL VOCs, SVOCs, PCBs, PAHs, explosives, T		49SR1F	58-60	TAL metals, VOCs, SVOCs, PAHs,			
Surface Soil		475 D 11	36-00	explosives			
herbicides, PAHs, explosives, TAL metals, dioxins/furans, TOC, grain size, pH	2002 Site Charac	terization, IT Co	orporation				
dioxins/furans, TOC, grain size, pH	Surface Soil	49SS01	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,			
A9SB02A				herbicides, PAHs, explosives, TAL metals,			
Subsurface Soil 49SB02B 4-6 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02C 8-10 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans TCL PCBs, PAHs, TAL metals, dioxins/furans TCL PCBs, PAHs, TAL metals, dioxins/furans TCL PCBs, PAHs, TAL metals, dioxins/furans, TPH, TOC, grain size, pH							
Subsurface Soil 49SB02B 4-6 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02C 8-10 TCL PCBs, PAHs, TAL metals, dioxins/furans 49SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans TCL PCBs, PAHs, TAL metals, dioxins/furans TCL PCBs, PAHs, TAL metals, dioxins/furans, TPH, TOC, grain size, pH		49SB02A	0-0.5				
Subsurface Soil							
49SB02C							
49SB02D 17-19 TCL PCBs, PAHs, TAL metals, dioxins/furans, TPH, TOC, grain size, pH	Subsurface Soil						
SWMU 50							
SWMU 50		49SB02D	17-19				
1992 Verification Investigation, Dames & Moore Subsurface Soil 50SL1 0-5 VOCs, SVOCs, TCLP metals 2002 Site Characterization, IT Corporation Surface Soil 50SS01 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, TOC, grain size, pH 50SS02 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals							
Subsurface Soil 50SL1 0-5 VOCs, SVOCs, TCLP metals 2002 Site Characterization, IT Corporation Surface Soil 50SS01 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, TOC, grain size, pH 50SS02 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals				50			
Solution Surface Soil Solution Surface Soil Solution Surface Soil Solution Solution Surface Soil Solution Solution Surface Soil Solution	1992 Verification	Investigation, D	ames & Moore				
Surface Soil Superior Substance Substan	Subsurface Soil		0-5				
Surface Soil 50SS01 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals, TOC, grain size, pH 50SS02 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals		50SL2	0-5	VOCs, SVOCs, TCLP metals			
herbicides, PAHs, explosives, TAL metals, TOC, grain size, pH 50SS02 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals	2002 Site Charac	terization, IT Co	orporation				
TOC, grain size, pH 50SS02 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals	Surface Soil	50SS01	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,			
50SS02 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives,				herbicides, PAHs, explosives, TAL metals,			
TAL metals 50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals				TOC, grain size, pH			
50SS03 0-0.5 TCL VOCs, SVOCs, pesticides/PCBs, herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives,		50SS02	0–0.5				
herbicides, PAHs, explosives, TAL metals 50SB04A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives,		502203	0_0.5				
50SB04A 0–0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives, TAL metals 50SB05A 0–0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives,		208802	0-0.5	1			
TAL metals 50SB05A 0-0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives,		50SB04A	0-0.5				
50SB05A 0–0.5 TCL VOCs, SVOCs, PCBs, PAHs, explosives,		JUDUTA	0 0.5				
		50SB05A	0-0.5				

Table 1-1
Previous Soil Investigations Environmental Samples and Analyses at Horseshoe Area, Continued

Media	Sample ID	Depth (ft bgs)	Analyses
Subsurface Soil	50SB04B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
Subsurface Soil	3000070	4-0	TAL metals
	50SB04C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
	00020.0		TAL metals
	50SB05B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
	50SB05C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
	50SB04B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
	50SB04C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals
		SWMU	59
1992 Verification	Investigation, I	Dames & Moore	
Surface Soil	59SS1	0-1	TAL metals, SVOCs
	59SS2	0-1	TAL metals, SVOCs
2002 Site Charac	terization, IT C	orporation	
Surface Soil	59SS03	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans, TOC, grain size, pH
	59SS04	0-0.5	TAL metals
	59SS05	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans
	59SB01A	0-0.5	TCL VOCs, SVOCs, pesticides/PCBs,
			herbicides, PAHs, explosives, TAL metals,
			dioxins/furans
Subsurface Soil	59SB01B	4–6	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals, dioxins/furans
	59SB01C	8–10	TCL VOCs, SVOCs, PCBs, PAHs, explosives,
			TAL metals, dioxins/furans

2.0 FIELD METHODS

The field activities consisted of sampling on-site monitoring wells and collecting water level measurements. Investigative activities were conducted in accordance with the Field Sampling Plan for Groundwater Sampling in the Horseshoe Area (Shaw, 2006); in conjunction with the Master Work Plan (MWP) Master Health and Safety Plan (URS, 2003) and Work Plan Addendum (WPA) 012 (IT, 2002b). A brief discussion of the completed field activities and the methods utilized are presented in this section.

2.1 FIELD MEASUREMENTS

Figure 2-1 shows the sampling locations for the April 2006 sampling event. The monitoring well information for the sampled eastern HSA may be found in **Table 2-1**. A MiniRAE2000 photoionization detector (PID) was used to screen the monitoring wells for VOCs during the collection of water level measurements (**Section 2.2**). All PID readings measured during the water level survey were non-detected at 0.0 parts per million. A multi-parameter probe was used to measure the temperature, specific conductivity, pH, oxidation reduction potential, dissolved oxygen, and turbidity of the water sampled. When sampling RFAAP Horseshoe Area wells, the water parameter results were evaluated for stabilization to determine when a representative sample of the formation water could be acquired in accordance with lowflow sampling procedures. Stabilization is defined as three consecutive readings that are within the following criteria:

- ± 0.1 for pH;
- $\pm 3\%$ for specific conductance;
- ± 10 mV for oxidation/reduction potential (Eh); and
- $\pm 10\%$ for turbidity and dissolved oxygen.

The water quality parameters, water level measurements, and PID readings were recorded on the well purging forms (**Appendix A**).

2.2 WATER LEVEL MEASUREMENTS

Groundwater level measurements were acquired from all sampled monitoring wells during the April 2006 sampling event. The depth of the static water level was measured to the nearest 0.01 foot using an electric water level meter. Water level measurements for all wells were taken prior to all sampling activities and noted in **Table 2-1**. Water levels were also taken during all field measurements to measure any groundwater drop down during the purging process. These results are further discussed in **Section 4.1**.

2.3 LABORATORY ANALYSIS

The groundwater samples collected were shipped in sealed coolers on ice to Accutest Laboratories, Inc. in Orlando, Florida and were analyzed for target compound list (TCL) volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), polynuclear aromatic hydrocarbons (PAHs), TCL pesticides and PCBs, target analyte list (TAL) metals, explosives, and dioxin furans analyses. Generated investigative derived waste (IDW) was analyzed for chemical oxygen demand (COD) and pH. The chemical analysis performed for each sample is noted in **Table 2-2**. Chain of custody records (**Appendix B**) accompanied all sample shipments. Samples were sent for chemical analysis in appropriate sample containers with USEPA prescribed preservation on ice at a temperature of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$.

2.4 SAMPLE COLLECTION

All monitoring wells, field QC samples, sample descriptions, and laboratory analysis collected during the sampling event are listed in **Table 2-2**. Sampling locations are shown on **Figure 2-1**. All samples scheduled for collection for the April 2006 sampling event were collected. This included thirteen groundwater wells, two field duplicates, one rinse blank, and two trip blanks. In some cases limited volume was collected due to poor purging wells; however, sufficient volumes were still available to perform the full suite of scoped chemical analyses. The detected data values have been included in this report and may be found in **Table 4-1**.

Groundwater samples collected from the eastern HSA wells were acquired using the low-flow groundwater sampling procedures with a QED SamplePro portable micropurge bladder pump. For each sample, a clean piece of plastic sheeting was spread on the ground around the well to protect the sampling equipment. Immediately after opening the well, headspace readings in the well and in the breathing zone immediately above the well were taken with a PID. No VOCs were detected from any of the wells. If VOCs were measured in the well, the well would have been allowed to ventilate for several minutes. If the readings were continuous, then Level C protection will be worn while purging and sampling the well. The depth to water was then measured with an electric water-level indicator.

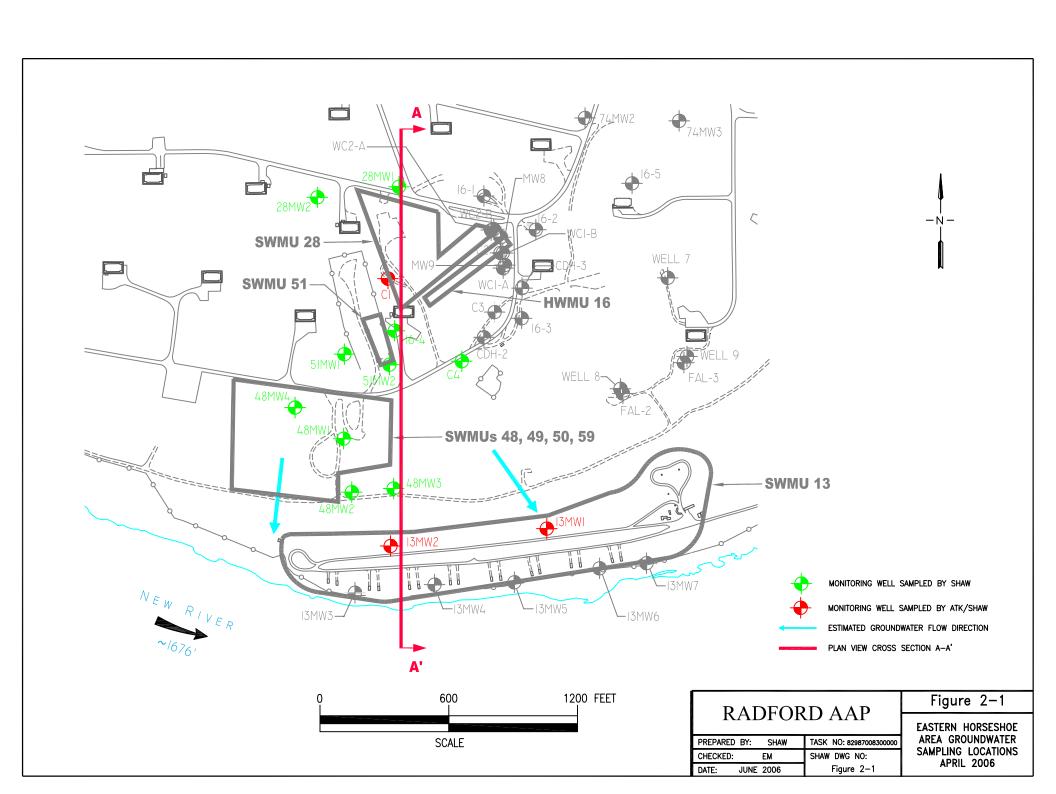
For purging the well and collecting the samples, new pieces of Teflon tubing were connected to the bladder pump and air inlet and placed within the well. The pump was also supported with nylon rope and the tube inlet placed at the center of the well screen. The bladder pump was then started at a low pumping rate (low-flow sampling of less than 0.500 L/min). The pumping rate was then adjusted until it equals the groundwater recharge rate. Where possible, groundwater was not drawn down below the top of the well screen. In cases where the water table is within the screened interval, groundwater draw down was limited to 10% of the height of the water column.

While purging, an in-line flow-through cell was used to measure groundwater temperature, pH, dissolved oxygen, turbidity, and oxidation reduction potential. These readings were used to determine if conditions in the well have had stabilized as well as the water level recorded to measure groundwater drop down. Measurements were recorded for every 5 minutes. The water quality readings were recorded on the Well Purge Forms along with the time of the reading, the water level reading, pump setting, purge rate, depth to screen, description of water, and the cumulative volume extracted. A Hydrolab instrument was used to determine the water quality parameters. The groundwater was considered stable when draw down has reached an equilibrium level, and the total volume of water purged exceeds the water volume in the screened interval and the surrounding filter pack, and parameters stabilize to within ten percent over three consecutive readings.

Sample bottles were labeled, custody-sealed, enclosed in a plastic bag, and placed in a cooler with ice in double bags to be maintained at $4^{\circ}C \pm 2^{\circ}C$ immediately after sample collection and preservation. Purge water was containerized in 55-gallon drums, sealed, and labeled to identify the drum contents for later disposition. Disposable sampling equipment was discarded.

Pumps and non-expendable equipment were decontaminated after each collected sample. The decontamination procedure for sampling equipment included the following: 1) Scrub the sampler pump to remove visible contamination using brushes (if necessary) with distilled (DI) water and non-phosphate detergent; 2) Rinse equipment with DI water; 3) Rinse equipment (i.e. water level indicator, pump) with reagent-grade nitric acid and methanol; 4) Rinse equipment with de-ionized ultra-filtered (DIUF) water; and 5) Place sampling equipment in supplied plastic tube.

Table 2-1
Eastern Horseshoe Area Monitoring Well Information, April 2006


Site ID	Well ID	Date Installed	Screened Zone	Elevation TOC (ft msl - NVGD, 1929)	Well Depth (ft bgs)	Screened Interval (ft bgs)	DTW (ft TOC) 4/06	Water Elev (ft msl) 4/06	Water Elev (ft msl) 4/00	Depth to Bedrock (ft bgs)
SWMU 13	13MW1	8/20/91	Bedrock	1701.44	28	18-28	21.76	1679.68	1685.02	18
	13MW2	8/29/91	Bedrock	1702.62	29	19-29	21.68	1680.94	1681.72	19
HWMU 16	16-4	11/2/84	Bedrock	1836.76	80	45-80	52.91	1783.85	1783.00	37
	C1	7/31/80	Bedrock	1840.14	70	55-70	50.78	1789.36	1788.52	48
	C4	7/29/80	Bedrock	1824.57	70	55-70	53.88	1770.69	1770.19	46
SWMU 28	28MW1	9/4/91	Bedrock	1827.18	63	43-63	29.05	1798.13	1797.24	26
	28MW2	9/10/91	Bedrock	1821.56	83	68-83	62.56	1759.00	1758.66	55
SWMU 48	48MW4	7/22/95	Bedrock	1832.60	94	74-94	80.41	1752.19	1751.72	NA
SWMU 49	48MW1	12/19/94	Bedrock	1819.95	140	110-140	111.39	1708.56	1707.71	60
	48MW2	1/7/95	Bedrock	1818.88	133.7	113.7-133.7	125.30	1693.58	1693.21	40
	48MW3	1/8/95	Bedrock	1812.17	120	100-120	96.75	1715.42	1714.59	32
SWMU 51	51MW1	9/24/91	Unconsol	1823.13	35	25-35	33.08	1790.05	1816.01	33
	51MW2	9/9/81	Interface	1834.77	53	43-53	50.07	1784.70	1784.42	47

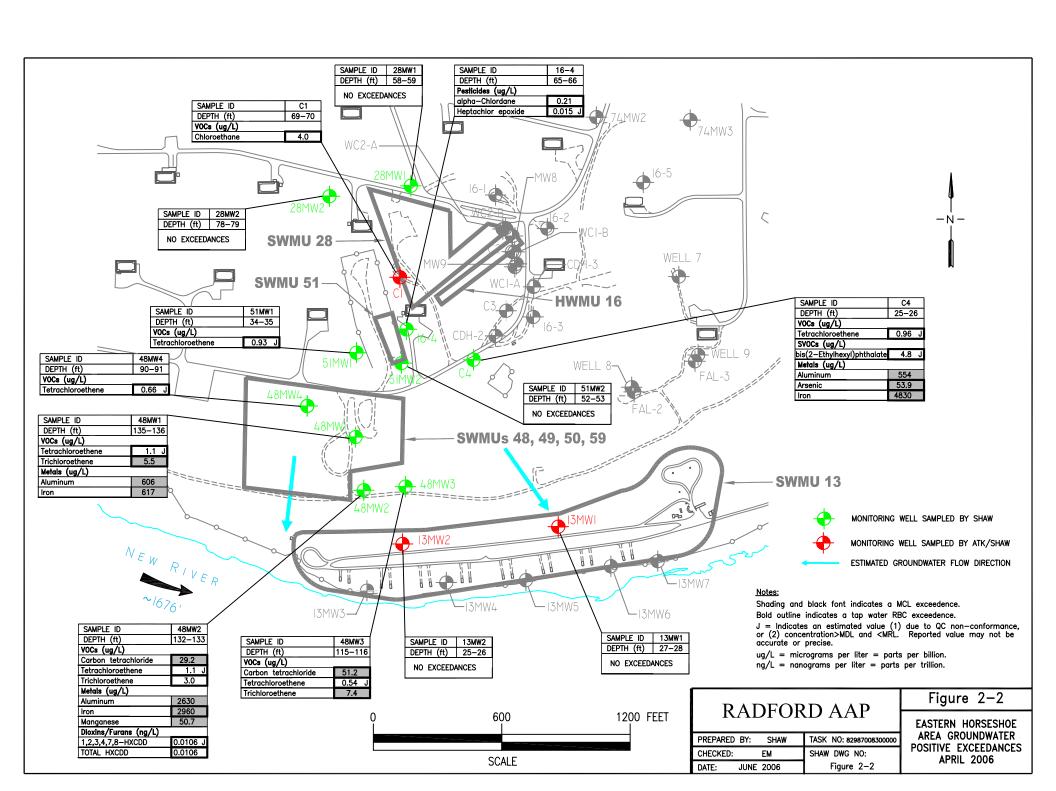

NOTES: TOC = top of casing; msl = mean sea level; bgs = below ground surface; NA = not available, Unconsol = well screened in unconsolidated sediments; Interface = well screened across unconsolidated-bedrock interface; DTW = depth to water.

Table 2-2 Analytical Samples Collected for Groundwater Analysis, April 2006

Sample Identification (ID)	Description	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans			
Groundwater Monito	oring Wells Horseshoe Area				
16-4	Groundwater Sample HWMU 16				
C1	Groundwater Sample HWMU 16				
C4	Groundwater Sample HWMU 16	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
13MW1	Groundwater Sample SWMU 13	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
13MW2	Groundwater Sample SWMU 13	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
28MW1	Groundwater Sample SWMU 28	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
28MW2	Groundwater Sample SWMU 28	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
48MW1	Groundwater Sample SWMU 48	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
48MW2	Groundwater Sample SWMU 48	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans			
48MW3	Groundwater Sample SWMU 48	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
48MW4	Groundwater Sample SWMU 48	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
51MW1	Groundwater Sample SWMU 51	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
51MW2	Groundwater Sample SWMU 51	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides			
Quality Control Sam	ples	,			
041206R	Rinse blank of Low Flow pump and tubing	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans			
TM13MW1	Field Duplicate of 13MW1	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans			
TM48MW1	Field Duplicate of 48MW1	TCL VOCs, TCL SVOCs, PAHs, TCL Pesticides & PCBs, TAL Metals, Dioxins & Furans			
041006T	Trip blank shipped April 10, 2006	TCL VOCs			
041306T	Trip blank shipped April 13, 2006	TCL VOCs			
Investigative Derived	l Waste				
041306DW	All Groundwater Wells	COD & pH			

Notes: Samples were analyzed using USEPA SW-846 Update IIIA methodology (April, 1998) and USEPA Methods for Chemical Analysis of Water and Wastes (USEPA, 1983).

3.0 QUALITY ASSURANCE/QUALITY CONTROL AND DATA MANAGEMENT

This section provides Quality Assurance (QA)/Quality Control (QC) information pertaining to the April 2006 sampling event. Quality assurance is defined as the overall system for assuring the reliability of data produced. The system integrates the quality planning, assessment, and improvement efforts of various groups in the organization to provide the independent QA program necessary to establish and maintain an effective system for collection and analysis of environmental samples and related activities. The program also encompasses the generation of valid and complete data as well as its subsequent review, validation, and documentation.

3.1 OVERVIEW OF QUALITY ASSURANCE PROGRAM

All investigative activities including field work and data evaluation were conducted in accordance with the Field Sampling Plan for Groundwater Sampling in the Horseshoe Area (USACE, 2006), which was used in conjunction with the Master Work Plan (MWP) Master Health and Safety Plan (URS, 2003) and Work Plan Addendum (WPA) 012 (IT, 2002b). In addition, the requirements of the USACE Shell for Analytical Chemistry Requirements (USACE, 2001) were used. Data management, corrective actions, and QA reports are fully described in the MWP.

3.2 REVIEW OF DOCUMENTATION

Sampling activities were performed in compliance with standard operating procedures (SOPs) and each individual performing sampling was aware of the requisite protocols for collection of environmental samples. Documentation required for this project was reviewed and deficiencies, if any, were identified. Documentation required included the following:

- **Field Logbooks:** Hardback logbooks with numbered pages were used to log daily activities, and data collected during the course of field activities. Designated logbooks were also used to record calibration records and equipment maintenance as they were performed. Entries into field logbooks were evaluated for completeness and accuracy.
- Groundwater Purge Forms: During groundwater sampling, well purging data was
 recorded on the Groundwater Purge Form. Information included date, time, water
 quality measurements, purge rate, volume of water extracted, and a description of
 water removed.
- Chain-of-Custody: Samples were collected and relinquished under stringent chain-of-custody protocols as specified in the project MWP. A review of Chain-of-Custody forms indicates that all information was correctly supplied.
- **Document Control:** Documents generated in support of project activities were input into the Document Control System. A unique control number was assigned to each document prior to its being archived into the system. Access into and out of the document control system was restricted to designated personnel.

3.3 ANALYTICAL SERVICES AND METHODOLOGY

The analytical services for the project were provided by Accutest Laboratories, Inc. located in Orlando, FL. The groundwater samples were analyzed for TCL VOCs, TCL SVOCs, PAHs, explosives, TCL pesticides and PCBs, TAL metals, and Dioxin Furans analyses. The investigative derived waste sample was analyzed for COD and pH. Chain of custody records (**Appendix B**) accompanied all sample shipments. The laboratory used *USEPA Third Edition*, *SW-846 Test Methods for Evaluating Solid Waste, Update IIIA* (USEPA, 1998) and *USEPA Methods for Chemical Analysis of Water and Wastes* (MCAWW) (USEPA, 1983) methodology for the groundwater and investigative derived waste analyses. Samples were sent for chemical analysis in appropriate sealed sample containers with USEPA prescribed preservation on ice and received at a temperature within 4°C ± 2°C. The following sections present the USEPA methods that were performed for the samples for the 2006 groundwater effort.

TCL VOCs. Samples were analyzed for TCL VOCs using USEPA SW-846 Method 5030B/8260B for aqueous samples using purge and trap technology. An inert gas was bubbled through a 5 ml aqueous sample contained at ambient temperature. The vapor was swept through a sorbent column where the purgeable compounds were trapped. After purging was completed for the aqueous samples, the sorbent column was heated and backflushed with the inert gas to desorb the purgeable compounds onto a gas chromatograph (GC) programmed to separate the purgeable compounds, which are then detected with a mass spectrometer (MS). The GC/MS instrument was calibrated for a series of target analytes using chemical standards of known concentration and purity. Quantification of these target analytes was performed against specific internal standards as identified in the respective method. Identification of these target analytes was based on a comparison of the analyte to the chemical standards used during calibration based on the analyte's retention time and mass spectra.

TCL SVOCs. Samples were analyzed for TCL SVOCs using USEPA SW-846 Method 8270C. Aqueous samples were extracted using a separatory funnel liquid-liquid extraction technique according to USEPA SW-846 Method 3510C. The extract was injected into a GC programmed to separate the compounds, which are then detected with an MS. The GC/MS instrument was calibrated for a series of target analytes using chemical standards of known concentration and purity. Quantification of these target analytes was performed against specific internal standards as identified in the respective method. Identification of these target analytes was based on a comparison of the analyte to the chemical standards used during calibration based on the analyte's retention time and mass spectra.

PAHs. Samples were analyzed for PAHs using USEPA SW-846 Method 8270C selective ion monitoring (SIM) procedures. The use of USEPA SW-846 Method 8270C SIM was employed for PAH analysis to achieve lower quantitation and detection limits in order to meet screening criteria. The remaining methodology is the same as for TCL SVOCs.

TCL Pesticides/PCBs. Samples were analyzed for TCL pesticides and PCBs using USEPA SW-846 Methods 8081A and 8082, respectively. Aqueous samples were extracted using a separatory funnel liquid-liquid extraction technique by USEPA SW-846 Method 3510C. The extract was injected into a GC programmed to separate the compounds, which are then detected with an electron capture detector (ECD). Sulfur cleanups were employed to aid in the quantification based upon the matrix interferences. Sample concentrations are confirmed on dissimilar columns. Identification of these target analytes was based on a comparison of the analyte to the chemical standards used during calibration based on the analyte's retention time using primary and secondary columns

TAL Metals. TAL metals were analyzed using a combination of the following methodologies: inductively coupled plasma (ICP) and cold vapor atomic absorption (CVAA). For aqueous samples, trace ICP metals were digested using USEPA SW-846 Methods 3010A followed by method 6010B for analysis. The ICP method involves the simultaneous or sequential multi-element assessment of trace elements in solution. The basis of the method was the measurement of atomic emission by optical spectrometry. Samples are nebulized and the aerosol that was produced was transported to the plasma torch where excitation occurs. Characteristic atomic-line emission spectra are produced by a radio-frequency ICP. A background correction technique was utilized to compensate for variable background contribution for the assessment of trace elements.

Mercury was analyzed using CVAA according to USEPA SW-846 Method 7470A for aqueous samples. A sample aliquot was initially digested with nitric acid to free combined mercury. The mercury was then reduced to its elemental state and aerated from the solution into a closed system. The mercury vapor was passed through a cell positioned in the path of the mercury light source and the measured abundance was proportional to the concentration of mercury in the sample.

Explosives. Samples were analyzed for explosives using USEPA SW-846 Method 8330A. Aqueous samples of low concentration were extracted by a salting-out extraction procedure with acetonitrile and sodium chloride. The small volume of acetonitrile that remains undissolved above the salt water was drawn off and transferred to a smaller volumetric flask. It was back extracted by vigorous stirring with a specific volume of salt water. After equilibration, the phases were allowed to separate and the small volume of acetonitrile residing in the narrow neck of the volumetric flask was removed. The concentrated extracts were diluted with reagent grade water, and an aliquot was separated on a C-18 reverse phase column. The wavelength was set at 254 nm and confirmed on a cyanide reverse column. Identification of these target analytes was based on a comparison of the analyte to the chemical standards used during calibration based on the analyte's retention time using primary and secondary columns.

Nitroglycerine(NG)/PETN. Samples were analyzed for NG and PETN using USEPA SW-846 Method 8332. Aqueous samples were extracted according to USEPA SW-846 Method 8330, using a double salting-out procedure with acetonitrile. The extract is mixed with calcium chloride just prior to analysis. The concentration was quantified using an isocratic HPLC system equipped with a column heater and UV detector. Sample concentrations were confirmed on dissimilar columns.

Dioxins/furans. Samples were analyzed for dioxin/furans using USEPA SW-846 Method 8290. The analytical method used high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) on purified sample extracts. This method is specific for the analysis of 2,3,7,8-tetrachlorinated dibenzofuran (2,3,7,8-TCDD), substituted penta-, hexa-, hepta- and octachlorinated dibenzo-p-dioxins and substituted penta-, hexa-, hepta- and octachlorinated dibenzofurans in water and solid samples. The extracts were injected onto a HRGC programmed to separate the compounds, which are then detected with a HRMS as confirmation.

COD. COD was analyzed using USEPA MCAWW Method 410.1. A sample was heated under acidic conditions at a slow, constant rate in an oven or block digestor in the presence of potassium dichromate at 150°C for two hours. The COD was then titrated with ferrous ammonium sulfate.

pH. Samples were analyzed for pH using USEPA SW-846 Method 9040C for aqueous samples. A sample pH was directly measured electrometrically using either a glass electrode in combination with a reference potential or a combination electrode.

3.4 DATA MANAGEMENT

Analytical data packages were provided by the laboratory in a format similar to contract lab program for full data validation. Related sampling information and chemical data necessary to complete the chemical data files were provided by the laboratory. The electronic data format provided by the laboratory was in a specified RFAAP site-related format.

3.5 DATA REDUCTION AND VALIDATION

Data obtained were reviewed by the QA Manager to determine whether the project-specific data quality objectives, as defined in the associated MWP, were met. The laboratory data were validated for the groundwater samples by Shaw using a combination of *USEPA-SW846*, *Third Edition, Test Methods for Evaluating Solid Waste, Update IIIA* (USEPA, 1998), *USACE Requirements for the Preparation of Sampling and Analysis Plans, Shell Guidance for Analytical Chemistry Requirements EM 200-1-3* (USACE, 2001), laboratory SOP criteria, *Master Work Plan (MWP) Master Health and Safety Plan* (URS, 2003), and *Work Plan Addendum (WPA) 012* (IT, 2002b) to provide the QC criteria. The *USEPA Region III Modification to the National Functional Guidelines for Organic Data Review, Multimedia, Multi-concentration* (USEPA, 1994), *USEPA Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993), and *USEPA Region III Dioxin/Furan Data Validation Guidance* (March, 1999) were used in providing the validation qualifier schemes and further guidance in support for this project.

In meeting these specifications, various lab performance criteria were evaluated. These evaluations included (as applicable) a review of the 1) sample preservation and holding times; 2) instrument performance checks; 3) calibration (initial and continuing); 4) field and laboratory blanks; 5) matrix spike and spike duplicate recoveries and RPDs; 6) field and lab sample duplicates; 7) surrogate spike recoveries; 8) laboratory control samples; 9) internal standards and retention times; and 10) quantitative verification. Data associated with parameters in compliance with the QC specifications were not qualified. Data associated with parameters that did not comply with QC specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications. The quality of the data collected in support of the sampling activity was considered acceptable, unless qualified as rejected "R" during the validation process. Samples qualified as estimated "J", estimated with low bias "L", or estimated with high bias "K" were considered acceptable as estimated. Samples qualified "B" should be considered non-detect at the reporting level or at the level reported, whichever was greater. Data validation reports are provided in **Appendix C**.

3.6 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQOs) were developed concurrently with the work plan to ensure: 1) the reliability of field sampling, chemical analyses, and physical analyses; 2) the collection of sufficient data; 3) the quality of data generated was acceptable for its intended use; and, 4) valid assumptions could be inferred from the data. Attainment of DQOs was assessed through evaluation of all data collected using the following data quality indicators:

- **Precision** a quantitative measure of the variability of a group of measurements in comparison to the average value;
- **Accuracy** the bias in a measurement system;
- **Representativeness** the degree to which the measured results accurately reflect the medium being sampled. Representativeness will be assessed based on accuracy, precision, and completeness;
- **Completeness** the percentage of measurements which are judged to be useable;
- Comparability a qualitative parameter expressing the confidence with which one data set can be compared with another; and,
- **Sensitivity** describes the method detection, quantitation, and reporting limits. It also may be expressed as the slope of the analytical curve (intensity verses concentration).

Data quality was assessed through the evaluation of sampling activities and field measurements associated with the chemical analytical data in order to determine the reliability of the chemical analyses and the accuracy and precision of information acquired from the laboratories.

3.6.1 Precision

Duplicates were collected to identify the cumulative precision of the sampling and analytical process, which includes the homogenization of samples. Field precision was checked by obtaining duplicate samples for each parameter and each media on a site-wide basis at a 10% frequency. Analytical precision for the laboratory and overall sampling precision were evaluated during validation process and data review by calculating and evaluating the relative percent difference (RPD) between the results of sample and its associated duplicate pair. The RPD is calculated by the following equation:

$$RPD (\%) = \frac{|(XA - XB)|}{XM * 100}$$

Where:

XA and XB are duplicate analyses, and

XM is the mean value of duplicate analyses (XA + XB)/2

Laboratory precision criteria were derived from the USACE Shell guidance in conjunction with laboratory generated criteria. The field duplicate criteria were established at RPD≤50%. All positive results for TCL VOCs, TCL SVOCs, PAHs, explosives, TCL pesticides/PCBs, TAL metals, and dioxin furans in the original and duplicate samples that exceeded the precision criteria was considered quantitative estimates as indicated by a "J" validation qualifier code. Further details may be found in the validation reports located in **Appendix C**.

Two field duplicate pairs (13MW1 and TM13MW1; 48MW1 and TM48MW1) were analyzed for TCL VOCs, TCL SVOCs, PAHs, explosives, TCL pesticides/PCBs, TAL metals, and dioxin furans from the April 2006 sampling event. For sample pair 13MW1 and TM13MW1, all criteria were met. For sample pair 48MW1 and TM48MW1, manganese, zinc, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDF, and OCDD exceeded the field precision criteria and were considered quantitative estimates as indicated by a "J" validation qualifier code. All other results in the original and duplicate samples were within criteria. Further details may be found in the validation reports located in **Appendix C**.

3.6.2 Accuracy

Accuracy is the measure of bias in a system. This section discusses sources of error or bias due to field or laboratory contamination. Contamination was assessed by evaluating the results of method blanks, rinse blanks, and trip blanks. In accordance with the USEPA data validation guidelines, the detected concentration in the sample was considered a "non-detect" if the field sample concentration was within 5 times the concentration of the associated field or laboratory blank (10 times for common contaminants such as methylene chloride, 2-butanone, acetone, phthalate esters, OCDD, and OCDF). Analytical accuracy was assessed through the use of laboratory control samples (LCS), matrix spikes (MS) and spike duplicates (MSD) and was reviewed during the validation of data. Analytical accuracy for the laboratory was evaluated during validation process and data review by calculating and evaluating the percent recovery for each analyte spiked with a known concentration.

Method and Calibration Blanks. The method blank and calibration blank contamination assessment was performed to determine the impact of potential contaminant contributions originating from laboratory procedures. Low level aluminum, antimony, beryllium, cobalt, copper, lead, iron, magnesium, manganese, potassium, sodium, thallium, and mercury were detected at estimated trace levels below the reporting limit levels (i.e. <MRL) in the associated calibration/method blanks. This is resultant from the low method detection limit levels the laboratory reported to for metals analyses. All samples with detections within the 5x/10x rule were qualified "B" and should be considered non-detect at the reporting level or at the level reported, whichever was greater. For all other analytes, there were no detections in the method blank. Further details may be found in the validation reports located in **Appendix C**.

Rinse Blanks. The rinse blank contamination assessment was performed to determine the impact of potential contaminant contributions originating from non-point sources. such as field sampling equipment decontamination procedures. Rinse blanks were collected by pouring DIUF water over sampling equipment or material. The results of chemical analysis of the rinse blank were used to evaluate whether the decontamination procedure was adequately performed and whether there is cross-contamination of samples from the equipment itself. The positive analytical detections for rinse blank sample collected in April 2006 are presented in **Table 3-1**. One rinse blank sample (041206R) was collected for the bladder pump used for sampling and analyzed for TCL VOCs, TCL SVOCs, PAHs, explosives, TCL pesticides/PCBs, TAL metals, and dioxin furans. Aluminum, beryllium, magnesium, manganese, acetone, chloroform, methyl ethyl ketone, methylene chloride, and toluene were detected at estimated low concentrations in the associated rinse blank. The metals contamination is resultant from the low method detection limit levels the laboratory reported to for metals analyses and VOC contamination (acetone, chloroform, methyl ethyl ketone, and methylene chloride) are common laboratory contaminants. All samples with detections within the 5x/10x rule were qualified "B" and should be considered non-detect at the reporting level or at the level reported, whichever was greater. For all other analytes, there were no detections in the rinse blank. Further details may be found in the validation reports located in Appendix C.

Trip Blanks. Trip blanks are intended to identify contamination from exposure to atmospheric contaminants that may occur during various stages of the sampling process including: shipment of bottles on-site, storage of bottles on-site, collection of samples on-site, storage of samples on-site, shipment of samples to the laboratory, and storage of samples in the laboratory. Two trip blank samples (041006T and 041306T) were collected and analyzed for TCL VOCs. For each sample cooler containing VOC samples, a trip blank was placed in the cooler (at $4^{\circ}C \pm 2^{\circ}C$) and analyzed for TCL VOCs. The positive analytical detections for trip blank samples collected in April 2006 are presented in **Table 3-1**. Methylene chloride (a common laboratory contaminant) was detected at estimated low concentrations in both associated trip blanks. All samples with detections within the 5x/10x rule were qualified "B" and should be considered non-detect at the reporting level or at the level reported, whichever was greater. For all other analytes, there were no detections in the trip blanks. Further details may be found in the validation reports located in **Appendix C**.

Laboratory Control Sample. The LCS was analyzed to assess general method performance by the ability of the laboratory to successfully recover the target analytes from a control matrix. The LCS is similar in composition to the method blank. For aqueous analyses, spiked analyte-free reagent water was used. The LCS is spiked with all single-component target analytes before it is carried through the preparation, cleanup, and determinative procedures. LCSs were performed at a rate of one per preparation batch per matrix. When samples are not subjected to a separate preparatory procedure [i.e., purge and trap VOC analyses, or aqueous mercury analysis], the continuing calibration verification (CCV) may be used as the LCS, provided the CCV acceptance limits are used for evaluation. All LCS samples were within specified criteria except for endrin aldehyde, benzoic acid, 4-nitrophenol, phenol, acetone, 2-hexanone, 1,1,2,2-tetrachloroethane, and vinyl chloride for select samples. Data was qualified estimated if required. Further details may be found in the validation reports in **Appendix C**.

Matrix Spikes. The MS and MSD were used to assess the performance of the method as applied to a particular project matrix. A MS and MSD are an environmental sample to which known concentrations of certain target analytes have been added before sample manipulation from the preparation, cleanup, and determinative procedures have been implemented. For all samples, the original field sample was mixed or shaken to ensure homogeneous fractions when allowed by the method. MS were performed at a rate of one per preparation batch or 5% whichever was more frequent per matrix. All MS and MSD samples were within specified criteria except for endrin aldehyde, bis(2-chloroethyl)ether, bis(2-chloroisopropyl)ether, 1,2-dichlorobenzene, benzoic acid, 2,4-dimethylphenol, phenol, hexachlorobutadiene, hexachlorocyclopentadiene, chloroethane, methyl bromide, methyl chloride, and vinyl chloride for select samples. Data was qualified estimated if required. Further details may be found in the validation reports in **Appendix C**.

3.6.3 Representativeness

Representativeness is a measure of the degree to which the measured results accurately reflect the medium being sampled. It is a qualitative parameter that is addressed through the proper design of the sampling program in terms of sample location, number of samples, and actual material collected as a "sample" of the whole.

Sampling protocols have been developed to assure that samples collected are representative of the media. Field handling protocols (e.g., storage, handling in the field, and shipping) have also been designed to protect the representativeness of the collected samples. Proper field documentation and QC inspections will be used to establish that protocols have been followed and that sample identification and integrity have been maintained.

3.6.4 Completeness

Completeness is a measure of the amount of information that must be collected during the field investigation to allow for successful achievement of the objectives. An adequate amount and type of data must be collected for conclusions to be valid. Missing data may reduce the precision of estimates or introduce bias, thus lowering the confidence level of the conclusions. While completeness has been historically presented as a percentage of the data that is considered useable, this does not take into account critical sample locations or critical analytical parameters.

The amount and type of data that may be lost due to sampling or analytical error cannot be predicted or evaluated in advance. The importance of any lost or suspect data will be evaluated in terms of the sample location, analytical parameter, nature of the problem, decision to be made, and the consequence of an erroneous decision. Critical locations or parameters for which data is determined to be inadequate will either be re-sampled and re-analyzed or the data will be appropriately qualified based on the decision of the Project Officer. The analytical completeness goal percentage of useable data is set at $98 \pm 2\%$. The quality of the data collected in support of the sampling activity was considered acceptable, unless it was qualified as rejected "R" during the validation process.

Sampling completeness was assessed through evaluation of the total number of samples proposed for collection in the work plan versus the actual number of samples collected and analyzed. For the groundwater investigation, a total of thirteen groundwater wells, two field duplicates, one rinse blank, and two trip blanks were proposed and collected for a sampling completeness of 100%.

Analytical completeness was assessed by comparing the number of useable data points collected to the total number of data points generated. Based on 3156 overall sample data points, 3156 out of 3156 data points were deemed to be useable generating an overall completeness of 100%.

3.6.5 Comparability

Comparability is the confidence with which one data set can be compared to another. Comparability will be controlled through the use of field and laboratory SOPs that have been developed to standardize the collection of measurements and samples and approved analytical technique with defined QC criteria. *USEPA-SW846*, *Third Edition*, *Test Methods for Evaluating Solid Waste*, *Update IIIA* (USEPA, 1998) and *USEPA Methods for Chemical Analysis of Water and Wastes* (MCAWW) (USEPA, 1983) methodologies were used in providing laboratory analytical support for this project. Laboratory SOPs were derived from these methods. Consistent and proper calibration of equipment throughout the field exercises, as described in the MWP and addenda, will assist in the comparability of measurements. Field documentation and QA audits are used to establish that protocols for sampling and measurement follow appropriate SOPs.

3.6.6 Sensitivity

The method detection limit (MDL) is defined as the minimum concentration of a substance that can be detected and reported with 99% confidence that the analyte is greater than zero. The MDLs incorporate sample preparation effects, and therefore are not derived directly from the instrument detection limit. Since quantitation of a substance near the MDL becomes questionable, the method reporting limit (MRL) is determined for each analyte at lease twice the MDL level and is used as a threshold value. Detections above the MDL but below the MRL were considered as estimated values and are flagged with a "J". The MDLs and MRLs are presented in Table 4-1. The MDLs were evaluated against the USEPA Maximum Contaminant Levels (MCLs) and USEPA Region III Risk Based Concentrations (RBC) for tap water (tw-RBC) since they represent the lowest concentration level of useable data for groundwater comparison. Shading in the MDL and MRL columns in Table 4-1 indicates the MDL or MRL that exceeded a criterion. The MDL for pentachlorophenol did not meet MCL levels; however, it is a routinely reported compound for the given TCL SVOC methodology. All other MDLs were at or below MCLs and were sufficiently sensitive to detect compounds that meet or exceed MCLs. The MDLs did not meet the USEPA Region III tap water RBC for compounds 1,1,2,2tetrachloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, benzene, bromodichloromethane, bromomethane, carbon tetrachloride, chloroform, tetrachloroethene, trichloroethene, vinyl chloride, benzo(a)pyrene, dibenz(a,h)anthracene, 1,4-dichlorobenzene, 3,3'-dichlorobenzidine, bis(2-chloroethyl)ether, bis(chloroisopropyl)ether, hexachlorobenzene, hexachlorobutadiene, nitrobenzene, n-nitrosodi-n-propylamine, pentachlorophenol, aldrin, alpha-BHC, dieldrin, heptachlor epoxide, heptachlor, toxaphene, PCB-1016, PCB-1221, PCB-1232, PCB-1242, PCB-1248, PCB-1254, PCB-1260, 2,3,7,8-TCDD, antimony, arsenic, and thallium. The majority of these compounds given their carcinogenic properties have very low RBC concentrations which are below the given sensitivities for the standard USEPA methodology.

Table 3-1 Chemical Detections in Rinse and Trip Blank Samples, April 2006

Sample ID	Sample Date	Analyte		Lab Qualifier	Validation	Comments
			(μg/L)		Qualifier	
Rinse Blank						
041206R	04/12/06	Aluminum	72	J	J	Rinse blank for bladder pump.
		Beryllium	1.7	J	J	
		Magnesium	11.5	J	J	
		Manganese	0.26	J	J	
		Acetone	21.0	J	J	
		Chloroform	8.0			
		Methyl ethyl ketone	6.5			
		Methylene chloride	2.8	J	J	
		Toluene	0.69	J	J	
Trip Blanks				•		
041006T	04/10/06	Methylene Chloride	2.0	J	J	Trip bank accompanying shipments.
041306T	04/13/06	Methylene Chloride	1.7	J	J	

Notes:

 μ g/L = micrograms per liter = parts per billion

Laboratory Qualifiers:

J = The reported value was obtained from a reading <MRL and >MDL and is considered estimated.

Validation Qualifiers:

J = Indicates an estimated value for (1) estimated value due to QC non-conformance, or (2) estimating a concentration > MDL and < MRL. Reported value may not be accurate or precise.

4.0 RESULTS

4.1 REVIEW OF WATER LEVEL MEASUREMENT DATA

Groundwater elevations measured from the April 2000 and April 2006 events are presented in **Table 2-1**. The April 2000 data are presented in the table for comparison and were found to be similar (i.e. ± 1 foot) for the majority of the 2006 water level measurement data. The April 2000 groundwater contour map for the eastern HSA is shown on **Figure 1-2**. The April 2006 groundwater contour map for the eastern HSA is shown on **Figure 4-1**. The Eastern Horseshoe Area April 2006 Geological Cross Section is shown on **Figure 4-2**. The plan view of this cross section (A→A') is depicted on **Figure 2-1**. It is acknowledged that due to the karst nature of the aquifer, more than one flow regime could be present; however, the 2000 and 2006 data indicate similar water levels. The contour map shows a radial pattern with the gradient moving away in every direction from the groundwater elevation high point near well 28MW1 toward the New River. This groundwater trend is confirmed in **Figure 4-2**, which suggests that the groundwater is flowing toward the New River. The geological cross section Recharge in the eastern HSA occurs through karst features in the region of the topographic highs near SWMUs 28, 51, and 30 and, to a smaller extent, through porous infiltration at lower elevations, which is consistent with previous surveys.

4.2 GROUNDWATER ANALYTICAL RESULTS

The concentrations of TCL VOCs, TCL SVOCs, PAHs, explosives, TCL pesticides and PCBs, TAL metals, and Dioxin Furans detected in the groundwater samples collected during the April 2006 sampling events are shown in **Table 4-1** and are briefly discussed below. The data that exceeded regulatory criteria are presented on **Figure 2-2**. Shading and black font indicates a MCL exceedence and a bold outline indicates a tap water RBC exceedence. The "J" validation qualifier noted below with the results indicates an estimated value (1) due to QC nonconformance, or (2) concentration >MDL and <MRL. This data is considered useable for this report. The "B" validation qualifier noted below with the results indicates contaminants were detected in the rinse and/or laboratory blanks and value was considered non-detect at the level found. All data noted was reported in parts per billion as micrograms per liter (μg/L), except for dioxins and furans which was reported in parts per trillion as nanograms per liter (ng/L).

4.2.1 VOC Results

VOCs were detected in monitoring wells 28MW1, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, C1, C4, and TM48MW1 as shown in **Table 4-1**. Sample TM48MW1 is the field duplicate for well 48MW1. The detected TCL VOCs included compounds 1,1,1-trichloroethane, 1,1-dichloroethane, cis-1,2-dichloroethylene, tetrachloroethene, trichloroethene, acetone, carbon tetrachloride, chloroform, 2-butanone, chloroethane, and methylene chloride. The majority of the chlorinated solvents detected were found at SWMU 48 wells. Chloroform, methylene chloride, 2-butanone, and acetone are common laboratory contaminants and were detected in the rinse and/or laboratory blanks and considered non-detect at level found. The data summaries follow. All other TCL VOC compounds were non-detect for the Horseshoe Area April 2006 sampling event groundwater samples.

Trichloroethene exceeded the MCL of 5 μ g/L and tap-RBC of 0.026 μ g/L for samples 48MW1 (5.5 μ g/L), 48MW3 (7.4 μ g/L), and TM48MW1 (5.5 μ g/L; field duplicate for 48MW1) and exceeded the tap-RBC for sample 48MW2 (3.0 μ g/L).

Tetrachloroethene exceeded the tap-RBC of 0.1 μ g/L for samples 48MW1 (1.1J μ g/L), 48MW2 (1.1J μ g/L), 48MW3 (0.54J μ g/L), 48MW4 (0.66J μ g/L), 51MW1 (0.93J μ g/L), C4 (0.96J μ g/L), and TM48MW1 (1.0J μ g/L; field duplicate for 48MW1). All detected samples were below current MCL of 5 μ g/L for tetrachloroethene.

Carbon tetrachloride exceeded the MCL of 5 μ g/L and tap-RBC of 0.16 μ g/L for samples 48MW2 (29.2 μ g/L) and 48MW3 (51.2 μ g/L).

Chloroethane exceeded the tap-RBC of 3.6 μ g/L for sample C1 (4.0 μ g/L). Chloroethane was detected below the tap-RBC for sample 28MW1 (1.4J μ g/L). There is currently no MCL for chloroethane.

- **1,1,1-Trichloroethane** was found below the MCL of 200 μ g/L and tap-RBC of 170 μ g/L for samples 28MW1 (0.95J μ g/L), 48MW1 (1.3J μ g/L), C1 (1.3J μ g/L), and TM48MW1 (1.2J μ g/L; field duplicate for 48MW1).
- **1,1-Dichloroethane** was found below the tap-RBC of 90 μ g/L for samples 28MW1 (2.9 μ g/L), 48MW1 (1.3J μ g/L), C1 (8.5 μ g/L), and TM48MW1 (1.4J μ g/L; field duplicate for 48MW1). There is currently no MCL for 1,1-dichloroethane.
- **1,1-Dichloroethene** was found below the MCL of 7 μ g/L and tap-RBC of 35 μ g/L for samples 28MW1 (0.88J μ g/L), 48MW1 (0.55J μ g/L), and TM48MW1 (0.56J μ g/L; field duplicate for 48MW1).
- **Cis-1,2-dichloroethene** was found below the MCL of 70 μ g/L for samples 48MW1 (0.71J μ g/L), and TM48MW1 (0.77J μ g/L; field duplicate for 48MW1). There is currently no tap-RBC for cis-1,2-dichloroethene; however, total 1,2-dichloroethene (5.5 μ g/L) has a tap-RBC. All samples were less than tap-RBC for total 1,2-dichloroethene.

Chloroform exceeded the tap-RBC of 3.6 μ g/L for samples 48MW2 (5.9B μ g/L) and 48MW3 (5.5B μ g/L); however, should be considered non-detect at that level for it was found in the field blank. All chloroform detections were less than MCL of 80 μ g/L.

Methylene chloride exceeded the MCL of 5 μ g/L and tap-RBC of 4.1 μ g/L for sample C1 (8.0B μ g/L); however, should be considered non-detect at that level for it was found in the laboratory and field blanks.

Acetone was found below the tap-RBC of 550 μ g/L for sample 48MW2 (61.5B μ g/L); however, should be considered non-detect at that level for it was found in the field blank. There is currently no MCL for acetone.

2-Butanone was found below the tap-RBC of 700 μ g/L for sample 48MW2 (4.5B μ g/L); however, should be considered non-detect at that level for it was found in the field blank. There is currently no MCL for 2-butanone.

4.2.2 PAH Results

All groundwater samples were non-detect for PAHs for the Horseshoe Area April 2006 sampling event.

4.2.3 SVOC Results

TCL SVOC bis(2-ethylhexyl)phthalate was detected for monitoring well C4 as shown in **Table 4-1**. The data summary follows. All other TCL SVOC compounds were non-detect for the Horseshoe Area April 2006 sampling event groundwater samples.

Bis(2-ethylhexyl)phthalate was detected at the tap-RBC level of 4.8 μ g/L for sample C4 (4.8 μ g/L). Bis(2-ethylhexyl)phthalate was below the MCL of 6.0 μ g/L.

4.2.4 Pesticide Results

TCL pesticides alpha-chlordane and heptachlor epoxide were detected for monitoring well 16-4 as shown in **Table 4-1**. The data summaries follows. All other TCL pesticide compounds were non-detect for the Horseshoe Area April 2006 sampling event groundwater samples.

Alpha-chlordane exceeded the tap-RBC of 0.19 μ g/L for sample 16-4 (0.21 μ g/L). Alpha-chlordane was below the MCL of 2 μ g/L.

Heptachlor epoxide exceeded the tap-RBC of $0.0074 \mu g/L$ for sample $16-4 (0.015 J \mu g/L)$. Heptachlor epoxide was below the MCL of $0.2 \mu g/L$.

4.2.5 PCB Results

All groundwater samples were non-detect for TCL PCBs for the Horseshoe Area April 2006 sampling event.

4.2.6 Explosive Results

All groundwater samples were non-detect for explosive compounds for the Horseshoe Area April 2006 sampling event.

4.2.7 Metal Results

TAL metals were detected in all of the monitoring wells 13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1 (field duplicate for 13MW1), and TM48MW1 (field duplicate for 48MW1) as shown in **Table 4-1**. The detected TAL metals included aluminum, antimony, arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, vanadium, and zinc. The majority of the metals detected were at trace levels and were found in the laboratory and/or rinse blanks and should be considered non-detect at the level found. The metals contamination is resultant from the low method detection limit levels the laboratory reported at for metals analyses. The metals data summaries follow. All other TAL metals were non-detect for the Horseshoe Area April 2006 sampling event groundwater samples.

Aluminum exceeded the MCL of 50 μg/L for samples 13MW1 (360B μg/L), 13MW2 (133B μg/L), 16-4 (236B μg/L), 28MW1 (88.6B μg/L), 28MW2 (109B μg/L), 48MW1 (606 μg/L), 48MW2 (2630 μg/L), 48MW3 (82.6B μg/L), 48MW4 (113B μg/L), 51MW1 (282B μg/L), 51MW2 (100B μg/L), C1 (57.0B μg/L), C4 (554 μg/L), TM13MW1 (435B μg/L), and TM48MW1 (452B μg/L); however, should be considered non-detect at that level for it was found in the field and laboratory blanks. There is currently no tap-RBC for aluminum.

Antimony exceeded the tap-RBC of 1.5 μ g/L for samples 16-4 (3.2B μ g/L), 28MW2 (3.7B μ g/L), 48MW3 (4.3B μ g/L), 51MW1 (3.6B μ g/L), C1 (2.6B μ g/L), C4 (4.2B μ g/L), TM13MW1 (3.7B μ g/L); however, should be considered non-detect at that level for it was found in the laboratory blanks. Antimony was found below the MCL of 6 μ g/L for all detected samples.

Arsenic exceeded the MCL of 10 μ g/L and tap-RBC of 0.045 μ g/L for sample C4 (53.9 μ g/L).

Barium was found below the MCL of 2000 μg/L and tap-RBC of 730 μg/L for samples 13MW1 (134J μg/L), 13MW2 (156J μg/L), 16-4 (149J μg/L), 28MW1 (455 μg/L), 28MW2 (384 μg/L), 48MW1 (105J μg/L), 48MW2 (615 μg/L), 48MW3 (50.4J μg/L), 48MW4 (167J μg/L), 51MW1 (45.3J μg/L), 51MW2 (40.8J μg/L), C1 (181J μg/L), C4 (177J μg/L), TM13MW1 (136J μg/L), and TM48MW1 (92.6J μg/L).

Beryllium was found below the MCL of 4 μ g/L and tap-RBC of 7.3 μ g/L for samples 13MW1 (2.1B μ g/L), 13MW2 (2.0B μ g/L), 16-4 (2.0B μ g/L), 28MW1 (2.1B μ g/L), 28MW2 (2.0B μ g/L), 48MW1 (1.8B μ g/L), 48MW2 (2.0B μ g/L), 48MW3 (2.2B μ g/L), 48MW4 (2.1B μ g/L), 51MW1 (2.0B μ g/L), 51MW2 (2.1B μ g/L), C1 (1.9B μ g/L), C4 (2.1B μ g/L), TM13MW1 (2.1B μ g/L), and TM48MW1 (2.0B μ g/L); however, should be considered non-detect at that level for it was found in the field and laboratory blanks.

Calcium was detected in samples 13MW1 (114000 μg/L), 13MW2 (94900 μg/L),16-4 (36300 μg/L), 28MW1 (78200 μg/L), 28MW2 (40100 μg/L), 48MW1 (67400 μg/L), 48MW2 (89700 μg/L), 48MW3 (102000 μg/L), 48MW4 (58600 μg/L), 51MW1 (18900 μg/L), 51MW2 (53700 μg/L), C1 (105000 μg/L), C4 (34700 μg/L), TM13MW1 (117000 μg/L), and TM48MW1 (69900 μg/L). There is currently no MCL or tap-RBC for calcium.

Chromium was found below the MCL of 100 μ g/L and tap-RBC of 11 μ g/L for samples 13MW1 (2.8J μ g/L), 13MW2 (3.2J μ g/L), 16-4 (0.74J μ g/L), 28MW2 (1.3J μ g/L), 48MW1 (1.7J μ g/L), 48MW2 (6.4J μ g/L), 48MW3 (1.0J μ g/L), 48MW4 (0.86J μ g/L), 51MW1 (0.59J μ g/L), 51MW2 (1.3J μ g/L), C4 (2.0J μ g/L), TM13MW1 (4.6J μ g/L), and TM48MW1 (1.2J μ g/L).

Cobalt was detected in sample 48MW2 (1.3B μ g/L); however, should be considered non-detect at that level for it was found in the laboratory blanks. There is currently no MCL or tap-RBC for cobalt.

Copper was found below the MCL of 1300 μ g/L and tap-RBC of 150 μ g/L for samples 48MW2 (0.83B μ g/L) and C4 (6.9B μ g/L); however, should be considered non-detect at that level for it was found in the laboratory blanks.

Iron exceeded the MCL of 300 μ g/L for samples 48MW1 (617 μ g/L), 51MW1 (547 μ g/L), TM13MW1 (376 μ g/L), and TM48MW1 (387 μ g/L). Iron exceeded the tap-RBC of 1100 μ g/L for samples 48MW2 (2960 μ g/L) and C4 (4830 μ g/L). Iron was found below the MCL and tap-RBC for samples 13MW1 (264J μ g/L), 13MW2 (29.7B μ g/L), 16-4 (174J μ g/L), 28MW2 (31.8B μ g/L), 48MW3 (8.9B μ g/L), 48MW4 (62.8B μ g/L), 51MW2 (42.2B μ g/L); however, where qualified "B", they should be considered non-detect at that level for it was found in the laboratory blanks.

Lead was found below the MCL of 15 μ g/L for samples 13MW2 (1.6B μ g/L), 16-4 (2.0B μ g/L), 28MW2 (1.8B μ g/L), 48MW1 (2.0B μ g/L), 48MW2 (1.3B μ g/L), 48MW3 (2.7B μ g/L), 51MW1 (1.3B μ g/L), and C4 (7.8B μ g/L); however, should be considered non-detect at that level for it was found in the laboratory blanks. There is currently no tap-RBC for lead.

Magnesium was detected in samples 13MW1 (34400 μg/L), 13MW2 (38800 μg/L), 16-4 (22700 μg/L), 28MW1 (49800 μg/L), 28MW2 (20000 μg/L), 48MW1 (35300 μg/L), 48MW2 (44800 μg/L), 48MW3 (42800 μg/L), 48MW4 (49600 μg/L), 51MW1 (7440 μg/L), 51MW2 (15600 μg/L), C1 (38100 μg/L), C4 (20400 μg/L), TM13MW1 (35100 μg/L), and TM48MW1 (35400 μg/L).

Manganese exceeded the MCL of 50 μg/L for samples 48MW2 (50.7 μg/L) and 51MW1 (60.6 μg/L). Manganese was detected in samples 13MW1 (5.4J μg/L), 13MW2 (1.3B μg/L), 16-4 (5.1J μg/L), 28MW1 (22.4 μg/L), 28MW2 (1.5B μg/L), 48MW1 (10.3J μg/L), 48MW3 (1.8B μg/L), 48MW4 (2.6B μg/L), 51MW2 (1.8B μg/L), C1 (7.1J μg/L), C4 (47.6 μg/L), TM13MW1 (6.6J μg/L), and TM48MW1 (5.6J μg/L); however, where qualified "B", they should be considered non-detect at that level for it was found in the laboratory and field blanks. All of the manganese detections were below the tap-RBC of 73 μg/L.

Nickel was found below the tap-RBC of 73 μ g/L for samples 48MW1 (1.2J μ g/L), 48MW2 (4.9J μ g/L), 51MW1 (1.1J μ g/L), and C4 (1.1J μ g/L). There is currently no MCL for nickel.

Potassium was detected in samples 13MW1 (1480J μg/L), 13MW2 (1190J μg/L), 16-4 (1030J μg/L), 28MW1 (1530J μg/L), 28MW2 (1710J μg/L), 48MW1 (2020J μg/L), 48MW2 (1690J μg/L), 48MW3 (1230J μg/L), 48MW4 (1600J μg/L), 51MW1 (1070J μg/L), 51MW2 (1220J μg/L), C1 (2720J μg/L), C4 (867J μg/L), TM13MW1 (1540J μg/L), and TM48MW1 (2060J μg/L).

Selenium was found below the MCL of 50 μ g/L and tap-RBC of 18 μ g/L for samples 13MW1 (5.5J μ g/L), 28MW1 (4.9J μ g/L), 48MW1 (3.2J μ g/L), 48MW2 (2.4J μ g/L), 48MW3 (5.2J μ g/L), C1 (2.8J μ g/L), and TM13MW1 (7.2J μ g/L).

Sodium was detected in samples 13MW1 (9310L μ g/L), 13MW2 (81.0B μ g/L), 16-4 (385B μ g/L), 28MW1 (2570B μ g/L), 28MW2 (2170B μ g/L), 48MW1 (13700 μ g/L), 48MW2 (311B μ g/L), 48MW3 (1030B μ g/L), 48MW4 (8230L μ g/L), 51MW1 (256B μ g/L), 51MW2 (713B μ g/L), C1 (4250L μ g/L), C4 (104B μ g/L), TM13MW1 (10300 μ g/L), and TM48MW1 (14900 μ g/L); however, where qualified "B", they should be considered non-detect at that level for it was found in the laboratory and field blanks. There is currently no MCL or tap-RBC for sodium.

Vanadium exceeded the tap-RBC of 3.7 μ g/L for sample 48MW2 (6.3B μ g/L); however, should be considered non-detect at that level for it was found in the laboratory blanks. Vanadium was found below the tap-RBC for samples 13MW1 (0.98B μ g/L), 16-4 (0.70B μ g/L), 28MW1 (0.64B μ g/L), 48MW1 (1.3B μ g/L), 48MW3 (0.91B μ g/L), C1 (0.82B μ g/L), C4 (1.8B μ g/L), TM13MW1 (1.6B μ g/L), and TM48MW1 (1.2B μ g/L); however, should be considered non-detect at that level for it was found in the field and laboratory blanks. There is currently no MCL for vanadium.

Zinc was found below the MCL of 5000 μ g/L and tap-RBC of 1100 μ g/L for samples 13MW1 (1.4J μ g/L), 16-4 (0.91J μ g/L), 28MW2 (4.8J μ g/L), 48MW1 (3.0J μ g/L), 48MW2 (11.7J μ g/L), 48MW4 (1.4J μ g/L), 51MW1 (3.4J μ g/L), 51MW2 (2.1J μ g/L), C4 (22.3 μ g/L), TM13MW1 (1.5J μ g/L), and TM48MW1 (1.7J μ g/L).

4.2.8 Dioxin Furan Results

Dioxins and furans were detected in monitoring wells 48MW2, 48MW3, 51MW1, C4, TM48MW1 (field duplicate of 48MW1) as shown in **Table 4-1**. The detected dioxins and furans included congeners 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, TOTAL PeCDD, TOTAL HxCDD, TOTAL HpCDD, and TOTAL TCDF. The data summaries follow. The dioxin furan data is reported in ng/L (parts per trillion). All other dioxin and furan congeners were non-detect for the Horseshoe Area April 2006 sampling event groundwater samples.

- **2,3,7,8-TCDF** was detected in sample TM48MW1 (0.0128J ng/L). There is currently no MCL or tap-RBC for 2,3,7,8-TCDF.
- **1,2,3,7,8-PeCDD** was detected in samples 48MW2 (0.0283J ng/L), 48MW3 (0.0112J ng/L), and TM48MW1 (0.0873J ng/L). There is currently no MCL or tap-RBC for 1,2,3,7,8-PeCDD.
- **1,2,3,4,7,8-HxCDD** exceeded the tap-RBC of 0.011 ng/L for sample TM48MW1 (0.0215J ng/L) and was detected at the tap-RBC concentration for 48MW2 (0.0106J ng/L). There is currently no MCL for 1,2,3,4,7,8-HxCDD.
- **1,2,3,4,6,7,8-HpCDD** was detected in samples 48MW2 (0.0331J ng/L), 48MW3 (0.0168J ng/L), and TM48MW1 (0.0857J ng/L). There is currently no MCL or tap-RBC for 1,2,3,4,6,7,8-HpCDD.
- **OCDD** was detected in samples 51MW1 (0.0376J ng/L), C4 (0.0361J ng/L), and TM48MW1 (0.0180J ng/L). There is currently no MCL or tap-RBC for OCDD.

TOTAL TCDF was detected in sample TM48MW1 (0.0128 ng/L). There is currently no MCL or tap-RBC for TOTAL TCDF.

TOTAL PeCDD was detected in samples 48MW2 (0.0283 ng/L), 48MW3 (0.0112 ng/L), and TM48MW1 (0.0873J ng/L). There is currently no MCL or tap-RBC for TOTAL PeCDD.

TOTAL HxCDD exceeded the tap-RBC of 0.011 ng/L for sample TM48MW1 (0.0215 ng/L) and was detected at the tap-RBC concentration for 48MW2 (0.0106J ng/L). There is currently no MCL for TOTAL HxCDD.

TOTAL HpCDD was detected in samples 48MW2 (0.0331 ng/L), 48MW3 (0.0168 ng/L), and TM48MW1 (0.0857 ng/L). There is currently no MCL or tap-RBC for TOTAL HpCDD.

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID		13MV	W1				13M	W2				16-4	ı	
Analyte		Sample Date		4/12/	06				4/12	/06				4/10/0)6	
,		Sample Depth		27-2	8				25-2	26				65-6	6	
	MCL	tw-RBC	Result	Lab O Val O	MDL	MRL	Result	Lab Q		MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)			resur	2 2	D.L	MLD	resur	Luo Q	, u. Q	DL	ma	resur	Luo Q	, Q		MAC
1,1,1-Trichloroethane	200	170	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
1,1-Dichloroethane	na	90	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
1,1-Dichloroethene	7	35	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
2-Butanone	na	700	5	U	2.5	5	5	U		2.5	5	5	U		2.5	5
Acetone	na	550	25	U	5	25	25	U		5	25	25	U		5	25
Carbon tetrachloride	5	0.16	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
Chloroethane	na	3.6	2	U	1	2	2	U		1	2	2	U		1	2
Chloroform	80	0.15	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
cis-1,2-Dichloroethene	70	5.5	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
Methylene chloride	5	4.1	5	U	1	5	5	U		1	5	5	U		1	5
Tetrachloroethene	5	0.1	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
Trichloroethene	5	0.026	1	U	0.5	1	1	U		0.5	1	1	U		0.5	1
PAHs (ug/L)	-					· ·										
All groundwater samples were non-detect for PAHs.																
SVOCs (ug/L)								1								
bis(2-Ethylhexyl)phthalate	6	4.8	6.3	U	3.1	6.3	5.6	U		2.8	5.6	5.6	U		2.8	5.6
Pesticides (ug/L)	Ü		0.5	Ü	5.1	0.2	5.0	Ü		2.0	2.0	5.0			2.0	2.0
alpha-Chlordane	2	0.19	0.067	U	0.013	0.067	0.063	U		0.013	0.063	0.21			0.013	0.067
Heptachlor epoxide	0.2	0.0074	0.067	U	0.013	0.067	0.063	U		0.013	0.063	0.015	J	Ţ	0.013	0.067
PCBs (ug/L)	0.2	0.0074	0.007	C	0.015	0.007	0.003	C		0.013	0.003	0.013	J	,	0.013	0.007
All groundwater samples were non-detect for PCBs.																
Explosives (ug/L)								1								
All groundwater samples were non-detect for explosives,								1								
Metals (ug/L)								1								—
Aluminum	50	na	360	В	16	200	133	J	В	16	200	236		В	16	200
Antimony	6	1.5	2.2	U	2.2	5	2.2	U	Б	2.2	5	3.2	J	В	2.2	5
Arsenic	10	0.045	2.9	U	2.9	10	2.9	U		2.9	10	2.9	U	ь	2.9	10
Barium	2000	730	134	J J	0.5	200	156	J	J	0.5	200	149	J	J	0.5	200
Beryllium	4	7.3	2.1	J B	0.3	4	2	J	В	0.3	4	2	J	В	0.7	4
Calcium	na	na	114000	ј Б	26	1000	94900	,	ь	26	1000	36300	J	ь	26	1000
Chromium	100	11	2.8	J J	0.5	10	3.2	J	J	0.5	10	0.74	J	J	0.5	10
Cobalt	na	na	0.4	U	0.4	50	0.4	U		0.4	50	0.4	U		0.4	50
Copper	1300	150	0.8	U	0.8	25	0.8	U		0.8	25	0.8	U		0.8	25
Iron	300	1100	264	J J	7.5	300	29.7	J	В	7.5	300	174	J	J	7.5	300
Lead	15	na	1.2	U	1.2	5	1.6	J	В	1.2	5	2	J	В	1.2	5
Magnesium	na	na	34400		5.8	5000	38800			5.8	5000	22700			5.8	5000
Manganese	50	73	5.4	J J	0.2	15	1.3	J	В	0.2	15	5.1	J	J	0.2	15
Nickel	na	73	1.1	U	1.1	40	1.1	U		1.1	40	1.1	U		1.1	40
Potassium	na	na	1480	J J	36	5000	1190	J	J	36	5000	1030	J	J	36	5000
Selenium	50	18	5.5	J J	2.4	10	2.4	U		2.4	10	2.4	U		2.4	10
Sodium	na	na	9310	L	77	5000	81	J	В	77	5000	385	J	В	77	5000
Vanadium	na	3.7	0.98	J B	0.6	50	0.6	U		0.6	50	0.7	J	В	0.6	50
Zinc	5000	1100	1.4	J J	0.8	20	0.8	U		0.8	20	0.91	J	J	0.8	20

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

Analyte		Sample ID			I3MW1					13MV	7 T 🖴				16-4		
		Sample Date		4	4/12/06					4/12/	06				4/10/0)6	
,		Sample Depth			27-28					25-2	26				65-66	6	
	MCL	tw-RBC	Result	Lab Q V	Val Q N	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
Dioxins/Furans (ng/L)																	
2,3,7,8-TCDF	na	na	0.00445	U	0.0	00445	0.00445	0.00443	U		0.00443	0.00443	0.00372	U		0.00372	0.00372
1,2,3,7,8-PECDD	na	na	0.0061	U	0.0	0061	0.0061	0.00654	U		0.00654	0.00654	0.0061	U		0.0061	0.0061
1,2,3,4,7,8-HXCDD	na	0.011	0.0129	U	0.0	0129	0.0129	0.0104	U		0.0104	0.0104	0.00871	U		0.00871	0.00871
1,2,3,4,6,7,8-HPCDD	na	na	0.00836	U	0.0	00836	0.00836	0.0134	U		0.0134	0.0134	0.00915	U		0.00915	0.00915
OCDD	na	na	0.0264	U	0.0	0264	0.0264	0.0504	U		0.0504	0.0504	0.0348	U		0.0348	0.0348
TOTAL PECDD	na	na	0.0061	U	0.0	0061	0.0061	0.00654	U		0.00654	0.00654	0.0061	U		0.0061	0.0061
TOTAL HXCDD	na	0.011	0.0131	U	0.0	0131	0.0131	0.0105	U		0.0105	0.0105	0.00882	U		0.00882	0.00882
TOTAL HPCDD	na	na	0.00836	U	0.0	00836	0.00836	0.0134	U		0.0134	0.0134	0.00915	U		0.00915	0.00915
TOTAL TCDF	na	na	0.00445	U	0.0	00445	0.00445	0.00443	U		0.00443	0.00443	0.00372	U		0.00372	0.00372
Notes:																	
Shading and black font indicates a MCL exceedence.																	
Bold outline indicates a tap water RBC exceedence.																	
Shading in the MDL/MRL columns indicates the MDL or MRL exce	eeded a criterion.																
RBCs for non-carcinogenic compounds have been recalculated to an	HI of 0.1.																
RBCs for carcinogenic compounds are shown in red font.																	
The pyrene RBC was used for acenaphthylene, benzo(g,h,i)perylene	and phenanthrene and are	shown in blue.															
RBC source: USEPA Region III Risk Based Concentration Table, A	April 2006.																
MCL source: USEPA 2004 Edition of the Drinking Water Standard Winter 2004.	and Health Advisories (E	PA 822-R-04-005),															
μ g/L = micrograms per liter = parts per billion																	
ng/L = nanograms per liter = parts per trillion																	
Laboratory Qualifiers:																	
U = Not detected.																	
A = J = The reported value is <mrl and="">MDL and considered esti</mrl>	mateu.																
Validation Qualifiers:																	
B = The analyte detected in the sample and the lab or field blank and	d considered non-detect.																
J = Indicates an estimated value (1) due to QC non-conformance, or value may not be accurate or precise.		and <mrl. reported<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl.>															
L = Analyte present. Reported value may be biased low due to QC n	on conformance																
UL = Value is estimated bias low and not detected due to QC non-co		nit may be inaccurate or															
imprecise. Quantitation limit is probably higher. UJ = Value is estimated and not detected due to QC non-conformanci imprecise.	ce. Reporting limit may be	inaccurate or															

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID			28MW	V1				28M	W2				48M	W1	
Analyte		Sample Date			4/11/0)6				4/11/	/06				4/13/	06	
. many to		Sample Depth			58-59					78-7					135-1		
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q		MRL	Result	Lab Q	Val Q	MDL	MRL
VOCs (ug/L)		tii ILDo	Kesuit	Lab Q	Vai Q	WIDL	WIKL	Result	Lab Q	vai Q	WIDL	WIKL	Result	Lab Q	vai Q	WIDL	WIKL
1,1,1-Trichloroethane	200	170	0.95	J	J	0.5	1	1	U		0.5	1	1.3		J	0.5	1
1,1-Dichloroethane	na	90	2.9			0.5	1	1	U		0.5	1	1.3		J	0.5	1
1,1-Dichloroethene	7	35	0.88	J	J	0.5	1	1	U		0.5	1	0.55	J	J	0.5	1
2-Butanone	na	700	5	U		2.5	5	5	U		2.5	5	5	U		2.5	5
Acetone	na	550	25	U		5	25	25	U		5	25	25	U		5	25
Carbon tetrachloride	5	0.16	1	U		0.5	1	1	U		0.5	1	1	U		0.5	1
Chloroethane	na	3.6	1.4	J	J	1	2	2	U		1	2	2	U		1	2
Chloroform	80	0.15	1	U		0.5	1	1	U		0.5	1	1	U		0.5	1
cis-1,2-Dichloroethene	70	5.5	1	U		0.5	1	1	U		0.5	1	0.71	J	J	0.5	1
Methylene chloride	5	4.1	5	U		1	5	5	U		1	5	5	U		1	5
Tetrachloroethene	5	0.1	1	U		0.5	1	1	U		0.5	1	1.1		J	0.5	1
Trichloroethene	5	0.026	1	U		0.5	1	1	U		0.5	1	5.5			0.5	1
PAHs (ug/L)				ı						ı							
All groundwater samples were non-detect for PAHs.																	
SVOCs (ug/L)		<u>I</u>															
bis(2-Ethylhexyl)phthalate	6	4.8	6.3	U		3.1	6.3	5.6	U		2.8	5.6	5.6	U		2.8	5.6
Pesticides (ug/L)	<u> </u>										l.						
alpha-Chlordane	2	0.19	0.063	U		0.013	0.063	0.063	U		0.013	0.063	0.062	U		0.012	0.062
Heptachlor epoxide	0.2	0.0074	0.063	U		0.013	0.063	0.063	U		0.013	0.063	0.062	U		0.012	0.062
PCBs (ug/L)				-	,				_						l l		
All groundwater samples were non-detect for PCBs.																	
Explosives (ug/L)									1								_
All groundwater samples were non-detect for explosives.																	
Metals (ug/L)		I.							1						1		
Aluminum	50	na	88.6	J	В	16	200	109	J	В	16	200	606			16	200
Antimony	6	1.5	2.2	U		2.2	5	3.7	J	В	2.2	5	2.2	U		2.2	5
Arsenic	10	0.045	2.9	U		2.9	10	2.9	U		2.9	10	2.9	U		2.9	10
Barium	2000	730	455			0.5	200	384			0.5	200	105	J	J	0.5	200
Beryllium	4	7.3	2.1	J	В	0.7	4	2	J	В	0.7	4	1.8	J	В	0.7	4
Calcium	na	na	78200			26	1000	40100			26	1000	67400			26	1000
Chromium	100	11	0.5	U		0.5	10	1.3	J	J	0.5	10	1.7	J	J	0.5	10
Cobalt	na	na	0.4	U		0.4	50	0.4	U		0.4	50	0.4	U		0.4	50
Copper	1300	150	0.8	U		0.8	25	0.8	U		0.8	25	0.8	U		0.8	25
Iron	300	1100	7.5	U		7.5	300	31.8	J	В	7.5	300	617			7.5	300
Lead	15	na	1.2	U		1.2	5	1.8	J	В	1.2	5	2	J	В	1.2	5
Magnesium	na	na	49800			5.8	5000	20000			5.8	5000	35300			5.8	5000
Manganese	50	73	22.4			0.2	15	1.5	J	В	0.2	15	10.3	J	J	0.2	15
Nickel	na	73	1.1	U		1.1	40	1.1	U		1.1	40	1.2	J	J	1.1	40
Potassium	na	na	1530	J	J	36	5000	1710	J	J	36	5000	2020	J	J	36	5000
Selenium	50	18	4.9	J	J	2.4	10	2.4	U	-	2.4	10	3.2	J	J	2.4	10
Sodium	na	na	2570	J	В	77	5000	2170	J	В	77	5000	13700		_	77	5000
Vanadium	na	3.7	0.64	J	В	0.6	50	0.6	U		0.6	50	1.3	J	В	0.6	50
Zinc	5000	1100	0.8	U		0.8	20	4.8	J	J	0.8	20	3	J	J	0.8	20

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID		28N	IW1			28M	IW2				48M	W1	
Analyte		Sample Date		4/1	1/06			4/11	1/06				4/13	6/06	
		Sample Depth		58	-59			78-	79				135-	136	
	MCL	tw-RBC	Result	Lab Q Val	Q MDL	MRL	Result	Lab Q Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
Dioxins/Furans (ng/L)															
2,3,7,8-TCDF	na	na	0.00447	U	0.00447	0.00447	0.00381	U	0.00381	0.00381	0.00727	U	UJ	0.00727	0.00727
1,2,3,7,8-PECDD	na	na	0.00683	U	0.00683	0.00683	0.0058	U	0.0058	0.0058	0.00528	U	UJ	0.00528	0.00528
1,2,3,4,7,8-HXCDD	na	0.011	0.0142	U	0.0142	0.0142	0.0151	U	0.0151	0.0151	0.00876	U		0.00876	0.00876
1,2,3,4,6,7,8-HPCDD	na	na	0.0144	U	0.0144	0.0144	0.0131	U	0.0131	0.0131	0.0126	U	UJ	0.0126	0.0126
OCDD	na	na	0.0377	U	0.0377	0.0377	0.025	U	0.025	0.025	0.0213	U		0.0213	0.0213
TOTAL PECDD	na	na	0.00683	U	0.00683	0.00683	0.0058	U	0.0058	0.0058	0.00528	U		0.00528	0.00528
TOTAL HXCDD	na	0.011	0.0144	U	0.0144	0.0144	0.0153	U	0.0153	0.0153	0.00887	U		0.00887	0.00887
TOTAL HPCDD	na	na	0.0144	U	0.0144	0.0144	0.0131	U	0.0131	0.0131	0.0126	U		0.0126	0.0126
TOTAL TCDF	na	na	0.00447	U	0.00447	0.00447	0.00381	U	0.00381	0.00381	0.00727	U		0.00727	0.00727
Notes:															
Shading and black font indicates a MCL exceedence.															
Bold outline indicates a tap water RBC exceedence.															
Shading in the MDL/MRL columns indicates the MDL or MRL exce															
RBCs for non-carcinogenic compounds have been recalculated to an	HI of 0.1.														
RBCs for carcinogenic compounds are shown in red font.															
The pyrene RBC was used for acenaphthylene, benzo(g,h,i)perylene	and phenanthrene and are	shown in blue.													
RBC source: USEPA Region III Risk Based Concentration Table, A	pril 2006.														
MCL source: USEPA 2004 Edition of the Drinking Water Standard Winter 2004.	and Health Advisories (E	PA 822-R-04-005),													
μ g/L = micrograms per liter = parts per billion															
ng/L = nanograms per liter = parts per trillion															
Laboratory Qualifiers: U = Not detected.															
A = J = The reported value is <mrl and="">MDL and considered estir</mrl>	natad														
11 = 3 = The reported value is CHIED and SHIDD and considered esti-	nateu.														
Validation Qualifiers:															
B = The analyte detected in the sample and the lab or field blank and	considered non-detect.														
J = Indicates an estimated value (1) due to QC non-conformance, or (value may not be accurate or precise.	(2) concentration >MDL	and <mrl. reported<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl.>													
L = Analyte present. Reported value may be biased low due to QC no	on-conformance.														
UL = Value is estimated bias low and not detected due to QC non-co imprecise. Quantitation limit is probably higher.		nit may be inaccurate or													
UJ = Value is estimated and not detected due to QC non-conformanc imprecise.	e. Reporting limit may be	inaccurate or													

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID			48M	W2				48M	W3				48MV	V4	
Analyte		Sample Date			4/13/	06				4/13	/06				4/11/	06	
•		Sample Depth			132-1	33				115-	116				90-9	1	
	MCL	tw-RBC						<u> </u>					<u> </u>				
VOCs (ug/L)	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
1,1,1-Trichloroethane	200	170	1	U		0.5	1	1	U		0.5	1	1	U	1 1	0.5	1
1,1-Dichloroethane	na	90	1	U		0.5	1	1	U		0.5	1	1	U		0.5	1
1,1-Dichloroethene	7	35	1	U		0.5	1	1	U		0.5	1	1	U		0.5	1
2-Butanone	na	700	4.5	J	В	2.5	5	5	U		2.5	5	5	U		2.5	5
Acetone	na	550	61.5		В	5	25	25	U		5	25	25	U		5	25
Carbon tetrachloride	5	0.16	29.2			0.5	1	51.2			0.5	1	1	U		0.5	1
Chloroethane	na	3.6	2	U		1	2	2	U		1	2	2	U	l	1	2
Chloroform	80	0.15	5.9	_	В	0.5	1	5.5	-	В	0.5	1	1	U		0.5	1
cis-1,2-Dichloroethene	70	5.5	1	U	Б	0.5	1	1	U	Б	0.5	1	1	U		0.5	1
Methylene chloride	5	4.1	5	U		1	5	5	U		0.3	5	5	U		1	5
Tetrachloroethene	5	0.1	1.1	U	J	0.5	1	0.54	J	J	0.5	1	0.66	J	J	0.5	1
Trichloroethene	5	0.026	3		J	0.5	1	7.4	J	J	0.5	1	1	U	J	0.5	1
	3	0.020	3			0.5	I	7.4			0.5	I	1	U		0.3	I
PAHs (ug/L) All groundwater samples were non-detect for PAHs.		T .	l					1	1								
SVOCs (ug/L)																	
,	6	4.8	7.9	U		4	7.9	5.4	U	UL	2.7	5.4	5.8	U	1	2.9	5.0
bis(2-Ethylhexyl)phthalate	0	4.8	7.9	U		4	7.9	5.4	U	UL	2.7	5.4	5.8	U		2.9	5.8
Pesticides (ug/L)		0.10	0.054	**			0.054	0.055	**			0.054	0.052	**			0.050
alpha-Chlordane	2	0.19	0.064	U		0.013	0.064	0.056	U		0.011	0.056	0.063	U		0.013	0.063
Heptachlor epoxide	0.2	0.0074	0.064	U		0.013	0.064	0.056	U		0.011	0.056	0.063	U		0.013	0.063
PCBs (ug/L)		Т	1	1					1			1		1			
All groundwater samples were non-detect for PCBs.																	
Explosives (ug/L)		Т	1	1					1			1		1			
All groundwater samples were non-detect for explosives.																	
Metals (ug/L)															_		
Aluminum	50	na	2630			16	200	82.6	J	В	16	200	113	J	В	16	200
Antimony	6	1.5	2.2	U		2.2	5	4.3	J	В	2.2	5	2.2	U		2.2	5
Arsenic	10	0.045	2.9	U		2.9	10	2.9	U		2.9	10	2.9	U		2.9	10
Barium	2000	730	615	_		0.5	200	50.4	J	J	0.5	200	167	J	J	0.5	200
Beryllium	4	7.3	2	J	В	0.7	4	2.2	J	В	0.7	4	2.1	J	В	0.7	4
Calcium	na	na	89700		Υ	26	1000	102000		Y	26	1000	58600			26	1000
Chromium Cobalt	100	11	6.4 1.3	J	J B	0.5	10 50	0.4	J U	J	0.5 0.4	10 50	0.86	J U	J	0.5	10 50
	na 1300	na 150	0.83	J	В	0.4	25	0.4	U		0.4	25	0.4	U		0.4	25
Copper Iron	300	1100	2960	J	ь	7.5	300	8.9	J	В	7.5	300	62.8	J	В	7.5	300
	15		1.3	Ť	В			2.7	J	В		5	1.2	U	ь		
Lead	na	na na	44800	J	В	1.2 5.8	5 5000	42800	J	D	1.2 5.8	5000	49600	U		1.2 5.8	5 5000
			44000						· ·	В	0.2	15	2.6		_		15
Magnesium Manganese			50.7			0.2	15	I I X							1 R 1		
Manganese	50	73	50.7	I	I	0.2	15 40	1.8	J	ь				J	В	0.2	
Manganese Nickel	50 na	73 73	4.9	J	J	1.1	40	1.1	U		1.1	40	1.1	U		1.1	40
Manganese Nickel Potassium	50 na na	73 73 na	4.9 1690	J	J	1.1 36	40 5000	1.1 1230	U J	J	1.1 36	40 5000	1.1 1600	U J	J	1.1 36	40 5000
Manganese Nickel	50 na	73 73	4.9			1.1	40	1.1	U		1.1	40	1.1	U		1.1	40
Manganese Nickel Potassium Selenium	50 na na 50	73 73 na 18	4.9 1690 2.4	J	J	1.1 36 2.4	40 5000 10	1.1 1230 5.2	U J	J	1.1 36 2.4	40 5000 10	1.1 1600 2.4	U J	J	1.1 36 2.4	40 5000 10

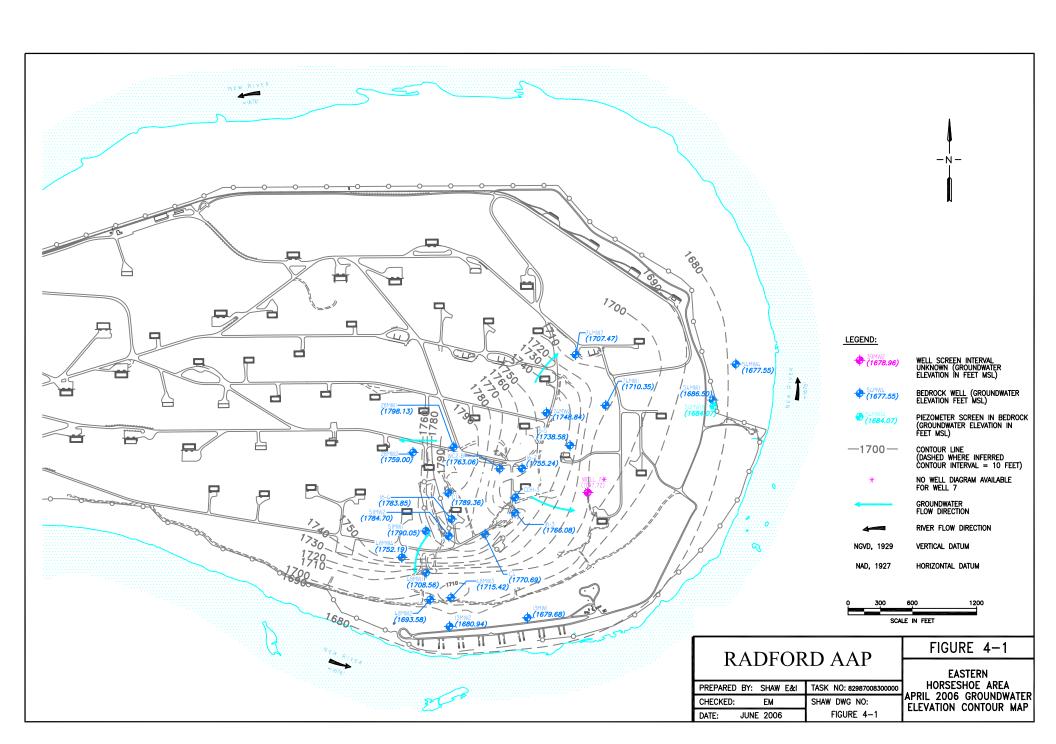
Table 4-1 Chemical Detections in Groundwater Samples, April 2006

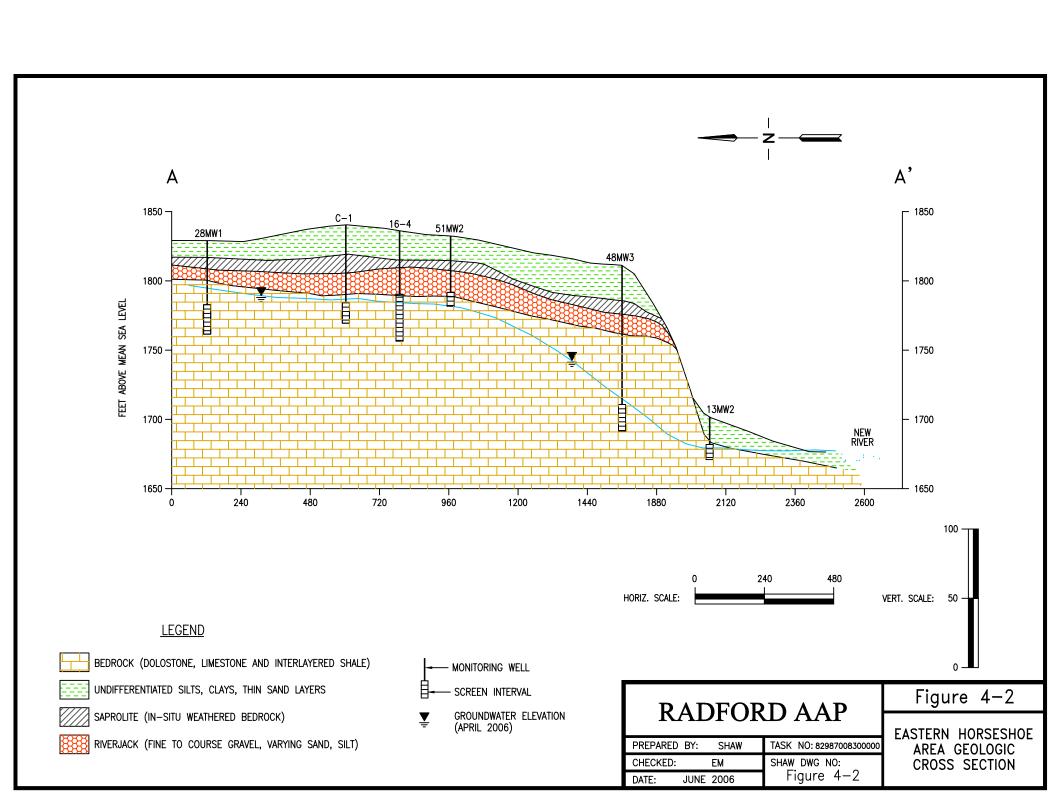
		Sample ID			48M	W2				48M	W3			48	MW4	
Analyte		Sample Date			4/13/	/06				4/13/	06			4/	1/06	
,		Sample Depth			132-1	133				115-1	116			9)-91	
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q Val	Q MDL	MRL
Dioxins/Furans (ng/L)																
2,3,7,8-TCDF	na	na	0.00772	U		0.00772	0.00772	0.00671	U		0.00671	0.00671	0.00334	U	0.00334	0.00334
1,2,3,7,8-PECDD	na	na	0.0283	A	J	NA	NA	0.0112	A	J	NA	NA	0.00658	U	0.00658	0.00658
1,2,3,4,7,8-HXCDD	na	0.011	0.0106	A	J	NA	NA	0.0123	U		0.0123	0.0123	0.0111	U	0.0111	0.0111
1,2,3,4,6,7,8-HPCDD	na	na	0.0331	A	J	NA	NA	0.0168	A	J	NA	NA	0.0156	U	0.0156	0.0156
OCDD	na	na	0.0352	U		0.0352	0.0352	0.0242	U		0.0242	0.0242	0.0309	U	0.0309	0.0309
TOTAL PECDD	na	na	0.0283			NA	NA	0.00112			NA	NA	0.00658	U	0.00658	0.00658
TOTAL HXCDD	na	0.011	0.0106			NA	NA	0.0125	U		0.0125	0.0125	0.0112	U	0.0112	0.0112
TOTAL HPCDD	na	na	0.0331			NA	NA	0.0168			NA	NA	0.0156	U	0.0156	0.0156
TOTAL TCDF	na	na	0.00772	U		0.00772	0.00772	0.00671	U		0.00671	0.00671	0.00334	U	0.00334	0.00334
Notes:																
Shading and black font indicates a MCL exceedence.																
Bold outline indicates a tap water RBC exceedence.																
Shading in the MDL/MRL columns indicates the MDL or MRL excee	ded a criterion.															
RBCs for non-carcinogenic compounds have been recalculated to an I	II of 0.1.															
RBCs for carcinogenic compounds are shown in red font.																
The pyrene RBC was used for acenaphthylene, benzo(g,h,i)perylene a	nd phenanthrene and are	shown in blue.														
RBC source: USEPA Region III Risk Based Concentration Table, Ap	ril 2006.															
MCL source: USEPA 2004 Edition of the Drinking Water Standard a Winter 2004.	nd Health Advisories (E	PA 822-R-04-005),														
μ g/L = micrograms per liter = parts per billion																
ng/L = nanograms per liter = parts per trillion																
Laboratory Qualifiers:																
U = Not detected.																
A = J = The reported value is <mrl and="">MDL and considered estim</mrl>	ated.															
Validation Qualifiers:																
B = The analyte detected in the sample and the lab or field blank and or	considered non-detect.															
J = Indicates an estimated value (1) due to QC non-conformance, or (2 value may not be accurate or precise.		and <mrl. reported<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl.>														
L = Analyte present. Reported value may be biased low due to QC nor	n-conformance.															
UL = Value is estimated bias low and not detected due to QC non-con imprecise. Quantitation limit is probably higher.		nit may be inaccurate or														
UJ = Value is estimated and not detected due to QC non-conformance imprecise.	. Reporting limit may be	e inaccurate or														

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID			51MV	W1				51M	W2			C	1	
Analyte		Sample Date			4/11/	06				4/10/	06			4/12	/06	
a sindly to		•												69-		
		Sample Depth			34-3					52-5	0.5					
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q Val Q	MDL	MRL
VOCs (ug/L)																
1,1,1-Trichloroethane	200	170	1	U		0.5	1	1	U		0.5	1	1.3	J	0.5	1
1,1-Dichloroethane	na	90	1	U		0.5	1	1	U		0.5	1	8.5		0.5	1
1,1-Dichloroethene	7	35	1	U		0.5	1	1	U		0.5	1	1	U	0.5	1
2-Butanone	na	700	5	U		2.5	5	5	U		2.5	5	5	U	2.5	5
Acetone	na	550	25	U		5	25	25	U		5	25	25	U	5	25
Carbon tetrachloride	5	0.16	1	U		0.5	1	1	U		0.5	1	1	U	0.5	1
Chloroethane	na	3.6	2	U		1	2	2	U		1	2	4		1	2
Chloroform	80	0.15	1	U		0.5	1	1	U		0.5	1	1	U	0.5	1
cis-1,2-Dichloroethene	70	5.5	1	U		0.5	1	1	U		0.5	1	1	U	0.5	1
Methylene chloride	5	4.1	5	U		1	5	5	U		1	5	8	В	1	5
Tetrachloroethene	5	0.1	0.93	J	J	0.5	1	1	U		0.5	1	1	U	0.5	1
Trichloroethene	5	0.026	1	U		0.5	1	1	U		0.5	1	1	U	0.5	1
PAHs (ug/L)	3	0.020	-	U		0.5	-		Ū		0.0	-	-	Ü	0.5	
All groundwater samples were non-detect for PAHs.																
SVOCs (ug/L)																
` 0 /	6	4.8	6.8	U		3.4	6.8	5.6	U		2.8	5.6	5.9	U	2.9	5.9
bis(2-Ethylhexyl)phthalate	0	4.8	0.8	U		3.4	0.8	5.0	U		2.8	3.0	5.9	U	2.9	3.9
Pesticides (ug/L)							1							T T	1	
alpha-Chlordane	2	0.19	0.066	U		0.013	0.066	0.063	U		0.013	0.063	0.063	U	0.013	0.063
Heptachlor epoxide	0.2	0.0074	0.066	U		0.013	0.066	0.063	U		0.013	0.063	0.063	U	0.013	0.063
PCBs (ug/L)																
All groundwater samples were non-detect for PCBs.																
Explosives (ug/L)																
All groundwater samples were non-detect for explosives.																
Metals (ug/L)																
Aluminum	50	na	282		В	16	200	100	J	В	16	200	57	J B	16	200
Antimony	6	1.5	3.6	J	В	2.2	5	2.2	U		2.2	5	2.6	J B	2.2	5
Arsenic	10	0.045	2.9	U		2.9	10	2.9	U		2.9	10	2.9	U	2.9	10
Barium	2000	730	45.3	J	J	0.5	200	40.8	J	J	0.5	200	181	J J	0.5	200
Beryllium	4	7.3	2	J	В	0.7	4	2.1	J	В	0.7	4	1.9	J B	0.7	4
Calcium	na	na	18900		_	26	1000	53700			26	1000	105000		26	1000
Chromium	100	11	0.59	J	J	0.5	10	1.3	J	J	0.5	10	0.5	U	0.5	10
Cobalt	na	na	0.4	U		0.4	50	0.4	U		0.4	50	0.4	U	0.4	50
Copper	1300	150	0.8	U		0.8	25	0.8	U		0.8	25	0.8	U	0.8	25
Iron	300	1100	547			7.5	300	42.2	J	В	7.5	300	7.5	U	7.5	300
Lead	15	na	1.3	J	В	1.2	5	1.2	U		1.2	5	1.2	U	1.2	5
Magnesium	na	na	7440	,		5.8	5000	15600			5.8	5000	38100	+ -	5.8	5000
Manganese	50	73	60.6			0.2	15	1.8	J	В	0.2	15	7.1	J J	0.2	15
Nickel	na	73	1.1	J	J	1.1	40	1.1	U	_	1.1	40	1.1	U	1.1	40
Potassium	na	na	1070	J	J	36	5000	1220	J	J	36	5000	2720	J J	36	5000
Selenium	50	18	2.4	U		2.4	10	2.4	U		2.4	10	2.8	J J	2.4	10
Sodium	na	na	256	J	В	77	5000	713	J	В	77	5000	4250	J L	77	5000
Vanadium	na	3.7	0.6	U		0.6	50	0.6	U		0.6	50	0.82	J B	0.6	50
Zinc	5000	1100	3.4	J	J	0.8	20	2.1	I	J	0.8	20	0.8	U	0.8	20
Zilic	5000	1100	J. +	,		0.0	20	۵.1	<u> </u>	J	0.0	20	0.0	U	0.0	I

Table 4-1 Chemical Detections in Groundwater Samples, April 2006


		Sample ID			51M	W1				51M	W2			-	C1	
Analyte		Sample Date			4/11/	06				4/10/	06			4/1	2/06	
,		Sample Depth			34-3	35				52-5	53			69	-70	
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q Val	Q MDL	MRL
Dioxins/Furans (ng/L)																
2,3,7,8-TCDF	na	na	0.00329	U		0.00329	0.00329	0.00358	U		0.00358	0.00358	0.00348	U	0.00348	0.00348
1,2,3,7,8-PECDD	na	na	0.0061	U		0.0061	0.0061	0.00651	U		0.00651	0.00651	0.00612	U	0.00612	0.00612
1,2,3,4,7,8-HXCDD	na	0.011	0.0089	U		0.0089	0.0089	0.0131	U		0.0131	0.0131	0.0107	U	0.0107	0.0107
1,2,3,4,6,7,8-HPCDD	na	na	0.00875	U		0.00875	0.00875	0.0103	U		0.0103	0.0103	0.0126	U	0.0126	0.0126
OCDD	na	na	0.0376	Α	J	NA	NA	0.0208	U		0.0208	0.0208	0.0378	U	0.0378	0.0378
TOTAL PECDD	na	na	0.0061	U		0.0061	0.0061	0.00651	U		0.00651	0.00651	0.00612	U	0.00612	0.00612
TOTAL HXCDD	na	0.011	0.00901	U		0.00901	0.00901	0.0132	U		0.0132	0.0132	0.0108	U	0.0108	0.0108
TOTAL HPCDD	na	na	0.00875	U		0.00875	0.00875	0.0104	U		0.0104	0.0104	0.0126	U	0.0126	0.0126
TOTAL TCDF	na	na	0.00329	U		0.00329	0.00329	0.00358	U		0.00358	0.00358	0.00348	U	0.00348	0.00348
Notes:																
Shading and black font indicates a MCL exceedence.																
Bold outline indicates a tap water RBC exceedence.																
Shading in the MDL/MRL columns indicates the MDL or MRL excee	eded a criterion.															
RBCs for non-carcinogenic compounds have been recalculated to an I	HI of 0.1.															
RBCs for carcinogenic compounds are shown in red font.																
The pyrene RBC was used for acenaphthylene, benzo(g,h,i)perylene a	nd phenanthrene and are	shown in blue.														
RBC source: USEPA Region III Risk Based Concentration Table, Ap	oril 2006.															
MCL source: USEPA 2004 Edition of the Drinking Water Standard a Winter 2004.	and Health Advisories (E	PA 822-R-04-005),														
μ g/L = micrograms per liter = parts per billion																
ng/L = nanograms per liter = parts per trillion																
Laboratory Qualifiers:																
U = Not detected.																
A = J = The reported value is <mrl and="">MDL and considered estim</mrl>	nated.															
Validation Qualifiers:																
B = The analyte detected in the sample and the lab or field blank and	considered non-detect.															
J = Indicates an estimated value (1) due to QC non-conformance, or (2) value may not be accurate or precise.	2) concentration >MDL	and <mrl. reported<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl.>														
L = Analyte present. Reported value may be biased low due to QC no.	n-conformance.															
UL = Value is estimated bias low and not detected due to QC non-con imprecise. Quantitation limit is probably higher.	formance. Reporting lin	nit may be inaccurate or														
UJ = Value is estimated and not detected due to QC non-conformance imprecise.	. Reporting limit may be	inaccurate or														


Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID			C4				1	TM13N	AW1			Т	M48M	W1	
Analyte		Sample Date			4/11/0	06				4/12/	06				4/13/0	6	
· ·		Sample Depth			65-6	6				27-2	28				135-13	36	
	MCL	tw-RBC	Result	Lab Q V	al Q	MDL	MRL	Result	Lab Q		MDL	MRL	Result	Lab Q			MRL
VOCs (ug/L)	MCE	tw-RDC	Result	Lab Q V	ai Q	MDL	WIKL	Resuit	Lab Q	vai Q	MDL	MKL	Result	Lab Q	vai Q	MDL	MKL
1,1,1-Trichloroethane	200	170	1	U	1	0.5	1	1	U		0.5	1	1.2		J	0.5	1
1.1-Dichloroethane	na	90	1	U		0.5	1	1	U		0.5	1	1.4		J	0.5	1
1,1-Dichloroethene	7	35	1	U		0.5	1	1	U		0.5	1	0.56	J	J	0.5	1
2-Butanone	na	700	5	U		2.5	5	5	U		2.5	5	5	U		2.5	5
Acetone	na	550	25	U		5	25	25	U		5	25	25	U		5	25
Carbon tetrachloride	5	0.16	1	U		0.5	1	1	U		0.5	1	1	U		0.5	1
Chloroethane	na	3.6	2	U		1	2	2	U		1	2	2	U		1	2
Chloroform	80	0.15	1	U		0.5	1	1	U		0.5	1	1	U		0.5	1
cis-1,2-Dichloroethene	70	5.5	1	U	Ī	0.5	1	1	U		0.5	1	0.77	J	J	0.5	1
Methylene chloride	5	4.1	5	U	<u>_</u>	1	5	5	U		1	5	5	U	1	1	.5
Tetrachloroethene	5	0.1	0.96		J	0.5	1	1	U		0.5	1	1		J	0.5	1
Trichloroethene	5	0.026	1	U	-	0.5	1	1	U		0.5	1	5.5		, ,	0.5	1
PAHs (ug/L)	3	0.020		U	<u> </u>	0.5	1	1	U		0.5	1	3.3			0.5	1
All groundwater samples were non-detect for PAHs.																	
SVOCs (ug/L)												1					1
bis(2-Ethylhexyl)phthalate	6	4.8	4.8	J	I	3.1	6.3	5.6	U		2.8	5.6	5.9	U		2.9	5.9
Pesticides (ug/L)	0	4.8	4.0	J	J	3.1	0.3	3.0	U		2.0	3.0	3.9	U		2.9	3.9
,	2	0.10	0.066	**		0.013	0.066	0.062	**		0.013	0.063	0.061	U	T	0.012	0.061
alpha-Chlordane	0.2	0.19	0.066	U		0.013	0.066	0.063	U		0.013	0.063	0.061	U		0.012	0.061
Heptachlor epoxide	0.2	0.0074	0.066	U	<u> </u>	0.013	0.066	0.063	U		0.013	0.063	0.061	U		0.012	0.061
PCBs (ug/L)									1			_			1	1	1
All groundwater samples were non-detect for PCBs.																	
Explosives (ug/L)									1			_			1	1	1
All groundwater samples were non-detect for explosives	5.																
Metals (ug/L)	50		554			16	200	125		D	1.0	200	450		D	16	200
Aluminum	50	na	554	·	_	16	200	435	v	В	16	200	452		В	16	200
Antimony	6	1.5	4.2	J	В	2.2	5	3.7	J	В	2.2	5	2.2	U		2.2	5
Arsenic	10	0.045	53.9	 		2.9	10	2.9	U		2.9	10	2.9	U		2.9	10
Barium	2000	730	177		J	0.5	200	136	J	J	0.5	200	92.6	J	J	0.5	200
Beryllium	4	7.3	2.1	J	В	0.7	4	2.1	J	В	0.7	4	2	J	В	0.7	4
Calcium	na 100	na	34700	T	J	26	1000	117000	T	Y	26 0.5	1000	69900	J	J	26	1000
Chromium Cobalt	na	11 na	0.4	J U	J	0.5	10 50	4.6 0.4	J U	J	0.3	10 50	1.2 0.4	U	J	0.5 0.4	10 50
Copper	1300	150	6.9		В	0.4	25	0.4	U		0.4	25	0.4	U		0.4	25
Iron	300	1100	4830	J	ь	7.5	300	376	0		7.5	300	387			7.5	300
Lead	15		7.8		В	1.2	5	1.2	U		1.2	5	1.2	U		1.2	5
Magnesium	na	na na	20400		ь	5.8	5000	35100	U		5.8	5000	35400	U		5.8	5000
Manganese Manganese	50	73	47.6		- 	0.2	15	6.6	J	J	0.2	15	5.6	J	J	0.2	15
Nickel	na	73	1.1	J	J	1.1	40	1.1	U	J	1.1	40	1.1	U	J	1.1	40
		15			J	36	5000	1540	J	J	36	5000	2060	J	J	36	5000
		na	867	1 1	.) !												2000
Potassium	na	na 18	867 2.4		J										J		10
		na 18 na	2.4 104	U	В	2.4 77	10 5000	7.2 10300	J	J	2.4 77	10 5000	2.4 14900	U	J	2.4 77	10 5000
Potassium Selenium	na 50	18	2.4	U		2.4	10	7.2			2.4	10	2.4		В	2.4	

Table 4-1 Chemical Detections in Groundwater Samples, April 2006

		Sample ID			C4	ı			,	ГМ13М	MW1			TI	M48MV	W1	
Analyte		Sample Date			4/11/	/06				4/12/	06				4/13/06	5	
		Sample Depth			65-6	56				27-2	28				135-13	6	
	MCL	tw-RBC	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL	Result	Lab Q	Val Q	MDL	MRL
Dioxins/Furans (ng/L)																	
2,3,7,8-TCDF	na	na	0.00456	U		0.00456	0.00456	0.0039	U		0.0039	0.0039	0.0128		J	NA	NA
1,2,3,7,8-PECDD	na	na	0.00697	U		0.00697	0.00697	0.00537	U		0.00537	0.00537	0.0873		J	NA	NA
1,2,3,4,7,8-HXCDD	na	0.011	0.0112	U		0.0112	0.0112	0.0107	U		0.0107	0.0107	0.0215	A	J	NA	NA
1,2,3,4,6,7,8-HPCDD	na	na	0.00977	U		0.00977	0.00977	0.0138	U		0.0138	0.0138	0.0857		J	NA	NA
OCDD	na	na	0.0361	Α	J	NA	NA	0.0286	U		0.0286	0.0286	0.018	Α	J	NA	NA
TOTAL PECDD	na	na	0.00697	U		0.00697	0.00697	0.00537	U		0.00537	0.00537	0.0873			NA	NA
TOTAL HXCDD	na	0.011	0.0114	U		0.0114	0.0114	0.0109	U		0.0109	0.0109	0.0215			NA	NA
TOTAL HPCDD	na	na	0.00977	U		0.00977	0.00977	0.0138	U		0.0138	0.0138	0.0857			NA	NA
TOTAL TCDF	na	na	0.00456	U		0.00456	0.00456	0.0039	U		0.0039	0.0039	0.0128			NA	NA
Notes:																	
Shading and black font indicates a MCL exceedence.																	
Bold outline indicates a tap water RBC exceedence.																	
Shading in the MDL/MRL columns indicates the MDL or MRL exceed	eded a criterion.																
RBCs for non-carcinogenic compounds have been recalculated to an I	II of 0.1.																
RBCs for carcinogenic compounds are shown in red font.																	
The pyrene RBC was used for acenaphthylene, benzo(g,h,i)perylene a	nd phenanthrene and are	e shown in blue.															
RBC source: USEPA Region III Risk Based Concentration Table, Ap	oril 2006.																
MCL source: USEPA 2004 Edition of the Drinking Water Standard a Winter 2004.	nd Health Advisories (E	EPA 822-R-04-005),														<u> </u>	
μ g/L = micrograms per liter = parts per billion																	
ng/L = nanograms per liter = parts per trillion																	
Laboratory Qualifiers:																	
U = Not detected.																	
A = J = The reported value is <mrl and="">MDL and considered estim</mrl>	iated.																+
Validation Qualifiers:																	
B = The analyte detected in the sample and the lab or field blank and	considered non-detect.															1	
I = Indicates an estimated value (1) due to QC non-conformance, or (2) value may not be accurate or precise.	2) concentration >MDL	and <mrl. reported<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mrl.>															
L = Analyte present. Reported value may be biased low due to QC no	n-conformance.																
UL = Value is estimated bias low and not detected due to QC non-cor imprecise. Quantitation limit is probably higher.		nit may be inaccurate or															
UJ = Value is estimated and not detected due to QC non-conformance imprecise.	. Reporting limit may be	e inaccurate or															

5.0 REFERENCES

- Dames & Moore. 1992. Final Draft Verification Investigation. Prepared for U.S. Army Toxic and Hazardous Materials Agency, Radford Army Ammunition Plant, October 1992.
- Dames & Moore. 1994. Draft Verification Investigation (Revised), Radford Army Ammunition Plant, Radford, VA.
- ICF Kaiser Engineers, Inc. (ICF KE). 1999. RCRA Facility Investigation Reports for Solid Waste Management Units 31, 39, 48, 49, and 58. Draft, Radford Army Ammunition Plant. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, MD.
- IT Corporation (IT). 2002a. *Radford Army Ammunition Plant, Master Work Plan Addendum* 009. Draft Final document. February 2002. Delivery Order No. 0009, Contract No. DACA31–94–D–0064.
- IT Corporation (IT). 2002b. *Radford Army Ammunition Plant, Master Work Plan Addendum* 012. Draft Final document. February 2002. Delivery Order No. 0013, Contract No. DACA31–94–D–0064.
- Parsons Engineering-Science, Inc. (Parsons). 1996. RCRA Facility Investigation Work Plan for Solid Waste Management Units 17, 31, and 48 and Corrective Measures Study Work Plan for Unit 54 at Radford Army Ammunition Plant. Prepared for the U.S. Army Environmental Center.
- Shaw Environmental, Inc. (Shaw). 2004. *Radford Army Ammunition Plant, Master Work Plan Addendum 017*. Final document. February 2004.
- Shaw Environmental, Inc. (Shaw). 2006. Field Sampling Plan for Groundwater Sampling in the Horseshoe Area, April 2006.
- URS Corporation (URS). 2003. Final Master Work Plan, Quality Assurance Plan, Health and Safety Plan. Radford Army Ammunition Plant, Radford, Virginia. Prepared for the U.S. Army Corps of Engineers, Baltimore District. August 2003.
- U.S. Army Corps of Engineers (USACE). 2001. USACE Requirements for the Preparation of Sampling and Analysis Plans, Shell Guidance for Analytical Chemistry Requirements EM 200-1-3. February 2001.
- U.S. Environmental Protection Agency (USEPA). 1983. Methods for Chemical Analysis of Water and Wastes. March, 1983.
- U.S. Environmental Protection Agency (USEPA). 1987. RCRA Facility Assessment of Radford Army Ammunition Plant, Radford, VA.
- U.S. Environmental Protection Agency (USEPA). 1993. USEPA Region III Modifications to the National Functional Guidelines for Inorganic Data Review. Central Regional Laboratory, Quality Assurance Branch. April, 1993.

- U.S. Environmental Protection Agency (USEPA), Region III. 1994. USEPA Region III Modification to the National Functional Guidelines for Organic Data Review, Multimedia, Multi-concentration. Program Support Branch. September 1994.
- U.S. Environmental Protection Agency (USEPA) Office of Solid Waste and Emergency Response. 1996. *Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846), Update IIIA.* April, 1998.
- U.S. Environmental Protection Agency (USEPA). 1999. USEPA Region III Dioxin/Furan Data Validation Guidance. March, 1999.

APPENDIX A

Well Purging Forms

Form
S
Ξ
neu
등
Ĭ
S
ä
ž
<u>></u>
≝
<u>a</u>
굶
ĭ
9
a
\$
ᅙ
<u>e</u>
Ķ
ġ
트
5
Ξ
느
등
≶

¹ Pump dial setting (e.g., hertz, cycles/min., etc.)
² Oxidation reduction potential (stand in for Eh)

¹ Pump dial setting (e.g., hertz, cycles/min., etc.)
² Oxidation reduction potential (stand in for Eh)

Page ___ of ___

surements Form
uality Mea
Water Q
Purging-Field
Well

of screen (below MP)		7	FIO2) QED MICOPURE	PID Reading (ppm) 0.0	Comments															TAL METALS, dibyins/furans				•	
07 /	bottom	ft. below	.g., Redi	0.0	ORP/Eh ²) E	69-	-53	t9-	HL-	82-	-83	-93	201-	201-	011-	011-	601-	PAHS	^				
Depth to 65		Pump Intake at (ft. below MP	Device (e	jing (ppm	Temp.		deg. C	17,33			15.90	08'91	16,22	16,29	54.91	16.91	ae.91	16.06	15,98	Explosives.	,				
Depth to		Pump In	Purging	PID Read			mg/L	6,44	2,42	62.0	01:0	0.56	0.46	040	28.0	12.0	E9.0	99.0	0910	BS, Ext	0 ,	e.			
					Turbidity		NTU	237	181	581	h'bE	€!/E	5.26	27.7	9118	6'0°	1,06	911	10	RST/PCBS,	1				
66	00/				Spec.	Cond.	mS/cm	0,219	1150	01810	100.0	10°301	boe. O	902.0	0,210	116.0	11210	0.212	0,212	OCS, PE	1				
-	111/1	1 arek	nental	Jastno	Hd			88'0)	10,24	10.35	10.44	10,51	10.58	82.01	11.03	11,21	8211	60'11	11.29	Co. SV					
RFAAP	Date	E. Ma	Enviro	tive C	Cum.	Volume	Purged liters	1	88.0	1.63	2.00	2.38	2.75	3, 18	3.50	3.88	4.25	4.63	5.00	for Va					
Je)		gemas.	Sha	Protect	'Purge	Rate	mL/min	150	175	150	75	75	15	75	75	75	75	75	51	15a/04	1				
Location (Site / Facility Name)	0.4			YOU	Pump	Setting ¹	CPm/1D	14/6	141	2/45	a'/43	a/43	2/43	2/43	2/43	2/43	2/43	21/43	2/43	pct'sax					
(Site / Fac	ber	onnel	rganizati	P (MOLC)	Water	Depth	ft. below MP	53.88	55,50	56,15	56.61	-	12/15	_	21,78	α	58.31	28,68	16.85	() [[k					
Location	Well Number	Field Personnel	Sample Organization	Identify MP_	Clock	Time	24 HR	1345	1350	1355	1400	1405	1410 2	1415	1420	1425	1430	1435	1440	[445					

¹ Pump dial setting (e.g., hertz, cycles/min., etc.) ² Oxidation reduction potential (stand in for Eh)

Measurements Form
<u></u>
₩
힐
늞
Ĭ
ası
ĕ
. Quality
Quali
õ
Vater C
Water
~
ield
Field
<u>⊇</u> `
ਰ
⁵ urging-
_
Vell
5

of screen (below MP)			102) Bladder Dumb		Comments										Cs. PAHS. Explosives, POST/PCBS.	TAL MATALS Dioxins/forans						
8° /	bottom	Pump Intake at (ft. below MP)	Purging Device (e.g., Redi Flo2)	0,6	ORP/Eh ²) E	091.	153	د ج	156	157	158	85)	5, SVE							
38	top	take at (f	Device (e.	PID Reading (ppm)	Temp.		deg. C	13,35	13,43	13,52	13,24	13,13	(3,12	13.11	for VOC							
Depth to		Pump In	Purging	PID Reac		14	75 #g#	46.6	43.6	42,5	39.9	37.8	36.7	36.7	cate)	,						
					Turbidity		NTC	4/N							 (dubli	,	 					
	901				Spec.	Cond.	mS/cm	6.823	0.825	D.827	0.820	1180	808 0	6.809	TM 13MWI							
P	7/13/K		nental		Hd			88,7	6.91	6.92	6.93	6,95	9	96.9			-					
RFAAP	Date	E, Malarel	Shaw Environmental		Cum.	Volume	Purged liters]	1.50	3.00	4.50	6.50	8.00	9.50	13MWI and							etc.)
ne)		homas, E	- 1	well cap	Purge	Rate	mL/min	300	300	300	300	oah	100300	300								ycles/min.,
Location (Site / Facility Name)	3MWI	M.Tho	-	TOP BY W	Pump	Setting ¹	CAM	h	ጎ	4	J	1	h	고	t samples							Pump dial setting (e.g., hertz, cycles/min., etc.)
(Site / Fa		sonnel	an	'	Water	Depth	rt. below MP	21.76	21.80	21,83	21.80	21,80	31,78	21.80	(2) (ect	5						l setting (e.
Location	Well Number	Field Personnel	Sample (Identify MP	Clock	Time	24 HR	0000	5060	0410	0915		0925	0430	0440							¹ Pump dia

¹ Pump dial setting (e.g., hertz, cycles/min., etc.)
² Oxidation reduction potential (stand in for Eh)

Location (Site / Facility Name)

Form
ē
¥
ē
٤
2
ĭ
eas
S
≝
<u> </u>
ನ
Ξ
e
a
5
ᅙ
<u>e</u> .
노
5
틍
Ĭ
屲
=
Wel
>

3 of screen (below MP)		7)	FIOS) QED Microforme		Comments													PAHS, Diox Forans, TAL metals						
1 63	bottom	ft. below i	.g., Redi	0.0	ORP/Eh ²		λE	171	95	66.	99	29	52	47	9H	87,	44	١.	-					
27	ğ	Pump Intake at (ff. below MP)	Purging Device (e.g., Redi Flo2)	PID Reading (ppm)	Temp.		deg. C	14,73	14,59	8L'h1	18'41	14.70	88'11	14,93	14,93	14.91	14.96	Explasives	ð					
Depth to	•	Pump Int	Purging	PID Reac			mg/L	2,57	18')	0,99	88.0	60.0	06.0	98.0	51.0	0,73	69.0	12035	, 1					
					Turbidity		NTO	Q	Q	Q	0	0	0	9	0	0	0	Cs. Pest						
	2			*	Spec.	Cond.	mS/cm	9ch'0	0.450	0.457	194,0	0,466	50H.O	594.0	994.0	19h'0	0.466	cs, SVO						
) d	4/11/06	atek	mental		Hd			1819	29.7	8.03	8.29	8,42	8.53	8,65	89.8	8.66	6218	0						
RFAAP	Date	E. Malatek	Shaw Environmental		Cum.	Volume	liters	-	0.75	1.50	2.25	3,00	3.75	4.55	5.30	5.98	6.73	28MWI						
e)		homas, 1	Sha		Purge	Rate	mL/min	150	150	150	150	150	150	160	150	(35	95)	molé 2						
Location (Site / Facility Name)	38MWI	H	on	ack	Pump	Setting ¹	CPM(1D	14/e	2/47	2/47	2/47	7/47	2/47	7/47	2/47	2/47	124/28	ct sa						D. 100 at
(Site / Fa		sonnel	rganizați	N d	Water		MP	39.05	29,50	30°0€	30.18	30.38	30,50	30.58	30.71	30,79	30,87	C0//18						
Location	Well Number	Field Personnel	Sample Organization_	Identify M	Clock	Time	24 HR	1115	1130	1125		135	1140	1145	150	11 655	1200	130E						

¹ Pump dial setting (e.g., hertz, cycles/min., etc.)
² Oxidation reduction potential (stand in for Eh)

orm
Ľ
Ę
Ĕ
nei
ē
3
SE
<u>ŏ</u>
\geq
\$
≒
ž
G
ate
⋛
ס
ē
耳
ģ
르
5
Ĕ
_
ē
≥

5.88 7.89 0.345 39.8 13.94 6.75 7.89 0.337 35,6 14.51 7.68 8.08 0.337 35,6 14.17 8.56 8.14 0.33 125,2 14.17 9.05 8.19 0.336 41.8 14.35 9.05 7.98 0.336 115 12.89 11.03 7.96 0.335 117 12.08 12.38 8.40 0.335 127 12.08 13.05 8.47 0.335 120 11.54 13.05 8.47 0.335 140 11.49
1000 COULD SOMP (C. FAVIME NO.) JULY JULY

¹ Pump dial setting (e.g., hertz, cycles/min., etc.)
² Oxidation reduction potential (stand in for Eh)

Form
urements
ty Meas
· Qualit
y Water
ig-Field
Purgin
Well

Location	(Site / F	Location (Site / Facility Name)	me)	RFAAP	٩			Depth to	9	0h! /	O of screen (below MD)
Well Number		H8MM		Date	E1 /h	90/			top	bottom	
Field Personne	sonnel	M	Thomas	SER	10 ONE			Pump Intake at (ft. below MP	ake at (f	t. below I	(
Sample Organization)rganiza	tion	Sha	Shaw Environmental	mental			Purging Device (e.g., Redi Flo2)	evice (e.	g., Redi I	OEC
Identify MP		משר כיח						PID Reading (ppm)	ing (ppm	0.0	
경 등	Water	Pump	Purge	Cum.	풘		Turbidity	00	Temp.	ORP/Eh ²	Comments
Lime	Depth	Setting	Rate	Volume		Cond.					
24 HR	II. Delow	CPM/10	mL/min	rurgea liters		mS/cm	NTC	mg/L	deg. C	λЩ	•
0000	111,39	76	175	1	46'5	0.376	131	10,45	12.57	981	
0405	112.27	3/	300	1.00	7.76	0,386	97.6	9,74	13.73	90	
0610	112.50	3	300	2.00	8.37	0,384	44,2	8,50	12.92	63	
0915	12.60	3/	200	3.00	£5'8	0.381	83.3	7.62	18.81	19	
0830	112.84	13/82	200	4.00	E9 8	0,375	83.7	7.06	(3.82	57	
0935	113,05	31	() 300	5.00		0.369	1.48	85.0)	12.82	52	
06430	113.19	3/82	200	6.00		198'0	8.98	6.34	13.82	56	
0435	113,35	31	300		52	0,367	0	5.81	12.89	49	
0460	113,48	3/	DOES1188		8,55	0.370	950	5.61	12.93	19	1 air Dressure
0945	113.59	31	<u>-</u>	SL'8	15'8	0.371	95.9	5,43	12.99	9	
0450	113.68	13//83	175	9.63	8.51	0.373	48.2	5,36	3.02	63	
0956	(0)	<u>ئ</u>	Sammiles 4	H8 MWI	# 50/4}	as most and	fand t	IMW84W		dup scafa) for
	700	5 SVO	15, PA	Hs, Pest	1882/	EXOPSI	F	2 metals	١	(chi Xo)	rans
		-			-		,			L	
¹ Pump dial ² Oxidation	setting (e reduction	a.g., hertz, c potential (s	¹ Pump dial setting (e.g., hertz, cycles/min., etc.) ² Oxidation reduction potential (stand in for Eh)	etc.) Eh)							

E
Form
끝
ळ्
듵
Measurements
as
Ē
=
≝
E
Öű
ē
Water
3
ed
Ë
ᡖ
<u>.</u>
ਨੁ
2
=
ΜeΙ

Well Purging-Field Water Quality Measurements Form

of screen (below MP)			=102) QED MicroPurge	PID Reading (ppm) 0.0	Comments			1 gir pressure												RBS, Explosives, TAL metals,	Dioxins/ Furans				
021 / 00	bottom	t. below l	g., Redi	0.0	ORP/Eh ²		λM	150	109	48	72	11	71	74	75	73	75	73	14	Pest	,				
001	top	Pump Intake at (ft. below MP)	Device (e.	ing (ppm	Temp.		deg. C	15,69	14.60	14,30	13,89	14.00	13,95	14.31	13.98	14.07	50'h]	13,94	13,93	Cs. PATA,	-				
Depth to		Pump Int	Purging 1	PID Read	ОО		mg/L	12.92	12.16	44.6	9.32	g.72	4.54	14.6	9.38	9,31	9,12	9.17	9:14	Dans's	-				-
					Turbidity		UTN	113	46.2	58.1	58.5		<i>59.</i> 2	1.89	8.82	14.4	16,2	23,7	34.3	Par VOC					
	90/				Spec.	Cond.	mS/cm	5bh'0	505,0	6,505	0.505	0.506	0,503	205.0	0.500	6.503	0.504	0.503	h95'0'	Hasid).A					
	113	aire K	nental		Hd			6,52	7.03	7,88	918	B,32	8.37	8:38	8.34	8.34	8,35	8,38	8.37	Folius MS					
RFAAP	Date	E. Ma	Shaw Environmental		Cum.	Volume	Purged liters	-	1.08	215	3.23	4.30	5.38	6.50	7.63	8.75	88.6	11.00	12.13	3	,				
e)		gomas,	Shav		Purge	Rate	mL/min	(75	215	215	215	315	215	375	225	225	325	225	225	ole 48 MW					
cility Nan	8MM3	F S	e e	rch	Pump	Setting ¹	CPM/1D	3/50	2//50	2/50	2/50	2/50	2/50	2/50	2150	2/50	2/50	05/c	2/50	4 sample					
(Site / Fa	ber 4	sonnel	rganizati	IP Notch	Water	_	rt. below MP	192'96	97.55	97.74	97.96	98,15	98.33		19,86	98.81	98.45	99.10	99.30	Co 180					
Location	Well Number 48MW3	Field Personnel	Sample Organization	Identify MP	Clock	Time	24 HR	1200	1505	1510	1515	1530	1535	1530	1535	1540	1548	1550	1555 (1600					

¹ Pump dial setting (e.g., hertz, cycles/min., etc.)
² Oxidation reduction potential (stand in for Eh)

Form
asurements
Z
er Quality
l Wate
g-Field
Purging-
Well

										ķ	
Location	(Site / Fa	Location (Site / Facility Name)	ne)	RFAAP				Depth to	7	12/2/	or screen (below MP)
Well Number	nber	48MW4	NH		901 M 1 h				top	bottom	•
Field Personnel	leunos.	M.Tr	homas,	E. Mal	drek			Pump Intake at (ft. below MP)	ake at (f	: below !	(P) 90
Sample (Sample Organization		Sha	Shaw Environmental	nental			Purging [evice (e.	g., Redi F	Purging Device (e.g., Redi Flo2) $\emptyset E \mathbb{D}$
Identify MP	MP MACH	W/K						PID Read	ing (ppm)	0-0	
Clock	Water	Pump	Purge	Cum.	Hd	Spec.	Turbidity	00	Temp.	ORP/Eh ²	Comments
Time	Depth	Setting ¹	Rate	Volume		Cond.					
24 HR	ft. below MP	CPM/1D	mL/min	Purged liters		mS/cm	NTU	mg/L	deg. C	VIII	
1620	80.47	14/6	901	1	187	bb&:0	E98	84,01	18.06	103	
1625	80.49	14/C	125	0.63	187	1.11度9HH.O	1111座	6.17	16.10	92	
(630	80.82	┝	125	1.25	8,00	514.0	6.94	247	5.60	88	
1635	16.08	2/47	135	1.93	8.35	hLh'0	1'85	5,23	1534	70	
2,9	80,91	2/47	135	2.60	26.8	214'0	£ 709	2.19	Se.51	36	
1645	80.99	2/47	125	3.23	90.9	1240	1,7.3	5.14	15.15	378	
1650	81.00	747	125	3.85	61,19	0.469	74.2	5,13	01:51	29	
1655	81.05	147	125	84.7	9.24	0.463	92.1	5,19	18:01	76	
1700	₩		125	5,10	9,25	294,0	1.18	5,25	14,93	27	
1705	81.04	2/47	125	5.73	9.23	0.458	140	5,28	15.14	31	
1710	-	├	125	6.35	9,25	0.456	202	5,28	15,13	30	
1715	Colle	7	Samples for	I 1	SVC	PAHS	Post/Po	Bs, Ex	plosives	, Dieyi	iovins/Furans TAL metals
	}			ı		ĺ		1		,	
1 Pump di	al setting (e	Pump dial setting (e.g., hertz, cycles/min., etc.)	cycles/min.	, etc.)							

¹ Pump dial setting (e.g., hertz, cycles/min., etc.) ² Oxidation reduction potential (stand in for Eh)

35 of screen (below MP)		MP) 34	Flos) OED MICro Purae	pho	Comments										Wett Pimostopad Dumina water	d of Ongrad by										sample offer well recharges		PCBS, Explosives, TAL metals,	Dioxins/furans
, s	bottom	ft. below	.g., Redi	0 (ORP/Eh ²			2	1/5	711	801	66	66	86	06	500	Ø8	137	911	98	69	2	99	02	16	11:m		Post	`
25	top	Pump Intake at (ft. below MP	Device (e.	ing (ppm	Temp.			deg. C	22.70	18.40	1491	15.39	%'h(15.07	15,36	1653	16.39	15.99	16.00	16.48	16.82	(6.73	16.55	16.37	16.13	water		S. PAHS	
Depth to	٠.	Pump Int	Purging Device (e.g., Redi Flo2)	PID Reading (ppm)	og			mg/L	8.9	10.01	11.13	11511	11.48	11.49	84.77	11,17	11.14	11,55	11.49	11.32	(1.32	11.30	10.89	10.29	0.18	mping water	C /	SVaCE	
					Turbidity		į	O N	01E	89¢	283	285	18¢	68°	189	66E	66.9	4.7	4.1	03.8	8.4	2.2	١. ٩	6.4	5.	J BV	-	r VOCS	
	00	7			Spec.	Cond.	ò	ms/cm	0	0	0	Q	0	0	0	0	Q	0	0	(D.002	6.099	0.099	0.103	6.10H	401.0	Stapper	A A	MWItor	
١	/0(/ h	a lare	nental		Hd				6.67	10.0	L9 9	11.0	119	98.9	128.9	7,008	7.03	4.24	6.89	1,54	8,00	-	1867	1.88	7,77	dmva		15	
RFAAP	Date	V	Shaw Environmental		Cum.	Volume	Purged	liters	1	1.50	2.25	3,75	3.25	3.56	3.75	4.00	5.00	5.38	5.63	5.88	6.13	54.9	6.83	7,33	7.83	r G -	7	Sump le	-
(e)		hamas	Shav		Purge	Rate		ull/ull	150	150	150	001	001	50	50	120	200	見与で図	50	50	50	5905	75	100	<u>§</u>	went o		collect	
jility Nam	MM)	M.The	o	χK	Pump	Setting ¹	CFM/ID		1/30	(1/30	0 ti/1	81/1	81/,1	91/1	1/16	1/16	1/12	01/10	1/5	<i>& </i> !	1/8	8/1	1/8	1/8	1/8	6/11 W		820	
Location (Site / Facility Name)	ber 5	onnel	rganizati	P Mac	Water		×		33.0g	33.18	33,38	33.44	33,53	33.64	33.70	33.65	33,79	33.85	33,93	33.95	33.99	34.02	34.11	181'HE	34,33	L)	,	1 90,	
Location	Well Number	Field Personnel	Sample Organization	Identify MP	Clock	Time	2	ב	50	1300	13051	1310	1215	1230	5ec!	1230	1235	1240	1245	1250		300	1305	0			,	4/14	, ,

¹ Pump dial setting (e.g., hertz, cycles/min., etc.) ² Oxidation reduction potential (stand in for Eh)

Well Purging-Field Water Quality Measurements Form

Depth to 43 / 53 of sorgen (holon: MB)	top bottom	Pump Intake at (ft. below MP) 53	I., Redi Flo2)◎ED		Turbidity	,	/cm NTU mg/L deg. C mv	1 (620 993 1787 1	138 194 11.01 17.24 182	15451 21:11 851	224 172 12.36 14.96 158	133 11,86 14	133 116 12.62 14,10 139	120 12.69	181 12,13 13,82 10	195.11 P.E8	1172 12,55 13,84	120 11.94	08'61 45.61 861	1130 112,86 13,74	-14 %	DCS, Explosives, Post				
2 ner	top	ake at ()evice (e	ing (ppir	Temp.	•	deg. C	17.87	17.24	15.45	14.96		14,10	13,83	13,82	13,95	13,84	13.81	13,80	13,74	12,71	Post				
Depth to		Pump Inta	Purging D	PID Read	8		mg/L	993	11.01	11.12	12.36	11,86	12.62	12.69	12,13	11.56	12,55	11.94	12.54	28.CI	12.45	SOSTUES				
							DLN	1620	194	158	12	133	9]_	05/	181	82.4	172	120	(38	130	-7 -7 -7 -7	呕	_			
6.	260				Spec.	Cond.	mS/cm	0,223	0,338	0.232	PEG. O	0,286	6.233	0,235	6,233	0.235	6,227	0,231	0,234	0,232	D, 232	ons 's				
٩	4/10/	1 riek 1	mental		Hd			02.9	6,33		78.9	7.13	7.26	1912	1872	06'2	8.07	8.28	8.37	8,37	8,37	for vol				
RFAAP	Date	E. Malarék	Shaw Environmental		Cnm.	Volume	Purged liters	I	59.0	1.20	2.08	2.95	3.95	5.08	6.20	6.95	9.10	10.10	11.10	12.10	13,10	MM2 A		·		
ne)		1	Sha		Purge	Rate	mL/min	125	125	115	175	175	200	225	225	150	315	200	300	00¢	200	nole 51	7			
cility Nar	51 MWZ	MiThomas	noi	3rtk	Pump	Setting ¹	CAMID	i/15	1,715	1/15	1/20	05/1	1/22	25/ا	1/22	1/30	1/20	1/20	1,/90	1/20	امد//ا	ct san				
Location (Site / Facility Name)	ber 5	sonnel	ani	MP (V) Our k	Water		n. below MP	50.07	50.11	50,09	50.09	50.11	50.12	50,12	50.11	50.11	50,12	50.1	50,12	50,12	50,12	Co [8				
Location	Well Number	Field Personnel	Sample (Identify MP	Clock	Time	24 HR	535		1545	1550	1555	1600	1605	1010	1615	1628	1630		049	1645	1645				

' Pump dial setting (e.g., hertz, cycles/min., etc.)

² Oxidation reduction potential (stand in for Eh)

APPENDIX B

Chain of Custody Records

ACCUTEST.

7225	FACILITY INFORMATION	ORLANDO, FL 32811 TEL: 407-425-6700 • FAX: 407-425-0707	CHAIN OF CUSTODY	
-	ANALYTICAL INFORMATION	ACCUTEST OU ES:	ACCUTEST JOS: 700	
	MATRIX CODES	0	7	

		RELINCHISHED BY:	LINQUISHED BY:	h	RELINOUSHED BY BAMPLER:		UNLESS PREVIOUSLY APPROVED		S OTHER 14 DAY TOT		STANDARD APPROVED BY		\downarrow	10 TM 12 M	9 13MW	S 041206 R	5 HWW4	40	1 MW 8 0	TWW 8P	7000	0	2 - 3 - 3	7) M.	SAMPLE # FIELD ID / P	ACCUTEST	PHONE # 410 -611-6322	SEND REPORT TO:		Enfortment D	Emmerly	SHAW ETI	CLIENT INFORMATION	Laboratories
ů.	OATE TIME: RECEIVED BY:		DATE TIME: RECEIVED BY:	4/12/06 17:00 1.	DATE TIME: RECEIVED BY:	AUDI E CHOTODY MIST DE					APPROVED BY.	+	3 -												FIELD ID / POINT OF COLLECTION		11		STATE ZIP	MD 21040	Para Rd		PRIMATION	ories
	•			TO THE O	OCUMENTED BELOW EA		M OTHER (SPECIFY) CLP	SIATE FORMS		COMMERCIAL "A"		,10:50				27:42	7:7	4/11/06/14:45 E	2 50: El 30/11/4	4/11/06 10.05 E	10/01 19:40	54.91	18:30			¥1	FAX# 410~ 61		İ	1	SWMV 48 49	RFAAP	FACIL	TEL: 407
	SEAL #	•	LINQUISHED BY	2 THE STATE OF THE	DAZETIME: RECEIVED BY. DELOW EACH TIME SAMPLES CHANGE POSSES		CCD LOWAT / EDD				DATA DELIVERABLE INFORMATION	E-1/42 GN 13 3 1 9	15 1 MS 141/	98133	30	06 12 7	6 K 2	EW/NT 6W 1 1 80	En/M GW 13 1191	Em/m 6w 13 1 91	Em/10 6-W 3,3 1 91	1 4 m 6 m 6 m 3 1 9	EN/M GW 43 11 9	HACE HACE	OF TLE	-	611-6351		70,0000	02700000	49,50,51 AN 59		FACILITY INFORMATION	TEL: 407-425-6700 • FAX: 407-425-0707
Ser.	PRESERVE WHE		DATE TIME	CANTAINE! NOW!	SESION, INCLUDI					Temp Black		222	4 4	7 7	٠,	3 0	. د	-	よるよ	ココココ	2 2 2	نودو	ئ بو بو	T	CL	S	est.	5/	PC (Vis	V6	A STATE OF A	
×	NE APPLICABLE	4.	2 may	RECEIVED BY:	ION, INCLUDING COUNTER DELIVERY	9				Sout 1.1	COMMENTS/REMARKS	1312	- 3 - 2	7 5 7 2	1 3 1 3	- -		-	- % - 9	- - - - - - -	۔ س دو دو	- 3 - 92	ن ن - د	T	AL CL PAP	1/5	Met 100	ALS	in	<i>1)</i>			ANALYTICAL INFORMATION	
> 2					A THE STATE OF THE	-	ĺ				REMARKS						Pa	Dury																-
C					がいた。												Perripco+pay	My) Bother To						LAB USE ONLY	Ç	BOL - OTHER	LIQUID	OI - OIL		WW - WASTE	GW - GROUND WATER	DW - DRINKING	MATRIX CODES	(

ACCUTEST. Laboratories ACCUTEST INFORMATION

CHAIN OF CUSTODY HAS VINELAND ROAD - SUITE C-15 ORLANDO, FL 32817 TEL: 407-425-6700 - FAX: 407-425-0707

	ACC	ACC
!	ACCUTEST QUOTE 4:	ACCUTEST JOB #:
	Q.	5
	OTE 6	
ŀ	ず	7
	V	ן ע
		δI
		7
	$\overline{}$	2
	9	7

RELINGUISHED BY: RELINGUISHED BY: RELINGUISHED BY: RELINGUISHED BY: RELINGUISHED BY: DATE TIME: RECEIVED BY: DATE TIME: RECEIVED BY: ACCEIVED BY: 5.	48 HOUR RUSH 24 HOUR EMERGENCY OTHER 14 DAY TAT LERGENCY OR RUSH IS FAX DATA LESS PREVIOUSLY APPROVED					2 6	SAMPLE # FIELD ID / POINT OF COLLECTION	PHONE # 4/0-6/2-6322	CITY, STATE ZIP	morton PANK RO	CLIENT INFORMATION
SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIBR DELIVERY PARE TIME: RECEIVED BY: 节的	DATA DELIVERABLE INFORMATION				12.40 CX 22 2 Mile 12.00 MC	PRESERVATION TCL	Per ives Mot Vo	AN F	is resulted	READ	

c.	5. DATE TIME: RECEIVED BY:		RELINQUISHED BY: DATE TIME: RECEIVED BY:	DATE TIME: RECEIVED BY		推动,在1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年	UNLESS PREVIOUSLY APPROVED			24 HOUR EMERGENCY		STANDAGO	DATA TURNAROUND INFORMATION					041306T	04 1306 DW		49 111.7		TM48MWI	17 HYMWI		SAMPLE * FIELD ID / BOURT OF SOLUTION		PHONE # 410-612-6322	thic Malanek	CITY, STATE 700		2113 Emmerta PANK RD	NAME SHAW EX			Laboratories		
		•	A TARRET		CUMENTED BELOW F		OTHER (SPECIFY)	□ STATE FORMS			STANDARD	DATA DELIV							4113la 13:50	16:00	2.5	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22:160	4/13/06 09:55	DATE TIME	COLLECTION	7/U- 6		PROJECT NO.	829870 - 08300000	LOCATION	PROJECT NAME	REARP	FAC	Straighten		4405	
	SEAL .	RELINQUISHED 8Y:	2. +0.000	RELINOUSHINGS CHANGE P	CH THE SAME ES CHANGE		CLP robout /EDD		(F)			DATA DELIVERABLE INFORMATION					3	20	E /M 7	EM/NT 6W 23 3 2	1 5 01 MB 1MB	7 77	2 21 (11)	Em/M EW 16 6 1	MATI HCI NuOH HHCS H2SO4		710-612-6351		•	08300000	10, 17, 20, 8, Bx 37			FACILITY INFORMATION	IEL: 40/-425-6/00 • FAX: 407-425-0707	ORLANDO, FL 32811	405 VINELAND ROAD . SUITE C-15	
. Franchis WH		DATE TIME:	OSSIDO	DATE THE C	-					Temp Blank										7 4 4 H	9	9.	2 9	9 2 2 2		CL	R	est.		S CBS			18		7			
PROBERY WHERE APPLICABLE	*	RECEIVED BY:								ork Included							9	3		82 3 4	- 3 -	- ن د	, 6	\ \ -	T, T	GC.	N V	(s (s (s	s s					ANALYTICAL INFORMATION		ACCUTEST O	-	ACCUTEST JOBA
				DELIYERY						COMMENTS/REMARKS	NTC/DEMADYC							-							C 0 :	P							RMATION TOTAL	-	*	しつつ		
TEMPERATURE C				建筑型的	-						が対象が対象を								YOU	MS/MSD Ocher	Limited Volume		KIND ON ALL	MShort Mar	LAB USE ONLY	SOLID	SOL . DOB	UG - OTHER	SL - SCUDGE		WATER	GW - GROUND		MATRIX CODES	•		ア	

APPENDIX C

Data Validation Reports

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Semi-Volatiles

Accutest Laboratories, Inc., SDG F39990

DATE:

May 3, 2006

The purpose of this memorandum is to present the data validation report for the samples collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. Samples were analyzed for semivolatile organic compounds (SVOCs) using USEPA SW846 Methods 3510C/8270C. The polynuclear aromatic hydrocarbons (PAHs) were analyzed using selective ion monitoring (SIM) techniques. A total of fifteen aqueous samples were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
51MW1	F39990-1	TM13MW1	F39990-10
51MW2	F39990-2	13MW2	F39990-11
16-4	F39990-3	C1	F39990-12
28MW2	F39990-4	48MW1	F39990-14
28MW1	F39990-5	TM48MW1	F39990-15
C4	F39990-6	48MW2	F39990-16
48MW4	F39990-7	48MW3	F39990-17
13MW1	F39990-9		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, USACE Shell for Analytical Chemistry Requirements, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed	Parameter
Yes No		
	Х	Holding Times and Preservation
	Х	Instrument Performance Check
	Χ	Initial Calibration
	Х	Continuing Calibration
	Χ	Blank Analysis
Χ		Surrogate Spikes
	Χ	Internal Standards
	Х	Laboratory Control Sample
	Χ	Matrix Spike/Spike Duplicate
	Χ	Field Duplicate
X		Quantitation Verification

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

5/3/06

RFAAP VALIDATION REPORT SEMIVOLATILES AND PAH REVIEW SDG F39990

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For semivolatile (SVOC) and polynuclear aromatic hydrocarbons (PAH) compounds is cooled ($@4^{\circ}C \pm 2^{\circ}C$) for aqueous samples, the maximum holding time is 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis.

- Temperature Review: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, 3.2°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 04/10/06, 04/11/06, 04/12/06, and 04/13/06. For samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12), the SVOCs and PAHs were extracted on 04/14/06 and analyzed on 04/18/06 and 04/19/06. For samples, 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17), the SVOCs and PAHs by SIM were extracted on 04/18/06 and analyzed on 04/26/06 and 04/27/06. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check

GC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, decafluorotriphenylphosphine (DFTPP), met the ion abundance criteria. No qualification was applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for compounds on the semivolatile target compound list (TCL). Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve. For compounds analyzed using linear regression or second order, correlation coefficients must be >0.99. The minimum relative response factor (RRF) criteria must be ≥ 0.05 . Initial calibration percent relative standard deviation (%RSD) must be $\leq 15\%$ on the average for all compounds (<30% for CCCs). All detects are qualified as estimated "J" for where there were exceeding %RSDs, and all non-detects are qualified as estimated "UJ" for where there were grossly exceeding recoveries, unless determined to be unusable "R". Grossly exceeding is defined as twice the established criteria limits. For where there were low RRFs, all detects are qualified as estimated "J" and non-detects are rejected "R".

- Initial calibration for the SVOCs was performed on 04/26/06 on instrument MSBNA02. Target compounds 2,4-dinitrophenol (25.0%) and 4,6-dinitro-2-methylphenol (17.8%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compounds 2,4-dinitrophenol (r=0.9953) and 4,6-dinitro-2-methylphenol (r=0.9980) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon the high %RSDs. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this initial calibration.
- Initial calibration for the SVOCs was performed on 04/14/06 on instrument MSBNA3. Target compounds 2,4-dinitrophenol (36.1%; grossly exceeding), 4-nitrophenol (18.6%), 4,6-dinitro-2-methylphenol (27.0%), butylbenzylphthalate (19.7%), 3,3'-dichlorobenzene (17.9%), bis(2ethylhexyl)phthalate (19.4%), di-n-octylphthalate (27.0%), indeno(1,2,3-cd)perylene (23.1%). and dibenz(a,h)anthracene (19.0%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compounds 2,4-dinitrophenol (r=0.9950), 4-(r=0.9979). 4,6-dinitro-2-methylphenol (r=0.9981). butylbenzylphthalate (r=0.9983), 3,3'-dichlorobenzene (r=0.9979), bis(2-ethylhexyl)phthalate (r=0.9986), di-noctylphthalate (r=0.9981), indeno(1,2,3-cd)perylene (r=0.9991), and dibenz(a,h)anthracene (r=0.9984) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon the high %RSDs. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this initial calibration.
- Initial calibration for the SVOCs was performed on 04/21/06 on instrument MSBNA3. Target compound 4,6-dinitro-2-methylphenol (17.1%) was outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compound 4,6-dinitro-2-methylphenol (r=0.9990) was quantified using linear regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon the high %RSD. Sample 48MW3 (F39990-17) re-analysis was analyzed using this initial calibration.
- Initial calibration for the PAHs by SIM was performed on 03/11/06 on instrument MSBNA01. All target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this initial calibration.
- Initial calibration for the PAHs by SIM was performed on 04/26/06 on instrument MSBNA01. Target compound benzo(b)fluoranthene (15.2%) was outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compound benzo(b)fluoranthene (r=0.9983) was quantified using linear regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon the high %RSD. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used was capable of producing acceptable qualitative and quantitative data for semivolatile target compounds. Continuing calibration standards containing both target and surrogates compounds are analyzed at the beginning of each 12-hour analysis period following the analysis of the instrument performance check and prior to the analysis of blanks and samples. The minimum relative response factors (RRF) for semivolatile target compounds and surrogates must be ≥ 0.05 . The percent difference (%D) between the initial calibration RRF and the continuing calibration RRF must be within \pm 20% for all target compounds. Grossly exceeding is defined where %D>40%. All detects are qualified as estimated "J" for where there were exceeding "Ds, and all non-detects are qualified as estimated "UJ" for where there were grossly exceeding recoveries, unless determined to be unusable "R". Grossly exceeding is defined as twice the established criteria limits. For where there were low RRFs, all detects are qualified as estimated "J" and non-detects are rejected "R".

- For SVOC continuing calibration performed on 04/26/06 @15:43 on instrument MSBNA02, all criteria were met for all target compounds. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.
- For SVOC continuing calibration performed on 04/18/06 @10:37 on instrument MSBNA3, all criteria were met for all target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), and 13MW2 (F39990-11) apply to this continuing calibration.
- For SVOC continuing calibration performed on 04/19/06 @09:54 on instrument MSBNA3, target compound hexachlorocyclopentadiene (27.1%) was outside criteria. All other target compounds were within criteria (%D≤20%; RRF≥0.05). Compound hexachlorocyclopentadiene was non-detect for all samples, therefore, no qualifiers were applied based upon this outlier. Sample C1 (F39990-12) applies to this continuing calibration.
- For SVOC continuing calibration performed on 04/27/06 @10:11 on instrument MSBNA3, all criteria were met for all target compounds. No qualifiers were applied. Sample 48MW3 (F39990-17) re-analysis applies to this continuing calibration.
- For PAH by SIM continuing calibration performed on 04/19/06 @09:13 on instrument MSBNA01, all criteria were met for all target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), and 13MW2 (F39990-11) apply to this continuing calibration.
- For PAH by SIM continuing calibration performed on 04/20/06 @09:41 on instrument MSBNA01, all criteria were met for all target compounds. No qualifiers were applied. Sample C1 (F39990-12) applies to this continuing calibration.
- For PAH by SIM continuing calibration performed on 04/26/06 @16:20 on instrument MSBNA01, all criteria were met for all target compounds. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.

V-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. A method blank analysis must be performed after the calibration standards and once every 12-hour time period beginning with the injection of DFTPP. No contaminants should be detected in any of the associated blanks > the MDL. USACE Shell criteria specifies all concentrations should be less than one-half MRL (<MRL for common laboratory contaminants phthalate esters). Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants phthalate esters, or 5 times (5X) the maximum amount for other semivolatile target compounds. **Table 2** summarizes the blank contamination analysis. Rinse blank 041206R (F39990-8) (low-flow pump) applies to all samples in this SDG.

Table 2	Blank	Contamination	Analysis	Summary
---------	-------	---------------	-----------------	---------

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples
04/18/06	OP16306-MB	All SVOC target <mrl< td=""><td>NA</td><td>ŇA</td><td>None</td></mrl<>	NA	ŇA	None
04/19/06	OP16306-MB	All SVOC target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/26/06	OP16337-MB	All SVOC target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/27/06	OP16337-MB	All SVOC target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/19/06	OP16311-MB	All PAH SIM target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/20/06	OP16311-MB	All PAH SIM target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/26/06	OP16336-MB	All PAH SIM target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/18/06	041206R	All SVOC target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/19/06	041206R	All PAH SIM target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

VI-Surrogate Spikes

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Surrogate spikes are added to all samples and blanks to measure their recovery in sample and blank matrices. The percent recoveries (%Rs) must be within the specified control limits.

Criteria: 2-Fluorophenol (19-90%) – S1 (USACE Shell Criteria: 35-140%)
Phenol – d5 (10-68%) – S2 (USACE Shell Criteria: 35-140%)
2,4,6-Tribromophenol (36-137%) – S3 (USACE Shell Criteria: 35-140%)
Nitrobenzene-d5 (49-119%) – S4 (USACE Shell Criteria: 45-135%)
2-Fluorobiphenyl (45-118%) – S5 (USACE Shell Criteria: 45-135%)
p-Terphenyl – d14 (46-135%) – S6 (USACE Shell Criteria: 45-135%)

- For sample 28MW2 (F39990-4), surrogates 2-fluorophenol (27%) and phenol-d5 (16%) were below USACE recommended limits and within laboratory control limits. Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.
- For sample 28MW1 (F39990-5), surrogates 2-fluorophenol (33%) and phenol-d5 (19%) were below USACE recommended limits and within laboratory control limits. Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.
- For sample C4 (F39990-6), surrogates 2-fluorophenol (34%) and phenol-d5 (19%) were below USACE recommended limits and within laboratory control limits. Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.

B = Compound detected in associated laboratory blank.

- For sample 48MW1 (F39990-14), surrogates 2-fluorophenol (32%) and phenol-d5 (17%) were below USACE recommended limits and within laboratory control limits. Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.
- For sample TM48MW1 (F39990-15), surrogates 2-fluorophenol (33%) and phenol-d5 (18%) were below USACE recommended limits and within laboratory control limits. Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.
- For sample 48MW2 (F39990-16), surrogates 2-fluorophenol (26%) and phenol-d5 (15%) were below USACE recommended limits and within laboratory control limits. Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.
- For sample 48MW3 (F39990-17), surrogates 2-fluorophenol (16%) and phenol-d5 (9%) were below laboratory and USACE criteria limits. The sample was re-analyzed and surrogates 2fluorophenol (18%) and phenol-d5 (12%) were still outside criteria. Sample 48MW3 (F39990-17) was non-detect for all target compounds. All non-detects were qualified estimated bias low "UL" for this sample based upon the low surrogate recoveries.
- Surrogate phenol-d5 (S2) was below USACE recommended limits, however greater than 10% and within laboratory control limits for samples 51MW1 (23%), 51MW2 (22%), 16-4 (21%), 48MW4 (20%), 13MW1 (29%), TM13MW1 (25%), 13MW2 (26%), and C1 (30%). Since these recoveries were greater than 10%, within the laboratory limits, and all other base neutral surrogates were within all criteria limits, no qualifiers were applied based upon these outliers.
- For all other field samples, all other surrogates were within criteria limits.

VII-Internal Standards

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The retention time of the internal standards in samples and blanks must not vary by more than ± 30 seconds from the retention time of the associated calibration standard.

All criteria were met. No qualifiers were applied.

VIII-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor laboratory accuracy by calculating the percent recoveries of the spiked compounds. All LCS percent recoveries must be within the specified control limits. USACE Shell limits for SVOCs are 45-135%; RPD≤50% (15-150%; RPD≤60% for sporadic marginal failures (SMF)).

Sample OP16306-BS was used as the LCS for the SVOC analysis on 04/18/06. A total of 49 compounds were spiked, allowing for 3 SMF tolerances. Benzoic acid (27%), 4-nitrophenol (36%), and phenol (36%) were outside USACE criteria, but within SMF and laboratory criteria. No qualifiers were applied to benzoic acid, 4-nitrophenol, and phenol based upon these low recoveries. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.

- Sample OP16337-BS was used as the LCS for the SVOC analysis on 04/26/06. A total of 49 compounds were spiked, allowing for 3 SMF tolerances. Benzoic acid (17%), 4-nitrophenol (29%), and phenol (28%) were outside USACE criteria, but within SMF and laboratory criteria. 2-Methylphenol (53%) was outside laboratory criteria, but within USACE and SMF criteria. No qualifiers were applied to benzoic acid, 4-nitrophenol, 2-methylphenol, and phenol based upon these low recoveries. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.
- Sample OP16311-BS was used as the LCS for the PAH SIM analysis on 04/19/06. A total of 18 compounds were spiked, allowing for 2 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.
- Sample OP16336-BS was used as the LCS for the PAH SIM analysis on 04/26/06. A total of 18 compounds were spiked, allowing for 2 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.

IX-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. USACE Shell limits are 45-135%; RPD≤50% (15-150%; RPD≤60% for sporadic marginal failures (SMF)).

- Sample 13MW2 (F39990-11) was used for the MS/MSD for SVOC analysis on 04/18/06. A
 total of 98 compounds were spiked allowing for 10 SMFs. Hexachlorobutadiene (96%, 97%)
 was outside laboratory accuracy criteria, however within USACE and SMF criteria. Benzoic
 acid (33%; 21%; RPD=45%) was outside USACE criteria, however within laboratory and SMF
 criteria. No qualifiers were applied for benzoic acid or hexachlorobutadiene based upon these
 outliers.
- Sample 48MW3 (F39990-17) was used for the MS/MSD for SVOC analysis on 04/26/06. A total of 98 compounds were spiked allowing for 10 SMFs. Bis(2-Chloroethyl)ether (RPD=25%), bis(2-Chloroisopropyl)ether (RPD=24%), and 1,2-dichlorobenzene (RPD=25%) were outside laboratory precision criteria, however within USACE and SMF criteria. Benzoic acid (41%; 42%), 2,4-dimethylphenol (40%), phenol (38%), and hexachlorocyclopentadiene (43%) were outside USACE accuracy criteria, however within laboratory and SMF criteria. No qualifiers were applied for bis(2-chloroethyl)ether, bis(2-Chloroisopropyl)ether, 1,2-dichlorobenzene, benzoic acid, 2,4-dimethylphenol, phenol, or hexachlorocyclopentadiene based upon these outliers.
- Sample 13MW1 (F39990-9) was used for the MS/MSD for PAH SIM analysis on 04/19/06. A
 total of 36 compounds were spiked allowing for 4 SMFs. All criteria were met. No qualifiers
 were applied.
- Sample 48MW3 (F39990-17) was used for the MS/MSD for PAH SIM analysis on 04/26/06. A
 total of 36 compounds were spiked allowing for 4 SMFs. All criteria were met. No qualifiers
 were applied.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

- Field groundwater sample duplicate pair 13MW1 (F39990-9) and TM13MW1 (F39990-10) was collected for SVOCs and PAH SIM. All target compounds were non-detect. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 48MW1 (F39990-14) and TM48MW1 (F39990-15) was collected for SVOCs and PAH SIM. All target compounds were non-detect. All criteria were met. No qualifiers were applied.

XI-Quantitation Verification

The accuracy of analytical results was verified through the calculation of several parameters. Percent difference (%D) between the calculated and reported values must be \leq 10%. Any sample value > MDL and < MRL or < 3*MDL (whichever is greater) was qualified as estimated, "J." Any tentatively identified compounds found were qualified as estimated "J".

Sample: 48MW3MS (F39990-17MS), bis(2-ethylhexyl)phthalate

$$Conc_{sample} = \frac{A_x x I_s x V_t}{A_{is} x RRF_A x V_o x V_i}$$

where: $Conc_{sample}$ = Sample concentration in ug/L A_x = Area of characteristic ion for compound being measured. I_s = Amount of internal standard injected (ng). V_t = Volume of total extract, taking into account dilutions (i.e., a 1-to-10 dilution of a 1-mL extract will mean <math>V(t) = 10,000 uL. A_{is} = Area of characteristic ion for the internal standard. RRF_A = $Average relative response factor for compound being measured <math>V_o$ = V_o =

Conc. $\mu g/L = (1126729 * 40 ng * 1000 \mu L) / (1385395 * 0.752 * 400 mL * 1 <math>\mu L) = 108 \text{ ng/mL}$ = 108 $\mu g/L$

Reported Value = 108 µg/L % Difference = 0.0% Values were within 10% difference.

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and \leq MRL or \leq 3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

D = Indicates sample was analyzed at a dilution.

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration <MRL and \ge MDL.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

N (Metals) = Laboratory spike sample recovery not within control limits.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

- * (Metals) = Duplicate analysis not within control limits.
- * (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Report of Analysis

By

MRE

Page 1 of 2

Client Sample ID: 51MW1 Lab Sample ID:

F39990-1

AQ - Ground Water

Date Sampled: 04/11/06

Prep Date

04/14/06

Matrix: Method:

SW846 8270C SW846 3510C

Date Received: 04/13/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/18/06

Analytical Batch Prep Batch OP16306 **SR99**

Run #1 Run #2

Initial Volume

File ID

R02143.D

Final Volume

Run #1 740 ml 1.0 ml

DF

1

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	34	14	ug/l	
95-57-8	2-Chlorophenol	ND	6.8	2.7	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	6.8	2.7	ug/l	
120-83-2	2,4-Dichlorophenol	ND	6.8	2.7	ug/l	
105-67-9	2,4-Dimethylphenol	ND	6.8	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	34	14	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	14	6.8	ug/l	
95-48-7	2-Methylphenol	ND	6.8	2.7	ug/l	
	3&4-Methylphenol	ND	6.8	2.7	ug/l	
88-75-5	2-Nitrophenol	ND	6.8	2.7	ug/l	
100-02-7	4-Nitrophenol	ND	34	14	ug/l	
87-86-5	Pentachlorophenol	ND	34	14	ug/l	
108-95-2	Phenol	ND	6.8	2.7	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	6.8	2.7	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	6.8	2.7	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	6.8	1.4	ug/l	
85-68-7	Butyl benzyl phthalate	ND	6.8	2.7	ug/l	
100-51-6	Benzyl Alcohol	ND	6.8	1.4	ug/l	
91-58-7	2-Chloronaphthalene	ND	6.8	1.4	ug/l	
106-47-8	4-Chloroaniline	ND	14	5.4	ug/l	
86-74-8	Carbazole	ND	6.8	1.4	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	6.8	1.4	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	6.8	2.7	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	6.8	1.4	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	6.8	1.4	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	6.8	1.4	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	6.8	1.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	6.8	1.4	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	6.8	2.7	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	6.8	2.7	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	14	6.8	ug/l	
132-64-9	Dibenzofuran	ND	6.8	1.4	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 51MW1 Lab Sample ID:

F39990-1

AQ - Ground Water

Date Sampled: 04/11/06 Date Received: 04/13/06

Method: SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	0
0.10110.	Compound	resuit	KL	MIDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	6.8	2.7	ug/l	
117-84-0	Di-n-octyl phthalate	ND	6.8	3.4	ug/l	
84-66-2	Diethyl phthalate	ND	6.8	2.7	ug/l	
131-11-3	Dimethyl phthalate	ND	6.8	2.7	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	6.8	3.4	ug/l	
118-74-1	Hexachlorobenzene	ND	6.8	1.4	ug/l	
87-68-3	Hexachlorobutadiene	ND	6.8	2.7	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	6.8	2.7	ug/l	
67-72-1	Hexachloroethane	ND	6.8	2.7	ug/l	
78-59-1	Isophorone	ND	6.8	1.4	ug/l	
88-74-4	2-Nitroaniline	ND	14	5.4	ug/l	
99-09-2	3-Nitroaniline	ND	14	5.4	ug/l	
100-01-6	4-Nitroaniline	ND	14	5.4	ug/l	
98-95-3	Nitrobenzene	ND	6.8	1.4	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	6.8	2.7	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	6.8	2.7	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	6.8	1.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	36%		19-9	0%	
4165-62-2	Phenol-d5	23%		10-68	8%	
118-79-6	2,4,6-Tribromophenol	73%		36-13	37%	
4165-60-0	Nitrobenzene-d5	60%		49-1	19%	
321-60-8	2-Fluorobiphenyl	64%		45-1	18%	
1718-51-0	Terphenyl-d14	82%		46-13	35%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

File ID

W028448.D

Compound

Report of Analysis

Page 1 of 1

Client Sample ID: 51MW1 Lab Sample ID:

F39990-1

By

NJ

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8270C BY SIM SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/19/06

Prep Date 04/14/06

Prep Batch OP16311

Analytical Batch SW1493

Run #1 Run #2

Final Volume

Initial Volume Run #1 740 ml

1.0 ml

Run #2

BN PAH List

CAS No.

Result RLMDL Units Q

83-32-9	Acenaphthene	ND	1.4	0.68	ug/l	
208-96-8	Acenaphthylene	ND	1.4	0.68	ug/l	
120-12-7	Anthracene	ND	1.4	0.68	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.27	0.068	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.27	0.14	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.27	0.068	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.27	0.14	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.27	0.14	ug/l	
218-01-9	Chrysene	ND	0.27	0.14	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.27	0.068	ug/l	
206-44-0	Fluoranthene	ND	1.4	0.34	ug/l	
86-73-7	Fluorene	ND	1.4	0.34	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.27	0.068	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.4	0.34	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.4	0.34	ug/l	
91-20-3	Naphthalene	ND	1.4	0.34	ug/l	
85-01-8	Phenanthrene	ND	1.4	0.68	ug/l	
129-00-0	Pyrene	ND	1.4	0.34	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

MRE

Page 1 of 2

Client Sample ID: 51MW2 Lab Sample ID:

F39990-2

AQ - Ground Water

Date Sampled: 04/10/06

04/14/06

Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/18/06

Analytical Batch Prep Date Prep Batch OP16306 **SR99**

Run #1 Run #2

Initial Volume

File ID

900 ml

R02144.D

Final Volume

1.0 ml

DF

1

Run #1

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.4	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 2 of 2

Client Sample ID: 51MW2 Lab Sample ID:

F39990-2 AQ - Ground Water

Date Sampled: 04/10/06

Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q	
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ug/l		
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l		
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l		
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/l		
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l		
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l		
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l		
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l		
78-59-1	Isophorone	ND	5.6	1.1	ug/l		
88-74-4	2-Nitroaniline	ND	11	4.4	ug/l		
99-09-2	3-Nitroaniline	ND	11	4.4	ug/l		
100-01-6	4-Nitroaniline	ND	11	4.4	ug/l		
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l		
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
367-12-4	2-Fluorophenol	38%		19-90	0%		
4165-62-2	Phenol-d5	22%		10-68%			
118-79-6	2,4,6-Tribromophenol	90%		36-13	37%		
4165-60-0	Nitrobenzene-d5	63%		49-11	19%		
321-60-8	2-Fluorobiphenyl	67%		45-11	18%		
1718-51-0	Terphenyl-d14	81%		46-13	35 %		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

NJ

Page 1 of 1

Client Sample ID: 51MW2 Lab Sample ID:

F39990-2

AQ - Ground Water

DF

1

Date Sampled: 04/10/06

Prep Date

04/14/06

Date Received: 04/13/06

Matrix: Method:

SW846 8270C BY SIM SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/19/06

Prep Batch

Analytical Batch

Run #1 Run #2

> **Initial Volume** 900 ml

W028449.D

File ID

OP16311

SW1493

Final Volume

Run #1

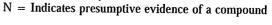
1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.1	0.56	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.56	ug/l	
120-12-7	Anthracene	ND	1.1	0.56	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.22	0.056	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.22	0.11	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.22	0.056	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.22	0.11	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.22	0.11	ug/l	
218-01-9	Chrysene	ND	0.22	0.11	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.22	0.056	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.28	ug/l	
86-73-7	Fluorene	ND	1.1	0.28	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.22	0.056	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-20-3	Naphthalene **	ND	1.1	0.28	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.56	ug/l	
129-00-0	Pyrene	ND	1.1	0.28	ug/l	
					-o. +	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 16-4

Lab Sample ID: Matrix:

F39990-3

AQ - Ground Water SW846 8270C SW846 3510C Date Sampled: 04/10/06

Date Received: 04/13/06

Method: Project:

Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID Run #1 R02145.D DF Analyzed 1 04/18/06

By Prep Date MRE 04/14/06

Prep Batch OP16306

Analytical Batch

SR99

Run #2

Initial Volume

Final Volume 1.0 ml

Run #1 Run #2

900 ml

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.4	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	
			0.0	1.1	ug/1	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 16-4

Lab Sample ID: F39990-3

Matrix: Method:

AQ - Ground Water SW846 8270C SW846 3510C Date Sampled: 04/10/06

Date Received: 04/13/06

Percent Solids: n/a

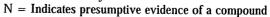
Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l	
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/l	
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l	
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l	
78-59-1	Isophorone	ND	5.6	1.1	ug/l	
88-74-4	2-Nitroaniline	ND	11	4.4	ug/l	
99-09-2	3-Nitroaniline	ND	11	4.4	ug/l	
100-01-6	4-Nitroaniline	ND	11	4.4	ug/l	
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	36%		19-90	0%	
4165-62-2	Phenol-d5	21%		10-68	3%	
118-79-6	2,4,6-Tribromophenol	80%		36-13	37%	
4165-60-0	Nitrobenzene-d5	60%		49-11	19%	
321-60-8	2-Fluorobiphenyl	65%		45-11	18%	
1718-51-0	Terphenyl-d14	79%		46-13	35 %	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 16-4

Lab Sample ID: F39990-3

Matrix: Method: AQ - Ground Water

SW846 8270C BY SIM SW846 3510C

Date Sampled: 04/10/06

Prep Date

04/14/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch **Analytical Batch** OP16311 SW1493

File ID DF Analyzed By Run #1 W028450.D 1 04/19/06 NJ

Run #2

Final Volume

Initial Volume Run #1 900 ml

1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.1	0.56	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.56	ug/l	
120-12-7	Anthracene	ND	1.1	0.56	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.22	0.056	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.22	0.11	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.22	0.056	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.22	0.11	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.22	0.11	ug/l	
218-01-9	Chrysene	ND	0.22	0.11	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.22	0.056	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.28	ug/l	
86-73-7	Fluorene	ND	1.1	0.28	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.22	0.056	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.56	ug/l	
129-00-0	Pyrene	ND	1.1	0.28	ug/l	
	•		- · -		-o	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

MRE

Page 1 of 2

Client Sample ID: 28MW2 Lab Sample ID:

F39990-4

AQ - Ground Water

DF

1

Date Sampled: 04/11/06 Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Analytical Batch

Run #1 Run #2

Initial Volume

Analyzed

04/18/06

04/14/06

Prep Date

OP16306

SR99

900 ml

File ID

R02146.D

Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.4	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	
			0.0		4 δ′ •	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 28MW2

Lab Sample ID:

F39990-4

AQ - Ground Water

Date Sampled: 04/11/06

Matrix: Method:

SW846 8270C SW846 3510C

Date Received: 04/13/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l	
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/l	
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l	
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l	
78-59-1	Isophorone	ND	5.6	1.1	ug/l	
88-74-4	2-Nitroaniline	ND	11	4.4	ug/l	
99-09-2	3-Nitroaniline	ND	11	4.4	ug/l	
100-01-6	4-Nitroaniline	ND	11	4.4	ug/l	
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	27%		19-90)%	
4165-62-2	Phenol-d5	16%		10-68	3%	
118-79-6	2,4,6-Tribromophenol	75%		36-13	37%	
4165-60-0	Nitrobenzene-d5	55%		49-11	9%	
321-60-8	2-Fluorobiphenyl	59%		45-11	8%	
1718-51-0	Terphenyl-d14	70%		46-13	85%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4 22

Accutest LabLink@09:39 02-May-2006

Report of Analysis

Page 1 of 1

Client Sample ID: 28MW2

Lab Sample ID: F399

F39990-4 AQ - Ground Water Date Sampled: 04/11/06 Date Received: 04/13/06

Matrix: Method:

SW846 8270C BY SIM SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/19/06

Run #1

DF 1 By NJ Prep Date 04/14/06

Prep Batch OP16311 Analytical Batch SW1493

Run #2

Initial Volume

Final Volume

900 ml

File ID

W028451.D

1.0 ml

Run #1 Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.1	0.56	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.56	ug/l	
120-12-7	Anthracene	ND	1.1	0.56	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.22	0.056	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.22	0.11	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.22	0.056	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.22	0.11	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.22	0.11	ug/l	
218-01-9	Chrysene	ND	0.22	0.11	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.22	0.056	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.28	ug/l	
86-73-7	Fluorene	ND	1.1	0.28	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.22	0.056	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.56	ug/l	
129-00-0	Pyrene	ND	1.1	0.28	ug/l	
	J			0.20	~b, •	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 2

Client Sample ID: 28MW1

Lab Sample ID:

F39990-5

AQ - Ground Water

1

Date Sampled: 04/11/06

Matrix: Method:

SW846 8270C SW846 3510C

Date Received: 04/13/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1

File ID R02147.D DF Analyzed 04/18/06

ByPrep Date **MRE** 04/14/06

Prep Batch OP16306

Analytical Batch SR99

Run #2

Initial Volume Final Volume

800 ml

1.0 ml

Run #1 Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	31	13	ug/l	
95-57-8	2-Chlorophenol	ND	6.3	2.5	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	6.3	2.5	ug/l	
120-83-2	2,4-Dichlorophenol	ND	6.3	2.5	ug/l	
105-67-9	2,4-Dimethylphenol	ND	6.3	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	31	13	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	13	6.3	ug/l	
95-48-7	2-Methylphenol	ND	6.3	2.5	ug/l	
	3&4-Methylphenol	ND	6.3	2.5	ug/l	
88-75-5	2-Nitrophenol	ND	6.3	2.5	ug/l	
100-02-7	4-Nitrophenol	ND	31	13	ug/l	
87-86-5	Pentachlorophenol	ND	31	13	ug/l	
108-95-2	Phenol	ND	6.3	2.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	6.3	2.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	6.3	2.5	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	6.3	1.3	ug/l	
85-68-7	Butyl benzyl phthalate	ND	6.3	2.5	ug/l	
100-51-6	Benzyl Alcohol	ND	6.3	1.3	ug/l	
91-58-7	2-Chloronaphthalene	ND	6.3	1.3	ug/l	
106-47-8	4-Chloroaniline	ND	13	5.0	ug/l	
86-74-8	Carbazole	ND	6.3	1.3	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	6.3	1.3	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	6.3	2.5	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	6.3	1.3	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	6.3	1.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	6.3	1.3	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	6.3	1.3	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	6.3	1.3	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	6.3	2.5	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	6.3	2.5	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	13	6.3	ug/l	
132-64-9	Dibenzofuran	ND	6.3	1.3	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

Report of Analysis

Page 2 of 2

Client Sample ID: 28MW1

Lab Sample ID: F399

F39990-5

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water SW846 8270C SW846 3510C Date Received: 04/13/06

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

ABN TCL List w/o PAHs

Compound	Result	RL	MDL	Units	Q
Di-n-butyl phthalate	ND	6.3	2.5	ug/l	
Di-n-octyl phthalate	ND	6.3	3.1		
Diethyl phthalate	ND	6.3	2.5		
Dimethyl phthalate	ND	6.3	2.5		
bis(2-Ethylhexyl)phthalate	ND	6.3	3.1		
Hexachlorobenzene	ND	6.3	1.3		
Hexachlorobutadiene	ND	6.3	2.5		
Hexachlorocyclopentadiene	ND	6.3	2.5		
Hexachloroethane	ND	6.3	2.5		
Isophorone	ND	6.3	1.3		
2-Nitroaniline	ND	13	5.0		
3-Nitroaniline	ND	13	5.0		
4-Nitroaniline	ND	13	5.0		
Nitrobenzene	ND	6.3	1.3		
N-Nitroso-di-n-propylamine	ND	6.3	2.5		
N-Nitrosodiphenylamine	ND	6.3	2.5		
1,2,4-Trichlorobenzene	ND	6.3	1.3	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
2-Fluorophenol	33%		19-90	1%	
Phenol-d5	19%		10-68	3%	
2,4,6-Tribromophenol	92%		36-13	7%	
Nitrobenzene-d5	66%		49-11	9%	
2-Fluorobiphenyl	72%		45-11	8%	
Terphenyl-d14	87%		46-13	5%	
	Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Dimethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocethane Isophorone 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Surrogate Recoveries 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	Di-n-butyl phthalate Di-n-octyl phthalate ND Diethyl phthalate ND Dimethyl myd ND N-Nitroaniline ND N-Nitroaniline ND N-Nitroso-di-n-propylamine ND N-Nitroso-di-n-propylamine ND N-Nitrosodiphenylamine ND N-Nitrosodiphenylamine ND Dimethyl myd ND N-Nitrosodiphenylamine ND N-Nitrosodiphenylamine ND Dimethyl myd ND N-Nitrosodiphenyl myd ND N-Nitrosodiphenol ND	Di-n-butyl phthalate ND 6.3 Di-n-octyl phthalate ND 6.3 Diethyl phthalate ND 6.3 Dimethyl phthalate ND 6.3 bis(2-Ethylhexyl)phthalate ND 6.3 Hexachlorobenzene ND 6.3 Hexachlorobutadiene ND 6.3 Hexachlorocyclopentadiene ND 6.3 Hexachlorocyclopentadiene ND 6.3 Isophorone ND 6.3 Isophorone ND 6.3 2-Nitroaniline ND 13 3-Nitroaniline ND 13 Nitrobenzene ND 6.3 N-Nitroso-di-n-propylamine ND 6.3 N-Nitroso-di-n-propylamine ND 6.3 N-Nitrosodiphenylamine ND 6.3 Surrogate Recoveries Run# 1 Run# 2 2-Fluorophenol 33% Phenol-d5 19% 2,4,6-Tribromophenol 92% Nitrobenzene-d5 66% 2-Fluorobiphenyl 72%	Di-n-butyl phthalate ND 6.3 2.5 Di-n-octyl phthalate ND 6.3 3.1 Diethyl phthalate ND 6.3 2.5 Dimethyl phthalate ND 6.3 2.5 bis(2-Ethylhexyl)phthalate ND 6.3 3.1 Hexachlorobenzene ND 6.3 1.3 Hexachlorobutadiene ND 6.3 2.5 Hexachlorocyclopentadiene ND 6.3 2.5 Isophorone ND 6.3 2.5 Isophorone ND 6.3 1.3 2-Nitroaniline ND 13 5.0 N-Nitrosoniline ND 6.3 1.3 N-Nitroso-di-n-propylamine ND 6.3 2.5 N-Ni	Di-n-butyl phthalate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 28MW1

Lab Sample ID:

F39990-5

AQ - Ground Water

Date Sampled: 04/11/06

Matrix:

Date Received: 04/13/06

Method:

SW846 8270C BY SIM SW846 3510C

DF

1

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analytical Batch

Run #1

File ID W028452.D Analyzed 04/19/06

By NJ

Prep Date 04/14/06

Prep Batch OP16311

SW1493

Run #2

Initial Volume Final Volume

800 ml

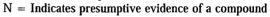
1.0 ml

Run #1 Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.3	0.63	ug/l	
208-96-8	Acenaphthylene	ND	1.3	0.63	ug/l	
120-12-7	Anthracene	ND	1.3	0.63	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.25	0.063	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.25	0.13	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.25	0.063	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.25	0.13	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.25	0.13	ug/l	
218-01-9	Chrysene	ND	0.25	0.13	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.25	0.063	ug/l	
206-44-0	Fluoranthene	ND	1.3	0.31	ug/l	
86-73-7	Fluorene	ND	1.3	0.31	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25	0.063	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.3	0.31	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.3	0.31	ug/l	
91-20-3	Naphthalene	ND	1.3	0.31	ug/l	
85-01-8	Phenanthrene	ND	1.3	0.63	ug/l	
129-00-0	Pyrene	ND	1.3	0.31	ug/l	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: C4

Lab Sample ID: F39990-6

Matrix: Method: AQ - Ground Water

SW846 8270C SW846 3510C

Date Received: 04/13/06

Date Sampled: 04/11/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch **Analytical Batch**

SR99

File ID DF Analyzed **Prep Date** By Run #1 R02148.D 1 04/18/06 MRE 04/14/06 OP16306

Run #2

Initial Volume Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List w/o PAHs

800 ml

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	31	13	ug/l	
95-57-8	2-Chlorophenol	ND	6.3	2.5	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	6.3	2.5	ug/l	
120-83-2	2,4-Dichlorophenol	ND	6.3	2.5	ug/l	
105-67-9	2,4-Dimethylphenol	ND	6.3	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	31	13	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	13	6.3	ug/l	
95-48-7	2-Methylphenol	ND	6.3	2.5	ug/l	
	3&4-Methylphenol	ND	6.3	2.5	ug/l	
88-75-5	2-Nitrophenol	ND	6.3	2.5	ug/l	
100-02-7	4-Nitrophenol	ND	31	13	ug/l	
87-86-5	Pentachlorophenol	ND	31	13	ug/l	
108-95-2	Phenol	ND	6.3	2.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	6.3	2.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	6.3	2.5	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	6.3	1.3	ug/l	
85-68-7	Butyl benzyl phthalate	ND	6.3	2.5	ug/l	
100-51-6	Benzyl Alcohol	ND	6.3	1.3	ug/l	
91-58-7	2-Chloronaphthalene	ND	6.3	1.3	ug/l	
106-47-8	4-Chloroaniline	ND	13	5.0	ug/l	
86-74-8	Carbazole	ND	6.3	1.3	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	6.3	1.3	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	6.3	2.5	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	6.3	1.3	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	6.3	1.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	6.3	1.3	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	6.3	1.3	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	6.3	1.3	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	6.3	2.5	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	6.3	2.5	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	13	6.3	ug/l	
132-64-9	Dibenzofuran	ND	6.3	1.3	ug/l	
					0	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 2 of 2

Client Sample ID: C4

Lab Sample ID:

Matrix:

F39990-6

AQ - Ground Water

Date Sampled: 04/11/06 Date Received: 04/13/06

Method: SW846 8270C SW846 3510C

Percent Solids: n/a

Project: Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	0
	P	resure	ILL	WIDL	Ollits	Q
84-74-2	Di-n-butyl phthalate	ND	6.3	2.5	ug/l	
117-84-0	Di-n-octyl phthalate	ND	6.3	3.1	ug/l	
84-66-2	Diethyl phthalate	ND	6.3	2.5	ug/l	
131-11-3	Dimethyl phthalate	ND	6.3	2.5	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	4.8 丁	6.3	3.1	ug/l	J
118-74-1	Hexachlorobenzene	ND	6.3	1.3	ug/l	J
87-68-3	Hexachlorobutadiene	ND	6.3	2.5	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	6.3	2.5	ug/l	
67-72-1	Hexachloroethane	ND	6.3	2.5	ug/l	
78-59-1	Isophorone	ND	6.3	1.3	ug/l	
88-74-4	2-Nitroaniline	ND	13	5.0	ug/l	
99-09-2	3-Nitroaniline	ND	13	5.0	ug/l	
100-01-6	4-Nitroaniline	ND	13	5.0	ug/l	
98-95-3	Nitrobenzene	ND	6.3	1.3	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	6.3	2.5	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	6.3	2.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	6.3	1.3	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	34%		19-90)%	
4165-62-2	Phenol-d5	19%		10-68	3%	
118-79-6	2,4,6-Tribromophenol	94%		36-13	87%	
4165-60-0	Nitrobenzene-d5	64%		49-11	.9%	
321-60-8	2-Fluorobiphenyl	70%		45-11	.8%	
1718-51-0	Terphenyl-d14	78 %		46-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

NJ

Page 1 of 1

Client Sample ID: C4

Lab Sample ID: F39990-6

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8270C BY SIM SW846 3510C

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

Analyzed

04/19/06

Prep Date 04/14/06

Prep Batch

Analytical Batch

Run #1 Run #2

OP16311

SW1493

Initial Volume 800 ml

File ID

W028453.D

Final Volume 1.0 ml

Run #1

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.3	0.63	ug/l	
208-96-8	Acenaphthylene	ND	1.3	0.63	ug/l	
120-12-7	Anthracene	ND	1.3	0.63	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.25	0.063	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.25	0.13	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.25	0.063	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.25	0.13	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.25	0.13	ug/l	
218-01-9	Chrysene	ND	0.25	0.13	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.25	0.063	ug/l	
206-44-0	Fluoranthene	ND	1.3	0.31	ug/l	
86-73-7	Fluorene	ND	1.3	0.31	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25	0.063	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.3	0.31	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.3	0.31	ug/l	
91-20-3	Naphthalene	ND	1.3	0.31	ug/l	
85-01-8	Phenanthrene	ND	1.3	0.63	ug/l	
129-00-0	Pyrene	ND	1.3	0.31	ug/l	

ND = Not detected.

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

MRE

Page 1 of 2

Client Sample ID: 48MW4 Lab Sample ID:

F39990-7

AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Prep Date

04/14/06

Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/18/06

Prep Batch OP16306

Analytical Batch SR99

Run #1 Run #2

Initial Volume

R02149.D

File ID

Final Volume

Run #1 860 ml 1.0 ml

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	29	12	ug/l	
95-57-8	2-Chlorophenol	ND	5.8	2.3	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.8	2.3	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.8	2.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.8	2.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	29	12	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	12	5.8	ug/l	
95-48-7	2-Methylphenol	ND	5.8	2.3	ug/l	
	3&4-Methylphenol	ND	5.8	2.3	ug/l	
88-75-5	2-Nitrophenol	ND	5.8	2.3	ug/l	
100-02-7	4-Nitrophenol	ND	29	12	ug/l	
87-86-5	Pentachlorophenol	ND	29	12	ug/l	
108-95-2	Phenol	ND	5.8	2.3	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.8	2.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.8	2.3	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.8	1.2	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.8	2.3	ug/l	
100-51-6	Benzyl Alcohol	ND	5.8	1.2	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.8	1.2	ug/l	
106-47-8	4-Chloroaniline	ND	12	4.7	ug/l	
86-74-8	Carbazole	ND	5.8	1.2	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.8	1.2	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.8	2.3	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.8	1.2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.8	1.2	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.8	1.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.8	1.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.8	1.2	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.8	2.3	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.8	2.3	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	12	5.8	ug/l	
132-64-9	Dibenzofuran	ND	5.8	1.2	ug/l	
					U	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW4

Lab Sample ID:

F39990-7

AQ - Ground Water

Date Sampled: 04/11/06

Date Received: 04/13/06

Matrix: Method: Project:

SW846 8270C SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.8	2.3	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.8	2.9	ug/l	
84-66-2	Diethyl phthalate	ND	5.8	2.3	ug/l	
131-11-3	Dimethyl phthalate	ND	5.8	2.3	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.8	2.9	ug/l	
118-74-1	Hexachlorobenzene	ND	5.8	1.2	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.8	2.3	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.8	2.3	ug/l	
67-72-1	Hexachloroethane	ND	5.8	2.3	ug/l	
78-59-1	Isophorone	ND	5.8	1.2	ug/l	
88-74-4	2-Nitroaniline	ND	12	4.7	ug/l	
99-09-2	3-Nitroaniline	ND	12	4.7	ug/l	
100-01-6	4-Nitroaniline	ND	12	4.7	ug/l	
98-95-3	Nitrobenzene	ND	5.8	1.2	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.8	2.3	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.8	2.3	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.8	1.2	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	35%		19-90	1%	
4165-62-2	Phenol-d5	20%		10-68	8%	
118-79-6	2,4,6-Tribromophenol	88%		36-13	7%	
4165-60-0	Nitrobenzene-d5	71%		49-11	9%	
321-60-8	2-Fluorobiphenyl	77%		45-11	8%	
1718-51-0	Terphenyl-d14	81%		46-13	5%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW4 Lab Sample ID: F39990-7

Matrix: Method: Project:

AQ - Ground Water

SW846 8270C BY SIM SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59 Date Sampled: 04/11/06

Date Received: 04/13/06

Percent Solids: n/a

File ID DF Analyzed Ву **Prep Date** Prep Batch **Analytical Batch** Run #1 W028454.D 1 04/19/06 NJ 04/14/06 OP16311 SW1493

Run #2

Initial Volume Final Volume 860 ml 1.0 ml

Run #1 Run #2

BN PAH List

Compound	Result	RL	MDL	Units	Q
Acenaphthene	ND	1.2	0.58	110/1	
Acenaphthylene	ND	1.2			
Anthracene	ND				
Benzo(a)anthracene	ND				
		_			
	—				•
			-		
1-Methylnanhthalana					
		1.2	0.29	ug/l	
-	ND	1.2	0.29	ug/l	
Phenanthrene	ND	1.2	0.58		
Pyrene	ND	1.2	0.29		
	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	Acenaphthene ND Acenaphthylene ND Anthracene ND Benzo(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(g,h,i)perylene ND Benzo(k)fluoranthene ND Chrysene ND Dibenzo(a,h)anthracene ND Fluoranthene ND Fluorene ND Indeno(1,2,3-cd)pyrene ND 1-Methylnaphthalene ND Naphthalene ND Naphthalene ND Phenanthrene ND	Acenaphthene ND 1.2 Acenaphthylene ND 1.2 Anthracene ND 1.2 Benzo(a)anthracene ND 0.23 Benzo(a)pyrene ND 0.23 Benzo(b)fluoranthene ND 0.23 Benzo(g,h,i)perylene ND 0.23 Benzo(k)fluoranthene ND 0.23 Chrysene ND 0.23 Dibenzo(a,h)anthracene ND 0.23 Fluoranthene ND 1.2 Indeno(1,2,3-cd)pyrene ND 0.23 1-Methylnaphthalene ND 1.2 Naphthalene ND 1.2 Phenanthrene ND 1.2	Acenaphthene ND 1.2 0.58 Acenaphthylene ND 1.2 0.58 Anthracene ND 1.2 0.58 Benzo(a)anthracene ND 0.23 0.058 Benzo(a)pyrene ND 0.23 0.12 Benzo(b)fluoranthene ND 0.23 0.12 Benzo(g,h,i)perylene ND 0.23 0.12 Benzo(k)fluoranthene ND 0.23 0.12 Chrysene ND 0.23 0.12 Dibenzo(a,h)anthracene ND 0.23 0.058 Fluoranthene ND 1.2 0.29 Fluorene ND 1.2 0.29 Indeno(1,2,3-cd)pyrene ND 0.23 0.058 1-Methylnaphthalene ND 1.2 0.29 Naphthalene ND 1.2 0.29 Phenanthrene ND 1.2 0.29	Acenaphthene ND 1.2 0.58 ug/l Acenaphthylene ND 1.2 0.58 ug/l Anthracene ND 1.2 0.58 ug/l Benzo(a)anthracene ND 0.23 0.058 ug/l Benzo(a)pyrene ND 0.23 0.12 ug/l Benzo(b)fluoranthene ND 0.23 0.12 ug/l Benzo(g,h,i)perylene ND 0.23 0.12 ug/l Benzo(k)fluoranthene ND 0.23 0.12 ug/l Chrysene ND 0.23 0.12 ug/l Dibenzo(a,h)anthracene ND 0.23 0.058 ug/l Fluoranthene ND 1.2 0.29 ug/l Indeno(1,2,3-cd)pyrene ND 1.2 0.29 ug/l I-Methylnaphthalene ND 1.2 0.29 ug/l Naphthalene ND 1.2 0.29 ug/l Naphthalene ND 1.2 0.29

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 13MW1 Lab Sample ID:

F39990-9

Date Sampled: 04/12/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Analytical Batch

Run #1 Run #2 File ID R02151.D

04/18/06

Analyzed

Prep Date By **MRE** 04/14/06

OP16306

SR99

Initial Volume

Final Volume

800 ml

1.0 ml

Run #1 Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	31	13	ug/l	
95-57-8	2-Chlorophenol	ND	6.3	2.5	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	6.3	2.5	ug/l	
120-83-2	2,4-Dichlorophenol	ND	6.3	2.5	ug/l	
105-67-9	2,4-Dimethylphenol	ND	6.3	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	31	13	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	13	6.3	ug/l	
95-48-7	2-Methylphenol	ND	6.3	2.5	ug/l	
	3&4-Methylphenol	ND	6.3	2.5	ug/l	
88-75-5	2-Nitrophenol	ND	6.3	2.5	ug/l	
100-02-7	4-Nitrophenol	ND	31	13	ug/l	
87-86-5	Pentachlorophenol	ND	31	13	ug/l	
108-95-2	Phenol	ND	6.3	2.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	6.3	2.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	6.3	2.5	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	6.3	1.3	ug/l	
85-68-7	Butyl benzyl phthalate	ND	6.3	2.5	ug/l	
100-51-6	Benzyl Alcohol	ND	6.3	1.3	ug/l	
91-58-7	2-Chloronaphthalene	ND	6.3	1.3	ug/l	
106-47-8	4-Chloroaniline	ND	13	5.0	ug/l	
86-74-8	Carbazole	ND	6.3	1.3	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	6.3	1.3	ug/l	,
111-44-4	bis(2-Chloroethyl)ether	ND	6.3	2.5	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	6.3	1.3	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	6.3	1.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	6.3	1.3	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	6.3	1.3	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	6.3	1.3	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	6.3	2.5	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	6.3	2.5	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	13	6.3	ug/l	
132-64-9	Dibenzofuran	ND	6.3	1.3	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 13MW1 Lab Sample ID: F39990-9

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	6.3	2.5	ug/l	
117-84-0	Di-n-octyl phthalate	ND	6.3	3.1	ug/l	
84-66-2	Diethyl phthalate	ND	6.3	2.5	ug/l	
131-11-3	Dimethyl phthalate	ND	6.3	2.5	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	6.3	3.1	ug/l	
118-74-1	Hexachlorobenzene	ND	6.3	1.3	ug/l	
87-68-3	Hexachlorobutadiene	ND	6.3	2.5	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	6.3	2.5	ug/l	
67-72-1	Hexachloroethane	ND	6.3	2.5	ug/l	
78-59-1	Isophorone	ND	6.3	1.3	ug/l	
88-74-4	2-Nitroaniline	ND	13	5.0	ug/l	
99-09-2	3-Nitroaniline	ND	13	5.0	ug/l	
100-01-6	4-Nitroaniline	ND	13	5.0	ug/l	
98-95-3	Nitrobenzene	ND	6.3	1.3	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	6.3	2.5	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	6.3	2.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	6.3	1.3	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
367-12-4	2-Fluorophenol	48%		19-9	0%	
4165-62-2	Phenol-d5	29%		8%		
118-79-6	2,4,6-Tribromophenol	90%	36-137%			
4165-60-0	Nitrobenzene-d5	75 %		49-13	19%	
321-60-8	2-Fluorobiphenyl	82%		45-1		
1718-51-0	Terphenyl-d14	81%		46-13	35%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

NI

Page 1 of 1

Client Sample ID: 13MW1 Lab Sample ID:

F39990-9

AQ - Ground Water

Date Sampled: 04/12/06

Matrix:

DF

1

Date Received: 04/13/06

Method:

SW846 8270C BY SIM SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/19/06

Prep Date

04/14/06

Prep Batch OP16311

Analytical Batch SW1493

Run #1 Run #2

Initial Volume 800 ml

File ID

W028456.D

Fluorene

Naphthalene

Phenanthrene

Pyrene

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

2-Methylnaphthalene

Final Volume 1.0 ml

Run #1 Run #2

86-73-7

193-39-5

90-12-0

91-57-6

91-20-3

85-01-8

129-00-0

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.3	0.63	ug/l	
208-96-8	Acenaphthylene	ND	1.3	0.63	ug/l	
120-12-7	Anthracene	ND	1.3	0.63	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.25	0.063	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.25	0.13	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.25	0.063	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.25	0.13	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.25	0.13	ug/l	
218-01-9	Chrysene	ND	0.25	0.13	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.25	0.063	ug/l	
206-44-0	Fluoranthene	ND	1.3	0.31	110/1	

ND

ND

ND

ND

ND

ND

ND

1.3

0.25

1.3

1.3

1.3

1.3

1.3

0.31

0.063

0.31

0.31

0.31

0.63

0.31

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

MRE

Page 1 of 2

Client Sample ID: TM13MW1 Lab Sample ID: F39990-10

Matrix: Method: AQ - Ground Water

1

SW846 8270C SW846 3510C

Date Received: 04/13/06

Prep Date

04/14/06

Date Sampled: 04/12/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

DF Analyzed

04/18/06

Prep Batch OP16306

Analytical Batch SR99

Run #1 Run #2

Initial Volume

R02155.D

File ID

Final Volume

900 ml Run #1

1.0 ml

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.4	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 2 of 2

Client Sample ID: TM13MW1 Lab Sample ID:

F39990-10

AQ - Ground Water

Date Sampled: 04/12/06 Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q	
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ua/i		
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l ug/l		
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l		
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l ug/l		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/I ug/I		
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l ug/l		
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l		
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l		
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l		
78-59-1	Isophorone	ND	5.6	1.1	ug/l		
88-74-4	2-Nitroaniline	ND	11	4.4	ug/l		
99-09-2	3-Nitroaniline	ND	11	4.4	ug/l		
100-01-6	4-Nitroaniline	ND	11	4.4	ug/l		
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l		
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	ın# 2 Limits			
367-12-4	2-Fluorophenol	41%		19-90	0%		
4165-62-2	Phenol-d5	25%	10-68%				
118-79-6	2,4,6-Tribromophenol	87%	36-137%				
4165-60-0	Nitrobenzene-d5	68%	49-119%				
321-60-8	2-Fluorobiphenyl	7 5%		45-11			
1718-51-0	Terphenyl-d14	86%		46-13			
					-		

 $ND \,=\, Not\; detected$

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: TM13MW1 Lab Sample ID:

F39990-10

AQ - Ground Water

Date Sampled: 04/12/06

Matrix: Method:

SW846 8270C BY SIM SW846 3510C

Date Received: 04/13/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

File ID W028459.D DF Analyzed 04/19/06 1

ByNJ Prep Date 04/14/06

Prep Batch OP16311

Analytical Batch SW1493

Run #1 Run #2

Initial Volume Final Volume

Run #1 800 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.3	0.63	ug/l	
208-96-8	Acenaphthylene	ND	1.3	0.63	ug/l	
120-12-7	Anthracene	ND	1.3	0.63	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.25	0.063	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.25	0.13	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.25	0.063	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.25	0.13	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.25	0.13	ug/l	
218-01-9	Chrysene	ND	0.25	0.13	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.25	0.063	ug/l	
206-44-0	Fluoranthene	ND	1.3	0.31	ug/l	
86-73-7	Fluorene	ND	1.3	0.31	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.25	0.063	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.3	0.31	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.3	0.31	ug/l	
91-20-3	Naphthalene	ND	1.3	0.31	ug/l	
85-01-8	Phenanthrene	ND	1.3	0.63	ug/l	
129-00-0	Pyrene	ND	1.3	0.31	ug/l	
	•				~~ -	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 2

Client Sample ID: 13MW2 Lab Sample ID: F39990-11

Matrix:

AQ - Ground Water

Date Received: 04/13/06

Date Sampled: 04/12/06

Method: Project:

SW846 8270C SW846 3510C

Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed By Prep Date Prep Batch

Run #1 Run #2 File ID R02152.D

DF 1 04/18/06

MRE 04/14/06

OP16306

Analytical Batch SR99

Initial Volume 900 ml

Final Volume

Run #1 Run #2

O 4 O 37

1.0 ml

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.4	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	
					~	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 13MW2 Lab Sample ID:

F39990-11

Date Sampled: 04/12/06

Matrix: Method: AQ - Ground Water SW846 8270C SW846 3510C

Date Received: 04/13/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	· Q
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l	
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/l	
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l	
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l	
78-59-1	Isophorone	ND	5.6	1.1	ug/l	
88-74-4	2-Nitroaniline	ND	11	4.4	ug/l	
99-09-2	3-Nitroaniline	ND	11	4.4	ug/l	
100-01-6	4-Nitroaniline	ND	11	4.4	ug/l	
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	45%		19-90	0%	
4165-62-2	Phenol-d5	26%		10-68	3%	
118-79-6	2,4,6-Tribromophenol	90%		36-13	37%	
4165-60-0	Nitrobenzene-d5	75 %		49-11	19%	
321-60-8	2-Fluorobiphenyl	83%		45-11		
1718-51-0	Terphenyl-d14	80%		46-13	85%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 13MW2

Lab Sample ID:

F39990-11

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270C BY SIM SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59 Date Sampled: 04/12/06

Date Received: 04/13/06

Percent Solids: n/a

Run #1	File ID W028460.D	DF 1	Analyzed 04/19/06	By NI	Prep Date 04/14/06	Prep Batch	Analytical Batch	=
Run #2	W020400.D	1	04/19/00	NJ	04/14/06	OP16311	SW1493	

Initial Volume Final Volume Run #1 900 ml 1.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.1	0.56	ug/l	
208-96-8	Acenaphthylene	NĐ	1.1	0.56	ug/l	
120-12-7	Anthracene	ND	1.1	0.56	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.22	0.056	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.22	0.11	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.22	0.056	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.22	0.11	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.22	0.11	ug/l	
218-01-9	Chrysene	ND	0.22	0.11	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.22	0.056	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.28	ug/l	
86-73-7	Fluorene	ND	1.1	0.28	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.22	0.056	ug/l ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.28	ug/l ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l ug/l	
85-01-8	Phenanthrene	ND	1.1	0.56		
129-00-0	Pyrene	ND	1.1	0.30	ug/l	
	•	- 1	1.1	0.40	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: C1

Lab Sample ID:

F39990-12

Matrix:

AQ - Ground Water

Method:

1

SW846 8270C SW846 3510C

Date Sampled: 04/12/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1 Run #2

File ID R02174.D DF Analyzed 04/19/06

By **MRE** Prep Date 04/14/06

Prep Batch OP16306

Analytical Batch

SR100

Initial Volume Run #1 850 ml

Final Volume

1.0 ml

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	29	12	ug/l	
95-57-8	2-Chlorophenol	ND	5.9	2.4	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.9	2.4	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.9	2.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.9	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	29	12	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	12	5.9	ug/l	
95-48-7	2-Methylphenol	ND	5.9	2.4	ug/l	
	3&4-Methylphenol	ND	5.9	2.4	ug/l	
88-75-5	2-Nitrophenol	ND	5.9	2.4	ug/l	
100-02-7	4-Nitrophenol	ND	29	12	ug/l	
87-86-5	Pentachlorophenol	ND	29	12	ug/l	
108-95-2	Phenol	ND	5.9	2.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.9	2.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.9	2.4	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.9	1.2	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.9	2.4	ug/l	
100-51-6	Benzyl Alcohol	ND	5.9	1.2	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.9	1.2	ug/l	
106-47-8	4-Chloroaniline	ND	12	4.7	ug/l	
86-74-8	Carbazole	ND	5.9	1.2	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.9	1.2	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.9	2.4	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.9	1.2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.9	1.2	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.9	1.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.9	1.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.9	1.2	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.9	2.4	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.9	2.4	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	12	5.9	ug/l	
132-64-9	Dibenzofuran	ND	5.9	1.2	ug/l	
			0.0	٠. ۵	ug/I	

MDL - Method Detection Limit

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: C1

Lab Sample ID:

F39990-12

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270C SW846 3510C

Radford AAP; SWMU 48, 49, 50, 51 & 59

Date Sampled: 04/12/06

Date Received: 04/13/06

Percent Solids: n/a

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.9	2.4	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.9	2.9	ug/l	
84-66-2	Diethyl phthalate	ND	5.9	2.4	ug/l	
131-11-3	Dimethyl phthalate	ND	5.9	2.4	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.9	2.9	ug/l	
118-74-1	Hexachlorobenzene	ND	5.9	1.2	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.9	2.4	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.9	2.4	ug/l	
67-72-1	Hexachloroethane	ND	5.9	2.4	ug/l	
78-59-1	Isophorone	ND	5.9	1.2	ug/l	
88-74-4	2-Nitroaniline	ND	12	4.7	ug/l	
99-09-2	3-Nitroaniline	ND	12	4.7	ug/l	
100-01-6	4-Nitroaniline	ND	12	4.7	ug/l	
98-95-3	Nitrobenzene	ND	5.9	1.2	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.9	2.4	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.9	2.4	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.9	1.2	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	51%		19-90)%	
4165-62-2	Phenol-d5	30%		10-68	3%	
118-79-6	2,4,6-Tribromophenol	95%		36-13	37%	
4165-60-0	Nitrobenzene-d5	77%		49-11	9%	
321-60-8	2-Fluorobiphenyl	85%		45-11	-	
1718-51-0	Terphenyl-d14	89%		46-13	55 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: C1

Lab Sample ID: Matrix:

F39990-12

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06

Method: Project:

SW846 8270C BY SIM SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

Run #1

File ID W028476.D DF

Analyzed 04/20/06

By NJ **Prep Date** 04/14/06

Prep Batch OP16311

Analytical Batch

SW1494

Run #2

Initial Volume 850 ml

Final Volume

Run #1

1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.2	0.59	ug/l	
208-96-8	Acenaphthylene	ND	1.2	0.59	ug/l	
120-12-7	Anthracene	ND	1.2	0.59	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.24	0.059	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.24	0.12	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.24	0.059	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.24	0.12	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.24	0.12	ug/l	
218-01-9	Chrysene	ND	0.24	0.12	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.24	0.059	ug/l	
206-44-0	Fluoranthene	ND	1.2	0.29	ug/l	
86-73-7	Fluorene	ND	1.2	0.29	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.24	0.059	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.2	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.2	0.29	ug/l	
91-20-3	Naphthalene	ND	1.2	0.29	ug/l	
85-01-8	Phenanthrene	ND	1.2	0.59	ug/l	
129-00-0	Pyrene	ND	1.2	0.29	ug/l	
	-				0 -	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW1

Lab Sample ID: Matrix:

Method:

F39990-14

AQ - Ground Water

SW846 8270C SW846 3510C

Date Sampled: 04/13/06

Date Received: 04/15/06 Percent Solids: n/a

Project: Radford AAP; SWMU 48, 49, 50, 51 & 59

1

File ID DF Run #1

Analyzed By **Prep Date** Prep Batch **Analytical Batch** 04/26/06 MRE 04/18/06 OP16337 SL1611

Run #2

Initial Volume Final Volume Run #1 890 ml 1.0 ml

L031044.D

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.5	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	•
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/i	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW1 Lab Sample ID:

F39990-14

AQ - Ground Water

Date Sampled: 04/13/06 Date Received: 04/15/06

Method: SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l	
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/l	
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l	
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l	
78-59-1	Isophorone	ND	5.6	1.1	ug/l	
88-74-4	2-Nitroaniline	ND	11	4.5	ug/l	
99-09-2	3-Nitroaniline	ND	11	4.5	ug/l	
100-01-6	4-Nitroaniline	ND	11	4.5	ug/l	
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	32%	•	19-9	0%	
4165-62-2	Phenol-d5	17%		10-6	3%	
118-79-6	2,4,6-Tribromophenol	64%		36-13	37%	
4165-60-0	Nitrobenzene-d5	57%		49-1	19%	
321-60-8	2-Fluorobiphenyl	62%		45-1 1	18%	
1718-51-0	Terphenyl-d14	78 %		46-13	35%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW1 Lab Sample ID:

F39990-14

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270C BY SIM SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59 Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

File ID DF Analyzed Ву **Prep Date** Prep Batch **Analytical Batch** Run #1 W028584.D 1 04/26/06 ŇĴ 04/18/06 OP16336 SW1500 Run #2

Initial Volume Final Volume 890 ml

Run #1 Run #2

1.0 ml

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.1	0.56	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.56	ug/l	
120-12-7	Anthracene	ND	1.1	0.56	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.22	0.056	-	
50-32-8	Benzo(a)pyrene	ND	0.22	0.030	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.22	0.11	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.22	0.036	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.22	0.11	ug/l	
218-01-9	Chrysene	ND ND	0.22		ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND ND	0.22	0.11	ug/l	
206-44-0	Fluoranthene	ND ND		0.056	ug/l	
86-73-7	Fluorene	ND ND	1.1	0.28	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene		1.1	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	0.22	0.056	ug/l	
91-57-6		ND	1.1	0.28	ug/l	
91-20-3	2-Methylnaphthalene	ND	1.1	0.28	ug/l	
85-01-8	Naphthalene	ND	1.1	0.28	ug/l	
-	Phenanthrene	ND	1.1	0.56	ug/l	
129-00-0	Pyrene	ND	1.1	0.28	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Form I COM

Report of Analysis

Page 1 of 2

Client Sample ID: TM48MW1

Lab Sample ID:

Matrix:

F39990-15 AQ - Ground Water

Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

Method: Project:

SW846 8270C SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Analytical Batch

Run #1 Run #2

File ID L031045.D

Analyzed 04/26/06

By **Prep Date** MRE 04/18/06

Prep Batch OP16337

SL1611

Initial Volume 850 ml

Final Volume

Run #1 Run #2

1.0 ml

DF

1

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	29	12	ug/l	
95-57-8	2-Chlorophenol	ND	5.9	2.4	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.9	2.4	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.9	2.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.9	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	29	12	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	12	5.9	ug/l	
95-48-7	2-Methylphenol	ND	5.9	2.4	ug/l	
	3&4-Methylphenol	ND	5.9	2.4	ug/l	
88-75-5	2-Nitrophenol	ND	5.9	2.4	ug/l	
100-02-7	4-Nitrophenol	ND	29	12	ug/l	
87-86-5	Pentachlorophenol	ND	29	12	ug/l	
108-95-2	Phenol	ND	5.9	2.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.9	2.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.9	2.4	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.9	1.2	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.9	2.4	ug/l	
100-51-6	Benzyl Alcohol	ND	5.9	1.2	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.9	1.2	ug/l	
106-47-8	4-Chloroaniline	ND	12	4.7	ug/l	
86-74-8	Carbazole	ND	5.9	1.2	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.9	1.2	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.9	2.4	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.9	1.2	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.9	1.2	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.9	1.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.9	1.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.9	1.2	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.9	2.4	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.9	2.4	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	12	5.9	ug/l	
132-64-9	Dibenzofuran	ND	5.9	1.2	ug/l	
			0.0	٠. ۵	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: TM48MW1 Lab Sample ID:

F39990-15 AQ - Ground Water

Date Sampled: 04/13/06 Date Received: 04/15/06

Matrix: Method:

SW846 8270C SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

Project:

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.9	2.4	110r/l	
117-84-0	Di-n-octyl phthalate	ND	5.9	2.9	ug/l ug/l	
84-66-2	Diethyl phthalate	ND	5.9	2.4	ug/l ug/l	
131-11-3	Dimethyl phthalate	ND	5.9	2.4	ug/l ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.9	2.9	ug/l ug/l	
118-74-1	Hexachlorobenzene	ND	5.9	1.2	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.9	2.4	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.9	2.4	ug/l	
67-72-1	Hexachloroethane	ND	5.9	2.4	ug/l	
78-59-1	Isophorone	ND	5.9	1.2	ug/l	
88-74-4	2-Nitroaniline	ND	12	4.7	ug/l	
99-09-2	3-Nitroaniline	ND	12	4.7	ug/l	
100-01-6	4-Nitroaniline	ND	12	4.7	ug/l	
98-95-3	Nitrobenzene	ND	5.9	1.2	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.9	2.4	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.9	2.4	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.9	1.2	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	33%		19-90	1%	
4165-62-2	Phenol-d5	18%		10-68		
118-79-6	2,4,6-Tribromophenol	65%		36-13		
4165-60-0	Nitrobenzene-d5	56%		49-11		
321-60-8	2-Fluorobiphenyl	63%		45-11		
1718-51-0	Terphenyl-d14	79%		46-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: TM48MW1 Lab Sample ID:

F39990-15

AQ - Ground Water

Date Sampled: 04/13/06

Matrix: Method:

SW846 8270C BY SIM SW846 3510C

Date Received: 04/15/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

File ID W028585.D Analyzed 04/26/06

By **Prep Date** ŇĴ 04/18/06

Prep Batch OP16336

Analytical Batch SW1500

Run #1 Run #2

Initial Volume Final Volume

DF

1

Run #1

850 ml

1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.2	0.59	ug/l	
208-96-8	Acenaphthylene	ND	1.2	0.59	ug/l	
120-12-7	Anthracene	ND	1.2	0.59	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.24	0.059	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.24	0.12	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.24	0.059	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.24	0.12	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.24	0.12	ug/l	
218-01-9	Chrysene	ND	0.24	0.12	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.24	0.059	ug/l	
206-44-0	Fluoranthene	ND	1.2	0.29	ug/l	
86-73-7	Fluorene	ND	1.2	0.29	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.24	0.059	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.2	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.2	0.29	ug/l	
91-20-3	Naphthalene	ND	1.2	0.29	ug/l	
85-01-8	Phenanthrene	ND	1.2	0.59	ug/l	
129-00-0	Pyrene	ND	1.2	0.29	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW2

Lab Sample ID: Matrix:

Method:

F39990-16

AQ - Ground Water

SW846 8270C SW846 3510C

Date Sampled: 04/13/06 Date Received: 04/15/06

Percent Solids: n/a

Project: Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 L031046.D 1 04/26/06 MRE 04/18/06 OP16337 SL1611 Run #2

Initial Volume Final Volume Run #1 630 ml 1.0 ml Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	40	16	ug/l	
95-57-8	2-Chlorophenol	ND	7.9	3.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	7.9	3.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	7.9	3.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	7.9	3.2	ug/l ug/l	
51-28-5	2,4-Dinitrophenol	ND	40	16	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	16	7.9	ug/l	
95-48-7	2-Methylphenol	ND	7.9	3.2	ug/l	
	3&4-Methylphenol	ND	7.9	3.2	ug/l	
88-75-5	2-Nitrophenol	ND	7.9	3.2	ug/l	
100-02-7	4-Nitrophenol	ND	40	16	ug/l	
87-86-5	Pentachlorophenol	ND	40	16	ug/l	
108-95-2	Phenol	ND	7.9	3.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	7.9	3.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	7.9	3.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	7.9	1.6	ug/l	
85-68-7	Butyl benzyl phthalate	ND	7.9	3.2	ug/l	
100-51-6	Benzyl Alcohol	ND	7.9	1.6	ug/l	
91-58-7	2-Chloronaphthalene	ND	7.9	1.6	ug/l	
106-47-8	4-Chloroaniline	ND	16	6.3	ug/l	
86-74-8	Carbazole	ND	7.9	1.6	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	7.9	1.6	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	7.9	3.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	7.9	1.6	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	7.9	1.6	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	7.9	1.6	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	7.9	1.6	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	7.9	1.6	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	7.9	3.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	7.9	3.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	16	7.9	ug/l	
132-64-9	Dibenzofuran	ND	7.9	1.6	ug/l	
				2.0	ug/1	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW2

Lab Sample ID: Matrix:

F39990-16

AQ - Ground Water

Date Sampled: 04/13/06 Date Received: 04/15/06

Method: Project:

SW846 8270C SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q	
84-74-2	Di-n-butyl phthalate	ND	7.9	3.2	ug/l		
117-84-0	Di-n-octyl phthalate	ND	7.9	4.0	ug/l		
84-66-2	Diethyl phthalate	ND	7.9	3.2	ug/l		
131-11-3	Dimethyl phthalate	ND	7.9	3.2	ug/l		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	7.9	4.0	ug/l		
118-74-1	Hexachlorobenzene	ND	7.9	1.6	ug/l		
87-68-3	Hexachlorobutadiene	ND	7.9	3.2	ug/l		
77-47-4	Hexachlorocyclopentadiene	ND	7.9	3.2	ug/l		
67-72-1	Hexachloroethane	ND	7.9	3.2	ug/l		
78-59-1	Isophorone	ND	7.9	1.6	ug/l		
88-74-4	2-Nitroaniline	ND	16	6.3	ug/l		
99-09-2	3-Nitroaniline	ND	16	6.3	ug/l		
100-01-6	4-Nitroaniline	ND	16	6.3	ug/l		
98-95-3	Nitrobenzene	ND	7.9	1.6	ug/l		
621-64-7	N-Nitroso-di-n-propylamine	ND	7.9	3.2	ug/l		
86-30-6	N-Nitrosodiphenylamine	ND	7.9	3.2	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	7.9	1.6	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
367-12-4	2-Fluorophenol	26%		19-90)%		
4165-62-2	Phenol-d5	15%		10-68	3%		
118-79-6	2,4,6-Tribromophenol	64%		36-13	7%		
4165-60-0	Nitrobenzene-d5	60%		49-11	9%		
321-60-8	2-Fluorobiphenyl	68%					
1718-51-0	Terphenyl-d14	81%	45-118% 46-135%				

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW2

630 ml

Lab Sample ID:

F39990-16

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8270C BY SIM SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59 Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch Analytical Batch Run #1 W028586.D 1 04/26/06 NJ 04/18/06 OP16336 SW1500 Run #2

Initial Volume Final Volume

Run #1

1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.6	0.79	ug/l	
208-96-8	Acenaphthylene	ND	1.6	0.79	ug/l	
120-12-7	Anthracene	ND	1.6	0.79	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.32	0.079	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.32	0.16	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.32	0.079	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.32	0.16	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.32	0.16	ug/l	
218-01-9	Chrysene	ND	0.32	0.16	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.32	0.079	ug/l	
206-44-0	Fluoranthene	ND	1.6	0.40	ug/l	
86-73-7	Fluorene	ND	1.6	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.32	0.079	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.6	0.40	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.6	0.40	ug/l	
91-20-3	Naphthalene	ND	1.6	0.40	ug/l	
85-01-8	Phenanthrene	ND	1.6	0.79	ug/l	
129-00-0	Pyrene	ND	1.6	0.40	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW3 Lab Sample ID:

Matrix: Method: F39990-17 AQ - Ground Water

SW846 8270C SW846 3510C

Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1 Run #2 ^a	File ID L031047.D R02355.D	DF 1 1	Analyzed 04/26/06 04/27/06	By MRE NJ	Prep Date 04/18/06 04/18/06	Prep Batch OP16337 OP16337	Analytical Batch SL1611 SR109
-------------------------------	----------------------------------	--------------	----------------------------------	-----------------	-----------------------------------	----------------------------------	-------------------------------------

	Initial Volume	Final Volume
Run #1	920 ml	1.0 ml
Run #2	920 ml	1.0 ml

ABN TCL List w/o PAHs

CAS No.	Compound	Res	ult	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	UL	27	11	ug/l	
95-57-8	2-Chlorophenol	ND	VL	5.4	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	UL	5.4	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	VL	5.4	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	VL	5.4	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	UL	27	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND		11	5.4	ug/l	
95-48-7	2-Methylphenol	ND	VL	5.4	2.2	ug/l	
	3&4-Methylphenol	ND	UL	5.4	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	VL	5.4	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	UL	27	11	ug/l	
87-86-5	Pentachlorophenol	ND	UL	27	11	ug/l	
108-95-2	Phenol	ND	UL	5.4	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	UL	5.4	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	VL	5.4	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	UL	5.4	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	VL	5.4	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	UL	5.4	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	VL	5.4	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	VL	11	4.3	ug/l	
86-74-8	Carbazole	ND	VL	5.4	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	VL	5.4	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	UL	5.4	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	UL	5.4	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	VL	5.4	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	VL	5.4	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	VL	5.4	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	VL	5.4	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	VL	5.4	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	UL	5.4	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	VL	11	5.4	ug/l	
132-64-9	Dibenzofuran	ND	VL	5.4	1.1	ug/l	

MDL - Method Detection Limit

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW3 Lab Sample ID: F39990-17

Matrix:

AQ - Ground Water

Date Sampled: 04/13/06 Date Received: 04/15/06

Method: Project:

SW846 8270C SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

ABN TCL List w/o PAHs

CAS No.	Compound	Resu	ılt	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	VL	5.4	2.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	VL	5.4	2.7	ug/l	
84-66-2	Diethyl phthalate	ND	VL	5.4	2.2	ug/l	
131-11-3	Dimethyl phthalate	ND	VL	5.4	2.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	VL	5.4	2.7	ug/l	
118-74-1	Hexachlorobenzene	ND	VL	5.4	1.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	VL	5.4	2.2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	UL	5.4	2.2	ug/l	
67-72-1	Hexachloroethane	ND	VL	5.4	2.2	ug/l	
78-59-1	Isophorone	ND	VL	5.4	1.1	ug/l	
88-74-4	2-Nitroaniline	ND	VL	11	4.3	ug/l	
99-09-2	3-Nitroaniline	ND	UL	11	4.3	ug/l	
100-01-6	4-Nitroaniline	ND	VL	11	4.3	ug/l	
98-95-3	Nitrobenzene	ND	VL	5.4	1.1	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	VL	5.4	2.2	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	VL	5.4	2.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	VL	5.4	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run	‡ 1	Run# 2	Limit	ts	
367-12-4	2-Fluorophenol	16%	b	18%	19-90	1%	
4165-62-2	Phenol-d5	9%		12%	10-68	%	
118-79-6	2,4,6-Tribromophenol	70%		81%	36-13	7%	
4165-60-0	Nitrobenzene-d5	60%		65%	49-11	9%	
321-60-8	2-Fluorobiphenyl	68%		71%	45-11	8%	
1718-51-0	Terphenyl-d14	75%		74%	46-13	5%	

⁽a) Confirmation run.

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

⁽b) Confirmed by reanalysis. Insufficient sample for re-extraction.

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW3 Lab Sample ID:

F39990-17

Date Sampled: 04/13/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/15/06

Method:

SW846 8270C BY SIM SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Analytical Batch

Run #1 Run #2 File ID W028587.D Analyzed 04/26/06

Ву NI

Prep Date 04/18/06

OP16336

SW1500

Initial Volume Final Volume

Run #1 920 ml 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND VL	1.1	0.54	ug/l	
208-96-8	Acenaphthylene	ND VL	1.1	0.54	ug/l	
120-12-7	Anthracene	ND VL	1.1	0.54	ug/l	
56-55-3	Benzo(a)anthracene	ND VL	0.22	0.054	ug/l	
50-32-8	Benzo(a)pyrene	ND VL	0.22	0.11	ug/l	
205-99-2	Benzo(b)fluoranthene	ND VL	0.22	0.054	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND VL	0.22	0.11	ug/l	
207-08-9	Benzo(k)fluoranthene	ND VL	0.22	0.11	ug/l	
218-01-9	Chrysene	ND VL	0.22	0.11	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND VL	0.22	0.054	ug/l	
206-44-0	Fluoranthene	ND VL	1.1	0.27	ug/l	
86-73-7	Fluorene	ND VL	1.1	0.27	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND VL	0.22	0.054	ug/l	
90-12-0	1-Methylnaphthalene	ND VL	1.1	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND VL	1.1	0.27	ug/l	
91-20-3	Naphthalene	ND VL	1.1	0.27	ug/l	
85-01-8	Phenanthrene	ND VL	1.1	0.54	ug/l	
129-00-0	Pyrene	ND VL		0.27	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

MRE

Page 1 of 2

Client Sample ID: 041206R Lab Sample ID:

F39990-8

AQ - Ground Water

Date Sampled: 04/12/06

Prep Date

04/14/06

Date Received: 04/13/06

Matrix: Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/18/06

Prep Batch OP16306

Analytical Batch SR99

Run #1 Run #2

File ID

R02150.D

Final Volume

Initial Volume Run #1 900 ml

1.0 ml

DF

1

Run #2

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	28	11	ug/l	
95-57-8	2-Chlorophenol	ND	5.6	2.2	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	2.2	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.6	2.2	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.2	ug/l	
51-28-5	2,4-Dinitrophenol	ND	28	11	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	11	5.6	ug/l	
95-48-7	2-Methylphenol	ND	5.6	2.2	ug/l	
	3&4-Methylphenol	ND	5.6	2.2	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	2.2	ug/l	
100-02-7	4-Nitrophenol	ND	28	11	ug/l	
87-86-5	Pentachlorophenol	ND	28	11	ug/l	
108-95-2	Phenol	ND	5.6	2.2	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	2.2	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	2.2	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	5.6	1.1	ug/l	
85-68-7	Butyl benzyl phthalate	ND	5.6	2.2	ug/l	
100-51-6	Benzyl Alcohol	ND	5.6	1.1	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.6	1.1	ug/l	
106-47-8	4-Chloroaniline	ND	11	4.4	ug/l	
86-74-8	Carbazole	ND	5.6	1.1	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.6	1.1	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.6	2.2	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.6	1.1	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	5.6	1.1	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.6	1.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.6	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.6	1.1	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.6	2.2	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.6	2.2	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	11	5.6	ug/l	
132-64-9	Dibenzofuran	ND	5.6	1.1	ug/l	

MDL - Method Detection Limit

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

Report of Analysis

Page 2 of 2

Client Sample ID: 041206R

Lab Sample ID: F39990-8

Matrix:

AQ - Ground Water

Date Sampled: 04/12/06 Date Received: 04/13/06

Method:

SW846 8270C SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

ABN TCL List w/o PAHs

CAS No.	Compound	Result	RL	MDL	Units	Q
84-74-2	Di-n-butyl phthalate	ND	5.6	2.2	ug/l	
117-84-0	Di-n-octyl phthalate	ND	5.6	2.8	ug/l	
84-66-2	Diethyl phthalate	ND	5.6	2.2	ug/l	
131-11-3	Dimethyl phthalate	ND	5.6	2.2	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.6	2.8	ug/l	
118-74-1	Hexachlorobenzene	ND	5.6	1.1	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.6	2.2	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.6	2.2	ug/l	
67-72-1	Hexachloroethane	ND	5.6	2.2	ug/l	
78-59-1	Isophorone	ND	5.6	1.1	ug/l	
88-74-4	2-Nitroaniline	ND	11	4.4	ug/l	
99-09-2	3-Nitroaniline	ND -	11	4.4	ug/l	
100-01-6	4-Nitroaniline	ND	11	4.4	ug/l	
98-95-3	Nitrobenzene	ND	5.6	1.1	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	5.6	2.2	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	2.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	40%		19-90)%	
4165-62-2	Phenol-d5	24%		10-68	3%	
118-79-6	2,4,6-Tribromophenol	83%		36-13	37 %	
4165-60-0	Nitrobenzene-d5	66%		49-11	19%	
321-60-8	2-Fluorobiphenyl	73%		45-11	8%	
1718-51-0	Terphenyl-d14	82%		46-13	85%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 041206R Lab Sample ID:

F39990-8

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06 Percent Solids: n/a

Method: Project:

Matrix:

SW846 8270C BY SIM SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1

DF

Analyzed By 04/19/06 ŇĴ **Prep Date** 04/14/06

Prep Batch OP16311

Analytical Batch

SW1493

Run #2

Initial Volume Run #1 900 ml

File ID

W028455.D

Final Volume 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	RL	MDL	Units	Q
83-32-9	Acenaphthene	ND	1.1	0.56	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.56	ug/l	
120-12-7	Anthracene	ND	1.1	0.56	ug/l	
56-55-3	Benzo(a)anthracene	ND	0.22	0.056	ug/l	
50-32-8	Benzo(a)pyrene	ND	0.22	0.11	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	0.22	0.056	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	0.22	0.11	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	0.22	0.11	ug/l	
218-01-9	Chrysene	ND	0.22	0.11	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	0.22	0.056	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.28	ug/l	
86-73-7	Fluorene	ND	1.1	0.28	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.22	0.056	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-20-3	Naphthalene	ND	1.1	0.28	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.56	ug/l ug/l	
129-00-0	Pyrene	ND	1.1	0.38	ug/l ug/l	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Pesticides and PCBs

Accutest Laboratories, Inc., SDG F39990

DATE:

May 4, 2006

The purpose of this memorandum is to present the data validation report for the samples collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. Samples were analyzed for pesticides and PCBs using USEPA Method 3510C/8081A and 3510C/8082, respectively. A total of fifteen aqueous samples were validated. The sample lds are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
51MW1	F39990-1	TM13MW1	F39990-10
51MW2	F39990-2	13MW2	F39990-11
16-4	F39990-3	C1	F39990-12
28MW2	F39990-4	48MW1	F39990-14
28MW1	F39990-5	TM48MW1	F39990-15
C4	F39990-6	48MW2	F39990-16
48MW4	F39990-7	48MW3	F39990-17
13MW1	F39990-9		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, USACE Shell for Analytical Chemistry Requirements, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified		Parameter		
Yes	No			
	Х	Holding Times and Preservation		
	Х	Instrument Performance Check		
	Х	Initial Calibration		
X		Continuing Calibration		
		Blank Analysis		
	Χ	System Monitoring Compounds		
Χ		Laboratory Control Samples		
Χ		Matrix Spike/Spike Duplicate		
	Х	Field Duplicate		
Χ		Quantitation Verification		

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

5/4/06

Date

RFAAP VALIDATION REPORT PESTICIDE/PCB REVIEW SDG F39990

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For pesticides and PCB compounds in cooled (@4°C \pm 2°C) aqueous samples, the maximum holding time is 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 04/10/06, 04/11/06, 04/12/06, and 04/13/06. For samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12), the pesticides and PCBs were extracted on 04/14/06 and analyzed on 04/17/06. For samples, 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17), the pesticides and PCBs were extracted on 04/19/06 and analyzed on 04/20/06. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check (Degradation Standard)

Performance checks on the gas chromatograph with electron capture detector (GC/ECD) system are performed to ensure adequate resolution and instrument sensitivity. The performance evaluation mixture (PEM) must be analyzed at the beginning of the analytical sequence. The breakdown of Endrin and 4,4'-DDT must be $\leq 15\%$ on both columns.

- For analysis performed on 03/01/06 @09:31, endrin and 4,4'-DDT percent breakdowns were 5.1% and 2.9% on column #1 and 3.3% and 5.3% on column #2, respectively. All criteria were met. No qualifiers were applied.
- For analysis performed on 04/17/06 @09:35, endrin and 4,4'-DDT percent breakdowns were 9.1% and 2.6% on column #1 and 5.3% and 5.5% on column #2, respectively. All criteria were met. No qualifiers were applied.
- For analysis performed on 04/20/06 @11:18, endrin and 4,4'-DDT percent breakdowns were 10.5% and 3.3% on column #1 and 6.8% and 4.7% on column #2, respectively. All criteria were met. No qualifiers were applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5 point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. Calibration factors are generated for each compound. The percent relative standard deviation (%RSD) for all single peak target analytes, and aroclors 1016, 1242, 1254, and 1260 must be <20% or the mean %RSD for all analytes in the standard must be $\leq20\%$. If linear regression is used, the correlation coefficient must be ≥0.990 . All detects are qualified as estimated "J" for where there were exceeding %RSDs, and all non-detects are qualified as estimated "UJ" for where there were grossly exceeding recoveries, unless determined to be unusable "R". Grossly exceeding is defined as twice the established criteria limits.

- For the pesticide initial calibration performed on 03/01/06 on instrument ECD5, 4,4'-DDT (23.4%) was outside criteria for column #2. 4,4'-DDT (r=0.9973) was quantified for column #2 using linear regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon the high %RSD. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), C1 (F39990-12), 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this initial calibration.
- For the PCB initial calibration performed on 04/17/06 on instrument ECD3, all criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), C1 (F39990-12), 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for pesticide/PCB target compounds. Continuing calibration standards containing both target compounds and surrogates are analyzed at the beginning of each 12-hour analytical shift and after every 20 samples. The percent difference (%D) or the average %Ds for all analytes in the standard from the initial calibration should be no greater than $\pm 15\%$.

- For pesticide continuing calibration performed on 04/17/06 @10:00 on instrument ECD5, 4,4'-DDD (22.6%) and methoxychlor (23.0%) were outside criteria for column #1. All criteria were met on the column #2. 4,4'-DDD and methoxychlor were non-detect for all associated samples, therefore no qualifiers were applied based upon these outliers. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), and 48MW4 (F39990-7) were analyzed using this continuing calibration.
- For toxaphene pesticide continuing calibration performed on 04/17/06 @10:22 on instrument ECD5, all criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this continuing calibration.

- For pesticide continuing calibration performed on 04/17/06 @14:22 on instrument ECD5, 4,4'-DDE (16.2%), 4,4'-DDD (17.4%), 4,4'-DDT (15.1%), and methoxychlor (15.2%) were outside criteria for the column #1. 4,4'-DDT (20.6%) was outside criteria for column #2. 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, and methoxychlor were non-detect for all associated samples, therefore no qualifiers were applied based upon these outliers. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this continuing calibration.
- For pesticide continuing calibration performed on 04/17/06 @17:35 on instrument ECD5, alphachlordane (15.9%), dieldrin (17.3%), endosulfan sulfate (17.4%), and endrin ketone (16.3%) were outside criteria for the column #2. All criteria were met for column #1. Alpha-chlordane, dieldrin, endosulfan sulfate, and endrin ketone were non-detect for all associated samples, therefore no qualifiers were applied based upon these outliers. Samples 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this continuing calibration.
- For pesticide continuing calibration performed on 04/20/06 @11:40 on instrument ECD5, endrin (16.7%), 4,4'-DDD (21.3%), and methoxychlor (28.2%) were outside criteria for the column #1. All criteria were met for column #2. Endrin, 4,4'-DDD, and methoxychlor were non-detect for all associated samples, therefore no qualifiers were applied based upon these outliers. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this continuing calibration.
- For toxaphene pesticide continuing calibration performed on 04/20/06 @12:02 on instrument ECD5, all criteria were met. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this continuing calibration.
- For pesticide continuing calibration performed on 04/20/06 @16:04 on instrument ECD5, methoxychlor (15.9%) and endrin ketone (16.1%) were outside criteria for the column #1. Aldrin (19.6%), heptachlor epoxide (16.6%), alpha-chlordane (18.2%), endosulfan I (16.6%), dieldrin (18.9%), endosulfan II (16.8%), endrin aldehyde (18.2%), and endrin ketone (25.1%) were outside criteria for column #2. Heptachlor epoxide, alpha-chlordane, aldrin, endosulfan I, dieldrin, endosulfan II, endrin aldehyde, endrin ketone, and methoxychlor were non-detect for all associated samples, therefore no qualifiers were applied based upon these outliers. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this continuing calibration.
- For PCB 1016/1260 continuing calibration performed on 04/17/06 @17:14 on instrument ECD3, all criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this continuing calibration.
- For PCB 1016/1260 continuing calibration performed on 04/17/06 @19:00 on instrument ECD3, all criteria were met for signal #1. For signal #2, PCB1016-A (18.6%), PCB1016-B (18.2%), PCB1016-C (17.5%), PCB1016-D (21.3%), PCB1016-E (23.1%), and PCB1016-F (25.2%) with a resulting average recovery of 20.6%. For signal #2, PCB1260-A (24.3%), PCB1260-B (24.3%), PCB1260-C (23.5%), PCB1260-D (13.9%), PCB1260-E (20.7%), and PCB1260-F (18.4%) with a resulting average recovery of 20.9%. PCB 1016 and PCB 1260 were non-detect for all samples, therefore no qualifiers were applied based upon the high %Ds. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this continuing calibration.

- For PCB 1016/1260 continuing calibration performed on 04/20/06 @10:07 on instrument ECD3, all
 criteria were met. No qualifiers were applied. No samples reported were analyzed using this continuing
 calibration.
- For PCB 1016/1260 continuing calibration performed on 04/20/06 @15:49 on instrument ECD3, all criteria were met for signal #1. For signal #2, PCB1016-A (6.4%), PCB1016-B (5.9%), PCB1016-C (9.6%), PCB1016-D (12.3%), PCB1016-E (15.6%), and PCB1016-F (14.5%) with a resulting average recovery of 10.7%. For signal #2, PCB1260-A (18.7%), PCB1260-B (25.6%), PCB1260-C (17.0%), PCB1260-D (17.6%), PCB1260-E (22.1%), and PCB1260-F (26.1%) with a resulting average recovery of 21.2%. PCB 1016 and PCB 1260 were non-detect for all samples, therefore no qualifiers were applied based upon the high %Ds. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this continuing calibration.
- For PCB 1016/1260 continuing calibration performed on 04/20/06 @17:50 on instrument ECD3, all criteria were met for signal #1. For signal #2, PCB1016-A (15.4%), PCB1016-B (17.6%), PCB1016-C (13.7%), PCB1016-D (18.0%), PCB1016-E (24.9%), and PCB1016-F (24.5%) with a resulting average recovery of 19.0%. For signal #2, PCB1260-A (26.3%), PCB1260-B (26.7%), PCB1260-C (24.8%), PCB1260-D (19.6%), PCB1260-E (26.5%), and PCB1260-F (26.1%) with a resulting average recovery of 25.0%. PCB 1016 and PCB 1260 were non-detect for all samples, therefore no qualifiers were applied based upon the high %Ds. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this continuing calibration.

V-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks >MDL or >MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5X) the maximum amount for pesticide and PCB target compounds. **Table 2** summarizes the blank contamination analysis. Rinse blank 041206R (F39990-8) (low-flow pump) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Parameter	Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples
Pesticides	04/17/06	OP16309-MB	All <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
Pesticides	04/20/06	OP16347-MB	All <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
Pesticides	04/17/06	041206R	All <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
PCBs	04/17/06	OP16308-MB	All <mrl< td=""><td>NA</td><td>NA NA</td><td>None</td></mrl<>	NA	NA NA	None
PCBs	04/20/06	OP16345-MB	All <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
PCBs	04/17/06	041206R	All <mrl< td=""><td>NA</td><td>NA NA</td><td>None</td></mrl<>	NA	NA NA	None

NA = Not Applicable

MRL = Method Reporting Limit

VI-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Surrogate spikes are added to all samples and blanks to measure their recovery in sample and blank matrices. The percent recoveries (%Rs) must be within the specified control limits.

Criteria: Tetrachloro-m-xylene: Pe

Pesticides: 60-138% (USACE Shell Criteria: 50-130%)

Decachlorobiphenyl:

Pesticides: 31-148% (USACE Shell Criteria: 50-130%)

Criteria: Tetrachloro-m-xylene:

PCBs: 49-124% (USACE Shell Criteria: 50-130%)

Decachlorobiphenyl:

PCBs: 26-137% (USACE Shell Criteria: 50-130%)

• All criteria were met. No qualifiers were applied.

VII-Laboratory Control Samples

Laboratory control samples (LCS) are used to monitor laboratory accuracy by calculating the percent recoveries of the spiked compounds. All LCS percent recoveries must be within the specified control limits. USACE Shell limits for pesticides and PCBs are 50-130%; RPD≤50% (30-150%; RPD≤60% for sporadic marginal failures (SMF)).

- Sample OP16309-BS was used as the LCS for the pesticide analysis on 04/17/06. A total of 20 compounds were spiked, allowing for 2 SMF tolerances. Compound endrin aldehyde (11%) was outside USACE and SMF criteria, however within laboratory criteria. Compound endrin aldehyde was qualified estimated bias low "L" for detects and "UL" for non-detects based upon very low recovery. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.
- Sample OP16347-BS was used as the LCS for the pesticide analysis on 04/20/06. A total of 20 compounds were spiked, allowing for 2 SMF tolerances. Compound endrin aldehyde (15%) was outside USACE and SMF criteria, however within laboratory criteria. Compound endrin aldehyde was qualified estimated bias low "L" for detects and "UL" for non-detects based upon very low recovery. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.
- Sample OP16308-BS was used as the LCS for the PCB analysis on 04/17/06. A total of 2 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.
- Sample OP16345-BS was used as the LCS for the PCB analysis on 04/20/06. A total of 2 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.

VIII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. USACE Shell limits for pesticides and PCBs are 40-140%; RPD≤50% (30-150%; RPD≤60% for sporadic marginal failures (SMF)).

- Sample 48MW4 (F39990-7) was used as the MS/MSD for the pesticide analysis on 04/17/06. A total
 of 40 compounds were spiked, allowing for 4 SMF tolerances. Compound endrin aldehyde (21%,
 25%) was outside USACE and SMF criteria, however within laboratory criteria. Compound endrin
 aldehyde was qualified estimated bias low "UL" for non-detects for the spiked sample based upon very
 low recoveries.
- Sample 48MW3 (F39990-17) was used as the MS/MSD for the pesticide analysis on 04/20/06. A total
 of 40 compounds were spiked, allowing for 4 SMF tolerances. Compound endrin aldehyde (18%,
 21%) was outside USACE and SMF criteria, however within laboratory criteria. Compound endrin
 aldehyde was qualified estimated bias low "UL" for non-detects for the spiked sample based upon very
 low recoveries.
- Sample 28MW2 (F39990-4) was used as the MS/MSD for the PCB analysis on 04/17/06. A total of 4 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied.

Sample 48MW3 (F39990-17) was used as the MS/MSD for the PCB analysis on 04/20/06. A total of 4 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

- Field groundwater sample duplicate pair 13MW1 (F39990-9) and TM13MW1 (F39990-10) was collected for pesticides and PCBs. All target compounds were non-detect. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 48MW1 (F39990-14) and TM48MW1 (F39990-15) was collected for pesticides and PCBs. All target compounds were non-detect. All criteria were met. No qualifiers were applied.

X-Quantitation Verification

The accuracy of analytical results was verified through the calculation of several parameters. The difference between the calculated value and the reported value must be within 10% difference. All positive values must have less than or equal to 40% %D between the primary and secondary columns. Any sample value > MDL and < MRL is qualified as estimated, "J". All criteria were met.

The %D between the primary and secondary columns was within criteria for pesticides and PCBs for all detected samples.

Sample: 16-4 (F39990-3), alpha-chlordane

Conc. μ g/L = (Amt * DF * Vt) / (CF * Vo)

where: Amt is the response on column (ng/mL) of the sample CF = Calibration Factor (from initial calibration) Vt is the volume of final extract (mL)

DF is the dilution factor

Vo is the volume of the sample extracted (mL)

Conc. μ g/L = (310787 ng/mL * 1 * 10 mL) / (20100 * 750 mL) $= 0.21 \text{ ng/mL} = 0.21 \mu\text{g/L}$

Reported Conc. = 0.21 µg/L

%D = 0.0%

Values were within 10% difference

Sample: 48MW3-MS (F39990-17MS), Aroclor 1260

```
Conc. \mug/L = (Ax * Vt * DF) / (CF * Vi * Vs)
```

where: Conc. = Sample concentration in μ g/L

Ax = Area/response for compound being measured.

Vt = Volume of total extract, taking into account dilutions (i.e., a 1-to-10 dilution of a

1-mL extract will mean $V(t) = 10000 \mu L$.

CF = Ave calibration response factor for compound being measured from ICAL (Area/pg)

Vi = Volume of extract injected (µL). Vs = Volume of sample extracted (L).

DF = Dilution factor

Signal #1

Conc1 μ g/L = (148112 Area * 1000 μ L * 1) / (392.5 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.43 μ g/L Conc2 μ g/L = (298785 Area * 1000 μ L * 1) / (783.9 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.53 μ g/L Conc3 μ g/L = (343924 Area * 10000 μ L * 1) / (889.4 Area/pg*(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.67 μ g/L Conc4 μ g/L = (556439 Area * 10000 μ L * 1) / (1472 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.45 μ g/L Conc5 μ g/L = (220496 Area * 10000 μ L * 1) / (615.5 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 8.96 μ g/L Conc6 μ g/L = (143060 Area * 10000 μ L * 1) / (381.1 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.38 μ g/L Average concentration = 9.4 μ g/L

Signal #2

Conc1 μ g/L = (973927 Area * 10000 μ L* 1) / (2519 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.67 μ g/L Conc2 μ g/L = (1567213 Area * 10000 μ L* 1) / (4218 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.29 μ g/L Conc3 μ g/L = (1816154 Area * 10000 μ L* 1) / (4854 Area/pg*(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.35 μ g/L Conc4 μ g/L = (2796384 Area * 10000 μ L* 1) / (7725 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.05 μ g/L Conc5 μ g/L = (1160348 Area * 10000 μ L* 1) / (3408 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 8.51 μ g/L Conc6 μ g/L = (612326 Area * 10000 μ L* 1) / (1657 Area/pg *(1000000 pg/ μ g) * 1 μ L * 0.4 L) = 9.24 μ g/L Average concentration = 9.2 μ g/L

Reported Value = 9.8 μ g/L (from signal #1) % Difference = 4.1% Values were within 10% difference.

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and \leq MRL or \leq 3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

D = Indicates sample was analyzed at a dilution.

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration <MRL and $\ge MDL$.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

N (Metals) = Laboratory spike sample recovery not within control limits.

- * (Metals) = Duplicate analysis not within control limits.
- * (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Report of Analysis

Ву

ΑA

Page 1 of 1

Client Sample ID: 51MW1 Lab Sample ID:

F39990-1 Matrix:

File ID

KK12265.D

AQ - Ground Water SW846 8081A SW846 3510C

DF

1

Date Sampled: 04/11/06

Prep Date

04/14/06

Date Received: 04/13/06

Percent Solids: n/a

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Batch **Analytical Batch** OP16309 **GKK458**

Run #1 Run #2

> **Initial Volume** Final Volume 760 ml 10.0 ml

Run #1 Run #2

CACN.

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.066	0.026	ug/l	
319-84-6	alpha-BHC	ND	0.066	0.020	ug/l	
319-85-7	beta-BHC	ND	0.066	0.026	ug/l	
319-86-8	delta-BHC	ND	0.066	0.026	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.066	0.020	ug/l	
5103-71-9	alpha-Chlordane	ND	0.066	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.066	0.013	ug/l	
60-57-1	Dieldrin	ND	0.066	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.026	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.026	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.026	ug/l	
72-20-8	Endrin	ND	0.13	0.053	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.026	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.053	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.026	ug/l	
959-98-8	Endosulfan-I	ND	0.066	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.026	ug/l	
76-44-8	Heptachlor	ND	0.066	0.026	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.066	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.053	ug/l	
8001-35-2	Toxaphene	ND	3.3	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	93%		60-13	38%	
2051-24-3	Decachlorobiphenyl	92%		31-14		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

ΚĚ

Page 1 of 1

Client Sample ID: 51MW1 Lab Sample ID:

File ID

ST46611.D

Matrix: Method: F39990-1

AQ - Ground Water SW846 8082 SW846 3510C

DF

1

Date Sampled: 04/11/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Date 04/14/06

Prep Batch OP16308

Analytical Batch GST1366

Run #1 Run #2

Initial Volume Run #1 760 ml

Final Volume

Run #2

10.0 ml

PCB List

CAS No. Compound Result RL MDL Units Q 12674-11-2 Aroclor 1016 ND 0.66 0.33 ug/l 11104-28-2 Aroclor 1221 ND 0.66 0.53 ug/l 11141-16-5 Aroclor 1232 ND 0.66 0.53 ug/l 53469-21-9 Aroclor 1242 ND 0.66 0.33 ug/l 12672-29-6 Aroclor 1248 ND 0.66 0.33 ug/l 11097-69-1 Aroclor 1254 ND 0.66 0.33 ug/l 11096-82-5 Aroclor 1260 ND 0.66 0.33 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 102% 49-124% 2051-24-3 Decachlorobiphenyl 99% 26-137%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 51MW2 Lab Sample ID: F39990-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8081A SW846 3510C

Radford AAP; SWMU 48, 49, 50, 51 & 59

Date Sampled: 04/10/06

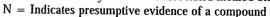
Date Received: 04/13/06 Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch Analytical Batch Run #1 KK12266.D 1 04/17/06 AA04/14/06 OP16309 GKK458 Run #2

Initial Volume Final Volume Run #1 800 ml 10.0 ml Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND UL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
877-09-8	Tetrachloro-m-xylene	100%		60-13	38 %	
2051-24-3	Decachlorobiphenyl	103%	31-148%			


ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 51MW2 Lab Sample ID:

F39990-2

Matrix: Method: AQ - Ground Water

SW846 8082 SW846 3510C

Date Sampled: 04/10/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1 Run #2

DF ST46612.D 1

Analyzed By 04/17/06 ΚĚ **Prep Date** 04/14/06

26-137%

Prep Batch OP16308

Analytical Batch GST1366

Initial Volume Run #1 800 ml

File ID

Run #2

Final Volume 10.0 ml

PCB List

2051-24-3

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	0.63 0.63 0.63 0.63 0.63 0.63	0.31 0.50 0.50 0.31 0.31 0.31	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	103%		49-12	24%	

109%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 16-4

Lab Sample ID: Fi

F39990-3

Matrix: Method: 1.22220-2

AQ - Ground Water SW846 8081A SW846 3510C Date Sampled: 04/10/06

Date Received: 04/13/06 Percent Solids: n/a

Project: Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a KK12267.D 1 04/17/06 AA 04/14/06 OP16309 GKK458

Run #2

Initial Volume

Final Volume

Run #1 750 ml

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.067	0.027	ug/l	
319-84-6	alpha-BHC	ND	0.067	0.020	ug/l	
319-85-7	beta-BHC	ND	0.067	0.027	ug/l	
319-86-8	delta-BHC	ND	0.067	0.027	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.067	0.020	ug/l	
5103-71-9	alpha-Chlordane	0.21	0.067	0.013	ug/l	
5103-74-2	gamma-Chlordane	0.25	0.067	0.013	ug/l	
60-57-1	Dieldrin	ND	0.067	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.027	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.027	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.027	ug/l	
72-20-8	Endrin	ND	0.13	0.053	ug/I	
1031-07-8	Endosulfan sulfate	ND	0.13	0.027	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.053	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.027	ug/l	
959-98-8	Endosulfan-I	ND	0.067	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.027	ug/l	
76-44-8	Heptachlor	ND	0.067	0.027	ug/l	
1024-57-3	Heptachlor epoxide	0.015 T	0.067	0.013	ug/l	J
72-43-5	Methoxychlor	ND	0.13	0.053	ug/l	J
8001-35-2	Toxaphene	ND	3.3	1.7	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	89%		60-13	38%	
2051-24-3	Decachlorobiphenyl	89%	31-148%			

(a) All hits confirmed by dual column analysis.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID:	16-4
-------------------	------

Lab Sample ID:

F39990-3

Matrix: Method: AQ - Ground Water

SW846 8082 SW846 3510C

Date Sampled: 04/10/06 Date Received: 04/13/06

Percent Solids: n/a

Units

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

04/17/06

File ID DF Analyzed By

1

Prep Date 04/14/06

Prep Batch

Analytical Batch

Run #1 Run #2

Initial Volume

ST46613.D

Final Volume

KE

OP16308

0

GST1366

Run #1 Run #2 750 ml 10.0 ml

PCB List

CAS No.	Compound	

12674-11-2	Aroclor 1016
11104-28-2	Aroclor 1221
11141-16-5	Aroclor 1232
53469-21-9	Aroclor 1242
12672-29-6	Aroclor 1248

11097-69-1 Aroclor 1254

11096-82-5 Aroclor 1260 CAS No. Surrogate Recoveries

877-09-8 Tetrachloro-m-xylene 2051-24-3 Decachlorobiphenyl

ND 0.67 ND ND

Result

ND

ND

ND

ND

96%

97%

Run#1

0.67 0.67 0.67

Run# 2

RL

0.67

0.67

0.67

0.33 ug/l Limits

MDL

0.33

0.53

0.53

0.33

0.33

0.33

49-124% 26-137%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 28MW2 Lab Sample ID:

F39990-4

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Run #1

File ID KK12268.D

Analyzed 04/17/06

By **Prep Date** AA 04/14/06

OP16309

Analytical Batch GKK458

Run #2

Initial Volume 800 ml

Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/I	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	103%	60-138%			
2051-24-3	Decachlorobiphenyl	107%	31-148%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

KE

Page 1 of 1

Client Sample ID: 28MW2

Lab Sample ID: F39990-4

File ID

800 ml

ST46614.D

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Date Received: 04/13/06

Percent Solids: n/a

Method: Project:

SW846 8082 SW846 3510C Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Date

04/14/06

Prep Batch Analytical Batch OP16308 GST1366

Run #1 Run #2

> **Initial Volume** Final Volume

Run #1 Run #2

10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.63	0.31	ug/l	
11104-28-2	Aroclor 1221	ND	0.63	0.50	ug/l	
11141-16-5	Aroclor 1232	ND	0.63	0.50	ug/l	
53469-21-9	Aroclor 1242	ND	0.63	0.31	ug/l	
12672-29-6	Aroclor 1248	ND	0.63	0.31	ug/l	
11097-69-1	Aroclor 1254	ND	0.63	0.31	ug/l	
11096-82-5	Aroclor 1260	ND	0.63	0.31	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	117%		49-12	24%	
2051-24-3	Decachlorobiphenyl	118%		26-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 28MW1 Lab Sample ID:

F39990-5

Matrix: Method: AQ - Ground Water

DF

1

SW846 8081A SW846 3510C

Date Sampled: 04/11/06 Date Received: 04/13/06

Prep Date

04/14/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed By

AA

04/17/06

Prep Batch

Analytical Batch

OP16309 **GKK458**

Run #1 Run #2

> **Initial Volume** 800 ml

File ID

KK12269.D

Final Volume 10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	93%		60-13	38%	
2051-24-3	Decachlorobiphenyl	96%	31-148%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 28MW1 Lab Sample ID: F39990-5

Matrix: Method: AQ - Ground Water

SW846 8082 SW846 3510C

Date Sampled: 04/11/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID Run #1 ST46617.D Run #2

DF 1

Analyzed By 04/17/06 KE **Prep Date** 04/14/06

Prep Batch OP16308

Analytical Batch

GST1366

Initial Volume Run #1 800 ml

Final Volume 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	0.63 0.63 0.63 0.63 0.63 0.63	0.31 0.50 0.50 0.31 0.31 0.31	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	99% 107%	49-124% 26-137%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: C4

Lab Sample ID:

F39990-6

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Analytical Batch

Run #1 Run #2

KK12270.D

Analyzed 04/17/06

By **Prep Date** AA 04/14/06

OP16309

GKK458

Initial Volume 760 ml

File ID

Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.066	0.026	ug/l	
319-84-6	alpha-BHC	ND	0.066	0.020	ug/l	
319-85-7	beta-BHC	ND	0.066	0.026	ug/l	
319-86-8	delta-BHC	ND	0.066	0.026	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.066	0.020	ug/l	
5103-71-9	alpha-Chlordane	ND	0.066	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.066	0.013	ug/l	
60-57-1	Dieldrin	ND	0.066	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.026	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.026	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.026	ug/l	
72-20-8	Endrin	ND	0.13	0.053	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.026	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.053	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.026	ug/l	
959-98-8	Endosulfan-I	ND	0.066	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.026	ug/l	
76-44-8	Heptachlor	ND	0.066	0.026	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.066	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.053	ug/l	
8001-35-2	Toxaphene	ND	3.3	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	100%		60-13	38%	
2051-24-3	Decachlorobiphenyl	97%	31-148%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

Report of Analysis

By

ΚĚ

Page 1 of 1

Client Sample ID: C4

Lab Sample ID:

F39990-6

AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Matrix: Method:

SW846 8082 SW846 3510C

Date Received: 04/13/06 Percent Solids: n/a

Prep Date

04/14/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Batch

OP16308

Analytical Batch GST1366

Run #1 Run #2

> **Initial Volume** Final Volume

760 ml

File ID

ST46618.D

10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	0.66 0.66 0.66 0.66 0.66 0.66	0.33 0.53 0.53 0.33 0.33 0.33	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	103% 106%	49-124% 26-137%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AA

Page 1 of 1

Client Sample ID: 48MW4 Lab Sample ID:

File ID

KK12271.D

F39990-7 AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Prep Date

04/14/06

Date Received: 04/13/06

Matrix: Method:

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Batch **Analytical Batch** OP16309 GKK458

Run #1 Run #2

> **Initial Volume** Final Volume

Run #1 800 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND UL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	103%		60-13	38%	
2051-24-3	Decachlorobiphenyl	108%	31-148%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW4 Lab Sample ID:

F39990-7

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8082 SW846 3510C

Units

Q

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

Run #1

File ID ST46621.D

Analyzed 04/17/06

By KE Prep Date 04/14/06

Prep Batch OP16308

Analytical Batch GST1366

Run #2

Initial Volume 800 ml

Final Volume

Run #1

10.0 ml

Run #2

PCB List

CAS No. Compound Result	RL MDL
-------------------------	--------

	Aroclor 1016	ND	0.63	0.31	ug/l
11104-28-2	Aroclor 1221	ND	0.63	0.50	ug/l
11141-16-5	Aroclor 1232	ND	0.63	0.50	ug/l
53469-21-9	Aroclor 1242	ND	0.63	0.31	ug/l
12672-29-6	Aroclor 1248	ND	0.63	0.31	ug/l
11097-69-1	Aroclor 1254	ND	0.63	0.31	ug/l
11096-82-5	Aroclor 1260	ND	0.63	0.31	ug/1

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	99%		49-124%
2051-24-3	Decachlorobiphenyl	111%		26-137%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 13MW1 Lab Sample ID: F39990-9

Matrix: Method:

Project:

F39990-9

AQ - Ground Water

SW846 8081A SW846 3510C

Radford AAP; SWMU 48, 49, 50, 51 & 59

Date Sampled: 04/12/06 Date Received: 04/13/06

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 KK12277.D 1 04/17/06 AA04/14/06 OP16309 **GKK458** Run #2

Initial Volume Final Volume Run #1 750 ml 10.0 ml Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.067	0.027	ug/l	
319-84-6	alpha-BHC	ND	0.067	0.020	ug/l	
319-85-7	beta-BHC	ND	0.067	0.027	ug/l	
319-86-8	delta-BHC	ND	0.067	0.027	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.067	0.020	ug/l	
5103-71-9	alpha-Chlordane	ND	0.067	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.067	0.013	ug/l	
60-57-1	Dieldrin	ND	0.067	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.027	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.027	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.027	ug/l	
72-20-8	Endrin	ND	0.13	0.053	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.027	ug/l	
7421-93-4	Endrin aldehyde	ND UL	0.13	0.053	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.027	ug/l	
959-98-8	Endosulfan-I	ND	0.067	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.027	ug/l	
76-44-8	Heptachlor	ND	0.067	0.027	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.067	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.053	ug/l	
8001-35-2	Toxaphene	ND	3.3	1.7	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	93%		60-13	38%	
2051-24-3	Decachlorobiphenyl	91%		31-148%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	13MW1		
Lab Sample ID:	F39990-9	Date Sampled:	04/12/06
Matrix:	AQ - Ground Water	Date Received:	
Method:	SW846 8082 SW846 3510C	Percent Solids:	

eceived: 04/13/06 Percent Solids: n/a

Project: Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1	File ID	DF	Analyzed	By	Prep Date 04/14/06	Prep Batch	Analytical Batch
Run #2	ST46623.D	1	04/17/06	KE		OP16308	GST1366

Run #1 Run #2	Initial Volume 750 ml	Final Volume 10.0 ml	

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	0.67 0.67 0.67 0.67 0.67 0.67	0.33 0.53 0.53 0.33 0.33 0.33	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	94% 98%		49-1 26-1		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AA

Page 1 of 1

Client Sample ID: TM13MW1 Lab Sample ID:

F39990-10

AQ - Ground Water

DF

1

Date Sampled: 04/12/06

OP16309

Matrix: Method:

SW846 8081A SW846 3510C

Date Received: 04/13/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Date

04/14/06

Percent Solids: n/a

Prep Batch

Analytical Batch **GKK458**

Run #1 Run #2

Run #1

Final Volume

800 ml

File ID

KK12278.D

Initial Volume

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi		
877-09-8	Tetrachloro-m-xylene	93%		60-13	88%	
2051-24-3	Decachlorobiphenyl	88%		60-138% 31-148%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Cl	ient	Sample	ID:	TM13MW1

Lab Sample ID: Matrix:

F39990-10

AQ - Ground Water

Date Sampled: 04/12/06 Date Received: 04/13/06

Method:

SW846 8082 SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF

1

Analyzed By **Prep Date** Prep Batch **Analytical Batch** 04/17/06 KE 04/14/06 OP16308 GST1366

Run #1 Run #2

Initial Volume Final Volume Run #1 800 ml 10.0 ml

ST46624.D

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	0.63 0.63 0.63 0.63 0.63 0.63	0.31 0.50 0.50 0.31 0.31 0.31	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	90% 94%		49-12 26-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

AA

Page 1 of 1

Client Sample ID: 13MW2 Lab Sample ID:

F39990-11

AQ - Ground Water

DF

1

Date Sampled: 04/12/06

Prep Batch

OP16309

Matrix: Method:

SW846 8081A SW846 3510C

Date Received: 04/13/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

04/14/06

Prep Date

Analytical Batch GKK458

Run #1 Run #2

Initial Volume

File ID

800 ml

KK12279.D

Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	81%		60-13	38%	
2051-24-3	Decachlorobiphenyl	84%		31-148%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

KE

Page 1 of 1

İ	Client Sample ID:
	Lab Sample ID:
	Matrix:

13MW2

F39990-11 AQ - Ground Water

Date Sampled: 04/12/06 Date Received: 04/13/06

Method:

SW846 8082 SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

04/17/06

File ID DF Analyzed By

1

Prep Date Prep Batch **Analytical Batch** 04/14/06 OP16308 GST1366

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	800 ml	10.0 ml
D #2		

ST46625.D

Run #2

PCB List

12674-11-2 Aroclor 1016 ND 0.63 0.31 ug/l 11104-28-2 Aroclor 1221 ND 0.63 0.50 ug/l 11141-16-5 Aroclor 1232 ND 0.63 0.50 ug/l 53469-21-9 Aroclor 1242 ND 0.63 0.31 ug/l 12672-29-6 Aroclor 1248 ND 0.63 0.31 ug/l 11097-69-1 Aroclor 1254 ND 0.63 0.31 ug/l 11096-82-5 Aroclor 1260 ND 0.63 0.31 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 80% 49-124%							
11104-28-2 Aroclor 1221 ND 0.63 0.50 ug/l 11141-16-5 Aroclor 1232 ND 0.63 0.50 ug/l 53469-21-9 Aroclor 1242 ND 0.63 0.31 ug/l 12672-29-6 Aroclor 1248 ND 0.63 0.31 ug/l 11097-69-1 Aroclor 1254 ND 0.63 0.31 ug/l 11096-82-5 Aroclor 1260 ND 0.63 0.31 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 80% 49-124%	CAS No.	Compound	Result	RL	MDL	Units	Q
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 80% 49-124%	11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	ND ND ND ND ND	0.63 0.63 0.63 0.63 0.63	0.50 0.50 0.31 0.31 0.31	ug/l ug/l ug/l ug/l ug/l	
- 6001-63-0 DEGREENINGENING XN% 76 1270/	CAS No.	Surrogate Recoveries	Run# 1		Lim:	its 24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: C1

Lab Sample ID:

F39990-12

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8081A SW846 3510C

Date Sampled: 04/12/06

Date Received: 04/13/06 Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 KK12280.D 1 04/17/06 AA04/14/06 OP16309 GKK458

Run #2

Initial Volume Final Volume

Run #1 800 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	89%		60-13	88%	
2051-24-3	Decachlorobiphenyl	97%		31-14		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client	Sami	ole	ID:	C1
--------	------	-----	-----	----

Lab Sample ID:

F39990-12

Initial Volume

800 ml

AQ - Ground Water

SW846 8082 SW846 3510C

Date Sampled: 04/12/06

Date Received: 04/13/06

Percent Solids: n/a

Method: Project:

Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run #1 ST46626.D 1 04/17/06 KE 04/14/06 OP16308 GST1366 Run #2

Final Volume

10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	0.63 0.63 0.63 0.63 0.63 0.63	0.31 0.50 0.50 0.31 0.31 0.31	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	92% 104%	49-124% 26-137%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

File ID

810 ml

KK12290.D

Report of Analysis

Ву

AA

Page 1 of 1

Client Sample ID: 48MW1 Lab Sample ID:

F39990-14

AQ - Ground Water

DF

1

Date Sampled: 04/13/06

Prep Date

04/19/06

Prep Batch

OP16347

Matrix: Method:

SW846 8081A SW846 3510C

Date Received: 04/15/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/20/06

Analytical Batch GKK459

Run #1 Run #2

> **Initial Volume** Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.062	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.062	0.019	ug/l	
319-85-7	beta-BHC	ND	0.062	0.025	ug/l	
319-86-8	delta-BHC	ND	0.062	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.062	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.062	0.012	ug/l	
5103-74-2	gamma-Chlordane	ND	0.062	0.012	ug/l	
60-57-1	Dieldrin	ND	0.062	0.012	ug/l	
72-54-8	4,4'-DDD	ND	0.12	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.12	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.12	0.025	ug/l	
72-20-8	Endrin	ND	0.12	0.049	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.12	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND UL	0.12	0.049	ug/l	
53494-70-5	Endrin ketone	ND	0.12	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.062	0.012	ug/l	
33213-65-9	Endosulfan-II	ND	0.12	0.025	ug/l	
76-44-8	Heptachlor	ND	0.062	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.062	0.012	ug/l	
72-43-5	Methoxychlor	ND	0.12	0.049	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.5	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	89%		60-13	88%	
2051-24-3	Decachlorobiphenyl	89%		31-14	18%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

KE

Page 1 of 1

Client Sample ID:	48MW1
Lab Sample ID:	F39990-14

File ID

ST46689.D

Matrix:

AQ - Ground Water

DF

1

SW846 8082 SW846 3510C

Date Sampled: 04/13/06 Date Received: 04/15/06

04/19/06

Percent Solids: n/a

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/20/06

Prep Date Prep Batch **Analytical Batch**

GST1368

OP16345

Run #1 Run #2

Initial Volume Final Volume 810 ml Run #1 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.62	0.31	ug/l	
11104-28-2	Aroclor 1221	ND	0.62	0.49	ug/l	
11141-16-5	Aroclor 1232	ND	0.62	0.49	ug/l	
53469-21-9	Aroclor 1242	ND	0.62	0.31	ug/l	
12672-29-6	Aroclor 1248	ND	0.62	0.31	ug/l	
11097-69-1	Aroclor 1254	ND	0.62	0.31	ug/l	
11096-82-5	Aroclor 1260	ND	0.62	0.31	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	100%		49-12	24%	
2051-24-3	Decachlorobiphenyl	107%		26-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: TM48MW1

Lab Sample ID: Matrix:

F39990-15

AQ - Ground Water

Date Sampled: 04/13/06

Date Received: 04/15/06

Method:

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 KK12291.D 1 04/20/06 AA 04/19/06 OP16347 **GKK459** Run #2

Initial Volume Final Volume 820 ml

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.061	0.024	ug/l	
319-84-6	alpha-BHC	ND	0.061	0.018	ug/l	
319-85-7	beta-BHC	ND	0.061	0.024	ug/l	
319-86-8	delta-BHC	ND	0.061	0.024	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.061	0.018	ug/l	
5103-71-9	alpha-Chlordane	ND	0.061	0.012	ug/l	
5103-74-2	gamma-Chlordane	ND	0.061	0.012	ug/l	
60-57-1	Dieldrin	ND	0.061	0.012	ug/l	
72-54-8	4,4'-DDD	ND	0.12	0.024	ug/l	
72-55-9	4,4'-DDE	ND	0.12	0.024	ug/l	
50-29-3	4,4'-DDT	ND	0.12	0.024	ug/l	
72-20-8	Endrin	ND	0.12	0.049	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.12	0.024	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.12	0.049	ug/l	
53494-70-5	Endrin ketone	ND _	0.12	0.024	ug/l	
959-98-8	Endosulfan-I	ND	0.061	0.012	ug/l	
33213-65-9	Endosulfan-II	ND	0.12	0.024	ug/l	
76-44-8	Heptachlor	ND	0.061	0.024	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.061	0.012	ug/l	
72-43-5	Methoxychlor	ND	0.12	0.049	ug/l	
8001-35-2	Toxaphene	ND	3.0	1.5	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	•
877-09-8	Tetrachloro-m-xylene	88%		60-13	88%	
2051-24-3	Decachlorobiphenyl	91%		31-14		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

KE

Page 1 of 1

Client	Sample ID:	TM48MW1

File ID

ST46690.D

Lab Sample ID:

F39990-15

AQ - Ground Water

Date Sampled: 04/13/06

Prep Date

04/19/06

Date Received: 04/15/06

Matrix: Method:

SW846 8082 SW846 3510C

DF

1

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/20/06

Prep Batch Analytical Batch OP16345 GST1368

Run #1 Run #2

> **Initial Volume** Final Volume 820 ml 10.0 ml

Run #1 Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	0.61 0.61 0.61 0.61 0.61 0.61	0.30 0.49 0.49 0.30 0.30 0.30	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	96% 103%		49-12 26-13		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW2 Lab Sample ID:

F39990-16

By

AA

Date Sampled: 04/13/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/15/06

04/19/06

Method:

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/20/06

Prep Date **Analytical Batch Prep Batch** OP16347 **GKK459**

Run #1 Run #2

Initial Volume

File ID

KK12292.D

Final Volume

Run #1 780 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.064	0.026	ug/l	
319-84-6	alpha-BHC	ND	0.064	0.019	ug/l	
319-85-7	beta-BHC	ND	0.064	0.026	ug/l	
319-86-8	delta-BHC	ND	0.064	0.026	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.064	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.064	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.064	0.013	ug/l	
60-57-1	Dieldrin	ND	0.064	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.026	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.026	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.026	ug/l	
72-20-8	Endrin	ND	0.13	0.051	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.026	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.13	0.051	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.026	ug/l	
959-98-8	Endosulfan-I	ND	0.064	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.026	ug/l	
76-44-8	Heptachlor	ND	0.064	0.026	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.064	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.051	ug/l	
8001-35-2	Toxaphene	ND	3.2	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	92%		60-13	38%	
2051-24-3	Decachlorobiphenyl	63%		31-14	48%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sam Lab Samp Matrix: Method: Project:	le ID: F39990 AQ - G SW846	-16 round Wate 8082 SW		0, 51 & 59	Date Perce	Sampled Received ent Solids	: 04/15/06	
Run #1 Run #2	File ID ST46691.D	DF 1	Analyzed 04/20/06	By KE	Prep I 04/19/		Prep Batch OP16345	Analytical Batch GST1368
Run #1 Run #2	Initial Volume 780 ml	Final Vol 10.0 ml	lume					
PCB List								,
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2 11104-28-2 11141-16-5	Aroclor 1221		ND ND ND	0.64 0.64 0.64	0.32 0.51 0.51	ug/l ug/l ug/l		

0.64

0.64

0.64

0.64

0.32

0.32

0.32

0.32

ug/l

ug/l

ug/l

ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	96%		49-124%
2051-24-3	Decachlorobiphenyl	68%		26-137%

ND

ND

ND

ND

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

53469-21-9 Aroclor 1242

12672-29-6 Aroclor 1248

11097-69-1 Aroclor 1254

11096-82-5 Aroclor 1260

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AA

Page 1 of 1

Client Sample ID: 48MW3

Lab Sample ID: F39990-17

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 04/13/06

Prep Date

04/19/06

Date Received: 04/15/06

Method: Project:

SW846 8081A SW846 3510C

Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/20/06

Prep Batch **Analytical Batch** OP16347

GKK459

Run #1 Run #2

> **Initial Volume** 890 ml

KK12293.D

File ID

Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.056	0.022	ug/l	
319-84-6	alpha-BHC	ND	0.056	0.017	ug/l	
319-85-7	beta-BHC	ND	0.056	0.022	ug/l	
319-86-8	delta-BHC	ND	0.056	0.022	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.056	0.017	ug/l	
5103-71-9	alpha-Chlordane	ND	0.056	0.011	ug/l	
5103-74-2	gamma-Chlordane	ND	0.056	0.011	ug/l	
60-57-1	Dieldrin	ND	0.056	0.011	ug/l	
72-54-8	4,4'-DDD	ND	0.11	0.022	ug/l	
72-55-9	4,4'-DDE	ND	0.11	0.022	ug/l	
50-29-3	4,4'-DDT	ND	0.11	0.022	ug/l	
72-20-8	Endrin	ND	0.11	0.045	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.11	0.022	ug/l	
7421-93-4	Endrin aldehyde	ND VL	0.11	0.045	ug/l	
53494-70-5	Endrin ketone	ND	0.11	0.022	ug/l	
959-98-8	Endosulfan-I	ND	0.056	0.011	ug/l	
33213-65-9	Endosulfan-II	ND	0.11	0.022	ug/l	
76-44-8	Heptachlor	ND	0.056	0.022	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.056	0.011	ug/l	
72-43-5	Methoxychlor	ND	0.11	0.045	ug/l	
8001-35-2	Toxaphene	ND	2.8	1.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	93%		60-1	38%	
2051-24-3	Decachlorobiphenyl	96%		31-1		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

KE

Page 1 of 1

Client Sample ID: 48MW3 Lab Sample ID:

File ID

890 ml

ST46692.D

Initial Volume

Decachlorobiphenyl

F39990-17

AO - Ground Water

DF

1

Date Sampled: 04/13/06

Date Received: 04/15/06

Matrix: Method:

SW846 8082 SW846 3510C

Percent Solids: n/a

Prep Date

49-124%

26-137%

04/19/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/20/06

Prep Batch

OP16345

Analytical Batch GST1368

Run #1 Run #2

Final Volume 10.0 ml

Run #1 Run #2

PCB List

2051-24-3

CAS No. Compound Result RL**MDL** Units Q 12674-11-2 Aroclor 1016 ND 0.56 0.28 ug/l 11104-28-2 Aroclor 1221 ND 0.56 0.45 ug/l 11141-16-5 Aroclor 1232 ND 0.56 0.45 ug/l 53469-21-9 Aroclor 1242 ND 0.56 0.28 ug/l 12672-29-6 Aroclor 1248 ND 0.56 0.28ug/l 11097-69-1 Aroclor 1254 ND 0.56 0.28 ug/l 11096-82-5 Aroclor 1260 ND 0.56 0.28 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene

94%

105%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: 041206R Lab Sample ID:

F39990-8

Date Sampled: 04/12/06

Matrix: Method: AQ - Ground Water

DF

1

Date Received: 04/13/06

SW846 8081A SW846 3510C

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1

File ID KK12276.D Analyzed 04/17/06

By Prep Date AA 04/14/06

Prep Batch OP16309

Analytical Batch GKK458

Run #2

Initial Volume 800 ml

Final Volume

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.063	0.025	ug/l	
319-84-6	alpha-BHC	ND	0.063	0.019	ug/l	
319-85-7	beta-BHC	ND	0.063	0.025	ug/l	
319-86-8	delta-BHC	ND	0.063	0.025	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.063	0.019	ug/l	
5103-71-9	alpha-Chlordane	ND	0.063	0.013	ug/l	
5103-74-2	gamma-Chlordane	ND	0.063	0.013	ug/l	
60-57-1	Dieldrin	ND	0.063	0.013	ug/l	
72-54-8	4,4'-DDD	ND	0.13	0.025	ug/l	
72-55-9	4,4'-DDE	ND	0.13	0.025	ug/l	
50-29-3	4,4'-DDT	ND	0.13	0.025	ug/l	
72-20-8	Endrin	ND	0.13	0.050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.13	0.025	ug/l	
7421-93-4	Endrin aldehyde	ND	0.13	0.050	ug/l	
53494-70-5	Endrin ketone	ND	0.13	0.025	ug/l	
959-98-8	Endosulfan-I	ND	0.063	0.013	ug/l	
33213-65-9	Endosulfan-II	ND	0.13	0.025	ug/l	
76-44-8	Heptachlor	ND	0.063	0.025	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.063	0.013	ug/l	
72-43-5	Methoxychlor	ND	0.13	0.050	ug/l	
8001-35-2	Toxaphene	ND	3.1	1.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	91%		60-1	38%	
2051-24-3	Decachlorobiphenyl	73%		31-1	48%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: 041206R Lab Sample ID:

F39990-8

Date Sampled: 04/12/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8082 SW846 3510C

Project:

Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Analytical Batch

Run #1 Run #2

ST46622.D

File ID

04/17/06

Analyzed

By ΚĚ **Prep Date** 04/14/06

OP16308

GST1366

Initial Volume 800 ml

Final Volume 10.0 ml

Run #1

Run #2

PCB List

11096-82-5

CAS No. Compound Result RL**MDL** Units Q

12674-11-2 Aroclor 1016 ND 0.63 0.31 ug/l 11104-28-2 Aroclor 1221 ND 0.63 0.50 ug/l 11141-16-5 Aroclor 1232 ND 0.63 0.50 ug/l 53469-21-9 Aroclor 1242 ND 0.63 0.31ug/l 12672-29-6 Aroclor 1248 ND 0.63 0.31 ug/l 11097-69-1 Aroclor 1254 ND 0.63 0.31 ug/l

CAS No. Surrogate Recoveries

Aroclor 1260

Run#1

ND

Run# 2

0.31

0.63

Limits

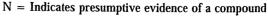
ug/l

877-09-8 Tetrachloro-m-xylene 2051-24-3 Decachlorobiphenyl

92% 79%

49-124% 26-137%

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - TAL Metals

Accutest Laboratories, Inc., SDG F39990

DATE:

May 8, 2006

The purpose of this memorandum is to present the data validation report for the samples collected collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. Samples were analyzed for target analyte list (TAL) metals using USEPA SW-846 3010A/6010B for ICP metals and SW-846 7470A for mercury. A total of fifteen aqueous samples were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
51MW1	F39990-1	TM13MW1	F39990-10
51MW2	F39990-2	13MW2	F39990-11
16-4	F39990-3	C1	F39990-12
28MW2	F39990-4	48MW1	F39990-14
28MW1	F39990-5	TM48MW1	F39990-15
C4	F39990-6	48MW2	F39990-16
48MW4	F39990-7	48MW3	F39990-17
13MW1	F39990-9		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, USACE Shell for Analytical Chemistry Requirements, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	ified	Parameter
Yes No		
	X	Holding Times
X		Initial and Continuing Calibration
Χ		Blank Analysis
	Х	ICP Interference Check Sample (ICS)
	Χ	Laboratory Control Sample (LCS)
	Х	Laboratory Sample Duplicate
	Χ	Matrix Spike and Spike Duplicate
Х		ICP Serial Dilution
Χ		Field Sample Duplicate
X		Quantitation Verification

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

5/8/06

Date

RFAAP VALIDATION REPORT METALS REVIEW SDG F39990

I-Holding Times

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool @ $4^{\circ}C\pm2^{\circ}C$, preserved to pH<2 with HNO₃, the maximum holding time is 180 days for metals and 28 days for mercury.

- Temperature Review: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, 3.2°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: Samples were collected 04/10/06, 04/11/06, 04/12/06, and 04/13/06 for metals analysis. They were digested on 04/18/06 for ICP metals and 04/14/06 and 04/17/06 for mercury. They were analyzed for ICP metals on 04/18/06 and for mercury on 04/14/06 and 04/17/06. All criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

ICP: 1- blank (USACE <MDL) Hg: 1 - blank (USACE <MDL) 5 - standards (r≥0.995) 5 - standards (r≥0.995) ICV/CCV (90-110%) (USACE 90-110%) MRL (70-130%) (USACE 80-120%) MRL (80-120%)

• The samples were analyzed for ICP metals on 04/18/06. Mercury was analyzed on 04/14/06 with a correlation coefficient of 0.9997. Mercury was analyzed on 04/17/06 with a correlation coefficient of 0.9998. All ICV/CCV criteria were met. No qualifiers were applied. Table 2 summarizes the MRL standard analysis. Samples with concentrations detected less than two times the MRL with out of criteria MRL recovery were qualified.

Table 2 MRL Analysis Summary

Analysis Date	Analysis	MRL (μg/L)	MRL %Recovery	Qualified samples @ <2xMRL	Validation Qualifiers
04/18/06	ICP-Sb	5.0	148%	16-4, 28MW2, 48MW3, 51MW1, C1, C4, TM13MW1	К
04/18/06	ICP-Be	4.0	122%, 150%, 130%	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1, TM48MW1	К
04/18/06	ICP-K	5000	64.4%, 71.0%, 52.2%, 70.4%	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1, TM48MW1	L, UL
04/18/06	ICP-Na	5000	62.0%, 70.0%, 52.2%, 70.4%	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4	L, UL
04/14/06	Hg	1.0	75.0%	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1	L, UL
04/17/06	Hg	1.0	All within criteria	None	None

III-Blanks

Blanks (preparation and calibration blanks) are assessed to determine the existence and magnitude of contamination problems. No contaminants should be detected (i.e. <MDL) in any of the associated blanks. USACE Shell limits are <½MRL for the method blank. Samples are qualified "B" when they are less than 5X the absolute value of the maximum blank concentration. **Table 3** summarizes the blank contamination analysis. Rinse blank 041206R (F39990-8) (low-flow pump) applies to all samples in this SDG.

Table 3 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. μg/L	Action Level μg/L	B qualified samples
04/18/06	Aluminum	ICB/CCBs	96.9J	485	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, TM13MW1, TM48MW1
04/18/06	Antimony	ICB/CCBs	3.7J	18.5	16-4, 28MW2, 48MW3, 51MW1, C1, C4, TM13MW1
04/18/06	Beryllium	ICB/CCBs	2.3J	11.5	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1, TM48MW1
04/18/06	Cobalt	ICB/CCBs	0.58J	2.9	48MW2
04/18/06	Copper	ICB/CCBs	1.7J	8.5	48MW2, C4
04/18/06	Iron	ICB/CCBs	19.3J	96.5	13MW2, 28MW2, 48MW3, 48MW4, 51MW2
04/18/06	Lead	ICB/CCBs	1.6J	8.0	13MW2, 16-4, 28MW2, 48MW1, 48MW2, 48MW3, 51MW1, C4
04/18/06	Magnesium	ICB/CCBs	28.1J	141	None
04/18/06	Manganese	ICB/CCBs	0.54J	2.7	13MW2, 28MW2, 48MW3, 48MW4, 51MW2
04/18/06	Potassium	ICB/CCBs	41.5J	208	None
04/18/06	Sodium	ICB/CCBs	550J	2750	13MW2, 16-4, 28MW1, 28MW2, 48MW2, 48MW3, 51MW1, 51MW2, C4
04/18/06	Vanadium	ICB/CCBs	0.69J	3.5	13MW1, 16-4, 28MW1, 48MW1, 48MW2, 48MW3, C1, C4, TM13MW1, TM48MW1
04/14/06	Mercury	ICB/CCBs	<mdl< td=""><td>NA</td><td>None</td></mdl<>	NA	None
04/17/06	Mercury	ICB/CCBs	0.11J	0.55	None

Table 3 Blank Contamination Analysis Summary, Continued

Analysis Date	Analysis	QC Blank ID	Max Conc. μg/L	Action Level μg/L	B qualified samples
04/18/06	Aluminum	MP9496-MB	76.6J	383	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1
04/18/06	Beryllium	MP9496-MB	2.0J	10.0	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1, TM48MW1
04/18/06	Copper	MP9496-MB	1.4J	7.0	48MW2, C4
04/18/06	Iron	MP9496-MB	8.8J	44.0	13MW2, 28MW2, 48MW3, 51MW2
04/18/06	Magnesium	MP9496-MB	7.8J	39.0	None
04/18/06	Manganese	MP9496-MB	0.29J	1.5	13MW2, 28MW2
04/18/06	Sodium	MP9496-MB	220J	1100	13MW2, 16-4, 48MW2, 48MW3, 51MW1, 51MW2, C4
04/18/06	Thallium	MP9496-MB	4.0J	20.0	Noné
04/14/06	Mercury	MP9477-MB	<mdl< td=""><td>NA</td><td>None</td></mdl<>	NA	None
04/17/06	Mercury	MP9486-MB	<mdl< td=""><td>NA</td><td>None</td></mdl<>	NA	None
04/18/06	Aluminum	041206R	72J	360	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1
04/18/06	Beryllium	041206R	1.7J	8.5	13MW1, 13MW2, 16-4, 28MW1, 28MW2, 48MW1, 48MW2, 48MW3, 48MW4, 51MW1, 51MW2, C1, C4, TM13MW1, TM48MW1
04/18/06	Magnesium	041206R	11.5J	57.5	None
04/18/06	Manganese	041206R	0.26J	1.3	13MW2
04/14/06	Mercury	041206R	<mdl< td=""><td>NA</td><td>None</td></mdl<>	NA	None

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

IV-ICP Interference Check Sample (ICS)

The ICP interference check sample (ICS) verifies interelement and background correction factors. ICP Interference Check is performed at the beginning and end of each sample analysis run. Control limits are 80-120% (USACE limits 80-120%).

All criteria were met. No qualifiers were applied.

V-Laboratory Control Samples (LCS)

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. All aqueous LCS results must fall within the control limits of 80-120% for ICP and mercury. USACE Shell limits for metals are 80-120% (60-140% for sporadic marginal failures (SMF)).

- Sample MP9496-BS was used as LCS for ICP metals analysis. All criteria were met. No qualifiers were applied.
- Sample MP9477-BS was used as LCS for mercury analysis performed on 04/14/06. All criteria were met. No qualifiers were applied.
- Sample MP9486-BS was used as LCS for mercury analysis performed on 04/17/06. All criteria were met. No qualifiers were applied.

VI-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analyses are also performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits. USACE Shell limits for metals are 25% RPD for ICP metals and 20% RPD for mercury.

- Sample 48MW3 (F39990-17) was used as laboratory duplicate for ICP metals analysis.
 Antimony (68.8%), chromium (26.1%), lead (200%), sodium (60.3%), and vanadium (27.5%) were above criteria limits. Antimony, chromium, lead, sodium, and vanadium were outside due to low sample concentrations (i.e. <MRL); therefore, no qualifiers were applied based upon these outliers. For all other metals, all criteria were met. No qualifiers were applied.</p>
- Sample F39863-5 was performed as laboratory duplicate for mercury on 04/14/06. This sample is not a RFAAP source sample; therefore, it was not evaluated.
- Sample F40032-8 was performed as laboratory duplicate for mercury on 04/17/06. This sample is not a RFAAP source sample; therefore, it was not evaluated.

VII-Matrix Spike/Spike Duplicate

MS/MSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike and matrix spike duplicate samples at a frequency of one MS and MSD per 20 samples of similar matrix. MS and MSD recoveries and relative percent differences between MS and MSD recoveries should be within the specified limits. USACE Shell limits for metals are 75-125%; RPD≤25% for ICP metals and 80-120%; RPD≤20% for mercury. Post digestion spikes limits are 75-125% for ICP metals and 85-115% for mercury.

- Sample 48MW3 (F39990-17) was used as laboratory MS/MSD for ICP metals analysis. All criteria were met. No qualifiers were applied.
- Sample F39863-5 was performed as MS/MSD for mercury on 04/14/06. This sample is not a RFAAP source sample; therefore, it was not evaluated.
- Sample F40032-8 was performed as MS/MSD for mercury on 04/17/06. This sample is not a RFAAP source sample; therefore, it was not evaluated.

VIII-ICP Serial Dilution

An ICP serial dilution is performed to determine whether significant physical or chemical interferences exist due to sample matrix at high concentrations. An analysis of a 5-fold dilution should agree within 10% difference of the original result when the concentration in sample is a factor of 50 above MDL.

• The serial dilution for total metals for the ICP was analyzed using sample 48MW3 (F39990-17). Aluminum (363%), antimony (100%), beryllium (409%), chromium (100%), lead (100%), manganese (17.6%), potassium (36.4%), selenium (232%), sodium (100%), and vanadium (100%) were outside of criteria limits. Sample concentrations were <50 times MDL for aluminum, antimony, beryllium, chromium, lead, manganese, selenium, sodium, and vanadium; therefore, no qualifiers were applied based upon these outliers. For potassium, all detects were qualified estimated "J" and non-detects no qualifier based upon this outlier.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

Field groundwater sample duplicate pair 13MW1 (F39990-9) and TM13MW1 (F39990-10) was collected for TAL metals. All detected metals found in the sample and its duplicate pair and associated %RPD are noted in Table 4. All other metals were non-detect. All detected metals were within criteria. No qualifiers were applied.

Table 4 Field Precision Hits Analysis Summary for Metals for Duplicate Pair 13MW1 (F39990-9) and TM13MW1 (F39990-10)

Compound	Original Sample (µg/L)	Duplicate Pair (µg/L)	%RPD
Aluminum	360	435	18.9
Antimony	2.2U	3.7J	NA
Barium	134J	136J	1.5
Beryllium	2.1J	2.1J	0.0
Calcium	114000	117000	2.6
Chromium	2.8J	4.6J	48.7
Iron	264J	376	35.0
Magnesium	34400	35100	2.0
Manganese	5.4J	6.6J	20.0
Potassium	1480J	1540J	4.0
Selenium	5.5J	7.2J	26.8
Sodium	9310	10300	10.1
Vanadium	0.98J	1.6J	48.1
Zinc	1.4J	1.5J	6.9

U = Value non-detect as <MDL.

Field groundwater sample duplicate pair 48MW1 (F39990-14) and TM48MW1 (F39990-15) was collected for TAL metals. All detected metals found in the sample and its duplicate pair and associated %RPD are noted in **Table 5**. All other metals were non-detect. Manganese (59.1%) and zinc (55.3%) were outside field precision criteria and were qualified estimated "J" for the duplicate pair based upon the high %RPDs. The high %RPDs for manganese and zinc are probably resultant of high variability given the low concentrations below the laboratory MRL and/or matrix effects. All other detected metals were within criteria.

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

NA = Not Applicable.

Table 5 Field Precision Hits Analysis Summary for Metals for Duplicate Pair 48MW1 (F39990-14) and TM48MW1 (F39990-15)

Compound	Original Sample (µg/L)	Duplicate Pair (μg/L)	%RPD
Aluminum	606	452	29.1
Barium	105J	92.6J	12.6
Beryllium	1.8J	2.0J	10.5
Calcium	67400	69900	3.6
Chromium	1.7J	1.2J	34.5
Iron	617	387	45.8
Lead	2.0J	1.2U	NA
Magnesium	35300	35400	0.3
Manganese	10.3J	5.6J	59.1
Nickel	1.2J	1.1U	NA
Potassium	2020J	2060J	2.0
Selenium	3.2J	2.4U	NA
Sodium	13700	14900	8.4
Vanadium	1.3J	1.2J	8.0
Zinc	3.0J	1.7J	55.3

U = Value non-detect as <MDL.

X-Quantitation Verification

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J." The following calculations were performed for verification.

ICP Sample: 51MW1 (F39990-1), Total Barium

Conc. $(\mu g/L) = (\text{conc. } \mu g/L) *(\text{Final Volume mL}) * (DF) / (Volume Sample mL)$

Conc. $(\mu g/L) = (45.3 \ \mu g/L)*(50 \ mL)*(1) / (50 \ mL) = 45.3 \ \mu g/L$

Reported concentration = 45.3 µg/L

 $\%\dot{D} = 0.0\%$

Values were within 10% difference.

CVAA Sample: MP9477-BS, Total Mercury

Conc. $(\mu g/L) = (conc. \mu g/L) *(Final Volume mL) * (DF) / (Volume Sample mL)$

Conc. $(\mu g/L) = (2.91 \ \mu g/L)*(50 \ mL)*(1) / (50 \ mL) = 2.9 \ \mu g/L$

Reported concentration = 2.9 µg/L

%D = 0.0%.

Values were within 10% difference.

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

NA = Not Applicable.

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and \leq MRL or \leq 3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

D = Indicates sample was analyzed at a dilution.

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration <MRL and $\ge MDL$.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

N (Metals) = Laboratory spike sample recovery not within control limits.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

* (Metals) = Duplicate analysis not within control limits.

* (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Report of Analysis

Page 1 of 1

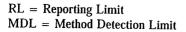
Client Sample ID: 51MW1 Lab Sample ID:

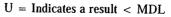
F39990-1

AQ - Ground Water

Date Sampled: 04/11/06 Date Received: 04/13/06

Percent Solids: n/a


Project:


Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	282 B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	3.6 J B	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Barium	45.3 J J	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.0 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	18900	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	
Chromium	0.59 J 🍑	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴ SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	547	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A -
Lead	1.3 J B	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	7440	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	
Manganese	60.6	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Mercury	0.080 U V I	L1.0	0.080	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A 1	SW846 3010A 4
Nickel	1.1J 丁	40	1.1	ug/l	1	04/18/06	04/14/00 MS 04/18/06 RS	SW846 6010B ²	SW846 7470A 3
Potassium	1070 J 丁	5000	36	ug/l	î		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Selenium	2.4 U	10	2.4	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Sodium	256 J B	5000	77	ug/l	1		04/18/06 RS		SW846 3010A 4
Thallium	3.8 U	10	3.8	ug/l	1			SW846 6010B ²	SW846 3010A 4
Vanadium	0.60 U	50	0.60	ug/l	1			SW846 6010B ²	SW846 3010A 4
Zinc	3.4 J J	20	0.80	ug/l	1	04/18/06		SW846 6010B ² SW846 6010B ²	SW846 3010A ⁴ SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: 51MW2 Lab Sample ID:

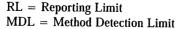
F39990-2

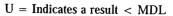
AQ - Ground Water

Date Sampled: 04/10/06

Date Received: 04/13/06

Percent Solids: n/a


Project:


Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed E	Зу	Method	Prep Method
Aluminum	100 J B	200	16	ug/l	1	04/18/06	04/18/06 R	25	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06			SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06			SW846 6010B ²	SW846 3010A 4
Barium	40.8 J J	200	0.50	ug/l	1	04/18/06			SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.1 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 R	_	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 R	-	SW846 6010B ²	SW846 3010A 4
Calcium	53700	1000	26	ug/l	1	04/18/06	04/18/06 R		SW846 6010B ²	SW846 3010A 4
Chromium	1.3 J T	10	0.50	ug/l	1	04/18/06	04/18/06 R	_	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 R		SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 R		SW846 6010B ²	SW846 3010A 4
Iron	42.2 J B	300	7.5	ug/l	1	04/18/06	04/18/06 RS		SW846 6010B ²	SW846 3010A ⁴
Lead	1.2 U	5.0	1.2	ug/l	1		04/18/06 RS	_	SW846 6010B ²	SW846 3010A ⁴
Magnesium	15600	5000	5.8	ug/l	1		04/18/06 RS	_	SW846 6010B ²	SW846 3010A ⁴
Manganese	1.8 J B	15	0.20	ug/l	1	04/18/06	04/18/06 RS		SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U V	L 1.0	0.080	ug/l	1	04/14/06	04/14/06 M	_	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1		04/18/06 RS	-	SW846 6010B ²	SW846 3010A 4
Potassium	1220 J 丁	5000	36	ug/l	1			-	SW846 6010B ²	SW846 3010A ⁴
Selenium	2.4 U	10	2.4	ug/l	1		04/18/06 RS	-	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	-	SW846 6010B ²	SW846 3010A ⁴
Sodium	713 J B	5000	77	ug/l	1		04/18/06 RS		SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1		04/18/06 RS		SW846 6010B ²	
Vanadium	0.60 U	50	0.60	ug/l	1		04/18/06 RS		SW846 6010B ²	SW846 3010A ⁴ SW846 3010A ⁴
Zinc	2.1 J 丁	20	0.80	ug/l	1		04/18/06 RS		SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

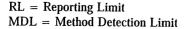
Client Sample ID: 16-4

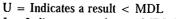
Lab Sample ID: F39990-3

Matrix:

AQ - Ground Water

Date Sampled: 04/10/06 Date Received: 04/13/06


Percent Solids: n/a


Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	236 B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	3.2 J B	5.0	2.2	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Barium	149 J ブ	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.0 J B	4.0	0.70	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	36300	1000	26	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	0.74 J ブ	10	0.50	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Iron	174 J 丁	300	7.5	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Lead	2.0 J B	5.0	1.2	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Magnesium	22700	5000	5.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Manganese	5.1 J T	15	0.20	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Mercury	0.080 U V	$L_{1.0}$	0.080	ug/l	1		04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	1030 J ブ	5000	36	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Selenium	2.4 U	10	2.4	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Silver	0.90 U	10	0.90	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A
Sodium	385 J B	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Vanadium	0.70 J G	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	0.91 J T	20	0.80	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

Report of Analysis

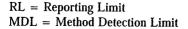
Page 1 of 1

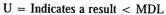
Client Sample ID: 28MW2

Lab Sample ID: F39990-4 Matrix: AQ - Gro

AQ - Ground Water

Date Sampled: 04/11/06 Date Received: 04/13/06


Percent Solids: n/a


Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	109 J B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	3.7 J B	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Barium	384	200	0.50	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.0 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	40100	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	1.3 J 丁	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	31.8 J B	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	1.8 J B	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	20000	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Manganese	1.5 J B	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U V l	-1.0	0.080	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	1710 J 丁	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	2.4 U	10	2.4	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	2170 J B	5000	77	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	0.60 U	50	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	4.8 J J	20	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: 28MW1

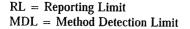
Lab Sample ID: F39990-5

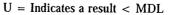
Matrix:

AQ - Ground Water

Date Sampled: 04/11/06

Date Received: 04/13/06


Percent Solids: n/a


Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	88.6 J B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Barium	455	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.1 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	78200	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	0.50 U	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	7.5 U	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	1.2 U	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	49800	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Manganese	22.4	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U V	L1.0	0.080	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	1530 J T	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	4.9 J 丁	10	2.4	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	2570 J B	5000	77	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	0.64 J B	50	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	0.80 U	20	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

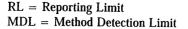
Client Sample ID: C4

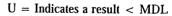
Lab Sample ID:

F39990-6

AQ - Ground Water

Date Sampled: 04/11/06


Date Received: 04/13/06 Percent Solids: n/a


Matrix: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	554	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	4.2 J B	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Arsenic	53.9	10	2.9	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Barium	177 J 🍑	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.1 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	34700	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	2.0 J T	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Copper	6.9 J 💪	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	4830	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	7.8 B	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	20400	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Manganese	47.6	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U V	L1.0	0.080	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 J J	40	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	867 J	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	2.4 U	10	2.4	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	104 J ₿	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	1.8 J ß	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Zinc	22.3	20	0.80	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW4 Lab Sample ID:

F39990-7

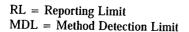
AQ - Ground Water

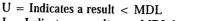
Date Sampled: 04/11/06

Date Received: 04/13/06 Percent Solids: n/a

Project:

Matrix:


Radford AAP; SWMU 48, 49, 50, 51 & 59


Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	113 J 🛭 🖰	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	CINO AC DOLO A
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06			SW846 3010A ⁴
Barium	167 J J	200	0.50	ug/l	1	04/18/06	0 1/10/00 100	SW846 6010B ²	SW846 3010A 4
Beryllium	2.1 J B	4.0	0.70	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Calcium	58600	1000	26	ug/l ug/l	1			SW846 6010B ²	SW846 3010A ⁴
Chromium	0.86 J J	1000	0.50		_	04/18/06	110	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.30	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Copper	0.40 U	25		ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	62.8 J B		0.80	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Lead		300	7.5	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
	1.2 U	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Magnesium	49600	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Manganese	2.6 J B	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U VL		0.080	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Potassium	1600 J 丁	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Selenium	2.4 U	10	2.4	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A -
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	
Sodium	8230 L	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Thallium	3.8 U	10	3.8	ug/l	1		0.44045		SW846 3010A ⁴
Vanadium	0.60 U	50	0.60	ug/l	1			SW846 6010B ²	SW846 3010A 4
Zinc	1.4 J 丁	20	0.80	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
	J	20	0.00	ug/1	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA4917 (2) Instrument QC Batch: MA4923 (3) Prep QC Batch: MP9477

(4) Prep QC Batch: MP9496

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

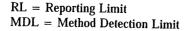
Client Sample ID: 13MW1

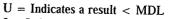
Lab Sample ID: Matrix:

Project:

F39990-9

AQ - Ground Water


Date Sampled: 04/12/06


Date Received: 04/13/06 Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	360 B	200	16	ug/l	1	04/18/06	04/18/06 RS	CHICAG 0010D 2	
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06	0.4/4.0/0.5	SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	î	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Barium	134 J 丁	200	0.50	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Beryllium	2.1 J B	4.0	0.70	ug/l	1	04/18/06	115	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Calcium	114000	1000	26	ug/l	î	04/18/06		SW846 6010B ²	SW846 3010A 4
Chromium	2.8 J J	10	0.50	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Cobalt	0.40 U	50	0.40	ug/i ug/i	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Iron	264 J T	300	7.5	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	1.2 U	5.0	1.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Magnesium	34400	5000	5.8		1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Manganese	5.4 J J	15	0.20	ug/l		04/18/06		SW846 6010B ²	SW846 3010A ⁴
Mercury	ע ט 080.0		0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Nickel	1.1 U	40	1.1	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Potassium	1480 J 丁	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	5.5 J T	10	30 2.4	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10		ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	9310 L	5000	0.90 77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U			ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	_	10	3.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	0.98 J B	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Ziiit	1.4 J J	20	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: TM13MW1

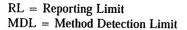
Lab Sample ID: Matrix:

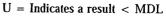
F39990-10

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06


Percent Solids: n/a


Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	435 B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	3.7 J B	5.0	2.2	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Barium	136 J 🍑	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.1 J B	4.0	0.70	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	117000	1000	26	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Chromium	4.6 J 丁	10	0.50	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	376	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	1.2 U	5.0	1.2	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	35100	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Manganese	6.6 J J	15	0.20	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U VI	_1.0	0.080	ug/l	1		04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	1540 J T	5000	36	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	7.2 J 丁	10	2.4	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Silver	0.90 U	10	0.90	ug/l	1			SW846 6010B ²	SW846 3010A ⁴
Sodium	10300	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Thallium	3.8 U	10	3.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Vanadium	1.6 J B	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Zinc	1.5 J J	20	0.80	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: 13MW2

Lab Sample ID:

F39990-11

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	133 J В	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	07770.40.40.41.4.4
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06			SW846 3010A 4
Barium	156 J 丁	200	0.50	ug/l	1	04/18/06	0 2. 20. 00 10	SW846 6010B ²	SW846 3010A 4
Beryllium	2.0 J B	4.0	0.70	ug/l	1	04/18/06	A	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	24/12/2	SW846 6010B ²	SW846 3010A 4
Calcium	94900	1000	26	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Chromium	3.2 J J	10	0.50	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Copper	0.80 U	25	0.80	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Iron	29.7 J B	300	7.5		1		0.44.5.45.5	SW846 6010B ²	SW846 3010A ⁴
Lead	1.6 J B	5.0	1.2	ug/l		04/18/06		SW846 6010B ²	SW846 3010A ⁴
Magnesium	38800	5000	5.8	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Manganese	1.3 J B	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U V			ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Nickel	1.1 U	40	0.080	ug/l	1		04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Potassium	1190 J J	5000	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	2.4 U		36	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	2.4	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Sodium		10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
	81.0 J B	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	0.60 U	50	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	0.80 U	20	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA4917 (2) Instrument QC Batch: MA4923 (3) Prep QC Batch: MP9477

(4) Prep QC Batch: MP9496

RL = Reporting Limit MDL = Method Detection Limit

U = Indicates a result < MDL

J = Indicates a result > = MDL but < RL

Report of Analysis

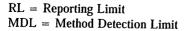
Page 1 of 1

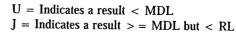
Client Sample ID: C1

Lab Sample ID: Matrix: F39990-12

AQ - Ground Water

Date Sampled: 04/12/06


Date Received: 04/13/06 Percent Solids: n/a


Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	57.0 J B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.6 J B	5.0	2.2	ug/l	1			SW846 6010B ²	SW846 3010A
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Barium	181 J 🎵	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A
Beryllium	1.9 J B	4.0	0.70	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A
Calcium	105000	1000	26	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A
Chromium	0.50 U	10	0.50	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Iron	7.5 U	300	7.5	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Lead	1.2 U	5.0	1.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Magnesium	38100	5000	5.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Manganese	7.1 J J	15	0.20	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Mercury	0.080 U V I	L _{1.0}	0.080	ug/l	1	04/14/06	04/14/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Potassium	2720 J 🎵	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Selenium	2.8 J J	10	2.4	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Sodium	4250 J ∟	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Thallium	3.8 U	10	3.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Vanadium	0.82 J B	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A
Zinc	0.80 U	20	0.80	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4

Report of Analysis

Page 1 of 1

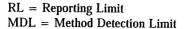
Client Sample ID: 48MW1

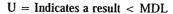
Lab Sample ID: F39990-14

Matrix:

AQ - Ground Water

Date Sampled: 04/13/06


Date Received: 04/15/06 Percent Solids: n/a


Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	606	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Barium	105 J ブ	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	1.8 J ₿	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	67400	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	1.7」 丁	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	617	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	2.0 J B	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	35300	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Manganese	10.3 J 丁	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U	1.0	0.080	ug/l	1	04/17/06	04/17/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.2 J 丁	40	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	2020 J 丁	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	3.2 J J	10	2.4	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	13700	5000	77	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	1.3 J B	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Zinc	3.0 J J	20	0.80.	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

Client Sample ID: TM48MW1

Lab Sample ID: Matrix:

F39990-15

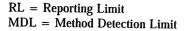
AQ - Ground Water

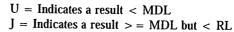
Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

Project:


Radford AAP; SWMU 48, 49, 50, 51 & 59


Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	452 B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Barium	92.6 J J	200	0.50	ug/l	1	04/18/06		SW846 6010B ²	
Beryllium	2.0 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Calcium	69900	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Chromium	1.2 J T	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Iron	387	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Lead	1.2 U	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Magnesium	35400	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B 2	SW846 3010A 4
Manganese	5.6 J J	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U	1.0	0.080	ug/l	î	04/17/06	04/17/06 MS	_	SW846 3010A 4
Nickel	1.1 U	40	1.1	ug/l	1	04/18/06	04/17/00 MS 04/18/06 RS	SW846 7470A 1	SW846 7470A ³
Potassium	2060 J 丁	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Selenium	2.4 U	10	2.4	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Sodium	14900	5000	77	ug/l	1			SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1			SW846 6010B ²	SW846 3010A 4
Vanadium	1.2 J B	50	0.60	ug/l ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Zinc	1.7 J J	20	0.80		1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
	J	20	0.00	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA4920 (2) Instrument QC Batch: MA4923 (3) Prep QC Batch: MP9486

(4) Prep QC Batch: MP9496

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW2

Lab Sample ID: Matrix:

F39990-16

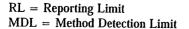
AQ - Ground Water

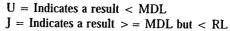
Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

Project:


Radford AAP; SWMU 48, 49, 50, 51 & 59


Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2630	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Barium	615	200	0.50	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.0 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Calcium	89700	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	6.4 J ブ	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cobalt	1.3 J ₿	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Copper	0.83 J B	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	2960	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B	SW846 3010A ⁴
Lead	1.3 J B	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	44800	5000	5.8	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴
Manganese	50.7	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U*_	1.0	0.080	ug/l	1		04/17/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	4.9 J T	40	1.1	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A 4
Potassium	1690 J 丁	5000	36	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	2.4 J J	10	2.4	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	311 J 💪	5000	77	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	6.3 J B	50	0.60	ug/l	1		04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	11.7 J T	20	0.80	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA4920 (2) Instrument QC Batch: MA4923 (3) Prep QC Batch: MP9486

(4) Prep QC Batch: MP9496

Report of Analysis

Page 1 of 1

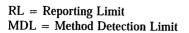
Client Sample ID: 48MW3 Lab Sample ID:

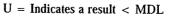
F39990-17

AQ - Ground Water

Date Sampled: 04/13/06

Date Received: 04/15/06 Percent Solids: n/a


Project:


Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	82.6 J B	200	16	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	4.3 J B	5.0	2.2	ug/l	1	04/18/06		SW846 6010B ²	SW846 3010A 4
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Barium	50.4 J T	200	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Beryllium	2.2 J B	4.0	0.70	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	102000	1000	26	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Chromium	1.0 J J	10	0.50	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Iron	8.9 J ₿	300	7.5	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Lead	2.7 J β	5.0	1.2	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Magnesium	42800	5000	5.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Manganese	1.8 J B	15	0.20	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U	1.0	0.080	ug/l	1	04/17/06	04/17/06 MS	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Potassium	1230 J 丁	5000	36	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Selenium	5.2 J 🍼	10	2.4	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Sodium	1030 J ₿	5000	77	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Vanadium	0.91 J B	50	0.60	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴
Zinc	0.80 U	20	0.80	ug/l	1	04/18/06	04/18/06 RS	SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

Report of Analysis

Page 1 of 1

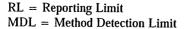
Client Sample ID: 041206R Lab Sample ID:

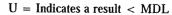
F39990-8

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06 Percent Solids: n/a


Project:


Matrix:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed I	Зу	Method	Prep Method
Aluminum	72.0 J J	200	16	ug/l	1	04/18/06	04/18/06 F	RS	SW846 6010B ²	SW846 3010A ⁴
Antimony	2.2 U	5.0	2.2	ug/l	1	04/18/06	04/18/06 F		SW846 6010B ²	SW846 3010A
Arsenic	2.9 U	10	2.9	ug/l	1	04/18/06	04/18/06 R	-	SW846 6010B ²	SW846 3010A 4
Barium	0.50 U	200	0.50	ug/l	1	04/18/06	04/18/06 R	RS	SW846 6010B ²	SW846 3010A 4
Beryllium	1.7 J	4.0	0.70	ug/l	1	04/18/06	04/18/06 R		SW846 6010B ²	SW846 3010A ⁴
Cadmium	0.60 U	5.0	0.60	ug/l	1	04/18/06	04/18/06 R	RS	SW846 6010B ²	SW846 3010A ⁴
Calcium	26 U	1000	26	ug/l	1	04/18/06	04/18/06 R		SW846 6010B ²	SW846 3010A ⁴
Chromium	0.50 U	10	0.50	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Cobalt	0.40 U	50	0.40	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Copper	0.80 U	25	0.80	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Iron	7.5 U	300	7.5	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Lead	1.2 U	5.0	1.2	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Magnesium	11.5 J J	5000	5.8	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Manganese	0.26 J 丁	15	0.20	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Mercury	0.080 U	1.0	0.080	ug/l	1	04/14/06	04/14/06 M	1S	SW846 7470A ¹	SW846 7470A ³
Nickel	1.1 U	40	1.1	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Potassium	36 U	5000	36	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Selenium	2.4 U	10	2.4	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Silver	0.90 U	10	0.90	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Sodium	77 U	5000	77	ug/l	1	04/18/06	04/18/06 R	S	SW846 6010B ²	SW846 3010A ⁴
Thallium	3.8 U	10	3.8	ug/l	1	04/18/06	04/18/06 RS	S	SW846 6010B ²	SW846 3010A ⁴
Vanadium	0.60 U	50	0.60	ug/l	1	04/18/06	04/18/06 RS	s	SW846 6010B ²	SW846 3010A ⁴
Zinc	0.80 U	20	0.80	ug/l	1	04/18/06	04/18/06 RS	S	SW846 6010B ²	SW846 3010A ⁴

J = Indicates a result > = MDL but < RL

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Explosives, PETN, & Nitroglycerine

Accutest Laboratories, Inc., SDG F39990

DATE:

May 5, 2006

The purpose of this memorandum is to present the data validation report for the samples collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. Samples were analyzed for explosives using USEPA SW-846 3535A/8330A and for nitroglycerine and PETN using USEPA SW-846 3535A/8332. A total of fifteen aqueous samples were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
51MW1	F39990-1	TM13MW1	F39990-10
51MW2	F39990-2	13MW2	F39990-11
16-4	F39990-3	C1	F39990-12
28MW2	F39990-4	48MW1	F39990-14
28MW1	F39990-5	TM48MW1	F39990-15
C4	F39990-6	48MW2	F39990-16
48MW4	F39990-7	48MW3	F39990-17
13MW1	F39990-9		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, USACE Shell for Analytical Chemistry Requirements, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed	Parameter					
Yes	No						
	Х	Holding Times and Preservation					
	Х	Blank Analysis					
	X	Initial Calibration					
	Х	Continuing Calibration					
	Χ	System Monitoring Compounds					
	Χ	Laboratory Control Sample					
	Χ	Matrix Spike/Spike Duplicate					
	Х	Field Duplicate					
	Χ	Quantitation Verification					

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

5/5/06

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG F39990

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For explosive compounds in cooled ($@4^{\circ}C \pm 2^{\circ}C$) aqueous samples, the maximum holding time is 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 04/10/06, 04/11/06, 04/12/06, and 04/13/06. For samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12), the explosives were extracted on 04/17/06 and analyzed on 04/21/06 and 04/22/06. PETN and nitroglycerine were extracted 04/17/06 and analyzed 04/17/06. For samples, 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17), the explosives were extracted on 04/20/06 and analyzed on 04/22/06. PETN and nitroglycerine were extracted 04/20/06 and analyzed 04/27/06. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5X) the maximum amount for explosive target compounds. Table 2 summarizes the blank contamination analysis. Rinse blank 041206R (F39990-8) (low-flow pump) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis	QC Blank ID	Compound	Max Conc.	Action Level	B qualified samples
Date			μ g/L	μ g/L	
04/21/06	OP16313-MB	All target explosives < MRL	NA	NA	None
04/22/06	OP16360-MB	All target explosives < MRL	NA	NA	None
04/24/06	OP16360-MB	All target explosives < MRL	NA	NA	None
04/25/06	OP16360-MB	All target explosives < MRL	NA	NA	None
04/17/06	OP16314-MB	PETN & NG < MRL	NA	NA	None
04/27/06	OP16361-MB	PETN & NG < MRL	NA	NA	None
04/22/06	041206R	All target explosives < MRL	NA	NA	None
04/17/06	041206R	PETN & NG < MRL	NA	NA	None

MRL = Method Reporting Limit

NA = Not Applicable

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The correlation coefficient (r^2) must be ≥0.990 and/or the percent relative standard deviation (%RSD) must be ≤15%. All detects were qualified as estimated "J" for where there were exceeding %RSDs, and all non-detects were qualified as estimated "UJ" for where there were grossly exceeding recoveries. Grossly exceeding is defined as twice the established criteria limits.

- For the explosives initial calibration performed on 03/14/06 on instrument G1315B, all criteria were met for target compounds. All compounds were determined using calibration factors with RSDs ≤15%. No qualifiers were applied. No samples reported apply to this initial calibration.
- For the explosives initial calibration performed on 03/29/06 on instrument G1315B, all criteria were met for target compounds. All compounds were determined using calibration factors with RSDs ≤15%. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), C1 (F39990-12), 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this initial calibration.
- For the PETN and nitroglycerine initial calibration performed on 12/08/05 on instrument G1315B, all criteria were met for target compounds. All compounds were determined using calibration factors with RSDs ≤15%. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), C1 (F39990-12), 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The percent difference (%D) from initial calibration should be no greater than $\pm 15\%$. All detects were qualified as estimated "J" for where there were exceeding %Ds, and all non-detects were qualified as estimated "UJ" for where there were grossly exceeding recoveries. Grossly exceeding is defined as twice the established criteria limits.

- For explosives continuing calibration performed on 04/21/06 @21:05 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), and 48MW4 (F39990-7) apply to this continuing calibration.
- For explosives continuing calibration performed on 04/22/06 @02:09 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), C1 (F39990-12), 48MW1 (F39990-14), TM48MW1 (F39990-15) apply to this continuing calibration.
- For explosives continuing calibration performed on 04/22/06 @07:39 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), C1 (F39990-12), 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.

- For explosives continuing calibration performed on 04/22/06 @13:10 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.
- For explosives continuing calibration performed on 04/24/06 @09:35 on instrument G1315B, all criteria
 were met for target compounds. No qualifiers were applied. No samples reported apply to this
 continuing calibration.
- For explosives continuing calibration performed on 04/24/06 @12:48 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), C1 (F39990-12), and 48MW1 (F39990-14) re-analysis check applies to this continuing calibration.
- For explosives continuing calibration performed on 04/25/06 @08:02 on instrument G1315B, m-nitrotoluene (16.4%) was outside criteria for signal #2. Signal #1 was within criteria. All samples were non-detect for m-nitrotoluene, therefore no qualifiers were applied based upon this outlier. Samples 51MW1 (F39990-1), C1 (F39990-12), and 48MW1 (F39990-14) re-analysis check applies to this continuing calibration.
- For explosives continuing calibration performed on 04/25/06 @12:21 on instrument G1315B, all criteria
 were met for target compounds. No qualifiers were applied. No samples reported apply to this
 continuing calibration.
- For PETN and nitroglycerine continuing calibration performed on 04/17/06 @20:32 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), and 48MW4 (F39990-7), apply to this continuing calibration.
- For PETN and nitroglycerine continuing calibration performed on 04/17/06 @22:06 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this continuing calibration.
- For PETN and nitroglycerine continuing calibration performed on 04/17/06 @23:23 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this continuing calibration.
- For PETN and nitroglycerine continuing calibration performed on 04/27/06 @15:57 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.
- For PETN and nitroglycerine continuing calibration performed on 04/27/06 @17:14 on instrument G1315B, all criteria were met for target compounds. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits.

Criteria:

3,4-dinitrotoluene (61-124%) (USACE Shell Criteria: 50-150%)

All criteria were met for explosives, PETN, and nitroglycerine. No qualifiers were applied.

VI-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor long-term accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. USACE Shell limits for explosives are 60-120% (40-150% for sporadic marginal failures (SMF)).

- Sample OP16313-BS was used as LCS for explosives analyzed on 04/21/06. A total of 14 compounds were spiked, allowing for 1 SMF tolerance. All criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.
- Sample OP16360-BS was used as LCS for explosives analyzed on 04/22/06. A total of 14 compounds were spiked, allowing for 1 SMF tolerance. Compound 1,3,5-trinitrobenzene (116%) was above laboratory criteria, however within USACE and SMF criteria. No qualifiers were applied based upon this outlier. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.
- Sample OP16360-BS was used as LCS for explosives analyzed on 04/25/06. A total of 14 compounds were spiked, allowing for 1 SMF tolerance. All criteria were met. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.
- Sample OP16314-BS was used as LCS for PETN and nitroglycerine analyzed on 04/17/06. A total of 2 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.
- Sample OP16361-BS was used as LCS for PETN and nitroglycerine analyzed on 04/27/06. A total of 2 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. USACE Shell limits for explosives are 50-140% (40-150% for sporadic marginal failures (SMF)).

- Sample TM13MW1 (F39990-10) was used as the MS/MSD for the explosive analysis on 04/22/06. A
 total of 28 compounds were spiked, allowing for 2 SMF tolerances. All criteria were met. No qualifiers
 were applied.
- Sample 48MW3 (F39990-17) was used as the MS/MSD for the explosive analysis on 04/22/06. A total
 of 28 compounds were spiked, allowing for 2 SMF tolerances. All criteria were met. No qualifiers were
 applied.
- Sample TM13MW1 (F39990-10) was used as the MS/MSD for the PETN and nitroglycerine analysis on 04/17/06. A total of 4 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied.
- Sample 48MW3 (F39990-17) was used as the MS/MSD for the PETN and nitroglycerine analysis on 04/27/06. A total of 4 compounds were spiked, allowing for 0 SMF tolerances. All criteria were met. No qualifiers were applied.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

- Field groundwater sample duplicate pair 13MW1 (F39990-9) and TM13MW1 (F39990-10) was collected for all explosive compounds. All target compounds were non-detect. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 48MW1 (F39990-14) and TM48MW1 (F39990-15) was collected for all explosive compounds. All target compounds were non-detect. All criteria were met. No qualifiers were applied.

IX-Quantitation Verification

The accuracy of analytical results was verified through the calculation of several parameters. The calculation was based calibration factors. The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J".

• The %D between the primary and secondary columns was within criteria for all explosives, PETN, and nitroglycerine. All samples were non-detect for all target explosive compounds.

Sample: TM13MW1-MS (F39990-10MS), 2,4,6-trinitrotoluene

Conc. μ g/L = (Ax * Vt * DF) / (CF * Vs)

where: Conc. = Sample concentration in μg/L

Ax = Area of characteristic ion for compound being measured.

Vt = Volume of total extract (mL).

CF = Average relative calibration factor for compound being measured (from ICAL)

Vs = Volume of sample extracted (mL).

DF = Dilution factor

Conc. $\mu g/L = (1952890 * 10 * 1) / (7359 * 450) = 5.9 \mu g/L (Signal #1)$

Reported Value = 5.9 μg/L

% Difference = 0.0%

Values were within 10% difference

Sample: TM13MW1-MS (F39990-10MS), nitroglycerine

Conc. μ g/L = (Ax * Vt * DF) / (CF * Vs)

where: Conc. = Sample concentration in μ g/L

Ax = Area of characteristic ion for compound being measured.

Vt = Volume of total extract (mL).

CF = Average relative calibration factor for compound being measured (from ICAL)

Vs = Volume of sample extracted (mL).

DF = Dilution factor

Conc. μ g/L = (3305690 * 10 * 1) / (1187 * 470) = 59.3 μ g/L (Signal #1)

Reported Value = $59.3 \mu g/L$

% Difference = 0.0%

Values were within 10% difference

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and \leq MRL or \leq 3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

D = Indicates sample was analyzed at a dilution.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration <MRL and \geq MDL.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

N (Metals) = Laboratory spike sample recovery not within control limits.

- * (Metals) = Duplicate analysis not within control limits.
- * (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Report of Analysis

Page 1 of 1

Client Sam Lab Sampl Matrix: Method: Project:	e ID: F39990 AQ - G SW846	-1 round Water 8330A SW		0, 51 & 59	Date	Sampled Received nt Solids	: 04/13/06	
Run #1 Run #2	File ID GG015422.D	DF 1	Analyzed 04/21/06	By SD	Prep I 04/17/0		Prep Batch OP16313	Analytical Batch GGG710
Run #1 Run #2	Initial Volume 920 ml	Final Volu 10.0 ml	ıme					
CAS No.	Compound		Result	RL	MDL	Units	Q	
2691-41-0 121-82-4 99-65-0 606-20-2 121-14-2 35572-78-2 19406-51-0 98-95-3 88-72-2 99-08-1 99-99-0 479-45-8 99-35-4 118-96-7	HMX RDX 1,3-Dinitrobenz 2,6-Dinitrotoluc 2,4-Dinitrotoluc 2-amino-4,6-Di 4-amino-2,6-Di Nitrobenzene o-Nitrotoluene m-Nitrotoluene p-Nitrotoluene Tetryl 1,3,5-Trinitrobe 2,4,6-Trinitroto	ene ene nitrotoluene nitrotoluene enzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.082 0.082 0.054 0.054 0.054 0.054 0.054 0.065 0.054 0.082 0.054 0.054	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
CAS No.	Surrogate Reco		Run# 1	Run# 2	U.034	_		

61-124%

ND = Not detected

610-39-9

MDL - Method Detection Limit

107%

RL = Reporting Limit

E = Indicates value exceeds calibration range

3,4-Dinitrotoluene

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: 51MW1 Lab Sample ID:

F39990-1

Date Sampled: 04/11/06

Matrix: Method: AQ - Ground Water SW846 8332 SW846 3535A

DF

1

Date Received: 04/13/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analytical Batch

Run #1 Run #2

By SD **Prep Date** 04/17/06

Prep Batch OP16314

GPP435

Initial Volume Final Volume Run #1 920 ml 10.0 ml

Run #2

CAS No. Compound

File ID

PP012740.D

Result

Analyzed

04/17/06

RL

MDL Units

Q

78-11-5 **PETN** 55-63-0

Nitroglycerine

ND ND

2.2 0.54 2.2 0.54 ug/l ug/l

CAS No. Surrogate Recoveries Run# 1

Run# 2

Limits

610-39-9

3,4-Dinitrotoluene

111%

61-124%

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: 51MW2 Lab Sample ID:

File ID

GG015423.D

F39990-2

AQ - Ground Water

DF

1

Date Sampled: 04/10/06

Prep Date

04/17/06

Date Received: 04/13/06

Matrix: Method:

SW846 8330A SW846 3535A

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/21/06

By

SD

Prep Batch OP16313

Analytical Batch GGG710

Run #1 Run #2

Initial Volume Final Volume Run #1 920 ml 10.0 ml

Run #2

CAS No. Compound Result RL **MDL** Units Q 2691-41-0 **HMX** ND 0.22 0.082 ug/l 121-82-4 **RDX** ND 0.22 0.082 ug/l 99-65-0 1,3-Dinitrobenzene ND 0.22 0.054 ug/l 606-20-2 2,6-Dinitrotoluene ND 0.22 0.054 ug/l 121-14-2 2.4-Dinitrotoluene ND 0.22 0.054 ug/l 35572-78-2 2-amino-4,6-Dinitrotoluene ND 0.22 0.054ug/l 19406-51-0 4-amino-2,6-Dinitrotoluene ND 0.22 0.054 ug/l 98-95-3 Nitrobenzene ND 0.22 0.054 ug/l 88-72-2 o-Nitrotoluene ND 0.22 0.065 ug/l 99-08-1 m-Nitrotoluene ND 0.22 0.054ug/l 99-99-0 p-Nitrotoluene ND 0.22 0.054 ug/l 479-45-8 Tetryl ND 0.22 0.082 ug/l 99-35-4 1,3,5-Trinitrobenzene ND 0.22 0.054ug/l 118-96-7 2,4,6-Trinitrotoluene ND 0.22 0.054 ug/l CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 610-39-9

107%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

3,4-Dinitrotoluene

J = Indicates an estimated value

61-124%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

3,4-Dinitrotoluene

Report of Analysis

Page 1 of 1

Client Sar Lab Samp Matrix: Method: Project:	ole ID: F39990 AQ - 0 SW846	D-2 Ground Wate 8 8332 SW		0, 51 & 59	Date 1	Sampled Received nt Solids	: 04/13/06	
Run #1 Run #2	File ID PP012741.D	DF 1	Analyzed 04/17/06	By SD	Prep D 04/17/0		Prep Batch OP16314	Analytical Batch GPP435
Run #1 Run #2	Initial Volume 920 ml	Final Vol 10.0 ml	lume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
78-11-5 55-63-0	PETN Nitroglycerine		ND ND	2.2 2.2	0.54 0.54	ug/l ug/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		

107%

ND = Not detected

610-39-9

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

61-124%

 $B = \mbox{Indicates analyte found in associated method blank} \\ N = \mbox{Indicates presumptive evidence of a compound}$

Report of Analysis

Page 1 of 1

				J			1 460 1 01 1
Client Sam Lab Sample Matrix: Method: Project:		846 3535A	0, 51 & 59	Date 1	Sampled Received nt Solids	: 04/13/06	
Run #1 Run #2	File ID DF GG015424.D 1	Analyzed 04/21/06	By SD	Prep D 04/17/0		Prep Batch OP16313	Analytical Batch GGG710
Run #1 Run #2	Initial Volume Final Volume 920 ml 10.0 ml	ıme					
CAS No.	Compound	Result	RL	MDL	Units	Q	
2691-41-0	HMX	ND	0.22	0.082	ug/l		
121-82-4	RDX	ND	0.22	0.082	ug/l		
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.054	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.22	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.054	ug/l		
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.054	ug/l		
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.054	ug/l		
98-95-3	Nitrobenzene	ND	0.22	0.054	ug/l		
88-72-2	o-Nitrotoluene	ND	0.22	0.065	ug/l		
99-08-1	m-Nitrotoluene	ND	0.22	0.054	ug/l		
99-99-0	p-Nitrotoluene	ND	0.22	0.054	ug/l		
479-45-8	Tetryl	ND	0.22	0.082	ug/l		
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.054	ug/l		
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.054	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		

ND = Not detected

610-39-9

MDL - Method Detection Limit

107%

RL = Reporting Limit

E = Indicates value exceeds calibration range

3,4-Dinitrotoluene

J = Indicates an estimated value

61-124%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: 16-4

Lab Sample ID:

F39990-3

Matrix: Method: AQ - Ground Water

Date Sampled: 04/10/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

SW846 8332 SW846 3535A Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID Run #1 PP012742.D

DF 1

Analyzed 04/17/06

By SĎ **Prep Date** 04/17/06

Prep Batch OP16314

Analytical Batch GPP435

Run #2

Initial Volume Final Volume 920 ml 10.0 ml

Run #1 Run #2

CAS No. Compound Result

RL

Units

O

78-11-5 **PETN** 55-63-0

Nitroglycerine

ND ND

2.2 0.54 2.2 0.54 ug/l ug/l

CAS No. Surrogate Recoveries

MDL - Method Detection Limit

Run# 1

Run# 2 Limits

MDL

610-39-9 3,4-Dinitrotoluene 110%

61-124%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:	A(89990-4 Q - Ground W V846 8330A	ater SW846 3535A WMU 48, 49, 5	50, 51 & 5 <u>9</u>	Date Sampled: Date Received: Percent Solids:	04/13/06	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	GG015425	.D 1	04/21/06	SD	04/17/06	OP16313	GGG710

	Initial Volume	Final Volume	
Run #1	930 ml	10.0 ml	
Run #2			*

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.22	0.081	ug/l	
121-82-4	RDX	ND	0.22	0.081	ug/l	
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.054	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.054	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.054	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.065	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.054	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.054	ug/l	
479-45-8	Tetryl	ND	0.22	0.081	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.054	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.054	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	107%		61-12	24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sar Lab Samp Matrix: Method: Project:	ole ID: F39990 AQ - C SW846	0-4 Ground Wa 5 8332 SV	ter V846 3535A VMU 48, 49, 5	0, 51 & 59	Date 1	Sampled Received nt Solids	: 04/13/06	
Run #1 Run #2	File ID PP012743.D	DF 1	Analyzed 04/17/06	By SD	Prep D 04/17/0		Prep Batch OP16314	Analytical Batch GPP435
Run #1 Run #2	Initial Volume 930 ml	Final Vo	olume					
CAS No.	Compound		Result	RL	MDL	Units	Q	
78-11-5 55-63-0	PETN Nitroglycerine		ND ND	2.2 2.2	0.54 0.54	ug/l ug/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
610-39-9	3,4-Dinitrotolu	iene	123%		61-1	24%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

SD

Page 1 of 1

Client Sample ID:	28
T -1 C - 1 TD	TO

File ID

GG015426.D

Lab Sample ID:

BMW1 F39990-5

AQ - Ground Water

Date Sampled: 04/11/06

Matrix: Method:

DF

1

Date Received: 04/13/06

Prep Date

04/17/06

Project:

SW846 8330A SW846 3535A

Percent Solids: n/a

Prep Batch

OP16313

Analytical Batch GGG710

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/22/06

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	920 ml	10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.22	0.082	ug/l	
121-82-4	RDX	ND	0.22	0.082	ug/l	
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.054	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.054	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.054	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.065	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.054	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.054	ug/l	
479-45-8	Tetryl	ND	0.22	0.082	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.054	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.054	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	107%		61-1	24%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID:
Lab Sample ID:

28MW1 F39990-5

AQ - Ground Water

DF

1

Date Sampled: 04/11/06 Date Received: 04/13/06

Matrix: Method:

SW846 8332 SW846 3535A

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Run #1

File ID PP012744.D

Analyzed 04/17/06

By Prep Date SĎ 04/17/06

OP16314

Analytical Batch GPP435

Run #2

Initial Volume Final Volume Run #1 920 ml 10.0 ml

Run #2

78-11-5

CAS No. Compound Result

RL**MDL** Units

Q

2.2 ug/l 0.54

55-63-0 Nitroglycerine ND ND

2.2

0.54 ug/l

CAS No. Surrogate Recoveries

PETN

Run#1

Run# 2

Limits

610-39-9 3,4-Dinitrotoluene

117%

61-124%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

By

SD

Page 1 of 1

Client Sample ID: C4

Lab Sample ID:

F39990-6

File ID

GG015427.D

AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Prep Date

04/17/06

Matrix: Method:

SW846 8330A SW846 3535A

Date Received: 04/13/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

Analyzed

04/22/06

Prep Batch OP16313

Analytical Batch GGG710

Run #1 Run #2

> **Initial Volume** Final Volume

Run #1 740 ml 10.0 ml

Run #2

L						
CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.27	0.10	ug/l	
121-82-4	RDX	ND	0.27	0.10	ug/l	
99-65-0	1,3-Dinitrobenzene	ND	0.27	0.068	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.27	0.068	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.27	0.068	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.27	0.068	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.27	0.068	ug/l	
98-95-3	Nitrobenzene	ND	0.27	0.068	ug/l	
88-72-2	o-Nitrotoluene	ND	0.27	0.081	ug/l	
99-08-1	m-Nitrotoluene	ND	0.27	0.068	ug/l	
99-99-0	p-Nitrotoluene	ND	0.27	0.068	ug/l	
479-45-8	Tetryl	ND	0.27	0.10	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.27	0.068	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.27	0.068	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
610-39-9	3,4-Dinitrotoluene	109%		61-12	24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client	Samp	le I	D:	C4
--------	------	------	----	----

Lab Sample ID:

F39990-6

Matrix:

Project:

AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Method: SW846 8332 SW846 3535A Date Received: 04/13/06

Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Run #1

File ID PP012745.D Analyzed 04/17/06

Prep Date 04/17/06

OP16314

Analytical Batch GPP435

Run #2

Initial Volume Final Volume 740 ml 10.0 ml

Run #1 Run #2

Compound

Result

RL

By

SD

MDL Units

Q

78-11-5 55-63-0

CAS No.

PETN

ND

2.7 0.68 2.7 0.68

ug/l ug/l

CAS No.

Nitroglycerine

Surrogate Recoveries

ND Run# 1

Run# 2

Limits

610-39-9

3,4-Dinitrotoluene

105%

61-124%

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	48MW4		
Lab Sample ID:	F39990-7	Date Sampled:	04/11/06
Matrix:	AQ - Ground Water	Date Received:	
Method:	SW846 8330A SW846 3535A	Percent Solids:	
Project:	Radford AAP; SWMU 48, 49, 50, 51 & 59	- or come somes.	10 u
L			

Run #1	File ID	DF	Analyzed	By	Prep Date 04/17/06	Prep Batch	Analytical Batch
Run #2	GG015428.D	1	04/22/06	SD		OP16313	GGG710

Run #1 Run #2	Initial Volume 900 ml	Final Volume 10.0 ml				
CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.22	0.083	ug/l	
121-82-4	RDX	ND	0.22	0.083	ug/l	
99-65-0	1,3-Dinitrobenz	zene ND	0.22	0.056	ug/l	
606-20-2	2.6-Dinitrotolue	ene ND	0.22	0.056	110/1	

					O' -	
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.056	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.056	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.056	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.067	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.056	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.056	ug/l	
479-45-8	Tetryl	ND	0.22	0.083	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.056	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.056	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
610-39-9	3,4-Dinitrotoluene	112%		61-1	24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

By

SD

Page 1 of 1

	Client San	iple ID
Ì	Lah Samni	٠٦٦٠ مَا

48MW4

F39990-7

Date Sampled:

04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received:

l: 04/13/06

Method:

SW846 8332 SW846 3535A

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/17/06

Prep Date Prep Batch Analytical Batch 04/17/06 OP16314 GPP435

Q

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	900 ml	10.0 ml
Run #2		

CAS No.	Compound
C/10 110.	Compound

File ID

PP012746.D

Result RL MDL Units

78-11-5	PETN	
55-63-0	Nitroglycerine	

ND 2.2 0.56 ug/l ND 2.2 0.56 ug/l

CAS No. Surrogate Recoveries

Run# 1 Run# 2 Limits

610-39-9 3,4-Dinitrotoluene 114%

61-124%

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

ND = Not detected

Report of Analysis

Page 1 of 1

Client Sample ID:	041206R
Lab Sample ID:	E3000U 8

Matrix: Method:

AQ - Ground Water SW846 8330A SW846 3535A Date Sampled: 04/12/06

Date Received: 04/13/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed **Prep Date** By Prep Batch Analytical Batch Run #1 GG015429.D 1 04/22/06 SD 04/17/06 OP16313 GGG710 Run #2

	Initial Volume	Final Volume
Run #1	920 ml	10.0 ml
	320 III	10.0 1111
Run #2		

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.22	0.082	ug/l	
121-82-4	RDX	ND	0.22	0.082	ug/l	
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.054	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.054	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.054	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.065	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.054	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.054	ug/l	
479-45-8	Tetryl	ND	0.22	0.082	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.054	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.054	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	108%		61-1	24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: 041206R Lab Sample ID:

F39990-8

Date Sampled: 04/12/06

Matrix:

AQ - Ground Water

Date Received: 04/13/06

Method:

SW846 8332 SW846 3535A

Percent Solids: n/a

Q

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed By

1

Prep Batch **Analytical Batch** OP16314 GPP435

Run #1 Run #2

Initial Volume Final Volume Run #1 920 ml 10.0 ml

PP012747.D

Run #2

78-11-5

55-63-0

CAS No. Compound Result

RL

SD

Units

PETN Nitroglycerine ND ND

04/17/06

2.2 2.2 0.54 0.54

MDL

Prep Date

04/17/06

ug/l ug/l

CAS No.

Surrogate Recoveries

Run# 1

Run# 2

Limits

610-39-9

3,4-Dinitrotoluene

108%

61-124%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sam Lab Sampl Matrix: Method: Project:	e ID: F39990-9 AQ - Ground SW846 8330A	Water A SW846 3535A ; SWMU 48, 49, 5	0, 51 & 59	Date :	Sampled Received nt Solids	: 04/13/06	4
Run #1 Run #2	File ID DF GG015432.D 1	Analyzed 04/22/06	By SD	Prep D 04/17/0		Prep Batch OP16313	Analytical Batch GGG710
Run #1 Run #2	Initial Volume Fina 920 ml 10.0	l Volume ml					
CAS No.	Compound	Result	RL	MDL	Units	Q	
2691-41-0 121-82-4 99-65-0 606-20-2 121-14-2 35572-78-2 19406-51-0 98-95-3	,	luene ND	0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.082 0.082 0.054 0.054 0.054 0.054	ug/l ug/l ug/l ug/l ug/l ug/l		
98-95-3 88-72-2	o-Nitrotoluene	ND ND	0.22 0.22	0.054 0.065	ug/l ug/l		

0.22

0.22

0.22

0.22

0.22

Run# 2

0.054

0.054

0.082

0.054

0.054

Limits

61-124%

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

Run# 1

107%

ND	_	Not	detect	hot
ענענ	=	13/11	uerec	œu

99-08-1

99-99-0

479-45-8

99-35-4

118-96-7

CAS No.

610-39-9

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

m-Nitrotoluene

p-Nitrotoluene

1,3,5-Trinitrobenzene

2,4,6-Trinitrotoluene

Surrogate Recoveries

3,4-Dinitrotoluene

Tetryl

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Cire	nt Sample	ID:
I ah	Sample II	D·

13MW1 F39990-9

Date Sampled: 04/12/06

Matrix:

AQ - Ground Water

Date Received:

04/13/06

Method:

SW846 8332 SW846 3535A

Percent Solids: n/a

Q

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1

DF PP012750.D 1

Analyzed 04/17/06

By Prep Date SD 04/17/06

Prep Batch OP16314

Analytical Batch GPP435

Run #2

Initial Volume Final Volume Run #1 920 ml 10.0 ml

Run #2

610-39-9

CAS No. Compound

File ID

Result

RL**MDL** Units

78-11-5 **PETN** 55-63-0

Nitroglycerine

3,4-Dinitrotoluene

ND ND

Run#1

2.2 0.54 2.2 0.54

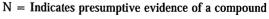
Run# 2

ug/l ug/l

Limits

CAS No. Surrogate Recoveries

113%


61-124%

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sam Lab Sampl Matrix: Method: Project:		V846 3535A	0, 51 & 59	Date 1	Sampled Received nt Solids	: 04/13/06	
Run #1 Run #2	File ID DF GG015433.D 1	Analyzed 04/22/06	By SD	Prep D 04/17/0		Prep Batch OP16313	Analytical Batch GGG710
Run #1 Run #2	Initial Volume Final Vol 900 ml 10.0 ml	ume					
CAS No.	Compound	Result	RL	MDL	Units	Q	
2691-41-0 121-82-4 99-65-0 606-20-2 121-14-2 35572-78-2 19406-51-0 98-95-3 88-72-2 99-08-1 99-99-0 479-45-8 99-35-4 118-96-7	HMX RDX 1,3-Dinitrobenzene 2,6-Dinitrotoluene 2,4-Dinitrotoluene 2-amino-4,6-Dinitrotoluene 4-amino-2,6-Dinitrotoluene Nitrobenzene o-Nitrotoluene m-Nitrotoluene p-Nitrotoluene Tetryl 1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene		0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.083 0.083 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.056 0.056	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi			

ND = Not detected

610 - 39 - 9

MDL - Method Detection Limit

114%

RL = Reporting Limit

E = Indicates value exceeds calibration range

3,4-Dinitrotoluene

J = Indicates an estimated value

61-124%

 $B = \mbox{Indicates analyte found in associated method blank} \\ N = \mbox{Indicates presumptive evidence of a compound}$

Report of Analysis

SD

Page 1 of 1

Client Sample ID:
Lab Sample ID:
Matrix:

TM13MW1 F39990-10

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06 Percent Solids: n/a

Method: Project:

SW846 8332 SW846 3535A Radford AAP; SWMU 48, 49, 50, 51 & 59

04/17/06

File ID DF Analyzed Ву

Prep Date Prep Batch **Analytical Batch** 04/17/06 OP16314 GPP435

Run #1 Run #2

	Initial Volume	Final Volume
Run #1	900 ml	10.0 ml
Run #2		

PP012751.D

CAS No.	Compound	Result	RL	MDL	Units	Q
78-11-5 55-63-0	PETN Nitroglycerine	ND ND	2.2 2.2	0.56 0.56	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
610-39-9	3,4-Dinitrotoluene	116%		61-1	24%	

ND = Not detected

MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Clie	nt Sample IL)
Lab	Sample ID:	

13MW2

F39990-11

Date Sampled: 04/12/06

Matrix: Method:

AQ - Ground Water SW846 8330A SW846 3535A

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF

1

Analyzed By **Prep Date** Prep Batch **Analytical Batch** 04/22/06 SD 04/17/06 OP16313 **GGG710**

Run #1 Run #2

:	Initial Volume	Final Volume
Run #1	900 ml	10.0 ml

GG015436.D

Run #2

L						
CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.22	0.083	ug/l	
121-82-4	RDX	ND	0.22	0.083	ug/l	
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.056	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.056	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.056	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.067	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.056	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.056	ug/l	
479-45-8	Tetryl	ND	0.22	0.083	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.056	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.056	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	110%		61-1	24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	13MW2
Lab Sample ID:	F39990-11

Matrix: Method: AQ - Ground Water

SW846 8332 SW846 3535A

Date Sampled: 04/12/06

Date Received: 04/13/06

Percent Solids: n/a

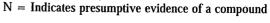
Project:	Radford AAP; SWMU 48, 49, 50, 51 &	59

Run #1	File ID	DF	Analyzed	By	Prep Date 04/17/06	Prep Batch	Analytical Batch
Run #2	PP012754.D	1	04/17/06	SD		OP16314	GPP435

Run #1	Initial Volume	Final Volume
Run #2	900 ml	10.0 ml
01011		

CAS No.	Compound	Result	RL	MDL	Units	Q
78-11-5 55-63-0	PETN Nitroglycerine	ND ND	2.2 2.2	0.56 0.56	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
610-39-9	3,4-Dinitrotoluene	124%		61-1	24%	

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

By

SD

Page 1 of 1

ı	Client	Sample	ID.	C1
1	Chene	Sample	w.	CI

File ID

GG015437.D

Lab Sample ID:

F39990-12

AQ - Ground Water

Date Sampled: 04/12/06

Prep Date

04/17/06

Date Received: 04/13/06

Matrix: Method:

SW846 8330A SW846 3535A

DF

1

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/22/06

Prep Batch **Analytical Batch** OP16313

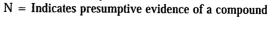
GGG710

Run #1 Run #2

Initial Volume Final Volume Run #1 920 ml 10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
2691-41-0	HMX	ND	0.22	0.082	ug/l	
121-82-4	RDX	ND	0.22	0.082	ug/l	
99-65-0	1,3-Dinitrobenzene	ND	0.22	0.054	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.054	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.054	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.054	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.065	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.054	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.054	ug/l	
479-45-8	Tetryl	ND	0.22	0.082	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.054	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.054	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	106%		61-1	24%	


ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

Client Sample ID: C	e ID: C1	Sample	Client
---------------------	----------	--------	--------

File ID

PP012755.D

Lab Sample ID:

F39990-12

Date Sampled: 04/12/06

Matrix: Method:

AO - Ground Water

Date Received: 04/13/06

Project:

SW846 8332 SW846 3535A

Percent Solids: n/a

Radford AAP; SWMU 48, 49, 50, 51 & 59 DF

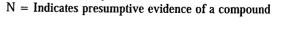
1

Analyzed By **Prep Date** Prep Batch **Analytical Batch** 04/17/06 SĎ 04/17/06 OP16314 GPP435

Run #1 Run #2

Run #1	Initial Volume	Final Volume	
Run #2	920 ml	10.0 ml	

CAS No.	Compound	Result	RL	MDL	Units	Q
78-11-5 55-63-0	PETN Nitroglycerine	ND ND	2.2 2.2	0.54 0.54	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
610-39-9	3,4-Dinitrotoluene	105%		61-1	24%	


ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

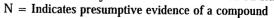
Page 1 of 1

Analytical Batch GGG710

Client San Lab Samp Matrix: Method: Project:	ple ID:	F39990-14 AQ - Ground Water SW846 8330A SW846 3535A Radford AAP; SWMU 48, 49, 50, 51 & 59				Date Sampled: Date Received: Percent Solids:	04/15/06	
Run #1	File ID GG0154	40.D	DF 1	Analyzed 04/22/06	By SD	Prep Date 04/20/06	Prep Batch OP16360	

Run #1 Run #2	Initial Volume 890 ml	Final Volume 10.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q		
2691-41-0 121-82-4 99-65-0	HMX RDX 1,3-Dinitrobenz		0.22 0.22 0.22	0.084 0.084 0.056	ug/l ug/l ug/l			
606-20-2	2,6-Dinitrotolue	ene ND	0.22	0.056	110/1			

606-20-2	2,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	0.22	0.056	ug/l	
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.22	0.056	ug/l	
98-95-3	Nitrobenzene	ND	0.22	0.056	ug/l	
88-72-2	o-Nitrotoluene	ND	0.22	0.067	ug/l	
99-08-1	m-Nitrotoluene	ND	0.22	0.056	ug/l	
99-99-0	p-Nitrotoluene	ND	0.22	0.056	ug/l	
479-45-8	Tetryl	ND	0.22	0.084	ug/l	
99-35-4	1,3,5-Trinitrobenzene	ND	0.22	0.056	ug/l	
118-96-7	2,4,6-Trinitrotoluene	ND	0.22	0.056	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
610-39-9	3,4-Dinitrotoluene	104%		61-12	24%	


ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

SD

Page 1 of 1

Client Sample ID:	48MW1
Lab Sample ID:	F39990-14

Matrix: Method: Project:

AQ - Ground Water

SW846 8332 SW846 3535A

Radford AAP; SWMU 48, 49, 50, 51 & 59

Date Sampled: 04/13/06

04/20/06

61-124%

Date Received: 04/15/06

Percent Solids: n/a

Prep Date

Analytical Batch Prep Batch OP16361 GPP442

ļ	File ID	DF	Analyzed
Run #1	PP012920.D	1	04/27/06

Run #2

	Initial Volume	Final Volume
Run #1	890 ml	10.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
78-11-5 55-63-0	PETN Nitroglycerine	ND ND	2.2 2.2	0.56 0.56	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
610-39-9	3,4-Dinitrotoluene	97%		61-1	24%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

				J			1460 1 01 1
Client Sam Lab Sampl Matrix: Method: Project:				Date 1	Sampled Received nt Solids		
Run #1 Run #2	File ID DF GG015441.D 1	Analyzed 04/22/06	By SD	Prep D 04/20/0		Prep Batch OP16360	Analytical Batch GGG710
Run #1 Run #2	Initial Volume Final Volume 880 ml 10.0 ml	ime					
CAS No.	Compound	Result	RL	MDL	Units	Q	
2691-41-0	HMX	ND	0.23	0.085	ug/l		
121-82-4	RDX	ND	0.23	0.085	ug/l		
99-65-0	1,3-Dinitrobenzene	ND	0.23	0.057	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	0.23	0.057	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	0.23	0.057	ug/l		
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.23	0.057	ug/l		
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.23	0.057	ug/l		
98-95-3	Nitrobenzene	ND	0.23	0.057	ug/l		
88-72-2	o-Nitrotoluene	ND	0.23	0.068	ug/l		
99-08-1	m-Nitrotoluene	ND	0.23	0.057	ug/l		
99-99-0	p-Nitrotoluene	ND	0.23	0.057	ug/l		
479-45-8	Tetryl	ND	0.23	0.085	ug/l		
99-35-4	1,3,5-Trinitrobenzene	ND	0.23	0.057	ug/l		
118-96-7	2,4,6-Trinitrotoluene	ND	0.23	0.057	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
610-39-9	3,4-Dinitrotoluene	110%		61-12	24%		

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

					J			1 460 1 01 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: F39990 AQ - G SW846	0-15 Ground Wa 5 8332 SV	ater W846 3535A WMU 48, 49, 5	0, 51 & 59	Date	Sampled Received nt Solids	: 04/15/06	
Run #1 Run #2	File ID PP012921.D	DF 1	Analyzed 04/27/06	By SD	Prep D 04/20/0		Prep Batch OP16361	Analytical Batch GPP442
Run #1 Run #2	Initial Volume 880 ml	Final V 10.0 ml						
CAS No.	Compound		Result	RL	MDL	Units	Q	
78-11-5 55-63-0	PETN Nitroglycerine		ND ND	2.3 2.3	0.57 0.57	ug/l ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
610-39-9	3,4-Dinitrotolu	ene	105%		61-1	24%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	48MW2
I ah Sample ID:	
II ah Samnia III)	E30000 16

Matrix: Method:

Project:

F39990-16

AQ - Ground Water

SW846 8330A SW846 3535A

Radford AAP; SWMU 48, 49, 50, 51 & 59

Date Sampled: 04/13/06 Date Received: 04/15/06

Percent Solids: n/a

Run #1	File ID	DF	Analyzed	By	Prep Date 04/20/06	Prep Batch	Analytical Batch
Run #2	GG015444.D	1	04/22/06	SD		OP16360	GGG710

Run #1 Run #2	Initial Volume 860 ml	Final Volume 10.0 ml					-		
CAS No.	Compound		Result	RL	MDL	Units	Q		

2691-41-0	HMX	ND	0.23	0.087	ug/l
121-82-4	RDX	ND	0.23	0.087	ug/l
99-65-0	1,3-Dinitrobenzene	ND	0.23	0.058	ug/l
606-20-2	2,6-Dinitrotoluene	ND	0.23	0.058	ug/l
121-14-2	2,4-Dinitrotoluene	ND	0.23	0.058	-
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.23	0.058	ug/l
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.23	0.058	ug/l
98-95-3	Nitrobenzene	ND	0.23	0.058	ug/l
88-72-2	o-Nitrotoluene	ND	0.23	0.038	ug/l
99-08-1	m-Nitrotoluene	ND	0.23	0.070	ug/l
99-99-0	p-Nitrotoluene	ND	0.23		ug/l
479-45-8	Tetryl	ND		0.058	ug/l
99-35-4	1,3,5-Trinitrobenzene	ND ND	0.23	0.087	ug/l
118-96-7			0.23	0.058	ug/l
110-30-7	2,4,6-Trinitrotoluene	ND	0.23	0.058	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
610-39-9	3,4-Dinitrotoluene	107%		61-1	24%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Ву

SD

Page 1 of 1

Client Sample ID:	48MW2
Lab Sample ID:	F39990-16

File ID

PP012922.D

3,4-Dinitrotoluene

Matrix: Method: AQ - Ground Water

DF

1

Date Sampled: 04/13/06 Date Received: 04/15/06

Percent Solids: n/a

Prep Date

61-124%

04/20/06

Project:

SW846 8332 SW846 3535A

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/27/06

Prep Batch OP16361

Analytical Batch GPP442

Run #1 Run #2

610-39-9

Run #1 Run #2	Initial Volume 860 ml	Final Volume 10.0 ml	;				
CAS No.	Compound		Result	RL	MDL	Units	Q
78-11-5 55-63-0	PETN Nitroglycerine		ND ND	2.3 2.3	0.58 0.58	ug/l ug/l	
CAS No.	Surrogate Reco	overies	Run# 1	Run# 2	Lim	its	

114%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

	······································						_
Client Sam Lab Sampl Matrix: Method: Project:		846 3535A	0, 51 & 59	Date	Sampled Received Int Solids	: 04/15/06	
Run #1 Run #2	File ID DF GG015445.D 1	Analyzed 04/22/06	By SD	Prep D 04/20/0		Prep Batch OP16360	Analytical Batch GGG710
Run #1 Run #2	Initial Volume Final Volume 880 ml 10.0 ml	ime					
CAS No.	Compound	Result	RL	MDL	Units	Q	
2691-41-0	HMX	ND	0.23	0.085	ug/l		
121-82-4	RDX	ND	0.23	0.085	ug/l		
99-65-0	1,3-Dinitrobenzene	ND	0.23	0.057	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	0.23	0.057	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	0.23	0.057	ug/l		
35572-78-2	2-amino-4,6-Dinitrotoluene	ND	0.23	0.057	ug/l		
19406-51-0	4-amino-2,6-Dinitrotoluene	ND	0.23	0.057	ug/l		
98-95-3	Nitrobenzene	ND	0.23	0.057	ug/l		
88-72-2	o-Nitrotoluene	ND	0.23	0.068	ug/l		
99-08-1	m-Nitrotoluene	ND	0.23	0.057	ug/l		
99-99-0	p-Nitrotoluene	ND	0.23	0.057	ug/l		
479-45-8	Tetryl	ND	0.23	0.085	ug/l		
99-35-4	1,3,5-Trinitrobenzene	ND	0.23	0.057	ug/l		
118-96-7	2,4,6-Trinitrotoluene	ND	0.23	0.057	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
610-39-9	3,4-Dinitrotoluene	113%		61-1	24%		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: 48MW3 Lab Sample ID:

F39990-17

Date Sampled: 04/13/06

Matrix: Method: AQ - Ground Water

DF

1

Date Received: 04/15/06

SW846 8332 SW846 3535A

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch

Analytical Batch

Run #1 Run #2

By SD **Prep Date** 04/20/06

OP16361

GPP442

Initial Volume Final Volume 880 ml 10.0 ml

Run #1 Run #2

CAS No. Compound

File ID

PP012923.D

Result

Analyzed

04/27/06

RL

Units

Q

78-11-5 55-63-0

PETN Nitroglycerine ND ND

2.3 0.57 2.3 0.57

MDL

ug/l ug/l

CAS No. Surrogate Recoveries Run# 1

Run# 2

Limits

610-39-9

3,4-Dinitrotoluene

114%

61-124%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Dioxin Furans

SGS Paradigm Analytical Laboratories, Inc. SDG G383-433

(Accutest SDG F39990)

DATE:

May 11, 2006

The purpose of this memorandum is to present the data validation report for the samples collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. The sample was analyzed for Dioxin Furan compounds using USEPA SW-846 Method 8290 High Resolution Gas Chromatography/High Resolution Mass Spectroscopy (HRGC/HRMS). A total of four aqueous samples were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
48MW1	F39990-14	48MW2	F39990-16
TM48MW1	F39990-15	48MW3	F39990-17

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, *USACE Shell for Analytical Chemistry Requirements*, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *USEPA Region III Dioxin/Furan Data Validation Guidance* (March, 1999). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	lified	Parameter
Yes	No	
	X	Holding Times and Preservation
	X	Blank Analysis
	X	Instrument Performance Check
	Х	Initial Calibration
	X	Continuing Calibration
	X	Internal Standards (IS) Recovery Standard Solutions
	X	Cleanup Standards
	X	Laboratory Control Standard or Ongoing Precision Result (OPR)
	X	Matrix Spike and Spike Duplicate
X		Field Duplicate
X		Quantitation Verification

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

RFAAP VALIDATION REPORT DIOXIN FURAN REVIEW SDG G383-433 (Accutest SDG F39990)

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For dioxin furan compounds in cooled @4°C \pm 2°C aqueous samples, the maximum holding time is 30 days from sample collection to preparative extraction and 45 days from preparative extraction to determinative analysis.

- Temperature Review: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, 3.2°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples in this SDG were collected on 04/13/06. The samples were extracted on 04/21/06 and analyzed on 04/22/06 and 04/26/06. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory (or field) blank analyses is to determine the existence and magnitude of contamination problems resulting from field and laboratory activities. No contamination should be found in any of the blanks >MDL. Samples are qualified "B" when they are less than 5X the absolute value of the maximum blank concentration (10x for OCDD/OCDF). **Table 2** summarizes the blank contamination analysis. Rinse blank 041206R (F39990-8) (low-flow pump) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. ng/L	Action Level ng/L	B qualified samples
04/22/06	LMB12444	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/22/06	041206R	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None

NA = Not Applicable.

III-Instrument Performance Check

Instrument must be tuned with perfluorokerosene (PFK) to achieve a static resolving power of at least 10,000 (10% valley). Documentation of the mass spectrometer resolving power is accomplished by recording the peak profile of the high-mass reference signal (typically m/z 330.9792) obtained during a peak examination by using the low-mass PFK ion at m/z 292.9825 or lower in mass as reference. At the beginning of the each 12-hour period, the chromatographic resolution is verified in the same fashion as in the initial calibration through the analysis of HRCC solution on the DB-5 (or equivalent) column or through the analysis of the column performance solution on the SP-2331 or SP-225 (or equivalent) column. A 25% valley must be achieved between the close eluters.

 All PFK forms were verified and found to be in compliance with method specification. No qualifiers were applied.

IV-Initial Calibration

Once the window defining mix has been analyzed and the descriptor switching times have been verified, the five point calibration solutions can be analyzed prior to sample analysis. Initial calibration criteria are as follows:

- The percent relative standard deviations for the mean response factors RRF(n) from the 17 unlabeled standards must not exceed ±20%, and those for the labeled reference compounds must not exceed ±30%
- Isotopic ratio must be within the specified control limits in Table 8 (SW846 Method 8290).
- For initial calibration performed on 03/24/06 for all target compounds on instrument HRMS1, all criteria were met. No qualifiers were applied.

V-Continuing Calibration

The continuing calibration consists of two parts: evaluation of the mass resolution and retention time check. The following stipulates the continuing calibration criteria.

- The signal signal-to-noise ratio (S/N) must be at least 10:1 for each selected ion current profile (SICP) and for each GC signal representing the elution of a target analyte or labeled standard for each analyte.
- The relative response factor of each analyte for the unlabeled standard must be within ±20% of the average RF obtained from the initial calibration, and the RRF of each labeled standard must be within ±30% of the average RRF established during initial calibration. This is expressed in term of percent difference %D.
- For continuing calibration performed on 04/19/06 @10:46 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/19/06 @22:03 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/20/06 @08:49 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/20/06 @15:25 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/21/06 @02:47 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/21/06 @14:10 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/21/06 @02:47 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/22/06 @01:10 on instrument HRMS1, all criteria were met. No qualifiers were applied. Samples apply to this continuing calibration.
- For continuing calibration performed on 04/22/06 @12:31 on instrument HRMS1, all criteria were met. No qualifiers were applied. Sample 48MW1 (F39990-14) applies to this continuing calibration.

- For continuing calibration performed on 04/22/06 @23:53 on instrument HRMS1, all criteria were met. No qualifiers were applied. Sample 48MW1 (F39990-14) applies to this continuing calibration.
- For continuing calibration performed on 04/26/06 @09:59 on instrument HRMS1, all criteria were met. No qualifiers were applied. Samples TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.
- For continuing calibration performed on 04/26/06 @20:28 on instrument HRMS1, all criteria were met. No qualifiers were applied. Samples TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.
- For continuing calibration performed on 04/27/06 @07:49 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.

VI-Internal Standards (IS) Recovery Standard Solutions

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: Recoveries of the isotopically-labeled recovery standards to fall within the 40 to 135 percent range for the tetra- through octachlorinated congeners, or as stated in the data package

All criteria were met. No qualifiers were applied.

VII-Cleanup Standards

Cleanup standards are added to every sample, blank, quality control sample, and calibration solution. This compound is added to the samples after extraction but prior to cleanup and is used to verify the percent recovery obtained using the isotope dilution technique. The control limits are 40 to 135 percent.

Ail criteria were met. No qualifiers were applied.

VIII-Laboratory Control Standard (LCS) or Ongoing Precision Result (OPR)

LCSs are used to monitor laboratory accuracy and precision by calculating the percent recoveries of the spiked compounds. Acceptable performance is determined by:

- 1. Recoveries of the isotopically-labeled extraction standards to fall within 40-135% control limits for the tetra- through octachlorinated congeners, or as stated in the data package;
- 2. Recoveries (accuracy) of the unlabeled compounds should be within ±35% when spiked at the method quantitation limit and within ±30% when spiked above 20 times the method quantitation limit, or as stated in the data package;
- 3. When duplicate OPR are required, the relative percent difference (RPD) of the unlabeled analytes concentrations should be within 30% when spiked at the method quantitation limit and within ± 25% when spiked above 20 times the method quantitation limit.
- Sample OPR12444 was used as LCS. All criteria were met. No qualifiers were applied.

IX-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits (40-135%; 50%RPD).

No MS/MSD was performed for this SDG.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

• Field groundwater sample duplicate pair 48MW1 (F39990-14) and TM48MW1 (F39990-15) was collected for Dioxin Furans. All detected congeners found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other congeners were non-detect. Since the congeners 1,2,3,4,6,7,8-HpCDD, 1,2,3,7,8-PeCDD, and 2,3,7,8-TCDF were detected above the reporting limit for the duplicate sample and non-detect in the original sample, these compounds were qualified estimated "J" for detects and "UJ" for non-detects for the duplicate pair based upon these outliers. Congeners 1,2,3,4,7,8-HxCDD and OCDD were detected below the reporting limit and were qualified as estimated "J" for the duplicate sample TM48MW1.

Table 3 Field Precision Hits Analysis Summary for Dioxins Furans for Duplicate Pair 48MW1 (F39990-14) and TM48MW1 (F39990-15)

Compound	Original Sample (ng/L)	Duplicate Pair (ng/L)	%RPD
1,2,3,4,6,7,8-HpCDD	0.0126U	0.0857	NA
1,2,3,4,7,8-HxCDD	0.00876U	0.0215A	NA
1,2,3,7,8-PeCDD	0.00528U	0.0873	NA
2,3,7,8-TCDF	0.00727U	0.0128	NA
OCDD	0.0213U	0.018A	NA
Total HpCDDs	0.0126U	0.0857	NA
Total HxCDDs	0.00887U	0.0215	NA
Total PeCDDs	0.00528U	0.0873	NA
Total TCDFs	0.00727U	0.0128	NA

U = Value non-detect as <MRL.

XI-Quantitation Verification

The accuracy of analytical results was verified through the calculation of at least one the several parameters such as the %D, %RSD, % recovery, and/or compound concentration. Values were found to be within 10%. Any value reported by the laboratory as estimated "A" based on an analyte to internal standard ratio below the calibration curve was qualified as estimated "J". The signal signal-to-noise ratio (S/N) must be greater than 2.5 for each selected ion current profile (SICP) and for each GC signal representing the elution of a target analyte or labeled standard. Any detected value with ether interference (DPE-lab flag) was qualified as estimated "J". For where the ion ratio failed the 25% criteria, the estimated maximum possible concentration (EMPC) was reported and flagged estimated "J".

A = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

NA = Not Applicable.

Sample: TM48MW1 (F39990-15), OCDD

A(x) = sum of the integrated ion abundances of the quantitation ions for the unlabeled ions:

A(is) = sum of the integrated ion abundances of the quantitation ions for the labeled ions:

Q(is) = quantity, in ng/ul, of the internal standard added to the sample before extraction;

W = weight, in q, of the sample (solid or organic liquid) as dry weight, or volume in mL of an aqueous sample; and

Avg.RRF(n) = calculated mean relative response factor for the unlabeled analyte.

= (A(x))*Q(is)*1000 = (27400+34200)*2.0*1000Conc. (ng/L) A(is)*W*Avg.RRF

(5440000+6500000)*510*1.1256

= 0.0180 ng/L

Reported Value = 0.0180 ng/L % Difference = 0.0% Values were within 10% difference

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and \leq MRL or \leq 3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

D = Indicates sample was analyzed at a dilution.

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration \leq MDL.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

N (Metals) = Laboratory spike sample recovery not within control limits.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

- * (Metals) = Duplicate analysis not within control limits.
- * (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Method 8290 F39990-14 Accutest

Analytical Data Summary Sheet

Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
· ·	(ng/L)	(ng/L)	(ng/L)	(min.)	1	Quantici
2,3,7,8-TCDD	ND	0.00750		 	 	
1,2,3,7,8-PeCDD	ND UT	0.00528		1		
1,2,3,4,7,8-HxCDD	ND	0.00876			j	
1,2,3,6,7,8-HxCDD	ND	0.00807		ļ		İ
1,2,3,7,8,9-HxCDD	ND	0.00887				
1,2,3,4,6,7,8-HpCDD	ND 02	0.0126		1		
OCDD	ND .	0.0213				
2,3,7,8-TCDF	ND VJ	0.00727				1
1,2,3,7,8-PeCDF	ND	0.00292				
2,3,4,7,8-PeCDF	ND	0.00285				
1,2,3,4,7,8-HxCDF	ND	0.00493	ł			-
1,2,3,6,7,8-HxCDF	ND	0.00434				
2,3,4,6,7,8-HxCDF	ND	0.00492		1		
1,2,3,7,8,9-HxCDF	ND	0.00588		ļ		
1,2,3,4,6,7,8-HpCDF	ND	0.00636				
1,2,3,4,7,8,9-HpCDF	ND	0.00824			. •	
OCDF	ND	0.0135				
Total TCDDs	ND	0.00750				
Total PeCDDs	ND	0.00528				
Total HxCDDs	ND	0.00887				
Total HpCDDs	ND	0.0126				
Total TCDFs	ND	0.00727				
Total PeCDFs	ND	0.00292				1
Total HxCDFs	ND	0.00588				
Total HpCDFs	ND	0.00824	· .			
WHO TEQ (ND=0)	ND		ND			
WHO TEQ (ND=½)	0.00996		0.00996			

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-14		Weight / Volume:	500 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-1	C	Filename:	a21apr06a_3-13
Collection Date/Time:	04/13/06	9:55	Retchk:	a21apr06a_2-14
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a21apr06a_2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	23:05	Initial Cal:	m8290-032406b

Method 8290 F39990-14 Accutest

Labeled	Expected	Measured	Percent	RT	Ratio	Qualifier
Standard	Amount	Amount	Recovery			
	(ng)	(ng)	(%)	(min.)	·	
Extraction Standards						
13C12-2,3,7,8-TCDD	1.0	0.866	86.6	31:06	0.79	
13C12-1,2,3,7,8-PeCDD	1.0	0.788	78.8	34:00	1.55	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.788	78.8	36:39	1.17	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.787	78.7	39:54	1.03	
13C12-OCDD	2.0	1.18	59.2	44:04	0.85	
13C12-2,3,7,8-TCDF	1.0	0.806	80.6	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.753	75.3	33:12	1.57	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.771	77.1	35:57	0.50	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.709	70.9	38:40	. 0.44	i i
Cleanup Standards						
37C14-2,3,7,8-TCDD	0.2	0.179	89.3	31:07	•	
13C12-2,3,4,7,8-PeCDF	0.2	0.159	79.3	33:49	1.55	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.186	92.9	36:34	1.18	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.172	85.9	35:51	0.52	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.155	77.6	40:34	0.47	
Injection Standards					-	
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.82	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	•	36:52	1.18	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-14		Weight / Volume:	500 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-1	C	Filename:	a21apr06a 3-13
Collection Date/Time:	04/13/06	9:55	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06	•	End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	23:05	Initial Cal:	m8290-032406b

Analyzed by: 5F
Date: 64/27/06

Reviewed by:

Date:

Method 8290 F39990-15 Accutest

Analytical Data Summary Sheet

Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
	(ng/L)	(ng/L)	(ng/L)	(min.)		. .
2,3,7,8-TCDD	ND	0.00751				
1,2,3,7,8-PeCDD	0.0873 丁			34:01	1.65	
1,2,3,4,7,8-HxCDD	0.0215 ブ			36:34	1.26	A
1,2,3,6,7,8-HxCDD	ND	0.00946				
1,2,3,7,8,9-HxCDD	ND	0.0104				
1,2,3,4,6,7,8-HpCDD	0.0857 ブ			39:55	1.04	
OCDD	0.0180 丁			44:04	0.80	A
2,3,7,8-TCDF	0.0128 丁			30:22	0.75	1
1,2,3,7,8-PeCDF	ND	0.00273				
2,3,4,7,8-PeCDF	ND	0.00266			-	
1,2,3,4,7,8-HxCDF	ND	0.00439				
1,2,3,6,7,8-HxCDF	ND	0.00387				
2,3,4,6,7,8-HxCDF	ND	0.00438				
1,2,3,7,8,9-HxCDF	ND	0.00523	İ			
1,2,3,4,6,7,8-HpCDF	ND	0.00686		1		
1,2,3,4,7,8,9-HpCDF	ND	0.00889		1		
OCDF	ND	0.0210				
Total TCDDs	ND	0.00751				
Total PeCDDs	0.0873					
Total HxCDDs	0.0215					
Total HpCDDs	0.0857					
Total TCDFs	0.0128	,				
Total PeCDFs	ND	0.00273				
Total HxCDFs	ND	0.00523				1
Total HpCDFs	ND	0.00889		j	· 	1
WHO TEQ (ND=0)	0.0916		0.0916			
WHO TEQ (ND=½)	0.0980		0.0980			

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-15		Weight / Volume:	510 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-2	C .	Filename:	a26apr06a-11
Collection Date/Time:	04/13/06	9:55	Retchk:	a26apr06a-1
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a26apr06a-1
Extraction Date:	04/21/06		End ConCal:	a26apr06a-14
Analysis Date/Time:	04/26/06	18:03	Initial Cal:	m8290-032406b

Method 8290 F39990-15 Accutest

Labeled Standard	Expected Amount	Measured	Percent	RT	Ratio	Qualifier
Standard	Amount (ng)	Amount (ng)	Recovery (%)	(min.)		
Extraction Standards	(-6)	(-8)	(70)	(11111.)		
13C12-2,3,7,8-TCDD	1.0	0.749	74.9	31:06	0.84	
13C12-1,2,3,7,8-PeCDD	1.0	0.747	74.7	34:00	1.56	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.779	77.9	36:39	1.22	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.745	74.5	39:55	1.05	
13C12-OCDD	2.0	1.07	53.4	44:04	0.84	
13C12-2,3,7,8-TCDF	1.0	0.719	71.9	30:19	0.81	
13C12-1,2,3,7,8-PeCDF	1.0	0.709	70.9	33:12	1.61	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.744	74.4	35:58	0.52	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.691	69.1	38:40	0.46	
Cleanup Standards					i.	
37C14-2,3,7,8-TCDD	0.2	0.143	71.7	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.147	73.5	33:49	1.64	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.163	81.5	36:34	1.38	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.154	77.0	35:51	0.52	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.136	68.2	40:34	0.45	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	.30:33	0.84	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:54	1.23	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
	•		Matrix:	Water
Sample ID:	F39990-15	-	Weight / Volume:	510 mL
•			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-2C		Filename:	a26apr06a-11
Collection Date/Time:	04/13/06	9:55	Retchk:	a26apr06a-1
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a26apr06a-1
Extraction Date:	04/21/06		End ConCal:	a26apr06a-14
Analysis Date/Time:	04/26/06	18:03	Initial Cal:	m8290-032406b

Analyzed by: 57
Date: 04/27/06

Reviewed by: ___ Date: ___

Method 8290 F39990-16 Accutest

Analytical Data Summary Sheet

Analytical Data Summary Sheet						
Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
	(ng/L)	(ng/L)	(ng/L)	(min.)		İ
2,3,7,8-TCDD	ND .	0.00856				
1,2,3,7,8-PeCDD	0.0283 丁		1	34:01	1.69	A
1,2,3,4,7,8-HxCDD	0.0106 丁			36:34	1.12	A
1,2,3,6,7,8-HxCDD	ND	0.00929		1		
1,2,3,7,8,9-HxCDD	ND	0.0102		.		ĺ
1,2,3,4,6,7,8-HpCDD	0.0331 丁	1	}	39:55	1.02	A
OCDD	ND	0.0352		ļ		
2,3,7,8-TCDF	ND	0.00772				ĺ
1,2,3,7,8-PeCDF	ND	0.00461				•
2,3,4,7,8-PeCDF	ND	0.00450		1.		
1,2,3,4,7,8-HxCDF	ND	0.00386				
1,2,3,6,7,8-HxCDF	ND	0.00340				1
2,3,4,6,7,8-HxCDF	ND	0.00385	•			
1,2,3,7,8,9-HxCDF	ND	0.00460		1		
1,2,3,4,6,7,8-HpCDF	ND	0.00746		•		1
1,2,3,4,7,8,9-HpCDF	ND	0.00967		1	,	
OCDF	ND	0.0261		j		İ
Total TCDDs	ND	0.00856				1
Total PeCDDs	0.0283					
Total HxCDDs	0.0106					
Total HpCDDs	0.0331					
Total TCDFs	ND	0.00772				1
Total PeCDFs	ND	0.00461		1 1		1
Total HxCDFs	ND	0.00460				
Total HpCDFs	ND	0.00967				
WHO TEQ (ND=0)	0.0297		0.0297			1
WHO TEQ (ND=½)	0.0374		0.0374	l I	•	

Client Information			Sample Information		
Project Name:	F39990		Report Basis:		
			Matrix:	Water	•
Sample ID:	F39990-16		Weight / Volume:	511 mL	
·			Solids / Lipids:	NA	%
			Original pH:	. 8	
Laboratory Information			Batch ID:	WG124	44
Project ID:	G383-433	•	Instrument:	hrms1	•
Sample ID:	G383-433-3	B	Filename:	a26apr06	6a-12
Collection Date/Time:	04/13/06	17:25	Retchk:	a26apr06	ба-1
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a26apr06	ба-1 ⁻
Extraction Date:	04/21/06		End ConCal:	a26apr06	
Analysis Date/Time:	04/26/06	18:51	Initial Cal:	m8290-0	032406b

Method 8290 F39990-16 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards			\···7	()		
13C12-2,3,7,8-TCDD	1.0	0.680	68.0	31:06	0.83	
13C12-1,2,3,7,8-PeCDD	1.0	0.657	65.7	34:00	1.57	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.665	66.5	36:39	1.19	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.648	64.8	39:55	1.09	
13C12-OCDD	2.0	0.940	47.0	44:04	0.84	1
13C12-2,3,7,8-TCDF	1.0	0.670	67.0	30:19	0.81	
13C12-1,2,3,7,8-PeCDF	1.0	0.620	62.0	33:12	1.67	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.661	66.1	35:58	0.51	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.590	59.0	38:40	0.46	
Cleanup Standards		-				
37Cl4-2,3,7,8-TCDD	0.2	0.140	69.8	31:07	. •	
13C12-2,3,4,7,8-PeCDF	0.2	0.136	67.8	33:49	1.71	ľ
13C12-1,2,3,4,7,8-HxCDD	0.2	0.156	78.0	36:34	1.23	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.145	72.6 \(\)	35:51	0.49	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.129	64.3	40:34	0.44	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	· -	-	30:33	0.84	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	•	36:54	1.19	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
·			Matrix:	Water
Sample ID:	F39990-16		Weight / Volume:	511 mL
			Solids / Lipids:	NA %
	•		Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-3B		Filename:	a26apr06a-12
Collection Date/Time:	04/13/06	17:25	Retchk:	a26apr06a-1
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a26apr06a-1
Extraction Date:	04/21/06		End ConCal:	a26apr06a-14
Analysis Date/Time:	04/26/06	18:51	Initial Cal:	m8290-032406b
				Form Version: [8200 DR 2 04]Report

Analyzed by: 17
Date: 04/27/04

Reviewed by: 11/06

Method 8290 F39990-17 Accutest

Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
	(ng/L)	(ng/L)	(ng/L)	(min.)		Quantite
2,3,7,8-TCDD	ND	0.00675	\ B /	 (===)		
1,2,3,7,8-PeCDD	0.0112 ブ		1	34:01	1.39	l A
1,2,3,4,7,8-HxCDD	ND	0.0123				-
1,2,3,6,7,8-HxCDD	ND	0.0113	·		j	
1,2,3,7,8,9-HxCDD	ND	0.0125		. [1
1,2,3,4,6,7,8-HpCDD	0.0168 ブ			39:55	1.10	A
OCDD	ND	0.0242				
2,3,7,8-TCDF	ND	0.00671				
1,2,3,7,8-PeCDF	ND	0.00307				
2,3,4,7,8-PeCDF	ND	0.00300	l			
1,2,3,4,7,8-HxCDF	ND	0.00598				
1,2,3,6,7,8-HxCDF	ND	0.00527				
2,3,4,6,7,8-HxCDF	ND	0.00596				
1,2,3,7,8,9-HxCDF	ND	0.00713				·
1,2,3,4,6,7,8-HpCDF	ND	0.00601				
1,2,3,4,7,8,9-HpCDF	ND .	0.00778			•	1
OCDF	ND	0.0191	•			1
Total TCDDs	ND	0.00675				
Total PeCDDs	0.0112] :]
Total HxCDDs	ND	0.0125				
Total HpCDDs	0.0168					j i
Total TCDFs	ND	0.00671		1		li l
Total PeCDFs	ND	0.00307] [
Total HxCDFs	ND	0.00713		[[
Total HpCDFs	ND	0.00778		[[
WHO TEQ (ND=0)	0.0114		0.0114			1
WHO TEQ (ND=½)	0.0190		0.0190			<u> </u>

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	٠.
	• •		Matrix:	Water
Sample ID:	F39990-17		Weight / Volume:	506 mL
	•		Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-4	E	Filename:	a26apr06a-13
Collection Date/Time:	04/13/06	16:00	Retchk:	a26apr06a-1
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a26apr06a-1
Extraction Date:	04/21/06		End ConCal:	a26apr06a-14
Analysis Date/Time:	04/26/06	19:39	Initial Cal:	m8290-032406b

Method 8290 F39990-17 Accutest

Labeled Standard	Expected Amount	Measured Amount	Percent Recovery	RT	Ratio	Qualifier
Extraction Standards	(ng)	(ng)	(%)	(min.)		
13C12-2,3,7,8-TCDD	1.0	0.723	72.3	31:06	0.81	
13C12-1,2,3,7,8-PeCDD	1.0	0.703	70.3	34:00	1.59	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.761	76.1	36:39	1.19	į
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.753	75.3	39:55	1.05	
13C12-OCDD	2.0	1.04	51.8	44:04	0.82	
13C12-2,3,7,8-TCDF	1.0	0.684	68.4	30:19	0.81	
13C12-1,2,3,7,8-PeCDF	1.0	0.663	66.3	33:13	1.63	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.734	73.4	35:58	0.50	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.677	67.7	38:40	0.45	
Cleanup Standards						
37Cl4-2,3,7,8-TCDD	0.2	0.149	74.7	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.151	75.7	33:49	1.63	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.182	90.9	36:34	1.20	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.164	82.2	35:51	0.48	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.151	75.6	40:34	0.46	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	_	-	30:33	0.83	
13C12-1,2,3,7,8,9-HxCDD	2.0		. .	36:54	1.18	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-17		Weight / Volume:	506 mL
			Solids / Lipids:	NA %
	· ·		Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-433		Instrument:	hrms1
Sample ID:	G383-433-4	E	Filename:	a26apr06a-13
Collection Date/Time:	04/13/06	16:00	Retchk:	a26apr06a-1
Receipt Date/Time:	04/18/06	9:30	Begin ConCal:	a26apr06a-1
Extraction Date:	04/21/06		End ConCal:	a26apr06a-14
Analysis Date/Time:	04/26/06	19:39	Initial Cal:	m8290-032406b
h-t-				Form Version:[8290_DB_2.04]Report

Analyzed by: 14 Date: 04/27/66

Reviewed by: _ Date: _

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation – Dioxin Furans

SGS Paradigm Analytical Laboratories, Inc. SDG G383-431

(Accutest SDG F39990)

DATE:

May 10, 2006

The purpose of this memorandum is to present the data validation report for the samples collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. The sample was analyzed for Dioxin Furan compounds using USEPA SW-846 Method 8290 High Resolution Gas Chromatography/High Resolution Mass Spectroscopy (HRGC/HRMS). A total of eleven aqueous samples were validated. The sample Ids are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID F39990-7	
51MW1	F39990-1	48MW4		
51MW2	F39990-2	13MW1	F39990-9	
16-4	F39990-3	TM13MW1	F39990-10	
28MW2	F39990-4	13MW2	F39990-11	
28MW1 F39990-5		C1	F39990-12	
C4	F39990-6			

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, *USACE Shell for Analytical Chemistry Requirements*, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *USEPA Region III Dioxin/Furan Data Validation Guidance* (March, 1999). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified		Parameter
Yes	No	
	X	Holding Times and Preservation
	Х	Blank Analysis
	Х	Instrument Performance Check
	X	Initial Calibration
	X	Continuing Calibration
***************************************	Χ	Internal Standards (IS) Recovery Standard Solutions
	X	Cleanup Standards
	X	Laboratory Control Standard or Ongoing Precision Result (OPR)
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate
Х		Quantitation Verification

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT DIOXIN FURAN REVIEW SDG G383-431 (Accutest SDG F39990)

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For dioxin furan compounds in cooled @4°C \pm 2°C aqueous samples, the maximum holding time is 30 days from sample collection to preparative extraction and 45 days from preparative extraction to determinative analysis.

- Temperature Review: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, 3.2°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples in this SDG were collected on 04/10/06, 04/11/06, and 04/12/06. The samples were extracted on 04/21/06 and analyzed 04/22/06. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory (or field) blank analyses is to determine the existence and magnitude of contamination problems resulting from field and laboratory activities. No contamination should be found in any of the blanks >MDL. Samples are qualified "B" when they are less than 5X the absolute value of the maximum blank concentration (10x for OCDD/OCDF). **Table 2** summarizes the blank contamination analysis. Rinse blank 041206R (F39990-8) (low-flow pump) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. ng/L	Action Level ng/L	B qualified samples
04/22/06	LMB12444	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/22/06	041206R	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None

NA = Not Applicable.

III-Instrument Performance Check

Instrument must be tuned with perfluorokerosene (PFK) to achieve a static resolving power of at least 10,000 (10% valley). Documentation of the mass spectrometer resolving power is accomplished by recording the peak profile of the high-mass reference signal (typically m/z 330.9792) obtained during a peak examination by using the low-mass PFK ion at m/z 292.9825 or lower in mass as reference. At the beginning of the each 12-hour period, the chromatographic resolution is verified in the same fashion as in the initial calibration through the analysis of HRCC solution on the DB-5 (or equivalent) column or through the analysis of the column performance solution on the SP-2331 or SP-225 (or equivalent) column. A 25% valley must be achieved between the close eluters.

 All PFK forms were verified and found to be in compliance with method specification. No qualifiers were applied.

IV-Initial Calibration

Once the window defining mix has been analyzed and the descriptor switching times have been verified, the five point calibration solutions can be analyzed prior to sample analysis. Initial calibration criteria are as follows:

- The percent relative standard deviations for the mean response factors RRF(n) from the 17 unlabeled standards must not exceed ±20%, and those for the labeled reference compounds must not exceed ±30%
- Isotopic ratio must be within the specified control limits in Table 8 (SW846 Method 8290).
- For initial calibration performed on 03/24/06 for all target compounds on instrument HRMS1, all criteria were met. No qualifiers were applied.

V-Continuing Calibration

The continuing calibration consists of two parts: evaluation of the mass resolution and retention time check. The following stipulates the continuing calibration criteria.

- The signal signal-to-noise ratio (S/N) must be at least 10:1 for each selected ion current profile (SICP) and for each GC signal representing the elution of a target analyte or labeled standard for each analyte.
- The relative response factor of each analyte for the unlabeled standard must be within ±20% of the average RF obtained from the initial calibration, and the RRF of each labeled standard must be within ±30% of the average RRF established during initial calibration. This is expressed in term of percent difference %D.
- For continuing calibration performed on 04/19/06 @10:46 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/19/06 @22:03 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/20/06 @08:49 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/20/06 @15:25 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/21/06 @02:47 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/21/06 @14:10 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/21/06 @02:47 on instrument HRMS1, all criteria were met. No qualifiers were applied. No samples reported apply to this continuing calibration.
- For continuing calibration performed on 04/22/06 @01:10 on instrument HRMS1, all criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), and 16-4 (F39990-3) apply to this continuing calibration.

- For continuing calibration performed on 04/22/06 @12:31 on instrument HRMS1, all criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this continuing calibration.
- For continuing calibration performed on 04/22/06 @23:53 on instrument HRMS1, all criteria were met. No qualifiers were applied. Samples 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this continuing calibration.

VI-Internal Standards (IS) Recovery Standard Solutions

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: Recoveries of the isotopically-labeled recovery standards to fall within the 40 to 135 percent range for the tetra- through octachlorinated congeners, or as stated in the data package

All criteria were met. No qualifiers were applied.

VII-Cleanup Standards

Cleanup standards are added to every sample, blank, quality control sample, and calibration solution. This compound is added to the samples after extraction but prior to cleanup and is used to verify the percent recovery obtained using the isotope dilution technique. The control limits are 40 to 135 percent.

All criteria were met. No qualifiers were applied.

VIII-Laboratory Control Standard (LCS) or Ongoing Precision Result (OPR)

LCSs are used to monitor laboratory accuracy and precision by calculating the percent recoveries of the spiked compounds. Acceptable performance is determined by:

- 1. Recoveries of the isotopically-labeled extraction standards to fall within 40-135% control limits for the tetra- through octachlorinated congeners, or as stated in the data package;
- 2. Recoveries (accuracy) of the unlabeled compounds should be within ±35% when spiked at the method quantitation limit and within ±30% when spiked above 20 times the method quantitation limit, or as stated in the data package;
- 3. When duplicate OPR are required, the relative percent difference (RPD) of the unlabeled analytes concentrations should be within 30% when spiked at the method quantitation limit and within + 25% when spiked above 20 times the method quantitation limit.
- Sample OPR12444 was used as LCS. All criteria were met. No qualifiers were applied.

IX-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits (40-135%; 50%RPD).

No MS/MSD was performed for this SDG.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

• Field groundwater sample duplicate pair 13MW1 (F39990-9) and TM13MW1 (F39990-10) was collected for Dioxin Furans. All target compounds were non-detect. All criteria were met. No qualifiers were applied.

XI-Quantitation Verification

The accuracy of analytical results was verified through the calculation of at least one the several parameters such as the %D, %RSD, % recovery, and/or compound concentration. Values were found to be within 10%. Any value reported by the laboratory as estimated "A" based on an analyte to internal standard ratio below the calibration curve was qualified as estimated "J". The signal signal-to-noise ratio (S/N) must be greater than 2.5 for each selected ion current profile (SICP) and for each GC signal representing the elution of a target analyte or labeled standard. Any detected value with ether interference (DPE-lab flag) was qualified as estimated "J". For where the ion ratio failed the 25% criteria, the estimated maximum possible concentration (EMPC) was reported and flagged estimated "J".

Sample: 51MW1 (F39990-1), OCDD

A(x) = sum of the integrated ion abundances of the quantitation ions for the unlabeled ions:

A(is) = sum of the integrated ion abundances of the quantitation ions for the labeled ions;

Q(is) = quantity, in ng/ul, of the internal standard added to the sample before extraction;

W = weight, in g, of the sample (solid or organic liquid) as dry weight, or volume in mL of an aqueous sample; and

Avg.RRF(n) = calculated mean relative response factor for the unlabeled analyte.

Conc. (ng/L) = (A(x))*Q(is)*1000 = (70800+69700)*2.0*1000A(is)*W*Avg.RRF = (6120000+7070000)*504*1.1256

= 0.0376 ng/L

Reported Value = 0.0376 ng/L % Difference = 0.0% Values were within 10% difference

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and <MRL or <3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

D = Indicates sample was analyzed at a dilution.

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration <MRL and \geq MDL.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

N (Metals) = Laboratory spike sample recovery not within control limits.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

- * (Metals) = Duplicate analysis not within control limits.
- * (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Method 8290 F39990-1 Accutest

Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
	(ng/L)	(ng/L)	(ng/L)	(min.)	- Natio	Quantier
2,3,7,8-TCDD	ND	0.00332	, , ,	(
1,2,3,7,8-PeCDD	ND	0.00610				
1,2,3,4,7,8-HxCDD	ND	0.00890				1
1,2,3,6,7,8-HxCDD	ND	0.00821				
1,2,3,7,8,9-HxCDD	ND	0.00901				
1,2,3,4,6,7,8-HpCDD	ND	0.00875				•
OCDD	0.0376 丁			44:06	1.02	
2,3,7,8-TCDF	ND	0.00329		14.00	1.02	A
1,2,3,7,8-PeCDF	ND	0.00340				
2,3,4,7,8-PeCDF	ND	0.00332				
1,2,3,4,7,8-HxCDF	ND	0.00529		1 1		
1,2,3,6,7,8-HxCDF	ND	0.00466	1	1 1		
2,3,4,6,7,8-HxCDF	ND	0.00528	1	1		
1,2,3,7,8,9-HxCDF	ND	0.00631		1	. •	
1,2,3,4,6,7,8-HpCDF	ND	0.00541				
1,2,3,4,7,8,9-HpCDF	ND	0.00701			•	1 1
OCDF	ND	0.0167	1	1 1		1 1
Total TCDDs	ND	0.00332		 		
Total PeCDDs	ND	0.00610		1		
Total HxCDDs	ND	0.00901				1
Total HpCDDs	ND	0.00875		[1
Total TCDFs	ND	0.00329				1 1
Total PeCDFs	ND	0.00340				
Total HxCDFs	ND	0.00631	·			1
Total HpCDFs	ND	0.00701				
WHO TEQ (ND=0)	0.00000376		0.00000376		 	
WHO TEQ (ND=½)	0.00828		0.00828	1	1	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
Sample ID:	F39990-1		Matrix: Weight / Volume:	Water 504 mL
			Solids / Lipids:	NA %
Laboratory Information			Original pH : Batch ID:	7 WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-1	C	Filename:	
Collection Date/Time:	04/11/06	18:20	Retchk:	a21apr06a_2-11 a21apr06a-13
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a-13
Extraction Date:	04/21/06		End ConCal:	221anr06a 2 14
Analysis Date/Time:	04/22/06	10:06	Initial Cal:	m8290-032406b

Method 8290 F39990-1 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards			· · · · · · · · · · · · · · · · · · ·			
13C12-2,3,7,8-TCDD	1.0	0.815	81.5	31:07	0.80	
13C12-1,2,3,7,8-PeCDD	1.0	0.795	79.5	34:00	1.56	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.742	74.2	36:39	1.24	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.767	76.7	39:55	1.05	
13C12-OCDD	2.0	1.16	58.1	44:04	0.87	
13C12-2,3,7,8-TCDF	1.0	0.745	74.5	30:19	0.82	
13C12-1,2,3,7,8-PeCDF	1.0	0.748	74.8	33:13	1.56	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.680	68.0	35:58	0.50	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.660	66.0	38:40	0.47	
Cleanup Standards						
37C14-2,3,7,8-TCDD	0.2	0.158	78.8	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.151	75.6	33:49	1.54	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.166	83.2	36:34	1.24	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.151	75.6	35:52	0.49	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.140	69.8	40:34	0.48	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:34	0.80	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:54	1.19	

Client Information			Sample Information	
Project Name:	F39990	•	Report Basis:	
			Matrix:	Water
Sample ID:	F39990-1		Weight / Volume:	504 mL
			Solids / Lipids:	NA %
1			Original pH:	7
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-1	C	Filename:	a21apr06a_2-11
Collection Date/Time:	04/11/06	18:20	Retchk:	a21apr06a-13
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a-13
Extraction Date:	04/21/06		End ConCal:	a21apr06a_2-14
Analysis Date/Time:	04/22/06	10:06	Initial Cal:	m8290-032406b

Analyzed by: 4F

Date: 04/16/06

Reviewed by: Date: 4/34/14

00195

Method 8290 F39990-2 Accutest

Analytical Data Summary Sheet

Analyte	Amount	EDL	EMPC	RT	Dedie	10 75
	(ng/L)	(ng/L)	1	1	Ratio	Qualifier
2,3,7,8-TCDD	ND	0.00368	(ng/L)	(min.)		
1,2,3,7,8-PeCDD	ND	0.00368		1		
1,2,3,4,7,8-HxCDD	ND			ļ		
1,2,3,6,7,8-HxCDD	ND	0.0131				ı
1,2,3,7,8,9-HxCDD	ND ND	0.0121				1
1,2,3,4,6,7,8-HpCDD		0.0132	•			1
OCDD	ND	0.0103			1	
2,3,7,8-TCDF	ND	0.0208				-
1 ' ' '	ND	0.00358				
1,2,3,7,8-PeCDF	ND	0.00360			1	
2,3,4,7,8-PeCDF	ND	0.00352		i		1
1,2,3,4,7,8-HxCDF	ND	0.00683				1
1,2,3,6,7,8-HxCDF	ND	0.00602				1
2,3,4,6,7,8-HxCDF	ND	0.00681				
1,2,3,7,8,9-HxCDF	ND	0.00814				
1,2,3,4,6,7,8-HpCDF	ND	0.00613				
1,2,3,4,7,8,9-HpCDF	ND	0.00794	1	l		Į
OCDF	ND	0.0166				
Total TCDDs	ND	0.00368				
Total PeCDDs	ND	0.00651				1
Total HxCDDs	ND	0.0132	-			
Total HpCDDs	ND	0.0103				
Total TCDFs	ND	0.00358				
Total PeCDFs	ND	0.00360				
Total HxCDFs	ND	0.00814				
Total HpCDFs	ND	0.00794	•			
WHO TEQ (ND=0)	ND		ND			
WHO TEQ (ND=1/2)	0.00968		0.00968		•	

Client Information			Sample Information		
Project Name:	F39990	•	Report Basis:		
			Matrix:	Water	ì
Sample ID:	F39990-2		Weight / Volume:	510 mL	
			Solids / Lipids:	NA %	ı
	•		Original pH:	8	
Laboratory Information			Batch ID:	WG12444	
Project ID:	G383-431		Instrument:	hrms1	I
Sample ID:	G383-431-2	2C	Filename:	a21apr06a_2-12	- 1
Collection Date/Time:	04/10/06	16:45	Retchk:	a21apr06a-13	ı
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a-13	
Extraction Date:	04/21/06		End ConCal:	a21apr06a 2-14	
Analysis Date/Time:	04/22/06	10:54	Initial Cal:	m8290-032406b	

00734,

Method 8290 F39990-2 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT	Ratio	Qualifier
Extraction Standards	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(-6/	(70)	(min.)	 	
13C12-2,3,7,8-TCDD	1.0	0.869	86.9	31:07	0.80	
13C12-1,2,3,7,8-PeCDD	1.0	0.852	85.2	34:00	1.53	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.783	78.3	36:39	1	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.807	80.7	39:54	1.03	
13C12-OCDD	2.0	1.27	63.3	44:04	0.87	
13C12-2,3,7,8-TCDF	1.0	0.813	81.3	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.786	78.6	33:12	1.55	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.734	73.4	35:58	0.52	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.702	70.2	38:40	0.32	
Cleanup Standards				 	0.47	
37Cl4-2,3,7,8-TCDD	0.2	0.181	90.3	31:07		
13C12-2,3,4,7,8-PeCDF	0.2	0.170	85.1	33:49	1.57	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.194	97.1	36:34	1.27	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.168	84.2	35:52	0.48	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.153	76.6	40:34	0.49	
njection Standards				10.54	0.49	
3C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.81	• •
3C12-1,2,3,7,8,9-HxCDD	2.0	-	.	36:52	1.29	

Client Information	·.		Sample Information	
Project Name:	F39990		Report Basis:	
Sample ID:	F39990-2		Matrix: Weight / Volume:	Water 510 mL
Laboratory Information			Solids / Lipids: Original pH:	NA % 8
Project ID:	G383-431		Batch ID: Instrument:	WG12444 hrms1
Sample ID: Collection Date/Time:	G383-431-2 04/10/06	-	Filename:	a21apr06a_2-12
Receipt Date/Time:	04/10/06	16:45 10:30	Retchk: Begin ConCal:	a21apr06a-13
Extraction Date:	04/21/06	20.00	End ConCal:	a21apr06a-13 a21apr06a_2-14
Analysis Date/Time:	04/22/06	10:54	Initial Cal:	m8290-032406b

Analyzed by: 14

Date: 04/26/06

Reviewed by: ___

Date: 4/24/84

Paradigm Analytical Labs

Method 8290 F39990-3 Accutest

Analyte	Amount	EDL	EMPC		T 5 41	
Analyte	1 '	l .		RT	Ratio	Qualifier
2279 TOPP	(ng/L)	(ng/L)	(ng/L)	(min.)		
2,3,7,8-TCDD	ND	0.00365		· 	i	
1,2,3,7,8-PeCDD	ND	0.00610				
1,2,3,4,7,8-HxCDD	ND	0.00871				
1,2,3,6,7,8-HxCDD	ND	0.00803				
1,2,3,7,8,9-HxCDD	ND	0.00882				
1,2,3,4,6,7,8-HpCDD	ND	0.00915		1	·	1
OCDD	ND	0.0348		1		
2,3,7,8-TCDF	ND	0.00372				
1,2,3,7,8-PeCDF	ND	0.00330		1		
2,3,4,7,8-PeCDF	ND	0.00322		1		
1,2,3,4,7,8-HxCDF	ND	0.00554				
1,2,3,6,7,8-HxCDF	ND	0.00489				I
2,3,4,6,7,8-HxCDF	ND	0.00553	•			1
1,2,3,7,8,9-HxCDF	ND	0.00661	Ì			1
1,2,3,4,6,7,8-HpCDF	ND	0.00578		1		
1,2,3,4,7,8,9-HpCDF	ND	0.00749				
OCDF	ND	0.0209				
Total TCDDs	ND	0.00365				
Total PeCDDs	ND	0.00610				
Total HxCDDs	ND.	0.00882				
Total HpCDDs	ND	0.00915				
Total TCDFs	ND	0.00372				
Total PeCDFs	ND	0.00330				
Total HxCDFs	ND	0.00661				1 1
Total HpCDFs	ND	0.00749	·			
WHO TEQ (ND=0)	ND	·	ND	 		
WHO TEQ (ND=½)	0.00847		0.00847			

Client Information			Sample Information	·.	
Project Name:	F39990		Report Basis:		
			Matrix:	Water	
Sample ID:	F39990-3	•	Weight / Volume:	505 mL	
	:		Solids / Lipids:	NA %	
			Original pH:	8	
Laboratory Information			Batch ID:	WG12444	
Project ID:	G383-431		Instrument:	hrms1	
Sample ID:	G383-431-3	C	Filename:	a21apr06a_2-13	
Collection Date/Time:	04/10/06	14:40	Retchk:	a21apr06a-13	
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a-13	
Extraction Date:	04/21/06		End ConCal:	a21apr06a_2-14	
Analysis Date/Time:	04/22/06	11:43	Initial Cal:	m8290-032406b	- Card

Method 8290 F39990-3 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards	_\	(-8)	(70)	(111111.)		
13C12-2,3,7,8-TCDD	1.0	0.817	81.7	31:06	0.81	
13C12-1,2,3,7,8-PeCDD	1.0	0.777	77.7	34:00	1.56	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.759	75.9	36:39	1.22	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.767	76.7	39:54	1.06	
13C12-OCDD	2.0	1.22	60.8	44:04	0.87	
13C12-2,3,7,8-TCDF	1.0	0.775	77.5	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.741	74.1	33:12	1.57	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.706	70.6	35:58	0.53	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.665	66.5	38:40	0.47	
Cleanup Standards				1		
37Cl4-2,3,7,8-TCDD	0.2	0.172	85.8	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.162	81.1	33:49	1.58	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.177	88.7	36:34	1.27	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.171	85.3	35:52	0.51	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.147	73.5	40:34	0.48	
Injection Standards			······································			
13C12-1,2,3,4-TCDD	2.0	-	· -	30:33	0.81	
13C12-1,2,3,7,8,9-HxCDD	2.0		-	36:52	1.27	

Client Information			Sample Information	
Project Name:	F39990	·	Report Basis:	
a 1 m			Matrix:	Water
Sample ID:	F39990-3		Weight / Volume:	505 mL
			Solids / Lipids:	NA %
	4 - *		Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431	•	Instrument:	hrms1
Sample ID:	G383-431-3	C	Filename:	a21apr06a 2-13
Collection Date/Time:	04/10/06	14:40	Retchk:	a21apr06a-13
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a-13
Extraction Date:	04/21/06		End ConCal:	a21apr06a_2-14
Analysis Date/Time:	04/22/06	11:43	Initial Cal:	m8290-032406b

Analyzed by: 47

Date: 04/14/66

Reviewed by: (1)

00196

Method 8290 F39990-4 Accutest

Analyte	Amount	EDL	Summary She EMPC	RT	Ratio	Qualifier
]	(ng/L)	(ng/L)	(ng/L)	(min.)	Ratio	Quantier
2,3,7,8-TCDD	ND	0.00477	(ug L)	(111111.)	 	
1,2,3,7,8-PeCDD	ND	0.00580				
1,2,3,4,7,8-HxCDD	ND	0.0151		,		
1,2,3,6,7,8-HxCDD	ND	0.0139	ļ			
1,2,3,7,8,9-HxCDD	ND	0.0153				
1,2,3,4,6,7,8-HpCDD	ND	0.0131				·1
OCDD	ND	0.0250			1	
2,3,7,8-TCDF	ND	0.00381				
1,2,3,7,8-PeCDF	ND	0.00331				1
2,3,4,7,8-PeCDF	ND	0.00324	·	1		1
1,2,3,4,7,8-HxCDF	ND	0.00693				
1,2,3,6,7,8-HxCDF	ND	0.00611				
2,3,4,6,7,8-HxCDF	ND	0.00692		ŀ		1
1,2,3,7,8,9-HxCDF	ND	0.00827				
1,2,3,4,6,7,8-HpCDF	ND	0.00652				ł
1,2,3,4,7,8,9-HpCDF	ND	0.00844		İ		
OCDF	ND	0.0193				
Total TCDDs	ND	0.00477				
Total PeCDDs	ND	0.00580				
Total HxCDDs	ND	0.0153]
Total HpCDDs	ND	0.0131				
Total TCDFs	ND	0.00381				
Total PeCDFs	ND	0.00331			,	
Total HxCDFs	ND	0.00827				
Total HpCDFs	ND	0.00844				
WHO TEQ (ND=0)	ND		ND			
WHO TEQ (ND=½)	0.0101		0.0101			

Client Information			Sample Information				
Project Name:	F39990		Report Basis:				
			Matrix:	Water			
Sample ID:	F39990-4		Weight / Volume:	502 mL			
			Solids / Lipids:	NA %			
	•		Original pH:	8			
Laboratory Information	•		Batch ID:	WG12444			
Project ID:	G383-431		Instrument:	hrms1			
Sample ID:	G383-431-4	IC	Filename:	a21apr06a 3-4			
Collection Date/Time:	04/11/06	10:05	Retchk:	a21apr06a_2-14			
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14			
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14			
Analysis Date/Time:	04/22/06	15:49	Initial Cal:	m8290-032406b			

Method 8290 F39990-4 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(,0)	(11111.)	 	
13C12-2,3,7,8-TCDD	1.0	0.765	76.5	31:06	0.82	
13C12-1,2,3,7,8-PeCDD	1.0	0.703	70.3	34:00	1.60	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.693	69.3	36:39	1.20	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.700	70.0	39:54	1.05	
13C12-OCDD	2.0	1.06	53.1	44:04	0.85	
13C12-2,3,7,8-TCDF	1.0	0.713	71.3	30:19	0.81	
13C12-1,2,3,7,8-PeCDF	1.0	0.661	66.1	33:12	1.55	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.667	66.7	35:58	0.52	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.620	62.0	38:40	0.46	
Cleanup Standards						
37C14-2,3,7,8-TCDD	0.2	0.162	80.9	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.151	75.3	33:49	1.57	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.174	86.9	36:34	1.32	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.161	80.5	35:52	0.51	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.140	69.8	40:34	0.44	
Injection Standards	·					
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.81	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	•	36:52	1.23	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-4		Weight / Volume:	502 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information	-		Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-4	C	Filename:	a21apr06a_3-4
Collection Date/Time:	04/11/06	10:05	Retchk:	a21apr06a_2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14
Analysis Date/Time:	04/22/06	15:49	Initial Cal:	m8290-032406b

Analyzed by: SF
Date: 04/26

Reviewed by: _

Date:

Method 8290 F39990-5 Accutest

Analyte	Amount	EDL	EMPC	RT	Ratio	Oneligan
	(ng/L)	(ng/L)	(ng/L)	(min.)	Ratio	Qualifier
2,3,7,8-TCDD	ND	0.00402	(-8-)	 ()		
1,2,3,7,8-PeCDD	ND	0.00683] .		
1,2,3,4,7,8-HxCDD	ND	0.0142				
1,2,3,6,7,8-HxCDD	ND	0.0131		1		
1,2,3,7,8,9-HxCDD	ND	0.0144		.]		
1,2,3,4,6,7,8-HpCDD	ND	0.0144		1		
OCDD	ND	0.0377			·	
2,3,7,8-TCDF	ND	0.00447		1		•
1,2,3,7,8-PeCDF	ND	0.00417				
2,3,4,7,8-PeCDF	ND	0.00407			l ·	
1,2,3,4,7,8-HxCDF	ND	0.00719				
1,2,3,6,7,8-HxCDF	ND	0.00633			'	1 1
2,3,4,6,7,8-HxCDF	ND	0.00717				1 1
1,2,3,7,8,9-HxCDF	ND	0.00857	-			
1,2,3,4,6,7,8-HpCDF	ND	0.00735				l i
1,2,3,4,7,8,9-HpCDF	ND	0.00952				ŀ
OCDF	ND	0.0225				
Total TCDDs	ND	0.00402				
Total PeCDDs	ND	0.00683				
Total HxCDDs	ND	0.0144				
Total HpCDDs	ND	0.0144				
Total TCDFs	ND	0.00447		1		
Total PeCDFs	ND	0.00417		l i		
Total HxCDFs	ND	0.00857		l l		
Total HpCDFs	ND	0.00952				
WHO TEQ (ND=0)	ND		ND			
WHO TEQ (ND=1/2)	0.0105		0.0105			

Client Information			Sample Information		
Project Name:	F39990		Report Basis:		
			Matrix:	Water	
Sample ID:	F39990-5		Weight / Volume:	500 mL	-
·			Solids / Lipids:	NA %	
			Original pH:	8	
Laboratory Information			Batch ID:	WG12444	* .
Project ID:	G383-431	÷	Instrument:	hrms1	
Sample ID:	G383-431-5	C	Filename:	a21apr06a 3-5	
Collection Date/Time:	04/11/06	12:05	Retchk:	a21apr06a_2-14	
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14	
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14	4 may
Analysis Date/Time:	04/22/06	16:38	Initial Cal:	m8290-032406b	•

Method 8290 F39990-5 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards	(ng)	(ng)	(70)	(mm.)	<u> </u>	
13C12-2,3,7,8-TCDD	1.0	0.721	72.1	31:06	0.79	
13C12-1,2,3,7,8-PeCDD	1.0	0.657	65.7	34:00	1.54	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.663	66.3	36:39	1.18	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.647	64.7	39:55	1.04	
13C12-OCDD	2.0	0.959	48.0	44:04	0.85	
13C12-2,3,7,8-TCDF	1.0	0.675	67.5	30:19	0.79	
13C12-1,2,3,7,8-PeCDF	1.0	0.625	62.5	33:12	1.56	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.628	62.8	35:58	0.51	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.577	57.7	38:40	0.45	
Cleanup Standards						
37C14-2,3,7,8-TCDD	0.2	0.157	78.6	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.143	71.5	33:49	1.57	į
13C12-1,2,3,4,7,8-HxCDD	0.2	0.157	78.7	36:34	1.22	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.154	77.0	35:52	0.49	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.133	66.6	40:34	0.46	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.81	·
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:52	1.21	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-5		Weight / Volume:	500 mL
			Solids / Lipids:	NA %
٠.			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-5	C	Filename:	a21apr06a_3-5
Collection Date/Time:	04/11/06	12:05	Retchk:	a21apr06a_2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	16:38	Initial Cal:	m8290-032406b

Analyzed by: 17
Date: 04/26/66

Reviewed by: UN Date: 4/04/06

Method 8290 F39990-6 Accutest

Analyte	Amount	EDL	EMPC	RT	Ratio	Omelia
	(ng/L)	(ng/L)	(ng/L)	(min.)	Katio	Qualifier
2,3,7,8-TCDD	ND	0.00452	, , ,	(
1,2,3,7,8-PeCDD	ND	0.00697	İ	Ì		
1,2,3,4,7,8-HxCDD	ND	0.0112				1
1,2,3,6,7,8-HxCDD	ND	0.0104				
1,2,3,7,8,9-HxCDD	ND	0.0114	į			
1,2,3,4,6,7,8-HpCDD	ND	0.00977	-	· -		
OCDD	0.0361 丁			44:04	0.91	1 .
2,3,7,8-TCDF	ND	0.00456	1	17.04	0.91	A
1,2,3,7,8-PeCDF	ND	0.00333				l
2,3,4,7,8-PeCDF	ND	0.00325				l
1,2,3,4,7,8-HxCDF	ND	0.00527				
1,2,3,6,7,8-HxCDF	ND	0.00464		1		
2,3,4,6,7,8-HxCDF	ND	0.00526				l
1,2,3,7,8,9-HxCDF	ND	0.00628				İ
1,2,3,4,6,7,8-HpCDF	ND	0.00627	1			
1,2,3,4,7,8,9-HpCDF	ND	0.00812				
OCDF	ND	0.0161	,	1 1		,
Total TCDDs	ND	0.00452		1		
Total PeCDDs	ND	0.00697		1		
Total HxCDDs	ND	0.0114				
Total HpCDDs	ND	0.00977		1		
Total TCDFs	ND	0.00456		1 1		•
Total PeCDFs	ND	0.00333		1		I
Total HxCDFs	ND	0.00628		1		J
Total HpCDFs	ND	0.00812			·	
WHO TEQ (ND=0)	0.00000361		0.00000361			
WHO TEQ (ND=½)	0.00972		0.00972		I	

·
%
·
-6
-14
-14
-14
106ь
-1

Method 8290 F39990-6 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards			(,,,	(11111.)	 	
13C12-2,3,7,8-TCDD	1.0	0.737	73.7	31:06	0.82	
13C12-1,2,3,7,8-PeCDD	1.0	0.679	67.9	34:00	1.56	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.694	69.4	36:39	1.24	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.653	65.3	39:54	1.05	
13C12-OCDD	2.0	0.974	48.7	44:04	0.85	
13C12-2,3,7,8-TCDF	1.0	0.700	70.0	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.642	64.2	33:13	1.54	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.637	63.7	35:58	0.50	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.602	60.2	38:40	0.45	
Cleanup Standards						
37Cl4-2,3,7,8-TCDD	0.2	0.162	81.0	31:07		
13C12-2,3,4,7,8-PeCDF	0.2	0.149	74.7	33:49	1.58	
13C12-1,2,3,4,7,8-HxCDD	0,2	0.163	81.3	36:34	1,23	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.154	76.9	35:52	0.49	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.138	69.0	40:34	0.47	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.80	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:52	1.23	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
Camento ID.	T20000 6		Matrix:	Water
Sample ID:	F39990-6		Weight / Volume:	502 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-6	iC ·	Filename:	a21apr06a_3-6
Collection Date/Time:	04/11/06	14:45	Retchk:	a21apr06a_2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	17:26	Initial Cal:	m8290-032406b

Analyzed by: 57
Date: 64/16

Reviewed by: 00 Date: 4/84/84

Method 8290 F39990-7 Accutest

	Ali	alytical Data	Summary Sho	eet		
Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
	(ng/L)	(ng/L)	(ng/L)	(min.)	İ	
2,3,7,8-TCDD	ND	0.00403				
1,2,3,7,8-PeCDD	ND	0.00658				
1,2,3,4,7,8-HxCDD	ND	0.0111	-			ł
1,2,3,6,7,8-HxCDD	ND	0.0102				1
1,2,3,7,8,9-HxCDD	ND	0.0112				1
1,2,3,4,6,7,8-HpCDD	ND	0.0156				
OCDD	ND	0.0309			Į	ļ
2,3,7,8-TCDF	ND	0.00334			1	-
1,2,3,7,8-PeCDF	ND	0.00334				
2,3,4,7,8-PeCDF	ND	0.00326		1 .		,
1,2,3,4,7,8-HxCDF	ND	0.00479		j	į	
1,2,3,6,7,8-HxCDF	ND	0.00422				
2,3,4,6,7,8-HxCDF	ND	0.00478		[1
1,2,3,7,8,9-HxCDF	ND	0.00572				İ
1,2,3,4,6,7,8-HpCDF	ND	0.00741				
1,2,3,4,7,8,9-HpCDF	ND	0.00960		1		1
OCDF	ND	0.0168				
Total TCDDs	ND	0.00403			**	
Total PeCDDs	ND	0.00658	-			
Total HxCDDs	ND	0.0112				
Total HpCDDs	ND	0.0156		1 1		
Total TCDFs	ND	0.00334		1		
Total PeCDFs	ND	0.00334		1		
Total HxCDFs	ND	0.00572]		
Total HpCDFs	ND	0.00960			,	
WHO TEQ (ND=0)	ND		ND	 		
WHO TEQ (ND=½)	0.00913		0.00913			

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
*			Matrix:	Water
Sample ID:	F39990-7		Weight / Volume:	513 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-7	C	Filename:	a21apr06a_3-7
Collection Date/Time:	04/11/06	17:15	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	18:14	Initial Cal:	m8290-032406b

Method 8290 F39990-7 Accutest

Labeled	Expected	Measured	Percent	RT	Ratio	Qualifier
Standard	Amount	Amount	Recovery			
Extraction Standards	(ng)	(ng)	(%)	(min.)	ļ	
13C12-2,3,7,8-TCDD	1.0	0.770	77.0	31:06	0.80	
13C12-1,2,3,7,8-PeCDD	1.0	0.704	70.4	34:00	1.53	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.718	71.8	36:39	1.22	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.692	69.2	39:54	1.03	
13C12-OCDD	2.0	1.06	52.8	44:04	0.84	
13C12-2,3,7,8-TCDF	1.0	0.726	72.6	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.675	67.5	33:12	1.56	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.662	66.2	35:58	0.50	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.626	62.6	38:40	0.46	
Cleanup Standards						
37C14-2,3,7,8-TCDD	0.2	0.161	80.6	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.148	73.8	33:49	1.53	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.161	80.5	36:34	1.23	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.156	78.2	35:52	0.48	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.140	69.9	40:34	0.46	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.81	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:52	1.22	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
et e			Matrix:	Water
Sample ID:	F39990-7		Weight / Volume:	513 mL
			Solids / Lipids:	NA %
		* .	Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-7	'C	Filename:	a21apr06a 3-7
Collection Date/Time:	04/11/06	17:15	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06	,	End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	18:14	Initial Cal:	m8290-032406b

Analyzed by: 17
Date: 04/16/06

Reviewed by: 4/24/06

Date: 4/24/06

002032

Method 8290 F39990-9 Accutest

	All	alytical Data	Summary She	et .		
Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier
	(ng/L)	(ng/L)	(ng/L)	(min.)		•
2,3,7,8-TCDD	ND	0.00324				
1,2,3,7,8-PeCDD	ND	0.00610				
1,2,3,4,7,8-HxCDD	ND	0.0129	·	1		
1,2,3,6,7,8-HxCDD	ND	0.0119				
1,2,3,7,8,9-HxCDD	ND	0.0131				
1,2,3,4,6,7,8-HpCDD	ND	0.00836	•			
OCDD	ND	0.0264		1		
2,3,7,8-TCDF	ND	0.00445		1		
1,2,3,7,8-PeCDF	ND	0.00325				
2,3,4,7,8-PeCDF	ND	0.00317	•			
1,2,3,4,7,8-HxCDF	ND	0.00665		1		
1,2,3,6,7,8-HxCDF	ND	0.00586				
2,3,4,6,7,8-HxCDF	ND	0.00663				
1,2,3,7,8,9-HxCDF	ND	0.00792				
1,2,3,4,6,7,8-HpCDF	ND	0.00369		1		
1,2,3,4,7,8,9-HpCDF	ND	0.00478				
OCDF	ND '	0.0182		· .		
Total TCDDs	ND	0.00324				
Total PeCDDs	ND	0.00610				
Total HxCDDs	ND .	0.0131				
Total HpCDDs	ND	0.00836				
Total TCDFs	ND	0.00445]		
Total PeCDFs	ND ·	0.00325				
Total HxCDFs	ND	0.00792			ĺ	
Total HpCDFs	ŇD	0.00478			ľ	
WHO TEQ (ND=0)	ND		ND		-	
WHO TEQ (ND=1/2)	0.00910		0.00910			

Client Information		······································	Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-9		Weight / Volume:	520 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information		•	Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-9	C	Filename:	a21apr06a 3-9
Collection Date/Time:	04/12/06	9:40	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21amm06a 2 14
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14
Analysis Date/Time:	04/22/06	19:51	Initial Cal:	a21apr06a_3-14 a21apr06a_3-14 m8290-032406b20

Method 8290 F39990-9 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards	<u> </u>	(-8/	(/6)	(ши.)		
13C12-2,3,7,8-TCDD	1.0	0.862	86.2	31:06	0.82	
13C12-1,2,3,7,8-PeCDD	1.0	0.787	78.7	34:00	1.55	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.789	78.9	36:39	1.22	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.763	76.3	39:54	1.04	
13C12-OCDD	2.0	1.13	56.4	44:04	0.84	
13C12-2,3,7,8-TCDF	1.0	0.800	80.0	30:19	0.84	
13C12-1,2,3,7,8-PeCDF	1.0	0.742	74.2	33:12	1.54	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.736	73.6	35:58	0.51	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.687	68.7	38:40	0.46	
Cleanup Standards						
37C14-2,3,7,8-TCDD	0.2	0.164	81.9	31:07	_	1
13C12-2,3,4,7,8-PeCDF	0.2	0.153	76.7	33:49	1.53	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.164	82.2	36:34	1.22	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.161	80.4	35:52	0.51	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.138	69.1	40:34	0.45	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.84	
13C12-1,2,3,7,8,9-HxCDD	2.0		<u>-</u>	36:52	1.23	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
Sample ID:	F39990-9		Matrix:	Water
cample 13.	r33330-9		Weight / Volume:	520 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431	4.2	Instrument:	hrms1
Sample ID:	G383-431-9	C	Filename:	a21apr06a 3-9
Collection Date/Time:	04/12/06	9:40	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14
Analysis Date/Time:	04/22/06	19:51	Initial Cal:	m8290-032406b

 Reviewed by:

Date: 4/34/06

Method 8290 F39990-10 Accutest

Analytical Data Summary Sheet									
Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier			
	(ng/L)	(ng/L)	(ng/L)	(min.)					
2,3,7,8-TCDD	ND	0.00487							
1,2,3,7,8-PeCDD	ND	0.00537				1			
1,2,3,4,7,8-HxCDD	ND	0.0107							
1,2,3,6,7,8-HxCDD	ND	0.00991							
1,2,3,7,8,9-HxCDD	ND	0.0109		1.		1			
1,2,3,4,6,7,8-HpCDD	ND	0.0138		1		1			
OCDD	ND .	0.0286							
2,3,7,8-TCDF	ND	0.00390		1					
1,2,3,7,8-PeCDF	ND	0.00326		1					
2,3,4,7,8-PeCDF	ND	0.00318		ļ					
1,2,3,4,7,8-HxCDF	ND	0.00687		1					
1,2,3,6,7,8-HxCDF	ND	0.00605				1			
2,3,4,6,7,8-HxCDF	ND	0.00686		1					
1,2,3,7,8,9-HxCDF	ND	0.00819	<u>{</u>						
1,2,3,4,6,7,8-HpCDF	ND	0.00777				l			
1,2,3,4,7,8,9-HpCDF	ND	0.0101				İ			
OCDF	ND	0.0205		1		ł			
Total TCDDs	ND	0.00487							
Total PeCDDs	ND	0.00537							
Total HxCDDs	ND	0.0109							
Total HpCDDs	ND	0.0138				1			
Total TCDFs	ND	0.00390							
Total PeCDFs	ND	0.00326							
Total HxCDFs	ND	0.00819							
Total HpCDFs	ND	0.0101							
WHO TEQ (ND=0)	ND		ND						
WHO TEQ (ND=½)	0.00933		0.00933						

Client Information			Sample Information				
Project Name:	F39990		Report Basis:				
			Matrix:	Water			
Sample ID:	F39990-10		Weight / Volume:	503 mL	- 1		
			Solids / Lipids:	NA %			
· .			Original pH:	. 8			
Laboratory Information			Batch ID:	WG12444			
Project ID:	G383-431		Instrument:	hrms1	1		
Sample ID:	G383-431-1	0C	Filename:	a21apr06a 3-10			
Collection Date/Time:	04/12/06	9:40	Retchk:	a21apr06a 2-14	ı		
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14			
Extraction Date:	04/21/06		End ConCal:	a21anr06a 2.14			
Analysis Date/Time:	04/22/06	20:39	Initial Cal:	m8290-032406b	308		

Method 8290 F39990-10 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards	` 9/	(6/	(70)	(111111.)		-
13C12-2,3,7,8-TCDD	1.0	0.810	81.0	31:06	0.78	
13C12-1,2,3,7,8-PeCDD	1.0	0.722	72.2	34:00	1.56	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.735	73.5	36:39	1.24	
13C12-1,2,3,4,6,7,8-H _P CDD	1.0	0.705	70.5	39:54	1.05	
13C12-OCDD	2.0	1.02	51.1	44:04	0.84	
13C12-2,3,7,8-TCDF	1.0	0.748	74.8	30:19	0.81	
13C12-1,2,3,7,8-PeCDF	1.0	0.690	69.0	33:13	1.56	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.699	69.9	35:58	0.52	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.630	63.0	38:40	0.46	
Cleanup Standards	/		· · · · · · · · · · · · · · · · · · ·			
37C14-2,3,7,8-TCDD	0.2	0.160	80.2	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.141	70.5	33:49	1.58	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.164	81.8	36:34	1.23	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.156	77.8	35:52	0.50	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.130	65.0	40:34	0.44	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.81	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:52	1.22	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
Sample ID:	F39990-10		Matrix: Weight / Volume: Solids / Lipids:	Water 503 mL NA %
Laboratory Information			Original pH: Batch ID:	8 WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-1	10C	Filename:	a21apr06a 3-10
Collection Date/Time:	04/12/06	9:40	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a_2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14
Analysis Date/Time:	04/22/06	20:39	Initial Cal:	m8290-032406b

Analyzed by: JF

Date: 04/24/66

Reviewed by: UM Date: 4/34/06

00205×

Method 8290 F39990-11 Accutest

Analytical Data Summary Sheet									
Analyte	Amount	EDL	EMPC	RT	Ratio	Qualifier			
	(ng/L)	(ng/L)	(ng/L)	(min.)					
2,3,7,8-TCDD	ND	0.00436			 				
1,2,3,7,8-PeCDD	ND	0.00654	1		j ·				
1,2,3,4,7,8-HxCDD	ND	0.0104							
1,2,3,6,7,8-HxCDD	ND	0.00956		1					
1,2,3,7,8,9-HxCDD	ND	0.0105							
1,2,3,4,6,7,8-HpCDD	ND	0.0134							
OCDD	ND	0.0504	· ·			1			
2,3,7,8-TCDF	ND	0.00443							
1,2,3,7,8-PeCDF	ND ·	0.00393							
2,3,4,7,8-PeCDF	ND .	0.00383							
1,2,3,4,7,8-HxCDF	ND	0.00564							
1,2,3,6,7,8-HxCDF	ND	0.00496							
2,3,4,6,7,8-HxCDF	ND	0.00562							
1,2,3,7,8,9-HxCDF	ND	0.00672		1					
1,2,3,4,6,7,8-HpCDF	ND	0.00914		1					
1,2,3,4,7,8,9-HpCDF	ND	0.0118							
OCDF	ND	0.0290							
Total TCDDs	ND	0.00436				<u> </u>			
Total PeCDDs	ND	0.00654							
Total HxCDDs	ND	0.0105		1					
Total HpCDDs	ND.	0.0134		1]			
Total TCDFs	ND	0.00443							
Total PeCDFs	ND	0.00393		j j					
Total HxCDFs	ND	0.00672							
Total HpCDFs	ND	0.0118							
WHO TEQ (ND=0)	ND		ND	 	· · · · · · · · · · · · · · · · · · ·				
WHO TEQ (ND=½)	0.00957		0.00957						

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	•
Sample ID:	F39990-11		Matrix: Weight / Volume:	Water 507 mL
	•		Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431	•	Instrument:	h r ms1
Sample ID:	G383-431-1	1C	Filename:	a21apr06a 3-11
Collection Date/Time:	04/12/06	10:50	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14
Analysis Date/Time:	04/22/06	21:28	Initial Cal:	m8290-032406b

Method 8290 F39990-11 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount	Percent Recovery	RT	Ratio	Qualifier
Extraction Standards	(lig)	(ng)	(%)	(min.)	· ·	
13C12-2,3,7,8-TCDD	1.0	0.744	74.4	31:06	0.80	
13C12-1,2,3,7,8-PeCDD	1.0	0.677	67.7	34:00	1.58	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.685	68.5	36:39	1.22	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.651	65.1	39:54	1.05	
13C12-OCDD	2.0	0.905	45.2	44:04	0.84	
13C12-2,3,7,8-TCDF	1.0	0.702	70.2	30:19	0.82	
13C12-1,2,3,7,8-PeCDF	1.0	0.643	64.3	33:12	1.55	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.646	64.6	35:58	0.51	·
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.586	58.6	38:40	0.46	
Cleanup Standards				 		
37C14-2,3,7,8-TCDD	0.2	0.164	82.0	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.146	73.1	33:49	1.56	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.160	80.1	36:34	1.24	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.160	80.0	35:52	0.54	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.138	69.1	40:34	0.47	
Injection Standards			· · · · · · · · · · · · · · · · · · ·			
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.82	
13C12-1,2,3,7,8,9-HxCDD	2.0	-	-	36:52	1.22	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-11		Weight / Volume:	507 mL
			Solids / Lipids:	NA %
			Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431	•	Instrument:	hrms1
Sample ID:	G383-431-1	1C	Filename:	a21apr06a_3-11
Collection Date/Time:	04/12/06	10:50	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	21:28	Initial Cal:	m8290-032406b

Analyzed by: 44

Date: 04/26/06

Reviewed by: 4/84/86

Method 8290 F39990-12 Accutest

Anglyte	A	uaiyiicai Data	Analyte Amount FDI FMDG								
Audiyic	Amount	EDL	EMPC	RT	Ratio	Qualifie					
2279 7070	(ng/L)	(ng/L)	(ng/L)	(min.)							
2,3,7,8-TCDD	ND	0.00427				 					
1,2,3,7,8-PeCDD	ND	0.00612	l			1 .					
1,2,3,4,7,8-HxCDD	ND	0.0107									
1,2,3,6,7,8-HxCDD	ND	0.00985		.]]		1					
1,2,3,7,8,9-HxCDD	ND	0.0108	. ~	1		1					
1,2,3,4,6,7,8-HpCDD	ND	0.0126	1	1		1					
OCDD	ND	0.0378		1							
2,3,7,8-TCDF	ND	0.00348	ĺ			1					
1,2,3,7,8-PeCDF	ND	0.00365		1							
2,3,4,7,8-PeCDF	ND	0.00357		1							
1,2,3,4,7,8-HxCDF	ND	0.00518									
1,2,3,6,7,8-HxCDF	ND	0.00456									
2,3,4,6,7,8-HxCDF	ND	0.00517									
1,2,3,7,8,9-HxCDF	ND	0.00618									
1,2,3,4,6,7,8-HpCDF	ND	0.00708	·								
1,2,3,4,7,8,9-HpCDF	ND	0.00917									
OCDF	ND	0.0190	·								
Total TCDDs	ND .	0.00427			· · · · · · · · · · · · · · · · · · ·						
Total PeCDDs	ND	0.00612		l		İ					
Total HxCDDs	ND	0.0108	l								
Total HpCDDs	ND	0.0126			i						
Total TCDFs	ND	0.00348	ł	i							
Total PeCDFs	ND	0.00365	·								
otal HxCDFs	ND	0.00618		1							
otal HpCDFs	ND	0.00917									
VHO TEQ (ND=0)	ND		ND			<u>:</u>					
VHO TEQ (ND=1/2)	0.00912		0.00912	1 -							

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	. •
Sample ID:	F39990-12		Matrix: Weight / Volume: Solids / Lipids:	Water 505 mL NA %
Laboratory Information Project ID: Sample ID:	G383-431 G383-431-1	12C	Original pH: Batch ID: Instrument: Filename:	8 WG12444 hrms1 a21apr06a_3-12
Collection Date/Time: Receipt Date/Time: Extraction Date: Analysis Date/Time:	04/12/06 04/14/06 04/21/06 04/22/06	12:40 10:30 22:16	Retchk: Begin ConCal: End ConCal: Initial Cal:	a21apr06a_2-14 a21apr06a_2-14 a21apr06a_3-14 m8290-032406b

Method 8290 F39990-12 Accutest

Labeled Standard	Expected Amount (ng)	Measured Amount (ng)	Percent Recovery (%)	RT (min.)	Ratio	Qualifier
Extraction Standards	-	(5)	(70)	(шш.)		
13C12-2,3,7,8-TCDD	1.0	0.802	80.2	31:06	0.80	
13C12-1,2,3,7,8-PeCDD	1.0	0.734	73.4	34:00	1.55	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.748	74.8	36:39	1.18	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.724	72.4	39:54	1.03	
13C12-OCDD	2.0	1.08	53.9	44:04	0.82	
13C12-2,3,7,8-TCDF	1.0	0.755	75.5	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.694	69.4	33:12	1.56	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.721	72.1	35:57	0.50	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.659	65.9	38:40	0.46]
Cleanup Standards			· · · · · · · · · · · · · · · · · · ·			
37C14-2,3,7,8-TCDD	0.2	0.165	82.7	31:07		
13C12-2,3,4,7,8-PeCDF	0.2	0.149	74.5	33:49	1.54	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.176	87.9	36:34	1.21	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.157	78.4	35:52	0.49	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.141	70.7	40:34	0.44	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.81	
13C12-1,2,3,7,8,9-HxCDD	2.0	_	-	36:52	1.22	

Client Information			Sample Information	
Project Name:	F39990	·	Report Basis:	
Commis XII.	F20000 10		Matrix:	Water
Sample ID:	F39990-12		Weight / Volume:	505 mL
	•		Solids / Lipids:	NA %
		-	Original pH:	8
Laboratory Information			Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-1	2C	Filename:	a21apr06a 3-12
Collection Date/Time:	04/12/06	12:40	Retchk:	a21apr06a_2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06	•	End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	22:16	Initial Cal:	m8290-032406b

Reviewed by:

Date: 4/04/16 0231

Method 8290 F39990-8 Accutest

Analyte	Amount	EDL	EMPC	RT	I Date	10
	(ng/L)	(ng/L)	1	1	Ratio	Qualifier
2,3,7,8-TCDD	ND	0.00472	(ng/L)	(min.)	 	
1,2,3,7,8-PeCDD	ND	0.00472		1		1
1,2,3,4,7,8-HxCDD	ND	1	1	l	1	
1,2,3,6,7,8-HxCDD	ND	0.00941				
1,2,3,7,8,9-HxCDD	ND	0.00868			İ	1
1,2,3,4,6,7,8-HpCDD	ND			-		1
OCDD	ND	0.0213 0.0571				
2,3,7,8-TCDF	ND	1			1	
1,2,3,7,8-PeCDF	ND	0.00441				
2,3,4,7,8-PeCDF	ND ND	0.00340	1			
1,2,3,4,7,8-HxCDF	1	0.00332		ł		
1,2,3,6,7,8-HxCDF	ND	0.00561				İ
1,2,3,0,7,6-HXCDF 2,3,4,6,7,8-HxCDF	ND	0.00494		1		
	ND	0.00560		1		
1,2,3,7,8,9-HxCDF	ND	0.00669				
1,2,3,4,6,7,8-HpCDF	ND	0.0124				
1,2,3,4,7,8,9-HpCDF OCDF	ND	0.0160		j		
	ND	0.0295				
Total TCDDs	ND	0.00472				
Total PeCDDs	ND	0.00670		1		
Total HxCDDs	ND	0.00953				1
Total HpCDDs	ND	0.0213		ł		
Total TCDFs	ND	0.00441		i]
Total PeCDFs	ND	0.00340		1	•	
Total HxCDFs	ND	0.00669				
Total HpCDFs	ND	0.0160]	•]
WHO TEQ (ND=0)	ND		ND			
WHO TEQ (ND=½)	0.00962		0.00962			

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	· .
•		•	Matrix:	Water
Sample ID:	F39990-8		Weight / Volume:	503 mL
			Solids / Lipids:	NA %
			Original pH:	5
Laboratory Information	•.	•	Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-8	C	Filename:	a21apr06a 3-8
Collection Date/Time:	04/12/06	7:45	Retchk:	a21apr06a 2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a 3-14
Analysis Date/Time:	04/22/06	19:03	Initial Cal:	m8290-032406b

Method 8290 F39990-8 Accutest

Labeled Standard	Expected Amount	Measured Amount	Percent Recovery	RT	Ratio	Qualifier
	(ng)	(ng)	(%)	(min.)		
Extraction Standards						
13C12-2,3,7,8-TCDD	1.0	0.740	74.0	31:06	0.82	
13C12-1,2,3,7,8-PeCDD	1.0	0.661	66.1	34:00	1.53	
13C12-1,2,3,6,7,8-HxCDD	1.0	0.686	68.6	36:39	1.22	
13C12-1,2,3,4,6,7,8-HpCDD	1.0	0.662	66.2	39:54	1.06	
13C12-OCDD	2.0	0.955	47.7	44:04	0.83	}
13C12-2,3,7,8-TCDF	1.0	0.690	69.0	30:19	0.80	
13C12-1,2,3,7,8-PeCDF	1.0	0.637	63.7	33:12	1.57	
13C12-1,2,3,6,7,8-HxCDF	1.0	0.652	65.2	35:58	0.51	
13C12-1,2,3,4,6,7,8-HpCDF	1.0	0.597	59.7	38:40	0.44	,
Cleanup Standards						
37Cl4-2,3,7,8-TCDD	0.2	0.155	77.7	31:07	-	
13C12-2,3,4,7,8-PeCDF	0.2	0.144	72.0	33:49	1.58	
13C12-1,2,3,4,7,8-HxCDD	0.2	0.160	79.8	36:34	1.20	
13C12-1,2,3,4,7,8-HxCDF	0.2	0.157	78.5	35:52	0.48	
13C12-1,2,3,4,7,8,9-HpCDF	0.2	0.132	66.2	40:34	0.43	
Injection Standards						
13C12-1,2,3,4-TCDD	2.0	-	-	30:33	0.80	
13C12-1,2,3,7,8,9-HxCDD	2.0		<u>-</u>	36:52	1.24	

Client Information			Sample Information	
Project Name:	F39990		Report Basis:	
			Matrix:	Water
Sample ID:	F39990-8		Weight / Volume:	503 mL
			Solids / Lipids:	NA %
			Original pH:	5
Laboratory Information	•		Batch ID:	WG12444
Project ID:	G383-431		Instrument:	hrms1
Sample ID:	G383-431-8	C	Filename:	a21apr06a_3-8
Collection Date/Time:	04/12/06	7:45	Retchk:	a21apr06a_2-14
Receipt Date/Time:	04/14/06	10:30	Begin ConCal:	a21apr06a 2-14
Extraction Date:	04/21/06		End ConCal:	a21apr06a_3-14
Analysis Date/Time:	04/22/06	19:03	Initial Cal:	m8290-032406b

Analyzed by: 54

Date: 04/26/66

Reviewed by: 900 Date: 4/24/00

2113 Emmorton Park Road Edgewood, MD 21040-1037 410.612.6350 Fax 410.612.6351

MEMORANDUM

TO:

Jeff Parks, Shaw E&I Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, Shaw E&I Project Chemist

SUBJECT:

RFAAP Data Validation - Volatiles

Accutest Laboratories, Inc., SDG F39990

DATE:

May 3, 2006

The purpose of this memorandum is to present the data validation report for the samples collected for RFAAP SWMUs 48, 49, 50, 51, and 59 on April 10, 2006, April 11, 2006, April 12, 2006, and April 13, 2006 for groundwater analysis. The samples were analyzed for volatile organic compounds (VOCs) using USEPA SW846 Method 5030B/8260B. A total of fifteen aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
51MW1	F39990-1	TM13MW1	F39990-10
51MW2	F39990-2	13MW2	F39990-11
16-4	F39990-3	C1	F39990-12
28MW2	F39990-4	48MW1	F39990-14
28MW1	F39990-5	TM48MW1	F39990-15
C4	F39990-6	48MW2	F39990-16
48MW4	F39990-7	48MW3	F39990-17
13MW1	F39990-9		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, *USACE Shell for Analytical Chemistry Requirements*, method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Organic Data Review* (September 1994). Parameters evaluated under data validation procedure Level M3 are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	ified	Parameter
Yes	No	
_	Х	Holding Times and Preservation
	Х	Instrument Performance Results
Х		Initial Calibration
	Х	Continuing Calibration
Х		Blank Analysis
	Х	Laboratory Control Sample
	Х	Matrix Spike / Spike Duplicate Sample
	Х	System Monitoring Compounds
	Х	Internal Standards
	Х	Field Sample Duplicate
Х		Quantitation Verification

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

5/3/06

Date

RFAAP VALIDATION REPORT VOLATILES REVIEW SDG F39990

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of analysis. Holding time criteria: For aqueous samples cooled @ 4°C±2°C; pH<2 HCl, the maximum holding time is 14 days from sample collection to analysis.

- Temperature Review: The temperature blank was sent with each cooler and recorded by the laboratory upon receipt. For samples collected on 04/10/06, 04/11/06, and 04/12/06, the coolers were received by the primary laboratory (Accutest) on 04/13/06 at 4.2°C, 3.0°C, 2.4°C, 1.8°C, 2.4°C, 2.6°C, 1.6°C, 3.4°C, 2.8°C, 2.6°C, 3.2°C, and 3.0°C. For samples collected on 04/13/06, the coolers were received by the primary laboratory on 04/15/06 at 1.6°C, 2.0°C, 2.8°C, 3.4°C, and 4.2°C. The dioxin subcontract laboratory (SGS Paradigm Analytical Laboratories, Inc.) received the samples at 5.1°C, 3.8°C, and 2.7°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected for VOCs on 04/10/06, 04/11/06, 04/12/06, and 04/13/06. They were analyzed on 04/21/06, 04/24/05, and 04/25/06. All criteria were met. No qualifiers were applied.

II-Instrument Performance Check

The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, bromofluorobenzene (BFB), met the ion abundance criteria. No qualification was applied.

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear calibration curve. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be \geq 0.05 for all other compounds. Percent relative standard deviation (%RSD) must be \leq 15% for each target compound and must be \leq 30% for each calibration check compound. For compounds analyzed using linear regression or second order, correlation coefficients must be \geq 0.99. All detects are qualified as estimated "J" for where there were exceeding %RSDs, and all non-detects are qualified as estimated "UJ" for where there were grossly exceeding recoveries, unless determined to be unusable "R". Grossly exceeding is defined as twice the established criteria limits. For where there were low RRFs, all detects are qualified as estimated "J" and non-detects are rejected "R".

• For initial calibration performed on 04/12/06 on instrument MSVOA4, target compounds chloromethane (15.8%), bromomethane (19.9%), 4-methyl-2-pentanone (24.5%), 2-hexanone (37.3%; grossly exceeding), styrene (16.1%), and 1,1,2,2-tetrachloroethane (18.1%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compounds bromomethane (r=0.9999), acetone (r=0.9973), 2-hexanone (r=0.9965), and 4-methyl-2-pentanone (r=0.9996) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon these outliers. Compounds chloromethane and 1,1,2,2-tetrachloroethane were non-detect for all samples, therefore no qualifiers were applied based upon the high %RSDs. Sample 16-4 (F39990-3) was analyzed using this initial calibration.

- For initial calibration performed on 04/11/06 on instrument MSVOA5, target compounds chloromethane (20.2%), vinyl chloride (15.2%), acetone (35.8%; grossly exceeding), carbon disulfide (22.9%), methylene chloride (16.7%), 2-butanone (17.9%), trichloroethene (15.3%), and 1,1,2,2-tetrachloroethane (21.5%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compounds vinyl chloride (r=0.9982), acetone (r=0.9997), carbon disulfide (r=0.9996), methylene chloride (r=0.9991), 2-butanone (r=0.9986), and trichloroethene (r=0.9996) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon these outliers. Compounds chloromethane and 1,1,2,2-tetrachloroethane were non-detect for all samples, therefore no qualifiers were applied based upon the high %RSDs. Samples 51MW1 (F39990-1), 51MW2 (F39990-2), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) were analyzed using this initial calibration.
- For initial calibration performed on 04/25/06 on instrument MSVOA6, target compounds chloromethane (28.9%), vinyl chloride (28.7%), bromomethane (33.2%; grossly exceeding). chloroethane (31.8%; grossly exceeding), carbon disulfide (20.4%), methylene chloride (29.0%), acetone (39.2%; grossly exceeding), 1,1-dichloroethane (22.9%), cis-1,2dichloroethene (20.1%), chloroform (24.1%), carbon tetrachloride (17.5%), 1.1.1trichloroethane (20.9%), 2-butanone (27.6%), benzene (28.1%), 1,2-dichloroethane (21.7%), trichloroethene (21.7%), bromodichloromethane (17.8%), cis-1,3-dichloropropene (17.9%), 4methyl-2-pentanone (18.9%), trans-1,3-dichloropropene (16.2%), tetrachloroethene (16.5%), 1,1,2-trichloroethane (21.6%), dibromochloromethane (15.7%), 2-hexanone (17.6%), chlorobenzene (21.1%), m,p-xylenes (18.2%), o-xylene (16.1%), bromoform (17.5%), and 1.1.2.2-tetrachloroethane (24.4%) were outside criteria. All other target compounds were within criteria (%RSD≤15% or ≤30%; RRF≥0.05). Compounds vinyl chloride (r=0.9968). bromomethane (r=0.9990), chloroethane (r=0.9982), carbon disulfide (r=0.9987), methylene chloride (r=0.9994), acetone (r=0.9987), cis-1,2-dichloroethene (r=0.9993), chloroform (r=0.9983), carbon tetrachloride (r=0.9978), 1,1,1-trichloroethane (r=0.9982), 2-butanone (r=0.9993), benzene (r=0.9991), 1,2-dichloroethane (r=0.9994), trichloroethene (r=0.9971). 1,2-dichloropropane (r=0.9994), bromodichloromethane (r=0.9995), cis-1,3-dichloropropene (r=0.9992), toluene (r=0.9986), 4-methyl-2-pentanone (r=9996), trans-1,3-dichloropropene tetrachloroethene (r=0.9973)1,1,2-trichloroethane (r=0.9993). dibromochloromethane (r=0.9994), 2-hexanone (r=0.9994), ethylbenzene (r=0.9985), m,pxylenes (r=0.9985), and o-xylene (r=0.9988) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon these outliers. Compounds chloromethane, 1,1-dichloroethane, chlorobenzene. bromoform, and 1,1,2,2-tetrachloroethane were qualified estimated "J" for detects and no qualifier for non-detects based upon the high %RSDs. Samples 48MW1 (F39990-14). TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) were analyzed using this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument used is capable of producing acceptable qualitative and quantitative data for volatile target compounds. Continuing calibration establishes the 12-hour relative response factors on which the quantitations are based and checks satisfactory performance of the instrument on a day-to-day basis. The RRF must be greater than 0.1 for chloromethane, 1,1-dichloroethane, and bromoform and greater than 0.3 for 1,1,2,2-tetrachloroethane and chlorobenzene. The minimum relative response factor (RRF) must be ≥0.05 for all other compounds. The percent difference (%D) between the initial calibration RRF and the continuing calibration RRF must be within 20% for all target compounds. All detects are qualified as estimated "J" for where there were exceeding "Ds, and all non-detects are qualified as estimated "UJ" for where there were grossly exceeding recoveries, unless determined to be unusable "R". Grossly exceeding is defined as twice the established criteria limits. For where there were low RRFs, all detects are qualified as estimated "J" and non-detects are rejected "R".

- For continuing calibration performed on 04/21/06 @10:25 on instrument MSVOA4, target compounds bromomethane (25.6%) and 2-hexanone (25.7%) were outside criteria. All other target compounds were within criteria (%D≤20%; RRF≥0.05). Compounds bromomethane (r=0.9999), acetone (r=0.9973), 2-hexanone (r=0.9965), and 4-methyl-2-pentanone (r=0.9996) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon these outliers. Sample 16-4 (F39990-3) applies to this continuing calibration.
- For continuing calibration performed on 04/21/06 @09:28 on instrument MSVOA5, target compound acetone (41.8%; grossly exceeding) was outside criteria. All other target compounds were within criteria (%D≤20%; RRF≥0.05). Compounds vinyl chloride (r=0.9982), acetone (r=0.9997), carbon disulfide (r=0.9996), methylene chloride (r=0.9991), 2-butanone (r=0.9986), and trichloroethene (r=0.9996) were quantified using linear or second order regression with correlation coefficients >0.99, therefore, no qualifiers were applied based upon this outlier. Samples 51MW1 (F39990-1) and 51MW2 (F39990-2) apply to this continuing calibration.
- For continuing calibration performed on 04/24/06 @09:42 on instrument MSVOA5, all target compounds were within criteria (%D≤20%; RRF≥0.05). Compounds vinyl chloride (r=0.9982), acetone (r=0.9997), carbon disulfide (r=0.9996), methylene chloride (r=0.9991), 2-butanone (r=0.9986), and trichloroethene (r=0.9996) were quantified using linear or second order regression with correlation coefficients >0.99. No qualifiers were applied. Samples 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this continuing calibration.
- For continuing calibration performed on 04/24/06 @14:37 on instrument MSVOA6, all target compounds were within criteria (%D≤20%; RRF≥0.05). Compounds vinyl chloride (r=0.9968), bromomethane (r=0.9990), chloroethane (r=0.9982), carbon disulfide (r=0.9987), methylene chloride (r=0.9994), acetone (r=0.9987), 1,1-dichloroethane (22.9%), cis-1,2-dichloroethene (r=0.9993), chloroform (r=0.9983), carbon tetrachloride (r=0.9978), 1,1,1-trichloroethane (r=0.9982), 2-butanone (r=0.9993), benzene (r=0.9991), 1,2-dichloroethane (r=0.9994), trichloroethene (r=0.9971)1,2-dichloropropane (r=0.9994), bromodichloromethane (r=0.9995), cis-1,3-dichloropropene (r=0.9992), toluene (r=0.9986), 4-methyl-2-pentanone (r=9996), trans-1,3-dichloropropene (r=0.9982), tetrachloroethene (r=0.9973), 1.1.2trichloroethane (r=0.9993), dibromochloromethane (r=0.9994), 2-hexanone (r=0.9994), ethylbenzene (r=0.9985), m,p-xylenes (r=0.9985), and o-xylene (r=0.9988) were quantified using linear or second order regression with correlation coefficients >0.99. No qualifiers were applied. Tetrachloroethylene was analyzed for samples TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) on 04/25/06 using continuing calibration performed on 04/25/06 @11:05 on instrument MSVOA6. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.

For continuing calibration performed on 04/25/06 @11:05 on instrument MSVOA6, all target compounds were within criteria (%D≤20%; RRF≥0.05). Compounds vinyl chloride (r=0.9968), bromomethane (r=0.9990), chloroethane (r=0.9982), carbon disulfide (r=0.9987), methylene chloride (r=0.9994), acetone (r=0.9987), 1,1-dichloroethane (22.9%), cis-1,2-dichloroethene (r=0.9993), chloroform (r=0.9983), carbon tetrachloride (r=0.9978), 1,1,1-trichloroethane (r=0.9982), 2-butanone (r=0.9993), benzene (r=0.9991), 1,2-dichloroethane (r=0.9994), trichloroethene (r=0.9971). 1,2-dichloropropane (r=0.9994), bromodichloromethane (r=0.9995), cis-1,3-dichloropropene (r=0.9992), toluene (r=0.9986), 4-methyl-2-pentanone (r=9996), trans-1,3-dichloropropene (r=0.9982), tetrachloroethene (r=0.9973), 1,1,2trichloroethane (r=0.9993), dibromochloromethane (r=0.9994), 2-hexanone (r=0.9994), ethylbenzene (r=0.9985), m,p-xylenes (r=0.9985), and o-xylene (r=0.9988) were quantified using linear or second order regression with correlation coefficients >0.99. No qualifiers were applied. Tetrachloroethylene for samples TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this continuing calibration.

V-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. A method blank analysis must be performed after the calibration standards and once every 12-hour time period beginning with the injection of BFB. No contaminants should be detected in any of the associated blanks > the MDL. USACE Shell criteria specifies all concentrations should be less than one-half MRL (<MRL for common laboratory contaminants methylene chloride, acetone, and 2-butanone). Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, and 2-butanone (MEK), or 5 times (5X) the maximum amount for other volatile target compounds. Table 2 summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 041206R (F39990-8) (low-flow pump) applies to all groundwater samples in this SDG. The trip blank 041006T (F39990-13) applies for samples 51MW1 (F39990-1), 51MW2 (F39990-2), 16-4 (F39990-3), 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) in this SDG. The trip blank 041306T (F39990-19) applies for samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis	QC Blank ID	Compound	Max Conc.	Action Level	B qualified samples
Date			μ g/L	μ g/L	
04/21/06	VC1637-MB	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/21/06	VB1608-MB	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/24/06	VC1638-MB	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/24/06	VJ916-MB	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/25/06	VJ917-MB	All target <mrl< td=""><td>NA</td><td>NA</td><td>None</td></mrl<>	NA	NA	None
04/24/06	041206R	Acetone	21J	210	48MW2
04/24/06	041206R	Chloroform	8.0	40	48MW2, 48MW3
04/24/06	041206R	Methylene chloride	2.8J	28	C1
04/24/06	041206R	Methyl ethyl ketone	6.5	65	48MW2
04/24/06	041206R	Toluene	0.69J	3.5	None
04/24/06	041006T	Methylene Chloride	2.0J	20	C1
04/24/06	041306T	Methylene Chloride	1.7J	17	None

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

NA = Not Applicable

MRL = Method Reporting Limit

VI-Laboratory Control Sample

Data for laboratory control samples (LCS) are evaluated to determine long-term accuracy of the analytical method on various matrices. Percent recoveries (%Rs) should be within the specified control limits. USACE Shell limits are 80-120% (60-140% for sporadic marginal failures (SMF)).

- Sample VC1637-BS was used as the LCS for the VOC analysis on 04/21/06. A total of 34 compounds were spiked, allowing for 3 SMF tolerances. All criteria were met. No qualifiers were applied. Samples 51MW1 (F39990-1) and 51MW2 (F39990-2) apply to this LCS.
- Sample VB1608-BS was used as the LCS for the VOC analysis on 04/21/06. A total of 34 compounds were spiked, allowing for 3 SMF tolerances. Compounds acetone (70%) and 2-hexanone (72%) were outside USACE criteria, but within SMF and laboratory criteria. No qualifiers were applied to acetone or 2-hexanone based upon these low recoveries. Sample 16-4 (F39990-3) applies to this LCS.
- Sample VC1638-BS was used as the LCS for the VOC analysis on 04/24/06. A total of 34 compounds were spiked, allowing for 3 SMF tolerances. Compounds acetone (79%), 2-hexanone (74%), and 1,1,2,2-tetrachloroethane (75%) were outside USACE criteria, but within SMF and laboratory criteria. No qualifiers were applied to acetone, 2-hexanone, or 1,1,2,2-tetrachloroethane based upon these low recoveries. Samples 28MW2 (F39990-4), 28MW1 (F39990-5), C4 (F39990-6), 48MW4 (F39990-7), 13MW1 (F39990-9), TM13MW1 (F39990-10), 13MW2 (F39990-11), and C1 (F39990-12) apply to this LCS.
- Sample VJ916-BS was used as the LCS for the VOC analysis on 04/24/06. A total of 34 compounds were spiked, allowing for 3 SMF tolerances. Compounds acetone (73%) and vinyl chloride (131%) were outside USACE criteria, but within SMF and laboratory criteria. No qualifiers were applied to acetone or vinyl chloride based upon these low/high recoveries. Tetrachloroethylene was analyzed for samples TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) on 04/25/06 using LCS VJ917-BS. Samples 48MW1 (F39990-14), TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.
- Sample VJ917-BS was used as the LCS for tetrachloroethylene analysis on 04/25/06.
 Tetrachloroethylene was within criteria. No qualifiers were applied. Samples TM48MW1 (F39990-15), 48MW2 (F39990-16), and 48MW3 (F39990-17) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the specified control limits. USACE Shell limits are 70-130%; RPD≤30% (60-140%; RPD≤40% for sporadic marginal failures (SMF)).

- Sample F39972-1 was used for the MS/MSD analysis for analysis on 04/21/06. A total of 68 compounds were spiked allowing for 5 SMFs. Since this sample is not a RFAAP site sample, it was not evaluated. No qualifiers were applied.
- Sample F39974-2 was used for the MS/MSD analysis for analysis on 04/21/06. A total of 68 compounds were spiked allowing for 5 SMFs. Since this sample is not a RFAAP site sample, it was not evaluated. No qualifiers were applied.

- Sample 28MW2 (F39990-4) was used for the MS/MSD analysis on 04/24/06. A total of 68 compounds were spiked allowing for 5 SMFs. All percent recoveries were within criteria for all target compounds. Compounds chloroethane (RPD=23%), methyl bromide (RPD=19%), and vinyl chloride (RPD=22%) were outside laboratory precision criteria, however within USACE and SMF criteria. No qualifiers were applied for compounds chloroethane, methyl bromide, or vinyl chloride based upon these outliers.
- Sample 48MW1 (F39990-14) was used for the MS/MSD analysis on 04/24/06. A total of 68 compounds were spiked allowing for 5 SMFs. All RPDs were within criteria for all target compounds. Compound trichloroethylene (119%; 118%) was outside laboratory accuracy criteria, however within USACE and SMF criteria. Compounds vinyl chloride (136%; 136%) and methyl chloride (132%) were outside USACE accuracy criteria, however within laboratory and SMF criteria. No qualifiers were applied for trichloroethylene, vinyl chloride, or methyl chloride based upon these outliers.
- Sample F40172-1 was used for the MS/MSD analysis for tetrachloroethylene analysis on 04/25/06. Since this sample is not a RFAAP site sample, it was not evaluated. No qualifiers were applied.

VIII-System Monitoring Compounds (Surrogates)

Laboratory performance on individual samples is evaluated through the review of surrogate spike samples. Recoveries for system monitoring compounds in volatile samples and blanks must be within the specified control limits.

Criteria:

Dibromofluoromethane (86-115%) – SMC1 (USACE Shell Criteria: 70-130%) 1,2-Dichloroethane-d4 (73-126%) – SMC2 (USACE Shell Criteria: 70-130%) Toluene-d8 (86-112%) – SMC3 (USACE Shell Criteria: 70-130%) 4-Bromofluorobenzene (83-119%) – SMC4 (USACE Shell Criteria: 70-130%)

All criteria were met. No qualifiers were applied.

IX-Internal Standards (IS)

Internal standards performance criteria ensure that GC/MS sensitivity and response are stable during every analytical run. Specific criteria include: area counts (-50% to +100%) of the associated calibration standard, and retention time (\pm 30 seconds) from that of the associated calibration standard.

All criteria were met. No qualifiers were applied.

X-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples. Analytical results were qualified as estimated (J) for any RPDs exceeding criteria.

- Field groundwater sample duplicate pair 13MW1 (F39990-9) and TM13MW1 (F39990-10) was collected for VOCs. All target compounds were non-detect. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 48MW1 (F39990-14) and TM48MW1 (F39990-15) was collected for VOCs. All detected compounds found in the sample and its duplicate pair and associated %RPD are noted in Table 3. All other target compounds were non-detect. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Hits Analysis Summary for VOCs for Duplicate Pair 48MW1 (F39990-14) and TM48MW1 (F39990-15)

Compound	Original Sample (µg/L)	Duplicate Pair (µg/L)	%RPD
1,1-Dichloroethane	1.3	1.4	7.4
1,1-Dichloroethylene	0.55J	0.56J	1.8
cis-1,2-Dichloroethylene	0.71J	0.77J	8.1
1,1,1-Trichloroethane	1.3	1.2	8.0
Tetrachloroethylene	1.1	1.0	9.5
Trichloroethylene	5.5	5.5	0.0

J = Estimated value <MRL and >MDL. Data point qualified was estimated "J".

XI-Quantitation Verification

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

Sample: 51MW1 (F39990-1), Tetrachloroethylene

Conc. $(\mu g/L) = (Ax)*(Is) *(DF)/(Ais)*(RRF)$

where: Ax is the compound area

Ais is the corresponding internal standard area

Is is the corresponding internal standard concentration (µg/L)

DF is the dilution factor

RRF is the relative response factor.

Conc. $\mu g/L = (14622 * 50 \mu g/L * 1) / (1980304 * 0.396) = 0.93 \mu g/L$

Reported Conc. = $0.93 \mu g/L$

%D = 0.0%

Values were within 10% difference.

USEPA Region III Validation Qualifiers

(No Code) = Confirmed identification.

B = The analyte has been detected in the sample and the associated laboratory or field blank.

J = Indicates an estimated value for (1) estimated value due to QC non-conformance. Reported value may not be accurate or precise, (2) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (3) estimating a concentration \geq MDL and \leq MRL or \leq 3*MDL, whichever is greater.

K = Analyte present. Reported value may be biased high (estimated) due to QC non-conformance.

L = Analyte present. Reported value may be biased low (estimated) due to QC non-conformance.

R = Unreliable result. Analyte may or may not be present in the sample due to QC non-conformance.

UL = Value is estimated bias low and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise. Quantitation limit is probably higher.

UJ = Value is estimated and not detected due to QC non-conformance. Reporting limit may be inaccurate or imprecise.

Laboratory Qualifiers

(No Code) = Confirmed identification.

U = Not detected. The associated number indicates the compound reporting limit for the sample.

A (Dioxins) = B (Metals) = The reported value was obtained from a reading <MRL and ≥MDL and is considered estimated.

B (Organics) = The analyte or compound has been detected in the sample and laboratory method blank. It indicates probable blank contamination.

E (Metals) = Reported value is estimated because of the presence of interferences.

E (Organics) = Identifies compounds whose concentrations exceed the upper level of the calibration range.

EMPC (Dioxins) = The ion-abundance ratio between the two characteristic PCDD/PCDF ions was outside accepted ranges. The detected PCDD/PCDF was reported as an estimated maximum possible concentration (EMPC).

D = Indicates sample was analyzed at a dilution.

J = Indicates an estimated value for (1) estimating a concentration as a tentatively identified compound as indicated by the mass spectral and retention time data, or (2) estimating a concentration <MRL and \ge MDL.

N (Organics) = Indicates presumptive evidence of a compound for tentatively identified compounds using a library search.

P (Organics) = Target analyte confirmation >40% difference for detected compound between the primary and secondary columns. The lower of the two values was reported.

N (Metals) = Laboratory spike sample recovery not within control limits.

- * (Metals) = Duplicate analysis not within control limits.
- * (Organics) = Surrogate outside of QC limits on both original and re-analysis.

Report of Analysis

Page 1 of 2

Client Sample ID: 51MW1

Lab Sample ID:

F39990-1

Matrix: Method: AQ - Ground Water

SW846 8260B

Date Sampled: 04/11/06 Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID Run #1 C0040362.D

DF 1

Analyzed 04/21/06

By KW n/a

Prep Date

Prep Batch **Analytical Batch**

n/a VC1637

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	0.93 J	1:0	0.50	ug/l	J
108-88-3	Toluene	ND	1.0	0.50	ug/l	•
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
	,				- 0	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

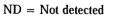
Client Sample ID: 51MW1 Lab Sample ID:

F39990-1

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

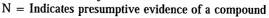

Date Received: 04/13/06

Method: Project:

SW846 8260B Radford AAP; SWMU 48, 49, 50, 51 & 59 Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 97% 96% 97%		86-11 73-12 86-11 83-11	6% 2%	



MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

n/a

Accutest LabLink@09:39 02-May-2006

Report of Analysis

KW

Page 1 of 2

Client Sample ID: 51MW2 Lab Sample ID:

F39990-2

Date Sampled: 04/10/06 Date Received: 04/13/06

Matrix: Method: AQ - Ground Water SW846 8260B

1

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

04/21/06

File ID DF Analyzed **Prep Date** By

Analytical Batch Prep Batch VC1637 n/a

Run #1 Run #2

Purge Volume

C0040363.D

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	. ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
				-	-0	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 51MW2 Lab Sample ID:

F39990-2

AQ - Ground Water SW846 8260B

Date Sampled: 04/10/06 Date Received: 04/13/06

Percent Solids: n/a

Matrix: Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 96% 96% 97%		86-11 73-12 86-11 83-11	26% 12%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: 16-4

Lab Sample ID: F39990-3

Matrix: Method: AQ - Ground Water

Date Sampled: 04/10/06

Date Received: 04/13/06

SW846 8260B

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/21/06

Prep Batch Analytical Batch

Run #1

File ID DF B037985.D 1

By KW Prep Date n/a

n/a

VB1608

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	Z.
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 16-4

Lab Sample ID: F39990-3

Matrix: Method: AQ - Ground Water SW846 8260B

Date Sampled: 04/10/06

Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 103% 99% 109%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: 28MW2

Lab Sample ID:

Matrix: Method: F39990-4

AQ - Ground Water

SW846 8260B

Date Sampled: 04/11/06 Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Run #1

File ID DF C0040372.D 1

Analyzed 04/24/06

By KW n/a

Prep Date n/a

Prep Batch **Analytical Batch**

VC1638

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 2 of 2

Client Sample ID: 28MW2 Lab Sample ID:

F39990-4

AQ - Ground Water

Date Sampled: 04/11/06

Date Received: 04/13/06

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 96% 95% 101%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

n/a

Accutest LabLink@09:39 02-May-2006

Report of Analysis

Ву

KW

Page 1 of 2

Client Sample ID: 28MW1

Lab Sample ID: F39990-5

File ID

5.0 ml

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 04/11/06

Date Received: 04/13/06

Method:

SW846 8260B

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/24/06

Prep Date Prep Batch **Analytical Batch**

n/a VC1638

Run #1 Run #2

Purge Volume

C0040373.D

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	1.4 J	2.0	1.0	ug/l	J
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	2.9	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	0.88 J	1.0	0.50	ug/l	J
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	0.95 ブ	1.0	0.50	ug/l	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	_
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
					-	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 2 of 2

Client Sample ID: 28MW1

Lab Sample ID: F39990-5

AQ - Ground Water

Date Sampled: 04/11/06

Matrix:

Date Received: 04/13/06

Method:

SW846 8260B

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	108% 96% 95% 97%		86-1 73-12 86-1 83-1	26% 12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

KW

Page 1 of 2

Client Sample ID: C4

Lab Sample ID:

F39990-6

Matrix: Method: AQ - Ground Water SW846 8260B

DF

1

Date Sampled: 04/11/06

Date Received: 04/13/06

Percent Solids: n/a

Prep Date

n/a

n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/24/06

Analytical Batch Prep Batch

VC1638

Run #1 Run #2

Purge Volume

C0040374.D

File ID

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	0.96 丁	1.0	0.50	ug/l	J
108-88-3	Toluene	ND	1.0	0.50	ug/l	J
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
	<i>j</i>	- 1	1.0	0.00	ug/1	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: C4

Lab Sample ID:

F39990-6

AQ - Ground Water

Date Sampled: 04/11/06

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Date Received: 04/13/06

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	109% 98% 96% 97%		86-11 73-12 86-11 83-11	26% 12%	

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW4

Lab Sample ID:

F39990-7

Date Sampled: 04/11/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/13/06

Method:

SW846 8260B

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Batch **Analytical Batch**

Run #1

File ID C0040375.D Analyzed 04/24/06

By KW

Prep Date n/a

n/a

VC1638

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	0.66 丁	1.0	0.50	ug/l	J
108-88-3	Toluene	ND	1.0	0.50	ug/l	3
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
	3	•-			~6. •	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW4

Lab Sample ID: F39990-7 Matrix:

AQ - Ground Water SW846 8260B

Date Sampled: 04/11/06

Percent Solids: n/a

Date Received: 04/13/06

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	111% 101% 93% 94%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

KW

Page 1 of 2

Client Sample ID: 13MW1 Lab Sample ID:

F39990-9

Matrix: Method:

Project:

AQ - Ground Water

DF

1

SW846 8260B Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/24/06

Date Sampled: 04/12/06

Date Received: 04/13/06 Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** n/a n/a VC1638

Run #1 Run #2

> Purge Volume 5.0 ml

File ID

C0040379.D

Run #1 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 13MW1 Lab Sample ID:

F39990-9

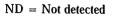
Date Sampled: 04/12/06

Matrix:

AQ - Ground Water SW846 8260B

Date Received: 04/13/06

Method:


Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	113% 103% 91% 94%		86-11 73-12 86-11 83-11	26% .2%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: TM13MW1 Lab Sample ID: F39990-10

Matrix: Method:

AQ - Ground Water SW846 8260B

Date Sampled: 04/12/06 Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed

Run #1 C0040380.D 1 04/24/06 Run #2

By KW Prep Date n/a

Prep Batch n/a

Analytical Batch VC1638

Purge Volume

Run #1

5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: TM13MW1

F39990-10

Date Sampled: 04/12/06

Lab Sample ID: Matrix:

AQ - Ground Water SW846 8260B

Date Received: 04/13/06

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 103% 92% 94%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: 13MW2 Lab Sample ID:

F39990-11

Matrix: Method:

AQ - Ground Water SW846 8260B

Date Sampled: 04/12/06 Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF 1

Analyzed Ву 04/24/06 ΚW

Prep Date n/a

Prep Batch n/a

Analytical Batch VC1638

Run #1 Run #2

> Purge Volume 5.0 ml

C0040381.D

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
					U	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Report of Analysis

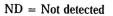
Page 2 of 2

Client Sample ID: 13MW2 Lab Sample ID:

F39990-11

Date Sampled: 04/12/06

Matrix: Method: AQ - Ground Water SW846 8260B


Date Received: 04/13/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 104% 92% 94%		86-11 73-12 86-11 83-11	26% 12%	

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 2

Client Sample ID: C1

Lab Sample ID:

F39990-12

Matrix: Method:

AQ - Ground Water SW846 8260B

Date Sampled: 04/12/06 Date Received: 04/13/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID Run #1 C0040382.D DF 1

Analyzed By 04/24/06 KW

Prep Date n/a

Prep Batch

Analytical Batch

n/a

VC1638

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

VOA TCL List

CAS No.	Compound	Result	t	RL	MDL	Units	Q
67-64-1	Acetone	ND		25	5.0	ug/I	
71-43-2	Benzene	ND		1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND		1.0	0.50	ug/l	
75-25-2	Bromoform	ND		1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND		1.0	0.50	ug/l	
75-00-3	Chloroethane	4.0		2.0	1.0	ug/l	
67-66-3	Chloroform	ND		1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND		2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND		1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	8.5		1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND		1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND		1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND		1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND		1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND		1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND		1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND		1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND		5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND		2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND		2.0	1.0	ug/l	
75-09-2	Methylene chloride	8.0	В	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND .		5.0	2.5	ug/l	
100-42-5	Styrene	ND		1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	1.3	Γ	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND		1.0	0.50	ug/l	
108-88-3	Toluene	ND		1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND		1.0	0.50	ug/l	
					0.00	~ō/ •	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: C1

Lab Sample ID: Matrix:

F39990-12

AQ - Ground Water

Date Sampled: 04/12/06

Date Received: 04/13/06

Method:

SW846 8260B

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	114% 106% 91% 92%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW1 Lab Sample ID:

F39990-14

By

MM

Date Sampled: 04/13/06

Matrix:

AQ - Ground Water

DF

1

Date Received: 04/15/06

Prep Date

n/a

Method:

SW846 8260B

Percent Solids: n/a

n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/24/06

Prep Batch

Analytical Batch VJ916

Run #1 Run #2

Purge Volume 5.0 ml

File ID

J022168.D

Run #1 Run #2

VOA TOL Liet

VOA TCL	List					į
CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	1.3 J	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	0.55 ブ	1.0	0.50	ug/l	J
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.71 丁	1.0	0.50	ug/l	J
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	•
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	1.3 T	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	1.1 丁	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	<i>:</i>
79-01-6	Trichloroethylene	5.5	1.0	0.50	ug/l	
					_	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW1 Lab Sample ID: F39990-14

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

Radford AAP; SWMU 48, 49, 50, 51 & 59

Date Sampled: 04/13/06

Date Received: 04/15/06 Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 108% 95% 99%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: TM48MW1 Lab Sample ID: F39990-15

Matrix: Method: Project:

AQ - Ground Water

SW846 8260B Radford AAP; SWMU 48, 49, 50, 51 & 59 Date Sampled: 04/13/06 Date Received: 04/15/06

Percent Solids: n/a

File ID DF Analyzed By **Prep Date Analytical Batch Prep Batch** Run #1 J022178.D 1 04/24/06 MM n/a n/a VJ916 Run #2 J022200.D 1 04/25/06 MM n/a n/a VJ917

Purge Volume Run #1 5.0 ml Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	1.4 丁	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	0.56 丁	1.0	0.50	ug/l	J
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	J
, 78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.77 丁	1.0	0.50	ug/l	J
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	1.2 J	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	1.0 a J	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	5.5	1.0	0.50	ug/l	
	,	• =		0.00	6' ·	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: TM48MW1 Lab Sample ID:

F39990-15

AQ - Ground Water

Date Sampled: 04/13/06

Matrix: Method:

SW846 8260B

Date Received: 04/15/06 Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 114% 95% 104%	107% 115% 94% 103%			

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW2

Lab Sample ID:

F39990-16

Matrix: Method: AQ - Ground Water SW846 8260B

Date Sampled: 04/13/06 Date Received: 04/15/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed **Prep Date** By Prep Batch **Analytical Batch** Run #1 J022179.D 1 04/24/06 MM n/a n/a VJ916 Run #2 a J022201.D 04/25/06 1 MM n/a n/a VJ917

Purge Volume

Run #1 5.0 ml Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Resul	lt	RL	MDL	Units	Q
67-64-1	Acetone	61.5	В	25	5.0	ug/l	
71-43-2	Benzene	ND		1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND		1.0	0.50	ug/l	
75-25-2	Bromoform	ND		1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND		1.0	0.50	ug/l	
75-00-3	Chloroethane	ND		2.0	1.0	ug/l	
67-66-3	Chloroform	5.9	В	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND		2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	29.2		1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND		1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND		1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND		1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND		1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND		1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND		1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND		1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND		1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND		5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND		5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND		2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND		2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND		5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	4.5	\mathcal{B}	5.0	2.5	ug/l	J
100-42-5	Styrene	ND	-	1.0	0.50	ug/l	J
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	1.1 b	T	1.0	0.50	ug/l	
108-88-3	Toluene	ND	_	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	3.0		1.0	0.50	ug/l	
	-					0	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW2 Lab Sample ID: F39990-16

Matrix: Method:

AQ - Ground Water SW846 8260B

Date Sampled: 04/13/06

Date Received: 04/15/06 Percent Solids: n/a

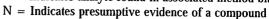
Project: Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 115% 94% 103%	109% 118% 94% 103%	86-1 73-1 86-1 83-1	26% 12%	

⁽a) Sample was not preserved to a pH < 2; reported results are considered minimum values.

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Result is from Run# 2

Report of Analysis

Page 1 of 2

Client Sample ID: 48MW3

Lab Sample ID: F39990-17

File ID

Matrix: Method: AQ - Ground Water

DF

SW846 8260B

Date Sampled: 04/13/06

Date Received: 04/15/06

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Prep Date Prep Batch **Analytical Batch**

Analyzed By Run #1 I022180.D 1 04/24/06 MM n/a n/a VJ916 Run #2 J022202.D 1 04/25/06 MM n/a n/a VJ917

Purge Volume

Run #1 5.0 ml

Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	5.5 B	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	51.2	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	•
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	5.0	1.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	0.54 a J	1.0	0.50	ug/l	J
108-88-3	Toluene	ND	1.0	0.50	ug/l	•
79-01-6	Trichloroethylene	7.4	1.0	0.50	ug/l	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 48MW3

Lab Sample ID: Matrix:

F39990-17

AQ - Ground Water SW846 8260B

Date Sampled: 04/13/06

Percent Solids: n/a

Date Received: 04/15/06

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 114% 93% 103%	108% 118% 93% 102%	86-11 73-12 86-11 83-11	6% 2%	

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 041206R Lab Sample ID: F39990-8

Matrix: Method:

AQ - Ground Water

1

SW846 8260B

Date Sampled: 04/12/06

Date Received: 04/13/06

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

Project:

File ID C0040378.D DF Analyzed 04/24/06

By KW **Prep Date** n/a

Prep Batch n/a

Analytical Batch

VC1638

Purge Volume

5.0 ml

Run #1 Run #2

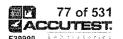
Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	21.0 丁	25	5.0	ug/l	J
71-43-2	Benzene	ND	1.0	0.50	ug/l	J
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	8.0	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	•
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	2.8 ブ	5.0	1.0	ug/l	J
78-93-3	Methyl ethyl ketone	6.5	5.0	2.5	ug/l	J
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	0.69 丁	1.0	0.50	ug/l	J
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	J

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: 041206R Lab Sample ID: F39990-8

Matrix: Method:

Project:

AQ - Ground Water SW846 8260B

Date Sampled: 04/12/06 Date Received: 04/13/06

Radford AAP; SWMU 48, 49, 50, 51 & 59

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	111% 101% 92% 96%		86-11 73-12 86-11 83-11	26% 12%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 041006T Lab Sample ID:

Matrix:

F39990-13

AQ - Trip Blank Water SW846 8260B

DF

1

Date Sampled: 04/11/06

Prep Date

n/a

Date Received: 04/13/06 Percent Solids: n/a

Method: Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

Analyzed

04/24/06

By

KW

Prep Batch n/a

Analytical Batch VC1638

Run #1 Run #2

Purge Volume

C0040383.D

Run #1

5.0 ml

File ID

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	2.0	5.0	1.0	ug/l	J
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	3
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	
	J		1.0	0.00	45/1	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 041006T Lab Sample ID: F39990-13

Matrix:

AQ - Trip Blank Water

Date Sampled: 04/11/06 Date Received: 04/13/06

Percent Solids: n/a

Method: Project:

SW846 8260B Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	1.0 3.0	0.50 1.0	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	113% 106% 91% 94%		86-11 73-12 86-11 83-11	26% 2%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: 041306T Lab Sample ID: F39990-19

Matrix:

AQ - Trip Blank Water

Date Sampled: 04/13/06 Date Received: 04/15/06

Percent Solids: n/a

Method: Project:

SW846 8260B Radford AAP; SWMU 48, 49, 50, 51 & 59

File ID DF Analyzed Run #1 J022181.D 04/24/06 1

By MM **Prep Date** n/a

Prep Batch n/a

Analytical Batch

VJ916

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	5.0	ug/l	
71-43-2	Benzene	ND	1.0	0.50	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.50	ug/l	
75-25-2	Bromoform	ND	1.0	0.50	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.50	ug/l	
75-00-3	Chloroethane	ND	2.0	1.0	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.50	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.50	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.50	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.50	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.40	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	5.0	2.5	ug/l	•
74-83-9	Methyl bromide	ND	2.0	1.0	ug/l	
74-87-3	Methyl chloride	ND	2.0	1.0	ug/l	
75-09-2	Methylene chloride	1.7 J	5.0	1.0	ug/l	J
78-93-3	Methyl ethyl ketone	ND	5.0	2.5	ug/l	
100-42-5	Styrene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.50	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.40	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.50	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.50	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: 041306T F39990-19

Lab Sample ID: Matrix:

AQ - Trip Blank Water

Date Sampled: 04/13/06 Date Received: 04/15/06

Method:

SW846 8260B

Percent Solids: n/a

Project:

Radford AAP; SWMU 48, 49, 50, 51 & 59

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl chloride	ND	1.0	0.50	ug/l	
1330-20-7	Xylene (total)	ND	3.0	1.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
1868-53-7	Dibromofluoromethane	108%	86-115%			
17060-07-0	1,2-Dichloroethane-D4	116%	73-126%			
2037-26-5	Toluene-D8	94%	86-112%			
460-00-4	4-Bromofluorobenzene	102%	83-119%			

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

