

Draper Aden Associates

Engineering • Surveying • Environmental Services

ALTERNATE SOURCE DEMONSTRATION FOR TRICHLOROETHENE

HAZARDOUS WASTE MANAGEMENT UNIT 5 RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

Submitted to:

Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219 (800) 592-5482

Prepared for:

Alliant Ammunition and Powder Company, L.L.C.
Radford Army Ammunition Plant
Route 114
Radford, Virginia 24141-0100

Prepared by:

Draper Aden Associates 2206 South Main Street Blacksburg, Virginia 24060 (540) 552-0444

February 2001 DAA Job No. B00316

TABL	E OF C	ONTENTS	i
1.0	INTRO	DDUCTION	1
2.0 2.1 2.2	FA	DESCRIPTION CILITY DESCRIPTION TE AREA OF CONCERN Hazardous Waste Management Unit 5 Cleaning Solvents Used in Facility Operations Potential Source Areas for TCE	2 2 2
3.0 3.1 3.2 3.3 3.4 3.5	TO GE KA 3.3.1 3.3.2 OC	COGEOLOGIC FRAMEWORK POGRAPHY OLOGIC SETTING RST HYDROLOGY Fracture Trace Analysis Sinkhole Delineation CCURRENCE OF GROUNDWATER LATION OF HYDROGEOLOGIC FEATURES TO POTENTIAL SOURCES OF TCE	5 6 6 6
4.0	GROU 4.1 4.2	NDWATER ANALYTICAL RESULTS	9
5.0	CONC	LUSIONS	11
6.0	REFE	RENCES	12
		LIST OF FIGURES	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7		Site Location Map Site Map/Geologic Features Map Cross Section Location Map Geologic Cross Section A-A' Geologic Cross Section B-B' Geologic Cross Section C-C' Potentiometric Surface Map	
		LIST OF APPENDICES	
Appen Appen		Monitoring Well Boring Logs/Construction Diagrams Trichloroethene Historic Concentration Graphs	

1.0 INTRODUCTION

This report presents the results of the Alternate Source Demonstration for Trichloroethene conducted for Hazardous Waste Management Unit 5 (HWMU-5) at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. Trichloroethene (TCE) has been detected repeatedly at concentrations exceeding the USEPA Maximum Contaminant Level (MCL) of 5 µg/l in four groundwater monitoring wells within the monitoring network for HWMU-5. In correspondence to Alliant Ammunition and Powder Company, L.L.C. (Alliant) dated September 27, 2000, the Virginia Department of Environmental Quality (VDEQ) requested that Alliant implement a Corrective Action Program at HWMU-5 to address the TCE concentrations in groundwater which exceeded the USEPA MCL. During a teleconference between the VDEQ, Alliant, and the Army on October 31, 2000, Alliant stated that, based on historical information for HWMU-5, it was believed that the wastes handled at the Unit prior to closure did not contain TCE or other organic compounds. Furthermore, TCE concentrations below the USEPA MCL had been detected in the upgradient monitoring well for the Unit during previous monitoring events. Therefore, it was believed that HWMU-5 was not the source of the TCE detected in the groundwater. In accordance with VDEQ guidance and pursuant to 40 CFR 264.99(i), Alliant has chosen to demonstrate that TCE was derived from a source other than HWMU-5. Accordingly, if it is demonstrated that TCE was derived from an alternate source, then any corrective action for the TCE would fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program instead of the VDEQ, and TCE would be removed from the list of the constituents of concern in the Permit for HWMU-5.

This Alternate Source Demonstration for TCE provides a description of HWMU-5, including the Unit's historic operations and the wastes processed. In addition, the facility buildings and areas in the vicinity of HWMU-5 where TCE is and/or may have been used are identified. The Demonstration describes the hydrogeologic framework of the area of concern, including karst conduits that may facilitate TCE migration in groundwater, as it relates to the potential sources of TCE. Historic detections of TCE concentrations within the monitoring well network for HWMU-5 are evaluated, along with a discussion of the analysis of groundwater samples collected on December 12-14, 2000 in support of the TCE Alternate Source Demonstration.

2.0 SITE DESCRIPTION

2.1 FACILITY DESCRIPTION

The Radford AAP is located in the mountains of southwest Virginia within Pulaski and Montgomery Counties. A Site Location Map is presented as **Figure 1**. The facility is situated in one of a series of narrow valleys typical of the Valley and Ridge physiographic province of the Appalachian Highland Region of North America. Oriented in a northeast-southwest direction, the valley is approximately 25 miles long. The valley has a width of approximately eight miles at the southwest end and narrows to approximately two miles at the northeast end. Radford AAP lies along the New River in the relatively narrow northeast corner of the valley. The maximum elevation at Radford AAP is 2,225 feet above mean sea level (amsl) in the southeast corner and the minimum elevation is approximately 1,675 feet amsl along the New River at the northern property boundary. Radford AAP is divided by the New River into two sections. The southern section, which comprises approximately two-thirds of Radford AAP, is called the "Main Plant." The remaining northern one-third section is called the "Horseshoe Area." HWMU-5 is located in the Main Plant area.

2.2 TCE AREA OF CONCERN

2.2.1 Hazardous Waste Management Unit 5

HWMU-5 is a former lined surface impoundment. As shown on the Site Location Map (Figure 1), HWMU-5 is located approximately 3,000 feet southwest of the New River. The Unit is located on a river terrace which slopes gently downward to the north toward the New River. The Unit was put into operation as an unlined surface impoundment in 1970, and was retrofitted with a liner in 1981. The dimensions of the Unit measured approximately 150 feet by 100 feet along the top of the berm, with a total embankment height of 10 feet above the base of the impoundment. The Unit was taken out of operation in 1986, and was closed in 1989 in accordance with the VDEQ-approved Closure Plan dated June 1985.

During operation, the Unit received runoff, spill, and washdown waters from the acid tank farm (nitric and sulfuric acids). Prior to 1983, the Unit also received process wastewater containing low concentrations of nitrocellulose. Based on historical information, the wastes handled at HWMU-5 did not contain TCE or other organic compounds.

2.2.2 Cleaning Solvents Used in Facility Operations

Several solvents are used for equipment cleaning purposes in certain areas of the Radford AAP facility. According to Alliant Procedure No. 4-27-078, Revision No. 5 (dated January 13, 1999), the following cleaning solvents are approved for use at the facility:

• Stoddard Type Solvents (clear, colorless liquids of the kerosenenaptha class; used as an oil and grease remover);

- 1,1,1-Trichloroethane (inhibited);
- DuPont Cleaning Solvent #49 (70% Stoddard Solvent, 25% methylene chloride, 5% perchloroethylene; used in electric motor cleaning);
- Acetone;
- Ethyl Alcohol;
- Inhibisol (colorless liquid of chlorinated solvents; chemical formula CCl₄);
- Nitroglycerin Remover (mixture of sodium sulfide, alcohol, acetone, and water);
- "Gunk" (degreasing-cleaning solvent; approximately 16% cresole; used in a vat or tank in the Degreasing Shop to clean and paint strip scales for overhaul);
- Butyl Alcohol (used by the Electronic Shop for strain gauge maintenance);
- Intex #8793 Paint Stripper (used in Degreasing Shop for paint removal);
- Intex #827 Safety Solvent (used in Degreasing Shop for paint removal and cleaning purposes);
- Lectra Clean (used in Electric Shop for cleaning and degreasing electrical equipment);
- Voltz (used in Electric Shop motor cleaning vat).

These solvents are used primarily for tasks involving operations and maintenance of motors, valves, and gauges. There is no record or operational indications that any of these solvents could have come into contact with wastewater influent to HWMU-5.

2.2.3 Potential Source Areas for TCE

As part of the TCE Alternate Source Demonstration, Alliant identified facility buildings in the vicinity of HWMU-5 where chlorinated solvents currently are used or have been used in the past. These buildings and their spatial relationships to HWMU-5 are illustrated in **Figure 2**.

Building 1549 is an Area Maintenance Shop located approximately 300 feet southeast of HWMU-5. According to Area Mechanics who worked in facility B-Line Maintenance, the cleaning of equipment in the 1960's and 1970's involved the use of Varsol and WD-40. Disposal of the used solvents consisted of pouring the solvents down the nearest floor drain. This disposal practice was later discontinued; after that time, the spent solvents were collected in a barrel to be transported by the Roads and Grounds department to a collection area for disposal.

Building 1034 formerly housed a facility laboratory. The building currently houses the Electric and Refrigeration Shop. Building 1034 is located approximately 950 feet southeast of HWMU-5. DuPont Cleaning Solvent #49, one of the solvents commonly used in electric motor cleaning, contains perchloroethylene (PCE). TCE is a daughter product of the degradation of PCE.

Building 1041 is the Degreasing Shop. The building is located approximately 980 feet southeast of HWMU-5. The building formerly contained a dip tank, which now is filled with concrete. Currently, a grate-covered pit in the floor drains to an outside underground storage tank. According to a Senior Instrument Mechanic, the Scale Shop used this building in the past for the cleaning of scales. At times, the scales would be taken outside of the building to be washed off; the wash liquids would be allowed to drain onto the ground surface. According to

the Radford AAP Sewers and Drains Atlas, a four-inch terra cotta pipe runs westward from the western end of Building 1041.

Building 2549 is another Area Maintenance Shop. The building is located approximately 450 feet southwest of HWMU-5.

Building 2570 is an Area Cleaning Station. The building is located approximately 620 feet west of HWMU-5.

Building 525 is the Tractor Steaming Station. The building is located approximately 720 feet southwest of HWMU-5.

3.0 HYDROGEOLOGIC FRAMEWORK

3.1 TOPOGRAPHY

The TCE Area of Concern is located approximately 3,000 feet southwest of the New River. The Area is located on a river terrace which slopes gently downward to the north toward the New River. Surface drainage boundaries are illustrated in **Figure 2**. As shown on **Figure 2**, a surface drainage divide separates Buildings 1034 and 1041 from the other potential source buildings in the TCE Area of Concern and HWMU-5. Surface drainage in the vicinity of Buildings 1034 and 1041 flows to the northeast, while the surface drainage in the vicinity of the other potential source buildings in the TCE Area of Concern and HWMU-5 flows to the northnorthwest.

3.2 GEOLOGIC SETTING

The Valley and Ridge physiographic province consists of folded and thrust-faulted Paleozoic sedimentary rocks ranging in age from Cambrian to Mississippian. Post-deformation weathering of these thrust-faulted and overturned Paleozoic rocks has resulted in the formation of resistant sandstone and dolomite ridges separated by valleys underlain by more easily eroded shale and limestone. Well developed karst features such as sinkholes and caves are common in the Valley and Ridge.

The general geology at Radford AAP consists of limestone/dolomite bedrock covered by weathered residual deposits and/or alluvial deposits. The alluvial deposits consist of typical fluvial deposits of interbedded clay, silt, and sand/gravel deposits with cobble lenses. The thickness of the alluvial deposits ranges from a few feet to approximately 50 feet, with an average thickness of 20 feet. The residual deposits consist of clay, silt, and clasts resulting from the physical and chemical weathering of the parent bedrock. The residual deposits typically underlie the alluvium, except in locations where the residuum has been eroded to bedrock and replaced by alluvium. The thickness of the residual deposits ranges from a few feet to approximately 40 feet. Underlying the alluvium and residuum throughout most of Radford AAP is a series of dolomite, limestone and shale strata known as the Cambrian-aged Elbrook Formation. The Elbrook Formation is the major outcropping formation as well as the predominant karstic formation below the facility. Sinkholes, solution channels, pinnacled surfaces, and springs are common to the Elbrook Formation.

The Boring Logs/Well Construction Diagrams for the monitoring network at HWMU-5 are included in Appendix A. A Cross-Section Location Map for HWMU-5 is presented as Figure 3. Geologic cross-sections derived from the boring logs for the Unit's monitoring wells are presented as Figures 4, 5, and 6. The area surrounding HWMU-5 is underlain by unconsolidated alluvial sediments and weathered bedrock residuum, which are in turn underlain by carbonate bedrock of the Elbrook Formation. The bedrock beneath this area is generally encountered at depths ranging from approximately 28 feet to over 56 feet below ground level, although the soil/bedrock interface is gradational. In general, the bedrock in the vicinity of

monitoring wells 5W8B, 5WC11, 5WC12, and S5W8 slopes downward to the north-northeast, while the bedrock in the vicinity of monitoring wells S5W6 and 5W9A slopes downward to the southwest. This appears to indicate the development of a karst solutional feature in the bedrock in the vicinity of monitoring wells 5W5B, 5WCA, and well cluster 5WC21, 5WC22 and 5WC23.

3.3 KARST HYDROLOGY

3.3.1 Fracture Trace Analysis

A total of 66 fracture traces were identified within and around Radford AAP in a photogeologic study conducted by the USEPA's Environmental Photographic Interpretation Center (EPIC) in 1992. Fracture traces are linear features identified in aerial photographs that represent the surface expression of primary joint sets, major fractures, and/or zones of fracturing in the subsurface. These features may be expressed as soil-tonal variations and vegetational and topographical alignments, and are significant in consideration of groundwater flow at Radford AAP. The fractures and joint sets can act as discrete conduits for groundwater flow, increasing flow rates, and in some cases, redirecting flow away from the expected flow direction. In karst terrains, such features are environmentally significant because solutionization and resulting conduits develop along bedding planes as well as fractures and joints (USEPA, 1992).

The primary fracture traces identified by the 1992 USEPA EPIC study in the vicinity of the TCE Area of Concern are illustrated in **Figure 2**. The fracture lineations appear to be oriented radially, with trends ranging from northeast-southwest to northwest-southeast in the TCE Area of Concern.

3.3.2 Sinkhole Delineation

The locations of sinkholes at Radford AAP were also mapped during the 1992 USEPA EPIC study. In the vicinity of Radford AAP, the strike of bedding in the Elbrook Formation is roughly west/southwest to east/northeast, with dips to the south/southeast. Most of the sinkholes in the vicinity of Radford AAP are oval shaped and elongated with respect to the strike of bedding planes. In some instances, the sinkholes appear to align with respect to the fracture traces. The sinkholes most likely represent bedrock units with a greater carbonate content and lower shale content within the underlying Elbrook Formation (USEPA, 1992).

As mapped by the 1992 USEPA EPIC study, the area surrounding the TCE Area of Concern is characterized by the development of sinkholes without any apparent alignment or preferred orientation (Figure 2). Many of these sinkholes were filled during historic site development; at present, several facility structures are now located on these historic sinkholes. It is probable that there are well developed karst conduits which connect these sinkholes and which convey groundwater as well as aerated surface water during precipitation events at relatively rapid velocities through solution-enhanced fractures and joints.

3.4 OCCURRENCE OF GROUNDWATER

The general hydrogeologic setting for Radford AAP is characterized by porous alluvial sediments overlying weathered and unweathered dolomite and limestone. In areas where the porous alluvial sediments are the uppermost water-bearing zone, groundwater flow is generally from topographically high areas to topographically low areas. In some areas of Radford AAP, the uppermost water-bearing zone is within the limestone and dolomite bedrock. The karst features within the bedrock aquifer can provide conduits for rapid transport of groundwater to the New River, which is the discharge area for regional groundwater flow.

Seasonal variations in precipitation can affect the direction of groundwater flow within the bedrock aquifer at Radford AAP. During wet seasons (high flow conditions), groundwater flow may occur in higher elevation conduits that are not normally saturated during dry seasons (low flow conditions). As a result, flow directions may change significantly as different conduits are accessed. Additionally, flow may short-circuit the predominant flow paths and be redirected, discharging in unexpected areas.

In addition to seasonal variations, groundwater levels within the bedrock aquifer may fluctuate dramatically during heavy precipitation events. Groundwater levels in the karst bedrock aquifer generally respond to heavy precipitation within approximately 14 hours, and may rise several feet in a short time (Engineering-Science, 1994). This condition exists throughout Radford AAP, especially in areas where surface water infiltrates through sinkholes. Stormwater that flows into the sinkholes travels downward rapidly through conduits into the bedrock aquifer. Because groundwater may flow very quickly through these conduits, stormwater infiltrating in the uplands of the facility may discharge to the New River in a matter of a few days following a storm event. The turbulent flow created by these conditions aerates the infiltrating water. The increased O₂ content can significantly affect the chemistry of the groundwater, increasing the concentration of many commonly occurring inorganic analytes. It is this direct connection between surface water and groundwater and the rapid movement of groundwater through the aquifer that is vital to interpreting the migration of both naturally occurring and released constituents in the groundwater at Radford AAP.

The monitoring wells at HWMU-5 are screened entirely within either weathered carbonate bedrock residuum or alluvium, or across the weathered residuum/carbonate bedrock interface. Static water levels measured during the Fourth Quarter 2000 monitoring event ranged from 1754.07 feet to 1772.49 feet above mean sea level. As shown on the Potentiometric Surface Map (Figure 7), groundwater movement beneath the site is generally to the northeast. The groundwater contours and the topography in this area suggest that the TCE Area of Concern is located on a river terrace that contains several karst features and drains north toward the New River.

3.5 RELATION OF HYDROGEOLOGIC FEATURES TO POTENTIAL SOURCES OF TCE

Area Maintenance Shop Building 1549 is located on a large historic sinkhole measuring approximately 430 feet by 200 feet (**Figure 2**). A smaller historic sinkhole (approximately 150 feet by 130 feet) is located approximately 80 feet north of the large sinkhole. Monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23 are located within this smaller sinkhole. It is likely that these two sinkholes are connected by well-developed karst conduits. According to facility personnel, past disposal practices at Building 1549 involved pouring used solvents into floor drains. Liquids released to the subsurface through floor drains or spilled on the ground surface in the vicinity of Building 1549 would percolate to the groundwater through the soil filling the large sinkhole. Karst conduits would convey groundwater from the larger sinkhole to the smaller sinkhole containing monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23. As discussed in Section 4.0, these are the wells that consistently exhibit TCE concentrations in exceedance of the USEPA MCL of 5 µg/l.

Electric and Refrigeration Shop Building 1034 and Degreasing Shop Building 1041 are separated from the TCE Area of Concern by a surface drainage divide. However, as shown on Figure 2, Buildings 1034 and 1041 are located near two fracture traces which trend through the large sinkhole upon which Building 1549 is located. As indicated by facility personnel, past practices at Building 1041 included cleaning scales by washing them outside of the building, with the wash liquids allowed to drain to the ground surface. Liquids released to the subsurface through floor drains, the UST system and/or the former dip tank associated with Building 1041, or spilled on the ground surface in the vicinity of Buildings 1034 and 1041 would flow northeastward and percolate through the soil to the groundwater. Any subsurface flow from the vicinity of these buildings possibly would be intercepted by the fracture trace located to the northeast and conveyed to the sinkhole underlying Building 1549, and be conveyed to the sinkhole containing monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23. Furthermore, waste solvents could be conveyed by the four-inch terra cotta pipe running westward from the western end of Building 1041, released to the subsurface and intercepted by the fracture trace located to the west of the buildings. This fracture trace also would convey any liquids to the large sinkhole underlying Building 1549.

Buildings 525, 2549, and 2570 are not expected to have contributed to the TCE concentrations detected at the site. The anticipated groundwater flow direction in the vicinity of these three buildings is to the north-northeast, away from HWMU-5. As shown on **Figure 2**, there are no karst conduits interpreted to be in the vicinity that would intercept groundwater flow from the area of these buildings.

4.0 GROUNDWATER ANALYTICAL RESULTS

4.1 HISTORIC TCE CONCENTRATIONS

Graphs of the historic TCE concentrations detected in the monitoring network for HWMU-5 are presented in **Appendix B**. The graphs were compiled using quarterly groundwater monitoring data from First Quarter 1995 through Fourth Quarter 2000. As shown on the graphs, TCE has been detected repeatedly at concentrations exceeding the USEPA MCL of 5 µg/l in downgradient monitoring wells 5W5B, 5WC21, 5WC22, and 5WC23. During First Quarter 1999, TCE was detected at a concentration of 7.4 µg/l in downgradient well 5W10A; however, this detection is considered to be an anomaly, as TCE has never been detected in well 5W10A at any other time. Minor detections of TCE at concentrations less than 1 µg/l have been observed occasionally in upgradient well 5W8B and in downgradient wells 5W7B and 5W9A. TCE has never been detected in monitoring wells S5W5, S5W7, or 5W11A; it should be noted that these three wells are located on the opposite sides of fracture traces from the remaining wells in the monitoring network (**Figure 2**).

4.2 DECEMBER 12-14, 2000 GROUNDWATER SAMPLING EVENT

On December 12-14, 2000, groundwater samples were collected from nine (9) monitoring wells at HWMU-5 in support of the TCE Alternate Source Demonstration. Five of the monitoring wells sampled (upgradient well 5W8B, downgradient well 5W5B, and nested wells 5WC21, 5WC22, and 5WC23) are part of the current monitoring network for the Unit. In addition, four observation wells (upgradient wells 5WC11, 5WC22, and S5W8 and sidegradient well 5WCA) were also sampled. These observation wells were included in this sampling event as part of the effort to determine whether the TCE concentrations detected in wells 5W5B, 5WC21, 5WC22, and 5WC23 were from a source upgradient and/or sidegradient from HWMU-5.

The groundwater samples were submitted to REI Consultants Inc. (REIC) in Beaver, West Virginia for analysis for volatile organic compounds using SW846 Method 8260B. Validation of the laboratory data by Draper Aden Associates revealed that the laboratory failed to meet mandatory instrument tuning and calibration requirements. The laboratory's failure to identify and address these deficiencies resulted in compromised data for the sampling event. As a result, the analytical data had to be rejected. Alliant plans to resample the nine wells in support of the TCE Alternate Source Demonstration in March 2001; the validated data from that event will be forwarded to the VDEQ when it becomes available.

Although the analytical results for the December 12-14, 2000 sampling event were rejected, it was determined that the data could be used to provide a non-quantitative determination of the presence or absence of volatile organic compounds. Of the volatile compounds for which the samples were analyzed, only TCE was detected. TCE was detected in monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23, all of which

are located in a historic sinkhole. TCE was not detected in upgradient wells 5W8B, 5WC11, 5WC12, and S5W8.

5.0 CONCLUSIONS

Historic information regarding operations at HWMU-5 prior to closure indicates that the wastes processed through the Unit did not contain TCE. A review of Radford AAP cleaning and maintenance practices in the vicinity of HWMU-5 has identified areas in which chlorinated solvents have been used. An evaluation of historic waste disposal practices in these areas indicates the potential for groundwater impact from these operations. Hydrogeologic features such as fracture traces and sinkholes in this area would be conducive to the transport of impacted groundwater from these potential source areas to certain monitoring wells within the groundwater monitoring network for HWMU-5. Only these certain monitoring wells (5W5B, 5WC21, 5WC22, and 5WC23) consistently exhibit TCE concentrations in exceedance of the USEPA MCL of 5 μg/l.

Based on these factors, it is Alliant's conclusion that the detected TCE concentrations are derived from a source other than HWMU-5. As a result, Alliant respectfully requests that TCE be removed from the list of constituents of concern in the Post-Closure Permit for HWMU-5. Remediation of TCE in groundwater in this area will fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program. With this TCE Alternate Source Demonstration, Alliant hereby provides USEPA Region III with notice of a new Area of Concern at Radford AAP.

6.0 REFERENCES

Engineering-Science, Inc. March 1994. Dye-Tracing Study Report, Radford Army Ammunition Plant. Prepared for the U.S. Army Environmental Center.

Radford North, Virginia 7.5-minute topographic quadrangle map. 1984. USGS. Reston, VA.

U.S. Environmental Protection Agency (USEPA). 1992. Installation Assessment, Radford Army Ammunition Plant, Radford, Virginia. Environmental Photographic Interpretation Center.

DAA JN: B00316 12 February 2001

FIGURES

Draper Aden Associates CONSULTING ENGINEERS

Blacksburg, Vicginia - Richmond, Virginia - Nashville, Tehnessee

DESIGNED RGM DRAWN JFF CHECKED AEK DATE 6-11-97

SITE LOCATION MAP RADFORD ARMY AMMUNITION PLANT MONTGOMERY COUNTY, VIRGINIA

SCALE:

1" = 2000 FIGURE

PLAN NO. B00316

LEGEND

ALLUVIUM (SILT, SAND, AND GRAVEL)

WEATHERED BEDROCK (SANDY SILT AND CLAY, RELICT ROCK TEXTURE)

ELBROOK FORMATION (LIMESTONE AND SHALE, BRECCIATED)

GROUNDWATER MONITORING WELL

SCREENED INTERVAL

BOTTOM OF WELL

BORING TERMINATION

POTENTIOMETRIC SURFACE

VERTICAL EXAGGERATION = 10X

NOTE: 5WC21, 5WC22, AND 5WC23 ARE THREE NESTED WELLS

DESIGNED DRAWN RGM BTM AEK CHECKED 02-10-01 DATE

GEOLOGIC CROSS-SECTION A-A' - HWMU 5 TCE ALTERNATE SOURCE DEMONSTRATION SCALE: RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

H:1"=150' V:1"=15'

PLAN NO. B00316

FIGURE

LEGEND

ALLUVIUM (SILT, SAND, AND GRAVEL)

WEATHERED BEDROCK (SANDY SILT AND CLAY, RELICT ROCK TEXTURE)

ELBROOK FORMATION (LIMESTONE AND SHALE, BRECCIATED)

GROUNDWATER MONITORING WELL

SCREENED INTERVAL

BOTTOM OF WELL

BORING TERMINATION

POTENTIOMETRIC SURFACE

VERTICAL EXAGGERATION = 10X

NOTE: 5WC21, 5WC22, AND 5WC23 ARE THREE NESTED WELLS

DESIGNED DRAWN CHECKED DATE

RGM BTM AEK 02-10-01

RADFORD ARMY AMMUNITION PLANT

02-10-01 RADFORD, VIRGINIA

SCALE:

H:1"=150' V:1"=15'

FIGURE

PLAN NO. B00316

LEGEND

ALLUVIUM (SILT, SAND, AND GRAVEL)

WEATHERED BEDROCK (SANDY SILT AND CLAY, RELICT ROCK TEXTURE)

ELBROOK FORMATION (LIMESTONE AND SHALE, BRECCIATED)

GROUNDWATER MONITORING WELL

SCREENED INTERVAL

BOTTOM OF WELL

BORING TERMINATION

POTENTIOMETRIC SURFACE

VERTICAL EXAGGERATION = 10X

NOTE: 5WC21, 5WC22, AND 5WC23 ARE THREE NESTED WELLS

DESIGNED RGM DRAWN BTM CHECKED AEK DATE 02-07-0

GEOLOGIC CROSS-SECTION C-C" - HWMU 5 TCE ALTERNATE SOURCE DEMONSTRATION RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

SCALE:

H:1"=150' V:1"=15'

PLAN NO. B00316

6

FIGURE

Nr.

APPENDIX A

MONITORING WELL BORING LOGS/CONSTRUCTION DIAGRAMS

RAAP

UNIT 5		02/07/95										
WELLS	TYPE	STATUS	DT	DATE	BORING	COMPLETIO	DATUM				SCREEN	
				DRILLED	LOG	DIAGRAM	G.L.	T.O.C.	LENGTH	SIZE	SLOT	TYPE
W8-B	UP/BG	ACTIVE	31.50	02/16/83	YES	YES	1787.58	1789.55	15.00	2.00	0.01	PVC
5WC2-1	POC	ACTIVE					1772.10	1774.43	,,,,,		0,01	
W5-B	POC	ACTIVE			YES	YES	1773.13	1775.08	10.00	2.00	0.01	PVC
W7-B	POC	ACTIVE	20.00		YES	YES	1772.78	1774.90	10.00	2.00	0.01	PVC
5WC2-2	ASMT	ACTIVE					1771.99	1774.45				
5WC2-3	ASMT	ACTIVE					1771.28	1773.84				
S5W-5	ASMT	ACTIVE	25.00	04/05/81	YES	YES	1769.81	1771.74	10.00	2.00	PVC40	
S5W-6	ASMT	ACTIVE					1769.42	1771.43				
S5W-7	ASMT	ACTIVE	26.00	04/05/81		YES	1773.08	1775.06	10.00	2.00	PVC40	·
W10-A	ASMT	ACTIVE			YES		1768.42	1770.79	20.00			TEFLON
W11-A	ASMT	ACTIVE			YES		1764.70	1765.90				
W9-A	ASMT	ACTIVE			YES		1761.07	1761.82				
5WC1-2		SWL					1787,43	1789.89				
5WCA	POC	SWL					1777.37	1779.96				
5WC1-1	UP	SWL					1787.55	1789.99				
S5W-8	UP	SWL	34.00	04/05/81	YES		1783.51	1784.77	5.00	2.00	PVC40	
S5W-8	UP	SWL					1787.02	1785.28				

RAAP UNIT 5

WELLS			GROU	T	ANNULAR	SEALANT	FILTER PA	CK	hydraulic c	onductivity
	TOP	BASE	TOP	BASE	TOP	BASE	TOP	BASE	K (ft/sec) K	(cm/sec)
W8-B	16.50	31.50							3.84E-04	1.17E-02
5WC2-1	(1749.80)								3.14E-06	9.58E-05
W5-B	10.00	20.00	0.00	6.00	8.00	10.00	8.00	20.00		
W7-B	10.00	20.00								
5WC2-2	(1749.80)								2.52E-05	7.69E-04
5WC2-3	(1725.39)								2.76E-05	8.42E-04
S5W-5	13.00	23.00								
S5W-6	(1755.42)									
S5W-7	12.00	22.00								
W10-A	(1745.77)									
W11-A	(1735.90)									
W9-A	(1729.85)									
5WC1-2	(1721.63)								1.10E-06	3.36E-05
5WCA	(1747.27)								2.37E-07	7.23E-06
5WC1-1	(1745.25)								9.60E-06	2.93E-04
S5W-8	29.00	34.00			•				•	
S5W-8	(1757.52)									

Betz-Converse-Murdoch-Inc. Drilling Log

Well Humbe	er <u>W-</u>	8-B	_					
Client Co	rns of End	ineers/Rad	ford AAP Project No. 00-0008-01					
Driller/Co	Driller/Company Dean/Cunningham							
Drilling I	lethod NX c	ore	Hole Diameter nominal 4" Date(s) Drilled 2/15 - 16/83					
Sample Typ	esplit sp	oon/core S	ample Interval 5' spoon No. Samples Retained 7 asing Top Elevation 1789.55' Total Well Depth 31.5					
Surface El	evation 17	87.58' C	asing Top Elevation 1789.55' Total Well Depth 31.5 PVC threaded couples Cased Interval(s) $0 - 16.5$ (+2'					
Casing Mat	erial and	Size 2" ID	PVC threaded counles $Cased Interval(S) = 16.5 (+2)$					
Grouting T	ype <u>sand</u>	cement	Grouted Interval 0-15.5 incl.1'					
Screening	Haterial a	ind Size 2"	ID PVC 0.010" slots Screened Interval(s) 16.5 - 31. 1 sand Packed Interval 15.5 - 31.5 Approx Well Yield 0.25 gpm					
Packing Ha	terial and	i Size <u>No.</u>	1 sand Packed Interval 15.5 - 31.5					
Repth to S	tatic Wate	r <u>17'4"*</u>	Date 2/18/83 Approx Well Yield <0.25 gpm					
Developmen	t nethod	air	Development Time 3 hours					
Logged by:	<u>Peter R</u>	Jacobson						
Comments _		SK	ETCH MAP WELL DETAIL (ALTIST)					
- <u></u> -	<u></u>		STEEL					
no core	recovery		I CASING THE GRAPE					
٠								
* measur	ed from to	p of	(ATS)					
casing			Sch 80i PVC					
		 	HWM CASIME					
			Gentanite					
		🞞	AGOON Screw Covel					
		 : 	┨ ┆┩┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼					
	<u> </u>	—— III						
			15' PVC Screen					
	·		A SAME					
			Bollom Cap					
Nepth	Sample	Spoon	Description of Materials					
Scale	2 amp 16	Blows	beschiperon of Materials					
0 1-5	6000	1 5 6	modium humum to amenic humum cilty cliv with angulan					
0 - 1.5	spoon	1-5-6	medium brown to orange brown silty clay with angular pebbles					
5 - 6.5	c noon	1-2-2	medium orange brown silty clay with minor fine sand					
$\frac{3-6.5}{10-11.5}$	spoon spoon	3-6-14	slightly moist mottled orange brown clay, minor silt and					
10 - 11.5	300011	3-0-14	fine sand					
14'4"			coarse sand and gravel layer					
15 - 16.5	spoon	11-17-45	poorly sorted mix of sand silt gravel clay; coarsening					
10.5	3,00011		downward: gravel ends at 17.5'					
20 - 21.5-	spoon	5-5-8	mottled orange/red brown clay, moist					
25 - 26.5	Spoon	1-2-2	wet soft brown clay with silt and fine sand					
30 - 31.5	SDOON	1-3-2	wet medium orange brown silty clay, minor sand					
	·							
end of hol	e at 31.5'							
			· · · · · · · · · · · · · · · · · · ·					
·								
 	-							
								
			<u> </u>					
 								

Betz-Converse-Murdoch-Inc.

Drilling Log

Well Humber <u>W-5B</u>

Client C	orns of Fr	naineers.	RAAP, Radford, VA Project No. 00-0008-01
Well Locat	tion East	of HWM 5	Lagoon
Driller/Co	ompany M.	Dean, Cur	ningham Core Drilling and Grouting Corp. Salem. VA
Drilling h	lethod <u>Fisi</u>	ntail	Hole Diameter <u>4.5"</u>
Sample Typ	e <u>Split Sp</u>	oon	Sample Interval 5' No. Samples Retained 4
Surface El	levation l	//3.13	Casing Top Elevation 1775.08'* Total Well Depth 22'
Casing Mat	terial and	51ze <u>2" [</u>	D Sch. 80 PVC Cased Interval(s) 0-10'
Grouting i	ype Port	land Ceme	nt with Sand Grouted Interval 0-6'
Screening	material o	and Size	2" ID 0.01 Slotted PVC Screened Interval(s) 10-20' e to Coarse Silica Sand Packed Interval 8-20'
Donth to	iterial and	3 126 71	
Developmen			(T.O.C.) Date <u>8/19/83</u> Approx Well Yield < 1 gpm Development Time 4 hours
Logged by:	_		
Comments _			VETCU MAD
1) Drilli			KETCH MAP WELL DETAIL PROTECTIVE
	ed from RA	AP	STEEL!
hydran		" H	
2) Replac		5	CEMENT !! I'LL
3) Benton			GRAIT HILL CONTROL
	8-10' ann		1 BENTON ITE
interv			
4) Depth		able H	LAG 500M
	ed from th		SILVE A THE STATE OF THE STATE
	steel cas		1_!
	ZIEET LAS	''''9	ICAND: 1- SCREEN
		— - H	╵╎┪╏╎╎┧┪╏┪╏┪┪┩┪ ┩┩┪╫┩
•—-		—— <u> </u>	
*Top of st	tool casin		
10h 01 21	CEEL COZIU	─	BOTTOM CAP
Depth	Sample	Spoon	Description of Materials
Scale		Blows	
5-6.5	Spoon	2-3-4	Somewhat mottled buff to orange-brown fine sandy
			and silty clay
10-11.5	Spoon	4-7-9	Tan Clay with fine to coarse sand
15-16.5	Spoon	4-5-7	Tan clay with scattered sand
20-21.5	Spoon	2-2-4	Brown sandy-clay
22			End of hole
- <u>-</u>			
_			
<u> </u>	·		
			<u> </u>
		 _	<u> </u>
			
 			

Betz-Converse-Murdoch-Inc.

UNITS

Drilling Log

well number	W-/D		-				
Client Co	rps of Eng	ineers, RA/	AP, Radford, VA Project No00-0008-01				
Well Loca	Well Location North of HWM5 Lagoon						
Driller/Co	ompany <u>M.</u>	Dean, Cunr	ningham Core Drilling and Grouting Corp, Salem, VA				
Drilling A	dethod <u>Fis</u>	htail/Core	Hole Diameter 4.5" Date(s) Drilled 8/18/83				
Sample Tvr	oe Solit S	noon S	Sample Interval 5' No. Samples Retained 4				
			asing Top Elevation 1774.90'* Total Well Depth 20'				
			Sch. 80 PVC Cased Interval(s) U-10				
Grouting	ype <u>Por</u>	tland Cemer	t with Sand Grouted Interval 0-6'				
Screening	Material	and Size 2"	ID 0.01 Slotted PVC Screened Interval(s) 10-20				
Packing ma	iterial and	a Size Fir	ne to coarse silica sand Packed Interval 8-20'				
Developmen	Static Hall	er <u>13.58' (</u>	T.O.C.)Date 8/19/83 Approx Well Yield < 1 gpm Development Time 4 hours				
Logged by:			Development Time 4 hours				
Logged by.	<u> </u>	<u>varner</u>					
Comments _		. SK	ETCH MAP WELL DETAIL PARTEDIT				
	ng water o		NI(NTS)				
	AAP hydran		I I I I I I I I I I I I I I I I I I I				
	es well W-						
3) Benton	ite pellet	seal In I	7/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	<u>annular</u>	inter-	GEMENT & TO CAS MG				
val	to water t	201 0 H	GROVI 1 BENTON ITE				
	ed from the		LACOM				
	steel cas		╃╫╫╫┋┋┋┋┋┋┋┋┋				
	ize: HW	···•	SILACA TO 0.27				
<u> </u>	-	—— H-I	SAND SCAFE~				
		 	SCAFE~				
		—— III					
*Inp of st	aal casing	 - -					
· <u></u>		 	┤┤┤┤┤╎┆┆╎┤╎╎┤ ┤┤┼┼┼┼ ╏ ┆╬┩┷┥┥┩╒┼┼┼				
Dipth	Sample	Spoon	Description of Materials				
Scale	Jampie	Blows	beser iperon or the servers				
F 6 5	Spage	5-7-4	Light reddish-brown very silty fine sand with mica,				
5-6.5	Spoon	13-7-4	black lignite, and some clay				
10-11.5	Spoon	2-3-4	Light reddish-brown very silty fine sand with				
10-11.5	эрооп	2-3-4	mica, black lignite, and some clay				
15-16.5	Spoon	6-9-19	Orange-red and tan brecciated decomposed shale with a				
1			clay matrix and some liquite				
20-21.5	Spoon	5-2-4	Orange-red and tan brecciated decomposed shale with a				
			clay matrix and some lignite.				
20			End of hole.				
· .							
			<u> </u>				
			 				
		 					
-	· -	 					
		 					
<u> </u>	 						

Betz-Converse-Murdoch-Inc.

Drilling Log

Well Number W-7B

Client Corps of Engineers, RAAP, Radford, VA Well Location North of HWM5 Lagoon Driller/Company M. Dean, Cunningham Core Drilling and Grouting Corp, Salem, VA Drilling Method Fishtail/Core Hole Diameter 4.5" Date(s) Drilled 8/18/83 Sample Type Split Spoon Sample Interval 5' No. Samples Retained 4 Surface Elevation 1772.78 Casing Top Elevation 1774.90'* Total Well Depth 20' Casing Material and Size 2" ID Sch. 80 PVC Cased Interval(s) 0-10' Grouting Type Portland Cement with Sand Grouted Interval 0-6' Screening Material and Size 2" ID 0.01 Slotted PVC Screened Interval(s) 10-20' Packing Material and Size Fine to coarse silica sand Depth to Static Water 13.58'(T.O.C.)Date 8/19/83 Approx Well Yield 4 light open Development Method Air Logged by:D, J, Varner							
Comments 1) Drilling water obtained from RAAP hydrants 2) Replaces well W-7 3) Bentonite pellet seal in the 6-8' annular interval 4) Depth to water table measured from the top of the steel casing 5) Core size: HW *Top of steel casing *Top of steel casing							
Depth Scale	Sample	Spoon Blows	Description of Materials				
5-6.5	Spoon	5-7-4	Light reddish-brown very silty fine sand with mica,				
10-11.5	Spoon	2-3-4	black lignite, and some clay Light reddish-brown very silty fine sand with				
			mica, black lignite, and some clay				
15-16.5	Spoon	6-9-19	Orange-red and tan brecciated decomposed shale with a clay matrix and some lignite				
20-21.5	Spoon	5-2-4	Orange-red and tan brecciated decomposed shale with a				
			clay matrix and some lignite.				
20		 	End of hole.				
		•					
	-						
	 						
		***	<u> </u>				
		·					
1		** * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·				

55W5 MW-5

US ARMY ENVIRONMENTAL HYGIENE AGENCY

Army Pollution Abatement Program Study, Installation of MOnitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981 (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

P	ROJECT	RAAP 81	1-26-8251-81	DATE —	5 April 81		
L	OCATION	Site 5	, north of lagoon next	DRILLERS Smithson, Hoddinott			
t	o buildi	ng SR 1612		Craig, Gat	es (logger)		
D	RILL RI	G Acker	II, w/ 4 in continuous	BORE HOLI	E MW 5		
•		flig	ht auger		TD= 25f		
		SAMP LE TYPE			initial 7'	5"	
	DEPTH	BLOWS PER 6 IN	DESCRIPTION			MARKS	
	_		Brown sandy silt with wet, plastic	n some gravel		13 ft of	
					10 ft of	schedule 40, 2 in ID PVC	
	_		Perched lense of water	•	Concrete grout	casing	
	_		•			•	
	5 ft		Vollowish have address	-1/			
	-	MB 5-10	Yellowish brown silty some mica flakes	CIBY W/			
	-	•					
					•	 	
	-	ĺ					
	10 ft		same material		Bentonite		
	4	MB 10-15			sand pack		
	\dashv		•			·	
	-				-	screen	
	15 ft						

4

US ARMY ENVIRONMENTAL HYGIENE AGENCY
Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

PROJECT .	RAAP 81-26-8251-81	DATE5 April 81				
LOCATION	Site 5, north of lagoon next	DRILLERS Smithson, Haddinott				
	ing S.R.1612	Craig, Gates (logger)				
DRILL RIG	Acker II, w/ 4 in continuous	BORE HOLE MW 5				
	flight auger	DONE HOLE				

	flight	anket		
СЕРТН	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REM	ARKS
	MB 10-20		·	10 ft of slotted 2 in ID, schedule 40, PVC screen (0.008-0.01")
20 ft		water at 20 ft yellow coarse _med- ium sand - saturated		
25 ft		change in engine pitch Elbrook FM	-	2 ft of trap
		TD 25 feet		Depth of well 25 ft
		•		. [
30 ft			·	

55W6 MW-6

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

US ARMY ENVIRONMENTAL HYGIENE AGENCY

DRILLING LOG

PROJECT	RAAP 81	-26-8251-81	DATE S April 81				
		northwest of lagoon	DRILLERS	Smithson,	Hoddinott		
next to b	uilding	S.R. 1602	Craig, Gates (logger)				
DRILL RIG	Acke	r II w/ 4 in continuous	BORE HOLE	MWS			
DKILL KIO	fligh	t auger	. DONE HOLE	TD= 25.5 f	t ,		
	SAMP LE			Water leve initial 9.	1		
	TYPE BLOWS			24 hr. 9'			
	PER 6 IN	DESCRIPTION		REM	ARKS		
		Brown silty clay, da	mp plastic	7 ft of con- crete grout	·		
1 -							
					13.5 ft of schedule 40,		
	,				2 in ID PVC casing		
		• .					
5 ft							
1	ß 5−10						
		Reddish brown silty clay	yslightly				
	[damp, tight drilling	-	4.5 ft of Bentonite			
1 -	l			(may have a			
	4			void above sand next to			
10 ft	V			water table)			
1					- [
-		cofter drilling come -	rorio1				
	}	softer drilling, same magetter wetter	terial,				
]		}	11.5 ft of sand pack	j		
		saturated			Ì		
					screen		
15 ft			l	<u> </u>			

HSE-ES Form 78, 1 Jun 80

Replaces USAEHA Form 95, 12 Aug 74, which will be used.

US ARMY ENVIRONMENTAL HYGIENE AGENCY

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

PROJECT -	RAAP 81-26-8251-81	DATE	5 April 81		
LOCATION	Site 5, northeast : of lagoon	DRILLERS	Smithson, Hoddinott		
	ding S.R. 1602	Craig, Gates (logger)			
DRILL RIG	Acker II, w/ 4 in continuous	BORE HOLE	MW 6		
DILLET ILLO	flight Auger	BOILE HOLL			

	SAMPLE	<u> </u>	
	TYPE BLOWS		
DEPTH	PER 6 IN	DESCRIPTION	REMARKS
_		Reddish brown silty coarse to medium sand, saturated (water is flowing)	10 ft of slotted
			Sand pack 2 in ID PVC screen ((0.008-0.010")
20 ft			
_		Weathered Elbrook FM (red gray clay residuum over dolomite)	
			2 ft of sedi- ment trap
25 ft	-	·	
	` .	25.5 ft TD	Bottom of well 25.5 ft
30 ft			

55W7

MW-7

40 PVC screen

US ARMY ENVIRONMENTAL HYGIENE AGENCY
Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

P	ROJECT		81-26-8251-81	DATE —	5 April 81		
			DRILLERS	Smithson, Hoddinott			
_	next t	o buildi:	ng S.R. 1603	Craig, C	Gates (logger)	<u> </u>	
D	DRILL RIG Acker II, w/ 4 in continuous BORE HOLE MW 7						
flight Auger TD=26 ft						ft	
		SAMPLE TYPE			water level initial=14'10"		
		BLOWS	- 	DESCRIPTION		24 hr =10'10" REMARKS	
	DEPTH	PER 6 I	N DESCRIPTION				
			<u> </u>		Concrete		
	-	1	Reddish brown silty c med plastic	lay damp-	Bentonite	,	
		}	,		20	12 ft of	
		1			24.5 ft of	schedule 40, 2 in ID PVC	
		ł			sand pack	casing	
:							
	_	7 1	•				
	5£t.		<u> </u> .				
						}	
		MB 5-10	same material getting d	amner and			
Ì	نــ	more plastic			i		
						1	
ı	-	,				1	
	10 ft						
				,			
	\dashv	•					
			,			[
-			!				
ı				}			
		Y	saturated silty medium c			10 ft of	
	,, ,		return on Auger- may have	e hit a		slotted 2 in ID schedule	
ı	15 ft		lense of gravel	1			

US ARMY ENVIRONMENTAL HYGIENE AGENCY

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, 3-9 April 1981, (USAERA Control No. 81-26-8251-81)

DRILLING LOG

PROJECT	RAAP 81-26-8251-81	DATE	5 April 81	
LOCATION	Site 5, west of lagoon next		Smithson, Hoddinott	
	Ing S.R. 1603	Craig, Gates (logger)		
DRILL RIG	Acker II, w/ 4 in continuous	BORE HOLE	MW 7	
DILLEE ILLO	flight Auger	DOILE HOLL		

	SAMP LE TYPE BLOWS		-	
DEPTH	PER 6 IN	DESCRIPTION	REI	MRKS
	MB 15-20	same material saturated		
_		vita vieta de la companya della companya della companya de la companya della com		screen
20.50				
20_ft				
·				3 ft of sedi-
_				ment trap
25 ft		Elbrook FM (weathered gray clay	·	<u></u> .
		residuum)		depth of well 26 feet
-		26 ft TD		
30 €t				

MW-8

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

US ARMY ENVIRONMENTAL HYGIENE AGENCY

DRILLING LOG

P	ROJECT	RAAP 81	26-8251-81]	DATE —	5 April 8	1
L	OCATION	Site	5, Background well, south	RILLERS	Smithson	Roddinott
_	of lagoo	n		Craig, Ga	ites (logger)	
D	RILL RI	G Acker	II, w/ 4 in continuous	BORE HOL	E <u>ww 8</u>	
			ight Auger		TD= 341	Et
		SAMPLE Type Blows			water leve initial=24 24 hr.=14	ft ll"
	DEPTH	PER 6 IN	DESCRIPTION		REM	IARKS
			Reddish brown sandy clay small gravels	with some	8 ft of concrete grout	29 ft of schedule 40, 2 in ID PVC casing
	5 ft	•	same material, wet, med p	lastic	5 ft of Ben- tonite	
			same material, getting v & sticky		sand pack	

HSE-ES Form 78, 1 Jun 80

Replaces USAEHA Form 95, 12 Aug 74, which will be used.

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

US ARMY ENVIRONMENTAL HYGIENE AGENCY

DRILLING LOG

P	ROJECT	KAAF		DAIL -	J APLIL OI	
L	OCATION	Site	5, background south	DRILLERS	Smithson, H	loddinott
_	of lag				, Gates (logg	(er)
D	RILL RI		er II, w/ 4 in continuo	PusBORE HOLI		-
			ght Auger			
		SAMP LE TYPE				i
	DEPTH	BLOWS PER 6 IN	DESCRIPTION		REM	ARKS
		MB 15- . 20	same material			
					21 ft of sandpack	
	_					
ı	_					PVC casing
	20 f					
					·	
			•			
	ᅥ					
	-					
	25 ft		same material			
			;			
		Ì	;	•		
	7	.				
	-			j		
ı	30 £t	- 1				

HSE-ES Form 78, 1 Jun 80
Replaces USAEHA Form 95, 12 Aug 74, which will be used.

Army Pollution Abatement Program Study, Installation of MOnitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

US ARMY ENVIRONMENTAL HYGIENE AGENCY

DRILLING LOG

5 Apr 81

RAAP 81-26-8251-81

PROJECT LOCATION SOUTH OF	Site 5	, background	DATE Smithson, Hoddinott Craig, Gates (logger)						
DRILL R		II. w/ 4 in continuous	BORE HOLE						
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REM	ARKS				
-		same material			5 ft of slot- ted schedule 40, 2 in ID PVC screen				
35 ft		Refusal Elbrook FM Note: ran short of scree fore, 5 ft of screem win the saturated zone in 10 feet.	as installed		well 34 ft.				
40 £									

HSE-ES Form 78, 1 Jun 80

Replaces USAEHA Form 95, 12 Aug 74, which will be used.

W9A HWMU-5

Form No. 500

TORING LOG

FROEHLIN

FROEHLING & ROBERTSON, INC.

FOR LINES ELECTION WATCHES OF INCOME ENTRY CHEMICAL TONE HUNDRED YEARS OF SERVICE

	ROM-6208 lercules,								DATE	November, 19	
	lon <u>itor</u> in		dford A	rmy Ammunition	Plant	Ra	dford.	Virgi	nia		
ing No (W-9-A	Total Depth:		Elevation:			Local		See pla	n	
e of Borin		w stem auger		Started: 11-6-8	5 Con	npleted:	11-6-8			W. Simmons, Si	·
1				ON OF MATERIALS		$\overline{}$	Semple	* Cone	Т		
levation	0.0			sufication)		Sample Blows	Depth (Feet)	Recovery	<u>'L</u>	PEMARKS	
-	\exists	Asphalt and o	rushed	stone						GROUNDWATER	A DATA
	1.5					┥	ł	1	ł		
ľ	コ		um dens	se brown fine :	sandy SILT	1	ł	ŀ	l		
ł	╡	little clay					١	ļ			
ł	ㅋ	-ALLUVIUM-				5_	4.5	j	J		
J	コ					⁵ 7 ₉	6.0				
J	ヸ						1				
	日					1	8.5		ľ		
ĺ	7					38,	ĺ		ł	•	
ľ	hulmulun					F	10.0		l		
- 1	Ξ						,	1	1		
}	\exists							ļ	ļ		
	13.0					<u> </u>	13.5				
ļ	= =			ity CLAY to ci	ayey SILT	21,			[
}	コ	(CL/ML) Reli	ct stru	cture		\vdash	15.0	ί,	ļ		
	= =	-RESIDUUM-						+	L Wa	ter level 0 16	5.0'
Ĭ	コ					1					
ļ	ヸ					{					
ł	Ξ									opment Data:	
ł	E]]				ed for 2 hrs. I down to 21'.	
	E]]				level re-esta	blished a
	=] [after 1.5 hrs	
	= =					[[- [· · · · · · · · · · · · · · · · · · ·			
	4										
- (ヸ						}	·			
1	maturitan lantaa					1		Į			
	3					()	ļ				
	3							J			
	=										
	ゴ						1	ĺ			
	=						ĺ	j			
	ヸ				1		1				
	Ħ					' {	1				
	\exists						- }				
1	E.						}	J			
	\exists					J	J				
],	9.0					1	39.0	1	_	efusal 0 39.0	

[&]quot;No of blows regid for a 140 lb hammer dropping 30 in to drive 2 in O.D., 1.375 in 1.0 sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N

Form No 500

30RING LOG

			•	12	ONE HU	NORED YEA	IRS OF SERVICE
Report No	ROM-620	85	- 1			DATE	November, 1985
Client:	Hercules	, Inc.					
Project		ng Wells Radford Army Ammunition Plant	Ra	dford	Virgi	nia	
Boring No.:		Cont. Total Depth: 49.0° Elevation:		Loca	-	See plan	
Type of Bo	ring. Holl	ow stem auger Started: 11-6-85 Com	pleted:	11-6-8		Oriller: K	. Sfamons, Sr.
Elevation	40.0	DESCRIPTION OF MATERIALS (Classification)	Semple Blows		% Core Recovery	RQD I	REMARKS
		Brown fine to medium grained SANDSTONE, changing to blue-gray fractured saccharoidal LIMESTONE and DOLOMITE			201	0%	GROUNDWATER DATA
]				44.0	 -	}	
ſ					30%	0%	•
ı					30.	"-	
	49.0			49.0	_		<u> </u>
t .		Coring terminated @ 49.0°					
1							
1		· 20' TEFLON SCREEN					
ľ		10' PUC. 80]				
1		. ADATER	\				
		· 25' PVC.42 3' CUTOF					
1	=						
I		• .					
			l				·
	킄						
	=					•	
	=====================================						ĺ
-	1				}		
	=			_			

JORING LOG

AOIW HWMU-5

FROEHLING & ROBERTSON, INC.

Report No	ROM-620			· · · · · · · · · · · · · · · · · · ·		DATE	November, 1985
Chent:	Hercules	, Inc.			<u> </u>		
Project		ng Wells Radford Army Ammunition Plant	Ra	dford,	Virgi	nia	
Boring No.:	W-10-A			Local		See plan	
Type of Bor	ing: Holl		npleted:	11-6-8	† -	Oraller: 1	1. Simmons, Sr.
Elevation	Depth 0.0	DESCRIPTION OF MATERIALS (Cleasification)	Sample Blows		% Core Recovery	RQD \$	REMARKS
	1.0	Brown fine sandy SILT; roots, organics					GROUNDWATER DATA
1		Loose to medium-dense red brown fine sandy SILT with occasional cobble layers (ML)	5	4.5			
1		-ALLUVIUM-	51010	6.0			
			⁷ 5 ₅	8.5			
1				10.0			
 			12112	13.5		. Wate	r level @ 14.8'
	17.0				_		ment Data: for 2 hrs.
	jun	Medium-stiff gray-brown silty CLAY to clayey SILT, shale fragments, relict structure	33.	18.5 20.0		Bailed	down for 1/2 hr. ge in water level.
		-RESIDUUM-		20.0			
	Lini						
	Linit Linit	·					
	" . —		30*		28.5	• 50/0.5	
	30.0	Gray green brecciated LIMESTONE and DOLOMITE, numerous calcite-healed fractures		30.0		J0/0	
	1111			35.0			j
	utu				121)1	
	40.0	Up pagged drooping Wip to drive 2 in Q.D. 1.375 in LD camples	1	40.0			

Form No 500

TORING LOG

FROEHLING & ROBERTSON, INC.

ONE HUNDRED YEARS OF SERVICE

ROM-62085 DATE November, 1985 Report No Hercules, Inc. Monitoring Wells Radford Army Ammunition Plant Radford, Virginia Project. Boring No. W-10-A Cont Total Depth: 45.0 See plan Location: Elevation: Type of Boring: Hollow stem auger 11-6-85 W. Simmons, Sr. Completed: 11-6-85 DESCRIPTION OF MATERIALS REMARKS (Classification Gray sandy LIMESTONE (Calcarenite) GROUNDWATER DATA 16% 42% 45.0 Boring terminated @ 45.0' · 20' TEFLAN SCREEN · 10' PUC.80 . ADAPTER .15' PVC.40

SORING LOG

WIIA HWMU-5

FROEHLING & ROBERTSON, INC.

ADD. TOOM ET AD ANALYMET PERCENTER MIND CHEMICAL ONE HUNDRED YEARS OF SERVICE

leport No	ROM-6208	5			<u>```</u>	7 8		DATE	November, 1985	
	ercules									_
roject. H	onitori	g Wells Radford	Army Ammunition P	lant	Rac	lford,	Virgi	nia		_
loring No. (W-11-A	Total Depth: 48.0°	Elevation:			Locat	ion:	See pla)n	
ype of Borin	g: Hollo	w stem auger	Started: 11-6-85	Complet	ted:]	11-6-8	5 0	Onlier:	W. Simmons, Sr.	
Elevation	Depth 0.0	. (0	ION OF MATERIALS	8	Sample Nows	Sample Depth (Feet)	% Core Recovery	RQD %	REMARKS	
	1.0	Brown fine sandy S	ILT; roots, organ	ics	_				GROUNDWATER DATA	
	., 1	Medium-dense to de to silty fine SAND		ndy SILT						
		-ALLUYIUM-		9	1111	4.5 6.0				
	11111					8.5				
	=======================================			4		10.0				
	hilimlin					,, ,				
	1111			12	711	13.5 15.0		Wate	er level @ 14.8'	
	17.0	Very soft yellow-b	rown coarse to fin					Sloshe	opment Data: ed 2 hours. d down to 19.0'.	
	=======================================	CLAY, some silt (CI -RESIDUUM-	.) relict structur	e 1	1.	18.5		Recove	ered to 14.8' after 1.5	i h
	huhult									
	1									
	28.0				2	28.0				
	コ	Gray-brown vuggy LIM fractures interbedde -FAULT BRECCIA-	ESTONE, calcite ho d with gray-green	ealed			72%	30%		
	1				3	3.0	\dashv			
							33%	7 %		
					3	8.0	\rightarrow			
1	40.0			1	- 1	١,١	\ I			

30RING LOG

FROEHLING & ROBERTSON, INC.

ONE HUNDRED YEARS OF SERVICE

DATE November, 1985 ROM-62085 Report No Hercules, Inc. Chent: Radford, Virginia Radford Army Ammunition Plant Monitoring Wells Project: See plan Location: W-11-A)cont Total Depth: 48.0' W. Simmons, Sr. Ordler: 11-6-85 Completed: 11-6-85 Started: Type of Boring: Hollow stem auger REMARKS DESCRIPTION OF MATERIALS RQD # Death 40.0 (Classification) (Feet) 0% 23% GROUNDWATER DATA Oark gray saccharoidal LIMESTONE 43.0 53% 0% 48.0 Coring terminated @ 48.0' · 20' PUC Screen

'No of blows req differ a 140 to hammer dropping 30 in to drive 2 in 0.0 1.375 in 1.0 sampler a total of 18 inches in three 6 in increments. The sum of the fast two increments of penetration is termed the standard penetration resistance. N

Scale 17:5 unless otherwise noted

HWMU5/5-WC1-1

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES - ENGINEERING/CHEMICA
ONE MUNORED YEARS OF SERVICE

eport No	O-62084							DATE May 1987
hent: H	rcules li	nc.	· 					·
orect: R	adford A	rmy Ammunition	Plant	Radfe	ord, V	<u>irginia</u>		
	5-WC1-1	Total-Depth: 53.5	ft. Elevation:					Location Plan
		Stem Auger	Started: 5/5/87	Comp	leted:	5/5/87	0	riller: W. Simmons
Everation	Depin 40.0	DESCRIP	TION OF MATERIALS		Semple Blows	Sample Death (Feet)	% Core Recovery	REMARKS
	-						45.0	GROUNDWATER DATA
	1 7				'		1	
							/	RQD = 23
]],	-WC1-1 continued				43.5	/ ,	
	<u> </u>						/	
				ı			36.7	PAR - 7
	1 🛨						36.7	RQD = 7
	1		•				/	
]	٠				48.5	/,	
	1 3			i			/	
							/	
	1 7						61.7	RQD = 0
	7						/	
	53.5					53.5	/	
	""	Boring terminated a	t 53.5 ft.					e de la companya de l
	7							
	1 7							
	1 7							
	7						. '	
	1 _1							
	1 =							
	1 =							
	1 1							
	1 1				į	i		
	-							
	uhunhunhun							
	E							
	E							
	E							
	-	=			ı			-
_	} ∃							
-	\				l			

"No of blows red of for e 140 tb, hammer dropping 30 m, to drive 2 in O.D., 1.375 in, 1.D. sampler a total of 18 inches in three 5 m increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N.

Scale 1"=5" uniess other= se noted

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES · ENGINEERING/CHEMIC "ONE HUNDRED YEARS OF SERVICE"

Scale 1"=5" unless otherwise noted

DATE May 1987 Report No. (7-62084 Hercules Inc. Radford, Virginia Radford Army Ammunition Plant Project. Location: See Location Plan ft. | Elevation: Total Depth: 5-WC1-1 Boring No.: Driller: W. Simmons Completed: Type of Bonng: Hollow Stem Auger Started: 5/5/87 5/5/R7 DESCRIPTION OF MATERIALS REMARKS 0.0 (Clear GROUNDWATER DATA No sampling conducted, see 5-WC1-2 for subsurface conditions Cobbles encountered at 13.0 ft. and 17.0 ft. 33.5 Auger refusal at 33.5 ft. 21 7 RQD - 0 Hard light gray dolomite, fractured and vuggy abundant calcareous infill, occasional shale infill: dolomite clasts in calcareous matrix: 38.5 Probable slump structure

*No. of blows regid, for a 140 to hammer dropping 30 in, to drive 2 in O.D., 1.375 in, I.D. sampler a loter of 18 inches in three 6 in increments. The sum of the fast two increments of penetration is termed the standard penetration resistance. N.

Project: Radford Army Ammunition Plant	 Driller: Simmons	WELL No.
Location: Radford, Virginia	 Inspector: Smith	5-WC1-1
Client: Hercules Inc.	 Date Installed: 5/5/87	
Screen Description: 0,010" slot, 2.0" I.D. Teflon Screen Q10')	 Sand Size: D(10)=	0.45-0.55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	 Bore/ Core Size: 6	inch/ NX
Subsurface Conditions Summary See 5-WCI-2 for Conditions Cobbles encountered at; 13.0 ft, 16.0 ft.	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Ground Elev.= Depth to Bentonite (for Elev.) Depth to Sand Filter (for Elev.) Depth to Well Rotton Flev. Depth of Hole (ft.) Elev.	3.0 ft.

HWMU5/5-WC1-2

: H é	ercules	Inc					
			dford, V	irginia	a		
g No.:	5-WC1					Location Plan	
			mpleted:	5/1/87		riller: W. Simmons	
or Borin	8: 13011C	DESCRIPTION OF MATERIALS	7.	Sample	- Core		
etion	Depth	(Classification)	Semple	Depth (Feet)	Recovery	WELL	IARKS
			1	1		GROUNDW	ATER DATA
ł	= =		1	l	1 1	<u> </u>	
- }	3	Very loose yellow brown silty medium to fine	- [ł	} }		
]	\neg	SAND (SH)	1	Í	1 1		
ŀ	7	, , , , , , , , , , , , , , , , , , , 	L	4.5	! !		
1	コ	-to-	111	1	1 [
ŀ	- =		<u> </u>	6.0	i i		
ľ	=	Loose tan to red brown clayey medium to fine	į	!	[]		
į	\exists	SAND, trace rounded coarse sand (SC)	1	! .] }	·	
1	3		227	8.5	}		
}	=		-/	10.0]		
Ì	16.17	-ALLUVIUM-	1		1 1		
- 1	= =	-766013011]	ł	!		
į			}	1	1 1		
- 1	= =		177-	13.5]		
	Ⅎ		11131		!	4.6	
- 1	-			15.0	1 1		
- 1	16.5		_		! !		
ł	···-=		}		} }		
- 1	7		. L	18.5	l l		
- 1	=	Loose orange brown medium to fine sandy SILT	673	1	}		
1	コ	trace angular coarse sand (rock fragments),	- - -	20.0	}		
- }	コ	manganese stains (ML)	1	l] [
- 1	コ	-to-	- 1	•	1 1		
- 1	ᅼ	- 64-	1	23.5	1 1		
- 1		Medium stiff orange brown clayey SILT, littl	e 2 ₁₃	1 23.3	} }		
1	7	medium to fine sand (rock fragments) (ML/MH)		25.0	1		
1	コ		1 .		}		
}	Littii			1	[
1					1 1		
- {		ace to pro	154	28.5	, ,		
- 1	⇒	-RESIDUUM-		30.0	1 1		
Ì	ーコ	•			1 1		
- 1					1		
1	\mathbf{E}		1	l	i i		
1	3	•	ļ.—	33.5	1 1		
}	uluuluu		112		} }	6.ha	
l	- 4			35.0	į į	Subsurface water depth at 11:3	
- [= =		1		1 1	1. 1987	o a.m. on na
Ì	コ		-		{ }	- 1307	
į	コ	±		ĺ	Į į	•	
	",ゴ			39.3	<u> </u>	•	
- 1	39.3 ₮	Auger refusal at 39.3 ft. 10 lb. nammer dropping 30 in. to drive 2 in O.D., 1.375 in. 1.D. sample					uniess otherwise

DATE May 1987 Report No. 0-62084 Hercules Inc. Radford Army Ammunition Plant Radford, Virginia ft. Elevation: Location: See Location Plan Boring No.: 5-WC1-2 Total Depth: 76.8 Dritter: W. Simmons Started: 5/1/87 5/1/87 Type of Boring: Hollow Stem Auger DESCRIPTION OF MATERIALS (Feet) REMARKS 40_0 GROUNDWATER DATA 35.8 RQD - 0 Hard light gray dolomite, vuggy, fractured, with calcareous infilling, some with moderatel developed crystals, occasional shale infill: 44.3 occasional dolomite clasts in a calcareous matrix: probable flow structure 46.7 **RQD - 7** andandandan badan lantan lantahan 49.3 34.9 RQD - 0 54.1 33.3 RQD = 059.8 25.8 RQD - 0 64.8 19.2 ROD = 0 69.8 88.3 RQD = 10 33.3 RQD = 0 76.8 76.8 Boring terminated at 76.8 ft.

"No of blows regid, for a 140 lb, hammer dropping 30 in, to drive 2 in O.D., 1.375 in, I.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistence, N.

Scale 1745" unless otherwise moted

Project: Radford Army Ammunition Plant Location: Radford, Virginia Client: Hercules Inc. Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen Riser Description: 2.0" I.D. Teflon Riser and PVC Riser		Driller: Sim Inspector: S Date Installe	mith	
Subsurface Conditions Summary Cobbles encountered at; 15.0 ft., 18.0 ft. Subsurface water at 34.5 ft. Yellow Brown silty medium to fine SAND (SM) to Orange Brown medium to fine sandy SILT (ML)	上上上上 1 1 1 1 1 1 1 1	D	asing Stickup (ft.)= Elev. = Ciser Stickup (ft.) = Elev. = Ground Elev.= Depth to Bentonite (ft.) Elev. Depth to Well Rottom Elev. Depth of Hole (ft.) Elev.	3.0 ft.

Ŋ

BORING LOG

HWMUS/5-WC2-1

								B.75 14 40.55
Report No.						<u> </u>		DATE May 1987
	ercules			0 - 44		,		
		Army Ammunition		Ragi		irgini.		
Boring No.:	5-WC2-	Total Depth: 31.8	ft. Elevation: Started: 5/5/87			,		Location Plan
Type or Born	W HOLL		ON OF MATERIALS		1.	5/5/87 Sampra	♣ Core	711111113
Elevation	g.g.		selfication)		Sample Blows	Depth (Feet)	Recovery	REMARKS
	1111	Medium dense red bro trace mica (SM)	wn silty fine SANI) ,	³⁶ 10	1.5		GROUNDWATER DATA
						3.0		
		-to-			459	4.5		
ļ						6.0		
	Ш	Very loose to medium medium to fine SAND		m silty	222	8.5		
	=======================================				-22	10.0		
		-ALLUV	UM-					·
) }	= =				2146	13.5 15.0	1	
1	16.5	:	· .			13.0		
	1	Medium dense to very coarse to fine SAND (⁹ 14 ₈	18.5		
	uluu	(SH)				20.0		Subsurface water at: 22 ft. May 5, 1987 at 4:00 p.m. 29 ft, May 5, 1987 4:10 p.m
{		-RESIDU	UM-		**,	23.5		*Weight of hammer
	7				-	25.0		-weight of nammer
	큭		•					
į	3			f	123	28.5	1	
	目			Ì	<u> </u>	30.0	Ì	
Ì	31.8	Boring terminated at	31.8 ft.			i	ŀ	
	= = = = = = = = = = = = = = = = = = = =			·			}	
	untuntu				l	Ì		
	耳	2		j	{	Ì		•
	· 🗐							

Project: Radford Army Ammunition Plant Location: Radford, Virginia Client: Hercules Inc. Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen Riser Description: 2.0" I.D. Teflon Riser and PVC Riser		Inspector:	Simmons Smith Illed: 5/6/87 Sand Size: D(10)= Bore/ Core Size: 6	
Subsurface Conditions Summary Yellow to Red Brown silty medium to fine SAND (SM)			Riser Stickup (ft.) =	3.0 ft.
Cobbles encountered at 8.0 ft. Subsurface water at; 22.0 ft. at 4:00p 5/5/87 29.0 ft. at 4:10p 5/5/87	10	Scre	Depth to Bentonite (f Elev. Depth to Sand Filter(Elev.	=
			Depth to Well Bottor Elev. Depth of Hole (ft.) Elev.	n(ft.)= 29.3 ft. = = 31.8 ft.

,

•

HWMU5/5-WC2-2

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES - ENGINEERING-CHEMICA
-ONE HUNDRED YEARS OF SERVICE"

Report No.	น-ะวบส	A		10	11.	DA'	TE May 1987
	ercules					<u> </u>	
			Radfor	d, V	irginia	<u> </u>	·
Boring No.:		Total Depth: 43.5 ft. Elevation:		<u>-</u>			cation Plan
Type of Born	ns: Hollo	ow Stem Auger Sterled: 5/6/87	Compte	1ed: 5	/6/87 Semore	Drifter:	W. Simmons
Elevetran	Deptn 0.0	DESCRIPTION OF MATERIALS (Classification)		Sample Blows	Desth (Feel)	Accessry	REMARKS
	0.0				, v. v. v.		GROUNDWATER DATA
	=	No sampling conducted, see 5-WC2-1 for	1		}		
	-	subsurface condictions	- 1		}	1 1	
	\exists		- }		1	[}	
] =		}		Ì	}	
]]	
	=		1		1		
] 111						
]				}		
		Cobbles encountered at 15 ft.					
	=						·
] =	Difficult augering at 35 ft 40 ft.			}	}	
					}		
			1				
	E		İ	,	1		
	=						
			j		1		
-			į		Ì		
		-]	
			- 1	Ì	į		
] =					1 1	
	=				}	{ {	
			Ì		}	1	
	IΞ		1		}	}	
	=		1				
			- 1			}	
			1		1		
			}		1	1	
			1		}	1 1	
	-	3]	}	•
] =	Boring terminated at 43.5 ft.	ļ		}		
	-					<u> </u>	Comp 17-65 years otherwise note

Project: Radford Army Ammunition Plant	Driller: Simmons	WELL No.
Location: Radford, Virginia	Inspector: Smith	5-WC2-2
Client: Hercules Inc.	Date Installed: 5/6/87	J=WC2=2
Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen	Sand Size: D(10)=	0.45-0.55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size:	
Subsurface Conditions Summary See 5-WC2-I for Conditions Cobbles encountered at; 15.0 ft., 40.0 ft.	Riser Stickup (ft.) =	3.0 ft. t.)=
	Depth to Well Botton Elev. Depth of Hole (ft.) Elev.	n(ft.)= 40.5 ft. = = 43.5 ft.

•

•

HWMU5/5-WC2-3

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABOHATORIES + ENGINEERING/CHEMICATONE HUNDRED YEARS OF SERVICE

Report No.	ດ ເ າ∩ຍ	A			181	• 1		DATE	May 1987
	groules					·			
		Army Ammunition	Plant	Radfo	ord, V	irginia		·	
Boring No.			ft. Elevation:						ion Plan
		w Stem Auger	Sterled: 5/6/87	Comp	leted:	5/6/87 Semple		riller: W	. Simmons
Elevation	8.8		TION OF MATERIALS Classification)		Samore Blows	Depth (Feet)	% Core Recovery		REMARKS
	11					1			GROUNDWATER DATA
			•			}			
	7	No sampling conduct		r		1	1		
]	subsurface condition	ons			ļ			
				ı		{			
	=		•				!		
	=								
									•
	E								
	=								
	=	···· .··							•
	\Box					}			
	\exists	Cobbles encountered	d at 15.0 ft.			}		4.	
	=								•
	7								,
	\exists								
		Difficult augering	at 53.0 ft 55.0) ft.		'			
	=								
	Ξ	•				1			
	\exists								
	=								
	1111								
	=							<u> </u>	
	1	_					.		
	-	•							
	=								
	=								
	1 3						ŀ		
	E	Boring terminated a							
				,					
	=								
	E^{-}	Boring terminated a	at 55.3 ft.				}		-
•	1 3	on the retainment of				1]		

No of blows red differs 140 to hammer dropping 30 in, to drive 2 in O.D., 1.375 in, I.D. sempler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N.

Scale 17+5' unless otherwise noted

Project: Radford Army Ammunition Plant	Driller: Simmons	WBLL No.
ocation: Radford, Virginia	Inspector: Smith	5-WC2-3
Client: Hercules Inc.	Date installed: 5/6/87	3-WC2-3
Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen	Sand Size: D(10)= 0.45-0.55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size:	6 inch/ NX
Subsurface Conditions Summary See 5-WC2-3 for Conditions Cobbles encountered at 15.0 ft.	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. Ground Elev.= Depth to Bentonite Elev.	3.0 ft.
1	Depth to Sand Filte	r(ft.)=
	10' SCREEN	
	Depth to Well Rotto Elev. Depth of Hole (ft.)	= - 55.3 1 5.

,

.

H.WMUSIS-WCA

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES - ENGINEERING CHEMICA ONE HUNDRED YEARS OF SERVICE

eport No.	T_62084	1			10	• •		DATE	May 1987
	ercules						·		
		Army Ammunition	Plant	Radfo	rd, V				
oring No.:	5-WCA	Total Depth: 40	ft. Elevation:		<u></u>	Locati			ion Plan
ype of Bonn	s: Hollo	w Stem Auger	Started: 5/7/87	Compi	e1ed.	5/11/87 Sampre) Drii	ier: W.	Simmons
Elevation	Cooth ().()		ION OF MATERIALS		Sample Blows	(Feet)	N Core Recovery		REMARKS
		Very loose gray brows SILT, trace coarse		sandy	322	1.5			GROUNDWATER DATA
-	1	SILI, DIRCE CORISE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-/		3.0 4.5			
	1	Very loose gray brad	own fine sandy SI	LT (ML)	221	6.0			
	1	-ALLU	YIUM-			8.5			
	1			}	224	10.0			
	11.51	<u> </u>				12.5			
	11111	Medium stiff gray to manganese stains (M			234	13.5 15.0	1		a are
į	duntuntun				20	18.5			
	7				223	20.0			
		Medium stiff to stiffine SAND (SM) mang		y silty	² 36	23.5			
	1	-grad	ing to-	<u> </u>		25.0			
	1	Stiff mottled to gra (CL/HL)	y silty CLAY/clay	Ĺ	357	28.5			
Ì		-RESI	DUUH-	. }		30.0			
	لسيلس			}	3 ₅₉	33.5			
				Ì	-39	35.0			
	1	2			***	38.5			•
· 1	40.0	Boring terminated a	t 40.0 ft.	{	**	40 0		*We	ight of Hammer

Thou of plows regid, for a 140 to hammer dropping 30 in. to drive 2 in O.D., 1.375 in. I.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance, N.

Location: Radford, Virginia Inspector: Smith S-W	Project: Radford Army Ammunition Plant			 	_	Driller: Sin	nmons	WELLN
Date Installed: 5/11/87 Sand Size: D(10)= 0.45-0.	Location: Radford, Virginia			 		Inspector:	Smith	5-WCA
Riser Description: 2.0" I,D. Teflon Riser and PVC Riser Casing Stickup (ft.)= 3.0 ft. Elev. = Riser Stickup (ft.)= 3.0 ft. Elev. = Gray Brown medium to fine sandy SiLT/ silty medium to fine SAND (ML/SM) Depth to Bentonite (ft.)= 4. Elev. = Depth to Sand Filtet(ft.)= 2! Elev. =	Client: Hercules Inc.			 		Date Install		
Casing Stickup (ft.)= 3.0 ft. Elev. = Riser Stickup (ft.) = 3.0 ft. Elev. = Cround Elev.= Gray Brown medium to fine sandy SiLT/ silty medium to fine SAND (ML/SM) Depth to Bentonite (ft.) = 4. Elev. = Depth to Sand Filtet(ft.) = 25. Elev. =	Screen Description: 0,010" slot, 2,0" I.D. Teflon Screen			 				
Subsurface Conditions Summary Gray Brown medium to fine sandy SiLT/ silty medium to fine SAND (ML/SM) Depth to Bentonite (ft.)= 4, Elev. = Depth to Sand Filter(ft.)= 2! Elev. =	Riser Description: 2.0" I.D. Teflon Riser and PVC Riser			 			Bore/ Core Size:	inch/NX
Elev. =	Gray Brown medium to fine sandy SiLT/						Elev. = Riser Stickup (ft.) = Elev. =	3,0 ft.
Elev. =		40.52	2201				Elev.	=
Depth to Well Bottom(ft.)=_	•	\$			e			[T.]= <u>25,8 f</u>
								m(ft.)= <u>37.</u> *

Water Table Measured Nov., 1982 Well 8B Measured Feb., 1983

ENGINEERING DEPARTMENT FILE

PLANT _	RAAK	PROJE	CT No	DATE 4/3/87	UTHOR _/Z, C	· Weld
	*	•		:	1 	
TITLE	Surve	5 In	formation	- Gross	advoter ,	Meniforia
			YWM 5.		i.	i
	1		1		1	1
Well	Plant		Monitori	ns well	Ground	Date G
No.	Coordi	ncks	Elevatio	TOD OF	Water	Water E.
		West	Conc. Pod	Casing	Ekuation	Measur
W-G	1049,8	592.7.	1772,93	1778.58	1768.6	4/29/1
5WC2-3	1001.0 -	641.7	1771.28	1773.88		
5WC2-2	1006.1	652.7	1771.99	1778.85	·	
5WCZ-1	1010.9	663.9	1772.10	1774.43		1
W5B	951.5	654.6	1777,88	1778.80	1766.0	9/20/1
5WCA	805.6	650.0	1777.37	1779.96		
W-E	7/3.9	726.7	1787.0.2	1788.28	1796.0	9/20/00
ルーフ	1032.5	917.1	1776.59	1778.59	1765.0	8/20,00
1 n-78	1006.5	717.9	1772.59	1778.86	1765.0	1-10 m
n-5	1153.9	776.0	1773,32	1775,25	·	
5NC1-2	671.7	273.2	1787.43	1789.89		
5WC1-1	685.1	782.6	1787.55	1789.99		
WEB	671.7	783.7	17,87.58	1789.55	1734.35	9/20/8
WOA	1190	23/	1701.07	1761.82	1760.3	4/200
WIOA	1518	223	1765,82	1770.75	1758.4	4/20/2
WIA	1678	735	1768.70	1765.90	1756.7	9/20/
	j			·	·	
	}			•	1	
	ı İ		I			

APPENDIX B

TRICHLOROETHENE HISTORIC CONCENTRATION GRAPHS

