RCRA FACILITY INVESTIGATION VOLUME I

Section 1.0 through Section 10.0

(Final Draft)

Task Order No. 4
Radford Army Ammunition Plant, Virginia

Submitted to:

Commander, U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Ground, Maryland 21010-5401

Contract No. DAAA15-90-D-0015

Prepared by:

Dames & Moore 2807 N. Parham Road, Suite 114 Richmond, VA 23294

October 29, 1992

EXECUTIVE SUMMARY

This draft report for Task Order 4, RCRA Facility Investigation (RFI) at Radford Army Ammunition Plant (RAAP), Radford, Virginia, has been prepared for the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) and is being submitted under the requirements of Contract No. DAAA15-90-D-0015. RAAP is a Government-owned, contractor-operated (GOCO) military industrial installation supplying solvent and solventless propellant grains and TNT explosives. The present contractor-operator is Hercules Incorporated (formerly Hercules Powder Company).

RAAP was issued a draft Permit for Corrective Action and Incinerator Operation (Permit) by the U.S. Environmental Protection Agency (EPA), on December 13, 1989. The Permit, which became effective February 1992, requires RAAP to conduct a RFI for suspected releases from six solid waste management units (SWMUs). A RFI Work Plan was prepared based on the requirements of the Permit, other EPA guidance documents, and requirements of USATHAMA.

RAAP is located in the mountains of southwest Virginia in Pulaski and Montgomery Counties. The installation consists of two noncontiguous areas--the Radford Unit (or Main Section) and the New River Ammunition Storage Area Unit located about 6 miles west of the Main Section. The New River divides the Main Section of RAAP into two areas. Within the New River meander is the "Horseshoe Area" and south of the New River is the "Main Manufacturing Area". The Main Section of RAAP is the focus of this report.

The object of the RFI is to characterize the nature, extent, concentration, and rate of migration of releases of hazardous wastes or hazardous contaminants from the SWMUs into groundwater, surface water, soil, or other identified media. The need for further RFI efforts, for recommending interim corrective actions or a Corrective Measures Study was also determined.

The SWMUs were evaluated by drilling exploratory boreholes, installing groundwater monitoring wells, performing a soil gas survey, collecting environmental media samples and submitting the samples for chemical analysis, collecting soil samples for physical testing, comparing contaminant levels in the samples to background concentrations and health based numbers (HBN), collecting aquifer characterization data to assess site-specific hydrogeology, and collecting quality control samples for data evaluation.

The Permit identified six SWMUs for RFI efforts that are included in this report. The Permit provided for the grouping of SWMUs into one investigation area if this would result in a more thorough presentation of data and understanding of the area. This grouping method was used for SWMUs 28, 51, and 52.

Investigation of the RFI SWMUs consisted of drilling 54 boreholes, installing 13 wells and piezometers, and performing one soil gas survey. Sixty-eight soil, 29 groundwater, seven surface water, and 10 sediment samples were collected, as were nine duplicates from various media. Quality control sample types included trip blanks, rinse water samples, equipment blanks, matrix spikes, and method blanks.

Eight proposed action options have been developed based on the level of contamination detected and the completeness of the RFI program in evaluating the SWMUs:

- <u>Collect Additional RFI Data</u>-Contaminants have been detected but the available data are not sufficient to complete the RFI.
- Pump and Treat Groundwater--Site contamination in groundwater has been identified, migration is possible to off-site areas and RFI data is sufficient to identify withdrawal locations.
- <u>Capping</u>—Significant contaminant migration can be accomplished by reducing infiltration of precipitation.
- <u>Surface Drainage Control</u>--Significant contamination migration can be accomplished by diverting surface water away from the SWMU.
- Monitor Site—Regularly collect environmental samples to monitor the effectiveness of corrective actions.

- <u>Develop/Revise Standard Operating Procedures (SOPs)</u>—Include additional protective measures in SOPs for site workers at active areas.
- <u>Perform Dye Tracer Study</u>—Better definition of groundwater flow patterns is necessary to evaluate site conditions for the RFI.

Table ES-1 lists pertinent characteristics of each site with respect to whether source contaminants have been detected, whether contaminants have been detected away from the source, whether there is a potential health risk, and the proposed action recommended for each SWMU.

A Corrective Measures Study (CMS) is recommended for both SWMU 51 and SWMU O. TNT waste was disposed at SWMU 51 in a trench which was not capped upon filling. One explosive was detected at a concentration above the HBN in adjacent wells. Capping SWMU 51 and performing routine groundwater monitoring is the recommended CMS alternative. Fuel contaminated water is present below the SWMU O fuel oil storage tanks at concentrations below HBNs, but a seep downgradient of SWMU O has fuel related contaminants above HBNs. Treating the on-site groundwater is the recommended CMS alternative and a soil boring program for detecting potential pools of fuel oil is also recommended. No unacceptable risk to human health or the environment was identified for either SWMU 51 or SWMU O in the Baseline Risk Assessment.

Two contaminants above HBNs were detected in water downgradient of SWMU 13, but regrading this active site and improving the settling basin should remediate this problem without the need for a CMS. Groundwater should be monitored to evaluate the efficiency of the improved drainage system. A potential risk due to incidental inhalation/ingestion of windblown site particles may be present, but current health advisory data are insufficient for a quantitative calculation. Methods for dealing with the potential risk should be included in site SOPs.

Concentrations of contaminants above HBNs were detected at SWMU 17 and the Baseline Risk Assessment calculated an incidental inhalation/ingestion risk slightly above the lower limit of the EPA target range for implementation of appropriate site management

	SMWU Nos.	SWMU Name	Health Risk Within EPA Target Range	Contaminant Source Present	Contamination Detected Away from Source	Potential Media for Contaminant for Migration	Recommended Action/Alternative
	13	Waste Propellant Burning Ground	Maybe — SO/IN(s)	Yes — AHBN	Yes – AHBN	Groundwater	Develop/Revise SOPs Improve drainage Monitor site
	17	Contaminated Waste Burning Areas	Yes - SOAN(e)	Yes - AHBN	NS	Groundwater	Collect Additional RFI Data Develop/Revise SOPs Perform Dye Tracer Study
	28	Active Sanitary Landfill	No	Unknown	No	Groundwater	Complete dosure cap Control surface drainage
1	51	TNT Neutralization Studge Disposal Area	. No	Yes — NS	Yes – ABHN	Groundwater	CMS — cap disposal area Control surface drainage Monitor site
-	52	Closed Sanitary Landfili	No	Unknown	No	Groundwater	Monitor site
	O	Underground Fuel Oil Spill	No	Yes – BHBN	Yes – AHBN	Groundwater Surface Water	CMS — Treat groundwater Collect additional RFI data Monitor site

Footnotes

BHBN = Below health based number

AHBN = Above health based number

NS = Not sampled

CMS = Corrective Measures Study

SO/IN = Soil Ingestion/Inhalation Risk

- (s) = Suspected, available health advisory data insufficient to calculate
- (c) = Calculated using available health advisory data

or corrective actions. The karst hydrogeologic environment below SWMU 17 prevented the collection of off-site samples to check for contaminant migration. A dye tracing study to find groundwater monitoring points is recommended as are the inclusion in current SOPs of methods to prevent incidental inhalation/ingestion of site contaminants.

RCRA FACILITY INVESTIGATION

TABLE OF CONTENTS

ES	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
1.1	PURPOSE OF STUDY	1-1
1.2	SCOPE OF WORK	1-2
1.3	REPORT ORGANIZATION	1-3
2.0	INSTALLATION DESCRIPTION	2-1
2.1	LOCATION	2-1
2,2	HISTORY	2-5
	2.2.1 Facility Responsibilities 2.2.2 Facility History 2.2.3 Industrial Operations	2-5 2-6 2-7
2.3	SWMUs FOR INVESTIGATION	2-7
2.4	ENVIRONMENTAL SETTING	2-9
	2.4.1 Climate	2-9 2-10 2-10
	2.4.3.1 Soils 2.4.3.2 Structural Geology 2.4.3.3 Stratigraphy	2-10 2-15 2-16
	2.4.4 Groundwater Conditions	2-18 2-22
2.5	LAND USE	2-24
2.6	FLORA AND FAUNA	2-29
3.0	SUMMARY OF RFI FIELD INVESTIGATION PROGRAM	3-1
3.1	OVERVIEW	3-1
3.2	SOIL GAS SURVEY	3-1

3.3	BORI	NG AND SAMPLING PROGRAM	3-3
	3.3.1 3.3.2	Exploratory Soil Boring Methodology	3-4 3-7
3.4	WEL	L INSTALLATION AND DEVELOPMENT	3-8
	3.4.1 3.4.2	Monitoring Well Installation	3-8 3-9
3.5	PHYS	SICAL TESTING	3-9
3.6	WEL	LINVENTORY	3-11
3.7	SAMI	PLING AND ANALYTICAL PROGRAM	3-14
	3.7.1 3.7.2 3.7.3 3.7.4 3.7.5	Groundwater Sampling	3-28 3-29 3-29 3-30 3-30
3.8	SURV	/EYING	3-31
	3.8.1 3.8.2 3.8.3	Monitoring Well Survey	3-31 3-31 3-32
4.0	QUAI	LITY CONTROL/QUALITY ASSURANCE PROGRAM	4-1
4.1	QA/C	QC SAMPLES, METHODS AND PROCEDURES	4-1
4.2	DRIL	LING AND RINSE WATER SOURCE	4-2
4.3	MET	HOD BLANKS	4-2
4.4	TRIP	BLANKS	4-7
4.5	EQU.	IPMENT BLANKS	4-8
4.6	MAT	RIX SPIKES AND MATRIX SPIKES DUPLICATES	4-14
4.7	REPI	LICATES	4-17
4.8	BACI	KGROUND SOILS	4-22
4.9	ADD	ITIONAL DATA REVIEW	4-26
4.10	SUM	MARY AND CONCLUSIONS	4-26
5.0	. —	A FACILITY INVESTIGATION OF SWMU 13, WASTE	5-1

5.1	SWM	U 13 INVESTIGATION PROGRAM	5-1
	5.1.1 5.1.2 5.1.3	SWMU History	5-1 5-5 5-8
5.2	ENV	IRONMENTAL SETTING	5-12
	5.2.1 5.2.2	Topography	5-12 5-13
		5.2.2.1 Geologic Units 5.2.2.2 Groundwater	5-13 5-19
	5.2.3	Soil	5-27
	5.2.4	Surface Water and Sediment	5-27
5.3	CON	TAMINATION CHARACTERIZATION	5-28
	5.3.1 5.3.2 5.3.3	Groundwater	5-28 5-42 5-64
5.4		ELINE RISK ASSESSMENT FOR SWMU 13WASTE PELLANT BURNING GROUND	5-71
	5.4.1 5.4.2 5.4.3	Human Health Evaluation	5-71 5-78 5-80
5.5	SUM	MARY AND CONCLUSIONS	5-81
5.6	REC	OMMENDED ACTION	5-85
6.0		A FACILITY INVESTIGATION OF SWMU 17, TAMINATED WASTE BURNING AREAS	6-1
6.1	SWM	IU 17 INVESTIGATION PROGRAM	6-1
	6.1.1	SWMU History	6-1
		6.1.1.1 SWMU 17A, Stage and Burn Area	6-1
		Drainage Basin	6-3
	612	Previous Investigations	6-4

	6.1.3	RFI Prog	ram	6-5
		6.1.3.1 6.1.3.2 6.1.3.3 6.1.3.4 6.1.3.5	SWMU 17A, Stage and Burn Area SWMU 17B, ACD Staging Area SWMU 17C, Air Curtain Destructor SWMU 17D, ACD Ash Staging Area SWMU 17E, Runoff Drainage Basin	6-5 6-5 6-8 6-8
6.2	ENVI	RONME	NTAL SETTING	6-8
	6.2.1 6.2.2		ohyology	6-8 6-9
		6.2.2.1 6.2.2.2	Geologic Units	6-9 6-12
	6.2.3	Soil		6-15
	6.2.4	Surface V	Water and Sediment	6-15
6.3	CON	TAMINA?	TION CHARACTERIZATION	6-16
	6.3.1	SWMU 1	7A	6-16
		6.3.1.1 6.3.1.2	Soil	6-16 6-18
	6.3.2 6.3.3 6.3.4 6.3.5	SWMU 1	17B	6-18 6-22 6-22 6-23
		6.3.5.1 6.3.5.2	Surface Water	6-23 6-23
6.4			SK ASSESSMENT FOR SWMU 17CONTAMINATED ING AREAS	6-24
	6.4.1	Baseline	Risk Assessment for SWMU 17AStage and Burn Area	6-24
		6.4.1.1 6.4.1.2 6.4.1.3	Human Health Evaluation	6-24 6-32
	642	Racalina	Evaluation	6-32 6-33
	0.4.2		Human Health Evaluation	6-33

		6.4.2.2 6.4.2.3	Environmental Evaluation	6-33 6-34
	6.4.3	Baseline	Risk Assessment for SWMU 17CACD	6-34
	6.4.4		Risk Assessment for SWMU 17DACD Ash Staging	6-34
		6.4.4.1 6.4.4.2 6.4.4.3	Human Health Evaluation	6-34 6-40 6-42
	6.4.5		Risk Assessment for SWMU 17E-Runoff Drainage	6-42
		6.4.5.1 6.4.5.2 6.4.5.3	Human Health Evaluation	6-42 6-43 6-43
6.5	SUM	MARY A	ND CONCLUSIONS	6-43
6.6	REC	OMMENI	DED ACTION	6-46
7.0	SANI SLUI	TARY LA DGE DISI	TY INVESTIGATION OF SWMU 28, ACTIVE NDFILL, SWMU 51, TNT NEUTRALIZATION POSAL AREA AND SWMU 52, CLOSED SANITARY	7-1
7.1		•	MU 51 AND SWMU 52 INVESTIGATION	7-1
			Histories	7-1
		7.1.1.2	Active Sanitary LandfillSWMU 28	7-1 7-3 7-5
	7.1.2 7.1.3		gram	7-5 7-8
7.2	ENV	IRONME	NTAL SETTING	7-9
	7.2.1 7.2.2		phyeology	7-9 7-9
		7.2.2.1 7.2.2.2	Geologic Units	7-9 7-16

	7.2.3	Soils	7-21
		7.2.3.1 USDA Soil Classification	7-21 7-22 7-22
	7.2.4	Surface Water and Sediment	7-22
7.3	CON	TAMINATION CHARACTERIZATION	7-23
7.4	SANI	ELINE RISK ASSESSMENT FOR SWMUs 28, 51, 52ACTIVE TARY LANDFILL, TNT NEUTRALIZATION SLUDGE OSAL AREA, AND CLOSED SANITARY LANDFILL	7-31
	7.4.1 7.4.2 7.4.3	Human Health Evaluation	7-31 7-32 7-32
7.5	SUM	MARY AND CONCLUSIONS	7-32
7.6	REC	OMMENDED ACTION	7-34
8.0		A FACILITY INVESTIGATION OF SWMU O, UNDERGROUND L OIL SPILL	8-1
8.1	SWM	U O INVESTIGATION PROGRAM	8-1
	8.1.1 8.1.2 8.1.3	SWMU History Previous Investigations RFI Program	8-1 8-1 8-4
8.2	ENV	IRONMENTAL SETTING	8-7
	8.2.1 8.2.2	Topography	8-7 8-7
		8.2.2.1 Geologic Units 8.2.2.2 Groundwater	8-7 8-14
	8.2.3	Soils	8-25
		8.2.3.1 USDA Soil Classification	8-25 8-25
	8.2.4	Surface Water and Sediment	8-26
8.3	CON	TAMINATION CHARACTERIZATION	8-26
	8.3.1	Groundwater	8-26

	8.3.2 Soil
8.4	BASELINE RISK ASSESSMENT FOR SWMU OUNDERGROUND FUEL OIL SPILL
	 8.4.1 Human Health Evaluation
8.5	SUMMARY AND CONCLUSIONS
8.6	RECOMMENDED ACTION
9.0	CONCLUSIONS AND RECOMMENDATIONS
10.0	BIBLIOGRAPHY
APPI	ENDICES
APPI	ENDIX A: Methodology for the Baseline Risk Assessment
	ENDIX B: Summary of Geotechnical and Sampling Procedures
	ENDIX C: Summary of Well Inventory
	ENDIX D: Health Based Numbers and Other Comparison Criteria
	ENDIX E: Chemical Abbreviations
APPI	ENDIX F: Site-Specific Geotechnical and Analytical Data
	ENDIX G: Quality Assurance and Quality Control Analytical Data
APPI	ENDIX H: New River Chemical Data
APPI	ENDIX I: Soil Gas Survey Report
APPI	ENDIX J: Aquifer Characterization Data
INSE	ERTS
INSE	ERT 1: Topographic Map and SWMU Locations
INSE	ERT 2: Plant-Wide Groundwater Elevations
INSE	ERT 3: Topographic Survey RFI SWMU 13
INSE	ERT 4: Topographic Survey SWMU 17
INSE	ERT 5: Topographic Survey SWMUs 28, 51, and 52
INSE	ERT 6: Topographic Survey SWMU O
INSE	CRT 7: Plat of Survey SWMUs 13, 17, 28, 51, 52, and O

RCRA FACILITY INVESTIGATION

FIGURES

<u>No.</u>		Page
2-1	Location Map, RAAP, Virginia	2-2
2-2	RAAP and Vicinity Map, RAAP, Virginia	2-3
2-3	Layout and SWMU Location Map, RAAP, Virginia	2-4
2-4	General Geologic Map, RAAP, Virginia	2-17
2-5	Surface Water Drainage, RAAP, Virginia	2-23
2-6	Adjacent Property Owners, RAAP, Virginia	2-26
3-1	Well Locations in the Vicinity of RAAP, Virginia	3-13
4-1	Background Soil Sampling Locations, RAAP, Virginia	4-25
5-1	Location Map, SWMU 13 - Waste Propellant Burning Ground, RAAP, Virginia	5-2
5-2	Map of the RAAP Burning Ground Showing Historical Sample Locations, RAAP, Virginia	5-7
5-3	Monitoring Wells, Borings and Sample Locations, SWMU 13 - Waste Propellant Burning Ground (Eastern Half), RAAP, Virginia	5-9
5-4	Monitoring Wells, Borings and Sample Locations, SWMU 13 - Waste Propellant Burning Ground (Western Half), RAAP, Virginia	5-10
5-5	Locations of Hydrogeologic Cross-sections, SWMU 13 - Waste Propellant Burning Ground, RAAP, Virginia	5-14
5-6	Hydrogeologic Cross-section A-A', SWMU 13 - Waste Propellant Burning Ground, RAAP, Virginia	5-16

FIGURES (Cont'd)

5-7	Hydrogeologic Cross-section B-B', SWMU 13 - Waste Propellant Burning Ground, RAAP, Virginia	5-17
5-8	Hydrogeologic Cross-section C-C', SWMU 13 - Waste Propellant Burning Ground, RAAP, Virginia	5-18
5-9	Groundwater Elevation Map, SWMU 13 - Waste Propellant Burning Ground, RAAP, Virginia	5-21
6-1	Location Map, SWMU 17 - Contaminated Waste Burning Areas, RAAP, Virginia	6-2
6-2	Sample Locations, SWMU 17A - Stage and Burn Area, RAAP, Virginia	6-6
6-3	Sample Locations, SWMU 17B, C, D, E - ACD Staging Area, ACD, Ash Staging Area, and Runoff Drainage Basin, RAAP, Virginia	6-7
6-4	Hydrogeologic Cross-section A-A', SWMU 17 - Contaminated Waste Burning Area, RAAP, Virginia	6-11
7-1	Location Map, SWMU 28 - Active Sanitary Landfill, SWMU 51 - TNT Neutralization Sludge Disposal, SWMU 52 - Closed Sanitary Landfill, RAAP, Virginia	7-2
7-2	Trench Locations for SWMUs 16, 28, and 52, RAAP, Virginia	7-4
7-3	Monitoring Well and Boring Locations, SWMU 28/51/52, RAAP, Virginia	7-6
7-4	Locations of Hydrogeologic Cross-sections, SWMU 28/51/52, RAAP, Virginia	7-10
7-5	Hydrogeologic Cross-Section A-A', SWMU 28/51/52, RAAP, Virginia	7-11
7-6	Hydrogeologic Cross-Section B-B', SWMU 28/51/52, RAAP, Virginia	7-12

FIGURES (Cont'd)

7-7	Hydrogeologic Cross-Section C-C', SWMU 28/51/52, RAAP, Virginia	7-13
7-8	Structure Map of Top of Bedrock, SWMU 28/51/52, RAAP, Virginia	7-15
7-9	Groundwater Elevation Map, SWMU 28/51/52, RAAP, Virginia	7-17
8-1	Monitoring Wells, Borings, and Sample Locations, SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-2
8-2	Soil Gas Survey Sample Locations, SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-5
8-3	Locations of Hydrogeologic Cross-sections, SWMU O Underground Fuel Oil Spill, RAAP, Virginia	8-8
8-4	Hydrogeologic Cross-section A-A', SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-10
8-5	Hydrogeologic Cross-section B-B', SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-11
8-6	Hydrogeologic Cross-section C-C', SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-12
8-7	Structure Map of Top of Bedrock, SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-15
8-8	Groundwater Elevation Map, SWMU OUnderground Fuel Oil Spill, RAAP, Virginia	8-16
8-9	Water Table to Bedrock Relationship, SWMU O Underground Fuel Oil Spill, RAAP, Virginia	8-23

RCRA FACILITY INVESTIGATION

TABLES

<u>No.</u>	-	Page
ES-1	Summary of RFI Conclusions, RAAP, Virginia	ES-4
2-1	Chronological List of Major Activities at RAAP	2-8
2-2	Average Monthly Precipitation for Locations Near RAAP	2-11
2-3	Average Monthly Temperatures, 1931-1960, for Locations Near RAAP	2-12
2-4	Groundwater Elevation Information, RAAP, Virginia	2-20
2-5	Analyses of the New River Entering and Leaving RAAP, Virginia	2-25
2-6	Property Owners Adjacent to RAAP (May 1990)	2-27
3-1	Summary of 1991/1992 RFI Field Program, RAAP, Virginia	3-2
3-2	Summary of RFI Boring Program, RAAP, Virginia	3-5
3-3	Monitoring Well/Piezometer Construction Details, RAAP, Virginia	3-10
3-4	Summary of Grain Size Analyses of Soil Samples, RFI, RAAP, Virginia	3-12
3-5	Summary of RFI Analytical Program Sorted by SWMU and Sample ID, RAAP, Virginia	3-15
3-6	Summary of Analytical Methods, PQLs and HBNs for RFI	3-19
4-1	Summary of Positive Analytical Detections in Drilling Water Source Samples, RAAP, Virginia	4-3
4-2	Summary of Method Blank Data for Soil and Sediment Samples, RAAP, Virginia	4-5
4-3	Summary of Method Blank Data for Groundwater and Surface Water Samples, RAAP, Virginia	4-6

4-4	RAAP, Virginia	4-8
4-5	Summary of Trip Blank Samples and Associated Environmental Samples, RAAP, Virginia	4-9
4-6	Summary of Positive Detections in Equipment Blanks, RAAP, Virginia	4-11
4-7	Summary of Equipment Blank Samples and Associated Environmental Samples, RAAP, Virginia	4-13
4-8	Matrix Spike Recoveries, RAAP, Virginia	4-15
4-9	Summary of Duplicate Data for Groundwater Samples Collected During the RFI, RAAP, Virginia	4-19
4-10	Summary of Duplicate Data for Soil Samples Collected During the RFI, RAAP, Virginia	4-20
4-11	Summary of Duplicate Data for Sediment Samples Collected During the RFI, RAAP, Virginia	4-23
4-12	Summary of Duplicate Data for Surface Water Samples Collected During the RFI, RAAP, Virginia	4-24
4-13	Calculation of Background Soil Comparison Levels, RAAP, Virginia	4-27
4-14	Calculation of Background Comparison Levels for Upland Soils, RAAP, Virginia	4-28
4-15	Calculation of Background Comparison Levels for Alluvial Soils, RAAP, Virginia	4-29
5-1	Results of Historical Analysis for Explosives in Soil, RAAP, Virginia	5-6
5-2	Groundwater Elevations, SWMU 13 Waste Propellant Burning Ground, RAAP, Virginia	5-20

5-3	Propellant Burning Ground, RAAP, Virginia	5-24
5-4	Estimated Dilution Factors for Groundwater Discharging into the New River, SWMU 13, RAAP, Virginia	5-26
5-5	Summary of Analytical Data for Groundwater Samples Collected at SWMU 13, RAAP, Virginia	5-29
5-6	Calculation of Student's T-Test, RAAP, Virginia	5-40
5-7	Summary of Analytical Data for Soil Samples Collected at SWMU 13, RAAP, Virginia	5-43
5-8	Contaminant Concentrations in Soil Verses Depth, SWMU 13, RAAP, Virginia	5-63
5-9	Summary of Analytical Data for Sediment Samples Collected at SWMU 13, RAAP, Virginia	5-65
5-10	Summary of Analytical Data For Surface Water Samples Collected at SWMU 13, RAAP, Virginia	5-67
5-11	Estimated Contaminant Concentrations in Soil and Estimated Human Intakes Due to Incidental Ingestion of Soil At SWMU 13 Military Land Use Scenario, RAAP, Virginia	5-74
5-12	Estimated Contaminant Concentrations in Air and Estimated Human Intakes Due to Inhalation of Dust at SWMU 13 Military Land Use Scenario, RAAP, Virginia	5-75
5-13	Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Incidental Ingestion of Soil at SWMU 13 Military Land Use Scenario, RAAP, Virginia	5-76
5-14	Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Inhalation of Dust at SWMU 13 Military Land Use Scenario, RAAP, Virginia	5-77

5-15	Multiple Pathway Potential Carcinogenic Risks and Noncarcinogenic Hazards at SWMU 13	
	Military Land Use Scenario, RAAP, Virginia	5-79
6-1	Summary of Analytical Data for Soil Samples Collected at SWMU 17, RAAP, Virginia	6-17
	•	017
6-2	Summary of Analytical Data for Surface Water Samples Collected at SWMU 17, RAAP, Virginia	6-19
6-3	Summary of Analytical Data for Sediment Samples Collected at SWMU 17, RAAP, Virginia	6-20
6-4	Estimated Contaminant Concentrations in Soil and Estimated Human Intakes Due to Incidental Ingestion of Soil at SWMU 17A, Military Land Use Scenario, RAAP, Virginia	6-26
6-5	Estimated Contaminant Concentrations in Air and Estimated Human Intakes Due to Inhalation of Dust at SWMU 17A, Military Land Use Scenario, RAAP, Virginia	6-27
6-6	Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Incidental Ingestion of Soil at SWMU 17A Military Land Use Scenario, RAAP, Virginia	6-29
6-7	Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Inhalation of Dust at SWMU 17A Military Land Use Scenario, RAAP, Virginia	6-30
6-8	Multiple Pathway Potential Carcinogenic Risks and Noncarcinogenic Hazards at SWMU 17A, Military Land Use Scenario, RAAP, Virginia	6-31
6-9	Estimated Contaminant Concentrations in Soil and Estimated Human Intakes Due to Incidental Ingestion of Soil at SWMU 17D, Military Land Use Scenario, RAAP, Virginia	6-36
6-10	Estimated Contaminant Concentrations in Air and Estimated Human Intakes Due to Inhalation of Dust at SWMU 17D, Military Land Use Scenario, RAAP, Virginia	6-37

6-11	Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Incidental Ingestion of Soil at SWMU 17D Military Land Use Scenario, RAAP, Virginia	6-38
6-12	Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Inhalation of Dust at SWMU 17D Military Land Use Scenario, RAAP, Virginia	6-39
6-13	Multiple Pathway Potential Carcinogenic Risks and Noncarcinogenic Hazards at SWMU 17D, Military Land Use Scenario, RAAP, Virginia	6-41
7-1	Summary of Hydraulic Conductivity, SWMUs 28, 51, and 52, RAAP, Virginia	7-19
7-2	Summary of Analytical Data for Groundwater Samples Collected at SWMUs 28, 51, and 52, RAAP, Virginia	7-24
8-1	Summary of Hydraulic Conductivity Testing, SWMU O, Underground Fuel Oil Spill, RAAP, Virginia	8-19
8-2	Summary of Analytical Data for Groundwater Samples Collected at SWMU O, RAAP, Virginia	8-27
8-3	Summary of Analytical Data for Soil Samples Collected at SWMU O, RAAP, Virginia	8-32
8-4	Summary of Analytical Data for Surface Water Samples Collected at SWMU O, RAAP, Virginia	8-37
8-5	Summary of Analytical Data for Sediment Samples Collected at SWMU O, RAAP, Virginia	8-38
9-1	Summary of Environmental Conditions at SWMUs Investigated, RAAP, Virginia	9-3
9-2	Summary of Parameters Detected for RFI, RAAP, Virginia	9-4
9-3	Summary of Proposed Recommendations, RAAP, Virginia	9-5
9-4	Summary of SWMU Specific Recommended Actions, RAAP, Virginia	9-6

LIST OF ACRONYMS AND ABBREVIATIONS

AASHTO American Association of State Highway and Transportation

Officials

ACD Air Curtain Destructor

ACO Administrative Contracting Officer

ASTM American Society for Testing and Materials

AWQC Ambient Water Quality Criteria

BNA Base Neutral/Acid Extractable Organic Compound

CEC Cation Exchange Capacity

CFR Code of Federal Regulations

CH Plastic Clay

CL Lean Clay

cm/sec Centimeters per second

CMS Corrective Measures Study

CTM Chas. T. Main of Virginia, Inc.

CRL Certified Reporting Limit

EP Extraction Procedure

EPA U.S. Environmental Protection Agency

ESE Environmental Science and Engineering, Inc.

F Fahrenheit

FAL Fly Ash Landfill

FLFA Former Lead Furnace Area

GC/MS Gas Chromatography/ Mass Spectroscopy

GFAA Graphite Furnace Atomic Absorption

g Gram

g/cm Grams per centimeter

GC Clayey Gravel

GM Silty Gravel

GOCO Government-owned, Contractor-operated

GOA Groundwater Quality Assessment

GT Greater Than

HBN Health Based Number

HMX High Melting Point Explosive

ICP Inductively Coupled Plasma

I.D. Inside Diameter

IRDMIS Installation Restoration Data Management Information System

LL Liquid Limit

LOEL Lowest Observed Effect Level

meq Milliequivalent

mg/L Milligrams per liter

mgd Million gallons per day

MH Plastic Silt
ML Lean Silt

mph Miles per hour
msl Mean sea level
MW Monitoring Well
NC Nitrocellulose

NG Nitroglycerin

NOAA National Oceanic and Atmospheric Administration

NPDES National Pollutant Discharge Elimination System

NROW New River Ordnance Works

NX Diameter size (approximately 2 1/2" I.D.)

PAH Polynuclear Aromatic Hydrocarbon

pH Hydrogen-ion activity in gram equivalents per liter

PEF Particulate Emmission Factor

PI Plasticity Index

PID Photoionization Detection Meter

PL Plastic Limit

POL Petroleum, Oil, and Lubricant Tank

PQL Practical Quantitation Limit

psi Pounds per square inch

PVC Polyvinyl Chloride

QA Quality Assurance

QC Quality Control

RAAP Radford Army Ammunition Plant

RAGS Risk Assessment Guideline for Superfund

RCRA Resource Conservation and Recovery Act

RD Reference Dose

RFI RCRA Facility Investigation

ROW Radford Ordnance Works

RPD Relative Percent Difference

RQD Rock Quality Data

SAR Sulfur Acid Regeneration

SC Clayey Sand

SCS Soil Conservation Service

SM Silty Sand

SNARLs Suggested No Adverse Response Levels

SW Well-graded Sand

SOP Standard Operating Procedure

SPT Standard Penetration Test

SVOC Semivolatile Organic Compound

SWMU Solid Waste Management Unit

TAL Target Analyte List

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TIC Tentatively Identified Compound

TNT Trinitrotoluene

TOC Total Organic Carbon

TOX Total Organic Halogen

TPH Total Petroleum Hydrocarbons

UBK Uptake Biokinetic

ug/dl Micrograms per deciliter

ug/g Micrograms per gram

ug/L Micrograms per liter

umhos/cm Micromhos per centimeter

UNK Unknown

USACE U.S. Army Corps of Engineers

USAEHA U.S. Army Environmental Hygiene Agency

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

USCS Unified Soil Classification System

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey

UST Underground Storage Tank

VaDOH Virginia Department of Health

VHMR Virginia Hazardous Waste Management Regulations

VI Verification Investigation

VOC Volatile Organic Compound

VPI&SU Virginia Polytechnic Institute and State University

VDWM Virginia Department of Waste Management

VWCB Virginia Water Control Board

1.0 INTRODUCTION

This document is the draft report for Task Order 4, Resource Conservation and Recovery Act (RCRA), Facility Investigation (RFI) at Radford Army Ammunition Plant (RAAP), Radford, Virginia. This report has been prepared for the U. S. Army Toxic and Hazardous Materials Agency (USATHAMA) and is being submitted under the requirements of Contract No. DAAA15-90-D-0015.

RAAP was issued a draft Permit for Corrective Action and Incinerator Operation (Permit) by the U.S. Environmental Protection Agency (EPA), on December 13, 1989. The permit (No. VA-21-002-0730) which became effective February 1992, under the criteria of Section 3004(u) of the RCRA, requires RAAP to conduct a Verification Investigation (VI) and, if necessary, a RFI for suspected releases from select solid waste management units (SWMUs). Several SWMUs were designed in the permit for RFI activities and are included in this report. A separate report has been prepared for those SWMUs included in the VI (Dames & Moore, 1992b). Activities performed to collect and analyze data presented in this report were conducted in accordance with the RFI Work Plan (Dames & Moore, 1990a). The RFI Work Plan was prepared based on the requirements of the Permit, other EPA guidance documents and requirements of USATHAMA.

1.1 PURPOSE OF STUDY

The objective of the RFI, as stated in the permit, is to "characterize the nature, extent, concentration and rate of migration of releases of hazardous waste or hazardous constituents from the SWMU into groundwater, surface water, soil, or any other identified media; identify potential receptors; provide a detailed geologic and hydrogeologic characterization of the area surrounding and underlying the SWMU(s); and determine the need for and scope of corrective measures". The objectives of Dames & Moore's field investigation for the RFI at RAAP were to obtain data to be used in conjunction with existing data to evaluate the nature and extent of hazardous constituents in surface water, groundwater, soil, and sediment at four study areas and to determine the need for further RFI efforts or for interim corrective action measures at these areas.

Site-specific hydrogeology was further defined through implementation of a field program that included boring/monitoring well installation. Geotechnical and chemical results on data collected during the field program have been evaluated in conjunction with existing data to identify the nature and extent of contamination and migration potential of contaminants from the selected SWMUs.

Specifically, the objectives of the RFI at RAAP were to:

- Characterize and quantify contamination in groundwater, soil, surface water, and sediment at identified SWMUs.
- Better define the geology and hydrology in the vicinity of the SWMUs, with emphasis on contaminant transport.
- Assess the risks that contaminants attributable to each site may pose to human health or the environment, if detected concentrations indicate the possibility of adverse impacts.
- Assess the need for and scope of corrective measures.

The Permit provided for the grouping of SWMUs into single investigation areas if geographic, historic and chemical data indicated that the grouping of SWMUs would result in a more thorough presentation of data and understanding of the study area. This grouping method was used for the characterization of waste from three similar SWMUs (28, 51 and 52).

1.2 SCOPE OF WORK

The RFI program for RAAP which was performed to fulfill the objectives and requirements of the permit included the following:

- Investigation of a total of six SWMUs grouped into four study areas.
- Drilling of exploratory boreholes and installation of groundwater monitoring wells.
- Performance of a soil gas survey to aid in delineation of the boundaries and extent of contamination at one SWMU.

- Collection and analysis of groundwater, soil, surface water, sediment, and waste samples from the specified SWMUs.
- Collection of soil samples during drilling for physical testing.
- Comparison of contaminant levels in the samples to background comparison criteria and health-based limits specified in the permit.
- Collection of groundwater elevation data from existing and newly installed wells, review of existing aquifer test results, and performance of additional slug tests to assess site-specific hydrogeology.
- Collection of off-post background soil samples for comparison and evaluation of SWMU-specific chemical data.
- Collection and analysis of quality control (QC) samples for data evaluation.
- Conduct of an off-post well inventory.

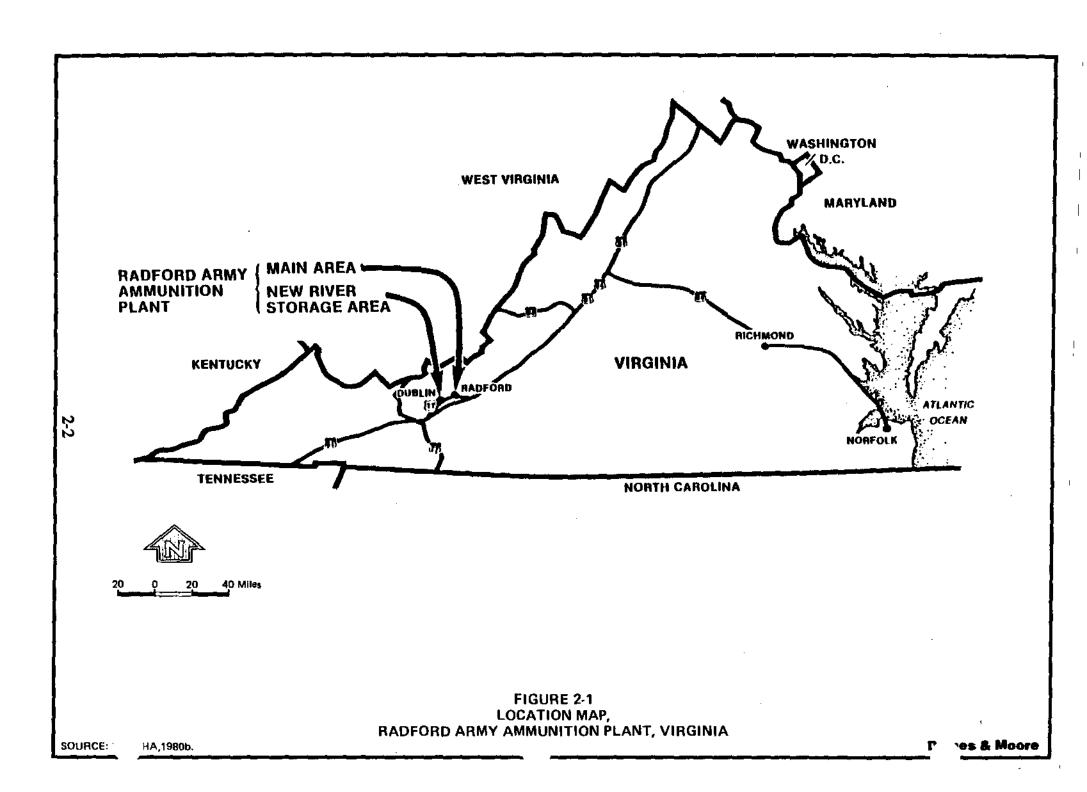
Data derived from the above effort was used to characterize the SWMUs, define the degree and extent of contamination, identify actual or potential receptors, and identify SWMUs requiring a corrective measures study (CMS).

1.3 <u>REPORT ORGANIZATION</u>

This report consists of nine sections and ten supporting appendices. Section 2.0 presents the history, SWMUs under investigation and environmental setting at RAAP. Section 3.0 summarizes the RFI field investigation program, and Section 4.0 provides the quality assurance/quality control (QA/QC) program. Sections 5.0 through 8.0 present the results of the RFIs for the four SWMU study areas. A summary of the conclusions and recommendations for the entire RFI program is presented in Section 9.0.

Appendices A through J, included in separate volumes, present physical and chemical data, field procedures, risk assessment methods and supporting reports on RFI related activities.

2.0 INSTALLATION DESCRIPTION


RAAP is a Government-owned, contractor-operated (GOCO) military industrial installation supplying solvent and solventless propellant grains and TNT explosives. The present contractor-operator is Hercules Incorporated (formerly Hercules Powder Company).

2.1 <u>LOCATION</u>

RAAP is located in the mountains of southwest Virginia (Figure 2-1) in Pulaski and Montgomery Counties. The installation consists of two noncontiguous areas—the Radford Unit (or Main Section) and the New River Ammunition Storage Area Unit. The Main Section is located approximately 5 miles northeast of the city of Radford, Virginia, approximately 10 miles west of Blacksburg and 47 miles southwest of Roanoke. The New River Unit is located about 6 miles west of the Main Section, near the town of Dublin (Figure 2-2). The Main Section of RAAP (Figure 2-3) is the focus of this report; all uses of the terms "RAAP" or "the installation" in this report refer to the Main Section only.

RAAP lies in one of a series of narrow valleys typical of the eastern range of the Appalachian Mountains. Oriented in a northeast-southwest direction, the valley is approximately 25 miles long, with a width of 8 miles at the southwest end, narrowing to 2 miles at its northeast end. The plant lies along the New River in the relatively narrow northeast corner of the valley.

The New River divides the Main Section of RAAP into two areas. Within the New River meander is the "Horseshoe Area." Located in the Horseshoe Area are the Nitroglycerin (NG) No. 2 Area, the Cast Propellant Area, and the Continuous Solvent Propellant Area. Many of the former landfills at RAAP are located in this area, as are the Hazardous Waste Landfill, the currently active Sanitary Landfill, and the Waste Propellant Burning Ground. South of the New River is the "Main Manufacturing Area," which includes the Finishing Area; the TNT Area; the NG, Nitrocellulose (NC), and Acid Areas; the Automated Propellant Area; and the Administration Area.

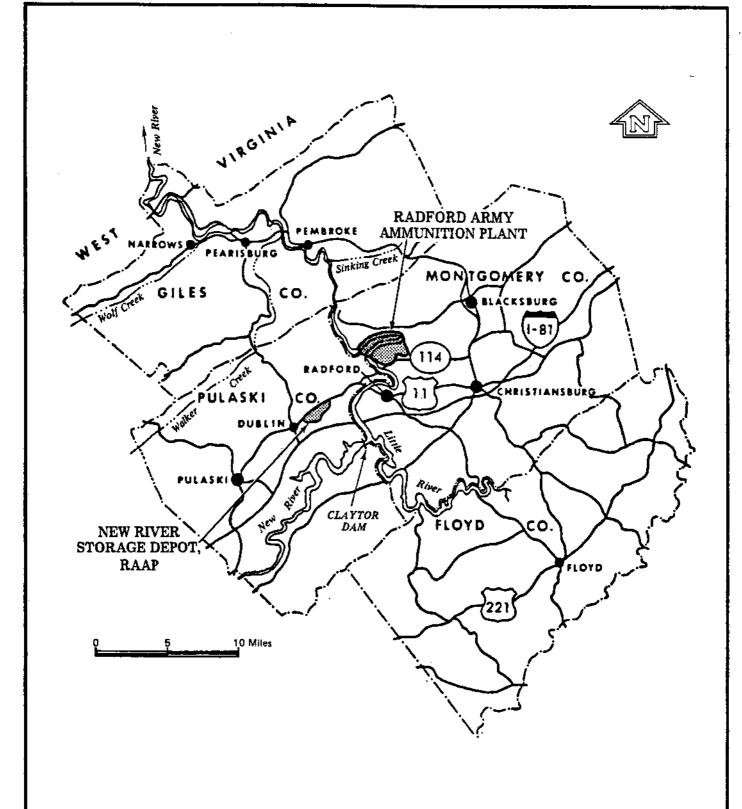
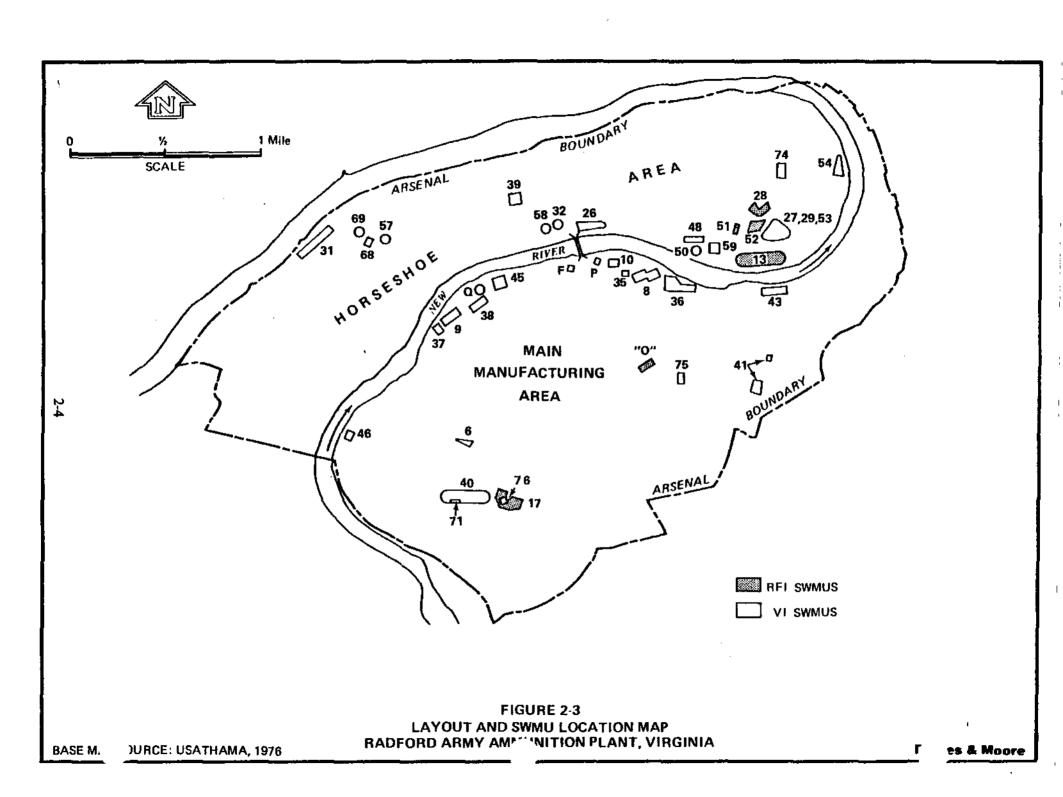



FIGURE 2-2
RAAP AND VICINITY MAP
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

SOURCE: USAEHA, 1980b.

2.2 <u>HISTORY</u>

2.2.1 Facility Responsibilities

RAAP is assigned the following general responsibilities (USATHAMA, 1976):

- Manufacture of explosives and propellants.
- Handling and storage of strategic and critical materials as directed for other government agencies.
- Operation and maintenance, as directed, of active facilities in support of current operations. Maintenance and/or lay-away, in accordance with Ammunition Procurement and Supply Agency instructions, of standby facilities, including any machinery and packaged lines received from industry, in such conditions as will permit rehabilitation and resumption of production within the time limitations prescribed.
- Receipt, surveillance, maintenance, renovation, demilitarization, salvage, storage, and issue of assigned Field Service Stock and industrial stock as required or directed.
- Procurement, receipt, storage, and issue of necessary supplies, equipment,
 components, and essential materials.
- Mobilization planning, including review and revision of plant as required.
- Custodial maintenance and administrative functions of subinstallations.
- Support services for tenants.

This mission is accomplished through the efforts of the operating contractor, Hercules Inc. The Administrative Contracting Officer (ACO) and his staff provide technical assistance and administer the contracts with the civilian operating contractors. RAAP provides logistics support for tenant activities such as the U.S. Army Research, Development and Acquisition Information Systems Agency, which is charged with performing data processing activities during peacetime and mobilization.

2.2.2 Facility History

Construction of the current RAAP production facility began in 1940 with the impending participation of the United States in World War II, and the determination by Congress of a need for increased ammunition production facilities. Initially, RAAP consisted of two distinct areas—a smokeless-powder plant [Radford Ordnance Works (ROW)] and a bag-manufacturing-and-loading plant for artillery, cannon, and mortar projectiles [New River Ordnance Works (NROW)]. These two production facilities continued to be operated separately from 1940 to 1945. Late in 1945, ROW was designated Radford Arsenal, and NROW was a subpost. By January 1950, NROW was made an integral part of Radford Arsenal and no longer considered a subpost. The arsenal was renamed Radford Ordnance Plant in 1961 and was finally redesignated RAAP in August 1963 (USATHAMA, 1984).

Since its inception as a GOCO facility in 1940, RAAP has been operated by Hercules. Expansion of both ROW and NROW continued throughout World War II. Late in 1945, the Radford Unit was placed on standby status. The following year, the nitric acid area of the plant was reactivated to produce ammonium nitrate fertilizer, an activity that continued until 1949 under contract with Hercules Powder Company (now Hercules Inc.). In September 1945, the New River Unit was declared surplus; but in April 1946, the magazine areas were changed from surplus status to standby. Between December 1946 and January 1948, large parcels of the New River plant manufacturing area were sold (USATHAMA, 1984).

Between 1952 and 1958, Goodyear Aircraft Corporation of Akron, Ohio, contracted to manufacture component parts used in missile production at RAAP. The close coordination required between Goodyear and Hercules led to Goodyear moving its assembly and coating operations to RAAP. In 1958, Hercules, Inc. took over the Goodyear operations at this plant (USATHAMA, 1984).

The continuous TNT plant was put into production in mid-1968 and remained in operation until destroyed by an explosion in May 1974. This plant had five main operational areas—the nitration lines, the finishing buildings, the red water concentration facility, the acid neutralization facility, and the spent acid recovery plant. C-line in the TNT area ran

from 1983 to 1986, when the TNT plant was placed on standby. Later, in December 1988, a facility cleanup was conducted and the plant was prepared for long-term standby status.

A chronological listing of major RAAP facilities and activities is presented in Table 2-1.

2.2.3 Industrial Operations

The principal end products produced at RAAP since 1941 are TNT, single-base and multibase propellant, and cast and solventless propellant. Intermediate products produced are oleum (concentrated sulfuric acid), nitric acid, NG, and NC.

The production mission of RAAP is accomplished at the primary and secondary manufacturing areas. The primary manufacturing processes are the production of single-base and multibase solvent propellants, cast and solventless propellants, and TNT. Separate process areas are provided for the production of solvent-type propellant, referred to as rolled powder. The process steps are essentially the same in the production of solvent-type single-, double-, and triple-base propellants. Major differences are in the specific chemicals and explosives ingredients added. Single-base and double-base propellants may include one or more of the following chemicals--barium nitrate, potassium nitrate, ethyl centralite, graphite, carbon black, potassium sulfate, lead carbonate, dibutylphthalate, diphenylamine. Triple-base propellants consist of ethyl centralite and potassium sulfate cryolite, while special high energy propellants contain high melting point explosive (HMX). The secondary manufacturing operations at RAAP are the production of oleum, sulfuric and nitric acids, NG, and NC.

2.3 <u>SWMUs FOR INVESTIGATION</u>

The RCRA permit for RAAP has identified the following six SWMUs for RFI efforts:

- SWMU 13--Waste Propellant Burning Ground
- SWMU 17--Contaminated Waste Burning Areas
 - 17A--Stage and Burn Area
 - 17B--Air Curtain Destructor (ACD) Staging Area

TABLE 2-1
Chronological List of Major Activities at RAAP

Date	Activity
August 1940	Contract signed with Hercules Powder Company for construction and operation of smokeless powder plant
September 1940	Construction of Radford Plant
April 1941	Production started at Radford Plant
1941	Separate New River bag loading plant constructed
1941/45	Construction of various facilities continued
1945	Consolidation of Radford and New River plants
1945	Production stoppedplant in standby
1946/49	Ammonium nitrate produced in Acid Area
1949	Limited resumption of powder production
1950	Plant reactivated for Korean Conflict
1950/51	Large areas of plant rehabilitated
1951	Multibase propellant and cast rocket grain facilities constructed
1967/68	Continuous TNT lines constructed
1970/72	New acid plants constructed
1971/	Preproduction project work on Continuous Automated Multibase Line (CAMBL) started
1972/	Continuous Automated Single-Base Line (CASBL) construction started
1972/	Continuous nitrocellulose nitration construction started
1973/	Military Construction, Army (MCA) pollution abatement facilities construction started
May 1974	TNT plant explosion
1976/	Continuous Automated Single-Base Line M6/M1 conversion started
1978	Construction started on biological wastewater treatment plant
1980	C-line Nitrocellulose Manufacturing Area closed
1983	TNT plant reopened
1986	TNT plant placed on standby
1987	C-line Nitrocellulose Manufacturing Area reopened
December 1988	TNT plant cleanup, preparation for long-term standby

SOURCE: Modified from USATHAMA, 1976.

- 17C-ACD
- 17D--ACD Ash Staging Area
- 17E-Runoff Drainage Basin
- SWMU 28-Active Sanitary Landfill
- SWMU 51--TNT Neutralization Sludge Disposal Area
- SWMU 52—Closed Sanitary Landfill
- SWMU "O"—Underground Fuel Oil Spill

Because of the proximity of SWMUs 28, 51, and 52, they are grouped into a single study area for investigation and evaluation. Located adjacent to this study area are SWMUs 16, 27, 29, 30, 48, 53, and 59; potential impacts of these seven SWMUs are considered in the RFI. SWMUs 27, 29, 48, 53, and 59 are included for VI activities in a separate report as required by the permit. SWMU 30 is a closed asbestos landfill, and SWMU 16 is a closed hazardous waste landfill. Neither of these SWMUs are included in the permit issued by EPA for VI or RFI study.

Although the permit included SWMU 13, Waste Propellant Burning Ground, for both VI and RFI activities, it is included only in the RFI report because the VI and RFI programs were conducted simultaneously and given the current understanding of site conditions, it was considered more appropriate to address the SWMU as an RFI study area and thus included in the RFI Work Plan.

2.4 ENVIRONMENTAL SETTING

2.4.1 <u>Climate</u>

The climate of the area encompassing Montgomery and Pulaski Counties is classified as "moderate continental" and is characterized by moderately mild winters and warm summers. The climate is determined, for the most part, by the prevailing westerly wind, with a southerly component in the warm season and a northerly component during the cold season. The year-round average surface-air velocity is 8 miles per hour (mph).

The mean annual precipitation in the two-county area is about 39 inches. Tables 2-2 and 2-3 list the average monthly precipitation and temperature for several stations in andaround each county. Snowfall in the same area averages 17 inches annually. Both counties lie in one of the areas of highest occurrence of dense fog in the United States. Dense fog can be expected to occur between 20 and 45 days per year.

2.4.2 General Topography

RAAP lies within the Valley and Ridge Province of the Appalachian Physiographic Division. The Valley and Ridge Province is characterized by a series of long, narrow, flat-topped mountain ridges separated by valleys of varying widths. Either of these landforms may predominate; the mountains may be widely spaced and isolated or so closely spaced that the lowlands are disconnected or absent. A distinctive feature of the installation area is the absence of mountain ridges.

The topography within the installation (Insert 1) varies from a relatively flat flood plain to elevated uplands in the extreme southeast section. The New River forms the RAAP boundary on the north, with the elevation approximately 1,675 feet above mean sea level (msl). The eastern boundary represents a transition from flood plain elevation (1,680 feet msl) to an elevation of 1,900 feet msl in the upland. The southern boundary traverses terrain consisting of creek bottoms and sharply rising summits. The western boundary follows the bluff line overlooking the New River to the point where the Norfolk and Western Railroad crosses the lower arm of the Horseshoe Area. In the Horseshoe Area to the north and east, the New River has a narrow flood plain. Just west of the Waste Propellant Burning Ground, the flood plain is terminated by steep bluffs that extend westward to the plant boundary.

The Horseshoe Area exhibits rolling karst terrain, with three prominent terraces and escarpments that are remnants of ancient New River flood plains.

2.4.3 General Geology and Soils

2.4.3.1 <u>Soils</u>. The near-surface soil at RAAP is divided into three general soil associations identified as "Map Units" by the Soil Conservation Service (SCS, 1985a; SCS, 1985b). One

TABLE 2-2

Average Monthly Precipitation for Locations Near RAAP

Station	Annual <u>Precipitation (inches)</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	Apr	<u>May</u>	<u>Jun</u>	<u>Jul</u>	Aug	<u>Sep</u>	<u>Oct</u>	Nov	Dec	Years of Record
Allisonia	36.14	2.50	3.04	4.03	3.74	3.21	2.86	3.96	3.44	2.96	2.13	1.60	2.58	9
Blacksburg	40.73	3.18	3.08	3.61	3.17	3.73	4.21	4.70	3.90	3.03	2.77	2.35	3.03	70
Floyd	44.73	3.40	3.36	3.64	3.59	3.97	4.25	4.86	4.31	4.56	2.96	2.66	3.17	28
Glen Lyn	37.38	3.10	2.97	3.38	2.90	3.23	3.50	4.17	3.92	2.54	2.61	2.27	2.79	47
Pulaski	38.23	2.86	2.84	3.72	2.98	3.44	3.72	4.40	4.42	2.70	2.02	2.39	2.79	18
Claytor Dam	36.53	2.96	2.67	3.26	2.81	3.31	3.49	4.25	3.34	2.78	2.74	2.13	2.79	55

SOURCE: NOAA, 1973.

TABLE 2-3

Average Monthly Temperatures (°F), 1931-1960, for Locations Near RAAP

													Per <u>of R</u> e	iod ecord_
Station	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Jul</u>	Aug	<u>Sep</u>	<u>Oct</u>	<u>Nov</u>	Dec	High	Low
Blacksburg	35.3	36.5	42.5	53.0	62.0	69.4	72.5	71.4	65.4	55.0	43.6	35.6	100	-27
Floyd	35.3	37.8	42.7	53.2	61.9	69.2	72.0	71,1	64.8	55.1	43.9	36.9	103	-8
Glen Lyn	36.6	38.0	44.3	55.2	64.5	71.7	74.6	73.6	67.5	56.9	45.0	36.5	102	-9

SOURCE: NOAA, 1973.

unit covers the higher elevation areas below the south and southeast sections of RAAP, with two very similar associations found beneath the relatively flat-lying portions of the Manufacturing Area and the Horseshoe Area. The following paragraphs describe the characteristics of these three soil map units.

The Groseclose-Poplimento-Duffield association consists of deep, well-drained, gently sloping-to-steep soils that have a clayey subsoil and have formed in limestone, shale, and sandstone residuum and colluvium on broad, moderately dissected uplands. Sinkholes are common in some areas. Slopes are dominantly 0 to 25 percent, but steeper slopes are apparent near the New River and other streams.

This map unit covers the uplands on the southern and southeastern areas of RAAP. Usually this association is about 21 percent Groseclose soils, 15 percent Poplimento soils, and 9 percent Duffield soils. The remaining 55 percent is minor soils.

The Groseclose, Poplimento, and Duffield soils are found on broad ridgetops and side slopes. They have a loam or silt loam surface layer and a clay subsoil. In some areas, the surface layer is cherty.

The minor soils in this map unit are in the Berks, Caneyville, Lowell, Opequon, Rayne, Vertrees, Ernest, McGary, Ross, and Weaver series. The well-drained Berks, Caneyville, Lowell, Opequon, Rayne, and Vertrees soils and the moderately well-drained Ernest soils are on ridgetops and side slopes; and the somewhat poorly drained McGary, the well-drained Ross, and the moderately well-drained Weaver soils are on flood plains.

The soils on the broad, gently sloping ridges are suited to cultivated crops—such as corn, small grains, and alfalfa—while the steeper soils are suited to pasture. The major limitations for farming are the low natural fertility and acidity of the soils. The erosion hazard is severe in steep areas. Scattered areas of stony and rocky soils are poorly suited to cultivation.

The clayey subsoil, slow permeability, low strength, high shrink-swell potential, and slope limit the non-farm uses of the soils. The high slope limits urban development.

The Unison-Braddock association consists of deep, well-drained, gently sloping-to-moderately steep soils that have a clayey subsoil. These soils have formed in old

alluvium and on stream terraces and alluvium fans. This map unit is found on the level ground of the RAAP Manufacturing Area between the uplands and the New River.

These soils are found on remnants of old stream terraces and on alluvial fans. Most surfaces are broad and gently sloping and sinkholes are common where the old alluvium is underlain by limestone. Small areas of residual soils are on the steep side slopes created by stream downcutting. A few areas of moderately steep terrace soils occur where material from the original surface layer has been beveled or reworked. Slopes are dominantly 0 to 25 percent, but areas of steeper slopes are included.

This map unit is made up of about 34 percent Unison soils, 15 percent Braddock soils, and 51 percent minor soils. The surface layer of the Unison and Braddock soils is fine, sandy loam or loam, and the subsoil is clay. Rounded pebbles and cobblestones are on the surface and throughout the soil in some areas.

The minor soils in this map unit are in the Berks, Caneyville, Groseclose, Opequon, Weikert, Duffield, Hayter, Guernsey, McGary, Ross, and Weaver series. The well-drained Berks, Caneyville, Groseclose, Opequon, and Weikert soils are on side slopes and ridgetops; the well-drained Duffield soils are on foot slopes, in upland depressions, and along drainageways; the well-drained Hayter soils and moderately well-drained Guernsey soils are on terraces; and the somewhat poorly drained McGary soils, well-drained Ross soils, and moderately well-drained Weaver soils are on flood plains.

The soils in the broad, gently sloping areas are suited to corn, small grains, and alfalfa, while the steeper areas are suited to pasture. The major limitations for farming are the acidity of the soil, the low natural fertility, and—in some areas—the high content of coarse fragments. The erosion hazard is severe on side slopes. The clayey subsoil, moderate permeability, low strength, and slope limit non-farm uses of these soils.

The Braddock-Wheeling association consists of deep, nearly level-to-hilly soils that have a clayey or loamy subsoil formed in alluvium. These soils are found throughout the horseshoe area of RAAP and are very similar to the Unison-Braddock unit. The unit consists of high and low terraces. Slopes range from 0 to 30 percent. This unit is made up of about 40 percent Braddock soils, 12 percent Wheeling soils, and 48 percent other soils.

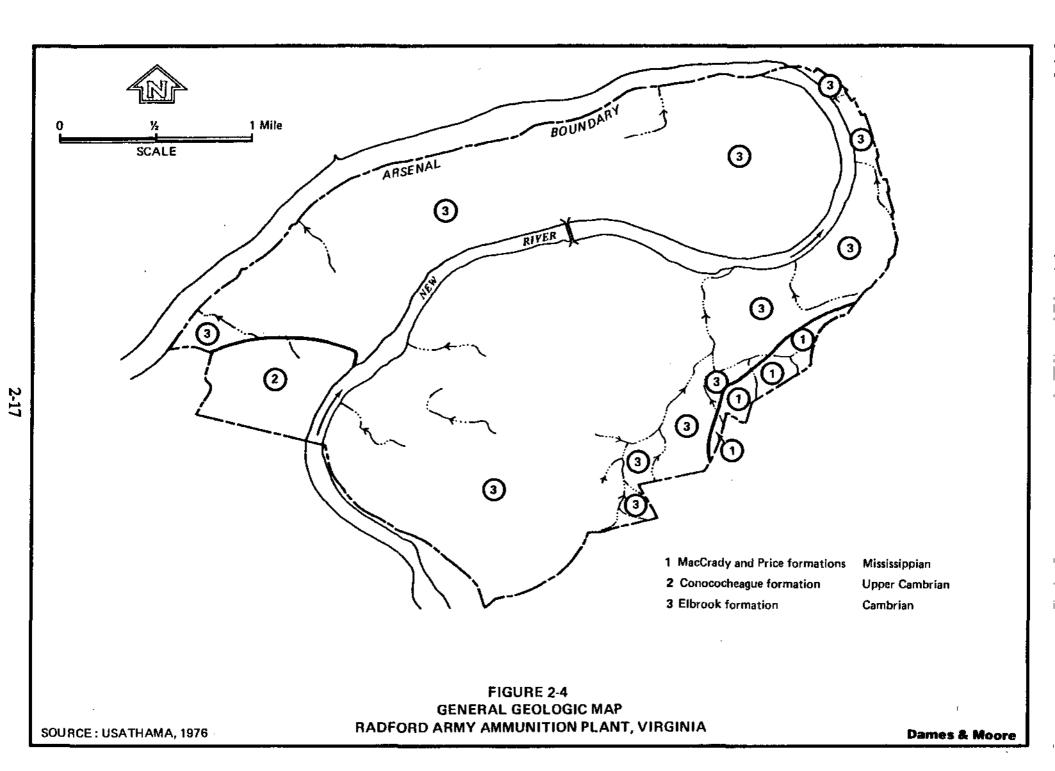
The Braddock soils are on undulating-to-hilly, high terraces. The soils have a surface layer of dark yellowish brown loam and a subsoil of yellowish red and red clay.

The Wheeling soils are on nearly level, low terraces near streams. The soils have a surface layer of dark brown, sandy loam and a subsoil of dark brown, sandy clay loam.

The dominant minor soils are Carbo soils on convex side slopes and along small streams, Cotaco soils on low terraces, and Fluvaquents soils on long, narrow flood plains adjacent to streams.

Most of the acreage of this unit is used for cultivated crops, pasture, hay, and a few types of community development. Some of the steeper areas are wooded. The soils are suited to all of the crops grown in the county and support many dairy and beef cattle operations. The hazard of erosion is a major farming concern. The major trees are upland oaks, eastern white pine, Virginia pine, hickory, and black locust. The potential productivity for trees is high.

Permeability, a clayey subsoil, and slope are the main limitations of the unit, especially the Braddock soils, for community development.


2.4.3.2 Structural Geology. The Valley and Ridge Province is characterized by folded and thrust-faulted strata of mostly sedimentary rocks formed between 600 and 300 million years ago. The thrust faults and folds indicate that the rocks were much compressed in the horizontal direction. Strike of bedding planes is north to south and dips to the southeast. RAAP occupies the Blacksburg-Pulaski Synclinorium and rests on the Pulaski Fault thrust sheet. The rocks have been thrust approximately 8 miles west-southwest. The thrust plate has been breached by erosion, exposing Mississippian sandstones and shales of the McCrady/Price Formation in a fenster (window) east of the main plant area along Stroubles Creek. The fault trace is exposed above the computer complex bunker where the Mississippian McCrady/Price Formation can be seen underlying the Cambrian Elbrook Formation. There is no evidence of recent faulting. However, the Radford area has experienced seven earth tremors in the last 200 years that recorded an intensity of VI or higher on the Modified Mercalli Scale (USAEHA, 1980a).

2.4.3.3 Stratigraphy. RAAP is underlain by four major rock units and one unconsolidated sedimentary unit that range in geologic age from Cambrian to Quaternary. The rock units are as follows-Cambrian Formations (Rome, Elbrook, and Conococheaque) and Mississippian Formations (McCrady/Price). Dip of the rock units varies over RAAP from nearly horizontal to 50 degrees. The unconsolidated sediments are Quaternary in age and include alluvial, residual, and colluvial deposits. Figure 2-4 is a general geologic map of the major consolidated rock formations at RAAP. The following paragraphs describe the consolidated and unconsolidated formations at RAAP (USAEHA, 1980a).

The Elbrook Formation is the major rock unit cropping out at RAAP. This formation is composed of thickly bedded, blue-gray dolomite interspersed with blue-gray to white limestones; brown, green, and red shales; argillaceous limestones; and brecciated limestones (colors of which range from mottled light to dark gray and yellow brown). Sinkholes, solution channels, pinnacled surfaces, and vugs are common to the Elbrook. This formation ranges from 1,400 to 2,000 feet in thickness.

The Rome Formation underlies the Elbrook Formation, but it is not known if the Rome crops out at RAAP due to the complex tilted and fractured structure of the overlying Elbrook. The Rome is composed of red and green shales, sandstone, dolomite, and limestone. The red shales commonly mark the basal unit. Thickness ranges from 1,000 to 2,000 feet.

Mississippian rocks of the McCrady/Price Formation outcrop in a fenster east of the main plant area along and south of Stroubles Creek. This formation consists of mottled red and green shale and mudstone interspersed with brownish-green siltstone and sandstone. The formation ranges upwards to 1,500 feet in thickness. Unconsolidated sediments (overburden) mantle the major portion of RAAP. These sediments include alluvial plain sediments deposited by the New River prior to entrenchment; residual deposits from inplace weathering of parent bedrock; and colluvial deposits developed by residual slope wash. Alluvial plain deposits commonly line the New River and Stroubles Creek as recent flood-plain material or as geologically older terraces. On the horseshoe loop, three terraces are in evidence. In general, there is a textural fining upwards, with gravels and silty, clayey

sands forming the basal unit followed by finer micaceous silts and clays. Sporadic cobblesand boulders (known as river jack) occur as lenses throughout the alluvial strata. Thickness of the alluvial deposits varies from a few feet to 50 feet, with an average of 20 feet.

Residual deposits (clays and silts) are a result of the mechanical, physical, and chemical weathering of the parent bedrock (primarily Elbrook Dolomite at RAAP). Most of RAAP is covered by residual deposits. In most cases along the New River and in the Horseshoe Area, these residual deposits underlie the alluvium, except where the residuum has been eroded to bedrock and replaced by alluvium. The depth of the residuum varies from a few feet to 40 feet.

Colluvial deposits are generally formed from mass-wasting of slopes and escarpments. In general these deposits are a heterogeneous mixture of alluvium, residuum, and rock debris that has migrated from the original position. These deposits are generally interbedded between the strata of alluvium and residuum; thickness is variable.

2.4.4 Groundwater Conditions

The conditions at RAAP are complex in terms of defining the water table and the available supply of groundwater. Several borings within the Horseshoe Area of RAAP indicate that the water table within the flood plain is approximately at the same elevation as the surface water of the river. These conditions also exist in the flood plain across the river in the Main Manufacturing Area of RAAP.

In areas of high elevations within the Horseshoe Area and south of the river within the Manufacturing Area, the water table is extremely variable. Because of impervious layers, solution cavities, and the thickness of overburden, extreme caution must be exercised in projecting water table data from existing borings into a new area.

Groundwater beneath RAAP is mainly derived from the infiltration of surface water through the unsaturated soil mantle into the saturated zone of the soil or bedrock. Groundwater fills the interconnected primary and secondary pore spaces in the bedrock, with the vast majority of available water occurring within the secondary pore spaces. The secondary pore spaces include fractures, open bedding planes, open foliation surfaces, and

solution cavities. The limestone and dolomite underlying RAAP is severely fractured, foliated, and faulted as a result of movement along the Pulaski Fault System. The topographic maps clearly show evidence of solution cavities and collapse structures within the less competent limestone units.

Groundwater levels in the bedrock or soil aquifers generally respond immediately to heavy precipitation and may rise several feet in a short time. This illustrates the direct connection between the groundwater and surface water that could compromise the quality of groundwater for domestic use. This condition exists throughout RAAP and especially in areas where surface water has been intentionally routed into the sinkholes. Stormwater flows to the bottom of the sinkholes and percolates downward into the unconfined aquifer. Similar to the regional groundwater flow, the groundwater at RAAP discharges into the New River. The saturated zone at RAAP can be generally in either the soil or bedrock. Open fractures and karst structures beneath the soil mantle, coupled with the relatively low elevation of the New River (1,680 feet msl), provide accessible conduits for groundwater flow, thereby rapidly draining the overlying, less permeable soils (CTM, 1988).

Water levels from wells scattered throughout RAAP were measured and elevations determined in order to create a general groundwater elevation map for the facility. Table 2-4 summarizes the data gathered and Insert 2 presents these data in the form of an approximate groundwater elevation map. Several wells exhibited water levels that were unusually shallow or deep in relationship to other nearby wells. These wells probably intercepted perched groundwater zones or were influenced by karstic features, such as sinkholes or conduits, which exerted a strong local influence which was not reflective of the overall unconfined water table. The overall water table resulting from these measurements was what would be expected in an area dominated by a major river; flow was generally towards the New River and away from areas of higher elevation. The southernmost area of RAAP consists of folded rocks which have numerous sinkholes and a deep water table. The karst nature of the geologic units probably determines flow through the bedrock in this area and true flow is most certainly much more complicated than the simple flow lines presented on Insert 2. Bedrock groundwater in this southern area probably flows towards and discharges into either the New River to the west or the unnamed tributary of Stroubles Creek to the east.

Table 2-4
Groundwater Elevation Information
Radford Army Ammunition Plant, Virginia

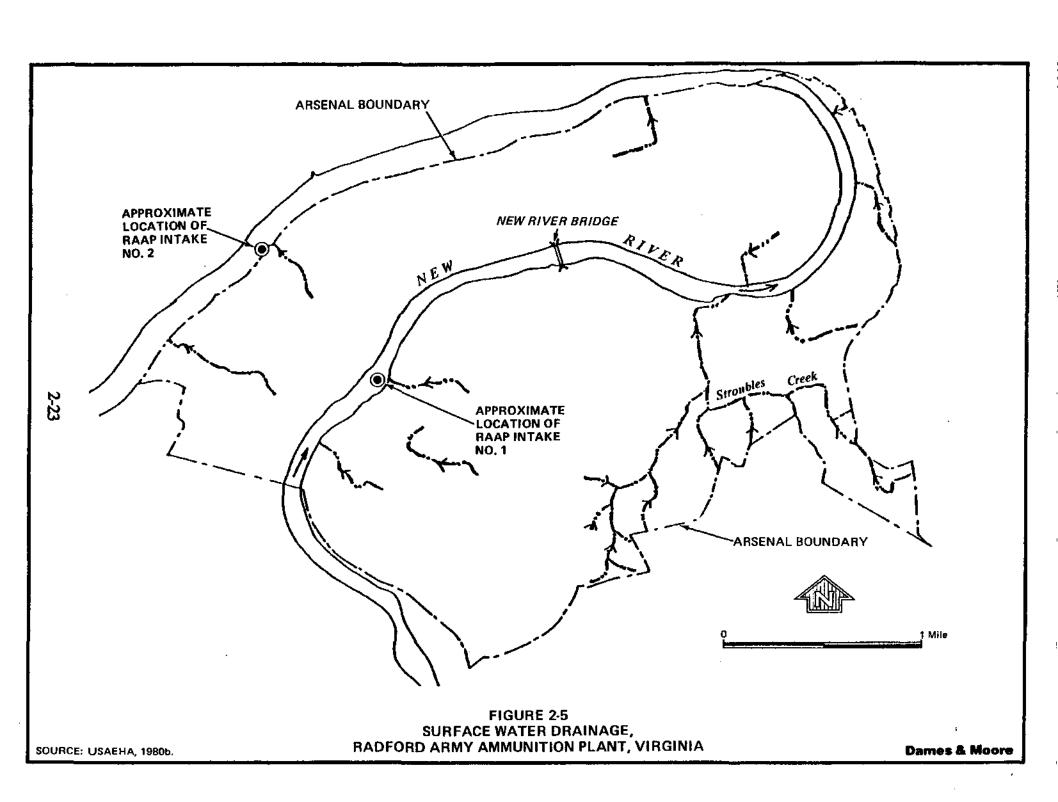
	TOC	Measure	Gr.Sur.	Depth of		Water	
Well	Elevation	Date	Elevation	Water FTOC	Stickup	Elevation	Survey Source
MW13	1803.54	3/12/92	1801.14	43.57	2.40	1759.97	BCM, 1984;
1		" -					USACE, 1981
7WCA	1715.81	3/12/92	1713.23	24.80	2.58	1691.01	USACE, 1988
S7W9	1712.59	3/12/92	1710.48	23.00	2.11	1689.59	USACE, 1988
W10	1706.86	3/12/92	1704.98	17.20	1.88		USACE, 1988
H-1		3/12/92	1712.48	29.47	3,05		USACE, 1981
H-2	1712.70		1709.90	25.00	2.80		USACE, 1981
H-3	1712.98		1709.66	25.80	3.32		USACE, 1981
H-4	1713.90		1710.90	26.10	3.00		USACE, 1981
HDH2	1716.81		1713.81	30.90	3.00		BCM, 1984
10MW1	1703.62		1701.28	16.67	2.34	1686.95	
D-3	1702.95		1700.51	16.00	2.44	1686.95	
D3D	1702.64		1700.70	4	1.94	1686.59	
D-4	1714.38		1713.42		0.96	1692.38	
D5	1699.01		1696,12		2.89		BCM, 1984;
		, , , , , , , , ,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	USACE, 1981
D6	1702.13	3/12/92	1699,64	11.02	2.49	1691.11	BCM, 1984;
		2, 12, 72					USACE, 1981
DDH2	1702.53	3/12/92	1700.78	15.87	1.75	1686.66	
DDH4		3/12/92			2.69	1690.90	
DG-1		3/12/92	1709.96		2.12	1689.78	1
D-2		3/12/92	1713.12		2.82		BCM, 1984;
	1710.01	97.14.54					USACE, 1981
DDH3	1718.70	3/12/92	1715.70	24.95	3.00	1693.75	BCM, 1984;
DD110	1110.70	10, 12,02		200	0.00	1000.70	USACE, 1981
D8	1714 40	3/12/92	1711.75	22.68	2.65	1691.72	BCM, 1984;
	11 14.40	0,12,02				1001112	USACE, 1981
DDH1	1702.00	3/12/92	1699.00	15.58	3.00	1686 42	BCM, 1984;
55:11	1102.00	0, .2,02		 	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	USACE, 1981
D7	1703.61	3/12/92	1701.04	18.00	2.57	1685.61	BCM, 1984;
<u> </u>	1,00.01	0/12/02		10.00	2.07	1000.01	USACE, 1981
17PZ1	1907 02	3/12/92	1904.70	93.00	2.32	1814.02	
41MW1		3/12/92	1802.87		2.28	1785.12	
41MW2		3/12/92	1795.44			1745.40	
41MW3		3/12/92	1757.26	+	2.09	1731.61	
43MW1		3/12/92	1703.90			1687.88	
43MW2		3/12/92				1683.62	
43MW3		3/12/92				1682.46	
43MW4		3/12/92	1700.90			1682.98	
43MW5	4	3/12/92	1700.40			1685.17	
43MW6		3/12/92		· ·		1684.81	<u> </u>
45MW1		3/12/92				1684.70	
		3/12/92				1684.96	
45MW2		3/12/92				1685.10	
45MW3 8B		3/12/92				1729.14	
9B		3/12/92					USACE, 1988
OMW1		3/12/92				1762.64	
P-1		3/12/92				1767.37	
P-1		3/12/92					
P-3		3/12/92				_	
							
P-4	<u> </u>	3/12/92	1//1.20	22.90	1.97	1730.27	ורגו ו

Table 2-4 (cont'd)

	TOC	Measure	Gr.Sur.	Depth of		Water	
Well	Elevation	Date	Elevation	Water FTOC		Elevation	Survey Source
S4W1	1753,27	3/12/92	1750.70	8.90	2,57	1744.37	
S4W2		3/12/92	1734.63		2.00		USACE, 1988
\$4W3	1721.26	3/12/92	1719.56		1.70		USACE, 1988
S4W4	1735.70	3/12/92	1733.72	12.33	1.98		USACE, 1988
WC1-2	1786.58	3/12/92	1784.80		1.78	1747.10	RFI
WC2~2	1739.98	3/12/92	1738.14	18.17	1.84	1721.81	USACE, 1988
WC3-2	1725.80	3/12/92	1723.43	17.70	2.37	1708.10	USACE, 1988
5WCA	1779.96	3/12/92	1777.37	12.00	2.59	1767.96	USACE, 1988
5WC1-1	1789.99	3/12/92	1787.55	17.00	2.44		USACE, 1988
\$5W5	1775.25	3/12/92	1773.32		1.93	1772.75	USACE, 1988
S5W6	1771.43	3/12/92	1769.42	5.70	2.01	1765.73	USACE, 1988
S5W7	1778.59	3/12/92	1776.59	11.50	2.00	1767.09	USACE, 1988
13MW1	1701.44	3/12/92	1698.66	19.32	2.78	1682.12	RFI
13MW2	1702,62	3/12/92	1701.21	20.42	1.41	1682.20	RFI
13MW3		3/12/92	1693.81	12.70	0.66	1681.77	RFI
13MW4	1696.40	3/12/92	1695.18		1.22	1680.40	RFI
13MW5	1696.40	3/12/92	1695.26	16.03	1.14	1680.37	RFI
13MW6		3/12/92	1693.85		2.19	1680.27	RFI
13MW7		3/12/92	1693.77		1.44	1680.49	RFI
B2		3/12/92	1769.47		3.18	1692.28	USACE, 1981
B3		3/12/92	1765.09		2.80		USACE, 1981
84	••••	3/12/92	1764.64	71.90	2.86		USACE, 1981
BDH2		3/12/92	1783.77		1.47	1695.51	VI est.
BDH3		3/12/92	1829.55		1.18	1744.43	VI est.
7	1774.60	3/12/92	1772.10	26.40	2.50	1748.20	USAEHA, 1980b
FAL2		3/12/92	1756.13	35.92	1.80		USEPA, 1989
FAL3		3/12/92	1757.43		1.00		USEPA, 1989
16-1		3/12/92	1814.54		1.28	1765.42	
16-2	1810.99	3/12/92	1809.24	55.78	1.75	1755.21	RFI
16-3		3/12/92	1823.37			1765.74	
16-4		3/12/92	1835.84		0.92	1783.04	
28MW1	1827.18	3/12/92	1825.71	31.73		1795.45	
28MW2		3/12/92	1819.91	62.84	1.65	1758.72	
51MW1		3/12/92	1821.24	7.74	1.89	1815.39	RFI
51MW2		3/12/92	1833.29	49.54	1.48	1785.23	
C-1		3/12/92	1836.94	52.12	3.20	1788.02	RFI
C-4	+	3/12/92	1824.74				
CDH-2		3/12/92				1769.36	
MW-9		3/12/92	1806.54			1743.73	
WC-1A		3/12/92	1810.54			1743.68	
WC-2A		3/12/92	1816.07			1753.43	
32MW1		3/12/92	1736.40			1681.41	
54MW1		3/12/92	1705.68			1689.26	
54MW2		3/12/92	1698.86			1679.80	
54MW3		3/12/92	1700.56			1679.51	
74MW1		3/12/92	1732.59			1710.57	
7 711177	1,04,00	1-11-12-		: 27.20		1 1710.07	<u> </u>

 $\frac{\text{Note:}}{\text{FTOC}} = \text{From top of casing.}$

Groundwater supplies in the Valley and Ridge Province are presently of good or superior quality compared to surface water supplies. However, due to extended contact withminerals, many groundwater supplies contain higher levels of dissolved solids than the streams into which they discharge. Because of the sinkholes and underground caverns in the karst aquifers, there is a threat to the groundwater due to direct infiltration of contaminated surface water, where present.


2.4.5 Surface Water Drainage

The New River is the major drainage within RAAP. The river varies from 200 to 1,000 feet in width, but averages about 410 feet. Generally, the depth is about 4 to 6 feet; however, pools may be 10 feet deep between rock outcrops in the river bed. The flow through RAAP is regulated by a control structure located approximately 7 miles south of the installation. There are 13 miles of river shoreline within the RAAP boundaries.

Stroubles Creek is the largest tributary of the New River and originates in the southeast sector of RAAP. This creek is fed by several branches that originate on and off post. The larger surface drainageways within the installation and their direction of flow are shown in Figure 2-5. Manmade surface drainageways at RAAP also influence local drainage. Regardless of location, the direction of surface drainage flow is ultimately to the New River.

Subsurface drainage is present in RAAP through the sinks or solution cavities formed by percolating waters within the underlying limestone. These cavities vary in size and shape and may be interconnected, forming underground drainageways. Groundwater flow at RAAP is discussed in Section 2.4.4.

Stroubles Creek consists primarily of stormwater runoff and effluent from the Blacksburg, Virginia, Municipal Wastewater Treatment Plant. The creek empties into the New River on the RAAP installation and contributes significant loadings of domestic and industrial wastewater (USATHAMA, 1976). As mentioned in Section 2.4.4, groundwater discharging from the karst bedrock in the southern areas may supply significant stream flow.

Both industrial and domestic wastewaters are being discharged into the New River from the city of Radford, upstream from RAAP. Previously, Radford provided only primarysewage treatment before discharging 2.5 million gallons per day (mgd) into the New River (USATHAMA, 1976); secondary treatment is now provided at the Peppers Ferry Regional Wastewater Treatment Plant.

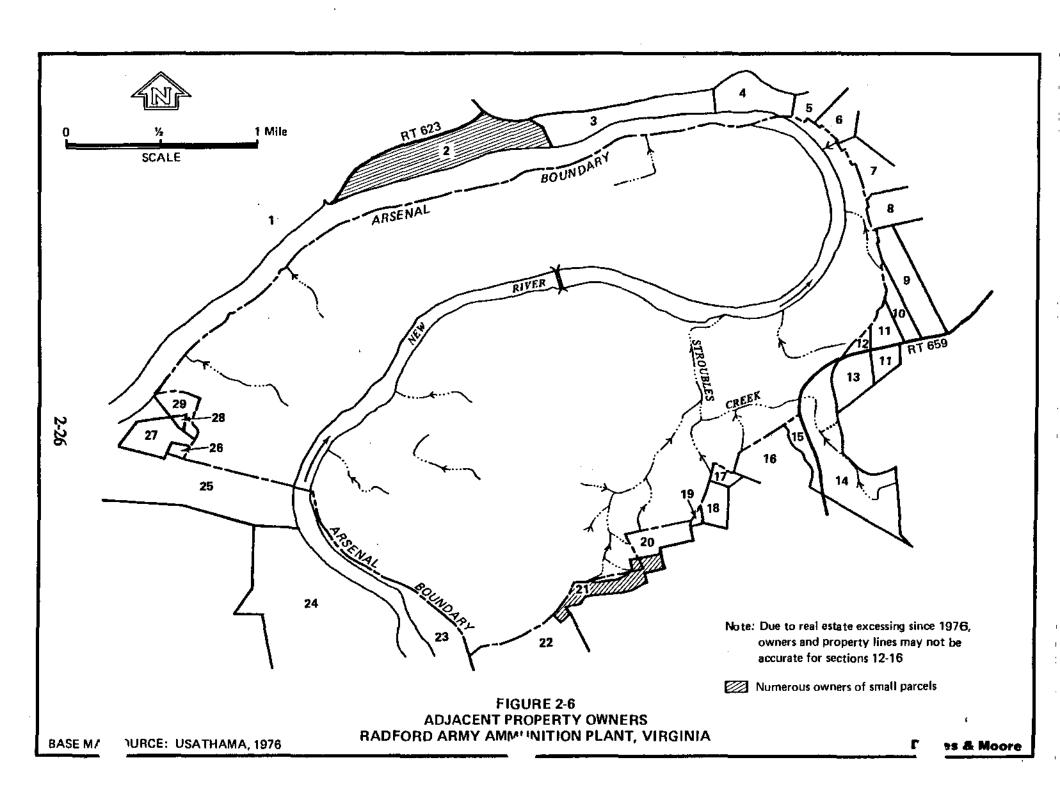
The Commonwealth of Virginia has classified Stroubles Creek and the stretch of New River passing through the confines of RAAP as water generally satisfactory for beneficial uses, which include public or municipal water supply, secondary contact recreation, and propagation of fish and aquatic life (USATHAMA, 1976).

Water used at RAAP is taken from the New River. The river flow varies due to water management at Claytor Dam, approximately 9 miles upgradient from RAAP (Figure 2-2). Typical flows are about 3,800 mgd. Separate water systems are provided for the main plant and the Horseshoe Area. Intake No. 1 is located approximately 2 miles upstream of the mouth of Stroubles Creek. Intake No. 2 is located approximately 6 miles downstream of the mouth of Stroubles Creek (Figure 2-5). Upstream of RAAP, the New River serves as a source of drinking water for the towns of Blacksburg and Christiansburg.

In 1976, water quality analyses of the New River were conducted both where the river enters the RAAP installation and where it exits the installation. The analyses indicated that the quality of the water when it leaves the installation was essentially the same as when it enters. Table 2-5 provides a summary of the general water quality of the New River, determined in 1976. Additional sampling data collected for purposes of this RFI are presented in Section 5.2.4.

2.5 LAND USE

Land in the vicinity of RAAP is mostly rural. Development has been kept to a minimum in much of the area due to the steep terrain. Much of the area surrounding RAAP that is less rugged is agricultural. Although there are private residences immediately adjacent to the installation, the nearest substantial residential area is Fairlawn, located approximately 3 miles to the southwest. Property owners immediately adjacent to the installation boundary are identified in Figure 2-6 and Table 2-6. Located approximately 5 miles to the southwest is Radford estimated 1988 population of 12,000). To the north of


TABLE 2-5

Analyses of the New River Entering and Leaving Radford Army Ammunition Plant, Virginia

PARAMETER	CONCENTRATION *				
I ANATE LEK	ENTERING	LEAVING			
Alkalinity (as CaCO3)	45	45			
BOD	2	2			
COD	10	10			
Total Solids	66	66			
Total Dissolved Solids	61	61			
Total Suspended Solids	5	5			
Total Volatile Solids	29	29			
Ammonia	0	0			
Kjeldahl Nitrogen	0.4	0.4			
Nitrate (as Nitrogen)	0.4	0.7			
Phosphorus Total	< 0.3	< 0.3			
Color (Color Units)	16	15			
Nitrite	< 0.01	< 0.01			
Sulfate	4	10			
Sulfide	< 0.1	< 0.1			
Bromide	0.59	0.59			
Aluminum	< 0.10	< 0.10			
Cadmium	< 0.005	< 0.005			
Chloride	5.2	5.7			
Copper	< 0.010	< 0.010			
Iron	0.35	0.33			
Lead	< 0.010	< 0.010			
Magnesium	5	4			
Mercury	< 0.002	< 0.002			
Beryllium	0	0			
Boron	0	0			

2-25

^{*}All results are in milligrams per liter (mg/l), except as noted. SOURCE: USATHAMA, 1976.

TABLE 2-6

Property Owners Adjacent to RAAP (May 1990)

- 1. Virginia Polytechnic Institute
- 2. H. M. Albert Estate (26 individual lots)
- 3. Albert, M. L. et al. and Albert, Genoa T. Graves
- 4. Price, H. L.
- 5. Shaver, J. L.
- 6. Trower, W. P.
- 7. Humphrey, L. P.
- 8. Gallimore, E. A.
- 9. Nuckols, R. D.
- 10. Gallimore, C. R.
- 11. Cadle, R. Y.
- 12. Johnson, D., Mr. and Mrs.
- 13. Akers, James, Mr. and Mrs.
- 14. Blacksburg, Christiansburg, VPI Water Authority
- 15. Belvins, C. E.
- 16. Blacksburg, Christiansburg, VPI Water Authority
- 17. Howard, R. N.
- 18. Blacksburg, Christiansburg, VPI Water Authority
- 19. U.S.A.
- 20. Blacksburg, Christiansburg, VPI Water Authority
- 21. R.D. Stafford Lots (142 individual lots)
- 22. Hampton, Dr. C. L.
- 23. Oak Manor Farms
- 24. Ratcliffe, V. D. & Mason, L. D.
- 25. Stanley, R., Jr. and Nadine S.
- 26. McGraw, W. T., Mr. and Mrs.
- 27. Robertson, J. M.
- 28. Smith, S. J., Smith, V. & White, A. S.
- 29. Smart, J. H.

RAAP is the Jefferson National Forest. The population densities of Montgomery and Pulaski Counties are 173.1 and 106.9 persons per square mile, respectively. Additional information on local demographics and ecological populations is provided in the identification of potential receptors in Appendix A.

Montgomery County, with an area of 394 square miles and an estimated 1988 population of 67,000, is bordered by mountains to the east, north, and south and by the New River on the west. The primary roads in the county are US Route 11, Interstate 81, and US Route 460. The county seat is Christiansburg.

Pulaski County, to the west of Montgomery County, is 328 square miles in size and had an estimated 1988 population of 34,000. The county is bounded by mountains to the north, west, and south and by the New River on the east. The primary roads are US Route 11 and Interstate 81, which run east-west through the center of the county. Pulaski County is generally mountainous except in the central portion, where the hills are gently rolling. The town of Pulaski is the county seat.

Since 1960, Montgomery and Pulaski Counties have experienced strong population growth. Montgomery County consistently exhibits the strongest population growth in the New River Valley Region (comprised of Giles, Floyd, Pulaski, and Montgomery Counties and the city of Radford), posting increases far in excess of regional trends.

Manufacturing is the largest individual employment sector in the area, with 17,282 employees in the second quarter of 1988 accounting for 33.8 percent of the area's total employment. Hercules Inc. employees involved in the manufacture of explosives and propellants at RAAP are included in these figures.

RAAP is the only facility in the country with the capability to produce TNT and as such is not considered a likely candidate for surplus excessing by the U.S. Army. Future land use of RAAP should be considered the same as present land use when long term planning and projections are performed.

2.6 FLORA AND FAUNA

Lists of the mammals, birds, reptiles, amphibians, aquatic invertebrates, trees, and plants found on the installation and of the fish inhabiting the New River where it flows through the installation are presented in earlier environmental assessments of RAAP and are not included herein. These lists were compiled by combining data from the RAAP Woodland Management Plan, the RAAP Fish and Wildlife Management Plan, the 1973 RAAP declaration of timber available for harvest, the RAAP Land Management Plan, and verbal information from the forester at RAAP (USATHAMA, 1976).

Several studies of fish and aquatic invertebrates, deer populations, and growth rates of tree rings at RAAP were conducted by several departments of the Virginia Polytechnic Institute and State University (VPI&SU) in Blacksburg, Virginia. For most of the installation's life forms, there is little information available about the occurrence, abundance, breeding areas, and distributions.

It is probable that all of the reptiles, all of the mammals (except the bobcat), and most of the birds (except migratory waterfowl) listed in the 1976 Installation Assessment (USATHAMA, 1976) breed on the installation. Foxes periodically build up large populations, and the Virginia Commission of Game and Inland Fisheries cooperates in trapping them to prevent rabies outbreaks. The last trapping program for foxes was conducted in 1966. Deer also become overabundant and are sometimes significant road hazards. A deer capture program was conducted annually by the State Game Commission to maintain a constant population until 1990. Controlled hunting is now used to regulate the deer population.

Because the installation is on the Atlantic Flyway, the New River is a haven for many species of migratory waterfowl throughout the spring and winter.

No threatened or endangered species are suspected of dwelling at RAAP, nor are there any known species with unusual aesthetic value. There are no species known to occur exclusively at RAAP or to be absent from the rest of the counties or State; there are no species known for which the installation lies at the limit of their ranges. Indications are that some species, including ruffed grouse and upland plovers, have decreased in number or have disappeared from RAAP (USATHAMA, 1976).

Limited deer hunting with bow and arrow is permitted within RAAP. Deer are also trapped by the Virginia Department of Conservation for restocking in neighboring counties. Public fishing is permitted from boats in the New River.

A survey made of the fish population in the New River by VPI&SU determined that there was an adequate stock of native species for sportfishing. Salt blocks, grain fields, and grain-stocked shelters have been provided on RAAP for game species. There is no other active management of the wildlife.

According to the most recent Woodland Management Plan, the forest area of RAAP is essentially the same as when originally acquired. All hardwood of merchandisable size inside the security fence along the New River was removed because of damage by 2,4-dichlorophenoxyacetic acid (24D), which was sprayed to eliminate musk thistle in 1971. Musk thistle was declared a noxious weed by the Virginia General Assembly, and its control is required by law. In the 1950s approximately 3,000 acres were reforested.

There are 2,537 acres of managed woodlands. The rolling areas and one flat bottom have been reforested. No reforestation has occurred in the Main Manufacturing Area. In 1964, 922 acres of the Horseshoe Area were reforested. The cutting cycle on existing forest lands is 7 years; the first cutting took place in 1966. Reforestation and forest improvement were in effect from 1955 to 1973 at suitable sites. Black walnut and white oak will be retained on the stump, if they are in good condition, to provide a mobile reserve. Unsuitable or diseased trees are removed. As recommended by the Virginia Forestry Department, timber stands have been improved in all areas through selective cutting of mature trees with mechanized equipment when possible. Weed trees have been sprayed with ammonium sulfamate. Controlled burning is not practiced because of the fire hazard.

3.0 SUMMARY OF RFI FIELD INVESTIGATION PROGRAM

3.1 **OVERVIEW**

The RFI field program at RAAP included geotechnical, sampling, and analytical investigations that provided data on the physical and chemical characteristics of media of interest at SWMUs being studied. Data gained through this program supplemented existing data, enabling better characterization of surface, subsurface, and hydrogeologic conditions at RAAP in order to identify releases or suspected releases of hazardous waste or hazardous constituents into soil, sediment, surface water, and groundwater. Table 3-1 summarizes the major activities during the RFI at each SWMU.

Geotechnical activities included the drilling of 54 boreholes, the installation of 12 groundwater monitoring wells and one piezometer, a soil gas survey, the collection of water level measurements, the inspection of existing on-post wells, and the compilation of near-post well locations. The analysis of information gathered from these field investigations helped better define local surface drainage features, subsurface lithology, aquifer characteristics, the location and/or areal extent of subsurface contaminant sources, and possible pathways for contaminant migration. This information is useful to evaluate the need for any follow up investigations, corrective measures, or monitoring.

The sampling and analytical program included the chemical analyses of representative samples of groundwater, surface water, soils, and sediment for use in identifying contaminants at RAAP. Physical testing of representative soil samples from borings were performed in order to characterize soil formations and their hydrogeological properties.

3.2 SOIL GAS SURVEY

A soil gas survey was performed at SWMU O by Target Environmental Services, Inc., to investigate the subsurface routes through the unconsolidated soils in which fuel has migrated. Fuel oil has been detected at a seep located 400 feet northeast of the reported discharge point of the aboveground petroleum, oil, and lubricant (POL) tank.

3-2

Table 3-1
Summary of 1991/1992 RFI Field Program
Radford Army Ammunition Plant, Virginia

						Environmental Samples				
SMWU Nos.	SWMU Name	Bores	Wells/ Piez.	Soil Gas Survey	Soil	Ground Water	Surface Water	Sediment	Duplicates	
13	Waste Propellant Burning Ground	29	7		46	7	4	6	5	
17	Contaminated Waste Burning Areas		1	: 14	8	:	2	2	2	
28,51,52	Active Sanitary Landfill, TNT Neutralization Disposal Area, Closed Sanitary Landfill	11	4			13			1	
Ö	Underground Fuel Oil Spill	13	1	1	14	9	1	2	1	
	rotals in the second	54	13	I W	- 68			10		

Footnotes:

⁸ Nine sample results from three quarterly monitoring wells evaluated.

Starting from the seep location, soil gas samples were collected along the length of the assumed discharge route between the seep and the reported discharge point at the POL tank.

Twenty-seven samples were collected as part of this soil gas survey. The report from Target Environmental Services, including the results of the 27 soil gas samples collected at SWMU O, is included as Appendix I of this report.

To collect the samples, a 1/2-inch hole was produced to a depth of approximately 4 feet by using a drive rod. The entire sampling system was purged with ambient air drawn through an organic vapor filter cartridge, and a stainless steel probe was inserted to the full depth of the hole and sealed off from the atmosphere. A sample of in-situ soil gas was then withdrawn through the probe and used to purge atmospheric air from the sampling system. A second sample of soil gas was withdrawn through the probe and encapsulated in a pre-evacuated glass vial at two atmospheres of pressure. The self-sealing vial was detached from the sampling system, packaged, labeled, and taken to Target's mobile laboratory for analysis.

Target's standard decontamination procedures were used during this program. Prior to the day's field activities, all sampling equipment, slide hammer rods, and probes were decontaminated by washing with soapy water and rinsing thoroughly. Internal surfaces were flushed dry using pre-purified nitrogen or filtered ambient air, and external surfaces were wiped clean using clean paper towels. Between samples, the exterior of the probe and rods were cleaned by wiping with distilled water and paper towels. The interior of the probe was purged from five to eight times with ambient air before each sample.

Field control samples were collected at the beginning and end of each day's field activities. These QA/QC samples were obtained by filtering ambient air through a dust and organic vapor filter cartridge and collecting in the same manner as described above.

3.3 BORING AND SAMPLING PROGRAM

All geotechnical boring, well installation, and soil sampling methods were performed in accordance with the RFI Work Plan (Dames & Moore, 1990a) or using methods

approved by USATHAMA when unusual conditions were encountered. Appendix B presents the procedures used during the field drilling and sampling program.

The following sections discuss the borehole drilling and sampling program associated with this RFI report. As shown in Table 3-1, the field program for the RFI study areas included the following:

- Sixteen borings for well and piezometer installations at six SWMUs (including
 7 abandoned well borings at SWMUs 28/51/52).
- Thirty-four exploratory soil borings performed at two SWMUs (including an abandoned boring, OSB9A).
- Physical soil tests performed on 33 soil boring samples.

3.3.1 Exploratory Soil Boring Methodology

A total of 34 exploratory soil borings were performed at the following SWMUs:

- SWMU 13--Waste Propellant Burning Ground--22 borings
- SWMU O--Underground Fuel Oil Spill--12 borings (including one abandoned boring OSB9A)

The exploratory borings ranged in depth from 10 to 35 feet. The soil zone was penetrated using 4.25-inch inside diameter (I.D.) hollow stem augers. Soil sampling was accomplished with an internally mounted 5-foot soil corer, except for four soil bores at SWMU O which were continuously sampled with a 24-inch split spoon sampler that was driven using methods specified in the Standard Penetration Test (SPT), American Society for Testing and Materials (ASTM) D-1586. Detailed soil boring logs, provided in Appendix F, were developed from information gathered by field observation of soil cores. Boring completion details are presented in Table 3-2.

Soil sampling and boring locations for each SWMU investigation are shown on each SWMU location map provided in Sections 5.0 through 8.0. Table 3-2 provides a summary of the sampling points. Additional sampling and boring information is included in the

Table 3-2
Summary of RFI Boring Program
Radford Army Ammunition Plant, Radford, Virginia

			Nautotu Ariity Ariitirumubii Fiaiti, Na	dioid, virginia		
Boring	Date	Total Depth (feet)*	Boring Method	Sample Method	Depth of Chemically Analyzed Samples (feet)*	SWMU
13SB1	08/20/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SB2	08/26/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SB3	08/26/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SB4	08/28/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SB5	08/22/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SB6	08/21/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC1W	08/20/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC1E	08/20/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC2W	08/21/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC2E	08/21/91	16.0	4" HSA	Moss	0.5, 5.0	13
13SC3W	08/21/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC3E	08/21/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC4W	08/22/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC4E	08/22/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC5W	08/26/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC5E	08/26/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC6W	08/27/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC6E	08/27/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC7W	08/28/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC7E	08/28/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC8W	08/29/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13SC8E	08/29/91	10.0	4" HSA	Moss	0.5, 5.0, 10.0	13
13MW1	08/20/91	35.0	8" HSA/6" Roller	SPT-NX		13
13MW2	08/29/91	38.0	6" HSA/6" Roller	SPT-NX		13
13MW3	08/27/91	22.0	6" HSA/6" Roller	SPT-NX		13
13MW4	08/28/91	25.0	6" HSA/6" Roller	SPT-NX		13
13MW5	08/23/91	25.0	6" HSA/6" Roller	SPT-NX		13
13MW6	08/21/91	24.0	6" HSA/6" Roller	SPT-NX		13
13MW7	08/21/91	24.0	6" HSA/6" Roller	SPT		13
17PZ1	11/01/91	133.0	6" Roller/12" Roller/8" AH	SPT-NX-AH		17

Boring	Date	Total Depth (feet)*	Boring Method	Sample Method	Depth of Chemically Analyzed Samples (feet)*	<u>swmu</u>
28MW1A	09/13/91	5.0	6" HSA	SPT		28
28MW1B	09/13/91	15.0	6" HSA	SPT		28
28MW1C	09/13/91	10.5	6" HSA	SPT		28
28MW1D	09/24/91	20.0	6" HSA	SPT		28
28MW1	10/04/91	70.0	6" Roller/8" AH	SPT-NX		28
28MW2	9/10/91	90.0	6" HSA/6" Roller	SPT-NX		28
51MW1A	09/09/91	7.5	6" HSA	SPT		51
51MW1B	09/10/91	7.0	6" HSA	SPT		51
51MW1C	09/10/91	7.0	6" HSA	SPT		51
51MW1	09/24/91	37.0	6" HSA/6" Roller	SPT		51
51MW2	09/09/91	53.0	8" HSA/6" HSA/6" Roller	SPT-NX		51
OSB1	10/24/91	22.0	4" HSA	SPT	16.0, 20.0	0
OSB2	10/23/91	20.5	4" HSA	SPT	16.0	О
OSB3	10/23/91	24.0	4" HSA	SPT	18.0	О
OSB4	11/02/91	35.0	4" HSA	Moss	22.5, 35.0	0
OSB5	10/25/91	12.0	4" HSA	Moss	7.0	О
OSB6	11/02/91	23.5	4" HSA	Moss	23.0	О
OSB7	11/04/91	21.0	4" HSA	Moss	19.5	О
OSB8	10/25/91	29.0	4" HSA	Moss	29.0	О
OSB9	11/04/91	12.0	4" HSA	Moss	12.0	О
OSB9A	11/04/91	8.0	4" HSA	Moss		O
OSB10	10/24/91	32.0	4" HSA	SPT	16.0, 32.0	0
OSB11	10/25/91	13.0	4" HSA	Moss	13.0	0
OMW1	11/11/91	38.5	8" HSA/6" HSA/6" Roller	SPT		О

Footnotes:

Moss = continuous core soil sampling

SPT = Standard Penetration Test Soil Sampling

NX = NX-size rock core sampling

Roller = Tri cone rotary bit

^{* =} Depth provided are in feet below ground surface.

Y = Air Hammer

[.]FA = Former Lead Furnace Area

investigation program section for each SWMU. All soil samples are from discrete locations. Detailed soil sampling procedures are included in Appendix B.

3.3.2 Well Drilling Methodology

From August through November 1991, a total of 20 borings were drilled for data collection and the installation of one piezometer and 12 wells. Seven boreholes were abandoned at SWMUs 28/51/51 with USATHAMA approval due to unusual drilling conditions.

Methods of drilling in unconsolidated overburden included hollow-stem auger and air rotary. Where possible, boreholes into bedrock were cored using an NX-sized diamond or carbide-studded bit. This method provided an intact sample of bedrock to evaluate lithology, structure, and physical condition. NX rock coring was discontinued when excessive amounts of drilling water were lost to the formation.

The following procedures were followed when performing well borings. Where possible, a 6.25-inch I.D. dry hollow stem was used to penetrate the unconsolidated soils. Split spoon sampling was conducted at 5-foot intervals during drilling to allow a detailed log to be developed for each boring. The method used to collect the split spoon samples was the SPT (ASTM D-1586).

Where river jack sediments (cobbles and boulders) prevented further penetration of the overburden using the hollow stem auger method, an air rotary drilling method was used in which a 6-inch tri-cone roller bit was advanced into the soil. The installation of well 28MW2 required the mud rotary drilling method, as described in Appendix B, because the river jack sediments prevented further penetration of the overburden using either the hollow stem auger method or the air rotary drilling method. Split spoon soil samples were collected every 5 feet to develop a detailed boring log, as described above.

When bedrock was encountered, the overburden was cased off using 10-inch temporary polyvinyl chloride casing (PVC), and NX rock coring was performed to obtain intact samples of bedrock for subsurface logging. After completion of the rock coring, the

borehole was reamed out using a 6-inch or 8-inch roller bit or 8-inch air hammer to the appropriate well depth and well installation procedures initiated.

Every effort was made during all drilling and sampling efforts to avoid methods that could introduce potential cross-contamination. The drill rig and all sampling equipment was decontaminated prior to arrival at RAAP, prior to drilling the first borehole, and after the drilling of each borehole by a portable steam-cleaner at a steam temperature of 220° F and a pressure of 1,000 psi.

3.4 WELL INSTALLATION AND DEVELOPMENT

3.4.1 Monitoring Well Installation

Twelve monitoring wells and one piezometer were installed at the following SWMUs:

- SWMU 13--Waste Propellant Burning Ground--seven wells
- SWMU 17--Contaminated Waste Burning Area--one piezometer
- SWMUs 28/51/52--Active Sanitary Landfill, TNT Neutralization Sludge
 Disposal Area, Closed Sanitary Landfill--four wells
- SWMU O--underground Fuel Oil Spill--one well

Clean, pre-decontaminated and plastic-wrapped monitoring wells were installed in newly drilled and reamed boreholes, either through the hollow stem augers or, when the drilling method was air rotary, through the temporary 10-inch PVC casing. Both of these methods prevented cave-in of the overburden during well installation. Sand filter pack, bentonite pellets, and cement bentonite grout were installed according to specifications included in the RFI work plan.

The material used for the monitoring wells was dependent upon the future possible use and overall SWMU working conditions. Wells installed at SWMU 13 were constructed of stainless steel since burning operations induce tremendous heat releases for several hundred feet from the burning pads. The possibility that the heat could melt PVC was considered sufficiently high so that stainless steel was substituted as the well material. The

well installed at SWMU O was also constructed with stainless steel to allow for the future use of this well as a dewatering/fuel extraction location if conditions so warrant. Wells installed at SWMUs 28 and 51 were constructed with PVC since operations at these locations presented no likely threat to future well integrity, other nearby wells were constructed of PVC and remedial use of these wells was not considered likely.

Monitoring well construction diagrams are included in Appendix F and are summarized in Table 3-3. Detailed well installation procedures are included in Appendix B.

3.4.2 Well Development

Proper well development serves to remove water and other fluids or materials introduced in the aquifer as a result of borehole drilling operations. It also functions to reduce the amount of fine-grained sediment around the sand-packed portions of the annulus, which might otherwise clog the well screen, and to enhance porosity for free flow in the screened zone. Well development equipment was decontaminated prior to use and between wells. Prior to development, the static water level was measured and recorded. Field conductivity, temperature, and pH measurements were recorded before, at least twice during, and at completion of development to ensure that the development process is complete.

Dames & Moore developed each monitoring well as soon as was practical, but no sooner than 48 hours after the placement of the internal mortar collar around the well. Methods and equipment used for well development at RAAP included bailing, the use of a 4-inch submersible pump and a surface pump. Specific well development procedures are described in Appendix B.

3.5 PHYSICAL TESTING

Soil samples were collected from borings and placed in sample jars and labelled. Of these soil samples collected, 33 representative soil samples were shipped to Dames & Moore's soil testing laboratory for physical testing. Atterberg limits (ASTM D-4318), grain

Table 3-3 Monitoring Well/Piezometer Construction Details Radford Army Ammunition Plant, Virginia

Monitoring		Total Depth	Screen	Screen	Hydrologic
Well_	<u>Date</u>	(feet) ¹	<u>Material</u>	<u>Depth</u>	<u>Unit</u>
101.43374	0020001	28.0	cc	18.0-28.0	TTA/DD
13MW1	08/20/91	26.0	SS	16.0-26.0	UA/BR
13MW2	08/29/91	29.0	SS	19.0-29.0	BR
13MW3	08/27/91	19.0	SS	9.0-19.0	UA/BR
13MW4	08/28/91	24.0	SS	14.0-24.0	UA/BR
13MW5	08/23/91	24.0	SS	14.0-24.0	UA/BR
13MW6	08/21/91	23.0	SS	13.0-23.0	UA/BR
13MW7	08/22/91	24.0	SS	14.0-24.0	UA/BR
17PZ1 ²	11/01/91	132.5	PVC	112.5-132.5	BR
28MW1	09/04/91	63.0	PVC	43.0-63.0	BR
28MW2	09/10/91	83.0	PVC	68.0-83.0	BR
51MW1	09/24/91	35.0	PVC	25.0-35.0	UA/BR
51MW2	09/09/91	53.0	PVC	43.0-53.0	UA/BR
OMW1	11/11/91	38.0	SS	23.0-38.0	UA/BR

Notes:

UA = Unconsolidated alluvium

BR = Bedrock

Depths are reported in feet below ground surface.
 = 4" Piezometer

size analysis (ASTM D-422), and classification by the Unified Soil Classification System (USCS) were performed on these samples. Table 3-4 summarizes the results of the physical analyses.

3.6 <u>WELL INVENTORY</u>

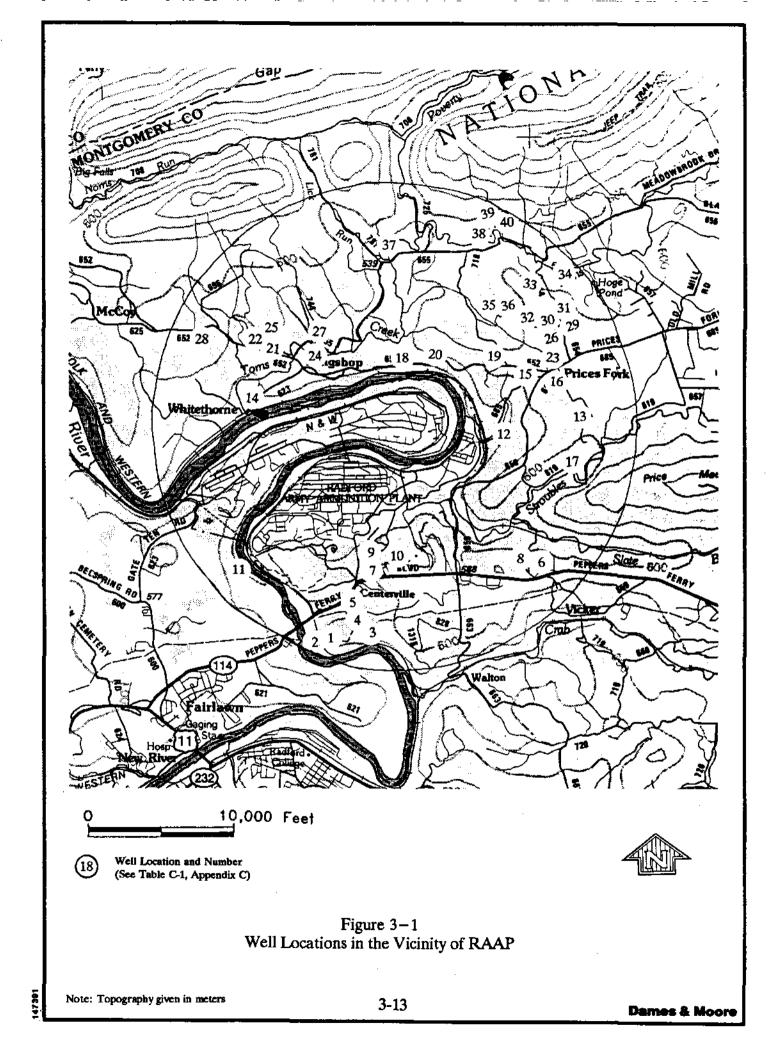
An inventory of the off-post wells located in the vicinity of RAAP was compiled in order to determine the potential receptors of possible contamination at RAAP. Prior to 1986, the Virginia Water Control Board (VWCB) maintained records of wells installed in the state. The available records could not be considered an inventory of the wells because only the wells reported or those collected by the VWCB were included. Although drillers were required to notify VWCB of all wells drilled before 1986, the requirement was rarely enforced. The VWCB well database is only about 2 to 5 percent complete (Terry Wagner, 1992). A total of 40 wells were identified within a 3-mile radius of the center of the RAAP facility which includes Montgomery and Pulaski Counties. Figure 3-1 identified the approximate locations of these wells. A listing of the well owners' name, type of facility, location (longitude and latitude), date of well installation, and approximate depth of the well is provided in Appendix C. Available groundwater analytical results from some wells is also provided in Appendix C (VWCB, 1992).

After 1986, well drillers were required to notify the County Health Department of their activity. The Pulaski and Montgomery County Health Departments indicated that records before September 1990 include only those wells installed in association with septic systems and is therefore not a complete well inventory. The county health departments do not have databases of wells installed before September 1990 and therefore, could not supply a listing of these wells. Dames & Moore has requested an inventory of wells installed after September 1990 in Pulaski and Montgomery Counties but the listing of well records has not been received to date. According to the county health departments, the database of wells installed after September 1990 includes all wells installed. Results from the Pulaski and Montgomery County Health Departments will be included in the final report.

Table 3-4
Summary of Grain Size Analyses of Soil Samples
RCRA Facility Investigation
Radford Army Ammunition Plant, Virginia

	Sample	Percent	Soil Symbol
Sample No.	Depth(feet)	Gravel/Sand/Fines ^a	USCS/AL ^b
13MW1	11.5-12	0.0/33.0/39.8/27.2 ^C	ML/ML
13MW2	5-7	0.0/40.5/34.1/25.4	CL/CL
13MW3	5-7	0.0/81.0/11.6/7.4	SM/NP
13MW4	15-16	42.2/44.7/8.2/4.9	SM/NP
13MW5	. 0-2	0.0/63.4/24.1/12.5	SM/NP
13MW6	5-7	0.0/61.1/24.4/14.5	SM/NP
13MW7	15-17	54.5/42.1/0.9/2.5	GP/NP
13SB1	5	0.0/39.0/36.9/24.1	CL-ML/CL-ML
13SB2	0-2	0.0/41.8/40.9/17.3	ML/ML-OL
13SB3	10-12	0.0/76.7/14.3/9.0	SM/NP
13SB4	2-5	0.0/65.6/21.8/12.6	SM/NP
13SB5 13SB6	0.5 10	0.0/66.1/21.7/12.2	SM/NP
17SB1	8	0.0/62.2/25.4/12.4 2.5/25.2/72.3	SM/NP CL/CL
17SB1	10	7.8/28.6/63.6	CL/CL
17SB3	3	2.3/19.6/78.1	CL/CL
28MW1	5-7	0.0/72.9/27.1	SM/NP
28MW2	40-42	0.6/10.1/89.3	CH/CH
28MW2	10-12	1.6/73.9/24.5	SM/SM
51MW1	10-11.3	65.8/22.0/12.2	SC/CL
51MW1	30-32	5.3/17.0/77.7	MH/MH-OH
51MW2	25-27	12.0/66.9/21.1	SC/CL
51MW2	10-12	0.0/77.5/22.5	SM/ML-OL
OMW1	5-7	2.5/76.5/21.0	SC/CL
OSB10	20-22	0.0/5.8/94.2	CL/CL
OSB11	8	1.2/25.0/73.8	CL/CL
OSB2	18-20	3.0/27.7/69.3	CH/CH
OSB3 OSB4	10-12 27.5	2.3/39.1/58.6	CL/CL
OSB5	41.J 6-7	0.9/34.5/64.6 0.0/52.1/47.9	CH/CH SC/CH
OSB6	7.5	1.2/29.6/69.2	CL/CL
OSB7	7.5–10	0.0/12.3/87.7	CL/CL
OSB8	14-15	1.0/34.8/64.2	СН/СН

Footnotes:


Sand = passed #4 sieve but remained on #200 sieve

Fines = passed #200 sieve

^a Gravel = retained on #4 sieve

b USCS = Unified Soil Classification System
AL = Atterberg Limits soil classification

^C "Fines" are represented as percent silt and percent clay, respectively, for SWMU 13

3.7 SAMPLING AND ANALYTICAL PROGRAM

The purpose of the RFI sampling program was to collect representative samples of groundwater, surface water, soils, and sediment for use in identifying contaminants at the SWMUs identified in the RCRA permit. The locations and number of samples were selected to determine if contaminants have migrated from the SWMUs and into the surrounding environment at concentrations of concern. The collection procedures took into account characteristics of known contaminants, as well as the need to identify suspected contaminants and measure a range of standard parameters (e.g., analysis for drinking water standards and parameters that monitor changes in the sample, such as pH and conductivity). All sampling procedures were accomplished in accordance with the approved work plan, and are discussed in Appendix B of this report. A summary of the samples collected and the analyses performed for each sample is provided in Table 3-5.

The analytical parameters discussed in this section refer to the constituents that were specifically identified in Attachment A of the RCRA permit. The USATHAMA and laboratory analytical methods and reference codes are summarized in Table 3-6. The Certified Reporting Limit (CRL) and specific test name and certified method, using EPA method number if possible, for each analyte of interest are also listed in Table 3-6. In addition, the permit Practical Quantitation Limits (PQLs) and Health Based Numbers (HBNs) are also provided. Dames & Moore derived HBNs for those constituents for which a HBN was not specified in the RCRA permit; these HBNs and the methodology used to develop the numbers are presented in Appendix D. PQLs and HBNs also are included on the chemical summary tables developed for each SWMU characterization.

The analytical program, summarized in Tables 3-5 and 3-6, included soil, groundwater, sediment, surface water and waste analyses for Target Analyte List (TAL) metals, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), explosives, nitrate/nitrite, total organic halogens (TOX), total organic carbon (TOC), and Toxicity Characteristic Leaching Procedure (TCLP) metals and organics. (Note: The term SVOCs is used throughout this report rather than the term base-neutral/acid extractables

Table 3-5
Summary of RFI Analytical Program
Sorted by SWMU and Sample ID
Radford Army Ammunition Plant, Virginia

						Analytical Parameters							
	Sample	Sample Site	Sample	Sample	TAL Metals							1	CLP
Site	<u>_ID_</u>	Matrix Type	<u>Da te</u>	Depth	I U E	Expl	VOC ₈	SVOCs	TOC	TOX	NO ₂ +NO ₃	Organica	Metals
928,51,52	18 – 1	GW WELL	02/04/9			X	X	X	X	×			
\$ 28,51,52	16 3	GW WELL	01/28/9:	2 72	X	X	X	X	X	X		and an experience	******************************
S 28,51,52	18+4	GW WELL	01/23/9	2 62	×		X	X	¥	X			
\$ 28,51,52	28 MW1	GW WELL	0 1/30/9	2 53	X		X	X	X	X			
\$28,51,52	28 MW2	GW WELL	02/04/9	2 76	×		X	X	X	X			
\$ 28,51,52	51MW1	GW WELL	01/28/9	ARREST CONTRACTOR		X	X	X	X	X			and the first state of the stat
S 28,51,52	51MW2	GW WELL	01/23/9	2 48	X		X	X	X	X			
\$ 28,51,52	C1	GW WELL	01/30/9	ad ted undatable date.	X		X	. X	X	X	entenditation	5. 10000000000000000	Sociococcoccoci John Inte
S 28,51,52	C4	OW WELL	02/04/9	recommendation of the con-	X		X	X	X	X			
8 28,51,52	CDH-2	GW WELL	01/28/9:	2 55	X	X	X	X		X			
9 28,51,52	MWD	GM METT	01/29/9	Markey Committee and the second		X	X	X	X	X			
\$ 28,51,52	MW9D	GM METT	01/29/9:			X	. X	X	X	X	one et la escentia de la		and the second of the second o
8 28,51,52	WCI-A	GW WELL	01/24/9			×	X	X	X				
S 28,51,52	WC2-A	GW WELL	01/29/9:		X		X	X	_X	X			
SWMU 13	13MW1	GW WELL	10/08/9		X X		X	X	X	X			
SWMU 13	13 MW2	GW WELL	10/11/9		X X	X	X	X	X	X	X		cooccepactors swaw
BWMU 13	13 MW3	GM MET	10/10/0		ХX		X	×	X	×	X		
SWMU 13	13 MW4	gw Well	10/1 1 <i>/</i> 9		XX	X :::22******	X	X	X	X	X	000.02%004nt_62e666	200000000000000000000000000000000000000
SWMU 13	13 MW5	GW WELL	10/09/9	respectively.	ХX	X	×	×	X	X	X		
SWMU 13	13 MW6	GW WELL	10/09/9		XX	X	X	X	X • • • • • • • • • • • • • • • • • • •	X X	X	:::::::::::::::::::::::::::::::::::::::	
SWMU 13	13 MW7	GW WELL	10/08/9		× ×	X	×	X	X		X		
SWMU 13 SWMU 13	13 MW7 D 13 SB 1	GW WELL SO BORE	10/08/9	et execuse destants a disco-	X X		X	X X	X	X	X 		855000000000000000000000000000000000000
 2000000000000000000000000000000000000			08/20/9			X	X				(CONTROL CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO	948 S000000000000000000000000000000000000	
SWMU 13 SWMU 18	13881 13 88 1	SO BORE	08/20/9		X	X ::::::::::::::::::::::::::::::::::::	×	X		88001688	000000000000000000000000000000000000000	000000000000000000000000000000000000000	ASU 88 0988888235568
SWMU 13	13882	SO BORE	08/20/9 08/26/9		X	X X	X	X					700000000000000000000000000000000000000
SWMU 13	13882	SO BORE	08/26/9		X	Ŷ.	· ŵ	â	e i responsable de la companya de l Companya de la companya de la compa	0.00000000	**********	paragraphica na na na 14 Maya. Anggaran na na na na na sa sa 14 A	0.0000000000000000000000000000000000000
SWMU 13	13 SB2	SO BORE	08/26/9	222200000000000000000000000000000000000	X	X	X	X	H (680800000				
SWMU 13	138B2D	SC BORE	08/26/9	Contract of the Mile State.	Ŷ.	Ŷ	· ŵ	â.	tr 201-0000000	000000000000000000000000000000000000000		888 SECTION LA PROPERTIE	
SWMU 13	13 SB3	SO BORE	08/26/9		X	X	X	X	- 1111 0848849	>(************************************		ssaude fination - eac	**************************************
SWMU (3	13883	SO BORE	08/26/9	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Ŷ.	Ŷ.	Ŷ.	â.					
SWMU 13	13SB3	SO BORE	08/26/9		X	X	X	or ez vocanesco: ■ X	201200 00 00000	000000000000000000000000000000000000000	::00000:0000:000:000.	Marian de la consessa de	000000000000000000000000000000000000000
SWMU 1a	13SB4	SO BORE	08/28/9	of a residence to the officer of	Â.	â	ŵ	â.	9488515A				
SWMU 13	13SB4	SO BORE	08/28/9		X	×*********	X	X	remederal suc	1010111000000		000000000000000000000000000000000000000	an second consultation of the first
SWMU 13	13584	SO BORE	08/28/9		Ŷ	Ŷ.	- Â	Ŷ.	888865A3	30303037		600000000000000000000000000000000000000	
SWMU 13	13SB5	SO BORE	08/22/9	niar na ranga na na arawa ili kar	X	X	X	X	000000000000000000000000000000000000000	F 1/15 F 2000 (2005)	500,0400,0000000000000	200000000000000000000000000000000000000	peratura bada darata bilanga
SWMU 18	13985	SO BORE	11		X	× ·	Â	X				***	
SWMU 13	13885	SO BORE	08/22/9		X	X	X	X	······································	/ - 20 00000000000000000000000000000000000	oo aa baadadka baaca k	#+ 000\$000000000000000000000000000000000	
SWMU 13	13986	SO BORE	08/21/9	AMERICAN STREET	×	×	×	Ŷ		2 6.5%	************		
SWMU 13	13SB6	SO BORE	08/21/9	********	X	X	X	X	MC 90000000000	**************************************		-20000000000000000000000000000000000000	::::::::::::::::::::::::::::::::::::::
SWMU 13	13886	SO BORE	06/21/9	CONTROL CONTROL CONTROL		â.	Ŷ.	x		58000			
8WMU 13	13SB6*	SO BORE		·····	0.0000000000000000000000000000000000000	ma nd isk Prisis	ugu e M odeloodido	## 000000000000		6668 P. (0,3)	340040000000000000000000000000000000000	······································	······································
000000000000000000000000000000000000000	000000000000000000000000000000000000000	anning of a top or follower	03/04/93	**********	220000000000000000000000000000000000000	6 <u>38</u> 00-4000	862 <u>2</u> 2000000		300000000000000000000000000000000000000	888 34.1 668	CI SHERM PROSSESS	X	X :::(<u>)</u> :::::::::::::::::::::::::::::::::
SWMU 13	13801	SO CMPH	08/20/9	1 5	X	*	X	×				v. t	X
SWMU 13	138C1	SO CMPH	08/20/9	1 0,5	X	X	X	X	samana Makka	- Annie Sassan in	yang ayan ya ka	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X
BWMU 13	188C1	SC CMPH	08/20/9	1 10	X	X	X	X					×
		anana and the transition of the second distribution of the second distribut	i i i i i i i i i i i i i i i i i i i		202.00000000000000000000000000000000000	e e e e e e e e e e e e e e e e e e e	er programman			i in a magazi	,	and the second s	nervi en 1866 State (1865 State)

									An	alytical	Paramet	era		
	Sample	Sample	e Site	Sample	Sample	TAL Metals							Ţ	CLP
Site	10	Matrix	Type	Date	Deoth	I V E	Expl	VOCs	SVOC8	TOC	TOX	NO ₂ +NO ₃	Organica	Metals
SWMU 13	13SC2	80	СМРН	08/21/9		X	X	X	Χ ·					X
SWMU 13	13802	SO	CMPH	08/21/9		X.	X	Χ	X					X
SWMU 13	138C2	so	CMPH	08/21/9		X	X	X	X :222:09-00:00:00:0	200.000004 2 .0	2122200000000	v 4040 500 00 500 00000000000	****************	X
EI UMWB	135C3	80	CMPH	08/21/9	***************************************	X	X X	X X	X X					X
SWMU 13 SWMU 13	135C3 135C3*	50 50	CMPH	08/21/91 03/04/93		X		aĝ: zada					X	
SWMU 13	138C3	SO	CMPH	08/21/9	*********	X	X	X	X	444444	3000000000000000000000000000000000000	***************************************	5000 55 0005000000000000000000000000000	X
SWMU 13	133C4	80	CMPH	08/22/9	Activities of the activities and	X	X	X	X	0040040000 80880008084				X
SWMU 13	13SC4	so	CMPH	08/22/9		X	X	X	X	rena i tazza.		- 14.67 10.00000000000000000000000000000000000		X
SWMU 13	13904	90	CMPH	08/22/9		X	X	X	X					X
SWMU 13	13SC5	SO	CMPH	08/26/9	Certain Control Control	X X	X	×	X		999349 : 543	363666675555		X X
SWMU 13 SWMU 13	138 05 13905	80 80	CMPH	08/26/9 08/26/9	CONTRACTOR	X	X	X	X	::3:::3:::3:::3::3::3::3::3::3::3::3::3	libbildine tots		0,004-100-11-122	X
SWMU 13	1980t	80	CMPH	08/27/9		Â	Ŷ.	×	Ŷ.			Marka da		×
SWMU 13	13808	SO	CMPH	08/27/9		X	X	X	X		rostato del mari	and their sections		X
EWMU 13	13906*	80	CMPH	03/04/93	2. 0.5								X	
SWMU 13	13906	50	СМРН	08/27/9	ALCOHOLOGICA CONTRACTOR CONTRACTOR	X	X	X ::::::::::::::::::::::::::::::::::::	X 2000 - 2 3 71.33	.1.11190189	.000000000000	000000111624114466666460		X
SWMU 13	13507	60 80	CMPH	08/25/9	SALES SA	X	X	X	X	ioneen en				X X
SWMU 13 SWMU 13	13SC7 13BC7	80 80	CMPH	08/28/9 08/28/9	 Additional content 	Ŷ.	X	ŵ	ŵ	*******				x
SWMU 13	138C8	SO	CMPH	08/29/9	Annual Control of the Control	X ::::::::::::::::::::::::::::::::::::	X	X	X	100000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	.au44040404	X
SWMU 13	13SC8	80	CMPH	08/29/9	1 5	X	X	X	Χ					X
SWMU 13	138C8	so	CMPH	08/29/9	MARKET CONTRACTOR CONTRACTOR	X	X	X	X	and the same of	cograss sacos			X
SWMU 13	13SE1	SE 🔆	BAON	10/09/9		X	X	X	*****	4469888			· ·	
SWMU 13 SWMU 13	13SE1* 13SE2	SE SE	Basn Basn	03/04/92 10/09/9	and a second	X	x	X	X		2783313333	Second Second Principles	X Valoria de la Calonia de la	X
SWMU 13	135S1	SO	PLUG	10/09/9	The second second	X	X	X	X	200000000000000000000000000000000000000	2000,60000,60	***************************************	1901/6/17/20100000	16 100 Professor (1980)
SWMU 13	13881D	80	PLUG	10/09/9	Contract of Contraction	X	X	X	X					
SWMU 13	13882	so	PLUG	10/09/9	1 0.5	X	X	X	X					
SWMU 13	13852*	SO:	PLUG	03/04/92	decessor and accountable						10000		X	X
SWMU 13	13883 13894	SO SC	PLUG PLUG	08/27/9	Contract of the Contract of th	X X	×	×	X	X8819108883.	r.a./86080000	702020088008000000000000000000000000000		
SWMU 13 SWMU 13	138W1	SW	BASN	08/27/9° 01/15/9°	and comments and	^ X	X	X	**************************************	X	X	X	******************	000000000000000000000000000000000000000
SWMU 18	NRSE1	ŠE	RVER	04/16/92	CALCUTE CONTRACTOR CONTRACTOR	Ŷ	×	×	X		Lighton:			
SWMU 13	NRSE2	SE	RVER	04/16/92		X	X	X	X					
SWMU 13	NRSE3	3 6	RVER	04/16/92		×	X	×	X					
SWMU 13	NRSE3D	SE	RVER	04/16/92	0.50-0.5000000000	1000000000000	X 	X ***********	canaros (estestestes	800000000000	el to adodinis i	nubabababan (400400400000000000000000000000000000000	
SWMU 13 SWMU 13	NRSE4 NRSW1	SE SW	AVER RVER	04/16/9: 04/16/9:	Alexander of the engineering	X X	X X	X X	X X					
SWMU 13	NRSWa	SW	RVER	04/16/92	and the contract of the contract of	Ŷ.	ŵ.	ŷ	â.		**********			
SWMU 13	NRSW3D	SW	RVER	04/16/92			X	X	96 412 4. 190 - 90 1696	dedde ceestess	~~~~		e-1000e00e-0000000000	
EL UMMS	NRSW4	SW	RYER	04/18/93	CONTRACTOR CONTRACTOR	X	X	X	X				1.5.400000000000000000000000000000000000	
SWMU 17	17ASS1	SO	PLUG	02/26/92	2 1	X	X	• 15,000,100						
SWMU 17	17ASS2	50	PLUG	02/26/93	2 1	×	X					7. 11. (18. (18. (18. (18. (18. (18. (18. (
SWMU 17	17ASW1	SW	BASN	02/27/92	2 0	x	X			X	X			
SWMU 17	1788E1	SE	BASN	02/27/92	2 0.5	X	X						o segrapsin MANY Postalistica	X
SWMU 17	17 CSS1	80	PLUG	02/27/92	2 1	X	X							
SWMU 17	17C9S1	SO.	PLUG	02/27/93	G00000000000000000	X	X							
SWMU 17	17 CSS2	50	PLUG	02/27/92		X	X	managan da AAAA	- vanse sete N., Sil.	en - 000000		e, processor schools		
SWMU 17	17CS82	so	PLUG	02/27/42	0.000000000000	X	×			9994. 3. 18895. 9000000000000				
**************************************	die die die die die <u>die die die die die die die die die die </u>		0040 89 0 9 7677	······································	ক ২০০ ১০০ ০ক ব ক্তি	4.4 000000 000 00000000000	metalogica			nonenenenenen 20	v.v.v.v.v.0000 00		rana di dia manda di dia dia dia dia dia dia dia dia di	An exploration of the contract of

Table 3 - 5 (Cont'd)

						Analytical Parameters									
	Sample	Sampl	e Site	Sample	Sample	TAL Me	rtais							T	CLP
Site	ID	Matrix	Iype	Date	Depth	I L	E	Expl.	VOC8	SVOCs	TOC	<u>IOX</u>	NO+NO	Organics	Metala
SWMU 17	17DSS1	80	PLUG	02/27/92		X		X							
SWMU 17	17DS\$2	so	PLUG	02/27/8:		X		X							
SWMU 17	17ESE1	SE	POND	03/05/92		X	noongo.ob	X			505000000000000000000000000000000000000	053100300000		60605555 PT. 199060V	00.002660060000000
9WMU 17	17ESE1D	SE	POND	03/05/92		X		X	A080000				1000	000000000000000000000000000000000000000	
SWMU 17 SWMU 17	17ESW10	SW	POND	03/05/92 03/05/92	ero in control control	×		X X	~880888088888	*******	X X	X X	V1.48480000000000000000000000000000000000	000000000000000000000000000000000000000	WWW 188888888888
SWMU 17	178B1	SO	BORE	11/05/9	-20200000000000000000000000000000000000	X	\$300.090	* * *********	aleberry (1			1089096810793	37 500,000 0000000000000000000000000000000		X
SWMU 17	17981	šo :	BORE	11/05/9	NAMES OF TAXABLE PARTY OF TAXABLE PARTY.	â.	996945	\$3000000		esteri legitor di			######################################		Ŷ.
SWMU 17	17\$B2	SO	BORE	11/05/9		X	ana ara ara	• * ••• •••••••	**********	voconnana i hi i i	7 Met (2 1 2 2 2 2				X
SWMU 17	178B2	SO	BORE	11/05/9	1 5	X									X
SWMU 17	178B3	so	BORE	11/05/9		X	50.00000	Waxaa aa		ara en costas M				www.com	X
SWMU 17	17\$B3	so	BORE	11/05/9		X									Х
8WMU O	88	GW	WELL	02/25/92	CONTRACTOR AND COM	A: Cedebo	25000000		X	X	×	X	***************************************	9 8884 75 845 858 88888	56+ 5 888888888888
SWMU O	OMW1 OSB1	GW SO	BORE	02/24/92 10/24/9		30338803 4	177878		X X	X	(a. 	×		APPENAGE CONTRACT	
SWMUO	OSB1	SÖ 🗆	BORE	10/24/9		100000000000000000000000000000000000000		333334	ŵ	· 🛈	***********				8.75000000000000000000000000000000000000
SWMUQ	OSB10	SO	BORE	10/24/91	11.11	200000000000000000000000000000000000000		990 00 0000000	X	X	222222222222	***********	2 DONAGNA LINGGO GO GO GO GO GO GO	***********	con cu-regorioriscorages po cu
SWMUO	OSB10	80	BORE	10/24/9	16				X	X			A A SECTION DESCRIPTION OF THE SECTION OF THE SECTI		
SWMUO	QS811	so	BORE	10/25/91		entrolitik z	9.1555		X	X	Artota eritita	en arabanasa	v <u> </u>	valencia de la composició	VA - 20000000000000000
SWMUO	OSR2	50	BORE	10/23/9	Anna annone e e e	00000000000000000000000000000000000000			X	X					
SWMU O	OSB3	SO	BORE	10/23/91		303033335703	38888888	88886688899	X X	X	383888888888888888888888888888888888888	000000000000000000000000000000000000000	canadamente (266.266)	000000000000000000000000000000000000000	60x63:09x6956909ppnshx.
SWMUO	OSB4 OSB4	80 SO	BORE	11/02/91	Control of the control	3333333		elentent d	X	X					
SWMUO	0985	so	BORE	10/25/9		9839998.31	- 6.86	3000	· 🔅 · · · ·	Ŷ		Gradded access			Maria (1980)
SWMUO	OSB5D	SO	BORE	10/25/9		2000000000		*******	X	X		ennogenerally (nonzacionescentinal lend of		
OUMWE	0886	80	BORE	11/02/9	1 23.5	::::::::::::::::::::::::::::::::::::::			X	x					
SWMUO	OSB7	so	BORE	11/04/91	AMARAGAN AMARA	200000000000	save shoon	Observativities	X	<u> X</u>	sasaali daasa a	nooooondensi.	-5 0/00000000000000000000000000000000000	000000000000000000000000000000000000000	EN IN 18066060006000000
SWMUO	OS88	80	BORE	10/25/9	concension and the	303000000000000000000000000000000000000	77,00		X	X					
SWMUO	OSB9 OSE1	SC SE	BORE	11/04/91 09/26/91		35335555 53	33.0	Salados XX	X X	X X	ere jarota yang Sabanna libat I	90000000000000000000000000000000000000	* \$2.000000000000000000000000000000000000	S. 1986 P. N. 1986	11.55.000000000000000000000000000000000
SWMUO	OSE2	SE	DTCH	09/26/91		900000000000000000000000000000000000000	*C0188		X	X	98881888888888888888888888888888888888	360:00000000000000000000000000000000000		(C#1)87 1912 1908	
SWMUO	OSP1	SP	SPRG	09/26/91		9030010	(67.4 5 78)	\$ 63.	×	х.					
SWMUO	P-1	GW	WELL	02/24/92		222202000000000000000000000000000000000			×	X	X	X			
SWMUO	P+2	GW	WELL	02/20/92	CONTRACTOR CONTRACTOR	5955 538			X	×	Ŷ	X		4 8000000000000000000000000000000000000	
SWMUO	P-3	GW	WELL	02/20/92		#\$\$\$\$\$ 7400	000000000000000000000000000000000000000	·:::::::::::::::::::::::::::::::::::	X	3 20 8883 259 49	X	X	888888888888	10 ht landed on hind gage.	000000022-00000000000000000000000000000
SWMUO	r-3 P-4	GW	WELL	02/20/92	900000000000000000	98365 X 88888	ednadnossi Secondossi		Ŷ.	Ŷ.	â.	Ŷ.			
SWMU O	54W-1		onecias. WELL			E6555-8005666	enseninisti	especial de la constitue de la			⊗******* - X	X X		99871.2-9038ND32-6-2	
Contraction of the Con-	and the second	GW	92 892 P. 12 (2.1)	02/24/92	500000000000000	100000000000000000000000000000000000000	888888	\$1880888333333	X X	X	X	MARING BOOK AND		obio 7300000000000000	e. 3900000000000000
SWMUO	84W-4	GW.	WELL	02/28/92						X	arana da	×			
SWMUO	WC1-2	ΦW	MET	02/28/92	2 39				Х	X	X	X			

Footnotes:

BASN = Basin

CMPH = Composite Sample

DTCH = Ditch

Expl = Explosives

F = Filtered metals

GW = Groundwater

NO₂ & NO₃ = Nitrite and Nitrate

RVER = River

SE = Sediment

SW = Surface Water

TOX = Total Organic Halogens

SO = Soil

SPRG = Spring

SVOCs = Semivolatile Organic Compounds

T = Total Metals

TAL Metals = Target Analyte List Metals

TCLP = Toxicity Characteristic Leaching Procedure

TOC = Total Organic Carbon

U = Unfiltered metals

VOCs = Votatile Organic Compounds

* = Resampled for full TCLP analyses

TABLE 3-6

SUMMARY OF ANALYTICAL METHODS, PQLs AND HBNs FOR RFI

PROPOSED RFI ANALYTICAL EFFORT FOR WATERS

METHOD UM20 (824); VOLATILE ORGANICS IN WATER BY GC/MS FOR BOTH PRIORITY POLLUTANTS AND HAZARDOUS SUBSTANCE LIST COMPOUNDS (a)

SHORT		PRICRITY	HAZARDOUS	ប	SATHAMA	CLP		
NAME STORET	LONG NAME	POLL.	SUBST. LIST	CAL	UCL	CADL	PQL	HBN
111TCE 34508	1,1,1-TRICHLOROETHANE	Y	Y	0.5	200	5	5	200
112TCE 34511	1,1,2-TRICHLOROETHANE	Y	Y	1.2	200	5	5	6
11DCE 34501	1,1-DICHLOROETHENE	Y	Y	0.5	200	5	5	7
11DCLE 34496	1,1-DICHLOROETHANE	Y	Y.	0.68	200	5	5	0.4
12DCLE 34531	1,2-DICHLOROETHANE	Y	Y	0.5	50	5	5	5
12DCLP 34541	1,2-DICHLOROPROPANE	Y	Y	0.5	200	5	5 -	6
2CLEVE 34576	2-CHLOROETHYLVINYL ETHER	Y	N	0.71	200			
BADCL 32101	BROMODICHLOROMETHANE	Y	Y	0.59	200	5	5	700
C13DCP 34704	CIS-1,3-DICHLOROPROPENE	Y	Y	0.58	230	5	10	0.2
C2H3CL 39175	VINYL CHLORIDE	Y	Y	2.6	200	10	10	2
C2H5CL 34311	CHLOROETHANE	Y	Y	1.9	200	10	10	
C8H6 34030	8ENZENE	Y	Y	0.5	200	5	5	5
CCL3F 34488	TRICHLOROFLUOROMETHANE	Y	N	1.4	50		5	1E+4
CCL4 32102	CARBON TETRACHLORIDE	Y	Y	0.58	200	5	5	5
CH2CL2 34423	METHYLENE CHLORIDE	Y	Y	2.3	100	5	5	5
CH3BR 34413	BROMOMETHANE	Y	Y	5.8	100	. 10	10	50
CH3CL 34418	CHLOROMETHANE	Y	Y	3.2	200	10	10	30
CHBR3 32104	BROMOFORM	Y	Y	2.6	200	5	5	700
CHCL3 32106	CHLOROFORM	Y	Y	0,5	200	5	5	600
CLC6H5 34301	CHLOROBENZENE	Y	Y	0.5	200	5	5	1000
	DICHLORODIFLUOROMETHANE (c)					5	7000
OBRCL 32105	DIBROMOCHLOROMETHANE	. N	Y	0.67	100	5		
ETC6H5 34371	ETHYLBENZENE	Y	Y	0.5	200	5	5	4000
MEC5H5 34010	TOLUENE	Y	Y	0.5	200	5	5	1E+4
	TRANS-1,2-DICHLOROETHYLEN	E (b)					5	700
T13DCP 34699	TRANS-1,3-DICHLOROPROPENE	N	Y	0.7	280	5	10	0.2
	1,1,1,2-TETRACHLOROETHANE (d)					5	10
TCLEA 34516	1,1,2,2-TETRACHLOROETHANE	Y	Y	0.51	200	5	5	2
TCLEE 34475	TETRACHLOROETHENE	Y	Y	1.6	200	5	5	7
TRCLE 39180	TRICHLOROETHENE	Y	Y	0.5	200	5	5	5
XYLEN 99649	XYLENE	N	Y	0.84	200	5	5	7E+4
ACET 81552	ACETONE	N	Y	13	200	10	100	4000
CS2 77041	CARBON DISULFIDE	N	Υ .	0.5	200	5	5	4000
12DCE 99642	1,2-DICHLOROETHENE (TOTAL)			0.5	200	5		
MEK 81595	METHYL ETHYL KETONE	N	Y	5.4	200		100	2000
C2AVE 77057	VINYL ACETATE	N	Y	8.3	50	10		
MIBK 81596	METHYL ISOBUTYL KETONE	N	Y	3	200	10	100	2000
MNBK 77103	METHYL-N-BUTYL KETONE	N	Y	3.6	200	10		
STYR 77128	STYRENE	r N	Y	0.5	200	5		
		<i>P</i>						
	NONCERTIFIED ANALYTES	:						
CL2BC 81524	DICHLOROBENZENE (TOTAL)							
ACROL 34210	ACROLEIN	•					5	50
ACRYLO 34215	ACRYLONITRILE						5	0.06
7.5111.20 072.10	A SHOULD IN HEAD AND A STATE OF THE SHOP O						~	4.54

TABLE 3-6 (cont'd)

METHOD UM18 (625); EXTRACTABLE ORGANICS (BNAs) IN WATER BY GC/MS FOR BOTH PRIORITY POLLUTANTS AND HAZARDOUS SUBSTANCE LIST COMPOUNDS (a)

SHORT		PRIORITY	HAZARDOUS	ı	JSATHAMA	CLP		
NAME STORET	LONG NAME	POLL.	SUBST. LIST	CRL	UCL	CRDL	PQL	HBN
124TCB 34551	1,2,4-TRICHLOROBENZENE	Y	Y	1.8	50	10	10	700
12DCLB 34536	1,2-DICHLOROBENZENE	Y	Y	1.7	50	10	10	3000
13DCLB 34686	1,3-DICHLOROBENZENE	Y	Y	1.7	200	10	5	3000
14DCLB 34571	1,4-DICHLOROBENZENE	Y	Υ	1.7	200	10	5	75
245TCP 77687	2,4,5-TRICHLOROPHENCL	N	Y	5.2	200	50	50	4000
24DCLP 34801	2,4-DICHLOROPHENOL	Y	Y	2.9	200	10	10	100
24DMPN 34808	2,4-DIMETHYLPHENOL	Y	Y	5.8	100	10	10	20
24DNP 34616	2,4-DINITROPHENOL	Y	Y	21	100	50	50	70
24DNT 34611	2,4-DINITROTOLUENE	Y	Y	4.5	200	10	10	0.05
2CLP 34586	2-CHLOROPHENOL	Y	Y	0.99	200	10	10	200
2CNAP 34581	2-CHLORONAPHTHALENE	Y	Y	0.5	200	10	10	
2MNAP 77416	2-METHYLNAPHTHLENE	N	Y	1.7	50	10		
2MP 99073	2-METHYLPHENOL	N	Y	3.9	200	10	10	2000
2NANIL 99077	2-NITROANILINE	N	Y	4,3	100	50		
2NP 34591	2-NITROPHENOL	Y	Y	3.7	100	10		
33DCBD 34631	3,3-DICHLOROBENZIDINE	Y	Y	12	100	20	20	80.0
	3-METHYLPHENOL (4)							
3NANIL 99078	3-NITROANILINE	N	Y	4.9	100	50		
46DN2C 34657	2-METHYL-4,6-DINITAOPHENOL	Y	Y	17	100	50	50	40
48RPPE 34 636	4-BROMOPHENYLPHENYL ETHER	Y	Y	4.2	100	10	10	
4CL3C 34452	3-METHYL-4-CHLOROPHENOL	Y	Y	4	200	10	10	200
4CLPPE 34641	4-CHLOROPHENYLPHENYL ETHER	•	Y	5.1	100	10		
4MP 99074	4-METHYLPHENOL	N	Y	0.52	200	10	10	2000
4NANIL 99079	4-NITROANALINE	N	Y	5.2	100	50	20	_
4NP 34646	4-NITROPHENOL	Y	Y	12	100	50	50	_
ANAPNE 34206	ACENAPHTHENE	Y	Y	1.7	50	10		
ANAPYL 34200	ACENAPHTHYLENE	Y	Y	0.5	50	10		
ANTRC 34220	ANTHRACENE	Y	Y	0.5	100	10	2	2
82CEXM 34278	BIS(2-CHLOROETHOXY) METHANE		Y	1.5	50	10	10	
B2CIPE 34283	BIS(2-CHLOROISOPROPYL) ETHE		Y	5.3	200	10	10	40
B2CLEE 34273	BIS(2-CHLOROETHYL) ETHER	Y	Y	1.9	50	10	10	0.03
B2EHP 39100	BIS(2-EHTYLHEXYL) PHTHALATE	Y	Y	4.8	100	10	10	3
BAANTA 34526	BENZO [A] ANTHRACENE	Y	Y	1.6	100	10	0.1	0.01
BAPYR 34247	BENZO (A) PYRENE	Y	Y	4.7	100	10	0.2	0.003
BBFANT 34230	BENZO (B) FLUORANTHENE	Y	Y	5.4	50	10	0_2	0.02
BBZP 34292	BUTYLBENZYL PHTHALATE	Y	Y	3.4	100	50	10	9000
BENZOA 77247	BENZOIC ACID	N	Y	13	100	10		
BGHIPY 34521	BENZO (G,H,I) PERYLENE	Y	Y	6.1	50	10		
BKFANT 34242	BENZO [K] FLUORANTHENE	Y	Y	0.87	100	10	0.4	4
BZALC 77147	BENZYL ALCOHOL	N	Y	0,72	100	10		
CHRY 34320	CHRYSENE	Y	Y	2.4	100	10	2	0.2
CL68Z 39700	HEXACHLOROBENZENE	Y	Y	1.8	100	10	0.5	0.02
CL6CP 34386	HEXACHLOROCYCLOPENTADIENI	E Ý	Y	8.6	100	10	10	200
CL6ET 34396	HEXACHLOROETHANE	1 Y	Y	1.5	50	10	10	300
DBAHA 34556	DIBENZ (A,H) ANTHRACENE	Y	Y	6.5	5 0	10	0.3	0.9007
DBZFUR 81302	DIBENZOFURAN	N.	Y	1.7	50	10		
DEP 34336	DIETHYL PHTHALATE	Y	Y	2	200	10	10	30000
DMP 34341	DIMETHYL PHTHALATE	Y	Y	1.5	100	10	10	400000
DNBP 39110	DI-N-BUTYL PHTHALATE	Y	Y	3.7	200	10	10	4000
FANT 34376	FLUORANTHENE	Y	Y	3.3	100	10	10	200
FLRENE 34381	FLUGRENE	Y	Y	3.7	50	10		
HCBD 34391	HEXACHLOROBUTADIENE	Y	Y	3.4	100	10	5	5
ICDPYR 34403	INDENO [1,2,3-CD] PYRENE	Y	Y	8.6	100	10	0.4	2

TABLE 3-6 (cont'd)

NAME STORET LONG NAME	SHORT		PRICRITY	HAZARDOUS		USATHAMA	CLP		
ISOPHR 34408 ISOPHORONE	NAME STORET	LONG NAME	POLL.	SUBST, LIST				POL	HBN
SSOPHR 34408 SOPHCRONE		201121111111111111111111111111111111111		:	• • • • • • • • • • • • • • • • • • • •				1,21,
MAP 34498 MAPHTHALENE				•					
Name	ISOPHR 34408	ISOPHORONE	Y	Y	4.8	50	10		
NNDP 34428	NAP 34696	NAPHTHALENE	Y	Y	0.5	20	10	5	10000
NO.PG 34433	NB 34447	NITROBENZENE	Y	Y	0.5	50	10	10	20
PCP 39022 PENTACHLOROPHENOL Y Y 18 100 50 50 1000	NNDNP 34428	N-NITROSO, DI-N-PROPYLAMINE	Y	Y	4.4	50	10	10	0.005
PHANTR 34481 PHENANTHRENE Y Y 9 0.5 100 10 7 200 PHENO 34894 PHENOL Y Y Y 9.2 200 10 10 2000 PYR 34499 PYRENE Y Y Y 2.8 100 10 10 4000 248TCP 34621 2.4.9-TRICKLOROPHENOL Y Y 4.2 100 10 10 10 2000 248TCP 34622 2.8-DINTROTOLUENE Y Y Y 0.79 200 10 10 10 2 24SDNT 34622 2.8-DINTROTOLUENE Y Y Y 0.79 200 10 10 10 2 4CANIL 99075 4-CHLOROANLINE N Y 7,3 100 10 10 10 DNOP 34596 DI-N-OCTYL PHTHALATE Y Y 15 100 10 10 10 DNOP 34596 DI-N-OCTYL PHTHALATE Y Y 15 100 10 10 10 DNOP 34596 DI-N-OCTYL PHTHALATE Y Y 5.1 0.5 CLDAN 39348 CHLORDANE ALPHA Y Y 5.1 0.5 CLDAN 39610 CHLORDANE ALPHA Y Y 5.1 0.5 CLDAN 39610 CHLORDANE ALPHA Y Y 4.7 0.05 ABHC 30303 ALDRIN Y Y Y 4.7 0.05 BBHC 34259 BHC, A Y Y Y 4.0 0.05 BBHC 34259 BHC, D Y Y Y 4.0 0.05 BBHC 34259 BHC, D Y Y Y 4.0 0.05 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PPDDD 38310 DDD, PP Y Y Y 4.7 0.1 PRENSLF 34356 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN B Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN Y Y 9.2 0.0	NNOPA 34433	N-NITROSODIPHENYLAMINE	Y	Y	3	200	10	10	7
PHENC 34894 PHENC Y	PCP 39032	PENTACHLOROPHENOL	Y	Y	18	100	50	50	1000
PYR 34489 PYRENE Y Y 2.8 100 10 10 4000 248TCP 34821 2.4,6-TRICHLOROPHENOL Y Y 4 4.2 100 10 10 10 2 28DNT 34828 2.5-DINITROTOLIENE Y Y 7 0.79 200 10 10 10 — 4CANIL 99075 4-CHLOROANALINE N Y 7.3 100 10 10 10 10 DNOP 34596 DI-N-COTYL PHTHALATE Y Y 15 100 10 10 10 NONCERTIFIED ANALYTES MEXCL 39480 METHOXYCHLOR N Y 5.1 0.5 CLDANA 39348 CHLOROANE, ALPHA Y Y 5.1 0.5 CLDANA 39340 CHLOROANE, ALPHA Y Y 5.1 0.5 CLDANA 39340 CHLOROANE, ALPHA Y Y 5.1 0.5 ALDRIN 39330 ALDRIN Y Y 4.7 0.06 BBHC 39337 BHC, A Y Y 4 4 0.06 BBHC 39338 BHC, B Y Y Y 4 0.06 BBHC 39338 BHC, B Y Y Y 4 0.06 PPDDD 39310 DDO, PP Y Y 4 4 0.06 PPDDD 39310 DDO, PP Y Y Y 4.7 0.1 PPDDT 39300 DDT, PP Y Y Y 4.7 0.1 PPDDT 39300 DDT, PP Y Y Y 4.7 0.1 ENSLF 34351 ENDOSULFAN Y Y 9.2 0.1 ENSRLF 34356 ENDOSULFAN Y Y 9.2 0.05 BENSUL 34356 ENDOSULFAN Y Y 9.2 0.05 BENSUL 34356 ENDOSULFAN Y Y 9.2 0.05 BENSUL 34356 ENDOSULFAN SULFATE Y Y 9.2 0.05 BENSUL 34356 ENDOSULFAN Y Y 3.0 0.5 PCB212 34450 PCB-1222 Y Y Y 21 0.5 PCB223 34560 PCB-1222 Y Y Y 21 0.5 PCB242 34560 PCB-1222 Y Y Y 21 0.5 PCB242 34560 PCB-1224 Y Y Y 3.0 0.5 PCB242 34560 PCB-1224 Y Y Y 3.0 0.5 PCB243 34560 PCB-1224 Y Y Y 3.0 0.5 PCB244 35500 PCB-1248 Y Y Y 3.0 0.5 PCB245 35500 PCB-1248 Y Y Y 3.0 0.5 PCB246 35500 PCB-1248 Y Y Y 3.0 0.5 PCB247 34560 PCB-1248 Y Y Y 3.0 0.5 PCB248 35500 PCB-1248 Y Y Y 3.0	PHANTR 34461	PHENANTHRENE	Y	Y	0.5	100	10	7	2
246TCP 34821	PHENO 34894	PHENOL	Y	Y	9.2	200	10	10	20000
28DNT 34828 2,6-DINITROTOLUENE	PYR 34489	PYRENE	Y	Y	2.8	100	10	10	4000
## ACANIL 99075 ## ACHLOROANALINE N Y 7.3 100 10 10 10 100 DNOP 34596 DI-N-OCTYL PHTHALATE Y Y 15 100 10 10 10 — **NONCERTIFIED ANALYTES*** **MEXCL 38480 METHOXYCHLOR N Y 5.1 0.5 CLDANA 38348 CHLORDANE, ALPHA Y Y 5.1 0.5 CLDANA 38348 CHLORDANE, ALPHA Y Y 5.1 0.5 ALDRIN S9330 ALDRIN Y Y 4.7 0.05 ABHC 39337 BHC, A Y Y 4.7 0.05 BBHC 39338 BHC, B Y Y Y 4.7 0.05 BBHC 39338 BHC, B Y Y Y 4.7 0.05 BBHC 39330 BHC, B Y Y Y 4.7 0.05 BBHC 39330 DDD, PP Y Y Y 4.7 0.05 PPDDD 39310 DDD, PP Y Y Y 4.7 0.1 PPDDT 39300 DDT, PP Y Y Y 4.7 0.1 PPDDT 39300 DDT, PP Y Y Y 4.7 0.1 EPDDT 39300 DDT, PP Y Y Y 4.7 0.1 EPDDT 39300 DDT, PP Y Y Y 4.7 0.1 EPDDT 39300 DDT, PP Y Y Y 4.7 0.1 EPDDT 39300 DDT, PP Y Y Y 4.7 0.1 EPDDT 39300 DDT, PP Y Y Y 9.2 0.1 EPDDT 39300 DDT, PP	246TCP 34621	2,4,6-TRICHLOROPHENOL	Y	Y	4.2	100	10	10	2
NONCERTIFIED ANALYTES	260NT 34626	2,5-DINITROTOLUENE	Y	Y	0.79	200	10	10	_
NONCERTIFIED ANALYTES	4CANIL 99075	4-CHLOROANALINE	N	Y	7.3	100	10	10	100
MEXCL 39480 METHOXYCHLOR N Y 5.1 0.5 CLDANA 39348 CHLORDANE, ALPHA Y Y 5.1 0.5 CLDAN 39810 CHLORDANE, GAMMA Y Y 5.1 0.5 ALDRIN 39330 ALDRIN Y Y 4.7 0.05 BBHC 39338 BHC, A Y Y 4 0.05 BBHC 39338 BHC, B Y Y Y 4 0.05 DBHC 34259 BHC, D Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y 4 0.1 PPDDE 39320 DDE, PP Y Y 4 0.1 PPDDB 39340 DDE, PP Y Y 4 0.1 AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.1 BENSLF 34368 ENDOSULFAN A Y Y 9.2 0.1 ENDRIN 39390 DELDRIN Y Y 9.2 0.1 ENDRIN 39390 ENDRIN Y Y 9.2 0.5 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34371 PCB-1016 Y Y Y 2 0.05 PCB021 39480 PCB-1221 Y Y 9 21 0.5 PCB222 39492 PCB-1222 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 30 0.5 PCB242 39590 PCB-1248 Y Y 30 0.5 PCB254 39590 PCB-1248 Y Y 36 1 ENDRIN 34300 ENDRIN Y Y 36 1 TXPHEN 34900 TOXAPHENE Y Y 36 1 BENZID 39120 BENZIDINE Y N 10 BENZID 39120 BENZIDINE Y N 12 BENZID 39120 BENZIDINE Y	DNOP 34596	DI-N-OCTYL PHTHALATE	Y	Y		100	10	10	_
MEXCL 39480 METHOXYCHLOR N Y 5.1 0.5 CLDANA 39348 CHLORDANE, ALPHA Y Y 5.1 0.5 CLDAN 39810 CHLORDANE, GAMMA Y Y 5.1 0.5 ALDRIN 39330 ALDRIN Y Y 4.7 0.05 BBHC 39338 BHC, A Y Y 4 0.05 BBHC 39338 BHC, B Y Y Y 4 0.05 DBHC 34259 BHC, D Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y 4 0.1 PPDDE 39320 DDE, PP Y Y 4 0.1 PPDDB 39340 DDE, PP Y Y 4 0.1 AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.1 BENSLF 34368 ENDOSULFAN A Y Y 9.2 0.1 ENDRIN 39390 DELDRIN Y Y 9.2 0.1 ENDRIN 39390 ENDRIN Y Y 9.2 0.5 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34371 PCB-1016 Y Y Y 2 0.05 PCB021 39480 PCB-1221 Y Y 9 21 0.5 PCB222 39492 PCB-1222 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 30 0.5 PCB242 39590 PCB-1248 Y Y 30 0.5 PCB254 39590 PCB-1248 Y Y 36 1 ENDRIN 34300 ENDRIN Y Y 36 1 TXPHEN 34900 TOXAPHENE Y Y 36 1 BENZID 39120 BENZIDINE Y N 10 BENZID 39120 BENZIDINE Y N 12 BENZID 39120 BENZIDINE Y									
CLDANA 39348 CHLORDANE, ALPHA Y Y 5.1 0.5 CLDAN 39810 CHLORDANE, GAMMA Y Y Y 6.1 0.5 ALDRN 39830 ALDRIN Y Y 4.7 0.05 ABRC 39937 BHC, A Y Y 4 0.06 BBHC 39938 BHC, 8 Y Y 4 0.06 DBHC 34259 BHC, D Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y 4 0.1 PPDDE 39320 DDE, PP Y Y 4 0.1 PPDDE 39320 DDE, PP Y Y Y 4.7 0.1 PPDDT 39390 DDT, PP Y Y Y 4.7 0.1 AENSLE 34361 ENDOSULFAN A Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 39390 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR Y Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y Y 2 1 0.5 PCB212 39488 PCB-1221 Y Y Y 21 0.5 PCB223 39496 PCB-1232 Y Y Y 30 0.5 PCB244 39500 PCB-1245 Y Y 30 0.5 PCB254 39500 PCB-1254 Y Y 30 0.5 PCB254 39500 PCB-1256 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 PCRE7IN 34360 TOXAPHENE Y Y 36 1 PCRE7IN 34360 ENDRIN ALDEHYDE Y N 8 PNDME 34368 ENDRIN ALDEHYDE Y N 8 PNDME 34368 ENDRIN ALDEHYDE Y N 8 PNDME 34368 ENDRIN KETONE N Y S 8 0.1	NONCERTIFIED.	ANALYTES							
CLDANA 39348 CHLORDANE, ALPHA Y Y 5.1 0.5 CLDAN 39810 CHLORDANE, GAMMA Y Y Y 6.1 0.5 ALDRN 39830 ALDRIN Y Y 4.7 0.05 ABRC 39937 BHC, A Y Y 4 0.06 BBHC 39938 BHC, 8 Y Y 4 0.06 DBHC 34259 BHC, D Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y 4 0.1 PPDDE 39320 DDE, PP Y Y 4 0.1 PPDDE 39320 DDE, PP Y Y Y 4.7 0.1 PPDDT 39390 DDT, PP Y Y Y 4.7 0.1 AENSLE 34361 ENDOSULFAN A Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 39390 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR Y Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y Y 2 1 0.5 PCB212 39488 PCB-1221 Y Y Y 21 0.5 PCB223 39496 PCB-1232 Y Y Y 30 0.5 PCB244 39500 PCB-1245 Y Y 30 0.5 PCB254 39500 PCB-1254 Y Y 30 0.5 PCB254 39500 PCB-1256 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 PCRE7IN 34360 TOXAPHENE Y Y 36 1 PCRE7IN 34360 ENDRIN ALDEHYDE Y N 8 PNDME 34368 ENDRIN ALDEHYDE Y N 8 PNDME 34368 ENDRIN ALDEHYDE Y N 8 PNDME 34368 ENDRIN KETONE N Y S 8 0.1									
CLDAN 39810 CHLORDANE, GAMMA Y Y Y 5.1 0.5 ALDRIN 39330 ALDRIN Y Y Y 4.7 0.05 BBHC 39337 BHC, A Y Y Y 4 0.05 BBHC 39338 BHC, B Y Y Y 4 0.05 DBHC 34259 BHC, D Y Y Y 4 0.05 PPDDD 38310 DDD, PP Y Y Y 4 0.1 PPDDT 39300 DDE, PP Y Y Y 4.7 0.1 PPDDT 39300 DDE, PP Y Y Y 4.7 0.1 PPDDT 39300 DDIE, PP Y Y Y 4.7 0.1 AENSLE 34351 ENDOSULFAN A Y Y 9.2 0.05 BENSLE 34356 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 39300 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y Y 21 0.5 PCB016 34671 PCB-1016 Y Y Y 21 0.5 PCB213 39488 PCB-1221 Y Y Y 21 0.5 PCB223 39492 PCB-1232 Y Y Y 30 0.5 PCB244 39504 PCB-1248 Y Y 30 0.5 PCB254 39504 PCB-1248 Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y 30 0.5 PCB254 39504 PCB-1250 Y Y Y 36 1 TXPHEN 34408 ENDRIN ENDRIN Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 TXPHEN 34408 ENDRIN ALDEHYDE Y N 36 1 TXPHEN 34408 ENDRIN ALDEHYDE Y N 36 1 PCB10 39120 BENZIDINE Y N 10 BENZID 39120 BENZIDINE Y N 10 BENZID 39120 BENZIDINE Y N 10 BENZID 39120 BENZIDINE Y N 10 KEND 78008 ENDRIN ALDEHYDE Y N 12 KEND 78008 ENDRIN KETONE N Y Y 8 0.1									
ALDRN 39330 ALDRIN Y Y 4.7 0.05 ABNC 39337 BHC, A Y Y 4 0.05 BBHC 39338 BHC, B Y Y 4 0.05 DBHC 34259 BHC, D Y Y 4 0.05 PPDDD 39310 DDD, PP Y 4 0.1 PPDDE 39320 DDE, PP Y Y 4.7 0.1 PPDDE 39330 DDT, PP Y Y 4.7 0.1 DLDRN 39380 DDIELDRIN Y Y 4.7 0.1 ALRISLF 34361 ENDOSULFAN A Y Y 9.2 0.5 BENSLF 34358 ENDOSULFAN B Y Y 9.2 0.1 ENDRIN 39390 ENDRIN Y Y 7.6 0.1 ENDRIN 39390 ENDRIN Y Y 7.6 0.1 ENDRIN 39390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 PCB016 34671 PCB-1016 Y Y Y 2 1 0.5 PCB221 39488 PCB-1221 Y Y 2 1 0.5 PCB222 39492 PCB-1232 Y Y Y 30 0.5 PCB223 39492 PCB-1232 Y Y Y 30 0.5 PCB242 39490 PCB-1248 Y Y 30 0.5 PCB243 39500 PCB-1248 Y Y 30 0.5 PCB254 39500 PCB-1248 Y Y 36 1 TYPHEN 39400 TOXAPHENE Y Y 36 1 BENZID 39120 BENZIDINE Y N 10 RENDRIN A4386 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y N 2									
ABHC 39337 BHC, A Y Y Y 4 0.05 BBHC 34358 BHC, B Y Y Y 4 0.06 DBHC 34259 BHC, D Y Y Y 4 0.06 PPDDD 38310 DDD, PP Y Y 4 0.1 PPDDE 38320 DDE, PP Y Y Y 4.7 0.1 PPDDT 38300 DDT, PP Y Y Y 4.7 0.1 PPDDT 38390 DDIELDRIN Y Y Y 4.7 0.1 AENSLE 34361 ENDOSULFAN A Y Y 9.2 0.05 BENSLE 34356 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN B Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.8 0.1 HPCLE 39410 HEPTACHLOR Y Y Y 7.8 0.1 HPCLE 39420 HEPTACHLOR Y Y Y 2 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34571 PCB-1016 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB222 39492 PCB-1232 Y Y Y 21 0.5 PCB232 39492 PCB-1242 Y Y Y 30 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1244 Y Y 30 0.5 PCB248 39500 PCB-1244 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 ENDRIN 34368 ENDRIN ALDEHYDE Y N 16 BENZIO 39120 BENZIDINE Y N 10 ENDRIN 34368 ENDRIN ALDEHYDE Y N 18 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN ALDEHYDE Y N 2 KEND 78008 ENDRIN ALDEHYDE Y N 2 KEND 78008 ENDRIN ALDEHYDE Y N 2 KEND 78008 ENDRIN KETONE									
BBHC 39338 BHC, B Y Y Y 4 0.05 DBHC 34259 BHC, D Y Y Y 4 0.05 PPDDD 39310 DDD, PP Y Y Y 4 0.1 PPDDT 39300 DDE, PP Y Y Y 4.7 0.1 PPDDT 39300 DDT, PP Y Y Y 4.7 0.1 DLDRN 39390 DDIELDRIN Y Y Y 4.7 0.1 AENSLF 34351 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENCOSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.8 0.1 ENDRIN 38390 ENDRIN Y Y 7.8 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEFTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34571 PCB-1016 Y Y Y 21 0.5 PCB232 39482 PCB-1221 Y Y Y 21 0.5 PCB232 39482 PCB-1232 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 30 0.5 PCB243 39500 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1244 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 ENDRIN 34368 ENDRIN ALDEHYDE Y N 8 ENDRIN 34368 ENDRIN ALDEHYDE Y N 8 KEND 78008 ENDRIN KETONE N Y N 2 KEND 78008 ENDRIN KETONE			_		4.7				
DBHC 34259 BHC, D Y Y 4 0.05 PPDDD 38310 DDD, PP Y Y Y 4 0.1 PPDDE 38320 DDE, PP Y Y Y 4.7 0.1 PPDDE 38320 DDE, PP Y Y Y 4.7 0.1 PPDDT 38330 DDT, PP Y Y 9.2 0.1 DLDRN 38380 DDIELDRIN Y Y 4.7 0.1 AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34366 ENCOSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR POXIDE Y Y 4 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB213 39488 PCB-1221 Y Y 21 0.5 PCB222 39492 PCB-1232 Y Y Y 21 0.5 PCB223 39492 PCB-1232 Y Y Y 21 0.5 PCB232 39492 PCB-1248 Y Y 30 0.5 PCB242 39496 PCB-1248 Y Y 30 0.5 PCB242 39496 PCB-1248 Y Y 36 1 PCB260 39508 PCB-1254 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 36 1 ENDRIN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1					4				
PPDDD 38310 DDD, PP Y Y Y 4 0.1 PPDDE 38320 DDE, PP Y Y Y 4.7 0.1 PPDDT 38330 DDT, PP Y Y Y 4.7 0.1 DLDRN 38380 DDIELDRIN Y Y 4.7 0.1 ALRISLF 34381 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR Y Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB021 39480 PCB-1018 Y Y 2 1 0.5 PCB222 39492 PCB-1221 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB242 39496 PCB-1248 Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y 30 0.5 PCB248 39500 PCB-1254 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 36 1 ENDRIN 34368 ENDRIN ALDEHYDE Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 36 1 ENDRIN 34368 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1		BHC, B			4		0.05		
PPDDE 39320 DDE, PP Y Y Y 9.2 0.1 PPDDT 39300 DDT, PP Y Y Y 9.2 0.1 DLDRN 39380 DDIELDRIN Y Y Y 0.7 0.1 AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34365 ENOCSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 39390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR Y Y 7 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y Y 21 0.5 PCB16 34671 PCB-1016 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39492 PCB-1248 Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y 30 0.5 PCB260 39508 PCB-1254 Y Y 36 1 PCB260 39508 PCB-1254 Y Y 36 1 PCB260 39508 PCB-1254 Y Y 36 1 PCB260 39508 PCB-1250 Y Y 36 1 ENDRIN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1		•			4				
PPDDT 38300 DDT, PP Y Y 9.2 0.1 DLDRN 39380 DDIELDRIN Y Y 4.7 0.1 AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN SULFATE Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34571 PCB-1016 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB222 39492 PCB-1222 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 36 1 PCB256 39504 PCB-1254 Y Y Y 36 1 PCB260 39508 PCB-1250 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 BENZIO 39120 BENZIDINE Y N 10 ENDRN 34368 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y Y 8 0.1		DDD, PP			4				
DLDRN 39380 DOIELDRIN Y Y 4.7 0.1 AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN Y Y 9.2 0.1 HPCL 39410 HEPTACHLOR Y Y 7.6 0.1 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 4 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB16 34871 PCB-1018 Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y 21 0.5 PCB232 39492 PCB-1242 Y Y Y 30 0.5 PCB248 39504 PCB-1248 Y Y Y 36<	_	DDE, PP			4.7				
AENSLF 34361 ENDOSULFAN A Y Y 9.2 0.05 BENSLF 34356 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34361 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANÉ) Y Y 4 0.05 PCB016 34571 PCB-1016 Y Y Y 21 0.5 PCB121 39488 PCB-1221 Y Y Y 21 0.5 PCB222 39492 PCB-1232 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 36 1 PCB260 39508 PCB-1250 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 ENDRN 34360 ENDRIN ALDEHYDE Y N 10 ENDRN 34360 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y Y 8 0.1		DDT, PP			9.2		0.1		
BENSLF 34358 ENDOSULFAN B Y Y 9.2 0.1 ESFSO4 34351 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 39390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y Y 1 0.5 PCB016 34671 PCB-1016 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 36 1 PCB260 39508 PCB-1250 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 TXPHEN 39400 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	DLDRN 39380	DOIELDRIN	-	-	4.7		0,1		
ESFSO4 34351 ENDOSULFAN SULFATE Y Y 9.2 0.1 ENDRIN 38390 ENDRIN Y Y 7.6 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34571 PCB-1016 Y Y Y 21 0.5 PCB212 39488 PCB-1221 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 36 1 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y Y 8 0.1	AENSLF 34361	ENDOSULFAN A	Y	Υ.	9.2		0.05		
ENDRIN 39390 ENDRIN Y Y 7.8 0.1 HPCL 39410 HEPTACHLOR Y Y Y 2 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34571 PCB-1016 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 36 1 PCB260 39508 PCB-1260 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34360 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y Y 8 0.1	BENSLF 34356	ENDOSULFAN B	Y	Y	9.2		0.1		
HPCL 39410 HEPTACHLOR Y Y Y 5 0.05 HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 30 0.5 PCB268 39508 PCB-1254 Y Y Y 36 1 PCB280 39508 PCB-1260 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	ESFSO4 34351	ENDOSULFAN SULFATE	Y	Y	9.2		0.1		
HPCLE 39420 HEPTACHLOR EPOXIDE Y Y 5 0.05 GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y 7 21 0.5 PCB221 39488 PCB-1221 Y Y 21 0.5 PCB222 39492 PCB-1232 Y Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 30 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 36 1 PCB260 39508 PCB-1254 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 36 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y Y 8 0.1	ENORIN 39390	ENDRIN	Y	Y	7.6		0.1		
GBHC 34340 BHC, G (LINDANE) Y Y 4 0.05 PCB016 34671 PCB-1016 Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y 36 1 PCB250 39508 PCB-1250 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34360 ENDRIN ALDEHYDE Y N 8 NDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	HPCL 39410	HEPTACHLOR	Y	Y	2		0.05		
PCB016 34871 PCB-1016 Y Y 21 0.5 PCB221 39488 PCB-1221 Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y 36 1 PCB250 39508 PCB-1250 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0,1	HPCLE 39420	HEPTACHLOR EPOXIDE	Y	Y	5		0.05		
PCB221 39488 PCB-1221 Y Y 21 0.5 PCB232 39492 PCB-1232 Y Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y Y 36 1 PCB250 39508 PCB-1250 Y Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	GBHC 34340	BHC, G (LINDANÉ)	Y	Y	4		0.05		
PCB232 39492 PCB-1232 Y Y 21 0.5 PCB242 39496 PCB-1242 Y Y 30 0.5 PCB248 39500 PCB-1248 Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y 36 1 PCB280 39508 PCB-1250 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34368 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PCB016 34671	PCB-1015	Y	Y	21		0.5		
PC8242 39496 PCB-1242 Y Y 30 0.5 PC8248 39500 PCB-1248 Y Y 30 0.5 PC8254 39504 PCB-1254 Y Y 36 1 PC8250 39508 PCB-1250 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34360 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PCB221 39488	PCS-1221	Y	Y	21		0.5		
PCB248 39500 PCB-1248 Y Y 30 0.5 PCB254 39504 PCB-1254 Y Y 36 1 PCB250 39508 PCB-1250 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PCB232 39492	PCB-1232	Y	Y	21		0.5		
PC8254 39504 PCB-1254 Y Y 36 1 PC8260 39508 PCB-1260 Y Y 38 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PC8242 39496	PCB-1242	Y	· Y	30		0.5		
PC8280 39508 PCB-1260 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PCB248 39500	PCB-1248	Y	Y	30		0.5		
PC8280 39508 PC8-1260 Y Y 36 1 TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34366 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PCB254 39504	PCB-1254	Y	Y	36		1		
TXPHEN 39400 TOXAPHENE Y Y 38 1 BENZID 39120 BENZIDINE Y N 10 ENDRN 34368 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	PC8250 39508			Y					
BENZIO 39120 BENZIDINE Y N 10 ENDRN 34368 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	TXPHEN 39400	TOXAPHENE	Y	Y			1		
ENDRN 34386 ENDRIN ALDEHYDE Y N 8 NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRIN KETONE N Y 8 0.1	BENZID 39120	BENZIDINE	Y	N	10				
NNDME 34438 N-NITROSODIMETHYLAMINE Y N 2 KEND 78008 ENDRINKETONE N Y 8 0.1	ENDRN 34366	ENDRIN ALDEHYDE	Y	N					
KEND 78008 ENDRIN KETONE N Y 8 0.1			· Y	N					
			N	Y			0.1		
		1,2-DIPHENYL HYDRAZINE							

TABLE 3-6 (cont'd)

SHORT			PRIORITY	HAZARDOUS	ι	AMAHTARI	CLP		-
NAME	STORET	LONG NAME	POLL	SUBST, LIST	CRL	UCL	CRDL	PQL	HBN
SB	(200.7)	ANTIMONY	Y	Y	38	6000	80	30	10
BA		BARIUM	N	Y	5	10000	200	20	1000
86		BERYLLIUM	Y	· Y	5	1000	5	3	0.007
CD		САВМІЦМ	Y	Y	4	5000	5	1	10
CR		CHRCMIUM	Y	Y		50000	10	10	50
NI		NICKEL	Y	Y	34.3	12500	40	50	700
PS	SD20 (239.2)	LEAD	Y	Y	1_26	100	5	10	50
AG	SD23 (272_2)	SILVER	Y	Y	0.25	10	10	2	50
AS	SD22 (208.2)	ARSENIC	Y	Y	2.54	100	10	10	500
SE	SD21 (270.2)	SELENIUM	Y	Y	3.02	100	5	20	10
НG	\$801 (245.1)	MERCURY	N	Y	0.234	19	0.2	2	2
METH	OD UW14 (6	09): NITROAROMATICS (E	XPLOSIVES) IN WATER I	BY HPLC				,	
НМХ		CYCLOTETRAMETHYL	ENETETRANITRAMINE		1.65	28.9			
RDX		CYCLONITE			2.11	43.9			
TETRY	/L	NITRAMINE		-	0.558	44.5			
246TN	Ť	2,4,6-TRINITROTOLUE	ene.	•	0.588	40.2			
260NT	r	2,6-DINITROTOLUENE		<u>:</u>	1.15	52.4			

0.612

CLASSICAL CHEMISTRY

240NT

TOC	(415.2)	TOTAL ORGANIC CARBON	N	N .	1 mg/L
TOX	(9020)	TOTAL ORGANIC HALOGENS	N	N	5 սգմև
TSS	(160.2)	TOTAL SUSPENDED SOLIDS	N	N	2 mg/L
TDS	(160.1)	TOTAL DISSOLVED SOLIDS	N	N	5 mg/L
COD	(410.4)	CHEMICAL OXYGEN DEMAND	N	N	20 mg/L

CAL: CERTIFIED REPORTING LIMIT

UCL: UPPER CERTIFIED LIMIT

CROL: CLP CONTACT REQUIRED DETECTION LIMIT

PQL: PRACTICAL QUANTITATION LIMIT

HBN: HEALTH BASE NUMBER

CLP: CONTACT LABORATORY PROGRAM

2.4-DINITROTOLUENE

SYNONYMS

p-CHLORCANALINE = 4-CHLOROANALINE
p-CHLORO-m-CRESOL = 3-METHYL-4-CHLOROPHENOL
m-CRESOL = 3-METHYL-HENOL
o-CRESOL = 2-METHYL-PHENOL
p-CRESOL = 4-METHYL-PHENOL
o-DICHLORBENZENE = 1,2-DICHLOROBENZENE
m-DICHLORBENZENE = 1,3-DICHLOROBENZENE
p-DICHLORBENZENE = 1,4-DICHLOROBENZENE
4,6-DINITRO-o-CRESOL = 2-METHYL-4,8-DINITROPHENOL
2-NITROANALINE AVAILABLE USING CLP METHOD
p-NITROANALINE = 4-NITROANALINE
p-NITROPHENOL = 4-NITROPHENOL

TABLE 3-6 (cont'd)

PROPOSED RFI ANALYTICAL PROGRAM FOR SOILS

METHOD LM19 (8240); VOLATILE ORGANICS IN SOIL BY GC/MS FOR BOTH PRIORITY POLLUTANTS AND HAZARDOUS SUBSTANCE LIST COMPOUNDS (a)

SHORT		PRIORITY	HAZARDOUS	ŲS	AMAHTA	CLP		
NAME STORET	LONG NAME	POLL.	SUBST. LIST	CRL	ŲCL	CRDL	PQL	HBN
				UNITS AR	E IN UG/KG			
111TCE 98892	1,1,1-TRICHLOROETHANE	Y	Y	4.4	200	5	5	1E+6
112TCE 98693	1,1,2-TRICHLORGETHANE	Y	Y	5.4	200	5	5	1E+5
11DCE 98789	1,1-0ICHLOROETHENE	Y	Y	3.9	100	5	5	1E+4
11DCLE 98583	1,1-DICHLOROETHANE	Y	Y	2.3	200	5	5	8000
12DCE 97721	1,2-DICHLOROETHENE			3	100	5		
12DCLE 98884	1,2-DICHLOROETHANE	Y	Y	1.7	200	5	5	8000
12DCLP 98790	1,2-DICHLOROPROPANE	Y	Y	2.9	200	5		
ACET 97020	ACETONE	N	Y	17	100	10	100	1E+8
BRDCL 98783	BROMODICHLOROMETHÂNE	Y	Y	2.9	200	5	5	1E+6
C13DCP-98791	CIS-1,3-DICHLOROPROPENE	Y	Y	3.2	248	5	10	4000
C2AVE 97723	VINYL ACETATE	N	Y	3,2	100	10		
C2H3CL 98795	VINYL CHLORIDE	Y	Y	6.2	200	10	10	300
C2H5CL 98786	CHLOROETHANE	γ	Y	12	200	10	10	_
C5H6 98699	BENZENE	Y	Y	1.5	200	5	5	2E+4
CCL3F 98794	TRICHLOROFLUOROMETHANE	Y	N	5.9	100		5	1E+6
CCL4 98580	CARBON TETRACHLORIDE	Ÿ	Y	7	200	5	5	5E+4
CH2CL2 98689	METHYLENE CHLORIDE	Ÿ	Ÿ	12	200	. 5	5	9E+4
CH3BR 98785	BROMOMETHANE	Ÿ	Ý	5.7	200	10	10	1E+5
CH3CL 98787	CHLOROMETHANE	Ÿ	Ý	8.8	100	10	10	5E+6
CHBR3 98784	BROMOFORM	Ÿ	Ÿ	6.9	200	5	5	1E+6
CHCL3 98682	CHLOROFORM .	Ÿ	Ÿ	0.87	200	5	5	1E+5
CLC6H5 98681	CHLOROBENZENE	Ý	Ÿ	0.86	200	5	5	3E+4
CS2 97472	CARBON DISULFIDE	Ň	Ý	4.4	100	5	5	1E+8
002 01-72	DICHLORODIFLUOROMETHANE (c		•	4.4		•	5	1E+6
DBRCL 98788	DIBROMOCHLOROMETHANE	, N	Y	3.1	200	5	•	12.0
ETC6H5 98688	ETHYLBENZENE	Ϋ́	÷	1.7	200	5	5	1E+6
MEC8H5 98691	TOLUENE	Ý	Ý	0.78	200	5	5	1E+6
MEK 98801	METHYL ETHYL KETONE	Ň	Ý	70	200	10	100	1E+6
·	METHYL ISOBUTYL KETONE		Ý		100	10		1E+8
MIBK 98696	METHYL-N-BUTYL KETONE	N	Y	27		10	100	15+0
MNBK 97722	···•····•	N	•	32	100			
STYR 97734	STYRENE	N	Y	2.6	200	5	_	
T	TRANS-1,2-DICHLOROETHYLENE	· ·				_	5	1E+6
T13DCP 98792	TRANS-1,3-DICHLOROPROPENE	N	Y	2.8	152	5	10	4000
	1,1,1,2-TETRACHLOROETHANE (d	•					0,1	3E+5
TCLEA 98793	1,1.2.2-TETRACHLOROETHANE	Y	Y	2.4	200	5	5	4E+4
TCLEE 98690	TETRACHLOROETHENE	Y	Y	0.81	200	5	5	1E+5
TRCLE 98694	TRICHLOROETHENE	Y	Y	2.8	200	5	5	6E+4
XYLEN 97724	XYLENE	N	Y	1.5	200	5	5	1E+6
		, i						
NONCERTIFIED A	ANALYTES							
G1 400 Anese.	DIOUI ODODENZENE GOTAL	<i>'</i> .						
CL2BC 98803	DICHLOROBENZENE (TOTAL)						_	45.5
ACROL 97028	ACROLEIN '					•	5	1E+6
ACRYLO 97029	ACRYLONITRILE						5	1000
2CLEVE 98796	2-CHLOROETHYLVINYL ETHER							

TABLE 3-6 (cont'd)

METHOD LM18 (8270); EXTRACTABLE ORGANICS (BNAs) IN SOIL BY GC/MS FOR BOTH PRIORITY POLLUTANTS AND HAZARDOUS SUBSTANCE LIST COMPOUNDS

SHORT		PRIORITY	HAZARDOUS	US	AMAHTA	CLP		
NAME STORET	LONG NAME	POLL.	SUBST. LIST	CRL	UCL	CRDL	PQL	HBN
				UNITS ARI	E IN UG/G			
124TCB 99492	1,2,4-TRICHLOROSENZENE	Y	Y	0,04	13	0.3	0.01	1000
12DCLB 99470	1,2-DICHLOROBENZENE	Y	Y	0.11	13	0.3	0,01	1000
13DCLB 99472	1,3-DICHLOROBENZENE	Y	Y	0.13	13	0.3	0.005	1000
14DCLB 99469	1,4-DICHLOROBENZENE	Y	Y	0.098	13	0.3	0.005	400
245TCP 97732	2,4,5-TRICHLOROPHENOL	N	Y	0.10	13	2	2	1000
24DCLP 99498	2,4-DICHLOROPHENOL	Y	Y	0.18	13	0.3	0.3	200
24DMPN 99499	2,4-DIMETHYLPHENOL	Y	Y	0.69	1.3	0.3	0.3	400
24DNP 99495	2,4-DINITROPHENOL	Y	Y	2.1	6.7	2	2	200
24DNT 99474	2.4-DINITROTOLUENE	Υ .	Y	Q.14	13	0,3	0.3	1
2CLP 99497	2-CHLOROPHENOL	Y	Y	90.0	13	0.3	0.3	400
2CNAP 29464	2-CHLORONAPHTHALENE	Y	Y	0.038	13	0,3	0.3	_
2MNAP 97733	2-METHYLNAPHTHLENE	N	Y	0.049	6.7	0.3		
2MP 97461	2-METHYLPHENOL	N	Y	0.029	1.3	0.3	0.3	1000
2NANIL 97728	2-NITROANILINE	N	Y	0.062	13	2		
2NP 99495	2-NITROPHENOL	Y	Y	0.14	13	0.3		
33DCBD 99471	3,3-DICHLOROBENZIDINE	Y	Y	6.3	13	0.7	1	2
	3-METHYLPHENOL (e)						0.3	1000
3NANIL 9772	3-NITROANILINE	N	Y	0.45	13	2		
46DN2C 99686	2-METHYL-4,6-DINITROPHENOL	Y	Y	0.56	13	2	5	80
48RPPE 99462	4-BROMOPHENYLPHENYL ETHER	Y	Y	0.033	6.7	0.3	0.3	
4CL3C 99683	3-METHYL-4-CHLOROPHENOL	Y	Y	0.095	13	0.3	0.3	1000
4CLPPE 99465	4-CHLOROPHENYLPHENYL ETHE	R Y	Y	0.033	13	0.3	•	
4MP 97460	4-METHYLPHENOL	N	Y	0.24	1.3	0.3	0.3	1000
4NANIL 97730	4-NITROANALINE	N	Y	0.41	13	2	1	_
4NP 99496	4-NITROPHENOL	Y	. Y	1.4	33	2	3	_
ANAPNE 99450	ACENAPHTHENE	Y	Y	0.036	13	0.3		
ANAPYL 99451	ACENAPHTHYLENE	Y	Y	0.033	6.7	0.3		
ANTRC 99452	ANTHRACENE	Y	Y	0.033	13	0.3	0.1	40
B2CEXM 99459	BIS(2-CHLOROETHOXY) METHANE	¥	Y	0.059	13	0.3	0.3	
B2C1PE 99461	BIS(2-CHLOROISOPROPYL) ETHER	Υ	Y	0.2	13	0.3	0.3	90
B2CLEE 99458	BIS(2-CHLOROETHYL) ETHER	Y	Y	0,033	6.7	0.3	0.3	0.08
B2EHP 99460	BIS(2-EHTYLHEXYL) PHTHALATE	Y	Y	0.62	13	0.3	0.3	50
BAANTR 99453	BENZO [A] ANTHRACENE	Y	Y	0.17	13	0.3	0.009	0.2
8APYR 99456	BENZO [A] PYRENÉ	Y	Y	0.25	13	0.3	0.02	0.06
BBFANT 99454	BENZO [8] FLUORANTHENE	Y	. Y	0.21	3.3	0.3	0.02	0.4
BBZP 99463	BUTYLBENZYL PHTHALATE	Y	Y	0.17	6.7	0.3	0.3	3000
BENZOA	BENZOIC ACID	N	Y			2		
BGH!PY 99691	BENZO [G,H,I] PERYLENE	Y	Y	0.25	3.3	0.3		
BKFANT 99454	BENZO [K] FLUORANTHENE	Y	Y	0.066	0.67	0.3	0.02	80
BZALC 97731	BENZYL ALCOHOL	N	Y	0.19	1	0.3		
CHRY 99690	CHRYSENE	Y	Y	0,12	36.7	0.3	0.02	4
CL6BZ 99478	HEXACHLOROSENZENE	: Y	Y	0.033	8.7	0.3	0.63	0.4
CL6CP 98647	HEXACHLOROCYCLOPENTADIEN	ΕÝ	Y	6.2	13	0.3	0.3	800
CL6ET 99480	HEXACHLOROETHANE	. Α	Y	0.15	13	0.3	0.3	80
DBAHA 99466	DIBENZ (A.H) ANTHRACENE	Y	Y	0.21	13	0.3	0.02	0,01
DBZFUR 97727	DIBENZOFURAN	N	Y	0.035	8.7	0.3	-	•
DEP 99472	DIETHYL PHTHALATE	Y	Ÿ	0.24	6.7	0.3	0.3	1000
DMP 99473	DIMETHYL PHTHALATE	Ÿ	Ý	0.17	13	0.3	0.3	1000
DNBP 99457	DI-N-BUTYL PHTHALATE	Ÿ	Ý	0.061	3.3	0.3	0.3	3000
FANT 99689	FLUCRANTHENE	Ý	Ÿ	0.068	13	0.3	0,3	500
FLRENE 99692	FLUORENE	Ÿ	Y Y	0.033	13	0.3	-1-	
HC8D 99479	HEXACHLOROBUTADIENE	Ÿ.	Ý	0.23	13	0.3	0,005	90
ICOPYR 99482	INDENO [1,2,3-CD] PYRENE	Y Y	Ý	0.29	13	0.3	0.03	40
IVOTO II TOTAL	waria fraagal ingin	•	•			V.9	2.00	

TABLE 3-6 (cont'd)

SHORT		PRIORITY	HAZARDOUS	=	SATHAMA	CLP		
NAME STORET	LONG NAME	POLL	SUBST. LIST	CAL	UCL	CRDL	PQL	HBN
ISOPHR 99483	ISOPHORONE	Y	Y	0.033	13	0.3		
NAP 99696	NAPHTHALENE	Y	Y	0.037	3.3	0.3	0.005	1000
NB 99485	NITROBENZENE	Y	Y	0.046	13	0,3	0.3	40
NNDNP 99487	N-NITROSO, DI-N-PROPYLAMINE	Y	Y	0.2	13	0.3	0.3	0.1
NNDPA 99488	N-NITROSODIPHENYLAMINE	Y	Y	0.19	13	2,0	0.3	100
PCP 99682	PENTACHLOROPHENOL	Y	Y	1.3	5.7	2	2	1000
PHANTR 99489	PHENANTHRENE	Y	Y	0.033	13	0.3	0.5	40
PHENO 99885	PHENOL	Y	Y	0.11	3,3	0,3	0.3	1000
PYR 99490	PYRENE	Y	Y	0.033	3.3	0.3	0.3	1000
246TCP 99684	2,4,5-TRICHLOROPHENOL	Y	Y	0.17	13	0.3	0.6	40
260NT 9947	2.6-DINITROTOLUENE	Y	Y	0,085	13	0.3	0.3	_
4CANIL 99726	4-CHLOROANALINE	N	Y	0.81	3.3	0.3	0.3	300
DNOP 99476	DI-N-OCTYL PHTHALATE	Y	Y	0.19	6.7	9.3	0.3	_
NONCERTIFIED	ANALYTES							
MEXCL 97589	METHOXYCHLOR	N	Y	0,33		5		
CLDANA 97757	CHLORDANE ALPHA	Ÿ	Ý	0.33		5		
CLDAN 97768	CHLORDANE, GAMMA	Ÿ	Ý	0.33		5		
ALDRN 98356	ALDRIN	Ý	Ý	0.33		0.5		
ABHC 98357	BHC, A	Ÿ	Y	0.27		0.5		
BBHC 98358	BHC, B	Y	Y	0.27		0.5		
DBHC 98359	BHC, D	Ÿ	Ý	0.27		0.5		
PPDDD 98362	DDD. PP	Y	Ÿ	0.3		1		
PPDDE 98383	DDE. PP	Ý	Y	0.31		1		
PPDDT 98364	DDT, PP	Y	Y	0,31		1		
DLDRN 98365		Y	Y	0.31		1		
AENSLF 98366	ENDOSULFAN A	Y	Y	0.62		0.5		
BENSLF 98367	ENDOSULFAN B	Y	Y	0.62		1		
ESFSO4 98368	ENDOSULFAN SULFATE	Y	Y	0.62		1		
ENDRIN 98369	ENDRIN	Y	Y	0.45		1		
HPCL 98371	HEPTACHLOR	Y	Y	0.13		0.5		
HPCLE 98372	HEPTACHLOR EPOXIDE	Y	Y	0.33		0.5		
GBHC 98360	BHC, G (LINDANE)	Y	Y	0.27		0.5		
PCB016 98140	PC8-1016	Y	Y	1.4		5		
PCB221 98351	PCB-1221	Y	Y	1.4		5		
PCB232 98352	PC8-1232	Y	Y	1.4		5		
PCB242 98353	PC8-1242	Y	Y	1.4		5		
PC8248 98436	PCB-1248	Y	Y	20		6		
PCB254 98354	PCB-1254	Y	Y	2.3		10		
PC8260 98139	PC8-1260	Υ	Y	2.6		10		
TXPHEN 9837	TOXAPHENÉ	Y	Y	2.5		10		
8ENZID 9945	BENZIDINE	Y	N	0.85				
ENDRN 98370		Ϋ́	N	0.53	_			
NNDME 9948	N-NITROSODIMETHYLAMINE	′ Y	N	0.14	-			
KEND 9772		N	Y	0.53		1		
12DPH 9947 7	1,2-DIPHENYL HYDRAZINE	Y	N	0.14				

TABLE 3-6 (cont'd)

		SOL	

SHORT			PRIORITY	HAZARDOUS	บ	SATHAMA	CLP		
NAME	METHOD	LONG NAME	POLL	SUBST. LIST	CRL	UCL	CRDL	PQL	HBN
					UNITS AF	REIN UG/G			
S8	JS11	YNOMITHA	Y	Y	3.8	5000	12	20	30
BA	(6010)	BARIUM	N	Y	29.6	200	40	1	1000
8E		BERYLLIUM	Y	Y	1.86	20	1	0.2	0.1
CD		CADMIUM	Y	Y	3.05	20	1	2	40
CR		CHROMIUM	Y	Y	12.7	5000	2	4	400
NI		NICKEL	Y	Y	12.8	5000	8	3	1000
TL		THALLIUM	Y	Y	31.3	5000	2	20	6
PS	JD17 (7421)	LEAD	Y	Y	0.177	10	1	2	_
AG	JD18 (7761)	SILVER	Y	Y	0.025	1	2	4	200
AS	JD19 (7060)	ARSENIC	Y .	Υ	0.25	10	2	30	0.5
SE	JD15 (7740)	SELENIUM	Y	Y	0.25	10	1	40	200
HG	JB01 (7471)	MERCURY	N	Y	0.05	1	0,04	0.1	20
TCLP	METALS								
BA	5810	BARIUM	N	γ ·	5	10000	200	20	1000
CD	(200.7)	CADMIUM	Y	Y	4	5000	5	1	10
CR		CHROMIUM	Y	Y	6	50000	10	10	50
PB	SD20 (239.2)	LEAD	Y	Y	1.26	100	5	10	50
AG	SD23 (272.2)	SILVER	Y	Y	0.25	10	10	2	50
AS	SO22 (205,2)	ARSENIC	Y	Y	2.54	100	10	10	500
SE	SD21 (270.2)	SELENIUM	Y	Y	3.02	100	5	20	10
HG	SB01 (245.1)	MERCURY	N	Y	0.234	10	0.2	2	2

TABLE 3-6 (cont'd)

METHOD LW12 (8090); NITROAROMATICS (EXPLOSIVES) IN SOIL BY HPLC

SHORT		PRIORITY	HAZARDOUS	U	SATHAMA	CLP		
NAME	LONG NAME	POLL.	SUBST. LIST	CRL	UCL	CRDL	PQL	HBN
				UNITS AF	RE IN UG/G			
24DNT	2,4-DINITROTOLUENE			0.424	21.2	0.938		
26DNT	2,8-DINITROTOLUENE			0.524	26.2	0.977		
HMX	CYCLOTETRAMETHYLENETETR	ANITRAMINE		0.666	33.3	1.000		
RDX	CYCLONITE			0.587	21.9	0.929		
TETRYL	NITRAMINE			0.731	20.2	1.130		
248TNT	2,4,6-TRINITROTOLUENE			0.458	22.8	1.010		

CLASSICAL CHEMISTRY

TRPH (9771) TOTAL PETROLEUM HYDROCARBONS
CEC (f) CATION EXCHANGE CAPACITY

CRL: CERTIFIED REPORTING LIMIT UCL: UPPER CERTIFIED LIMIT

CROL: CLP CERTITFIED REPORTING DETECTION LIMIT

PQL: PRACTICAL QUANTITATION LIMIT

HBN: HEALTH BASE NUMBER

SYNONYMS

p-CHLOROANALINE = 4-CHLOROANALINE
p-CHLORO-m-CRESOL = 3-METHYL-4-CHLOROPHENOL
m-CRESOL = 3-METHYLPHENOL
o-CRESOL = 2-METHYLPHENOL
p-CRESOL = 4-METHYLPHENOL
o-DICHLORBENZENE = 1,2-DICHLOROBENZENE
m-DICHLORBENZENE = 1,3-DICHLOROBENZENE
p-DICHLORBENZENE = 1,4-DICHLOROBENZENE
4,6-DINITRO-o-CRESOL = 2-METHYL-4,6-DINITROPHENOL
2-NITROANALINE AVAILABLE USING CLP METHOD
p-NITROANALINE = 4-NITROANALINE
p-NITROPHENOL = 4-NITROPHENOL

⁽a) Non-target compounds are searched

⁽b) TRANS-1,2-DICHLOROETHYLENE difficult to separate from 1,2-DICHLOROETHENE; method capabilities under review

⁽c) Method capabilities under review; complete information to be provided

⁽d) 1,1,1,2 TETRACHLOROETHANE difficult to separate from 1,1,2,2 TETRACHLOROETHANE; method capabilities under review

⁽e) 3-METHYLPHENOL difficult to separate from 4-METHYLPHENOL; method capabilities under review

⁽f) Specific method to be determined.

or BNAs. These two terms are considered equivalent.) The VOC and SVOC analyses included those constituents that are identified in "List 1" or "List 2" of Attachment A of the RCRA permit and are specified in Table 3-6. It was determined by the laboratory that the VOC and SVOC analytical methods would include all compounds specified on both "List 1" and "List 2"; therefore, only one analytical run was performed for each method. The VOC and SVOC analyses also included a library scan to attempt identification of unknown responses in the gas chromatograph (GC) that accounted for greater than 10 percent of the total ion current or had an estimated concentration greater than 10 ug/L. These compounds are reported as tentatively identified compounds (TICs). When an identification of a compound is not possible, it is reported as an unknown with a sequential number (e. g. UNK001).

Complete analytical results for the RFI environmental samples are presented in Appendix F. Chemical summary tables have been completed for each of the SWMU characterizations that present only those analytes that were detected in at least one of the samples analyzed. If no analytes were present for a particular analytical class (i.e., VOCs), then the class and a corresponding "None Detected" is reported. The summary tables also include the PQLs and HBNs. Chemical concentrations that exceed the HBN are flagged with brackets, "[]".

The analytical data collected for the RFI are evaluated for the presence of those analytes detected at concentrations exceeding background comparison criteria, if available to determine if the data are indicative of naturally occurring levels or represent possible site contamination. Chemical concentrations in excess of background levels for those analytes with background criteria are compared to the HBNs specified in the RCRA permit. Those compounds detected at levels exceeding the HBNs and background criteria are potential contaminants of concern and are further evaluated in the baseline risk assessment.

3.7.1 Groundwater Sampling

A total of 31 groundwater samples were collected between October 1991 and March 1992 from 17 existing wells and 12 wells installed under this RFI. Duplicate samples from

two wells were also taken for QC. These wells, as identified in Table 3-5 were sampled as part of the groundwater investigation at the following SWMUs:

- SWMU 13--Waste Propellant Burning Ground
- SWMUs 28/51/52--Active Sanitary Landfill, TNT Neutralization Sludge
 Disposal Area, Closed Sanitary Landfill
- SWMU O--Underground Fuel Oil Spill

Groundwater sampling procedures were accomplished in accordance with the approved work plan, and are discussed in Appendix B of this report.

3.7.2 Surface Water Sampling

A total of nine surface water samples (seven environmental and two duplicate QC) were collected between September 1991 and April of 1992 from the following SWMUs for the RFI program:

- SWMU 13--Waste Propellant Burning Ground
- SWMU 17A--Stage and Burn Area
- SWMU 17E--Runoff Basin
- SWMU O--Underground Fuel Oil Spill

Surface water sampling procedures were accomplished in accordance with the approved work plan, and are discussed in Appendix B of this report.

3.7.3 <u>Sediment Sampling</u>

A total of 12 sediment samples (10 environmental and two duplicate QC) were collected from September 1991 to April 1992 from the following SWMUs during the RFI program:

- SWMU 13--Waste Propellant Burning Ground
- SWMU 17B--ACD Staging Area

- SWMU 17E--Runoff Basin
- SWMU O--Underground Fuel Oil Spill

Sediment sampling procedures were accomplished in accordance with the approved work plan, and are discussed in Appendix B of this report.

3.7.4 Soil Sampling

A soil sampling program which consisted of the collection of both near-surface soil samples and soil boring samples was performed for the RFI at RAAP. A total of 12 near-surface soil samples including one QC sample were collected between August 1991 and March 1992. Additionally, 56 soil boring samples plus two QC samples were collected between August 1991 and March 1992 for the RFI. The approximate soil sampling locations are shown on the individual SWMU location maps provided in Sections 5.0 through 8.0. Table 3-5 provides a summary of the sampling data collected during the RFI.

Near-surface and soil boring sampling procedures were accomplished in accordance with the approved work plan, and are discussed in Appendix B of this report. Soil samples were collected at the following SWMUs:

- SWMU 13--Waste Propellant Burning Ground
- SWMU 17A-Stage and Burn Area
- SWMU 17C--ACD
- SWMU 17D--Ash and Staging Area
- SWMU O--Underground Fuel Oil Spill

3.7.5 Background Soil Sampling

A total of 10 background soil samples were collected for the RFI from off-post locations in the immediate vicinity of RAAP to provide data for comparison to SWMU-specific samples collected. Sampling locations (See Figure 4-1) are areas considered to be representative of background conditions and soil types of the SWMUs under investigation;

the locations are not thought to be influenced by any activities that would be known to impact the "natural" concentrations of metals. The 10 samples were tested only for metals, because these are the major constituents of concern known to be naturally occurring.

3.8 **SURVEYING**

3.8.1 Monitoring Well Survey

After completion of the last well, the newly installed wells were surveyed by licensed surveyors to determine location coordinates and vertical elevation. The Virginia State Planar Coordinate System was referenced, with locations surveyed to ± 1 feet. Elevations to the top of the wells were reported within ± 0.01 foot, using the National Geodetic Vertical Datum of 1929. A total of 36 monitoring wells plus one piezometer were professionally surveyed by Anderson and Associates, Inc. as part of this RFI. This includes the 12 monitoring wells and one piezometer which were installed under this RFI, plus 24 additional wells located within or nearby the SWMUs under investigation.

As shown in Appendix F, the elevation of the top of the stainless steel or PVC well casing (with well cap off), the top of the outer steel protective casing, the top of the concrete pad, and the average ground elevation at the well were measured. The Virginia State Planar Coordinates are also provided.

Elevations for all exploratory borings (provided on boring logs in Appendix F) were estimated based on the proximity of the exploratory boring to the nearest surveyed well location and the topographic map surveys that were generated for each SWMU under this RFI.

3.8.2 Topographic Map Survey

Based on recent aerial photographs, four Topographic Survey Maps were prepared for the SWMUs under investigation as part of this RFI.

Topographic Surveys were prepared for SWMU 13, SWMU 17, SWMUs 28/51/52, and SWMU O; contour intervals were either 2 or 5 feet. These maps are provided as Insert 3 through Insert 6.

3.8.3 **SWMU Boundary Maps**

Boundaries for each SWMU investigation area were surveyed to create a Plat of Survey. The boundaries were chosen to encompass the area considered directly related to the SWMU or the area thought to have the most potential for adverse impacts due to the SWMU. The plats are included as Insert 7.

4.0 QUALITY CONTROL/QUALITY ASSURANCE PROGRAM

4.1 QA/QC SAMPLES, METHODS, AND PROCEDURES

A Quality Assurance/Quality Control (QA/QC) program was implemented, for the RFI and VI which included field quality control activities, a laboratory quality assurance program, and a quality assurance review of the laboratory reporting deliverables. The field quality control activities included: collecting samples following procedures that maintain the integrity of the samples, using appropriate sample containers, preserving the samples, maintaining chain-of-custody procedures, and meeting holding time requirements.

The laboratory QA/QC procedures for the evaluation and documentation of analytical methodologies and the reduction and reporting of the data were performed according to the procedures, guidelines, and requirements specified in the USATHAMA QA Program (USATHAMA, 1990). All chemical analyses during this investigation were performed in accordance with USATHAMA QA/QC requirements using USATHAMA certified methods. For those analyses for which there are no USATHAMA-certified methods, EPA or equivalent methods were used when available.

QA/QC measures completed by Dames & Moore included following appropriate sample collection procedures; sample tracking and management; checking of chain-of-custody forms; and evaluation of matrix spikes, duplicates, and method, trip, equipment, and field blanks. In addition, comprehensive data validation was performed by the chemical laboratory and USATHAMA prior to submission and during the processing of the chemical data through the Installation Restoration Data Management Information System (IRDMIS), as specified in the QA Plan. The procedures included, but were not limited to: the verification of sample holding times; checking and approval of laboratory control charts; examination of calibration and tuning results; checking calculations; evaluation of gas chromatography/mass spectroscopy (GC/MS) library searches; and comparison of transfer file, record and group check results with analysis results.

The available QC data for the investigation conducted at RAAP were obtained from the QC file from the IRDMIS. A summary of the positive detections of analytes in the drilling water source samples and in method trip and equipment blanks is provided in this section. Duplicate samples collected during the field program also are evaluated and background levels for inorganic constituents are developed. A complete listing of the QC analytical data is presented in Appendix G.

4.2 DRILLING AND RINSE WATER SOURCE

Four samples of the water source used during drilling activities and to decontaminate the sampling equipment were collected prior to initiation of the field efforts and analyzed for the parameters specified above. Results from this analysis were compared to the results of the environmental samples analyses so that an evaluation could be made on the potential for inadvertent contamination of the environmental samples by the source. The water used for decontamination procedures was collected at the RAAP potable water treatment plant at a New River intake point prior to treatment. Samples were collected on two separate occasions, in August 1990, prior to the SWMU 10 sampling efforts for the VI, and in June 1991, prior to the initiation of the RFI field program. As shown in Table 4-1, several inorganics were detected, but the concentrations were within the expected range for the source water. No VOC or SVOC compounds were detected. It is concluded from the analytical results that the rinse water used during drilling activities and to decontaminate sample equipment did not introduce contaminants to the collected samples.

4.3 METHOD BLANKS

The method blank samples were analyzed to determine potential laboratory contamination. For method blanks, the entire sample preparation and analysis method is carried out on a standard water matrix sample without the addition of target analytes to verify the absence (or presence) of sample contamination in the laboratory. Positive results may indicate either contamination of the chemical reagents, or contamination of the glassware and implements used to store or prepare the sample and resulting solutions (USEPA, 1989b). Where contamination is found in the blanks, it can be assumed that detection of similar contamination in environmental samples may be the result of laboratory-induced contamination.

Table 4-1
Summary of Positive Analytical Detections in Drilling Water Source Samples
Radford Army Ammunition Plant, Virginia

Field ID	Sample Date	Compound a	Units b	Concentration	Lot c
RADW*1	21-aug-1990	BA	UGL	27.5	TGI
RADW*1	21-aug-1990	PB	UGL	1.84	TUA
RADW*2	21-aug-1990		UGL	None Detected	
RDDW*1	21-jun-1991	NIT	UGL	650	UQV
RDDW*1	21 – jun – 1991	BA	UGL	22.2	VKN
RDDW*1	21-jun-1991	CA	UGL	10100	VKN-
RDDW*1	21-jun-1991	FE	UGL	183	VKN
RDDW*1	21-jun-1991	K	UGL	1310	VKN
RDDW*1	21-jun-1991	MG	UGL	4430	VKN
RDDW*1	21-jun-1991	MN	UGL	29.8	VKN
RDDW*1	21-jun-1991	NA	UGL	3390	VKN
RDDW*1	21-jun-1991	TOX	UGL	217	VZA
RDDW*1	21 – jun – 1991	PH		5.31	VZF
RDDW*1	21-jun-1991	TOC	UGL	3210	VZK
RDDW*2	21-jun-1991	NIT	UGL	700	UQW
RDDW*2	21-jun-1991	UNK644	UGL	10	VIT
RDDW*2	21-jun-1991	UNK645	UGL	7	VIT
RDDW*2	21-jun-1991	BA	UGL	20.6	VKO
RDDW*2	21-jun-1991	CA	UGL	10100	VKO
RDDW*2	21-jun-1991	FE	UGL	143	VKO
RDDW*2	21-jun-1991	K	UGL	684	VKO
RDDW*2	21 – jun – 1991	MG	UGL	4410	VKO
RDDW*2	21-jun-1991	MN	UGL	30.3	VKO
RDDW*2	21-jun-1991	NA	UGL	3340	VKO
RDDW*2	21-jun-1991	TOX	UGL	145	VZB
RDDW*2	21-jun-1991	PH		5.49	VZG
RDDW*2	21-jun-1991	TOC	UGL	2520	VZL

Footnotes:

⁸ Chemical abbreviations are provided in Appendix E.

b UGL = Micrograms per liter.

^c Refers to the three—letter designation assigned by the laboratory to each lot (set) of samples.

The results of the method blank analyses are presented in Appendix G. A summary of analytes detected in the above analyses are shown in Tables 4-2 and 4-3.

Comparison of concentrations of constituents detected in blanks with concentrations detected in samples was performed using the guidelines published in the Risk Assessment Guideline for Superfund (RAGS) (USEPA, 1989b), and Functional Guidelines for Evaluating Organic Analyses (USEPA, 1988a). According to EPA Guidance, detections of common laboratory contaminants (e.g., methylene chloride, acetone, toluene, 2-butanone, and common phthalate esters) are considered positive detections only if they exceed ten times the maximum concentration detected in any blank (USEPA, 1989b). In addition, detections of chemicals that are not common laboratory contaminants are considered positive only if they exceed five times the maximum concentration detected in any blank. If the detected concentration of a suspected laboratory contaminant is less than five or ten times the concentration detected in the method blanks, then the samples containing that chemical are treated as non-detects, and the detection level is equal to the blank-related chemical concentration.

As indicated in Tables 4-2 and 4-3, several inorganic and organic constituents were detected in the soil and water method blanks. The number of inorganic and organic analyses performed on the soil method blanks was approximately 10 and 20, respectively. For the water method blanks, the approximate total analyses were 15 and 31, respectively. The variation in the number of times a particular constituent was analyzed is due to the use of multiple methods, i.e., some metals were analyzed by both graphite furnace atomic absorption (GFAA) and inductively coupled plasma (ICP). In addition, some of the organic constituents, generally those detected in 100 percent of samples analyzed and unknown compounds, were detected in the GC/MS library scans as TICs. The positive detections in the method blanks were used to evaluate the environmental data for each SWMU characterization to determine if the detected concentrations were the result of laboratory artifacts. This QC discussion is presented in the appropriate SWMU data evaluation subsections of Sections 5.0 through 8.0.

Table 4-2 Summary of Method Blank Data for Soil and Sediment Samples Radford Army Ammunition Plant, Virginia

	Hadrord Army Ammu	inmon H	riant, virginia		
				Number of	
			Number of	Positive	Maximum
<u>Abbreviation</u>	Compound Name	Units	Blank Analyses	Detections	Concentration
111TCE	1,1,1-TRICHLOROETHANE	UGG	19	2	0.01
12DCLB	1,2-DICHLOROBENZENE	UGG	20	1	0.15
2CHE1L	2-CYCLOHEXEN-1-OL	UGG	1	1	0.2
2CHE1O	2-CYCLOHEXEN-ONE	UGG	1	1	0.2
ACET	ACETONE	UGG	19	3	0.05
AL	ALUMINIUM	UGG	10	10	2190
AS	ARSENIC	UGG	10	5	0.75
BA	BARIUM	UGG	10	3	8.3
B2EHP	BIS(2-ETHYLHEXYL) PHTHALATE	UGG	20	1	2.6
CA	CALCIUM	UGG	10	8	11500
CR	CHROMIUM	UGG	10	2	6.94
CU	COPPER	UGG	10	4	1.86
12EPCH	CYCLOHEXENE OXIDE	UGG	5	5	0.7
C16ABE	HEXADECANOIC ACID, BUTYL ESTER	UGG	1	1	1
HXADOE	HEXANEDIOIC ACID, DIOCTYL ESTER	UGG	2	2	0.4
FE	IRON	UGG	10	10	2590
MG	MAGNESIUM	UGG	10	10	1680
MN	MANGANESE	UGG	10	5	57.1
NI	NICKEL	UGG	10	1	1.9
C18ABE	OCTADECANOIC ACID, BUTYL ESTER	UGG	1	1	0.7
K	POTASSIUM	UGG	10	5	399
SE	SELENIUM	UGG	10	1	0.29
NA	SODIUM	UGG	10	10	3050
MEC6H5	TOLUENE	UGG	20	2	0.2
TPHC	TOTAL PETROLEUM HYDROCARBONS	UGG	1	1	2.59
CCL3F	TRICHLOROFLUOROMETHANE	UGG	19	6	0.03
TCLTFE	TRICHLOROTRIFLUOROETHANE	UGG	2	2	0.01
UNK073	Unknown Compound # 073	UGG	3	3	0.03
UNK112	Unknown Compound # 112	UGG	2	2	0.004
UNK527	Unknown Compound # 527	UGG	1	1	0.2
UNK586	Unknown Compound # 586	UGG	1	1	0.3
UNK643	Unknown Compound # 643	UGG	1	1	0.3
UNK649	Unknown Compound # 649	UGG	2	2	0.5
UNK650	Unknown Compound # 650	UGG	3	3	8.0
UNK651	Unknown Compound # 651	UGG	4	4	2
UNK652	Unknown Compound # 652	UGG	7	7	1
UNK653	Unknown Compound # 653	UGG	2	2	0.5
UNK660	Unknown Compound # 660	UGG	5	5	0.9
UNK661	Unknown Compound # 661	UGG	1	1	0.5
UNK670	Unknown Compound # 670	UGG	1	1	0.3
UNK672	Unknown Compound # 672	UGG	1	1	0.3
V	VANADIUM	UGG	9	2	6.23
ZN	ZINC	UGG	10	2	9.88

Table 4-3
Summary of Method Blank Data for Groundwater and Surface Water Samples
Radford Army Ammunition Plant, Virginia

	Hadioid Airing Airing		iait, viigiilia		
Abbreviation	Compound Name	<u>Units</u>	Number of Blank Analyses	Number of Positive <u>Detections</u>	Maximum Concentration
34DNT	3,4-DINITROTOLUENE	UGL	8	8	5.52
111TCE	1,1,1—TRICHLOROETHANE	UGL	31	2	8.3
TCLEA	1,1,2,2-TETRACHLOROETHANE	UGL	31	3	2.1
2BUXEL	2-BUTOXYETHANOL	UGL	1	1	1
5M2HXO	5-METHYL-2-HEXAONE	UGL	1	i	300
ACET	ACETONE	UGL	31	, 3	41
B2EHP	BIS(2-ETHYLHEXYL) PHTHALATE	UGL	31	3	110
CHCL3	CHLOROFORM	UGL	31	5	1.8
12EPCH	CYCLOHEXENE OXIDE	UGL	17	17	8
DIACAL	DIACETONE ALCOHOL	UGL	3	3	40
HXADOE	HEXANEDIOIC ACID, DIOCTYL ESTER	UGL	1	1	8
FE	IRON	UGL	15	i	79.6
PB	LEAD	UGL	24	ż	4.5
MESTOX	MESITYL OXIDE	UGL	1	1	2
PHANTR	PHENANTHRENE	UGL	31	1	1
K	POTASSIUM	UGL	15	i	1080
AG	SILVER	UGL	26	i i	5.77
MEC6H5	TOLUENE	UGL	35	4	5
TOC	TOTAL ORGANIC CARBON	UGL	9	i	120
TOX	TOTAL ORGANIC HALOGENS	UGL	17	2	0.06
UNK208	Unknown Compound # 208	UGL	2	2	10
UNK517	Unknown Compound # 517	UGL	1	1	20
UNK519	Unknown Compound # 519	UGL	1	1	40
UNK525	Unknown Compound # 525	UGL	†	i	5
UNK527	Unknown Compound # 527	UGL	2	2	6
UNK531	Unknown Compound # 531	UGL	1	1	80
UNK532	Unknown Compound # 532	UGL	2	2	10
UNK542	Unknown Compound # 542	UGL	2	2	5
UNK560	Unknown Compound # 560	UGL	1	1	6
UNK632	Unknown Compound # 632	UGL	1	1	5
UNK633	Unknown Compound # 633	UGL	1	1	10
UNK635	Unknown Compound # 635	UGL	1	i	20
UNK636	Unknown Compound # 636	UGL	1	1	20
UNK641	Unknown Compound # 641	UGL	1	1	4
UNK644	Unknown Compound # 644	UGL	1	1	2
UNK646	Unknown Compound # 646	UGL	1	1	20
UNK648	Unknown Compound # 648	UGL	ż	2	8
UNK649	Unknown Compound # 649	UGL	1	1	9
UNK675	Unknown Compound # 675	UGL	1	1	7

Of particular interest is the compound, 34DNT, which was detected in all eight water method blanks associated with explosives analyses. However, this compound was not detected in any of the environmental samples collected at RAAP. The presence of 34DNT in the method blanks may be related to the use of this compound in the natural and standard-matrix QC samples. One or more QC samples containing 34DNT as a spiked compound were analyzed in each lot in which there was a corresponding positive detection of 34DNT in the method blank. The occurrence of 34 DNT in the method blank may be the result of potential cross-contamination during preparation and/or analyses of the spike and method blank sampels or may be the result of a residual response from the laboratory instrumentation. The concentrations (approximately 5 ug/l) detected in the method blanks were similar to the spiked levels (4.94 ug/l). The presence of 34DNT does not require additional evaluation because it was not detected in any of the environmental samples.

Some metals also were detected in the method blanks. The occurrences of these inorganics in the analytical data set are most likely the result of their presence in the soil sample used by the laboratory for the extraction and preparation of the method blank. This soil sample is typically heated to remove any organic compounds but the heating process does not eliminate the presence of inorganic constituents, which are often inherent in a soil sample. The occurrence of metals in the water method blanks suggest that the reagent water was not completely deionized. The low levels of metals detected do not indicate a gross contamination problem in the laboratory as the deionizer unit is routinely monitored by the laboratory. The presence of the inorganic constituents in the method blanks is not considered to be an indication of laboratory contamination, and, therefore, the site samples should not be affected by these results.

4.4 TRIP BLANKS

Trip blanks are used to indicate potential contamination due to migration of VOCs from the air on the site, or in sample shipping containers, into the sample (USEPA, 1989b). Trip blank vials are filled in the laboratory and sent to the field with the sample bottles, then returned unopened to the laboratory along with other samples for volatile analyses. Volatiles introduced to samples by vehicle exhaust or other sources could be identified

through trip blank analysis and thus discounted as detections of actual site contaminants. As with other samples, trip blank results could also reflect laboratory-introduced contaminants as detected in method blanks.

Table 4-4 presents a summary of the positive detections in the trip blank samples analyzed during the RFI analytical program. Trichlorofluoromethane was detected in trip blanks on six different days at concentrations ranging from 1.7 to 3.01 ug/l. Methylene chloride was detected in three different trip blanks at concentrations ranging from 3.3 to 4.72 ug/l. Chloromethane (7.67 ug/l) and 1,1,1-trichloroethane (1,1,1-TCE)(0.574 ug/l) were detected in one trip blank each on different days. One unknown semi-volatile was detected in a trip blank on February 19, 1992. Table 4-5 lists the samples that were shipped in the same coolers as the associated trip blanks. It is assumed that contaminants detected in a trip blank could also be an indication of contaminants introduced in the samples shipped the same day. These samples were evaluated for possible trip blank contamination and are discussed in the appropriate SWMU characterization section.

4.5 EQUIPMENT BLANKS

Equipment blanks were prepared in the field by pouring the source water over decontaminated sampling equipment and submitting this water sample for analysis. These blanks were used to evaluate the effectiveness of field equipment decontamination procedures. Although contaminants found in the equipment blanks could be indicative of improper or inadequate equipment cleaning procedures, they could also be indicative of laboratory-introduced contamination and were thus compared with method blank analysis results. Contaminants attributable to inadequate equipment cleaning would be taken into account in evaluating samples analysis results; the presence of such contaminants could indicate cross-contamination among sample locations. Considerations similar to evaluation of method blanks were employed.

A summary of the positive detections for equipment blanks is presented in Table 4-6. The environmental samples associated with the equipment blanks are presented in Table 4-7. The majority of the constituents detected in the equipment blanks were inorganics.

Table 4-4 Summary of Positive Detections in Trip Blanks Radford Army Ammunition Plant, Virginia

Compound *	Sample Date	<u>Units ^b</u>	Concentration
111TCE	18-feb-1992	UGL	0.574
CCL3F	30-jan-1992	UGL	2.91
	04-feb-1992	UGL	1.7
	04-feb-1992	UGL	3.01
	06-feb-1992	UGL	2.71
	10-feb-1992	UGL	2
	28-feb-1992	UGL	2.81
CH2CL2	21 – jun – 1991	UGL	3.58
	21 – jun – 1991	UGL	3.3
	26-sep-1991	ŲGL	4.72
CH3CL	10-feb-1992	UGL	7.67
UNK167	19feb 1992	UGL	6

FOOTNOTES:

^a Chemical abbreviations are provided in Appendix C.
^b UGL = Micrograms per liter.

Table 4-5
Summary of Trip Blank Samples and Associated Environmental Samples
Radford Army Ammunition Plant, Virginia

QC	Sample	ESE Fid.	Site	Sample			Associate	d Environmenta	i Samples				
Type	_ID	Gro. No.	Ivpe	Date	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Samole 9
Trip Blank	TRIP	RDDW 4	TRIP	06/21/91	RAAP-1 (RD	DW*1)							
	THP	ADDW 5	TAP	06/21/91	RAAP-1 (RD	DW+2)							
	TRIP1	RDFQC 1	TRIP	08/20/91									
	TRP1	PDWA 25	TRIP	09/17/91	D-3D	D-3							•
	TFIP2	RDFQC 2	THP	08/22/91	13SB5A	13SB5B	13SB5C	13SC4A	13SC4B	13SC4C			
	TRP2	RDWA 26	TRIP	09/19/91	DG-1	DDH2							
	TRIP3	PIDFOG 3	THP	08/27/91	13806A	135C6B	135C6C	13583	13984	EQ BK9			
	TRIP3	RDWA 27	TAIP	09/20/91	D-4	DDH4							
	TRIP4	PDFQC 4	TAP	08/27/91	13SC6A	139C6B	13SC6C	13883	13654	EQ:BK9			
	TRIP5	PIDFQC 5	TRIP	08/28/91	13SC7A	13SC7B	13SC7C	13SB4A	139B4B	13SB4C			
	TPIP5	RDWA 29	TRP	09/13/91	10MW1	RAAP-1 (PDI							
	TAPS	FIDFOC 6	TAP	10/08/91	12WW1	1 34/4/7	13MW1	410000000000000000000000000000000000000					
	TRIP6	PDWA 30	TRIP	01/28/92	51MW2	51MW1							
	TRIP7	RDFQC 7	TRP	09/26/91	OSE1	OSE2	OSP1						
	TRIPS	PIDFQC 8	TRP	10/10/91	13MW3	13MW2	13MW4						
	TRIP9	FIDFQC 9	TAP	10/09/91	13MW5	13MW8	13881	13881M8	13882	13SE1	13SE2		
	TRIPIO	ROFOC 10	THP	10/23/91	EQBK4	OSB2A	OSB3A						
•	TRIP11	RDFQC 11	TAIP	10/24/91	OSB/OA	EQBK5	OSB1A	OSBIB	OSB10				
1	TRIP12	RDFQC 12	TAIP	10/25/91	EQBK6	OSB5A	OSB5AD	OSB8	418B1A	41SB1B			
•	TAP	RDFQC 26	TAIP	11/07/91	45MW3								
5.00.0000000000000000000000000000000000	TRP	RDFQC 30	TAP	11/08/91	45MW1	45MW2		sa waxay inta ta ta ta ta a a a a a a a				and a subject of the subject of the	nada an ing nang nang nang nang nang
	TRP13	PDFQC 13	THP	10/29/91	46551	46532							
	TAP	PDWB 11	TAP	10/29/91	43MW1	43WW1							
	TRP	RDWB 12	TRP	10/30/91	43MW3	43MW4							
	TRIP	RDWB 13	TRIP	10/31/91	43SP1	43SP2	4 4 4 4 -						
300-800000000-6-1:0	TRIPCC	RDWB 14	TRIP	11/01/91	43MW2	43 M W6	43MW5	· ¥000000000000000000000000000000000000	309009988.259.864.95550009	5555555555555555555555555	9861 - J. KUNDE 2000/2008	8 6 2000000000000000000000000000000000000	2000 1 . 4007 1 5 2150505
000 0000000000000000000000000000000000	THP14	FOFOC 14	TAP	11/02/91							88-1 PG-1888 88		
	TRIP15	PIDFQC 15	THP	11/04/91		********							
	TRPBLK	FIDWC 83	TRIP	01/29/92	WC2-A	26WW1	MW9						
	TRIP	PIDFQC 28	TRIP	01/24/92	WC1-A								
000000074000000000	TRIPAAA	RDFQC 27	TAIP	01/15/92	sossi <u>Lai a babana</u> i ee.	41 - 2 222 - 22 20		1404000 <u>00000000</u> 00000000		2000 <u>2000 200 200 200 200 200 200 200 2</u>	erassa concesi Astro e di Nagla di R	0.070900 : 0.00000000000	9899499899111 (199988678118)
76-9-00-87, 370-00-6	030392	RDFQC 29	THP	03/03/92	293E2D	295E2	296E1	295E3	295W1	285W1D			4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	TRPBLK	PDWC 26	THP	02/04/92	16-1	C4							
	TRPBLK	PDWC 27	TRIP	01/30/92	28MW1	C-1							
	TRIP	PDWC 28 PDWC 29	TAP	02/04/92	26MW2	- 11414							
200710000 > 2008148a	TMP	A PRODUCTOR OF A PROPERTY OF	TAP	02/28/92	WC1-2	S4W4	**************************************		communication (VIII)	3.5502222222	5.000.0 <u>2.02.22.2</u> 2.430.009		0.0000.00 442442.042 0.000.700
000000000000000000000000000000000000000	TRIP TRPBLK	FDWC 30	TAP	02/08/92	F833	FSS4	68SS1	68552	7 15S1	71882	71583	FSS1	F552
		PDWC 79	TAP	02/18/92	FS85	FSS6	FSS7	FSS8					
	022092	PDWC 80	TAP	02/20/92	P-2	P-3	P-4						
	TRPBLK	FIDWC 82	TAIP	02/18/92	32MW1	B-4		w-					
docddddd i i Glasoch	TRPBLK	FDWC 84	TAIP	02/25/92	31SL1	315L2	318L3	EQBK9	6 B	5-17888 6 0000000000000000	25.000000074 PP00000		Area pares 1 / 1. MM conserve
300038000; wellyg	TAPELK	PDWC 85	THP	02/11/92		B-2				×.3988())()()()()()()()()()()()()()()()()()	essection of the property		
	TRPBLK	RDWC 86	TRIP	02/24/92	OMW1	P~1	S4W1						
	021992A	RDWC 87	TAP		EQ 8021992	13							
	021992B	RDWC 88	TAP	02/19/92	BDH2	00014/4	£20E4	5000a	600E4	00004	00000	50004	50000
16548888004.0560	TRP	RDWD 5	TRIP	02/10/92	57SW1	69SW1	57SE1	58SS3 NRSWDUP	69SE1	69631	69SS2	58SS1	58552
(a. % connection, 1902)	TAP		TAP	04/16/92	NRSW1	NRSW3	NRSW4	MUDATOR	NASE1	NASE2	NASES	NRSE4	NASEDUP

4-1

Table 4-6
Summary of Positive Detections in Equipment Blanks
Radford Army Ammunition Plant, Virginia

			b		
Field ID	Sample Date	Compound*	<u>Units</u> ^b	Concentration 17.0	Lot
RDFQC*16	20-aug-1991	BA	UGL	17.8	VKW
RDFQC*16 RDFQC*16	20-aug-1991 20-aug-1991	CA FE	UGL UGL	10900 252	VKW VKW
RDFQC*16	20-aug-1991 20-aug-1991	K	UGL	1690	VKW
RDFQC*16	20-aug-1991	MG	UGL	4780	VKW
RDFQC*16	20-aug-1991	MN	UGL	25	VKW
RDFQC*16	20-aug-1991	NA	UGL	4410	VKW
RDFQC*16	20-aug-1991	CS2	UGL	1.47	WAV
RDFQC*16	20-aug-1991	PB	UGL	2.06	WEI
RDFQC*16	20-aug-1991	UNK620	UGL	100	_wij
RDFQC*17	22-aug-1991	BA	UGL	17	VKW
RDFQC*17	22-aug-1991	CA	UGL	11600	VKW
RDFQC*17	22-aug-1991	FE	UGL	988	VKW
RDFQC*17	22-aug-1991	K	UGL	2400	VKW
RDFQC*17 RDFQC*17	22—aug—1991 22—aug—1991	MG MN	UGL UGL	4950 38.5	VKW VKW
RDFQC*17	22-aug-1991	NA NA	UGL	4540	VKW
RDFQC*17	22-aug-1991	111TCE	UGL	1.78	WAW
RDFQC*17	22-aug-1991	2E1HXL	UGL	8	WAW
RDFQC*17	22-aug-1991	PB	UGL	5.97	WEI
RDFQC*17	22-aug-1991	UNK621	UGL		_WIK
RDFQC*18	27-aug-1991	AL.	UGL	169	VKW
RDFQC*18	27-aug-1991	BA	UGL	22.2	VKW
RDFQC*18	27-aug-1991	CA	UGL	11400	VKW
RDFQC*18	27-aug-1991	FE	UGL	4290	VKW
RDFQC*18	27-aug-1991	K	UGL	2790	VKW
RDFQC*18 RDFQC*18	27-aug-1991 27-aug-1991	MG MN	UGL	5000	VKW
RDFQC*18	27-aug-1991 27-aug-1991	NA	UGL UGL	36.1 4590	VKW VKW
RDFQC*18	27-aug-1991	ZN	UGL	24.1	VKW
RDFQC*18	27-aug-1991	PB	UGL	1.41	WEI
RDFQC*18	27-aug-1991	UNK619	UGL	300	WIL
RDFQC*18	27-aug-1991	UNK628_	UGL	10	WIL
RDFQC*19	23-oct-1991	UNK620	UGL	40	XDE
RDFQC*20	24-oct-1991	CHCL3	UGL	1.54	WIT
RDFQC*20	24oct-1991	UNK620	UGL	80	XDE_
RDFQC*21	25-oct-1991	HXADOE	UGL	7	XDG
RDFQC*21 RDFQC*21	25-oct-1991	UNK620	UGL	200	XDG
RDFQC*21	25-oct-1991 25-oct-1991	UNK629 UNK675	UGL UGL	10 90	XDG XDG
RDFQC*21	25-oct-1991	UNK691	UGL	30	XDG
RDFQC*22	02-nov-1991	UNK617	UGL	70	XDJ
RDFQC*23	05-nov-1991	AL	UGL	159	WZJ
RDFQC*23	05-nov-1991	BA	UGL	13.4	WZJ
RDFQC*23	05-nov-1991	CA	UGL	12000	WZJ
RDFQC*23	05-nov-1991	FE	UGL	367	WZJ
RDFQC*23	05-nov-1991	K	UGL	1570	WZJ
RDFQC*23	05-nov-1991	MG	UGL	5440	WZJ
RDFQC*23 RDFQC*23	05-nov-1991 05-nov-1991	MN NA	UGL UGL	11.9 5260	WZJ
RDFQC*23	05-nov-1991	ZN	UGL	5260 25	WZJ WZJ
RDFQC*23	05-nov-1991	PB	UGL	4.34	WEU
RDFQC*24	25-feb-1992	BA	UGL	18.5	WZV
RDFQC*24	25-feb-1992	CA	UGL	14100	wzv
RDFQC*24	25-feb-1992	CU	UGL	19	wzv
RDFQC*24	25-feb-1992	FE	UGL	324	WZV
RDFQC*24	25-feb-1992	K	UGL	1670	wzv
RDFQC*24	25-feb-1992	MG	UGL	4540	WZV
RDFQC*24	25-feb-1992	MN	UGL	18.1	WZV
RDFQC*24	25-feb-1992 25-feb-1992	NA ZN	UGL	4480	WZV
RDFQC*24 RDFQC*24	25 – feb – 1992 25 – feb – 1992	ZN PB	UGL UGL	112 4 23	WZV
RDWA*10	19-sep-1991	PO4	UGL	4.23 53.5	<u>XWG</u> RDQ
RDWA*10	19-sep-1991	N2KJEL	UGL	219	SKK
RDWA*10	19-sep-1991	CL	UGL	3560	UFW
RDWA*10	19-sep-1991	NIT	UGL	1800	WNE
RDWA*10	19sep1991	CS2	UGL	2.04	WTE
RDWA*10	19-sep-1991	TOC	UGL	2560	WVG

Table 4-6 (cont'd)

Field ID	Sample Date	Compound ^a	<u>Units</u> ^b	Concentration	Lot
RDWA*10	19-sep-1991	TOX	UGL	123	WVH
RDWA*10	19-sep-1991	PH		7.5	WVQ
RDWA*10	19—sep—1991	BA	UGL	18	WZA
RDWA*10	19-sep-1991	CA	UGL	9960	WZA
RDWA*10	19-sep-1991	K	UGL	1270	WZA
RDWA*10	19-sep-1991	MG	UGL	4450	WZA
RDWA*10	19-sep-1991	MN	UGL	6.76	WZA
RDWA*10	19-sep-1991_	NA	UGL	4510	WZA
RDWA*23	13-sep-1991	N2KJEL	UGL	886	SKK
RDWA*23	13-sep-1991	CL.	UGL	3560	UFW
RDWA*23	13-sep-1991	NIT	UGL	5500	WNE
RDWAU*10	19-sep-1991	AL	UGL	246	WZA
RDWAU*10	19-sep-1991	BA	UGL	88.1	WZA
RDWAU*10	19-sep-1991	CA	UGL	9860	WZA
RDWAU*10	19-sep-1991	FE	UGL	385	WZA
RDWAU*10	19-sep-1991	K	UGL	2040	WZA
RDWAU*10	19-sep-1991	MG	UGL	4470	WZA
RDWAU*10	19-sep-1991	MN	UGL	136	WZA
RDWAU*10	19-sep-1991	NA	UGL	4310	WZA
RDWC*17	10-mar-1992	PB	UGL	1.95	XWL
RDWC*17	10-mar-1992	BA	UGL	19.8	YOC
RDWC*17	10-mar-1992	CA	UGL	13000	YOC
RDWC*17	10-mar-1992	CU	UGL	26.5	YOC
RDWC*17	10-mar-1992	FE	UGL	205	YOC
RDWC*17	10-mar-1992	ĸ	UGL	930	YOC
RDWC*17	10-mar~1992	MG	UGL	4200	YOC
RDWC*17	10-mar-1992	MN	UGL	15.1	
RDWC*17	10-mar-1992	NA NA	UGL		YOC
RDWC*17		ZN	UGL	4080	YOC
RDWC*42	10-mar-1992	AL		113	YOC
	06-feb-1992	BA	UGL	151	WZS
RDWC*42	06-feb-1992	CA	UGL	20	WZS
RDWC*42 RDWC*42	06-feb-1992	CU	UGL	11600	WZS
RDWC*42	06-feb-1992	FE	UGL	11.8	WZS
	06-feb-1992	K	UGL	209	WZS
RDWC•42	06-feb-1992	MG	UGL	1960	WZS
RDWC*42	06-feb-1992		UGL	4320	WZS
RDWC*42	06-feb-1992	MN NA	UGL	16.9	WZS
RDWC*42	06-feb-1992	ŽN	UGL	4120	WZS
RDWC*42	06-feb-1992		UGL	25.5	WZS
RDWC*42	06-feb-1992	UNK649	UGL	10	XDW
RDWC*42	06-feb-1992	UNK686	UGL	6	XDW
RDWC*42	06-feb-1992	TOC	UGL	2.27	XVM
RDWC*42	06-feb-1992	PH	****	6.91	XVS
RDWC*42	06-feb-1992	TOX	UGL	124	XVZ
RDWC*53	19-feb-1992	AL	UGL	168	WZV
RDWC*53	19-feb-1992	BA	UGL	19.7	WZV
RDWC*53	19-feb-1992	CA	UGL	10700	WZV
RDWC*53	19-feb-1992	FE	UGL	309	WZV
RDWC*53	19-feb-1992	K	UGL	1040	WZV
RDWC+53	19-feb-1992	MG	UGL	4080	WZV
RDWC*53	19-feb-1992	MN	UGL	28.2	WZV
RDWC*53	19-feb-1992	NA	UGL	4030	WZV
RDWC*53	19-feb-1992	PH		7.41	YEG
RDWC*53	19-feb-1992	TOC	UGL	1340	YEK
RDWC*53	19-feb-1992	TOX	UGL	23.1	YEN
RDWC*73	10-mar-1992	BA	UGL	17.2	YOC
RDWC*73	10-mar-1992	CA	UGL	13300	YOC
RDWC*73	10-mar-1992	CU	UGL	25.3	YOC
RDWC*73	10-mar-1992	FE	UGL	258	YOC
RDWC*73	10-mar-1992	K	UGL	1400	YOC
RDWC+73	10-mar-1992	MG	UGL	4100	YOC
RDWC*73	10-mar-1992	MN	UGL	9.9	YOC
RDWC*73	10-mar-1992	NA	UGL	3890	YOC
RDWC*73	10-mar-1992	ZN	UGL	78.8	YOC

Footnotes:

a Chemical abbreviations are provided in Appendix E.

b UGL = Micrograms per liter.

c Refers to the three-letter designation assigned by the laboratory to each lot (set) of samples.

Table 4-7
Summary of Equipment Blank Samples and Associated Environmental Samples
Radford Army Ammunition Plant, Virginia

Sample	Field	Site	Sample	Sample	Sample
ID	ID	Type	Date	Before	After
EQBK1	RDFQC*16	RNSW	08/20/91	48SB3B	13SB1A
EQBK2	RDFQC*17	RNSW	08/22/91	13SB5C	13SC5A
EQBK3	RDFQC*18	RNSW	08/27/91	13SC6C	13SC7A
EQBK4	RDFQC*19	RNSW	10/23/91	OSB3A	OSB2A
EQBK5	RDFQC*20	RNSW	10/24/91	OSB10	OSB5A
EQBK6	RDFQC*21	RINSW	10/25/91	OSB5D	OSB8
EQ8K7	RDFQC*22	RNSW	11/02/91	OSB4	OSB6
EQBK8	RDFQC*23	RNSW	11/05/91	6SB1B	175B1A
RB BLANK	RDWA*10	RNSW	09/19/91	DG-1	DDH4
EBK	RDWC*42	RNSW	02/06/92	54MW3	54MW2
EQBK9	RDFQC*24	RNSW	02/25/92	31SL1	17ASS1A
EQB	RDWC*53	RNSW	02/19/92	13	BDH2
EQBK	RDWC*17	RNSW	03/10/92	BKGDSO-1	BKGDSD-1
EQBKA	RDWC*73	RNSW	03/10/92	OSB4B	OSB6

RNSW = Rinse Water.

The concentrations are similar to those detected in the drilling water sample, indicating that the equipment had been appropriately cleaned. Five organic compounds were detected, but the concentrations are relatively low and many of the constituents were also detected in the method and/or trip blanks.

4.6 MATRIX SPIKES AND MATRIX SPIKE DUPLICATES

Matrix spike and matrix spike duplicate samples were collected and analyzed at a rate of one every 20 samples of each matrix. The matrix spike and matrix spike duplicate consist of a field sample spiked in the laboratory with a range of compounds selected according to the method to be employed. The purpose of these sample analyses is to evaluate the potential effect, if any, of the sample matrix on the analytical results. Matrix effects can include method interferences and may result in a low or high bias of the sample results. Matrix spike sample results are evaluated by determining the percent recovery of the known spiked concentration. Percent recoveries are calculated by dividing the measured analytical value by the spiked (surrogate) concentration. Typical recoveries generally range from 80 to 120 percent, but may be lower or higher based on historical observations for a given analytical method and parameter.

A complete listing of all matrix spike and matrix spike duplicate data for RAAP samples is provided in Appendix G. A summary of the data are presented in Table 4-8, which presents a range of the percent recoveries for each respective analyte and method and a distribution of the number of recoveries in a defined range. As indicated in Table 4-8, the recoveries for the majority of samples are within the expected 80 to 120 percent range. However, a few, particularly the soil and water SVOC analyses, show lower recoveries.

The GC/MS SVOC surrogates vary in percent recoveries. (Note: It was determined prior to implementation of the Work Plan that GC/MS surrogate data would be used to evaluate matrix effects.) The Contract Laboratory Program (CLP) ranges for these recoveries are identified as follows:

Table 4-8 Matrix Spike Recoveries RAAP, VA

				nge Of			er of An		
Meth	Name	No. Of Analyses		Recovery High				covery Ra 121-140	
	R SAMPLES							121,117	
		20	AT A	400.0		_	20	•	•
00 00	TOTAL ORGANIC CARBON	20	85.0	120.0	0	0	20	0	Ô
H2	TOTAL ORGANIC HALOGENS	27 2	79.3 92.0	139.0	0	1 0	23 2	3	0
nz.	PHENOLICS (NON-SPECIFIC)	2	92.0	93.4	U	U	-	U	υ
	MERCURY	20	47.4	103.6	2	1	17	0	0
	THALLIUM	16	47.4	138.0	0	0	13	3	0
	LEAD	16	79.5	116.0	0	. 1	15	0	0
	SELENIUM	26 26	65.9	112.3	0	13	13	0	0 4
	ARSENIC SILVER	12	72.8 78.3	142.9 101.3	0	0 1	14 11	8 0	.0
	ALUMINIUM	14	94,0	125.0	ŏ	b	12	2	Ö
	ARTIMONY	14	97.5	138.2	ŏ	ő	12	2	ŏ
	BARIUN	26	77.5	120.0	ŏ	2	24	ō	ō
	BERYLLIUM	14	85.5	137.0	ō	ō	12	2	ō
	CADMIUM	26	80.0	106.0	ŏ	ŏ	26	Ō	Ŏ
	CALCIUM	14	34.4	222.0	ž	Ŏ	9	1	2
	CHROMIUM	26	86.5	118.5	ō	Ď	26	Ď	ō
\$\$10	COBALT	14	88.0	131.8	0	0	12	2	0
SS10	COPPER	14	92.8	116.8	0	0	14	0	0
SS10	IRON	14	49.4	128.0	2	0	10	2	0
SS10	MAGNESIUM	14	71.5	158.0	0	2	10	0	2
SS10	MANGANESE	14	90.8	122.2	0	0	13	1	0
	NICKEL	14	93.6	136.6	0	0	12	2	0
	POTASSIUM	12	103.8	150.0	0	0	10	0	2
	SILVER	16	86.4	112.4	0	0	16	0	0
	SODIUM	14	92.6	133.0	0	0	10	4	0
	THALLIUM	4	100.0	116.5	0	Q	4	0	0
	VANADIUM	14 14	97.0	123.8	0	0	12 14	2 0	0 0
22 IO	ZIHC	14	94.8	118.6	0	0	14	U	U
TF22	NITRITE, NITRATE	8	93.3	124.0	0	0	7	1	0
TT10	CHLORIDE	1	116.0	116.0	0	0	1	0	0
TT10	SULFATE	1	104.0	104.0	0	0	1	0	0
UH13	DECACHLOROS IPHENYL	6	13.6	33.6	6	0	0	0	0
	ENDRIN	1	63.4	63.4	0	ì	0	Ö	Ō
UH13	HEPTACHLOR	1	103.4	103.4	0	0	1	Ó	0
UH13	LINDANE	1	45.0	45.0	1	0	0	0	0
	METHOXYCHLOR	1	56.3	56.3	1	0	0	0	0
UX13	TETRACHLOROMETAXYLENE	6	46.7	88.0	1	3	2	0	0
UM18	1,4-DICHLOROBENZENE	1	101.8	101.8	0	0	1	0	0
	2,4,6-TRIBROMOPHENOL	94	13.0	103.0	36	55	3	ŏ	ŏ
	2-FLUOROBIPHENYL	94	36.0	139.2	3	16	74	ĺ	Ô
	2-FLUOROPHENOL	94	17.0	152.0	15	4	73	1	1
UM18	24DNT	1	86.0	86.0	0		1	0	0
	NITROBENZENE-D5	94	33.2	146.8	3	17	72	1	1
	PENTACHLOROPHENOL	1	79.4	79.4	0	1	0	Q	0
	PHENOD6	94	36.0	174.0	15	8	69	0	2
UH18	TERPHENYL - D14	94	36.4	161.8	4	5	75	8	2
UM20	1,2-DICHLOROETHANE-D4	133	82.0	129.4	0	0	120	13	0
	4-BROMOFLUOROBENZENE	133	81.0	101.0	ō		133	Ö	Ŏ
	TOLUENE-D8	133	81.2	100.0	Ō	Ŏ	133	0	Ŏ
いしてつ	34DNT	50	77 0	121 0	^		48	1	0
UMDE	Janu (30	77.9	121.9	0	1	40	ı	U

Table 4-8 (Cont'd)

		Range Of Number of Analyse								
		No. Of		Recovery				covery R		
<u>Meth</u>	Name	Analyses	Low	<u>High</u>	<60	<u>60-79 </u>	80-120	121-140	<u>>140</u>	
SOIL	SAMPLES									
	MERCURY	24	67.7	114.4	0	2	22	0	0	
	SELENIUM	26	22.3	64.9		3	0	0	0	
JD19	ARSENIC	26	4.0	4772.7		8	10	0	0 5 0	
JS16	BERYLLIUM	15	64.9	111.8	0	0	15	0		
J\$16	CADMIUN	15	84.7	110.2	0	0	15	0	0	
JS16	CHROMIUM	15	107.2	115.0	0	0	15	0	0 0	
J\$16	COPPER	15	100.5	106.2	0	0	15	0	Đ	
J\$16	NICKEL	15	104.5	115.8	0	0	15	0		
J\$16	SILVER	15	91.5	100.6	0	0	15	0	0 0 0	
JS16	THALLIUM	15	96.8	117.9	0	0	15	0		
1216	ZINC	15	84.1	112.0	0	0	15	0	0	
LM18	2,4,6-TRIBROMOPHENOL	125	23.0	164.2	14	19	79	12	4	
LM18	2-FLUOROBIPHENYL	125	60.3	147.6	0	7	117	0	1	
LN18	2-FLUOROPHENOL	125	46.1	140.4	4	12	94	14	1	
LM18	NITROBENZENE-D5	125	38.8	123.6	11	20	92	2	0	
LM18	PHENOD6	125	45.2	124.9	3	14	105	3	0	
LM18	TERPHENYL - D14	125	50.9	121.8	. 9	52	63	1	0	
LM19	1.2-DICHLOROETHANE-D4	110	67.9	114.0	0	2	108	0	0	
	4-BROMOFLUOROBENZENE	110	52.0	176.0	2	1	104	2	1	
LM19	TOLUENE-D8	110	70.0	200.0		0	107	Ō	1	
LW12	135TNB	4	92.9	149.5	0	0	3	0	1	
LW12	246TNT	4	86.6	101.4	0	0	4	0	0	
	24DNT	4	86.2	122.8	0	0	3	1	0	
LW12	NITROBENZENE	4	86.2	139.6	0	0	3 2	2	0	
LW12		4	92.8	122.0		Ó	3	1	0	

<u>Surrogate</u>	CLP Low Limit (%)	CLP Upper Limit (%)
2-Fluorophenol	25	121
Phenol-D6	24	113
2,4,6-Tribromophenol	19	122
Nitrobenzene-D5	23	120
2-Fluorobiphenyl	30	115
Terphenyl-D14	18	137

These are advisory limits for surrogate recoveries. Samples that exceed these values may need to be evaluated on a case by case basis. Based on information from the laboratory, ESE has seen matrix effects occur with the "acid surrogates" (i.e., phenolic compounds) due high oxidation potential, especially in waters with high salt content. This could explain the number of analyses in Table 4-8 with recoveries <60% for the acid surrogates. Therefore, the data for these samples can be considered acceptable.

The selenium (Se) recoveries identified in Table 4-8 have been reviewed by the laboratory. Acceptance criteria for CLP for Se is 75-125 percent however, recoveries outside this range are not uncommon, particularly for naturally occurring elements such as selenium. Background concentration of elements in standard soil and samples tend to cause recoveries to be skewed. Soil and water environmental samples are susceptible to matrix effects for trace metals analysis since the analysis involves spectrophotometric instrumentation. Several graphite furnace methods require addition of matrix modifiers to remove most spectral interferences. The data should be acceptable since the control charts have been reviewed and accepted by USATHAMA by chemistry personnel in accordance with procedures specified in USATHAMA QA manual (USATHAMA, 1990).

4.7 **REPLICATES**

Field replicate (duplicate) analysis results may serve as an indication of overall field and laboratory precision; therefore, the results may have more variability than laboratory duplicates (which measure only laboratory performance). It is also acknowledged that soil duplicate results will show a greater variance than water matrix samples due to the

nonhomogeneous nature of soils. For organics and inorganics, it is recommended that the results reported for each sample be compared and that a Relative Percent Difference (RPD) be calculated using the following equation:

RPD =
$$\frac{(S-D)}{(S+D)/2}$$
 X 100

Where: S = First sample value (original)

D = Second sample value (duplicate).

The results of the chemical analyses of the unfiltered groundwater duplicate samples are presented in Table 4-9. The RPD values for the inorganic analytes detected in the groundwater sample from 13MW7 were unusually high, ranging from 0 to 105 percent. The high RPDs for the set of duplicate samples may be due to a deviation in the field filtering procedure or some other laboratory procedure. The remaining RPDs for the inorganic analytes in the other samples are much lower, ranging from 0 to 26 percent. The RPD for the one explosive detected (HMX) in the groundwater sample from 13MW7 was 7 percent. The RPD values for the volatiles detected ranged from 0 to 15 percent, which indicates an acceptable range of analytical precision. The laboratory's ability to replicate TOX and TOC values was not as precise. The RPD for TOX were 23 to 122 percent and the TOC RPD values were 42 percent and non-detected.

The sample analyses of the duplicate soil samples are presented in Table 4-10. The results of soil duplicate analyses differed by as much as 42 percent. Three of the four detected explosives had RPD values ranging from 4 to 16 except for 246 TNT, which had a RPD value of 62 in duplicate soil samples 13SS1. The RPD value for the two volatiles detected, trichlorotrifluoroethane and trichloroethylene, were 13 and 71 percent, respectively. The RPD values of the semi-volatile compounds detected in soil samples 13SS1 ranged between 0 and 65 percent. The differences in the soil duplicate samples can be expected due to the variability associated with the heterogeneous nature of the soil matrix, potential matrix effects, and increased analytical variability associated with the quantification of analytical values near the detection limit.

Table 4-9 |
Summary of Duplicate Data For Groundwater Samples Collected During the RFI
Radford Army Ammunition Plant, Virginia

SITE ID	13M			13 MW 7			MW9		
S. DATE	08-00			08-oct-91			29−jan−92		
DEPTH(ft)	19			19			70		
MATRIX	CG			CGW			CGW		
UNITS (#)	UG			UGL			UGL		
FIELD ID	RDWA*19	RDWA*20		RDWAU*19	RDWAU*20		RDWC*16		
	Original Original	Duplicate	RPD	Original	Duplicate	RPD	Original	Duplicate	RPD
TAL Inorganics									
ALUMINIUM	LT 141	141	ND	7090	5600	23	LT 141	LT 141	0
BARIUM	153	53.1	97	203	192	6	165	165	0
CALCIUM	88800	31400	96	96400	96400	0	59900	61700	3
CHROMIUM	LT 6.02	LT 6.02	0	16.3	13.6	18	LT 6.02	LT 6.02	0
COPPER	LT 8.09	LT 8.09	0	13.2	10.5	23	LT 8.09	LT 8.09	0
IRON	LT 38.8	214	ND	14200	11600	20	LT 38.8	LT 38,8	0
POTASSIUM	2380	1440	49	5070	4480	12	6190	6660	7
MAGNESIUM	29700	10100	98	37200	35800	4	23500	24200	3
MANGANESE	652	202	105	1080	957	12	4.37	3.67	17
SODIUM	6470	2560	87	6240	6190	1	7400	7410	0
LEAD	LT 1.26 B	22.5	ND	42.4	32.5	26	LT 1.26	LT 1.26	0
VANADIUM	LT 11	LT 11	0	27.2	25.8	5	LT 11	LT 11	0
ZINC	LT 21.1	102	ND	170	141	19	LT 21.1	LT 21.1	0
Explosives									
	= 05		_				177 1 44	T	
НМХ	7.07	6.62	7	NT	NT		LT 1.21	LT 1.21	0
<u>Volatiles</u>									
1,1,1-TRICHLOROETHANE	LT 0.5	LT 0.5	0	NΓ	NΓ		4.36	4.26	2
1,1-DICHLOROETHANE	LT 0.68	LT 0.68	0	NΤ	NT		1.42	1.32	7
1,2-DICHLOROETHENE	0.699	0.786	12	NT	NT		LT 0.5	LT 0.5	0
TRICHLOROFLUOROMETHANE	LT 1.4	LT 1.4	0	NT	NT		1.9	1.8	5
METHYLENE CHLORIDE	LT 2.3	LT 2.3	0	NT	NT		6.6	5.66	15
TRICHLOROETHYLENE	10.5	10.5	0	ТИ	NT		LT 0.5	LT 0,5	0
<u>Other</u>									
NITRITE,NITRATE	2400	2600	8	NT	NT		NT	NГ	
TOTAL ORGANIC CARBON	2970	LT 1000	ND	NT NT	NT	_	3.02	4.64	42
TOTAL ORGANIC CARBON	366	88.3	122	NT	NT NT		140	177	23
TOTAL ORGANIC IMPOSENS	300	96.3	144	NI	NI		140	1//	23

CGW = Chemical groundwater.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not applicable.

ND = Analyte was not detected in either the original or duplicate sample.

NT = Not tested; parameters were not tested (included) in the sample analyses.

RPD = Relative percent difference.

TAL = Target Analyte List.

UGL = Micrograms per liter.

Table 4-10
Summary of Duplicate Data For Soil Samples Collected During the RFI
Radford Army Ammunition Plant, Virginia

	SITE ID S. DATE DEPTH (ft) MATRIX UNITS (#) FIELD ID	13SB2 26-aug-91 0.5 CSO UGG RFIS*19 RFIS*4			13SS1 09-0α-91 0.5 CSO UGG RFIS*47 RFIS*51			OSB5 25-oct-91 7 CSO UGG RFIS*105 RFIS*94		
		Original	Duplicate	<u>RPD</u>	Original	Duplicate	<u>RPD</u>	Original	Duplicate	RPD
TAL Inorganics										
SILVER		0.86	0.704	20	LT 0.589	LT 0.589	0	NT	NT	
ALUMINIUM		12900	12500	3	7890	8160	3	NT	NT	
ARSENIC		1.9	1.4	30	2.06	1.78	15	NT	NT	
BARIUM		185	177	4	128	132	3	NT	NT	
BERYLLIUM		2.01	1.75	14	LT 0.5	LT 0.5	0	NT	NT	
CALCIUM		2850	2730	4	4050	5730	34	NT	NT	
CADMIUM		LT 0.7	1.15	ND	LT 0.7	1.23	ND	NT	NT	
COBALT		11.9	11.6	3	7.56	7.26	4	NT	NT	
CHROMIUM		25.9	25.9	0	24.4	30.5	22	NT	NT	
COPPER		15.4	11.3	31	59.6	69.9	16	NT	NT	
IRON		23000	20300	12	16100	15200	6	NT	NT	
MERCURY		LT 0.05	LT 0.05	0	LT 0.05	0.064	ND	NT	NT	
POTASSIUM		1880	1670	12	1340	1410	5	NT	NT	
MAGNESIUM		4030	3900	3	2270	2780	20	NT	NT	
MANGANESE		897	749	18	729	474	42	NT	NT	
SODIUM		268	297	10	326	335	3	NT	NT	
NICKEL		15.9	15.9	0	11.2	14.7	27	NT	NT	
LEAD		98.6	65.7	40	986	1050	6	NT	NT	
VANADIUM		34.2	32.3	6	19.1	19.4	2	NT	NT	
ZINC		297	223	28	5 2 5	507	3	NT	NT	
Explosives										
13DNB		LT 0.496	LT 0.496	0	LT 0.496	0.858	NĐ	NT	NT	
246TNT		LT 0.456	LT 0.456	0	4.03	2.13	62	NT	NT	
24DNT		LT 0.424	LT 0.424	0	1.84	2.15	16	. NT	NT	
26DNT		LT 0.524	LT 0.524	0	1.28	1.33	4	NT	NT	

Table 4-10 (Cont'd)

SITE ID S. DATE DEPTH (ft) MATRIX UNITS (#) FIELD ID	13SB2 26-aug-91 0.5 CSO UGG RFIS*19 RFIS*4			13SS1 09-0ct-91 0.5 CSO UGG RFIS*47 RFIS*51			OSB5 25-0a-91 7 CSO UGG RFIS*105 RFIS*94		
	Original	Duplicate	RPD	Original	Duplicate	<u>rpd</u>	Original	Duplicate_	RPD
<u>Volatiles</u>									
TRICHLOROTRIFLUOROETHANE	0.008	0.007	13	NT	NT		NT	NT	
TRICHLOROETHYLENE	LT 0.003	LT 0.003	0	0.019	0.009	71	LT 0.003	LT 0.003	0
Semivolatiles									
24DNT	LT 0.14	LT 0.14	0	3.44	2.03	52	LT 0.14	LT 0.14	0
26DNT	LT 0.085	LT 0.085	0	2.02	1.99	1	LT 0.085	LT 0.085	0
DIETHYL PHTHALATE	LT 0.24	LT 0.24	0	13.9	27.3	65	LT 0.24	LT 0.24	0
DI-N-BUTYL PHTHALATE	LT 0.061	LT 0.061	0	6.88	6.78	1	LT 0.061	LT 0.061	0
N-NITROSODIPHENYLAMINE	LT 0.19	LT 0.19	0	2.28	3.74	49	LT 0.19	LT 0.19	0

Footnotes:

CSO = Chemical soil.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not Applicable.

ND = Analyte was not detected in either the original or duplicate sample.

NT = Not tested; parameters were not tested (included) in the sample analyses.

RPD = Relative percent difference.

TAL = Target Analyte List.

UGG = Micrograms per gram.

The RPD values for the one set of sediment duplicate samples (Table 4-11) ranged from 0 to 17 percent except for the mercury RPD value (28 percent). These RPD values indicate an acceptable range of analytical precision.

As indicated in Table 4-12, the RPD values of the surface water duplicate samples (29SW1) were as great as 71 percent for inorganic chemicals. Higher RPD values for surface water can be expected due to variability associated with high particulate matter and suspended solids associated with the New River. Inorganic constituents tend to adsorb to the particulate matter and suspended solids, causing the variability in the analytical data.

4.8 BACKGROUND SOILS

Background soil samples were collected from nine off-post locations and one location on-post near the housing area at RAAP, as shown on Figure 4-1. These locations were considered to be unaffected by areas of known or suspected contamination. Five locations were chosen to be representative of upland type soils found on RAAP and five locations were selected as representative of alluvial type soils. Data from the analyses of the upland background soil samples (BKSS1, BKSS3, BKSS7, BKSS8, and BKSS9) would be compared to soil sample results from similar on-post SWMUs located in similar areas of upland-type soils. The alluvial background soil locations (BKSS2, BKSS4, BKSS5, BKSS6, and BKSS10) would be similarly used to compare soil data at appropriate on-post SWMUs. Comparison concentrations also have been developed for the entire set of background samples whenever individual SWMUs cannot be adequately placed into either an alluvial or uplands environment.

Each surficial soil sample was collected from a visually undisturbed area at a depth of 0 to 0.5 feet below any surface vegetation or debris. To develop the background comparison levels, the mean and standard deviations of the background soil samples were calculated. The soil comparison levels were selected from the upper 95 percent confidence interval of the background data set, which is equal to the mean plus two standard deviations. The detection limits were used in the calculations of background criteria for those analytes that were not detected in a particular sample. The use of inorganics (metals and anions)

Table 4-11
Summary of Duplicate Data For Sediment Samples Collected During The RFI
Radford Army Ammunition Plant, Virginia

SITE ID	17ESE1					
S. DATE	05-mar-92					
DEPTH (ft)		1				
MATRIX	C					
UNITS (#)	U	3G				
FIELD ID	RVFS*111	RVFS*112				
	Original	Duplicate	<u>RPD</u>			
TAL Inorganics						
SILVER	2	1.92	4			
ALUMINIUM	24800	27200	9			
ARSENIC	33.5	38	13			
BARIUM	243	245	1			
BERYLLIUM	LT 0.5	LT 0.5	0			
CALCIUM	11600 11000		5			
CADMIUM	LT 0.7	2.87	ND			
COBALT	14.5	14.6	1			
CHROMIUM	93.9	96.7	3			
COPPER	494	475	4			
IRON	27600	28400	3			
MERCURY	0.272	0.206	28			
POTASSIUM	2670	2920	9			
MAGNESIUM	16800		1			
MANGANESE	253		0			
SODIUM	704	834	17			
NICKEL	38.2	. 42	9			
LEAD	544		0			
SELENIUM	LT 0.25		0			
VANADIUM	65.2	65.2	0			
ZINC	1510	1560	3			
Explosives						
24DNT	1.26	1.04	19			

CSE = Chemical sediment.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not applicable.

ND = Analyte was not detected in either the original or duplicate sample.

NT = Not tested; parameters were not tested (included) in the sample analyses.

RPD = Relative percent difference.

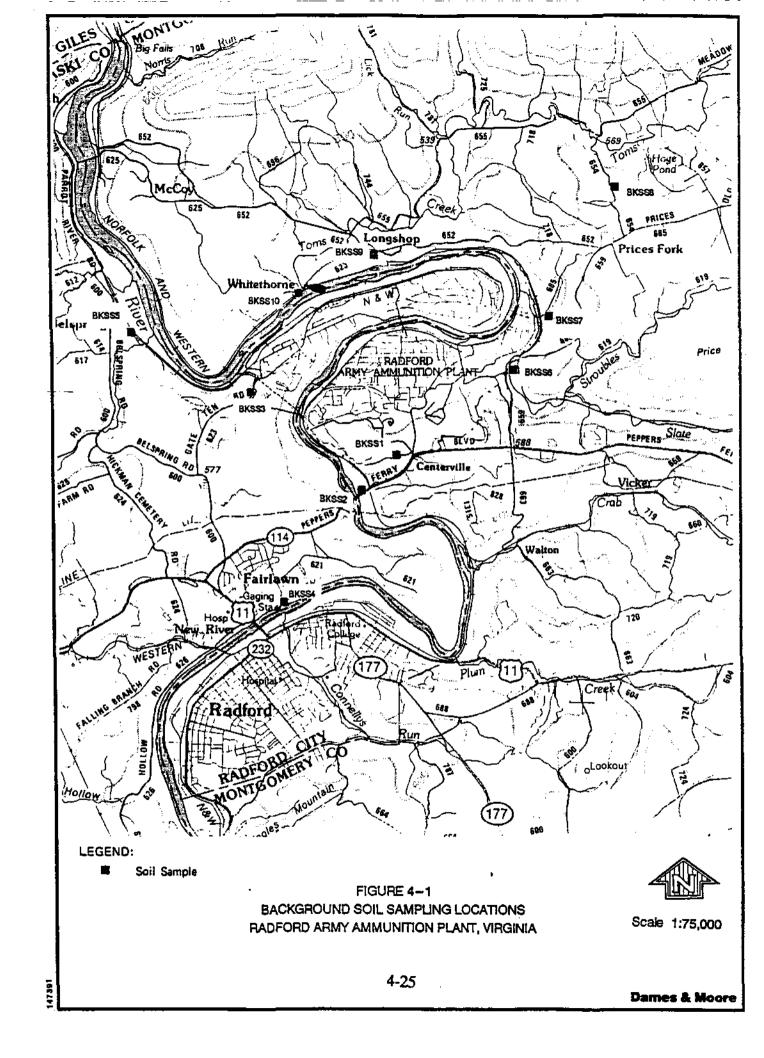
TAL = Target Analyte List.

UGG = Micrograms per gram.

Table 4-12
Summary of Duplicate Data For Surface Water Samples Collected During The RFI
Radford Army Ammunition Plant, Virginia

	SITE ID	17ES	W1	
	S. DATE	05-ma	ır-92	
	DEPTH (ft)	0	İ	
	MATRIX	CS	W	
	UNITS (#)	UG	L	
	FIELD ID	RDWC*101	RDWC*102	
		Original	Duplicate	RPD
TAL Inorganics				
SILVER		0.594	1.25	71
ALUMINIUM		11000	21000	63
ARSENIC		59.2	66	11
BARIUM		126	175	33
CALCIUM		40200	47400	16
CHROMIUM		52.9	90	52
COPPER		411	682	50
IRON		19000	31200	49
MERCURY		0.236	0.383	47
POTASSIUM		8330	9770	16
MAGNESIUM		16900	25700	41
MANGANESE		231	339	38
SODIUM		14600	14400	1
NICKEL		LT 34,3	44.5	ND
LEAD		300	520	54
SELENIUM		LT 3.02	LT 3.02	0
VANADIUM		45.4	68.7	41
ZINC		1030	1700	49
Explosives				
24DNT		0.102	0.092	10
Other				
TOTAL ORGAN	IC CARBON	11200	12900	14
TOTAL ORGAN		44.9	96.5	73

CSW = Chemical surface water.


LT = Concentration is reported as less than the certified reporting limit.

ND = Analyte was not detected in either the original or duplicate sample.

RPD = Relative percent difference.

TAL = Target Analyte List.

UGL = Micrograms per liter.

concentrations for the development of comparison criteria is appropriate because these constituents occur naturally in soil. Background data for organic compounds in soil are generally not available because most of these compounds are not naturally occurring and, therefore, are not typically present in soil.

4.9 <u>ADDITIONAL DATA REVIEW</u>

The background comparison levels for the entire data set of upland and alluvial soils, and separate comparison levels for upland soils and alluvial soils are presented in Tables 4-13, 4-14, and 4-15, respectively.

During the QC review of the chemical data, it was observed that there were several values that were reported with a "GT" as a data qualifier. This "GT" data qualifier is reported by the laboratory when the analyte concentration in the sample is greater than the maximum approved concentration of the analytical method being used. Typically, the sample is reanalyzed using a higher dilution factor (or for soil samples a smaller sample size is used) so that the concentration obtained is within the calibration range of the method. However, in some cases due to time constraints, workload, or sample size, a sample cannot be reanalyzed within the holding time (this is especially true for volatiles) and the last value obtained is reported with a "GT" as a data qualifier. For soil samples, there is a minimum sample size specified by the analytical method. When this minimum size is reached, additional analyses are not performed and the value obtained is reported with a "GT" data qualifier. These data are considered to be acceptable for both qualitative and quantitative use in the contamination and risk assessments, but the presence of the qualifier indicates that the concentration is higher than the reported value. It should be noted, that to the extent possible, all efforts were made to reanalyze these samples within the specified holding times to obtain a value within the method calibration range.

4.10 SUMMARY AND CONCLUSIONS

The results of the QA review of the analytical data indicate that some compounds were detected in the method and trip blanks, suggesting possible laboratory and/or shipping contamination. The QA results will be used to qualify positive detections of environmental

Table 4-13 Calculation of Background Soil Comparison Levels Radford Army Ammunition Plant, Virginia

	Site ID	BKSS1	BK\$\$2	BKSS3	BKSS4	BKSS5	BKSS6	BKSS7	BKSS8	BKSS9	BKSS10			Background
	Site Type	PLUG	PLUG	PLUG	PLUG	PLUG	PLUG	PLUG	PLUG	PLUG	PLUG	Statis	tical	Сотрагівов
	Field ID	RVFS*88	RVFS*52	RVFS*49	RVF S*51	RVFS*64	RVFS*89	RVFS*90	RVF S*65	RVF\$*113	RVF S*66	Valu	1es	Level
	Date	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92		Std.	Mean +
	Depth	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	Mean	Dev.	2º(Std. Dev)
Analyte														
Aluminus	n	19100	12200	9710	16800	7620	9730	6830	16600	8380	10500	11747	4290	20328
Antimony	<mark>.</mark> Anno ann an ann ann an ann	7.14 L	T 7.14 L	Γ 7.14 L'	Γ 9.78	7.14 L	T 7.14 L	-T 7.14 L'	T 7.14 L	T 7.14 L'	Γ 7.14 LT	7.40	0.83	9.07
Arsenic		5.380	5.980	6.420	3,450	3,490	8.070	3,520	7.320	3.790	4.000	5.14	1.73	8:61
Barium		56.5	152.0	74.2	180.0	88.5	143.0	70.5	103.0	66.1	147.0	108.08	43.75	195.58
Beryllium		0.922	0,500 L	r 0.799	0.720	0.500 L	r 0.500 l	.T 0.500 L	T 0.811	0.500 L	F 0.802	0.66	0.17	1.00
Cadmium	an an an an an an an an	0.700 L	T 1.070	0.700 L	f 0.700 L3	C 0.700 L	T 0.700 L	T 0.700 L	T 0.700 L	T 0.700 L	F 0.700 LT	0.74	0.12	0.97
Calcium	60006.00.74.00	6270	27100	19600	78000	41300	12300	100000	23200	3560	7430	31876	32565	97006
Chromiun	3	32.00	20.70	39.80	20.20	12.50	16.70	13.00	28.50	25.90	21.30	23.06	8.61	40.29
Cobalt		22.10	11.50	19.70	9.19	4.00	13.30	5.04	12.90	12.50	13.60	12.38	5.63	23.65
Copper		22.60	15.40	23.40	13.30	12.80	42.60	14.00	16.30	7.86	18.80	18.71	9.60	37.90
from		28600	40800	31,300	22900	11200	29500	10500	25100	16900	25900	24270	9362	42993
Lead		255.00	264.00	80.80	75.60	27.00	10.50 L	T 62.30	10.50 L	T 27.40	68.10	88.12	94.01	276.13
Magnesiu	m ·	16200	9780	11200	31800	22800	4650	41200	12800	2370	5760	15856	12571	40997
Manganes	i c	400	1950	436	1000	221	914	199	298	892	927	724	536	1795
Mercury (Lev2)	0.05 L	T 0.05 L	r 0.05 L	r 0.05 L7	r 0.05 Ľ	r 0.05 l	T 0.05 L	T 0.05 L'	T 0.05 L	C 0.05 LT	0.05	0.00	0.05
Nickel		27.40	18.40	24.50	15.60	6.20	24.10	11.30	27.40	11.00	18.50	18.44	7.41	33.25
Potassium	A88900000000000000000000000000000000000	31 6 0	1430	1520	4180	. 795	1320	1460	2590	656	1690	1880	1104	4088
Selenium		0.250 L	T 0.250 LT	C 0.250 LT	C 0.250 LT	0.250 L	Γ 0.541	0.250 LT	Γ 0.250 L'	T 0.250 L7	0.250 LT	0.28	0.09	0.46
Silver		1.050	1,540	1.030	1,670	1.060	1.200	1.570	1.050	0.589 LT	1.020	1.18	0.33	1.83
Sodium		211	382	246	278	258	235	299	226	205	239	258	52	362
Thallium		6.62 L	T 6.62 L7	ľ 6.62 L7	î 6.62 L]	6.62 L	r 6.62 L	T 6.62 L'	ľ 6.62 Ľ	T 6.62 L	6.62 LT	6.62	0.00	6.62
Vanadium	l 	55.70	32.30	60.40	36,60	28.10	19.90	23.40	36.50	27.70	28.90	34.95	13.28	61.50
Zinc		345.00	840.00	58.30	284.00	69.70	60.40	73.20	63.90	36.10	283.00	211	250	711

All data values are IRDMIS Level 3, except for mercury.
 Units are in micrograms per gram (UGG).
 LT = Less than the detection limit.

Table 4-14 Calculation of Background Comparison Levels for Upland Soils Radford Army Ammunition Plant, Virginia

Site ID	BK\$\$1	BKS\$3	BKSS7	BKSS8	BKSS9			Background
Site Type	PLUG	PLUG	PLUG	PLUG	PLUG	Statis	stical	Comparison
Field ID	RVFS*88	RVFS*49	RVFS*90	RVFS*65	RVFS*113	Valu	103	Level
Date	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92		Std.	Mean +
Depth	0.500	0.500_	0,500	0.500	0.500	<u>Mean</u>	Dev.	2*(Std. Dev)
<u>Analyte</u>								
Aluminum	19100	9710	6830	16600	8380	12124	5398,4	22921
Antimony	7.14 LT	 Assertance of the control of the contr	un artigramana da la Caralla (1986)	William and the control of the contr	AMM for the Contract of the Co	7.14	0	7.14
Arsenic	5,380	6.420	3,520	7,320	3,790	5.286	1,6423	9
Barium	56.5	74.2	70.5	103.0	66.1	74.06	17.478	109
Beryllium	0.922	0.799	0.500 LT	and the second of the second o	0,500 LT	0.7064	0.1944	1,10
Cadmium	0.700 LT	aaaaaa ahaan ahaan ahaan ahaa ahaa ahaa	CONTRACTOR OF THE PROPERTY OF	Anna Anna ann an an an an ann an an an an an a	AMM is a consideration of the contract of the	0.7	0	0.70
Calcium	6270	19600	100000	23200	3560	30526	39734	109994
Chromium	32.00	39,80	13.00	28.50	25.90	27.84	9.8078	47.46
Cobalt	22.10	19.70	5.04	12.90	12.50	14.448	6.7238	27.90
Copper	22.60	23.40	14.00	16.30	7.86	16.832	6.4267	29.69
Iron	28600	31300	10500	25100	16900	22480	8613.5	39707
Lead	255.00	80.80	62,30	10.50 LT	COCCOST MOST MANAGES, SERVICE SERVICE	87.2	97.822	282.84
Magnesium	16200	11200	41200	12800	2370	16754	14588	45931
Manganese	400	436	199	298	892	445	266.48	978
Mercury (Lev2)	0,05 LT	200000	control programmer and a second of		ter an experience of the contraction of the contrac	0.05	0	9,05
Nickel	27.40	24.50	11.30	27.40	11.00	20.32	8.455	37.23
Potassium	3160	1520	1460	2590	656	1877.2	993.31	3864
Selenium	0.250 LT	an an amhrach ann an amhrach ann ann an amh	** Finbis Anni Anni Anni 2000 000 000 000 000	800886868 พ.ศ.กราชราชการกรรมโกลาร์	200000000000000MMMMMMMMMMMMM	0.25	0	0.25
Silver	1.050	1.030	1.570	1.050	0,589 LT	1,0578	0.3475	1,75
Sodium	211	246	299	226	205	237.4	37.899	313,20
Thallium	6.62 LT		manners acceptable and except the	The first term of the property of		6.62	0	<u> </u>
Vanadium	55.70	60.40	23.40	36.50	27.70	40.74	16.576	73.89
Zing	345.00	58,30	73.20	63,90	36.10	115.8	129.13	373.56

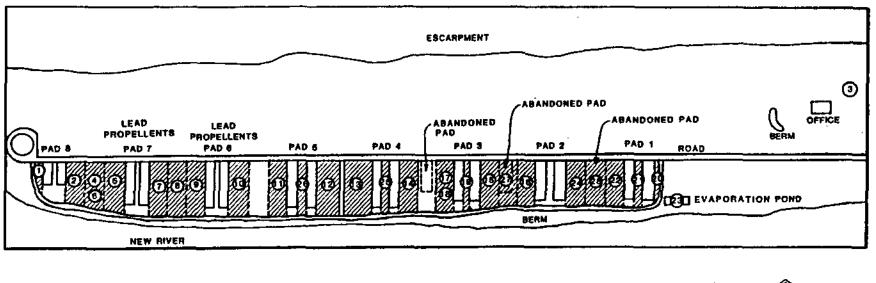
All data values are IRDMIS Level 3, except for mercury.
 Units are in micrograms per gram (UGG).
 LT = Less than the detection limit.

Table 4-15 Calculation of Background Comparison Levels For Alluvial Soils Radford Army Ammunition Plant, Virginia

Site I	D BKSS2	BKS\$4	BKS\$5	BKSS6	BKSS10	I		Background
Site Typ	e PLUG	PLUG	PLUG	PLUG	PLUG	: St	atistical	Comparison
Field I	D RVFS*52	RVFS*51	RVFS*64	RVFS*89	RVFS*66	: <u> </u>	alues	Level
Da	te 03/10/92	03/10/92	03/10/92	03/10/92	03/10/92		Std.	Mean +
Dep	th <u>0.500</u>	0.500	0.500	0.500	0.500	<u>Mean</u>	<u>Dev.</u>	2*(Std. Dev)
Analyte						_		
Aluminum	12200	16800	7620	9730	10500	11370	3452.6	18275
Antimony	7.14	LT 9.78	7.14				1.1806	10.03
Arsenic	5.980	3,450	3.490	8.070	4.000	4.998	2.0042	9.01
Barium	152.0	180.0	88.5	.	. 		33.287	209
Beryllium	0.500	LT 0.720	0.500	LT 0.500	LT 0.802	0.6044	0.1459	0.90
Cadmium	1.070	0.700	LT 0.700	LT 0.700	LT 0.700		0.1655	1.10
Calcium	27100	78000	41300	12300	7430	33226	28332	89890
Chromium	20.70	20.20	12.50	16.70	21.30		3.6935	25.67
Cobalt	11,50	9.19	4.00	13,30	13.60	10,318	3.9449	18.21
Copper	15.40	13.30	12.80	and the control of the first production of the	18.80	20.58	12.534	
Iron	40800	22900	11200	29500	25900		10723	
Lead	264.00	75.60	27.00			89.04	101.55	292.14
Magnesium	9780	31800	22800	4650	entransa and a series are a series and a ser		11862	38682
Manganese	1950	1000	221	914	that the experience that there is		616.85	
Mercury (Lev2)	0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	0	0.05
Nickel	18.40	15.60	6.20	1.0	The second secon	NOT THE RESIDENCE OF THE PROPERTY OF THE PROPE	6.5622	29.68
Potassium	1430	4180	795	., ,	,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·	1324.7	4532
Selenium	0.250	CONTRACTOR		Constitution of the second second	0.250	.	0.1301	0.57
Silver	1.540	1.670	1,060	1,200	1.020	1.298	0.2918	1,88
Sodium	382	278	258		239	orthodological territorial and the first	60.385	
Thallium	6,62	LT 6.62	LT 6.62	LT 6.62	LT 6.62	LT 6.62	0	6,62
Vanadium	32.30	36.60	28.10	19.90	28.90	29.16	6.1675	41.49
Zinc	840.00	284.00	69.70	60.40	283.00	307,42	317,14	942

All data values are IRDMIS Level 3, except for mercury.
 Units are in micrograms per gram (UGG).
 LT = Less than the detection limit.

data that are suspect laboratory, sampling, and/or shipping artifacts. The evaluation of the equipment blanks indicate that sample cleaning and decontamination activities were appropriately performed. The results of the duplicate analyses indicate that some of the values are outside of the suggested range for acceptable precision; however, these results are primarily due to heterogeneity of sample matrix or variability in suspended solids in surface water samples. The duplicate results are acceptable and are not considered to compromise the analytical quality and intended use of the data.


5.0 RCRA FACILITY INVESTIGATION OF SWMU 13, WASTE PROPELLANT BURNING GROUND

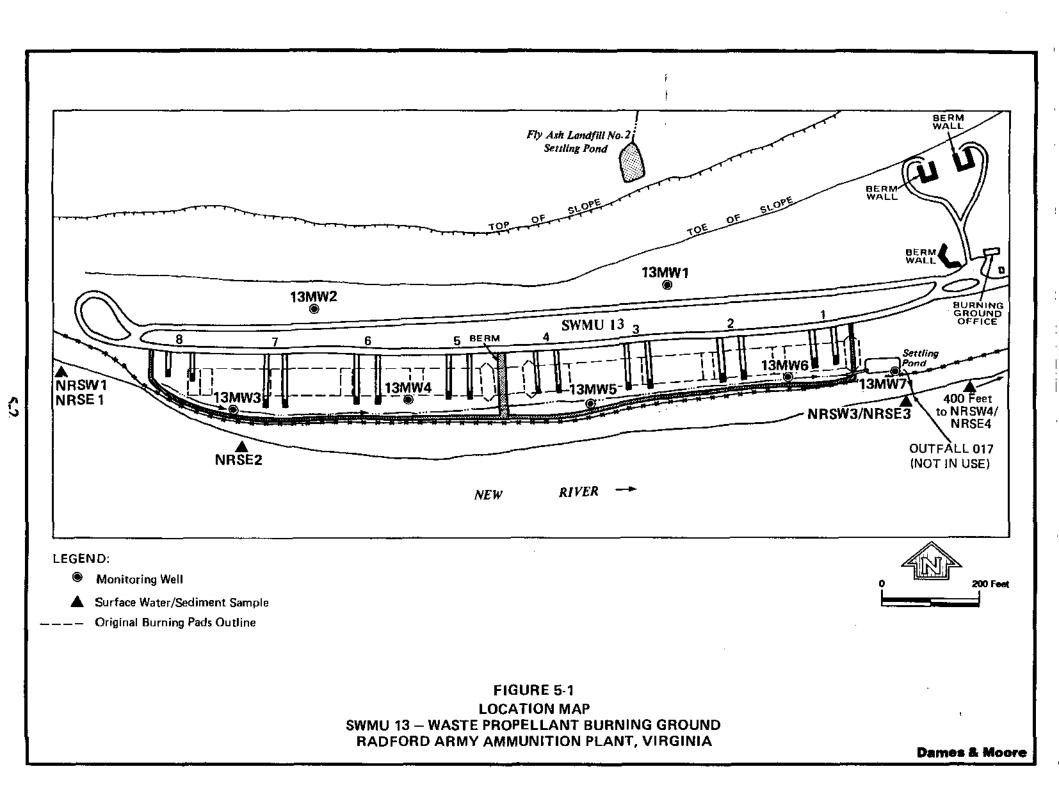
This section summarizes the findings of previous investigations and presents the results from the Dames & Moore RFI field program conducted at SWMU 13 during August through November, 1991. The Virginia Department of Waste Management (VDWM) requested a groundwater quality assessment (GQA) for SWMU 13 as part of RAAP's application to permit the burning grounds as a RCRA disposal facility. The GQA was performed using the sampling program for the RFI program as presented in the Work Plan (Dames & Moore, 1990a). The summary GQA report, titled SWMU 13 Characterization Report (Dames & Moore, 1992a) was completed in April 1992 and subsequently submitted to VDWM. The RFI for SWMU 13 includes the data presented in the GQA, as well as additional background, QA/QC, and New River sampling data. The available data have been evaluated to determine the presence of potential hazardous constituents or hazardous waste, the extent and magnitude of contamination, and potential pathways of contaminant migration. Recommendations regarding further action to be taken at this SWMU are also included.

5.1 <u>SWMU 13 INVESTIGATION PROGRAM</u>

5.1.1 <u>SWMU History</u>

This active unit is located in the southeast section of the Horseshoe Area, on the north bank of the New River (Figure 5-1 and Insert 3). It is located within the 100-year flood plain. The burning grounds have been used for the burning of waste explosives, propellants, and laboratory wastes (propellant and explosive residues, samples, and analytical residues) since manufacturing operations began at RAAP in 1941. The 20-acre unit currently consists of eight pairs of burning pads. The combustible materials are transported to the burning ground and burned at 1430 hours each day. Approximately 600 tons of waste propellant are burned at SWMU 13 annually.

LEGEND:



200 Feet

FIGURE 5-2
MAP OF THE RAAP BURNING GROUND SHOWING HISTORICAL SAMPLE LOCATIONS
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

SOURCE: USAEHA, 1987.

Dames & Moore

SWMU 13 consists of the following components:

- Burning pans
- Former open burning ground areas
- Runoff settling basin
- Mobile temporary storage units.

The burning pans and mobile temporary storage units were put into use in 1985. Prior to that time and at least as early as 1971, wastes were burned directly on mounded earth at the same location currently in use.

A review of historical aerial photographs and early facility maps indicates that, prior to construction of the burning pads--in 1971 or earlier--wastes were burned in pits. These pits may have been formed by dividing one long trench that ran the length of the burning ground into eight separate areas with earthen berms. Burning operations probably took place in the pits. However, the existence of these pits on each side of the berms has not been confirmed. Historical aerial photographs also indicated that in the 1940s and 1950s, only the western half of the burning ground was in use. However, the entire burning ground was being used in 1962. Available RAAP facility maps of the burning ground show the configuration of the older burning pits matching the 1949 and 1962 aerial photography.

The burning pads are approximately 3 feet high and are constructed of earth, with a few inches of gravel on top. The metal burning pans rest on concrete tire stops. In 1985, when the burning pans were put into use, "runways" or ramps were constructed so that the mobile temporary storage units could be rolled on and off the pans. These storage units are essentially wheeled covers that are used to keep wastes in the pans dry prior to burning and to prevent rainwater from filling the pans when not in use.

The 16 burning pans are constructed of metal and are approximately 18 feet long by 6 feet wide by 1 foot deep. A maximum of 1,000 pounds of waste is burned in any one pan at one time. Alternating burning areas (consisting of two pans each) are fired once every

24 hours. Adjacent burning areas are not fired on the same day. Wind speed is normally required to be between 3 and 15 mph when burning operations take place.

Twenty-galion containers of waste are collected from throughout RAAP in steel frame, open-bed carts equipped with canvas tarpaulin covers and removable rear gates. The contents of the 20-galion waste containers are dumped into the pan(s) being fired and are distributed evenly with a rake to a nominal depth of 3 inches. After public warnings are made to evacuate the New River area, the waste is wired and ignited. Pans are ignited in sequence, beginning with the westernmost pan and continuing toward the east.

Burned residue (ash) is not removed from the pans after each burning. As necessary, ash is shoveled from the pans and surrounding soils into ash wagons and moved to the designated ash storage area at the burning ground. The rate of ash generation is not known. Ash is periodically sampled and analyzed for EP toxicity and reactivity. The following are results for one ash sample (USEPA, 1987a):

<u>Parameter</u>	Level (mg/L)	Maximum* (mg/L)
As	ND**	5.0
Ba	0.76	100
Cd	0.012	1.0
Cr	0.031	5.0
Pb	51	5.0
Hg	ND	0.2
Se	ND	1.0
Ag	ND	5.0

^{*}Virginia maximum allowable limit.

When the concentration of lead or any other metal exceeds the Virginia maximum allowable limit, as above, the ash is shipped to a hazardous waste landfill in South Carolina for disposal. If the concentrations of the above-listed metals are less than the Virginia

^{**}ND = not detected.

maximum allowable limit, the ash is transported to the Fly Ash Landfill (SWMU 29) for disposal.

During the late 1970s, prior to initial operation of the Hazardous Waste Landfill (SWMU 16) in 1980, ash from the Waste Propellant Burning Ground was reportedly disposed of at SWMU 54 (Propellant Ash Disposal Area). This unit is located in the easternmost section of the Horseshoe Area, just outside Gate 19-D of the RAAP fence. The quantity of ash disposed of at SWMU 54 was estimated to be 10 tons (USATHAMA, 1975), but the size of the area would suggest a much larger quantity. All disposal was reportedly on the surface, with no disposal in pits or trenches. SWMU 54 is currently being investigated as part of the VI (Dames & Moore, 1992b).

Located at the eastern end of the burning ground is the runoff settling basin, approximately 30 feet long and 20 feet wide by 4 feet deep. Surface water runoff collected in a drainage channel constructed along the length of the burning ground flows through a 10-inch corrugated steel pipe into the settling basin. The basin is excavated into the natural grade, has no berms, and is not lined. It is reportedly cleaned out periodically to check for unburned propellant that may have spilled from the pans and washed into the pond. Any unburned propellant is returned to the pans for burning. Prior to construction of the runoff settling basin in approximately 1985, surface water runoff from SWMU 13 discharged directly to the New River via NPDES Outfall 017.

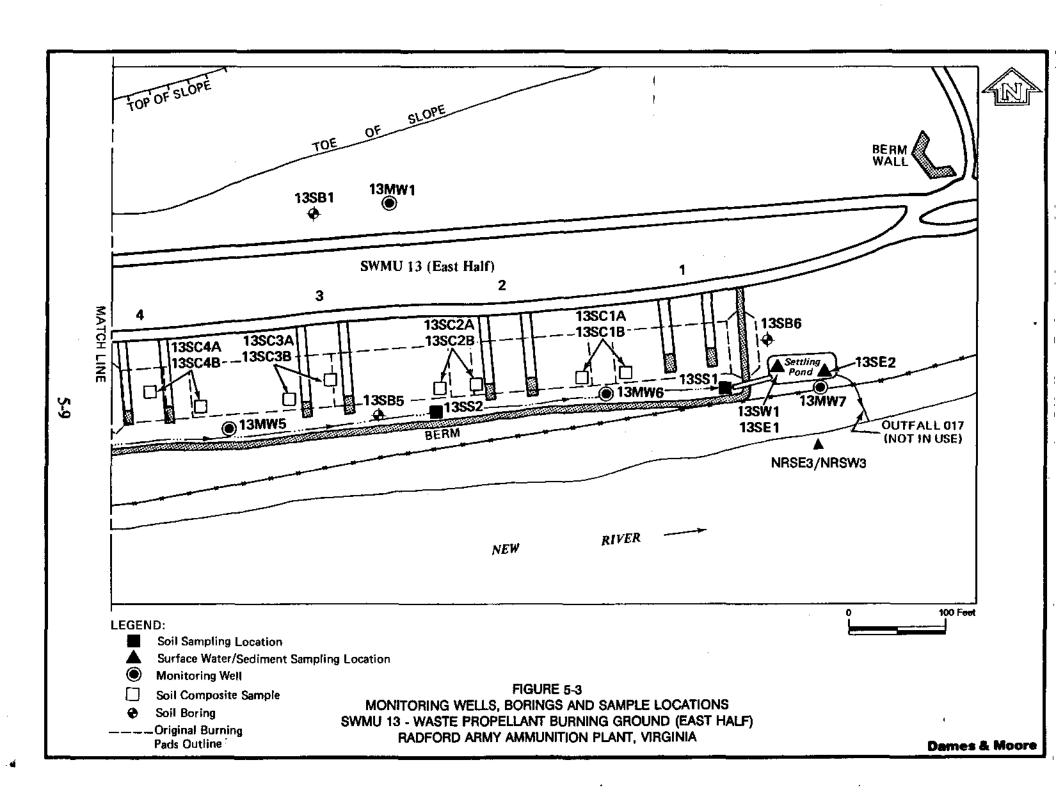
There is the potential for surface soil contamination at SWMU 13 from a number of sources. Prior to use of the burning pans, wastes were burned directly on the ground surface. During current use of the pans, wastes and ash could be spilled onto the ground. In addition, surface water runoff could carry any spilled wastes or ash to the settling basin. Fallout from burning could also contaminate area surface soils.

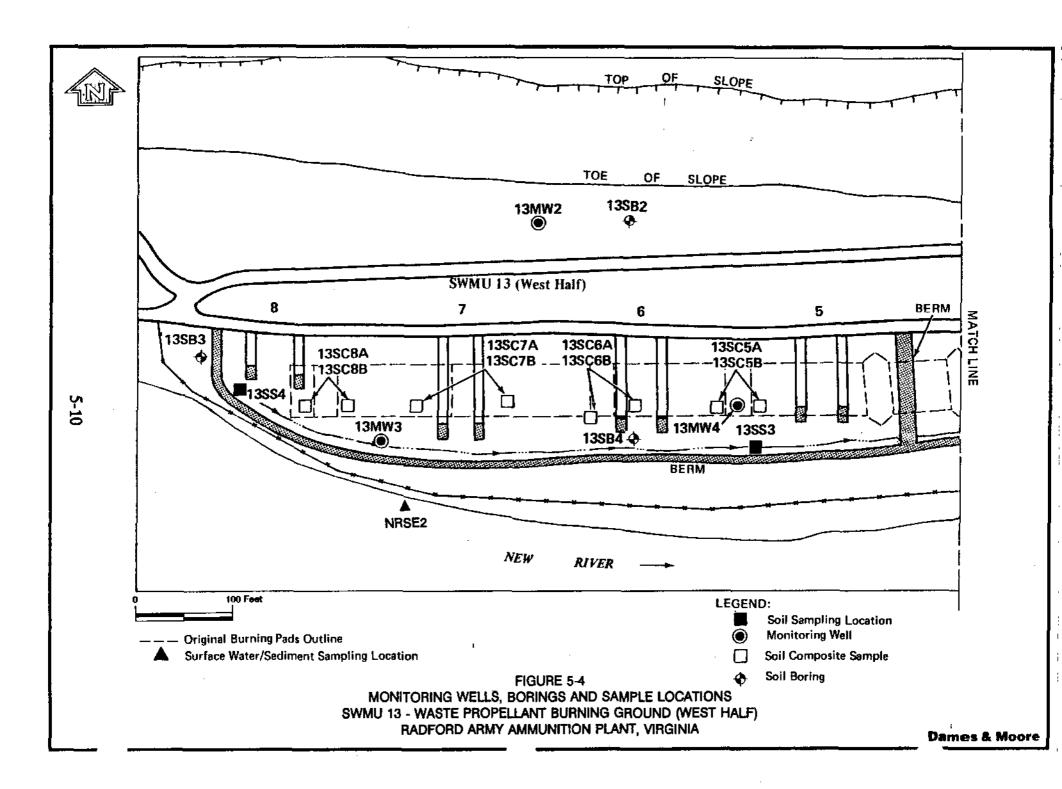
5.1.2 <u>Previous Investigations</u>

Surface soil contamination has been confirmed at SWMU 13 during previous investigations (USAEHA, 1987). The burning ground was divided into 28 sections and sampled for seven explosives and leachable metals. As shown on Table 5-1 and Figure 5-2,

Table 5-1
Results of Historical Analysis for Explosives in Soil
Radford Army Ammunition Plant, Virginia

		Sample Results									
Sample Number	HMX ug/g	RDX ug/g	Tetryl ug/g	TNT ug/g	2,6-DNT ug/g	2,4-DNT ug/g	NG ug/g				
07851	<1	<1	< 5	<1	<1	<1	<1				
0785-2	<1	<1	<5	<1	<1	<1	4.5				
07853 07854	<1 <1	<1 <1	<5 <5	<1 <1	<1	<1 1.4	<1				
07855	A. S. Landerson, Control States and Con-		- can't filter.	~1 ************************************	<1	1.4	6.4				
0785-6	<1	(O anatyze) <1	<5	<1	<1	1.8	6.7				
07857	< 1	<1	<5	<1	₹ Î	<1	5.4				
0785-8	<1	<1	<5	<1	<1	<1	7.1				
0785-9	<1	<1	<5	<1	<1	<1	13.8				
0785-10	<1	<1	<5 +	<1	<1	<1	15.2				
0785-11 0785-12	<1 <1	<1 <1	< 5 <5	<1 45	<1	<1	5.4				
0785-12	<1 <1	<1	<3 <5	4.5 18.7	<1 7.5	<1 25.8	17.1 3.3				
0785-14	<1	~ı <1	< 5	33.7	3.1	2.4	8.2				
0785-15	< 1	<1	<5	14.3	<1	<1	3.3				
0785-16	<1	<1	<5	20.9	<1	<1	<1				
0785-17	<1	27.8	<5	1590	<1	<1	3.9				
0785-18	<1	28.9	<5	1470	<1	<1	3.5				
0785-19 0785-20	<1	<1 -1	<5 	10900	144	1460	5.4				
0785-20	<1 < 1	<1 <1	<5 < 5	68.6 55.7	<1 <1	<1 <1	2.2 8.2				
0785-22	<1	<1	< 5	81.8	2.9	10.5	10.2				
0785-23	<1	< İ	<5	17.4	<1	<1	15.8				
0785-24	<1	<1	<5	177	<1	1.8	1.6				
0785-25	<1	<1	<5	10.1	2.6	2.8	2				
0785-26	<1	<1	<5	<1	<1	1.4	3.9				
0785-27	: :1	<1	<5°	14.1	</td <td><1</td> <td>4.1</td>	<1	4.1				
0785 - 28	<1	<1	<5	<1	<1	<1	3				


Source: USAEHA, 1987. NG was determined to be present in near-surface soils (9 to 12 inches below ground surface) across the entire unit. The western half of the unit (Sections 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 26) was relatively free of soil contamination. Based on information indicating that only the western half of the burning ground was used in the 1940s and 1950s, it appears that it was cleaned up at one time. Low levels of TNT and NG were present in the settling basin (Section 23). No Extraction Procedure (EP) metals were detected in any sample from any area. The most contaminated area was determined to be in and around currently used burning pad number 3 (Sections 17, 18, and 19), which is at the same location as former burn pit 3.


The 1987 investigation also determined that the burning ground soils contained no more than 2 percent explosives. Based on earlier studies that indicated that soils containing less than 12 percent explosives are not reactive, it was concluded that the soils at the burning ground were not reactive (USAEHA, 1987).

5.1.3 RFI Program

To evaluate potential soil contamination at the Waste Propellant Burning Ground, soil samples were collected from borings in the area of the former burn pits, which were used prior to 1971. Composite soil samples (13SC1 through 13SC8 at three depths each) were collected from two borings drilled on either side of the former berms associated with the burn pits (see Figures 5-3 and 5-4). Soil samples were collected from each of the two borings at 0.5, 5, and 10 feet. Samples from the same depth were composited and submitted for chemical analysis. Samples submitted for VOC analyses were not composited. Samples from 13SC3 were taken at the area which was most contaminated in the 1987 USAEHA study.

Surface soil samples (13SS1 through 13SS4) were also collected from the drainage ditch that is located south of the burn pads and extends from the western end to the settling pond at the east end. Chemical results from these samples have been used to assess the potential migration of contaminants via surface water transport.

An additional six soil borings (13SB1 through 13SB6) were drilled in areas outside the vicinity of the former burn pads to evaluate the extent of potential soil contamination. Two soil borings (13SB1 and 13SB2) were drilled north of the twin access roads in a grassy field, an area that was expected to be free of contamination. Sample results from these two borings will be used to assess upslope or background soil chemistry. The eastern and western soil borings (13SB3 and 13SB6) were drilled into areas just outside the bermed wall. The two downslope soil borings (13SB4 and 13SB5) were drilled inside of the southern berm. Samples were collected from each boring at three depths (0.5, 5.0, and 10.0 feet) and submitted for chemical analyses.

In addition to the soil borings, two sediment samples were collected from the settling pond located at the eastern end of the burning ground. One sample (13SE1) was collected adjacent to the influent pipe. A second sediment sample (13SE2) was collected near the eastern end of the pond. Samples were collected from the top 12 inches of sediments. A surface water sample (13SW1) was also collected from the settling pond.

All soil samples were analyzed for metals, explosives, VOCs, and SVOCs. The 24 composite soil samples were also analyzed for TCLP metals to evaluate potential remediation and disposal options.

Groundwater samples were collected from seven newly installed monitoring wells (13MW1 through 13MW7) as indicated in Figure 5-1. Two wells (13MW1 and 13MW2) were installed upgradient and five wells were installed downgradient of the SWMU 13 burning pads and settling pond. All groundwater samples were analyzed for metals (filtered and unfiltered), VOCs, SVOCs, explosives and nitrogen expressed as nitrite/nitrate. In addition, samples were analyzed for indicator parameters such as total organic carbon (TOC), total organic halogens (TOX), hydrogen ion activity (pH) and specific conductance. These data were used to identify statistically significant increases in constituents measured in the downgradient groundwater as compared to those detected upgradient (i.e., background).

Four sediment and three surface water samples were collected from the New River at upgradient, adjacent and downgradient locations. These locations (Figure 5-1) were chosen after preliminary analytical results of on-site samples analyses were reviewed. Each location was chosen to be adjacent to the north bank of the New River in order to have a better chance of detecting contaminants migrating from SWMU 13. The adjacent samples were collected at points considered to be most impacted by contaminants migrating from SWMU 13 in groundwater. As indicated by the preliminary on-site laboratory data, these locations would be directly downgradient of both well 13MW3 and the settling pond.

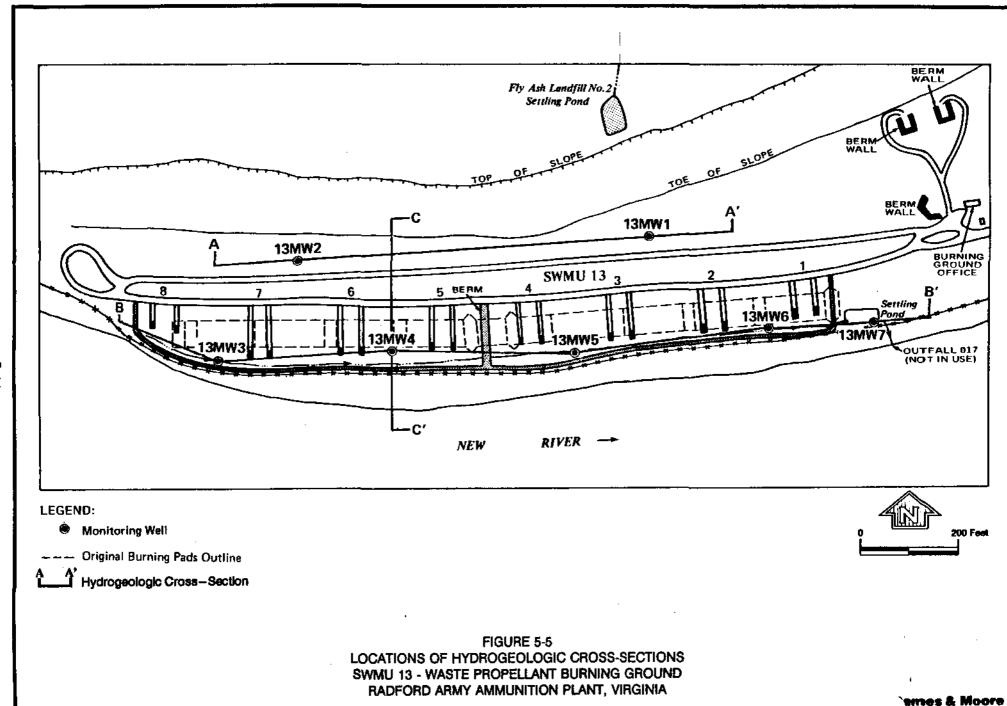
Quality control samples were also collected during the field program to evaluate sampling and decontamination activities and laboratory precision. Two samples (RAAP-1) of the water used to decontaminate the sampling equipment were collected prior to the time of the field efforts and analyzed for the parameters specified above. Results from these analyses were compared to the results of the environmental sample results to evaluate the potential for inadvertent contamination of the environmental samples. The decontamination water was collected at the RAAP potable water treatment plant at a point prior to any treatment.

A second quality control sample consisted of a laboratory prepared trip blank of distilled water sent from the laboratory, handled in the field, and resubmitted to the laboratory. This sample was analyzed for VOCs to evaluate the potential for inadvertent contamination of environmental samples via shipping and handling.

Duplicate samples of one groundwater, two soil, one surface water, and one sediment sample were collected during the field program and submitted to the laboratory. These quality control samples were used to evaluate the laboratory analytical precision.

5.2 <u>ENVIRONMENTAL SETTING</u>

5.2.1 <u>Topography</u>

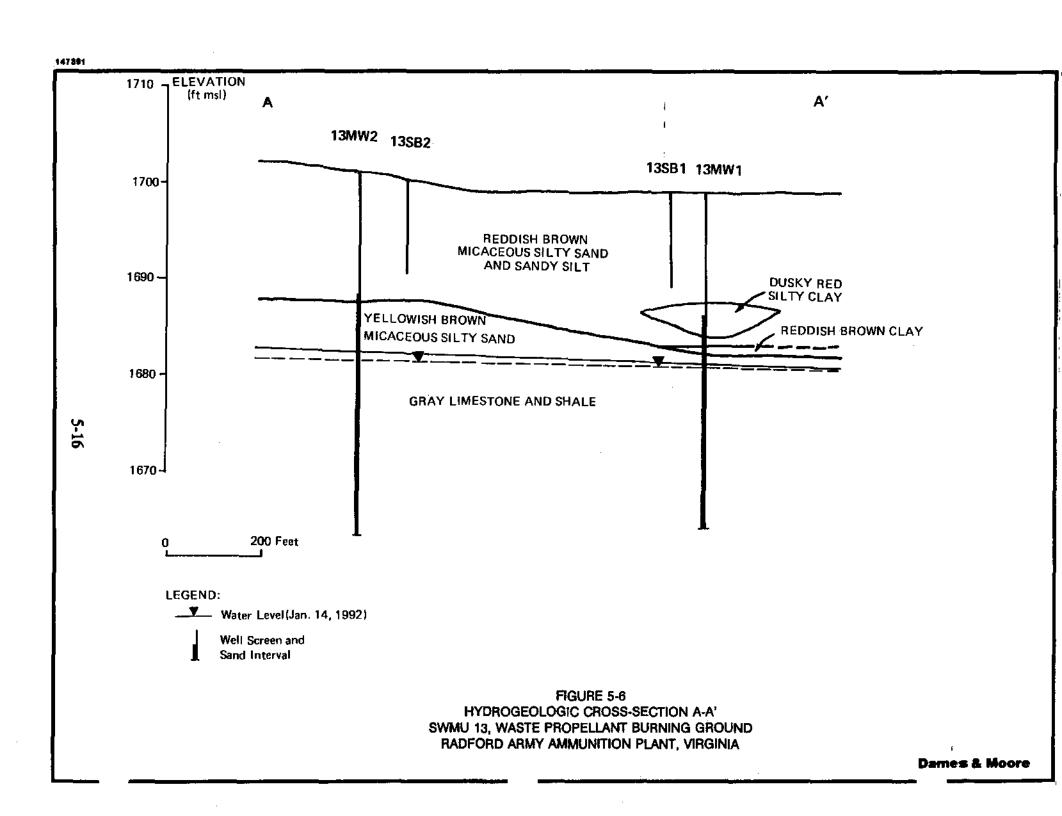

The Waste Propellant Burning Ground (SWMU 13) is located in the southeast section of the Horseshoe Area, on the northern bank of the New River within the 100-year flood plain. It covers approximately 20 acres. The topography of SWMU 13 is very slightly

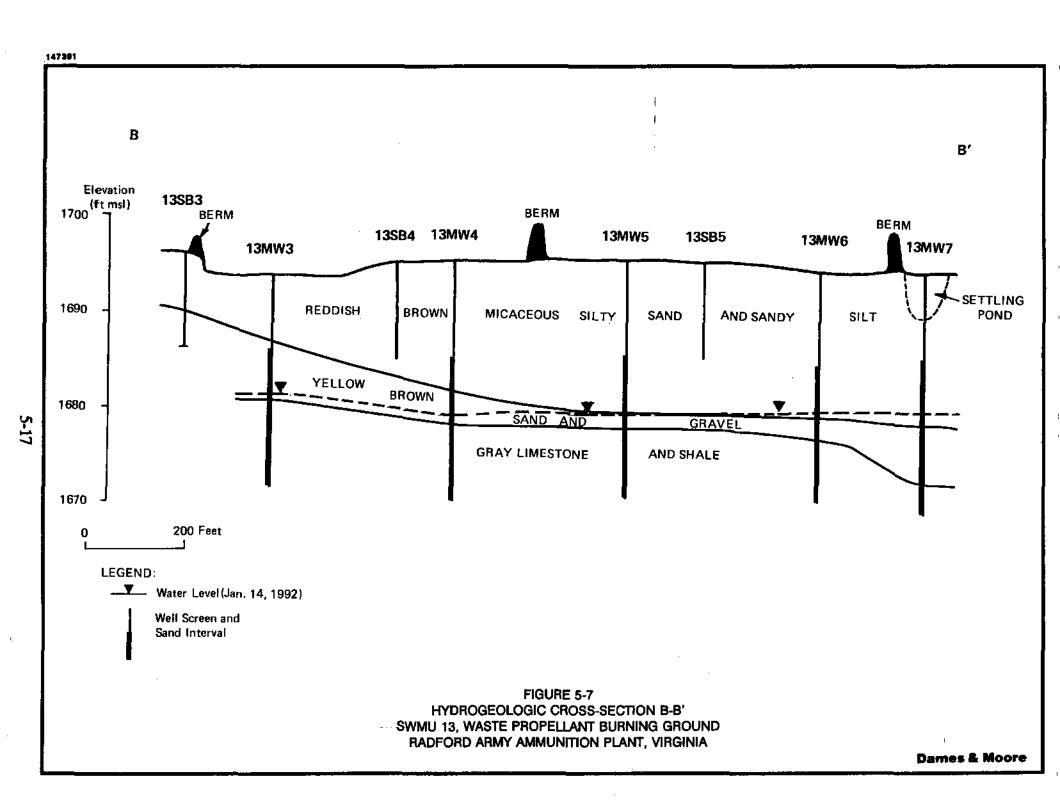
sloping to the south, with an elevation of approximately 1,699 to 1,701 feet msl on the northern side and 1,693 to 1,695 feet msl on the southern side. An earthen berm approximately 5 feet high separates SWMU 13 into western and eastern sections. A berm borders the southern side of SWMU 13. A settling basin that collects runoff from the burning ground exists on the eastern side of SWMU 13. The settling basin is approximately 30 feet long, 20 feet wide, and 4 feet deep. SWMU 13 is approximately 750 feet downgradient (south) of SWMUs 27, 29, and 53. A settling pond approximately 30 feet upgradient from SWMU 13 collects surface runoff from SWMUs 27, 29, and 53. The topography north of SWMU 13 is steeply sloping towards the south. The topography south of SWMU 13, just after the berm, is moderately steeply sloping towards the New River, which is approximately 50 feet south of the burning ground.

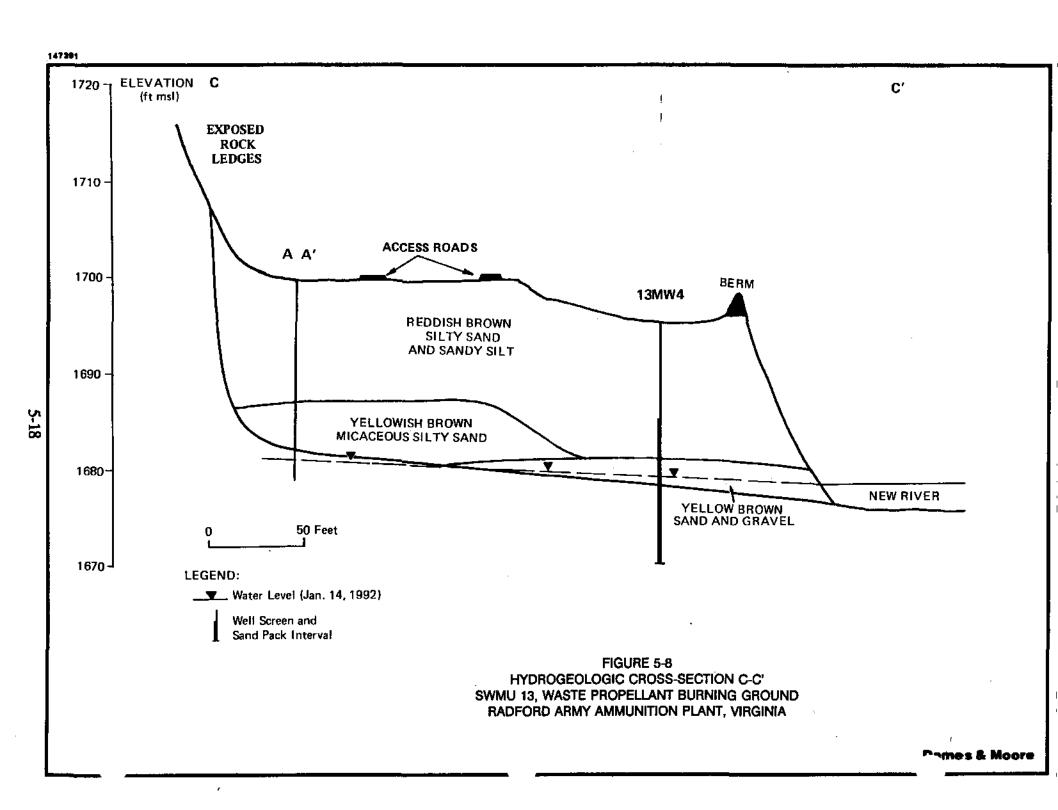
5.2.2 Hydrogeology

5.2.2.1 Geologic Units. The geology of the SWMU 13 (Waste Propellant Burning Ground) area has been explored for the RFI through the drilling of 22 exploratory soil borings and seven monitoring well borings. These borings, ranging from 10 feet to 38 feet in depth, allow for a general understanding of subsurface conditions. The seven monitoring well borings fully penetrated the unconsolidated soil and were terminated in bedrock. Data from these bores were used to construct three cross-sections and one site-specific groundwater elevation map presented later in this section. As shown in Figure 5-5, the three cross-sections (A-A', B-B', and C-C') illustrate the subsurface conditions at SWMU 13. The following subsections describe the unconsolidated soil and bedrock geology of SWMU 13 as revealed through the RFI boring program. The topography of SWMU 13 is illustrated on the Topographic Survey map as Insert 3.

5.2.2.1.1 <u>Unconsolidated Sediment</u>. Unconsolidated soil deposits, which thicken away from the river, can be divided into two principle units based on information gathered during the boring program and presented in the well boring logs (Appendix F). Minor layers with slightly different textures were included in the two principle units in order to provide a general description consistent throughout the study area. The shallowest layer consists of fine to coarse grained, micaceous, reddish-brown sandy silt and silty sand. Either a


micaceous, yellowish-brown, silty sand or a yellowish-brown sand and gravel layer is present below the first layer and overlying bedrock. The sand and gravel layer pinches out or grades into the yellowish-brown silty sand before reaching the line of the upgradient borings away from the river (cross-section A-A').


Cross-section A-A' (Figure 5-6) trends generally west to east across the northern portion of SWMU 13. Cross-section B-B' (Figure 5-7) trends generally west to east across the southern portion of SWMU 13 in the burning area. Cross-section C-C' (Figure 5-8) trends north to south across SWMU 13. These cross-sections illustrate both the lateral and vertical variability of the alluvial-floodplain deposits.


Thirteen soil samples were submitted for grain size (sieve) analysis, hydrometer testing, and Atterberg limits testing. These samples were collected from representative soil zones encountered in the boring program. Generally, soil samples collected from 0 to 14 feet were classified in the Unified Soil Classification System (USCS) as a sandy silt (ML), sandy silty clay (CL-ML), or as a non-plastic silty sand (SM). Soil samples collected from 15 to 20 feet were classified in the USCS as a silty sand (SM). The moisture content for samples ranged from 8.7 to 22.5 percent. These classifications and values were consistent with the soil characteristics observed while logging the soil borings during field activities. The laboratory data sheets are presented in Appendix F.

5.2.2.1.2 <u>Bedrock</u>. Underlying the unconsolidated soils in SWMU 13 is the brown-gray limestone/dolostone of the Elbrook Formation. At SWMU 13 the limestone/dolostone is argillaceous and frequently interbedded with shale. The bedrock is highly weathered and fractured with occasional clay seams and brecciated zones near the river but much less weathered and more competent at the two upgradient well boring locations. Calcite commonly fills fractures and veins. Bedrock was penetrated a maximum depth of 19 feet during the 1991 RFI boring program.

The bedrock surface at SWMU 13, as revealed by the borings, slopes south to southeast toward the New River at a grade of approximately 1.3 percent (Figure 5-6) from an elevation of approximately 1,682 feet msl along cross-section A-A'. The depth of bedrock

increases between borings 13MW6 and 13MW7 (Figure 5-7), possibly reflecting deeper erosion due to stream cutting. The sand and gravel layer is also thicker at this location.

5.2.2.2 Groundwater. The hydrogeologic conditions within the unconsolidated soil and bedrock were investigated through field examination of soil and rock samples, physical tests of 13 soil samples consisting of grain-size (sieve) analysis, hydrometer analysis, determination of Atterberg limits, and data from rising-head and falling-head (slug) tests on seven monitoring wells installed in SWMU 13. Groundwater elevations, measured from the wells in SWMU 13 during the field program, are presented in Table 5-2.

5.2.2.2.1 Potentiometric Surface. A relatively shallow groundwater table is present from 12 to 20 feet below the ground surface in SWMU 13. This water table of the unconfined aquifer is generally present just below the bedrock contact north of the burning ground area (13MW1 and 13MW2), but is 1 to 3 feet above the bedrock surface (within the sand and gravel layer) in the burning ground area. Based on groundwater measurements obtained on January 14, 1992, the unconfined water table gradient slopes northwest to southeast toward the New River at approximately 0.83 percent in the western portion of the burning ground, and approximately 0.35 percent in the eastern portion of the burning ground. The water table gradient is less than the slope of the bedrock surface (Figure 5-8).

Groundwater contours for the SWMU 13 area are shown in Figure 5-9. The irregular flow pattern at the western end of SWMU 13 may be due to ponding of water near well 13MW3. Surface drainage patterns are provided in Section 5.2.4. This ponding probably creates a groundwater mound which raises the water table and changes the flow direction from southward to southeastward. The increased flow gradient in this area is also probably due to the effects of the groundwater mounding.

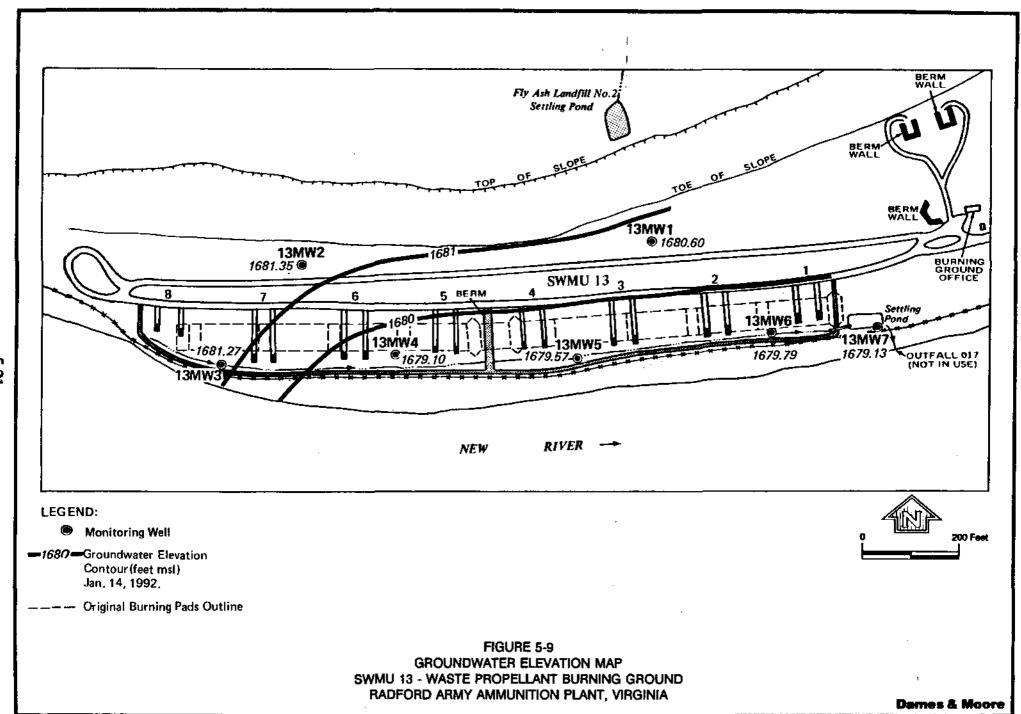

5.2.2.2.2 Flow Patterns. Groundwater flow below the SWMU 13 area primarily occurs through two geologic units; the unconsolidated sand and gravel, and the consolidated bedrock. The hydrological characteristics of each unit are different resulting in different groundwater flow regimes. Estimated hydraulic conductivity data for the unconfined aquifer

Table 5-2
Groundwater Elevations
SWMU 13, Waste Propellant Burning Ground
Radford Army Ammunition Plant, Virginia

Well	Date	Depth to Water From Top to Casing	Elevation of Water
13MW1	1/14/92	20.84	1680.60
13MW2	1/14/92	21.27	1681.35
13MW3	1/14/92	13.20	1681.27
13MW4	1/14/92	17.30	1679.10
13MW5	1/14/92	16.83	1679.57
13MW6	1/14/92	16.34	1679.71
13MW7	1/14/92	16.08	1679.13

All distances are in feet or feet mean sea level.

River level reported as being high at time of measurement.

were calculated from slug tests conducted in the seven monitoring wells installed at SWMU 13. No wells were installed entirely into the bedrock and a hydraulic conductivity test solely for this unit was not conducted. However, the potentiometric surface for wells 13MW1 and 13MW2 were within the bedrock and data from these wells could be considered applicable for the bedrock. Unfortunately, flow in the bedrock at these wells was through fractures and therefore, aquifer properties estimates are considered only rough approximations.

Groundwater from north (upgradient) of SWMU 13 in the unconfined aquifer will flow southward to the burning ground predominantly through consolidated bedrock. This groundwater will then exit the bedrock and enter the soil layers. Because the sand and gravel unit is the first impacted and most likely layer through which potential contaminants may flow from the burning ground, knowing the flow velocity for this layer is important for evaluating potential contaminant migration from the burning ground.

5.2.2.2.3 Recharge and Discharge. The first aquifer encountered below SWMU 13 is an unconfined water table which is charged directly through infiltration of surface water and precipitation. A groundwater mound present 1,600 feet north of SWMU 13 (Insert 2) should represent the farthest area at which groundwater flowing to SWMU 13 originates. Groundwater recharge through infiltration can occur anywhere between the groundwater mound and SWMU 13.

As illustrated in Figure 5-8, the soil mantle over the bedrock does not exist on the hillside north of the burning area. The soil mantle is again present at the top of the hill where up to 50 feet of soil may be present (Section 7.2.2) below the combined landfill area. Recharge, therefore, occurs through infiltration of precipitation through soil layers except for the steep, rock exposed hillside. No surface water bodies occur within this recharge zone except for the Fly Ash Landfill No. 2 (SWMU 29) settling pond which is directly upgradient of well 13MW1.

Groundwater discharges into the New River. Water elevations measured from site wells show a gradual reduction in the water table elevation southward towards and

coincidental with the New River. Groundwater migration from SWMU 13 to areas other than the New River, less than 100 feet from SWMU 13, is unlikely.

5.2.2.2.4 Aguifer Properties. Both falling-head and rising-head slug tests were conducted on six of the wells; rising-head tests provided higher conductivity estimated values in five wells (Table 5-3). Because these wells were screened across the water table, rising head tests would typically yield a more accurate value. The lowest hydraulic conductivity at SWMU 13 was calculated for well 13MW2, an upgradient bedrock well. The downgradient wells were screened across the water table which caused both soil and bedrock to be screened since only a few feet of saturated soil was present. Most water transmission probably occurs through the sand and gravel layer overlying bedrock and the slug tests were most likely measuring this layer, but the weathered and fractured bedrock near the New River can also transmit great quantities of water. Because the site hydrogeology was very irregular, using averages of values from the slug tests to estimate hydraulic conductivity was considered less appropriate than selecting results from a single well which appears representative of the sand and gravel layer. A more realistic estimate of the hydraulic conductivity of the unconsolidated sand and gravel layer is provided from data collected from monitoring wells 13MW6 and 13MW7. At these locations, the thickness of the saturated sand and gravel layer is much greater (3 to 7 feet) than the other downgradient Data from monitoring wells 13MW3, 13MW4, and 13MW5 are more likely significantly influenced by both the relatively thin sequence of saturated soil and the underlying, irregularly fractured consolidated bedrock.

Assuming the representative water bearing unit to be the sand and gravel, the horizontal groundwater flow velocity in the western half of SWMU 13 may be calculated by knowing the estimated hydraulic conductivity $(2.0 \times 10^{-3} \text{ cm/sec})$, the hydraulic gradient (0.83 percent) as measured from Figure 5-9, and the estimated effective formation porosity (25 percent). The estimated porosity of 25 percent for the sand and gravel layer is based on a range of porosities common for unconsolidated sand and gravel mixtures (10-25 percent; Johnson Filtration Systems, Inc., 1986). By using the Darcy Equation and standard equation of hydraulics (V = ki/n) where V is velocity, K is hydraulic conductivity, i is gradient and n

Table 5-3
Summary of Hydraulic Conductivity Data
SWMU 13, Waste Propellant Burning Ground
Radford Army Ammunition Plant, Virginia

Well	Slug Test	Hydraulic
	Siug Test	Conductivity (cm/sec)
13MW1	Falling-head	4.4 x 10 ⁻⁴
	Rising-head	2.0×10^{-3}
13MW2	Falling-head	4.7 x 10 ⁻⁵
	Rising—head	5.2 x 10 ⁻⁵
13MW3	Falling-head	$2.6 \mathrm{x} \cdot 10^{-3}$
15141 44 5	Rising—head	1.3×10^{-3}
13MW4	Falling-head	7.0 x 10 ⁻⁵
13M W 4	Rising—head	8.8 x 10 ⁻⁵
401 51175	T-112 1 #	05 10-4
13MW5	Falling—head Rising—head	2.5 x 10 ⁻⁴ 8.1 x 10 ⁻⁴
	•	•
13MW6	Falling—head	1.1×10^{-3}
	Rising-head	2.0×10^{-3}
13MW7	Falling-head	2.0×10^{-3}

Method of calculation was Bouwer and Rice, 1976.

is effective porosity, the estimated horizontal groundwater flow velocity was calculated to be 6.6×10^{-5} cm/sec (69 ft/yr). Substituting the measured gradient in the east portion of SWMU 13 (0.35 percent), the estimated groundwater flow velocity is 2.8×10^{-5} cm/sec (29 ft/yr) for the sand and gravel layer.

The rising-head hydraulic conductivity calculated (and assumed) for the consolidated bedrock at SWMU 13 was 2.0×10^{-3} cm/sec for 13MW1, and 5.2×10^{-5} cm/sec for 13MW2. Measurements of the bedrock hydraulic conductivity will be variable due to irregular water bearing fractures. Measured values should always be considered only rough approximations. 5.2.2.2.5 Hydrogeologic Interrelationships. A dilution factor was calculated for groundwater migrating from SWMU 13 and discharging into the New River in order to assess the potential impact site contamination may have on the quality of the New River water. Dilution of incipient groundwater by the New River would be important in decreasing the concentrations of potential contaminants released to the river.

As shown on Table 5-4, the dilution factor for each month was estimated using stream-flow data provided by the U.S. Geological Survey for the New River and the estimated groundwater velocities presented above. The average linear groundwater velocity was multiplied by the approximate cross-sectional area (1,600 feet x 4 feet) of the unconsolidated water table aquifer along the southern edge of SWMU 13 and the effective aquifer porosity to estimate the total aquifer discharge to the New River. This estimated aquifer discharge was then divided into the mean flow rate of the New River to provide an estimated river dilution factor. The mean monthly surface water/groundwater dilution factors ranged from a minimum of 700,000 (September using the maximum estimated groundwater velocity) to a maximum of 4,000,000 (March using the minimum estimated groundwater velocity). The actual month in which groundwater samples 13MW1 through 13MW7 were collected (October 1991) had a reported river flow rate less than half the mean flow rate reported for the last 52 years and the estimated minimum and maximum dilution factors were correspondingly much less-300,000 to 800,000 times, respectively.

Table 5-4
Estimated Dilution Factors for Groundwater
Discharging into the New River
SWMU 13
Radford Army Ammunition Plant, Virginia

	New River	Dilution Factor			
Month	Mean Flow ^a (ft ³ /sec)	Min. Vel. 29 ft/year ^b	Max. Vel. 69 ft/year		
January	4153	3E+06	1E+06		
February	5310	4E+06	2E+06		
March	5927	4E+06	2E+06		
April	5520	4E+06	2E+06		
May	4479	3E+06	1E+06		
June	3451	2E+06	1E+06		
July	2793	2E+06	8E+05		
August	2647	2E+06	8E+05		
September	2531	2E+06	7E+05		
October	2772	2E+06	8E+05		
November	3059	2E+06	9E+05		
December	3655	2E+06	1E+06		
Annual Mean	3850	3E+06	1E+06		
October 1991 ^d	1197	8E+05	3E+05		

Footnotes:

^a Monthly mean at Radford, VA since 1940 (USGS, 1992).

b Mean flow /(1600 ft * 4 ft * 29 ft/year * 25% porosity * 1 year/365 days * 1 day/24 hrs * 1 hr/3600 sec)

[°] Mean flow /(1600 ft * 4 ft * 69 ft/year * 25% porosity * 1 year/365 days * 1 day/24 hrs * 1 hr/3600 sec)

d Month of SWMU 13 groundwater samples.

5.2.3 <u>Soil</u>

Site soils at the burning pad area have been extensively reworked, graded, and eroded since operations at the site began. Original soil types as mapped by the USDA would not apply for this site. A full discussion with accompanying diagrams on soil/sediment texture, layer thickness, and depth to groundwater are presented in Section 5.2.2.1.1. The extent of contamination in the soil zone is presented in Section 5.3.2.

5.2.4 Surface Water and Sediment

The New River is located less than 100 feet south of SWMU 13. The New River at this point flows west, just before it bends around the Horseshoe Area. SWMU 13 is located within the 100-year flood plain. The flow of the New River varies widely throughout the day because of Claytor Lake Dam releasing different amounts of water based on power requirements and upstream flows. The mean monthly flow rates at Radford, Virginia since 1940 are provided in Table 5-3 (USGS, 1992). The chemical and physical water analyses of the New River at Radford, Virginia from a 1976 study, summarized in Table 2-5 (USATHAMA, 1976), and from a 1989 study are provided in Appendix H.

The burning ground area is enclosed in the western, southern, and eastern sides by a berm located topographically downgradient from the burning pads; this berm prevents surface runoff from flowing to the New River. The burning ground is also separated into eastern and western sections by an earthen berm that creates separate surface drainage patterns for each section (Figures 5-3 and 5-4; Topographic Survey, Insert 3).

Surface water runoff in the western half of the burning ground generally flows southward, collecting in a low area along the downgradient berm near burning pads 7 and 8. During wet periods, ponded water was observed in the vicinity of monitoring well 13MW3, which has been assumed to cause an effect on the groundwater patterns in this area (see Section 5.2.2.2.1). The earthen berm separating the eastern and western sections prevents surface water from the western side from flowing toward the runoff settling basin; this basin is located to the east of the eastern berm of the burning ground. This enclosed drainage pattern would cause any contaminants present on the surface in the western side

to be carried by surface runoff to the low areas near the downgradient berm, rather than eastward to the settling basin.

Surface runoff in the eastern half of the burning ground generally flows southward for a short distance and then eastward along the southern berm. Flow exits the burning pad area via a 10-inch corrugated steel pipe through the eastern berm and then empties into the runoff settling basin located at the eastern end of the burning ground. The settling basin, approximately 30 feet long, 20 feet wide and 4 feet deep, is excavated into the natural grade. It has no berms and is not lined. It is reportedly cleaned out periodically to check for unburned propellant that may have spilled from the pans and collected in the pond. Any unburned propellant is returned to the pans for burning. At the time of groundwater sampling (October 1991), the basin was dry, likely as a result of basin construction in coarse soils that allow percolation of water. However, during wet periods, the settling basin fills with water because runoff collection occurs faster than percolation through the soils. Any contaminants present on the surface in the eastern half of SWMU 13 would likely be carried to the settling basin in the surface water as either dissolved constituents or suspended solids. Prior to construction of the runoff settling basin in approximately 1985, surface runoff from SWMU 13 discharged directly to the New River via NPDES Outfall 017.

Because of the constructed berms and runoff settling basin, surface runoff is unlikely to leave the burning ground area as runoff, but the various areas available for ponding allows for the infiltration of surface water into the groundwater. Contaminants dissolved in the surface water may be transmitted to the groundwater, but it is unlikely that contaminants present as suspended solids are similarly transmitted.

5.3 CONTAMINATION CHARACTERIZATION

5.3.1 Groundwater

The results of the chemical analyses indicated concentrations of VOCs and explosives in groundwater downgradient of the burning pads. However, concentrations of only two VOCs at two locations exceeded HBN criteria and may be a concern at the site. A

Table 5-5
Summary of Analytical Data For Groundwater Samples Collected At SWMU 13
Radford Army Ammunition Plant, Virginia

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS	PQLs UGL	13MW1 RDWA*13 08oct91 23.0 CGW UGL	13MW1(a) RDWAU*13 08-oct-91 23.0 CGW UGL	13MW2 RDWA*14 11-oct-91 24.0 CGW UGL	13MW2(a) RDWAU*14 11-oct-91 24.0 CGW UGL	13MW3 RDWA*15 10-oct-91 14.0 CGW UGL	13MW3(a) RDWAU*15 10oct91 14.0 CGW UGL	13MW4 RDWA*16 11-oct-91 19.0 CGW UGL	HBN UGL
TAL Inorganics	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>552</u>	<u> </u>	<u>.5-0-1</u>	<u></u>	
ALUMINIUM ARSENIC BARIUM CALCIUM CHROMIUM COPPER IRON LEAD MAGNESIUM MANGANESE POTASSIUM SODIUM	141 10 20 500 10 60 38.1 10 500 2.75 375 500	LT 141 LT 2.54 104 97400 LT 6.02 LT 8.09 LT 38.8 LT 1.26 B 30600 26.1 1770 4440	4540 LT 2.54 154 110000 9.57 LT 8.09 6560 2.71 B 34500 114 2330 5170	LT 141 LT 2.54 86.3 75100 LT 6.02 LT 8.09 LT 38.8 LT 1.26 B 30900 3.55 2250 2310	2580 LT 2.54 155 92200 17.4 LT 8.09 2550 LT 1.26 B 40600 44.5 3410 2450	LT 141 LT 2.54 82.2 79100 LT 6.02 LT 8.09 LT 38.8 LT 1.26 B 29500 4.37 2930 7740	8540 LT 2.54 185 110000 24.7 14.9 11000 45.3 50100 207 5950 7850	LT 141 LT 2.54 63.9 85900 LT 6.02 LT 8.09 LT 38.8 LT 1.26 B 28200 105 2340 25200	101500 50 1000 NSA 50 1295 NSA 50 NSA 3500 NSA NSA
VANADIUM ZINC	40 50	LT 11 LT 21.1	16.2 32.5	LT 11 LT 21.1	LT 11 LT 21.1	LT 11 LT 21.1	26.2 62.2	LT 11 LT 21.1	245 7000
Explosives									
HMX RDX	1.21 1.17	LT 1.21 LT 1.17	NT NT	LT 1.21 LT 1.17	NT NT	1.41 C 2.83 C	NT NT	3.07 C LT 1.17	1750 3.18
Volatiles									
1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM TRICHLOROETHYLENE	5 5 5 5 5 5 5	0.874 LT 0.5 0.735 1.25 LT 0.58 LT 0.5 B LT 0.5	NT NT NT NT NT NT	LT 0.5 LT 0.5 LT 0.5 2.04 LT 0.58 LT 0.5 LT 0.5	NI NI NI NI NI NI NI	LT 0.5 LT 0.5 LT 0.5 LT 0.5 LT 0.5 [10.5] 1.33 2	NT NT NT NT NT NT NT	LT 0.5 LT 0.5 LT 0.5 LT 0.5 LT 0.5 LT 0.58 0.605 4.95	5 NSA 6 4000 5 600 5
Volatile TICs									
2-ETHYHEXANOL	NA	ND	NT	ND	NT	ND	NT	7 S	NSA
<u>Semivolatiles</u>	NA	None Detected	NΓ	None Detected	NT	None Detected	NI	None Detected	NSA
Semivolatile TICs									
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	NT	9 S	NT	20 S	NT	5 S	NSA

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	13MW1 RDWA*13 08-oct-91 23.0 CGW UGL	13MW1(a) RDWAU*13 08-oct-91 23.0 CGW <u>UGL</u>	13MW2 RDWA*14 11-oct-91 24.0 CGW UGL	13MW2(a) RDWAU*14 11-oct-91 24.0 CGW UGL	13MW3 RDWA*15 10-oct-91 14.0 CGW UGL	13MW3(a) RDWAU*15 10-oct-91 14.0 CGW <u>UGL</u>	13MW4 RDWA*16 11-oct-91 19.0 CGW UGL	HBN <u>UGL</u>
Semivolatile TICs									
TOTAL UNKNOWNTICs	NA	ND	NT	(4)48	NT	(3)30	NT	ND	NSA
Other									
NITRITE.NITRATE	100	850	NT	650	Nľ	7000	NT	5500	10000
TOTAL ORGANIC CARBON	1000	5030	NΓ	3360	NΓ	3530	NT	4480	NSA
TOTAL ORGANIC HALOGENS	1	447	Nľ	LT 1	NΤ	LT 1	NT	184	NSA
pH	NA	Nľ	NT	NT	NT	NT	NT	NT	NSA

Table 5-5 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH (fi) MATRIX UNITS (#)	PQLs UGL	13MW4(a) RDWAU*16 11 – oct – 91 19.0 CGW <u>UGL</u>	13MW5 RDWA*17 09-oct-91 19.0 CGW UGL	13MW5(a) RDWAU*17 09-oct-91 19.0 CGW UGL	13MW6 RDWA*18 09-oct-91 18.0 CGW UGL	13MW6(a) RDWAU*18 09-oct-91 18.0 CGW UGL	13MW7 RDWA*19 08-oct-91 19.0 CGW UGL	13MW7D RDWA*20 08-oct-91 19.0 CGW UGL	HBN <u>UGL</u>
TAL Inorganics ALUMINIUM ARSENIC BARIUM CALCIUM CHROMIUM COPPER IRON LEAD MAGNESIUM MANGANESE POTASSIUM SODIUM VANADIUM ZINC	141	8760	LT 141	2140	LT 141	2610	LT 141	141	101500
	10	2.99	LT 2.54	LT 2.54	LT 2.54	LT 2.54	LT 2.54	LT 2.54	50
	20	141	77.6	106	51.7	86.4	153	53.1	1000
	500	113000	96000	114000	92200	101000	88800	31400	NSA
	10	19	LT 6.02	16.7	LT 6.02	13.7	LT 6.02	LT 6.02	50
	60	17.7	LT 8.09	LT 8.09	LT 8.09	16.6	LT 8.09	LT 8.09	1295
	38.1	9740	LT 38.8	3030	LT 38.8	3530	LT 38.8	214	NSA
	10	4.56 B	LT 1.26 B	5.21 B	LT 1.26 B	1.95 B	LT 1.26 B	22.5	50
	500	44100	28500	36700	30800	35000	29700	10100	NSA
	2.75	221	3.55	55.8	15.3	82.7	652	202	3500
	375	5450	1530	2660	1560	2850	2380	1440	NSA
	500	24400	11600	11000	4770	4660	6470	2560	NSA
	40	23	LT 11	11.9	LT 11	13.7	LT 11	LT 11	245
	50	36.4	LT 21.1	27.3	LT 21.1	38.1	LT 21.1	102	7000
Explosives HMX RDX	1.21	NT	2.81 C	NT	LT 1.21	NT	7.07 C	6.62 C	1750
	1.17	NT	LT 1.17	NT	LT 1.17	NT	LT 1.17	LT 1.17	3.18
Volatiles 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM TRICHLOROETHYLENE	5	NI	LT 0.5	NI	LT 0.5	NT	LT 0.5	LT 0.5	5
	5	NI	LT 0.5	NI	LT 0.5	NT	0.699	0.786	NSA
	5	NI	LT 0.5	NI	LT 0.5	NT	LT 0.5	LT 0.5	6
	5	NI	1.59	NI	LT 0.5	NT	LT 0.5	LT 0.5	4000
	5	NI	LT 0.58	NI	LT 0.5	NT	LT 0.58	LT 0.58	5
	5	NI	LT 0.5 B	NI	LT 0.58	NT	LT 0.5 B	LT 0.5 B	600
	5	NI	0.781	NI	LT 0.5 B	NT	[10.5]	[10.5]	5
Volatile TICs 2-ETHYHEXANOL Semivolatiles	NA	NT	ND	NT	ND	NT	ND	ND	NSA
Semivolatile TICs HEXANEDIOIC ACID, DIOCTYL ESTER	NA NA	NT	None Detected ND	NT NT	None Detected ND	NT NT	None Detected	None Detected ND	NSA NSA

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	13MW4(a) RDWAU*16 11 – oct – 91 19.0 CGW UGL	13MW5 RDWA*17 09-oct-91 19.0 CGW UGL	13MW5(a) RDWAU*17 09-oct-91 19.0 CGW <u>UGL</u>	13MW6 RDWA*18 09-oct-91 18.0 CGW UGL	13MW6(a) RDWAU*18 09-oct-91 18.0 CGW UGL	13MW7 RDWA*19 08-oct-91 19.0 CGW UGL	13MW7D RDWA*20 08-oct-91 19.0 CGW UGL	HBN <u>UGL</u>
Semivolatile TICs									
TOTAL UNKNOWN TICS	NA	NT	(1)3	NT	(1)4	NT	(4)19	(2)9	NSA
<u>Other</u>									
NITRITE, NITRATE	100	NT	5500	NT	800	NT	2400	2600	10000
TOTAL ORGANIC CARBON	1000	NT	4030	NΓ	3790	NT	2970	LT 1000	NSA
TOTAL ORGANIC HALOGENS	1	NT	12	NT	LT 1	NT	366	88.3	NSA
рН	NA	NT	NΓ	NΓ	NΤ	NΤ	NT	7.03 K	NSA

Table 5-5 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH (ft)		13MW7(a) RDWAU*19 08-oct-91 19.0	13MW7D(a) RDWAU*20 08-oct-91 19.0	
MATRIX	PQLs	CGW	CGW	HBN
UNITS (#)	<u>UGL</u>	<u>UGL</u>	<u>UGL</u>	<u>UGL</u>
TAL Inorganics				
ALUMINIUM	141	7090	5600	101500
ARSENIC	10	LT 2.54	LT 2.54	50
BARIUM	20	203	192	1000
CALCIUM	500	96400	96400	NSA
CHROMIUM	10	16.3	13.6	50
COPPER	60	13.2	10.5	1295
IRON	38.1	14200	11600	NSA
LEAD	10	42.4	32.5	50
MAGNESIUM	500	37200	35800	NSA
MANGANESE	2.75	1080	957	3500
POTASSIUM	375	5070	4480	NSA
SODIUM	500	6240	6190	NSA
VANADIUM ZINC	40 50	27.2	25.8	245
ZINC	50	170	141	7000
Explosives				
HMX	1.21	NT	NT	1750
RDX	1.17	NΤ	NT	3.18
Volatiles				
1,2-DICHLOROETHANE	5	NT.	NT	5
1,2-DICHLOROETHENE	5	NT	NT	NSA
1,2-DICHLOROPROPANE	5	NT	NT	6
CARBON DISULFIDE	5	NT	NT	4000
CARBONTETRACHLORIDE	5	NΓ	NT	5
CHLOROFORM	5	NT	NT	600
TRICHLOROETHYLENE	5	NT	NT	5
Volatile TICs				
2-ETHYHEXANOL	NA	NT	NT	NSA
<u>Semivolatiles</u>				
	NA	NT	NΓ	NSA
Samiralatila TICa				
Semivolatile TICs				
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	NT	NT	NSA

Table 5-5 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	13MW7(a) RDWAU*19 08-oct-91 19.0 CGW <u>UGL</u>	13MW7D(a) RDWAU*20 08-oct91 19.0 CGW UGL	HBN UGL
Semivolatile TICs				
TOTAL UNKNOWNTICs	NA	NT	NT	NSA
Other .				
NITRITE.NITRATE	100	NT	NT	10000
TOTAL ORGANIC CARBON	1000	NΤ	NT	NSA
TOTAL ORGANIC HALOGENS	1	NT	NT	NSA
pН	NA	NT	NT	NSA

Footnotes:

- (a) = Sample was an alyzed for unfiltered TAL inorganics only.
- B = Analyte was detected in corresponding method blank, values are flagged if the sample concentration is less than 10 times the method blank concentration for common laboratory constituents and 5 times for all other constituents.
- C = Indicates that analysis was confirmed using a second column.
- CGW = Chemical groundwater.
- HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and intake assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).
- K = Indicates holding time for extraction and preparation was not met, but data quality is not believed to be affected.
- LT = Concentration is reported as less than the certified reporting limit.
- NA = Not available; PQLs are not available for TICs detected in the library scans.
- ND = Analyte was not detected.
- NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.
- NT = Not tested; parameters were not tested (included) in the sample analyses.
- PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.
- S = Results are based on an internal standard; flag is used for TICs detected in library scans.
- TAL = Target Analyte List.
- TCLP = Toxicity Characteristic Leaching Procedure.
- TICs = Tentatively identified compounds that were detected in the GC/MS library scans.
- UGL = Micrograms per liter.
- () = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.
- [] = Brackets indicate that the detected concentration exceeds the HBN.

summary of the groundwater analytical results is presented in Table 5-5. The results of the filtered and unfiltered samples for metals are also shown in Table 5-5.

A total of 14 metals were detected in one or more of the groundwater samples collected from the two upgradient and five downgradient wells of the burning pads. A duplicate sample was also collected from well 13MW7. None of the detected values exceeded the HBN criteria. As expected, concentrations of several metals were greatest in the unfiltered samples. Several metals (e.g., aluminum, arsenic, chromium, copper, iron, lead, vanadium and zinc) were detected in the unfiltered samples only. These concentrations likely reflect metals adsorbed on sediment or the colloidal fraction of the samples and may not indicate the dissolved concentrations of these constituents. However, the unfiltered concentrations are useful because clays or colloidal materials may be transported via groundwater through solution cavities and fractures typical of limestone formations or coarse sand and gravel layers.

The soil data (presented in Section 5.3.2) indicate that lead, mercury, and zinc were detected in samples at concentrations elevated above background. Lead was detected in samples from two downgradient wells (13MW3 and 13MW7) and was reported at concentrations significantly above concentrations in upgradient wells (background). The maximum detected lead value was 45.3 ug/L in the unfiltered sample from 13MW3. All lead detections were below the HBN criterion, however. Although mercury was detected in some of the surface soil samples, it does not appear to have migrated sufficiently to groundwater, as mercury was not detected in any of the filtered or unfiltered groundwater samples. Zinc was present in the unfiltered groundwater samples from all wells except 13MW2. The only value that appears to be elevated above background levels detected in 13MW1 is the concentration of 170 ug/L in the sample from 13MW7. However, this value is substantially less than the HBN of 7,000 ug/L and is therefore not considered a concern.

Two explosives - HMX and RDX - were detected in each downgradient well except for 13MW6 but are not considered a concern. Since the concentrations were low (less than 7 ug/L) and did not exceed the HBNs. RDX was detected only in well 13MW3 at a

concentration of 2.82 ug/L. HMX was detected in three of the four downgradient wells with the maximum concentration (7.07 ug/L) detected in well 13MW7. The detection of explosives in well 13MW7 is most likely due to the migration of contaminants from the settling pond sediments.

Seven VOCs were detected in a total of five groundwater samples. Carbon disulfide (CS2), 1,2-dichloroethane (12DCLE), and 1,2-dichloropropane (12DCLP) were detected in the upgradient well 13MW1. CS2 was the only one of these three constituents that was detected in both upgradient and downgradient samples. Carbon tetrachloride (CCLA), chloroform, 1,2-dichloroethene and trichloroethene (TRCLE) were detected in downgradient samples only. The concentrations of the VOCs detected in the groundwater samples were low, generally less than 10 ug/L. Only CCL4 in 13MW3 and TRCLE in 13MW7 exceeded the HBN criteria and may be a concern. The distribution of TRCLE was more widespread as it was detected in all downgradient samples except 13MW6. However, CCL4 was detected in one sample only. Chloroform was detected in laboratory method blank samples and concentrations reported for environmental samples are considered to be analytical artifacts not attributable to site conditions. Except for TICs, no semivolatile constituents were detected in the groundwater samples. The maximum total concentration of TICs was 19 ug/L detected in the original sample from monitoring well 13MW7.

The occurrence of the two non-naturally occurring VOCs in the upgradient wells suggest two potential sources. Several SWMUs, some of which are landfills, are located topographically upgradient of the burning ground. The presence of contaminants in the upgradient wells may be attributable to the migration of contaminants from these upgradient SWMUs, which are the subject of separate RFI and VI studies. However, activities at the burning ground also may be contributing to the volatile groundwater contamination. Both VOCs detected are commonly found in pesticide/herbicide formulations. Since the wells are completed in a maintained grassy area, the application of lawn chemicals may be a more likely source for these groundwater contaminants. Their lack of detection in the downgradient wells or in any SWMU 13 soil sample would likely eliminate burning ground operations as the source. The surface water and sediment samples collected for the VI of

the SWMU 29 settling pond upgradient of well 13MW1 did not show detectable concentrations of 1,2-dichloroethane or 1,2-dichloropropane. This supports the possibility that on-site lawn chemicals may be responsible for these two VOCs rather than upgradient sources.

As indicated in Table 5-2, nitrogen (as nitrate and nitrite) was analyzed to establish the general groundwater quality in the vicinity of SWMU 13. Except for the concentration in 13MW6, downgradient levels of nitrogen (as nitrate and nitrite) were an order of magnitude higher than the concentrations detected in the two upgradient wells. Nitrogen concentrations in the western monitoring wells were higher than the concentration in the wells located in the eastern section of the burning ground. A maximum value of 7,180 ug/L was detected in well 13MW3. All nitrogen concentrations (as nitrate and nitrite) were below the HBN criterion of 10,000 ug/L and are not considered a concern.

As discussed previously, SWMU 13 was the subject of a VDWM directed investigation. As part of this study, upgradient versus downgradient statistical comparisons of indicator parameters from groundwater samples were performed. TOX, TOC, pH, and specific conductance were analyzed as indicators of groundwater contamination. Measurements from the five downgradient wells were compared with upgradient measurements from wells 13MW1 and 13MW2 to determine if there has been a statistically significant increase in downgradient levels. These parameters were used to assess the impact of activities at SWMU 13 on overall groundwater quality.

The statistical comparison was performed using the Student's T-Test at the 0.01 level of significance. A one-tailed test was used for all parameters except pH, since the concern was for significant increases over background; a two-tailed test was used for pH since both significant increases and decreases were of concern.

Cochran's Approximation to the Behrens-Fisher Student's T-Test, as described in Appendix 10.4 of the Virginia Hazardous Waste Management Regulations (VHMR), was used for the statistical calculations (VDWM, 1988). This method involves the calculation of the background (upgradient) and downgradient monitoring well means and variances for

each parameter measured. These parameters are used to calculate a t-statistic (t*) and a comparison t-statistic (t_c). If t* is equal to or larger than t_c, then it can be concluded that there has been a statistically significant increase in the monitoring parameter concentration over background. The opposite conclusion is reached if t* is less than t_c. If the t* value is negative (except for pH) then there is most likely no significant difference in the monitoring data and the background data. This comparison of t* and t_c was performed for each indicator parameter.

For subsequent analysis of monitoring wells, such as in quarterly sampling, the statistical analysis should be performed not only on the background and the downgradient monitoring wells, but each set of quarterly data should be compared with earlier measurements (i.e., baseline data) from the same well to determine if there have been statistically significant changes in groundwater quality at each monitoring point.

As indicated in Table 5-6, the t* values for the four indicator parameters are less than the t_c values. The statistical data suggest that there is no significant difference in downgradient and upgradient groundwater quality. Downgradient concentrations for TOC and TOX were less than the maximum upgradient concentration; TOX values exhibited the greatest degree of variability ranging from less than 1 ug/L (the detection limit) to 450 ug/L.

Data for quality control samples are presented in Section 4.0. An evaluation of the data indicate that no significant contaminant concentrations were detected concerning SWMU 13. The data support the sample decontamination and cleaning activities performed and indicate that there was no sample cross-contamination during shipping.

A summary of the duplicate groundwater and soil data is presented in Tables 4-8 and 4-9, respectively. Data are included for the duplicates of the unfiltered groundwater samples from well 13MW7 and for soil samples 13SB2 and 13SS1. The duplicates were collected to evaluate laboratory analytical precision. To evaluate the sample and the duplicate results, the relative percent difference (RPD) was calculated. Except for TOX and TOC, the RPD value for the groundwater data ranged from 0 to 24, which indicates an acceptable

TABLE 5-6 CALCULATION OF STUDENT'S T-TEST

Upgradient Groundwater

		<u>Me</u> asu	rements_			
Compound[1]	<u>Units</u>	13MW1	_13MW2	<u>n(b)</u>	x(b)	s2(b)
тос	ug/L	5030	3360	2	4195.00	1394450.00
TOX Specific	ug/L	447	1 LT[2]	2	224.00	99458.00
Conductance	umhos/cm	640	600	2	620.00	800.00
pН		6.16	7.02	2	6.59	0.37

	_		Downgradient (Groundwater M	easurements	<u> </u>			
Compound	Units	13MW3	13MW4	13MW5	13MW6	13MW7	n(s)	x(s)	s2(s)
тос	ug/L	3530	4480	4030	3790	2970	5	3760.00	317300.00
TOX Specific	ug/L	1 LT	184	12	1 LT	366	5	112.80	26084.70
Conductance	umhos/cm	600	780	780	560	620	5	668,00	10920.00
рH		7.05	6.9	6.71	6.52	6.55	5	6.75	0.05

 ^[1] TOC = Total Organic Carbon
 TOX = Total Organic Halogens
 [2] LT = Less than the detection limit.

TABLE 5-6 (Cont'd)

CALCULATED t VALUES:

Analyte	t*	t(c)	t* > t(c) ?
тос	-0.50	29.95	NO
TOX Specific	-0.47	29.69	NO
Conductance	0.94	12.84	NO
рH	0.35	60,89	NO

EQUATIONS:

t* =

(s2(s)/n(s) + s2(b)/n(b)) ^0.5

x(s) - x(b)

Where:

t* = the calculated value of the t-statistic to be compared to t(c), the comparison t-statistic.

n(b) = number of background measurements

x(b) = background mean

s2(b) = background variance

n(s) = number of monitoring well area measurements x(s) = monitoring sample mean s2(s) = monitoring sample variance

Where:

t(b) = t-value from standard t-table with [n(b)-1] degrees of freedom, at the 0.01 level of significance.

t(b) = 31.821 for TOC, TOX, and specific conductance

t(b) = 63.657 for pH

t(s) = t-value from standard t-table with [n(s)-1] degrees of freedom, at the 0.01 level of significance,

t(s) = 3.747 for TOC, TOX, and specific conductance

t(s) = 4.604 for pH

W(b) = s2(b)/n(b)

W(s) = s2(s)/n(s)

range of analytical precision. The laboratory's ability to replicate TOX and TOC values was not as precise. The RPD for TOX was 123 and TOC was detected at 2,970 ug/L in the original sample, but below the detection limit of 1,000 ug/L in the duplicate. For the two soil duplicates, the majority of the RPD values were less than 25. Some were within the range of 30 to 80 RPD. Higher RPD values for soils can be expected due to variability associated with the heterogeneous nature of the soil matrix, potential matrix effects, and increased analytical variability associated with the quantitation of analytical values near the detection limit. The results of the duplicate analyses are acceptable and are not considered to compromise the analytical quality and intended use of the data.

5.3.2 Soil and Settling Pond Sediment

Three types of soil samples were collected for the SWMU 13 RFI. Background soil samples were to be collected from six borings conducted around the burning ground, but the two borings south of the burning pads (13SB4 and 13SB5) could not be located outside of the potentially affected area and can be considered as source area samples. Eight pairs of borings were performed in the burning pad areas to expand the evaluation presented in the 1987 USAEHA investigation. Four surface soil samples were collected along the southern drainage ditch to evaluate the potential contamination due to pad soil erosion. Similarly, two sediment samples were collected from the settling pond to evaluate the soil eroded from the eastern pad area and transported to the pond via runoff.

Four sediment samples were collected from the New River to the south and off-site for evaluation of potential impact from groundwater contamination migration from SWMU 13. The results of this sampling program are addressed separately.

The results of the chemical analyses of the soil and sediment samples are presented in Table 5-7. The results of the chemical analyses indicated that 21 metal constituents were detected in the discrete and composite soil and sediment samples collected from SWMU 13. With the exception of mercury and thallium, all metals were detected in the two background (northern) soil boring samples. Additionally, the majority of the metals were detected at

Table 5-7
Summary of Analytical Data For Soil Samples Collected At SWMU 13
Radford Army Ammunition Plant, Virginia

			•		·				
	SITE ID TELD ID S. DATE	13SB1 RFIS*1 20-aug-9	13SB1 RFIS*2 1 20-aug-91	13SB1 RFIS*3 20-aug-91	13SB2D RFIS*19 26-aug-91	13SB2 RFIS*4 26-aug-91	13SB2 RFIS*5 26-aug-91	13SB2 RFIS*6 26-aug-91	
	EPTH (ft)	0.5	5.0	10.0	0.5	0.5	5.0	10.0	
	MATŘÍÝ PQ		CSO	CSO	CSO	CSO	CSO	CSO	HBN
U	NITS (#) UG		UGG	UGG	UGG	UGG	UGG	UGG	UGG
TAL Inorganics		_							
ALUMINIUM	14.		12000	19100	12900	12500	11400	16600	230000
ARSENIC	30	[1.2 B]	[0.72 B]	[1.1 B]	[1.9 B]	[1.4 B]	[0.966 B]	[1.26 B]	0.5
BARIUM	1	228	195	246	185	177	125	151	1000
BERYLLIUM	0.2	[3.02]	[2.6]	[3.77]	[2.01]	[1.75]	[1.68]	[1.81]	0.1 40
CADMIUM	2 100	LT 0.7 2530	LT 0.7 1970	LT 0.7	LT 0.7 2850	1.15 2730	LT 0.7 2040	LT 0.7 2150	NSA
CALCIUM CHROMIUM	4	2530 28.4	25.4	2700 34.5	25.9	2730 25.9	22.6	2130 29.7	400
COBALT	3	28.4 [14.1]	[14.5]	[18.6]	[11.9]	[11.6]	[11.2]	[16.5]	0.8
COPPER	7	12.7	12.4	17.7	15.4	11.3	8.17	12.4	2900
IRON	100		22900	30300	23000	20300	17900	25000	NSA
LEAD	2	33.6	16.8	20.4	98.6	65.7	LT 10.5	17.8	200
MAGNESIUM	50	4310	4330	5470	4030	3900	3630	4840	NSA
MANGANESE	0.2		795	939	897	749	517	692	8000
MERCURY	0.1	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	20
NICKEL	3	19	17.2	23.4	15.9	15.9	14.3	19.3	1000
POTASSIUM	37.5	5 1460	1300 B	1690	1880	1670	1210 B	1580	NSA
SILVER	4	0,968	0.94	1.21	0.86	0.704	0.825	1.05	200
SODIUM	150		302 B	305 B	268 B	297 B	290 B	289 B	NSA
THALLIUM	20	LT 6.62	LT 6.62	LT 6.62	LT 6.62	LT 6.62	LT 6.62	LT 6.62	6
VANADIUM	0.7		36.7	51.3	34.2	32.3	31	43.2	560
ZINC	30.3	2 129	95.8	108	297	223	70.1	86.9	16000
Explosives									
135TNB	0.48	38 LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	4
13DNB	0.49	96 LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	8
246TNT	0.43	56 LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	40
24DNT	0.42	24 LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	1
26DNT	0.52	24 LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	1.03
HMX	0.6	66 LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	4000
Volatiles									
1,1,1-TRICHLOROETHANE	0.0	05 LT 0.004	LT 0.004	LT 0.004	LT 0.004	LT 0.004	LT 0.004	0.005	1000
ACETONE	0.1	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	1000
TOLUENE	0.0		LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	1000
TRICHLOROETHYLENE	0.0		LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	60
TRICHLOROFLUOROMETHA			LT 0.006	LT 0.006	LT 0.006	LT 0.006	0.006	LT 0.006	1000
Volatile TICs		<u></u> ••							
2-PROPANOL	NA	. ND	ND	ND	ND	ND	ND	ND	NSA

Table 5-7 (Cont'd)

SITE ID FIELD ID S. DATE DBPTH (ft) MATRIX UNITS (#)	PQLs <u>UGG</u>	13SB1 RFIS*1 20-aug-91 0.5 CSO UGG	13SB1 RFIS*2 20-aug-91 5.0 CSO UGG	13SB1 RFIS*3 20-aug91 10.0 CSO UGG	13SB2D , RFIS*19 26-aug-91 0.5 CSO UGG	13SB2 RFIS*4 26-aug-91 0.5 CSO <u>UGG</u>	13SB2 RFIS*5 26-aug-91 5.0 CSO UGG	13SB2 RFIS*6 26-aug-91 10.0 CSO UGG	HBN <u>UGG</u>
Volatile TICs									
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	ND	0.008 S	0.007 S	0.007 S	0.006 S	NSA
TOTAL UNKNOWNTICs	NA	ND	ND	ND	ND	ND	ND	ND	NSA
Semivolatiles									
24DNT	0.3	LT 0.14	LT 0.14	LT 0.14	LT 0.14	LT 0.14	LT 0.14	LT 0.14	1
26DNT	0.3	LT 0.085	LT 0.085	LT 0.085	LT 0.085	LT 0.085	LT 0.085	LT 0.085	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	LT 0.061	LT 0.061	LT 0.061	LT 0.061	LT 0.061	LT 0.061	1000
DIETHYL PHTHALATE	0.3	LT 0.24	LT 0.24	LT 0.24	LT 0.24	LT 0.24	LT 0.24	LT 0.24	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	100
Semivolatile TICs									
2-ETHYLHEXANOIC ACID	NA	ND	ND	ND	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	ND	ND	ND	ND	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	ND .	ND	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICS	NA	(2)1.15	ND	ND	(11)17.3	ND	ND	ND	NSA
TCLP Metals (UGL)									
BARIUM	20	NT	NT	NT	NΓ	NI	NT	NT	100000
CADMIUM	1	NT	NI	NT	NT	NT	NT	NT	1000
CHROMIUM	10	NT	NL	NI	NT	NT	NT	NI,	5000
LEAD	10	NI	NT	NT	NT	NT	NT	NT	5000
MERCURY	2	NT	NT	NT	NI	NT	NT	NT	200
TCLP Organics (UGL)									
CHLOROFORM	NΑ	NT	NT	NΓ	NΓ	NT	NT	NΤ	NSA
	1121	•••	142	1112	141	***	1-1	111	11011
TCLP Organic TICs (UGL)									
BIS(2-ETHYLHEXYL) PHTHALATE	NA	NT	NГ	NT	Nſ	NT	NΓ	NΓ	NSA
TRINITROTOLUENE ISOMER	NA NA	NT	NT	NT	NT	NT	NT	NT	NSA
TAME TO LODGE BOMEN	11/1	4-1	141	141	141	141	141	141	MOC
TOTAL UNKNOWN TICs	NA	NT	NT	NT	NT	NT	Nľ	NT	NSA

Table 5-7 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	138B3 RFIS*7 26-aug-91 0.5 CSO UGG	13SB3 RFIS*8 26-aug-91 5.0 CSO UGG	13SB3 RFIS*9 26-aug-91 10.0 CSO UGG	13SB4 ! RFIS*10 ! 28-aug-91 0.5 CSO UGG	13SB4 RFIS*11 28-aug-91 5.0 CSO <u>UGG</u>	13SB4 RFIS*12 28-aug-91 10.0 CSO <u>UGG</u>	13SB5 RFIS*13 22-aug-91 0.5 CSO <u>UGG</u>	HBN UGG
TAL Inorganics ALUMINIUM ARSENIC BARIUM BERYILIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SILVER SODIUM THALLIUM	14.1 30 1 0.2 2 100 4 3 7 1000 2 50 0.275 0.1 3 37.5 4 150 20	14200 [3.08] 199 [2.42] 0.958 2240 24 [13.9] 16.7 38500 [258] 3100 1650 LT 0.05 16.7 1610 0.971 272 B LT 6.62	8900 0.436 B 96.5 [1.57] LT 0.7 1920 19 [8.63] 6.62 B 13600 LT 10.5 2910 369 LT 0.05 12.4 1110 B 0.74 307 B LT 6.62	7910 0.391 B 74.8 [1.11] LT 0.7 1540 16.2 [7.01] 4.98 B 11500 B LT 10.5 2470 282 B LT 0.05 9.58 1020 B 0.719 322 B LT 6.62	3280 B [0.961 B] 43.7 LT 0.5 LT 0.7 16200 8.51 [2.64] 99.5 6570 B [367] 3670 161 B LT 0.05 3.98 707 B LT 0.589 272 B LT 6.62	8120 { 0.535 B} 98.7 [1.31] LT 0.7 1830 18.1 [8.01] 7.99 13100 13.7 2730 360 LT 0.05 11.1 978 B 0.686 333 B LT 6.62	14100 [0.92 B] 175 [2.11] LT 0.7 2930 30 [13.1] 12.2 20300 17.9 3950 690 LT 0.05 18.3 1150 B 0.957 322 B LT 6.62	8840 [1.09 B] 104 [1.54] LT 0.7 3810 20 [8.02] 11.5 13900 110 3100 437 LT 0.05 11.8 1420 0.811 300 B LT 6.62	230000 0.5 1000 0.1 40 NSA 400 0.8 2900 NSA 200 NSA 8000 20 1000 NSA 200 NSA
VANADIUM	0.775	38.5	23.2	21	11.3	21.4	34.4	22.7	560
ZINC	30.2	821	59.2	46.2	72.5	59.5	91.3	93.5	16000
Explosives 135TNB 13DNB 246TNT	0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	4
	0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	8
	0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	40
24DNT	0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	1
26DNT	0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	1.03
HMX	0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	4000
Volatiles 1,1,1TRICHLOROETHANE ACETONE TOLLIENE	0.005	LT 0.004	LT 0.004	LT 0.004	LT 0.004 B	LT 0.004 B	LT 0.004 B	LT 0.004	1000
	0.1	LT 0.017	LT 0.017	LT 0.017	LT 0.017 B	LT 0.017 B	LT 0.017 B	LT 0.017	1000
TOLUENE	0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	1000
TRICHLOROETHYLENE	0.005	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	60
TRICHLOROFLUOROMETHANE	0.005	LT 0.006	LT 0.006	LT 0.006	LT 0.006 B	LT 0.006 B	LT 0.006 B	LT 0.006 B	1000
Volatile TICs 2-PROPANOL	NA	ND	ND	ND	ND	ND	ND	ND	NSA

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	13SB3 RFIS*7 26-aug-91 0.5 CSO UGG	13SB3 RFIS*8 26-aug-91 5.0 CSO UGG	13SB3 RFIS*9 26-aug-91 10.0 CSO UGG	13SB4 RFIS*10 28-ang-91 0.5 CSO UGG	13SB4 RFIS*11 28-aug-91 5.0 CSO UGG	13SB4 RFIS*12 28-aug-91 10.0 CSO <u>UGG</u>	13SB5 RFIS*13 22-aug-91 0.5 CSO <u>UGG</u>	HBN <u>UGG</u>
Volatile TICs									
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICs	NA	ND	(1)0.009	ND	ND	(1)0.008	ND	ND	NSA
Semivolatiles									
24DNI'	0.3	LT 0.7	LT 0.14	LT 0.14	[1.76]	LT 0.14	LT 0.14	LT 0.14	1
26DNT	0.3	LT 0.425	LT 0.085	LT 0.085	LT 0.425	LT 0.085	LT 0.085	LT 0.085	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 3.1	LT 0.62	8.67	LT 3.1	LT 0.62	LT 0.62	LT 0.62	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.305	LT 0.061	LT 0.061	11.7	LT 0.061	LT 0.061	0.337	1000
DIETHYL PHTHALATE	0.3	LT 1.2	LT 0.24	LT 0.24	4.73	LT 0.24	LT 0.24	LT 0.24	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.95	LT 0.19	LT 0.19	1.29	LT 0.19	LT 0.19	LT 0.19	100
Semivolatile TICs									
2-ETHYLHEXANOIC ACID	NA	ND	ND	ND	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	0.563 S	ND	ND	ND	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	ND	ND	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	ND	ND	ND	(3)7.67	ND	ND	(3)2.13	NSA
TCLP Metals (UGL)					ı				
BARIUM	20	NT	NT	NT	NT	NT	NT	NT	100000
CADMIUM	1	NT	NT	NT	NT	NT	NT	NT	1000
CHROMIUM	10	NT	NT	NT	NΓ	NT	NT	NΓ	5000
LEAD	10	NT	ИL	NT	NT	NΓ	NT	NT	5000
MERCURY	2	NL	NT	NT	TM	NT	ΝГ	NT	200
TCLP Organics (UGL)									
CHLOROFORM	NA	Nľ	NT	NT	NT	NT	NT	NT	NSA
TCLP Organic TICs (UGL)									
BIS(2-ETHYLHEXYL) PHTHALATE	NA	Nľ	NT	NT	NT	NT	NT	NT	NSA
TRINITROTOLUENE ISOMER	NA	NI	NI	NT	NT	NT	NT	NT	NSA
TOTAL UNKNOWNTICs	NA	NT	NT	ΝT	NT	NT	Nľ	NT	NSA

				` '	1				
SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	13SB5 RFIS*14 22-mig-91 5.0 CSO UGG	13SB5 RFIS*15 22-aug-91 10.0 CSO <u>UGG</u>	13SB6 VFSL*101 09-mar-92 0.5 CSO UGG	13SB6 RFIS*16 21-aug-91 0.5 CSO UGG	138B6 RFIS*17 21-aug-91 5.0 CSO <u>UGG</u>	13SB6 RFIS*18 21-aug-91 10.0 CSO <u>UGG</u>	13SC1 RFIS*21 20-aug-91 0.5 CSO UGG	HBN UGG
TAL Inorganics									
ALUMINIUM	14.1	8270	16400	NΓ	10100	8080	10800	8420	230000
ARSENIC	30	LT 0.25 B	LT 0.5 B	NT	[1.11 B]	[0.562 B]	[0.507 B]	[0.509 B]	0.5
BARIUM	1	94.5	188	NT	128	`108	133	118	1000
BERYLLIUM	0.2	[1.35]	[2.46]	NT	[1.4]	[1.43]	[1.51]	[1.35]	0.1
CADMIUM	2	LT 0.7	LT 0.7	NT	LT 0.7	LT 0.7	LT 0.7	LT 0.7	40
CALCIUM	100	1480	3330	Nľ	2520	2200	2370	1750	NSA
CHROMIUM	4	17.6	32.8	NT	21.7	17.2	22.2	19	400
COBALT	3	[8.11]	[14.7]	NT	[9.11]	[7.88]	[10.6]	[8.92]	8.0
COPPER	7	5.89 B	12.2	NT	11.1	15	8.41	6.83 B	2900
IRON	1000	12200 B	21900	NT	17800	12600	16200	14200	NSA 200
LEAD	2 50	LT 10.5	17.3	NT	108 2800	LT 10.5 2680	LT 10.5 3320	LT 10.5 2820	NSA
MAGNESIUM MANGANESE	0.275	2660 332	4370 586	NT NT	643	363	468	514	8000
MERCURY	0.273	LT 0.05	LT 0.05	NT	LT 0.05	LT 0.05	LT 0.05	LT 0.05	20
NICKEL	3	11.2	21.2	NT	12.2	11.1	14.5	11.9	1000
POTASSIUM	37.5	1390 B	1450	NT	1480	1060 B	1290 B	1080 B	NSA
SILVER	4	0.685	1.2	NΤ	0.764	LT 0.589	0.89	0.67	200
SODIUM	150	273 B	381 B	NI	261 B	313 B	300 B	629 B	NSA
THALLIUM	20	LT 6.62	LT 6.62	NT	LT 6.62	LT 6.62	LT 6.62	LT 6.62	6
VANADIUM	0.775	21	38.9	NT	27.1	20.7	27.5	22.7	560
ZINC	30.2	60.2	97.8	NT	213	62.8	72	67.6	16000
Explosives									
	0.400	1 TT 0 400	I TT 0 400	NTC.	I T. O. 400	I T 0 400	LT 0.488	LT 0.488	4
135TNB	0.488	LT 0.488	LT 0.488	NT NT	LT 0.488 LT 0.496	LT 0.488 LT 0.496	LT 0.488	LT 0.496	8
13DNB 246TNT	0.496 0.456	LT 0.496 LT 0.456	LT 0.496 LT 0.456	NT	29 C	LT 0.456	LT 0.456	LT 0.456	40
24DNT	0.436	LT 0.424	LT 0.424	NT NT	0.761 C	LT 0.424	LT 0.424	LT 0.424	1
26DNT	0.524	LT 0.524	LT 0.524	NT	LT 0.524	LT 0.524	LT 0.524	LT 0.524	1.03
HMX	0.666	LT 0.666	0.945 C	NT	LT 0.666	LT 0.666	LT 0.666	0.744 C	4000
Volatiles									
	0.005	LT 0.004	LT 0.004	NT	LT 0.004	LT 0.004	0.005	LT 0.004	1000
1,1,1-TRICHLOROETHANE ACETONE	0.003	LT 0.004 LT 0.017	LT 0.004 LT 0.017	NT	LT 0.004 LT 0.017	LT 0.017	LT 0.017	LT 0.017	1000
TOLUENE	0.005	LT 0.001	LT 0.001	NT	LT 0.001	LT 0.001	LT 0.001	LT 0.001	1000
TRICHLOROETHYLENE	0.005	LT 0.003	LT 0.003	NT	LT 0.003	LT 0.003	LT 0.003	LT 0.003	60
TRICHLOROFLUOROMETHANE	0.005	LT 0.006 B	LT 0.006 B	NT	LT 0.006	LT 0.006 B	LT 0.006	LT 0.006 B	1000
Volatile TICs						ND	ND	ND	NIC-
2-PROPANOL	NA	ND	ND	NT	ND	ND	ND	ND	NSA

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGG</u>	13SB5 RFIS*14 22-aug-91 5.0 CSO UGG	13SB5 RFIS*15 22-aug-91 10.0 CSO UGG	13SB6 VFSL*101 09-mar-92 0.5 CSO UGG	13SB6 RFIS*16 21 - aug - 91 0.5 CSO UGG	13SB6 RFIS*17 21-aug-91 5.0 CSO <u>UGG</u>	13SB6 RFIS*18 21-aug-91 10.0 CSO UGG	13SC1 RFIS*21 20-aug-91 0.5 CSO UGG	HBN <u>UGG</u>
Volatile TICs		<u> </u>					i.		-ta.
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	NT	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICS	NA	ND	ND	NT	(2)0.021	ND	(2)0.034	ND	NSA
<u>Semivolatiles</u>									
24DNT	0.3	LT 0.14	LT 0.14	NT	0.943	LT 0.14	LT 0.14	LT 0.14	1
26DNΓ	0.3	LT 0.085	LT 0.085	NT	0.747	LT 0.085	LT 0.085	LT 0.085	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 0.62	LT 0.62	NT	LT 0.62	LT 0.62	7.45	LT 0.62	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	LT 0.061	NT	0.194	LT 0.061	LT 0.061	LT 0.061	1000
DIETHYL PHTHALATE	0.3	LT 0.24	LT 0.24	NT	LT 0.24	LT 0.24	LT 0.24	LT 0.24	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.19	LT 0.19	NT	0.64	LT 0.19	LT 0.19	LT 0.19	100
Semivolatile T1Cs									
2-ETHYLHEXANOIC ACID	NA	ND	ND	NΓ	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	NT	ND	ND	ND	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	ND	ND	NT	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICs	NA	ND	ND	NT	(5)12	ND	ND	(1)0.347	NSA
TCLP Metals (UGL)									
BARIUM	20	NT	NT	613	NT	NT	NT	623	100000
CADMIUM	1	NT	NT	LT 4.01	NT	NT	NT	27.5	1000
CHROMIUM	10	NT	NT	LT 6.02	NT	NT	NT	13.2	5000
LEAD	10	NT	NT	94	NT	NT	NT	LT 18.6	5000
MERCURY	2	NT	NT	LT 0.243	NΓ	NT	NΓ	LT 0.243	200
TCLP Organics (UGL)									
CHLOROFORM	NA	NT	NT	0.523	NT	NT	NT	NT	NSA
TCLP Organic TICs (UGL)									
BIS(2-ETHYLHEXYL) PHTHALATE	NA	NT	NΓ	ND	NT	NT	NT	NT	NSA
TRINITROTOLUENE ISOMER	NA NA	NT	NT	100 S	NT	NT	NT	NT	NSA
THIS IN TOLOUGH ISOMEN	177	141	471	100 5	141	141	141	141	1404.7
TOTAL UNKNOWN TICs	NA	NT	NΤ	(1)20	NT	NT	NT	NT	NSA

Table 5-7 (Cont'd)

				` '	'				
SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (#)	PQLs <u>UGG</u>	13SC1 RFIS*22 20-aug-91 5.0 CSO UGG	13SC1 RFIS*23 20-ang-91 10.0 CSO UGG	13SC2 RFIS*24 21 - aug - 91 0.5 CSO UGG	13SC2 RFIS*25 21-aug-91 5.0 CSO UGG	13SC2 RFIS*26 21-aug-91 10.0 CSO <u>UGG</u>	13SC3 VFSL*103 09-mar-92 0.5 CSO UGG	13SC3 RFIS*27 21-aug-91 0.5 CSO UGG	HBN UGG
TAL Inorganics									
ALUMINIUM	14.1	8430	10400	8960	10300	11000	NΤ	4110 B	230000
ARSENIC	30	[0.684 B]	0.403 B	1 0.623 B1	[0.569 B]	[0.826 B]	NT	[0.612 B]	0.5
BARIUM	1	157	128	132	135	175	NT	76	1000
BERYLLIUM	0.2	[1.79]	[1.61]	[1.49]	[1.34]	[1.88]	NΓ	[0.945]	0.1
CADMIUM	2	LT 0.7	LT 0.7	LT 0.7	LT 0.7	LT 0.7	NΓ	LT 0.7	40
CALCIUM	100	1990	2050	1900	2040	2180	NT	4580	NSA
CHROMIUM	4	20.7	23.7	20.5	22	27.2	NT	12.2	400
COBALT	3	[10.2]	[10.4]	[9.27]	[10.2]	[12.4]	NT	[4.85]	0.8
COPPER	7	8.24	8.28	9.22	12.7	12.9	NΓ	23.7	2900
IRON	1000	16100	16200	15400	16300	19600	NT	9720 B	NSA
LEAD	2	LT 10.5	LT 10.5	55.6	LT 10.5	LT 10.5	NI	[320]	200
MAGNESIUM	50	3020	3290	3000	3420	3680	NI.	2970	NSA
MANGANESE	0.275	580	511	518	513	672	NT	319	8000
MERCURY	0.1	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	MT	LT 0.05	20
NICKEL	3	13.4	14.1	12.7	14.9	16.6	NT	6.46	1000
POTASSIUM	37.5	915 B	1070 B	1610	1170 B	946 B	NT	897 B	NSA 200
SILVER	4	0.717	0.829	0.858	0.842	LT 0.589	NT	LT 0.589 245 B	200 NSA
SODIUM	150	463 B	470 B	287 B	374 B	384 B	NT NT	LT 6.62	6 6
THALLIUM VANADIUM	20 0.775	LT 6.62 24.4	LT 6.62 27	LT 6.62 24.7	LT 6.62 27.2	[9.82] 32.5	NT	14	560
ZINC	30.2	72.4	73.5	24.7 94.7	73.5	80.6	NT	156	16000
ZINC	30.2	12.4	13.3	94.1	13.5	00.0	MI	130	10000
Explosives									
135TNB	0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	NT	2.9 C	4
13DNB	0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	NT	LT 0.496	8
246TNT	0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	NT	0.515 C	40
24DNT	0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	NT	LT 0.424	1
26DNT	0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	NT	[1.33 C]	1.03
нмх	0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	NT	LT 0.666	4000
37-7-411									
Volatiles			_						
1,1,1-TRICHLOROETHANE	0.005	LT 0.004	0.005	LT 0.004	LT 0.004	LT 0.004	NT	LT 0.004	1000
ACETONE	0.1	LT 0.017	0.025	LT 0.017	LT 0.017	LT 0.017	NT	LT 0.017	1000
TOLUENE	0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	NT	LT 0.001	1000
TRICHLOROETHYLENE	0.005	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	TM	LT 0.003	60
TRICHLOROFLUOROMETHANE	0.005	LT 0.006	LT 0.006	LT 0.006	LT 0.006	LT 0.006 B	NT	LT 0.006 B	1000
Volatile TICs									
2-PROPANOL	NA	ND	ND	ND .	ND	ND	NT	ND	NSA
# INVINIUL	IVA	HD	1417	110	T-ID	1417	111	1412	1401 F

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGG</u>	13SC1 RFIS*22 20-aug-91 5.0 CSO <u>UGG</u>	13SC1 RFIS*23 20-aug-91 10.0 CSO <u>UGG</u>	13SC2 RFIS*24 21-aug-91 0.5 CSO UGG	13SC2 RFIS*25 21-aug-91 5.0 CSO UGG	13SC2 RFIS*26 21-aug-91 10.0 CSO UGG	138C3 VFSL*103 09-mar-92 0.5 CSO <u>UGG</u>	13SC3 RFIS*27 21-ang-91 0.5 CSO UGG	<u>пее</u>
Volatile TICs									
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	ND	ND	ND	NT	ND	NSA
TOTAL UNKNOWNTICs	NA	(2)0.009	ND	(1)0.024	(1)0.005	ND	NΤ	ND	NSA
<u>Semivolatiles</u>									
24DNT	0.3	LT 0.14	LT 0.14	LT 0.14	LT 0.14	LT 0.14	NT	[1.76]	1
26DNI	0.3	LT 0.085	LT 0.085	LT 0.085	LT 0.085	LT 0.085	NT	2.42	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	NΓ	LT 0.62	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	LT 0.061	LT 0.061	LT 0.061	LT 0.061	NT	0.329	1000
DIETHYL PHTHALATE	0.3	LT 0.24	LT 0.24	LT 0.24	LT 0.24	LT 0.24	NΓ	LT 0.24	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	NT	LT 0.19	100
Semivolatile TICs									
2-ETHYLHEXANOIC ACID	NA	ND	ND	ND	ND	ND	NT	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	ND	ND	ND	NT NT	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	ND	ND	ND	ND	ND	NT	ND	NSA
,					•				
TOTAL UNKNOWN TICS	NA	ND	ND	(1)0.357	ND	ND	NT	(5)2.97	NSA
TCLP Metals (UGL)									
BARIUM	20	401	485	785	565	460	NT	858	100000
CADMIUM	1	LT 4.01	LT 4.01	LT 4.01	LT 4.01	LT 4.01	NT	LT 4.01	1000
CHROMIUM	10	LT 6.02	LT 6.02	LT 6.02	LT 6.02	LT 6.02	NT	LT 6.02	5000
LEAD	10	LT 18.6	LT 18.6	LT 18.6	LT 18.6	LT 18.6	NT	51.1	5000
MERCURY	2	LT 0.243	LT 0.243	LT 0.243	LT 0.243	LT 0.243	NT	LT 0.243	200
TCLP Organics (UGL)									
CHLOROFORM	NA	NT	NT	NT	NT	NT	0.728	NT	NSA
TCLP Organic TICs (UGL)									
DIGO ETHAL HEAVI VELENIAL ATE	NA	NET	NT	NTT	NPT	APT.	ND	N.T.	NCA
BIS(2-ETH YLHEXYL) PHTHALATE		NT NTC	NT NE	NT	NT NT	NT	ND	NT	NSA
TRINITROTOLUENE ISOMER	NA	NT	NT	NT	NT	NT	7 S	NT	NSA
TOTAL UNKNOWN TICs	NA	NΓ	NT	NT	NT	NT	(1)9	NT	NSA

Table 5-7 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	13SC3 RFIS*28 21-sug-91 5.0 CSO UGG	138C3 RFIS*29 21-aug-91 10.0 CSO UGG	13SC4 RFIS*30 22-aug-91 0.5 CSO <u>UGG</u>	13SC4 RFIS*31 22-aug-91 5.0 CSO UGG	13SC4 RFIS*32 22-ang-91 10.0 CSO UGO	13SC5 RFIS*33 26-aug-91 0.5 CSO UGG	13SC5 RFIS*34 26-aug-91 5.0 CSO UGG	HBN UGG
TAL Inorganics ALUMINIUM ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SILVER SODIUM THALLIUM	14.1 30 1 0.2 2 100 4 3 7 1000 2 50 0.275 0.1 3 37.5 4 150 20	9610 [0.736 B] 143 [1.37] LT 0.7 1860 21.4 [10.3] 10.1 16000 LT 10.5 3180 306 LT 0.05 13.7 1970 0.81 306 B [12]	8750 [0.534 B] 131 [1.28] LT 0.7 1610 20 [10.5] 9.38 15900 LT 10.5 3110 500 LT 0.05 12.3 1090 B 0.755 457 B LT 6.62	4600 [1.59 B] 77.1 [0.886] LT 0.7 23300 12 [4.92] 66.9 9980 B [406] 11600 352 LT 0.05 5.79 1150 B LT 0.589 293 B [12.8]	6890 0.392 B 117 { 1.4 } LT 0.7 1530 17.3 [8.94] 8.43 B 14000 LT 10.5 2770 423 LT 0.05 11.1 931 B LT 0.589 388 B [9.82]	7670 0.463 B 127 [1.5] LT 0.7 1490 18.2 [9.35] 8.66 B 14500 LT 10.5 2890 424 LT 0.05 11.4 1000 B 0.731 335 B LT 6.62	9030 { 0.568 B} 136 [1.16] LT 0.7 1730 22.3 [9.71] 12 15800 76.7 2970 535 LT 0.05 13.3 1380 0.77 237 B [9.7]	12800 [0.979 B] 187 [1.95] LT 0.7 2920 28.2 [12.3] 12.5 21400 17.4 4060 571 LT 0.05 18.3 1110 B 0.871 263 B [13.9]	230000 0.5 1000 0.1 40 NSA 400 0.8 2900 NSA 200 NSA 8000 20 1000 NSA 200 NSA
VANADIUM	0.775	26	26.5	16.4	22.4	24.1	26.8	35.8	560
ZINC	30.2	77.2	70.8	153	63.2	61	167	93.1	16000
Explosives 135TNB 13DNB 246TNT 24DNT 26DNT HMX	0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	4
	0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	8
	0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	40
	0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	1
	0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	1.03
	0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	4000
Volatiles 1,1,1-TRICHLOROETHANE ACETONE TOLUENE TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE	0.005	LT 0.004	LT 0.004	LT 0.004	LT 0.004	LT 0.004	LT 0.004	LT 0.004	1000
	0.1	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	1000
	0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	1000
	0.005	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	60
	0.005	LT 0.006 B	LT 0.006 B	LT 0.006 B	LT 0.006 B	LT 0.006	LT 0.006	0.007	1000
Volatile TICs 2~PROPANOL	NA	0.007 S	ND	ND	ND	ND	ND	ND	NSA

SITE ID FIELD ID S. DATE DEPTH(ît) MATRIX UNITS (#)	PQLs UGG	13SC3 RFIS*28 21-aug-91 5.0 CSO UGG	13SC3 RFIS*29 21-aug-91 10.0 CSO UGG	13SC4 RF1S*30 22+aug-91 0.5 CSO UGG	13SC4 RFIS*31 22-aug-91 5.0 CSO UGG	13SC4 RFIS*32 22-aug-91 10.0 CSO UGG	138C5 RFIS*33 26-aug-91 0.5 CSO <u>UGG</u>	13SC5 RFIS*34 26-aug-91 5.0 CSO UGG	HBN UGG
<u>Volatile TICs</u>									
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	ND	ND	0.009 S	ND	0.011 S	NSA
TOTAL UNKNOWN TICS	NA	ND	ND	ND	(1)0.007	ND	ND	(1)0.036	NSA
Semivolatiles									
24DNT	0.3	LT 0.14	LT 0.14	0.385	LT 0.14	LT 0.14	LT 0.14	LT 0.14	1
26DNT	0.3	LT 0.085	LT 0.085	[3.3]	LT 0.085	LT 0.085	LT 0.085	LT 0.085	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	LT 0.62	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	LT 0.061	0.974	LT 0.061	LT 0.061	LT 0.061	LT 0.061	1000
DIETHYL PHTHALATE	0.3	LT 0.24	LT 0.24	1.94	LT 0.24	LT 0.24	LT 0.24	LT 0.24	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	LT 0.19	100
Semivolatile TICs									
2-ETHYLHEXANOIC ACID	NA	ND	ND	0.337 S	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	ND	ND	ND	0.468 S	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	ND	ND	0.225 S	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICs	NA	ND	ND	(8)5.94	ND	ND	(1)0.585	ND	NSA
TCLP Metals (UGL)									
BARIUM	20	706	550	954	622	508	000	(0)	100000
	20	LT 4.01	550	934 LT 4.01	533	LT 4.01	800	606	100000
CADMIUM	1 10		LT 4.01		LT 4.01		LT 4.01	LT 4.01	1000
CHROMIUM		LT 6.02	LT 6.02	LT 6.02	LT 6.02	LT 6.02	LT 6.02	LT 6.02	5000
LEAD	10	LT 18.6	25.6	1240	LT 18.6	LT 18.6	LT 18.6	LT 18.6	5000
MERCURY	2	LT 0.243	LT 0.243	0.251	LT 0.243	LT 0.243	LT 0.243	LT 0.243	200
TCLP Organics (UGL)									
CHLOROFORM	NA	NT	NT	NT	NT	NI	NT	NT	NSA
TCLP Organic TICs (UGL)									
BIS(2-ETHYLHEXYL) PHTHALATE	NA	NT	NT	NT	NΓ	NT	NT	NT	NSA
TRINITROTOLUENE ISOMER	NA.	NT	NI	NT	NT	NT	NT	NT	NSA
1 WILLIAM WOLD OF COMPLEX	1111	1-1	141	141	141	174	141	141	1404
TOTAL UNKNOWN TICS	NA	NT	NT	NT	NT	NT	NT	NT	NSA

Table 5-7 (Cont'd)

	13SC7	
S. DATE 26-aug-91 09-mar-92 27-aug-91 27-aug-91 27-aug-91 28-aug-91 DEPTH(ft) 10.0 0.5 0.5 5.0 10.0 0.5	RFIS*40 28-aug-91 5.0	
		HBN
UNITS (#) $\underline{\text{UGG}}$ $\underline{\text{UGG}}$ $\underline{\text{UGG}}$ $\underline{\text{UGG}}$ $\underline{\text{UGG}}$ $\underline{\text{UGG}}$ $\underline{\text{UGG}}$	<u>UGG</u> <u>I</u>	<u>UGG</u>
TAI Increming		
TAL Inorganics		22222
ALUMINIUM 14.1 11500 NT 2870 B 8440 7480 5630		230000
ARSENIC 30 [0.669 B] NT 0.423 B [0.579 B] [0.643 B] [0.695 B]		0.5 1 000
BARIUM 1 172 NT 36.8 B 127 107 74.4		
		0.1 40
CALCIUM 100 2290 NT 5280 1670 1410 11700 CHROMIUM 4 25.5 NT 8.68 23.2 18 13.8		NSA 400
		0.8
COBALT 3 [12.6] NT [2.64] [8.78] [9.77] [5.42] COPPER 7 10.9 NT 71.3 11.1 7.72 B 38.3		2906
		NSA.
		200
MAGNESIUM 50 3580 NT 2750 2980 2900 4950		NSA.
MANGANESE 0.275 477 NT 126 B 423 428 339		8000
MERCURY 0.1 0.098 NT LT 0.05 LT 0.05 LT 0.05		20
NICKEL 3 15.8 NT 3.5 15.1 11.5 8.22		1000
POTASSIUM 37.5 1080 B NT 693 B 1180 B 863 B 1130 B		NSA
		200
SODIUM 150 313 B NT 228 B 266 B 254 B 245 B		NSA.
		6
VANADIUM 0.775 31.3 NT 11.6 24.5 23.9 18.3		560
ZINC 30.2 82.3 NT 61.9 62.5 59 88.4		16000
Explosives		
135TNB 0.488 LT 0.488 NT LT 0.488 LT 0.488 LT 0.488 LT 0.488	LT 0.488 4	4
	LT 0.496 8	8
	LT 0.456	40
	LT 0.424	1
	LT 0.524 1	1.03
	LT 0.666	4000
Volatiles		
1,1,1—TRICHLOROETHANE 0.005 LT 0.004 NT LT 0.004 LT 0.004 LT 0.004 LT 0.004 B	LT 0.004 B	1000
	_	1000
		1000
		60
		1000
SALESANDERS DE CONTRACTOR DE VIVOS DE V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Volatile TICs		
2-PROPANOL NA ND NT ND ND ND ND	ND I	NSA

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (*)	PQLs UGG	13SC5 RFIS*35 26-aug-91 10.0 CSO UGG	13SC6 VFSL*104 09-mar-92 0.5 CSO UGG	13SC6 RFIS*36 27-aug-91 0.5 CSO UGG	13SC6 RFIS*37 27-aug-91 5.0 CSO UGG	13SC6 RFIS*38 27-ang-91 10.0 CSO UGG	138C7 RFIS*39 28-aug-91 0.5 CSO UGG	13SC7 RFIS*40 28-aug-91 5.0 CSO UGG	HBN UGG
Volatile TICs									
TRICHLOROTRIFLUOROETHANE	NA	0.009 S	NT.	ND	ND	0.007 S	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	ND	NT	ND	ND	ND	(1)0.008	(1)0.012	NSA
Semivolatiles									
24DNT	0.3	LT 0.14	NI	[4.6]	LT 0.14	LT 0.14	LT 0.7	LT 0.14	1
26DNT	0.3	LT 0.085	NT	LT 0.425	LT 0.085	LT 0.085	LT 0.425	LT 0.085	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 0.62	NΓ	LT 3.1	LT 0.62	LT 0.62	LT 3.1	LT 0.62	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	NT	5.18	LT 0.061	LT 0.061	0.581	LT 0.061	1000
DIETHYL PHTHALATE	0.3	LT 0.24	NT	2.9	LT 0.24	LT 0.24	1.23	LT 0.24	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.19	NT	LT 0.95	LT 0.19	LT 0.19	LT 0.95	LT 0.19	100
Semivolatile TICs									
2-ETHYLHEXANOIC ACID	NA	ND	NT	ND	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA NA	ND	NT	ND	ND	ND	ND ND	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA NA	ND	NT	ND	ND	ND	ND	ND	NSA
THOU HOLD HOLD, THE HEAVIE BUT EN	1421	N.D	141	ND	ND	ND.	ND	ND	HOAL
TOTAL UNKNOWNTICs	NA	ND	NT	ND	ND	ND	ND	ND	NSA
TCLP Metals (UGL)					•				
BARIUM	20	673	NT	601	511	528	853	525	100000
CADMIUM	1	LT 4.01	NT	LT 4.01	LT 4.01	LT 4.01	LT 4.01	5.3	1000
CHROMIUM	10	LT 6.02	NT	LT 6.02	LT 6.02	LT 6.02	LT 6.02	LT 6.02	5000
LEAD	10	LT 18.6	NT	2690	LT 18.6	LT 18.6	255	LT 18.6	5000
MERCURY	2	LT 0.243	NT	LT 0.243	LT 0.243	LT 0.243	LT 0,243	LT 0.243	200
	-	0.5 10	• • • • • • • • • • • • • • • • • • • •	2. 12.5	22 42.5	21 02.5	22 02 13		_00
TCLP Organics (UGL)									
CHLOROFORM	NA	NT	0.564	NT	NT	NT	NT	NT	NSA
			****		•			•	
TCLP Organic TICs (UGL)									
BIS(2-ETHYLHEXYL) PHTHALATE	NA	NT	ND	NT	NT	NT	NT	NΓ	NSA
TRINITROTOLUENE ISOMER	NA NA	NT	ND ND	NT		NL NI	NT	NT	
I KINII KUTULUENE ISUMEK	NA	141	ND	MI	NT	MI	141	MI	NSA
TOTAL UNKNOWN TICS	NA	NT	(1)9	Nľ	NГ	NI	NT	ΝT	NSA

Table 5-7 (Cont'd)

					'				
SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	13SC7 RFIS*41 28-aug-91 10.0 CSO <u>UGG</u>	13SC8 RFIS*42 29-aug-91 0.5 CSO <u>UGG</u>	13SC8 RFIS*43 29-aug-91 5.0 CSO UGG	13SC8 RFIS*44 29-aug-91 10.0 CSO <u>UGG</u>	13SE1 RFIS*52 09-oct-91 1.0 CSO <u>UGG</u>	13SE2 RFIS*53 09-oct-91 1.0 CSO UGG	13SS1 RFIS*47 09oct-91 0.5 CSO <u>UGG</u>	HBN UGG
TAL Inorganics									
ALUMINIUM	14.1	5750	9830	4860	5800	9230 B	29100	7890 B	230000
ARSENIC	30	[0.506 B]	[2.4 B]	0.388 B	[0.549 B]	[1.91 B]	[4.2]	[2.06 B]	0.5
BARIUM	1	88.6	214	69.1	79.4	131	351	128	1000
BERYLLIUM	0.2	[1.26]	[2.82]	[1.21]	[0.878]	LT 0.5	[1.36]	LT 0.5	0.1
CADMIUM	2	LT 0.7	0.904	LT 0.7	LT 0.7	LT 0.7	1.45	LT 0.7	40
CALCIUM	100	1160	18700	905	987	17500 B	9300 B	4050 B	NSA
CHROMIUM	4	14.9	22.6	13.2	14.4	21.9 B	53.4	24.4 B	400
COBALT	3	[7.71]	[12]	[6.62]	[7.02]	[8.36]	[24.4]	[7.56]	0.8
COPPER	7	7.38 B	43.9	4.62 B	6.07 B	64.6	99.4	59.6	2900
IRON	1000	12200 B	34100	10200 B	11600 B	16200	39700	16100	NSA
LEAD MAGNESIUM	2 50	LT 10.5 2330	[575] 8360	LT 10.5 2050	LT 10.5 2310	[475] 8540	[731] 9310	[986] 2270 B	200 NSA
MANGANESE	0.275	2330 349	1490	267	289	531	1320	729	8000
MERCURY	0.1	LT 0.05	0.106	0.081	LT 0.05	LT 0.05	0.124	LT 0.05	20
NICKEL	3	9.06	13	7.77	8.6	12	33.3	11.2	1000
POTASSIUM	37.5	761 B	1830	1310	1390	1850	4880	1340 B	NSA
SILVER	4	LT 0.589	0.889	LT 0.589	LT 0.589	LT 0.589	1.03	LT 0.589	200
SODIUM	150	239 B	301 B	223 B	266 B	342 B	428 B	326 B	NSA
THALLIUM	20	[10.8]	[25.8]	LT 6.62	[9.82]	LT 6.62	[14.1]	LT 6.62	6
VANADIUM	0.775	19.5	37	15.7	18.8	24.2 B	64.8	19.1 B	560
ZINC	30.2	48,5	723	43.1	50.4	390	646	525	16000
Explosives									
135TNB	0.488	LT 0.488	LT 0.488	LT 0.488	LT 0.488	1.87 C	LT 0.488	LT 0.488	4
13DNB	0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	LT 0.496	8
246TNT	0.456	LT 0.456	LT 0.456	LT 0.456	LT 0.456	2.35 C	3.94 C	4.03 C	40
24DNT	0.424	LT 0.424	LT 0.424	LT 0.424	LT 0.424	[1.26 C]	[1.45 C]	[1.84 C]	1
26DNT	0.524	LT 0.524	LT 0.524	LT 0.524	LT 0.524	[1.29 C]	LT 0.524	[1.28 C]	1.03
нмх	0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	LT 0.666	4000
Volatiles									
1,1,1-TRICHLOROETHANE	0.005	LT 0.004 B	LT 0.004 B	LT 0.004 B	LT 0.004 B	LT 0.004	LT 0.004	LT 0.004	1000
ACETONE	0.1	LT 0.017 B	LT 0.017 B	LT 0.017 B	LT 0.017 B	LT 0.017 B	LT 0.017 B	LT 0.017	1000
TOLUENE	0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	LT 0.001	1000
TRICHLOROETHYLENE	0.005	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	LT 0.003	0.019	60
TRICHLOROFLUOROMETHANE	0.005	LT 0.006 B	LT 0.006	LT 0.006	LT 0.006	LT 0.006 B	LT 0.006 B	LT 0.006	1000
Volatile TICs									
2-PROPANOL	NA	ND	ND	ND	ND	ND	ND	ND	NSA
VIIIIVE	1417	112	172	1425	112	112		A127	11111

Table 5-7 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (#)	PQLs UGG	13SC7 RFIS*41 28-aug-91 10.0 CSO UGG	13SC8 RFIS*42 29-aug-91 0.5 CSO UGG	13SC8 RFIS*43 29-aug-91 5.0 CSO UGG	13SC8 RFIS*44 29-aug-91 10.0 CSO UGG	13SE1 RFIS*52 09-oct-91 1.0 CSO UGG	13SE2 RFIS*53 09-oct-91 1.0 CSO <u>UGG</u>	13SS1 RFIS*47 09-oct-91 0.5 CSO UGG	HBN UGG
Volatile TICs									
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	(1)0.012	ND	ND	ND	ND	ND	ND	NSA
Semivolatiles									
24DNT	0.3	LT 0.14	LT 1.4	LT 0.14	LT 0.14	[6.14]	LT 1.4	[3.44]	1
26DNT	0.3	LT 0.085	LT 0.85	LT 0.085	LT 0.085	į 3.61 j	LT 0.85	[2.02]	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 0.62	LT 6.2	LT 0.62	LT 0.62	LT 6.2 B	LT 6.2 B	LT 3.1 B	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	LT 0.61	LT 0.061	LT 0.061	6.15	1.59	6.88	1000
DIETHYL PHTHALATE	0.3	LT 0.24	LT 2.4	LT 0.24	LT 0.24	3.72	1.2	13.9	1000
N-NITROSODIPHENYLAMINE	0.3	LT 0.19	LT 1.9	LT 0.19	LT 0.19	4.07	LT 1.9	2.28	100
Semivolatile TICs									
2-ETHYLHEXANOIC ACID	NA	ND	ND	ND	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	ND	ND	ND	ND	ND	NSA
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	ND	ND	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	ND	ND	ND	ND	ND	ND	(3)10.3	NSA
TCLP Metals (UGL)									
BARIUM	20	407	1.400	401	461	1000	NED.	3.7D	100000
	20 1	497 LT 4.01	1490 LT 4.01	401 LT 4.01	451	1000	NT	NT	100000
CADMIUM CHROMIUM	10	LT 6.02	LT 6.02	LT 6.02	LT 4.01 LT 6.02	LT 4.01 LT 6.02	NT NT	NT NT	1000 5000
LEAD	10	LT 18.6	62,5	LT 18.6	LT 18.6	L1 9.02 144	NT NT	NT NT	5000
MERCURY	2	LT 0.243	LT 0.243	LT 0.243	LT 0,243	LT 0.243	NT	NT	
MERCURI	2	L1 0.243	L1 0.243	LI 0.243	L1 U.243	LI 0243	MI	MI	200
TCLP Organics (UGL)									
CHLOROFORM	0.5	Nľ	NT	NT	NT	LT 0.500	NT	NT	NSA
TCLP Organic TICs (UGL)									
DIG/2_PTUVI LIEVVI \ SI PTU AT ATTE	N/A	NT	NT	NT	NT	NT	NT	NT	MC A
BIS(2-ETHYLHEXYL) PHTHALATE TRINITROTOLUENE ISOMER	NA NA	NT	NT NI	NT NT	NT NT				NSA
TRIBII ROTOLUBNE IŞUMEK	NA	MT	L I	MI	NI	Nľ	NT	NΓ	NSA
TOTAL UNKNOWNTICS	NA	NT	NT	NT	NT	(1)9	NT	NT	NSA

Table 5-7 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	13881D RFIS*51 09-oct-91 0.5 CSO UGG	13SS2 VFSL*102 09-mar92 0.5 CSO UGG	13SS2 RF1S*48 09-oct-91 0.5 CSO UGG	13SS3 RFIS*49 27-aug-91 0.5 CSO UGG	13SS4 RFIS*50 27-aug91 0.5 CSO UGG	HBN <u>UGG</u>
TAL Inorganics ALUMINIUM ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SILVER SODIUM THALLIUM	14.1 30 1 0.2 2 100 4 3 7 1000 2 50 0.275 0.1 3 37.5 4 150	8160 B { 1.78 B} 132 LT 0.5 1.23 5730 B 30.5 B [7.26] 69.9 15200 { 1050] 2780 B 474 0.064 14.7 1410 B LT 0.589 335 B	N	5840 B [1.25 B] 110 LT 0.5 LT 0.7 6700 B 14.4 B [4.81] 26.3 11000 [478] 4030 B 314 LT 0.05 7.36 B 1010 B LT 0.589 452 B	6460 [1.1 B] 102 [1.27] LT 0.7 3700 21.6 [7.39] 108 12600 B [762] 2730 379 0.064 12.6 1490 LT 0.589 284 B	13000 [2.71 B] 225 [2.52] LT 0.7 8580 25.4 [17.3] 55.4 28000 [376] 6870 1570 LT 0.05 14.7 2210 0.793 261 B	230000 0.5 1000 0.1 40 NSA 400 0.8 2900 NSA 200 NSA 8000 20 1000 NSA 200 NSA
VANADIUM ZINC	20 0.775 30.2	LT 6.62 19.4 B 507	NT NT NT	LT 6.62 16.2 B 196	[16] 19.5 264	[26.9] 45.9 375	6 560 16000
Explosives 135TNB 13DNB	0.488	LT 0.488	NT	[6.86 C]	LT 0.488	LT 0.488	4
246TNT 24DNT 26DNT HMX	0.496 0.456 0.424 0.524 0.666	0.858 C 2.13 C [2.15 C] [1.33 C] LT 0.666 U	NT NT NT NT NT	ET 0.496 [130 C] [10.4 C] [4.65 C] LT 0.666	LT 0.496 LT 0.456 LT 0.424 LT 0.524 LT 0.666	LT 0.496 LT 0.456 LT 0.424 LT 0.524 LT 0.666	8 40 1 1.03 4000
Volatiles 1,1,1-TRICHLOROETHANE ACETONE TOLUENE TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE	0.005 0.1 0.005 0.005 0.005	LT 0.004 LT 0.017 LT 0.001 0.009 LT 0.006	NI NI NI NI NI	LT 0.004 LT 0.017 LT 0.001 LT 0.003 LT 0.006	LT 0.004 LT 0.017 LT 0.001 LT 0.003 LT 0.006	0.005 0.025 0.001 LT 0.003 LT 0.006	1000 1000 1000 60 1000
Volatile TICs 2-PROPANOL	NA	ND	МТ	ND	ND	ND	NSA

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGG</u>	13SS1D RFIS*51 09-oct-91 0.5 CSO UGG	13SS2 VFSL*102 09-mar-92 0.5 CSO UGG	13SS2 RFIS*48 09-oct-91 0.5 CSO UGG	13SS3 RFIS*49 27-aug-91 0.5 CSO UGG	13SS4 RFIS*50 27-aug-91 0.5 CSO UGG	HBN UGG
Volatile TICs							
TRICHLOROTRIFLUOROETHANE	NA	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	ND	ND	ND	ND	ND	NSA
Semivolatiles							
24DNT	0.3	[2.03]	NT	[11.5]	[1.17]	[37.5]	1
26DNT	0.3	[1.99]	NT	5.64	LT 0.425	[1.84]	1.03
BIS(2-ETHYLHEXYL) PHTHALATE	0.3	LT 3.1 B	NT	LT 3.1 B	LT 3.1	LT 3.1	50
DI-N-BUTYLPHTHALATE	0.3	6.78	NT	27.6	5.86	31.3	1000
DIETHYL PHTHALATE	0.3	27.3	NT	11.6	17.7	1.89	1000
N-NITROSODIPHENYLAMINE	0.3	3.74	NT	1.27	1.16	6.21	100
Semivolatile TICs							
2-ETHYLHEXANOIC ACID	NA	ND	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA NA	ND	ND	ND	ND	ND	NSA NSA
•	NA NA	3.8 S					
PHOSPHORIC ACID, TRIPHENYL ESTER	NA	3.8 \$	ND	ND	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	(3)20.3	ND	(1)21.5	(4)16.4	ND	NSA
TCLP Metals (UGL)							
BARIUM	20	NT	799	NT	NT	NT	100000
CADMIUM	1	NT	4.56	NT	NT	NT	1000
CHROMIUM	10	NT	LT 6.02	NΓ	NT	NT	5000
LEAD	10	NT	756	NΓ	NT	NT	5000
MERCURY	2	NT	LT 0.243	NI	NI	NT	200
TCLP Organics (UGL)							
CHLOROFORM	NA	NT	0.544	NT	NT	NT	NSA
CHLOROFORM	NA	NI	U.344	NI	NI	141	NJA
TCLP Organic TICs (UGL)							
BIS(2-ETHYLHEXYL) PHTHALATE	NA	NT	1.82 SB	NT	NT	NT	NSA
TRINITROTOLUENE ISOMER	NA	NT	20 S	NT	NT	NT	NSA
TOTAL UNKNOWNTICs	NA	NT	(1)10	NT	NT	NT	NSA

Footnotes:

B = Analyte was detected in corresponding method blank; values are flagged if the sample concentration is less than 10 times the method blank concentration for common laboratory constituents and 5 times for all other constituents.

C = Indicates that analysis was confirmed using a second column.

CSO = Chemical soil.

G = Reported results are affected by interferences or high background.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

NT = Not tested; parameters were not tested (included) in the sample analyses.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

R = Analyte required for reporting purposes but not currently certified by USATHAMA.

S = Results are based on an internal standard; flag is used for TICs detected in library scans.

TAL = Target An alyte List.

TCLP = Toxicity Characteristic Leaching Procedure.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

U = Indicates that analyte was not detected during second column confirmation. Explosives detections are considered to be false positives, if the values are not confirmed on a second column.

UGG = Micrograms per gram.

UGL = Micrograms per liter.

Units(#) = Units are in UGG except for TCLP constituents, which are expressed in UGL.

() = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.

[] = Brackets indicate that the detected concentration exceeds the HBN.

similar concentrations in downslope and background soil samples suggesting that most metal concentrations were not elevated.

However, concentrations of arsenic, beryllium, cobalt, lead and thallium exceeded HBN criteria, but only lead appears to be present at anomalously high concentrations in the soil. Concentrations of arsenic, beryllium and cobalt exceeded HBN criteria in almost all samples but these levels were similar to concentrations of these metals in samples collected upslope of the site (i.e., 13SB1 and 13SB2) and were less than the background soil criteria for alluvial soils (Section 4.0). Additionally, arsenic was detected in laboratory method blanks indicating that it was an artifact of the laboratory analyses and not necessarily a result of site conditions. Beryllium, another element slightly elevated above the HBN but also reported in upslope samples from borings 13SB1 and 13SB2, has a low solubility and is expected to be adsorbed onto clay mineral surfaces at a low pH and to be complexed into insoluble compounds at high pH. In most natural environments, beryllium is likely to be sorbed or precipitated, rather than dissolved and is not expected to impact surface water, groundwater or the underlying soil. The only exceedance of the background comparison criterion due to cobalt was in sediment sample 13SE2, but this exceedance was by less than 35 percent. This may indicate that naturally occurring cobalt could be eroding from the SWMU 13 soils and depositing at greater concentrations in the pond sediment. Concentrations of thallium exceeded the HBN criterion in soil samples collected from each depth with no apparent pattern to indicate that it was derived from a surface source. However, thallium is not considered a concern because concentrations appear natural and the levels only slightly exceeded the HBN criterion. However, lead exceeded the HBN criterion in several surface soil/sediment samples and may be a concern at the site. Although several lead concentrations greater than the HBN were less than the soil background criterion for alluvial soil, many elevated lead levels exceeded upslope sample concentrations by a factor of 10 or more. However, elevated levels of lead were limited to surface soil/sediment samples collected from a depth of 0.5 foot and were not reported in samples collected at depths of 5 and 10 feet.

A total of six explosives were detected in 13 discrete and composite soil samples and sediment samples. With the exception of a low concentration of HMX detected at a depth of 10 feet at 13SB5, explosives were limited to soil samples collected at a depth of 0.5 foot. Explosives were not detected in soil samples collected at depths of 5 and 10 feet below the burning pads. However, explosives were detected in the Settling Pond sediment samples collected at a depth of 1 foot and are probably present throughout the sediment layer.

The most frequent explosives detected were 24DNT, 26DNT and 246TNT. Based on explosive-specific analyses, concentrations of 24DNT, 26DNT, 246TNT and 1,3trinitrobenzene (135TNB) exceeded HBN criteria and may be a concern. Explosives exceeding the HBN criteria were limited to one soil composite sample, two drainage ditch soil samples and both settling pond samples. However, the concentrations of explosives in the composite sample 13SC3 (26DNT) and sediment samples 13SE1 (24DNT and 26DNT) and 13SE2 (24DNT) slightly exceeded the HBN criteria by factors of less than 1.5. 24DNT and 26 DNT were also detected in SVOC analyses, but these results are not as appropriate for evaluation as those acquired in the explosives analyses and will not be considered. Two soil samples collected from the drainage ditch nearest the settling pond (i.e., 13SS1 and 13SS2) exhibited the greatest number and concentrations of explosives in samples collected at the site. 24DNT and 26DNT in both sediment samples and 135TNB and 246TNT in 13SS2 exceeded HBN criteria. The concentrations of explosives in 13SS2 exceeded the HBN criteria by factors ranging from three for 246TNT to 10 for 24DNT. TNT isomers were also tentatively identified in TCLP analyses of the uppermost soil samples at 13SB6, 13SC3 and 13SS2, three locations where 246TNT was detected.

Although 24DNT and 26DNT concentrations detected by explosive-specific and SVOC analyses were similar for several cases, five additional samples had explosives reported as part of the SVOC analyses only (e.g., 13SB4, 13SC4, 13SC6 (24DNT only), 13SS3 and 13SS4). Explosives concentrations for these five samples, although not confirmed by explosive-specific analyses, exceeded the HBN criteria but were generally less than 5 times the criteria. However, concentrations of 24DNT in channel soil samples 13SS2 and 13SS4 exceeded the HBN criterion by factors ranging from 11 to 37.

Trace concentrations of five VOCs were detected in a total of eight soil/sediment samples. Three of the VOCs were regularly detected in method blank samples, indicating that these VOCs were artifacts of the laboratory analyses and do not necessarily reflect site conditions. VOC concentrations were several orders of magnitude less than the HBN criteria and are not considered a concern at the site.

Six semivolatile constituents were detected in at least four of the five surface soil samples. Three of the semi-volatiles were phthalate compounds and the other two were the explosives 24DNT and 26DNT. The phthalate compounds were detected at four sample locations at generally the same concentrations. B2EHP was detected in several laboratory method blank samples and concentrations reported for environmental samples are considered to be analytical artifacts and do not appear to reflect site conditions. None of the levels exceeded the respective HBNs and are not considered a concern. Additionally, SVOCs other than B2EHP (a laboratory contaminant) were not detected in samples collected at depths of 5 and 10 feet. The detected SVOCs, which were limited to the shallow soil and sediment samples (i.e., less than 1 foot), were reported at low concentrations and at few locations, are relatively immobile in soil and are not expected to impact surface water, groundwater or underlying soil.

Soil analyses indicate that soils underlying the surface soils or sediments have not been impacted by the surface burning activities at SWMU 13. As shown on Table 5-8, the only exceedances for lead and explosives were in the near surface zone. Thallium exceeded HBNs in various samples at various depths, but all concentrations appear natural and not derived from surface impacts.

Four sediment samples were collected from the northern bank of the New River upgradient (NRSE1), adjacent to and down (groundwater) gradient from the two monitoring wells (13MW3 and 13MW7) most impacted (NRSE2 and NRSE3, respectively), and downgradient (NRSE4) of SWMU 13. These samples were analyzed for TAL metals, explosives, VOCs and SVOCs. A duplicate of NRSE3 was also submitted for explosives and VOC analyses.

Table 5-8
Contaminant Concentration in Soil Verses Depth
SWMU 13 - Waste Propellant Burning Ground
Radford Army Ammunition Plant, Virginia

			We	st Half!	SWMU 1	13			Eas	st Half S	WMU 1	3		Backgr	ound
	Location	13SB3	13SC8	13SC7	13SC6	13SB4	13SC5	13SC4	13SC3				13SB6	13SB2	
Analyte (ug/g)	Depth (feet)														
Lead	0.5	258	575	210	293	367	76.7	406	320	110	55.6	ND	108	33.6	98.6
	5,0	ND	ND	ND	ND	13.7	17.4	ND	ND	ND	ND	ND	ND	16.8	ND
	10.0	ND	ND	ND	ND	17.9	14.9	ND	ND	17.3	ND	ND	ND	20.4	17.8
				st Half							WMU 1			Backgr	
	Location	13SB3	13SC8	13SC7	13SC6	13SB4	13SC5	13SC4	13SC3	13SB5	13SC2	13SC1	13SB6	13SB2	13SB1
Thattieses	Depth (feet)		25.0	0.62					۱		NE				
Thallium	0.5	ND	25.8	9.63	ND 11.7	ND	9.7	12.8	ND	ND	ND	ND	ΝD	ND	ND
	5.0	ND ND	ND	9.47	11.7	ND	13.9	9.82	12	ND	ND	ND	ND	ND	ND
	10.0	עוא	9.82	10.8	16.9	מא	15.8	ND	ND	ND	9.82	ND	ND	ND	ND
			W	est Half	SWMU:	13			F.a	st Half S	WMU 1	3		_Вас кет	ownd
	Location	13SB3		13SC7			13SC5	13SC4	13SC3		13SC2		13SB6	13SB2	
	Depth (feet)														
135TNB	0.5	ND	ND	ND	ND	ND	ND	ND	2.9	ND	ΝD	ND	ND	ND	ND
-	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				est Half							WMU 1			Backgr	ound
		13SR3	13SC8	13SC7	13SC6	13SB4	13SC5	13SC4	13SC3	13SB5	13SC2	13SC1	13SB6	13SB2	13SB1
O ACTES TO	Depth (feet)														
246TNT	0.5	ND	ND	ND	0.918	ND	ND	ND	0.515	ND	ND	ND	29	ND	ND
	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
			W	est Half	SWMU :	13			Ea	st Half S	wmu 1	3		Backgr	ound
	Location	13SB3		13SC7			13SC5	13SC4			13SC2		13SB6	13SB2	
	Depth (feet)										•				•
24DNT	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.761	ND	ND
	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				st Half					$\overline{}$		WMU I			Backgr	
		13SR3	13SC8	138C7	13506	13SB4	13SC5	13SC4	13SC3	13SB5	13SC2	13SC1	13SB6	13SB2	13SB1
26DNT	Depth (feet)	MD	NIP	ND	MB	NE	MES	Mo	1 22	Arra	NITS	NIP.	>17	215	WD
20DN1	0.5	DN DN	ND ND	ND	ND	ND	ND	ND	1.33	ND	ND ND	ND	ND	ND	ND
	5.0 10.0	ND	ND	ND	ND ND	ND DN	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
	10.0	עא	ND	ND	MD	ND	ND	ŲΩ	ND	עא	ND	ИЛ	ND	ND	ND
			SWMU	13 Drai	nage Sec	liment									
	Location	13SS4	13SS3	13552	13551	13SE1	13SE2								
	Depth (feet)														
Lead	0.5	376	762	478	1050	475	731								
Thallium	0.5	26.9	16	ND	ND	ND	14.1								
135TNB	0.5	ND	ND	6.86	ND	1.87	ND								
246TNT	0.5	ND	ND	130	4.03	2.35	3.94								
24DNT	0.5	ND	ND	10.4	2.15	1.26	1.45								
26DNT	0.5	ND	ND	4.65	1.33	1.29	ND								

- -Greatest concentration for duplicate sample analyses tabulated.
- -Exceedances of Health Based Number are outlined.
- -24DNT and 26DNT concentrations are from the EXPLOSIVES analysis.
- -ND = Not Detected.

Seventeen metals were detected in these samples with arsenic, beryllium, cobalt and lead concentrations exceeding HBNs (Table 5-9). Concentrations of arsenic and cobalt were in each sample at less than half the background comparison criteria for alluvial soils (Table 4-14) and are considered natural and not a concern. Beryllium was detected only once, at a concentration less than 5 percent greater than the comparison criterion, and is considered naturally occurring and not a concern. Lead was detected at a concentration 2 percent above the HBN in NRSE3, but at a concentration less than the background comparison criterion. Even though lead concentrations are anomalously high in on-site soils, the lead concentrations in the four New River samples are essentially the same as the five background alluvial soil samples collected from New River alluvium off-post. Even though lead concentrations are elevated in on-site soils, the collected data do not indicate that SWMU 13 is the source for the lead in the one sample which exceeded the HBN.

No explosives or VOCs were detected in the four New River sediment samples or the duplicate of NRSE3. Five SVOCs were detected in the downgradient sample NRSE4, but each SVOC was detected at concentrations much less than their respective HBNs. Two SVOCs are phthlates and three SVOCs are likely fuel related. They do not appear to be related to SWMU 13 and are not considered a concern due to their low concentrations. Several SVOC TICs were also detected in three of the four samples, but their concentrations were low and do not appear to be a concern even though HBNs are not available for comparison. Overall, no adverse impact to New River sediments can be supported by the collected data.

5.3.3 Surface Water and Sediment

One surface water sample was collected from the settling pond which receives runoff from the eastern half of SWMU 13 and was analyzed for TAL metals, explosives, VOCs, SVOCs, nitrite/nitrate, TOC and TOX (Table 5-10). This sample generally has the same constituents as the sediment samples collected from the pond with similar exceedances of HBNs. Lead, 24DNT and 26DNT concentrations exceeded HBNs in both media with chromium, cobalt and 246TNT also exceeding HBNs in the surface water. Chromium and

Table 5-9
Summary of Analytical Data For Sediment Samples Collected At SWMU 13
Radford Army Ammunition Plant, Virginia

SITE I FIELD I S. DAT DEPTH (I MATRI UNITS	ID TE ft) IX PQLs	NRSE1 RDSE*1 16-apr-92 1.0 CSE UGG	NRSE2 RDSE*2 16-apr-92 1.0 CSE UGG	NRSE3 RDSE*3 16-apr-92 1.0 CSE UGG	NRSE3D RDSE*7 16-apr-92 1.0 CSE UGG	NRSE4 RDSE*4 16-apr-92 1.0 CSE UGG	HBN UGG
TAL Inorganics							
ALUMINIUM ARSENIC	14.1 30	2910 [2.29]	2250 [1.86]	4520 [2.86]	NT NT	7860 [2.67]	230000 0.5
BARIUM	1	37.8	40	54.9	NT	112	1000
BERYLLIUM CALCIUM	0.2 100	LT 0.5 1200	LT 0.5 558	LT 0.5 1180	NT	[0.943]	0.1 NSA
CHROMIUM	4	16.9	10.1	12.3	NT NT	2120 21.3	400
COBALT	3	[4.15]	[3.9]	[5.27]	NT	[10]	0.8
COPPER	7	8.88	7.14	29.8	NT	15.9	2900
IRON	1000	32200	20900	18600	NT	29500	NSA
LEAD	2	113	62.9	[204] .	NT	136	200
MAGNESIUM	50	1210	751	` 1810 <i>`</i>	NT	2870	NSA
MANGANESE	0.275	414	376	193	NT	1250	8000
NICKEL	3	5.98	5	8.55	NT	10.7	1000
POTASSIUM	37.5	388	282	673	NT	1250	NSA
SODIUM	150	162	138	226	NT	264	NSA
VANADIUM	0.775	14.3	11.4	16.1	NT	27.8	560
ZINC	30.2	447	272	374	NT	414	16000
<u>Explosives</u>	NA	None Detected	None Detected	None Detected	None Detected	None Detected	NSA
<u>Volatiles</u>	NA	None Detected	None Detected	None Detected	None Detected	None Detected	NSA
<u>Semivolatiles</u>							
BIS(2-ETHYLHEXYL) PHTHAL	ATE 0.3	2.94	LT 0.62	1.62	NT	15.5	50
DI-N-BUTYL PHTHALATE	0.3	LT 0.061	LT 0.061	LT 0.061	NT	1.96	1000
FLUORANTHENE	0.3	LT 0.068	LT 0.068	LT 0.068	NT	0.16	500
PHENANTHRENE	0.5	LT 0.033	LT 0.033	LT 0.033	NT	0.089	40
PYRENE	0.3	LT 0.033	LT 0.033	LT 0.033	NT	0.181	1000

Table 5-9 (cont'd)

SITE FIELD S. DA DEPTH MATR UNITS (ID TE (ft) XIX PQLs	NRSE1 RDSE*1 16-apr-92 1.0 CSE <u>UGG</u>	NRSE2 RDSE*2 16-apr-92 1.0 CSE UGG	NRSE3 RDSE*3 16-apr92 1.0 CSE <u>UGG</u>	NRSE3D RDSE*7 16-apr-92 1.0 CSE <u>UGG</u>	NRSE4 RDSE*4 16apr-92 1.0 CSE <u>UGG</u>	HBN UGG
Semivolatile TICs							
CYCLOHEXENE OXIDE	NA	0.39 S	0.388 S	ND	NT	ND	NSA
TOTAL UNKNOWN TICs	NA	ND	(7)20.3	(2)17.2	NT	ND	NSA

Footnotes:

C = Indicates that analysis was confirmed using a second column.

CSE = Chemical sediment.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and intake assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TiCs.

NT = Not tested; parameters were not tested (included) in the sample analyses.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method S = Results are based on an internal standard; flag is used for TICs detected in library scans.

TAL = Target Analyte List.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

UGG = Micrograms per gram.

- () = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.
- [] = Brackets indicate that the detected concentration exceeds the HBN.

Table 5-10
Summary of Analytical Data For Surface Water Samples Collected At SWMU 13
Radford Army Ammunition Plant, Virginia

	SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS	PQLs <u>UGL</u>	13SW1 RDWA*11 15-jan-92 0.0 CSW <u>UGL</u>		NRSW3 RDSW*2 16-apr-92 0.0 CSW UGL	NRSW3D RDSW*4 16-apr-92 0.0 CSW UGL	NRSW4 RDSW*3 16-apr-92 0.0 CSW UGL	HBN UGL
TAL Inorganics								
ALUMINIUM		141	47500	168	LT 141	NT	LT 141	101500
ARSENIC		10	2.99	LT 2.54	LT 2.54	NT	LT 2.54	50
BARIUM		20	495	22.8	18.6	NT	19.2	1000
CALCIUM		500	22200	16100	13600	NT	13600	NSA
CHROMIUM		10	[78.8]	LT 6.02	LT 6.02	NT	LT 6.02	50
COBALT		70	7 30.6	LT 25	LT 25	NT	LT 25	0.35
COPPER		60	143	LT 8.09	LT 8.09	NT	LT 8.09	1295
IRON		38.1	59700	416	217	NT	170	NSA
LEAD		10	[500]	1.95	2.06	NT	2.39	50
MAGNESIUM		500	12400	6190	5230	NT	5320	NSA
MANGANESE		2.75	1940	62.4	22.1	NT	11	3500
NICKEL		50	43.8	LT 34.3	LT 34.3	NT	LT 34.3	700
POTASSIUM		375	13600	2130	2400	NT	2360	NSA
SODIUM		500	1830	7630	5220	NT	5300	NSA
VANADIUM		40	89.9	LT 11	LT 11	NT	LT 11	245
ZINC		50	893	LT 21.1	LT 21.1	NT	LT 21.1	7000
Explosives								
135TNB		0.449	1. 1 8	LT 0.449	LT 0.449	LT 0.449	LT 0.449	1.75
246TNT		0.635	[32.9]	LT 0.635	LT0.635	LT0.635	LT0.635	11.7
24DNT		0.064	į 15.8 į	LT 0.064	LT 0.064	LT 0.064	LT 0.064	0.05
26DNT		0.074	ĵ 3.71 ĵ	LT 0.074	LT 0.074	LT 0.074	LT 0.074	0.051
HMX		1.21	12.8	LT 1.21	LT 1.21	LT 1.21	LT 1.21	1750
Volatiles								
CARBON DISULFIDE		0.5	LT 0.50	24	2.3	LT 0.50	LT 0.50	4000

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	13SW1 RDWA*11 15-jan-92 0.0 CSW <u>UGL</u>	NRSW1 RDSW*1 16-apr-92 0.0 CSW UGL	NRSW3 RDSW*2 16-apr-92 0.0 CSW UGL	NRSW3D RDSW*4 16-apr-92 0.0 CSW <u>UGL</u>	NRSW4 RDSW*3 16-apr-92 0.0 CSW UGL	HBN UGL
Volatile TICs							
HEXAMETHYL CYCLOTRISILOXANE TOTAL UNKNOWN TICs	NA NA	ND ND	ND ND	9S (2)60	ND ND	ND ND	NSA NSA
Semivolatiles							
24DNT 26DNT	10 10	[13.6] [2.39]	LT 4.5 LT 0.79	LT 4.5 LT 0.79	NT NT	LT 4.5 LT 0.79	0.05 0.051
Semivolatile TICs							
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	NA NA	6S 6S	ND ND	ND ND	NT NT	ND ND	NSA NSA
TOTAL UNKNOWN TICS	NA	(1)10	(1)7	ND	NT	ND	NSA
Other							
NITRITE,NITRATE	100	530	NT	NT	NT	NT	10000
TOTAL ORGANIC CARBON	1000	12	NT	NT	NT	NT	NSA
TOTAL ORGANIC HALOGENS	1	33.5	NT	NT	NT	NT	NSA
pH	NA	7.68 K	NT	NT	NT	NT	NSA

Š

Table 5-10 (Cont'd)

Footnotes:

CSW = Chemical surface water.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and intake assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

K = Indicates holding time for extraction and preparation was not met, but data quality is not believed to be affected.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

NT = Not tested; parameters were not tested (included) in the sample analyses.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method S = Results are based on an internal standard; flag is used for TICs detected in library scans.

TAL = Target Analyte List.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

UGL = Micrograms per liter.

(a) = Level 2 data.

() = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.

[] = Brackets indicate that the detected concentration exceeds the HBN.

cobalt were not detected at anomalously high concentrations in on-site soils even though sediment sample 13SE2 did exhibit anomalously high concentrations of these two metals. 246TNT was detected in pond sediment and five other surface soil samples, but at concentrations below the HBN. Two other explosives, 135TNB and HMX, were detected in the pond water but at concentrations below their HBNs.

Sample 13SW1 consisted of unfiltered water and the elevated concentrations detected may be due to contaminants present on suspended solids rather than dissolved in the water. Of the above-mentioned analytes, the groundwater samples from well 13MW7 had detectable concentrations for only lead and HMX, but at levels below HBNs. This indicates that suspended solids and not the water is the source of the detected contaminants.

Three surface water samples were taken from near the north bank of the New River upstream of (NRSW1), adjacent to (NRSW3) and downstream (NRSW4) of SWMU 13 at the same locations as the similarly numbered sediment samples. These samples were analyzed for TAL metals, explosives, VOCs and SVOCs (Table 5-10). A duplicate of NRSW3 was analyzed for explosives and VOCs.

Nine TAL metals were detected, but none of the four metals with HBNs were at concentrations above HBNs. Five metals were common constituents of drinking water which do not have HBNs. None of the concentrations appeared anomalously high.

No explosives or SVOCs were detected in any sample. Only one VOC (carbon disulfide) was detected in NRSW1 and one of the NRSW3 samples, but at concentrations less than 1 percent of the HBN. Carbon disulfide is not associated with the contaminants found at SWMU 13 and its presence is unlikely due to migration from the burning ground.

In summary, adverse impacts to the New River due to SWMU 13 contaminants cannot be identified from the collected surface water and sediment samples.

5.4 <u>BASELINE RISK ASSESSMENT FOR SWMU 13--WASTE PROPELLANT</u> <u>BURNING GROUND</u>

Based on the contamination assessment presented in Section 5.3, five contaminants of concern-lead, 24DNT, 26DNT, 246TNT, and 135TNB-have been identified for the surface soil/sediment samples collected from this site. Two contaminants of concern-carbon tetrachloride and trichloroethylene-were identified for groundwater at SWMU 13. The potential impacts of these contaminants to human health and the environment are discussed below in Sections 5.4.1 and 5.4.2, respectively.

5.4.1 Human Health Evaluation

No groundwater wells other than for monitoring purposes are located downgradient of SWMU 13. Groundwater in the vicinity of SWMU 13 generally flows to the south and discharges to the New River. As discussed in Section 2.5, future land use is considered to be similar to the current land use scenario—i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development of RAAP. Therefore, it is highly unlikely that groundwater wells would be installed in the future in the vicinity of SWMU 13. Based on this evaluation, potential groundwater exposure pathways are not considered operable under the current or future land use scenario.

As discussed above, there is the potential for discharge of groundwater contamination to the New River from SWMU 13. Persons boating, fishing, or swimming in the river could potentially be exposed to contaminants migrating from SWMU 13 via shallow groundwater. In addition, a drinking water intake is located 6 miles downstream of RAAP. However, due to the significant capacity of the river which would result in significant dilution, and the low levels of carbon tetrachloride (maximum concentration of 10.5 ug/l) and trichloroethylene (maximum concentration of 10.5 ug/l) detected in groundwater, which were only a factor of two above their HBNs, potential exposure is considered negligible. None of the contaminants of concern were detected in New River surface water samples. Therefore,

these potential exposure pathways are not considered significant and are not evaluated further.

Contamination was detected in surface soil of SWMU 13. This SWMU is currently active (for a description of activities conducted at SWMU 13 see Section 5.1). Potential soil exposure routes typically include incidental ingestion, inhalation, and dermal absorption of soil contamination. Because lead, 24DNT, 26DNT, 246TNT, and 135TNB were detected at elevated levels in surface soil (Table 5-8) and the area is currently active, there is the possibility of contaminated dust to become airborne and for workers in the vicinity of SWMU 13 to be exposed via inhalation of contaminated dust. It should be noted that this exposure pathway evaluates the potential for exposure to particulate emissions from contaminated soil due to wind erosion, and is not meant to evaluate the potential for air emissions that may occur during burning operations. Workers may also be exposed via incidental ingestion of contaminated soil. Because dermal contact with soil is expected to be insignificant (workers wear protective equipment such as coveralls and gloves), the dermal absorption of soil contamination pathway is not considered a significant exposure pathway and is not further evaluated.

Nitroglycerin was detected in the surface soil samples collected from SWMU 13 for the 1987 USAEHA study (Table 5-1). Detected concentrations in the samples ranged from below detection to 17.1 ug/g. No health risk evaluation data for NG are available to determine unacceptable risk levels using the detected concentrations. However, a review of pharmaceutical use of NG and some example dosages (Chemical Database, 1992) may provide relevant comparison information. A 2 percent NG ointment is used for dermal application for the relief of angina. Oral dosage for long term prophylactic management of angina pectoris ranges from 1.3 to 9 mg administered two or three times a day. While a direct correlation between medicinal dosage and detected soil concentrations is not an accurate determination of safety or risk, the concentration measured in site soils suggests that 2 to 3 kilograms of soil would roughly contain the same amount of NG needed to provide a daily dosage. The ingestion of this much soil is not likely to occur, and, apart

from the possible physical hazard associated with NG, the risk to health due to NG in site soils is considered very low.

The HBNs were developed for screening purposes assuming a worst case residential land use scenario. Because future land use is considered to be similar to the current land use scenario--i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development of RAAP--exceedances of HBNs do not necessarily indicate a contamination problem at RAAP, but do indicate the necessity for a more detailed analysis. Because lead, 24DNT, 26DNT, 246TNT, and 135TNB exceeded HBNs developed for the residential land uses scenario in site soil, these contaminants will be evaluated using a more realistic military land use scenario.

The methodologies and general assumptions for quantifying the inhalation and incidental ingestion pathways are presented in Appendix A; site-specific assumptions are discussed below. The areal extent of contamination will be assumed to be the entire burn area (approximately 1,600 by 300 feet). Therefore, the width of the contaminated area (LS) will be assumed to be 1,600 feet (488 m) and the area of contamination (A) will be assumed to be 4.8E+05 feet (4.5E+04 m). Substitution of these values into Equation A-2 results in a particulate emission factor (PEF) of 2.3E+09 m³/kg; substitution of 2.3E+09 into equation C of Table A-4 results in a dust concentration of 4.35E-04 mg/m³.

Tables 5-11 and 5-12 present the exposure point concentrations and carcinogenic and noncarcinogenic intakes for the incidental soil ingestion and dust inhalation exposure pathways, respectively, for the military land use scenario at SWMU 13. Tables 5-13 and 5-14 present the carcinogenic intakes, noncarcinogenic intakes, slope factors, references doses, potential risks, and potential hazards, as applicable, for the incidental soil ingestion and dust inhalation exposure pathways, respectively, for the military land use scenario at SWMU 13. The total potential carcinogenic risk and noncarcinogenic hazard for the incidental ingestion of soil are 5E-08 and 3E-02, respectively. The hazard index is below one (1), indicating a low potential for noncarcinogenic effects. The potential carcinogenic risk is below the EPA target risk range (10⁻⁴ to 10⁻⁶). Potential carcinogenic risks and noncarcinogenic hazards

Table 5-11
Estimated Contaminant Concentrations in Soil and Estimated Human Intakes
Due to Incidental Ingestion of Soil at SWMU 13
Military Land Use Scenario
Radford Army Ammunition Plant, Virginia

<u>Analyte</u>	Exposure Point Concentration (mg/kg)(a)	Carcinogenic Intake (mg/kg/day)	Noncarcinogenic Intake (mg/kg/day)
Lead	469	- -	2.14E-04
24DNT	1.77	3.46E-08	8.08E-07
26DNT	1.01	1.98E-08	4.61E-07
246TNT	18.2	3.56E-07	8.31E-06
135TNB	1,3		5.94E-07

- (a) The 95 percent upper confidence limit on the arithmetic mean of surface soil data is used as the exposure point concentration. Non-detects are replaced with one-half the detection level for calculating exposure point concentration.
- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

Table 5-12 Estimated Contaminant Concentrations in Air and Estimated Human Intakes Due to Inhalation of Dust at SWMU 13 Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Source-Related Dust Concentration for SWMU 13 is 4.35E-04 mg/m3 (see Text)

		Exposure		
	Concentration	Point	Carcinogenic	Noncarcinogenic
	in Soil	Concentration	Intake	Intake
Analyte	(mg/kg)(a)	(mg/m3)(b)	(mg/kg/day)	(mg/kg/day)
Lead	469	2.04E-07		3.73E-08
24DNT	1.77	7.70E - 10	6.03E - 12	1.41E-10
26DNT	1.01	4.39E-10	3.44E-12	8.02E-11
246TNT	18.2	7.92E-09	6.20E-11	1.45E - 09
135TNB	1.3	5.65E - 10		1.03E-10

- (a) The 95 percent upper confidence limit on the arithmetic mean is used as the soil concentration. Non-detects are replaced with one-half the detection level for calculating exposure point concentration.
- (b) The exposure point concentration is the product of the total source—related dust concentration and the contaminant concentration in surface soil. The assumption is made that the contaminants are distributed in the air in the same proportion as they are in the surface soil.
- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

Table 5-13 Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Incidental Ingestion of Soil at SWMU 13 Military Land Use Scenario Radford Army Ammunition Plant, Virginia

	Carcinogenic		
	Intake	Slope Factor	
Analyte	(mg/kg/day)	1/(mg/kg/day)	Risk
Lead			
24DNT	3.46E-08	6.8E-01	2E-08
26DNT	1.98E-08	6.8E-01	1E-08
246TNT	3.56E-07	3.0E-02	1E-08
135TNB			
		-	
Total			5E-08
	Noncarcinogenic		
	Intake	Reference Dose	Hazard
Analyte	(mg/kg/day)	(mg/kg/day)	Quotient
Lead	2.14E-04	**	**
24DNT	8.08E-07	2.0E-03	4E-04
26DNT	4.61E-07	1.0E-03	5E-04
246TNT	8.31E-06	5.0E-04	2E-02
135TNB	5.94E-07	5.0E-05	1E-02
Total			3E-02

- Not calculated because contaminant is not considered a carcinogen or potency factor is not available.
- **** Reference dose is not available.

Table 5-14 Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Inhalation of Dust at SWMU 13 Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Analyte	Carcinogenic Intake <u>(mg/kg/day)</u>	Slope Factor 1/(mg/kg/day)	<u>Risk</u>
Lead			
24DNT	6.03E-12		
26DNT	3.44E-12		
246TNT	6.20E-11		
135TNB	- -	 .	
Total			0E+00

Analyte	Noncarcinogenic Intake (mg/kg/day)	Reference Dose (mg/kg/day)	Hazard Quotient
Lead	3.73E-08	**	**
24DNT	1.41E-10	**	**
26DNT	8.02E11	**	**
246TNT	1.45E-09	**	**
135TNB	1.03E-10	**	**
Total			0E+00

- Not calculated because contaminant is not considered a carcinogen or potency factor is not available.
- **** Reference dose is not available.

for the dust inhalation pathway could not be calculated because inhalation slope factors and reference doses are not available.

Table 5-15 presents the multiple pathway potential carcinogenic risk and noncarcinogenic hazard index for the military land use scenario at SWMU 13, which are 5E-08 and 3E-02, respectively. The noncarcinogenic hazard index and potential carcinogenic risk are below generally acceptable levels.

Although noncarcinogenic intakes are calculated for lead, as discussed in Appendix A, an RfD is not available for lead; therefore, a potential noncarcinogenic hazard index for lead can not be calculated. As discussed in Appendix D, the uptake biokinetic model (UBK) developed by EPA for lead is only applicable to children; therefore, potential noncarcinogenic effects resulting from exposure to lead under the military land use scenario at SWMU 13 cannot be quantitatively evaluated. However, it should be noted that the upper 95 percent confidence limit on the arithmetic mean of surface soil data is 469 mg/kg, which is more than two times the lower end of the HBN range but within the upper end of the HBN range developed for lead under the residential land use scenario. Based on the concentration of lead detected in site soil and the fact that two potential complete exposure pathways are identified for SWMU 13, the potential exposure to lead and corresponding hazard is estimated as low to moderate.

5.4.2 Environmental Evaluation

The surface soil samples were collected from within the burning areas. Although wildlife may have access to these area, because this area is active and paved roads are present in the surrounding area, it is not likely that wildlife would frequent this area. In addition, a fence separates the burning area from the New River, precluding wildlife access via the river bank. Therefore, potential exposure to environmental receptors to the surface soil contamination at SWMU 13 appears to be minimal and these exposure pathways are not further evaluated.

As discussed above, there is the potential for discharge of groundwater contamination to the New River, which could potentially impact aquatic life. Although data are

Table 5-15 Multiple Pathway Potential Carcinogenic Risks and Noncarcinogenic Hazards at SWMU 13 Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Pathway <u>No.</u>	Pathway <u>Description</u>	Risk	Hazard Index
. 2	Incidental Ingestion of Soil	5E-08	3E-02
3	Inhalation of Dust	0E+00	0E+00
	Total	5E-08	3E-02

insufficient for establishing aquatic life criteria for trichloroethylene, the lowest observed effect level (LOEL) for chronic effects to freshwater aquatic life is reported as 21,900 ug/l (EPA, 1986). Because the maximum concentration of trichloroethylene detected in groundwater is 10.5 ug/l, it was not detected in river water samples and significant dilution would occur upon discharge of groundwater to the New River, the detection of trichloroethylene in SWMU 13 groundwater does not appear to be of environmental concern. Although data are insufficient for establishing aquatic life criteria for carbon tetrachloride, the lowest observed effect level (LOEL) for acute effects to freshwater aquatic life is reported as 35,200 ug/l (USEPA, 1986a). Because the maximum concentration of carbon tetrachloride detected in groundwater is 10.5 ug/l and significant dilution would occur upon discharge of groundwater to the New River (carbon tetrachloride was not detected in river samples), the detection of carbon tetrachloride in SWMU 13 groundwater does not appear to be of environmental concern.

5.4.3 Conclusions of Human Health and Environmental Evaluation

Although carbon tetrachloride and trichloroethylene were detected above their HBNs, due to the lack of groundwater receptors and the fact that significant dilution apparently occurs upon discharge of groundwater to the New River, resulting in insignificant exposure, the detection of these constituents in site groundwater does not appear to present a current or potential future human health risk or environmental threat.

Two potentially complete exposure pathways-incidental soil ingestion and dust inhalation-were identified for SWMU 13 and were quantitatively evaluated. The total potential carcinogenic risk and noncarcinogenic hazard for the incidental ingestion of soil are 5E-08 and 3E-02, respectively. The hazard index is below one (1), indicating a low potential for noncarcinogenic effects. The potential carcinogenic risk is below the EPA target risk range (10⁻⁴ to 10⁻⁶). Potential carcinogenic risks and noncarcinogenic hazards for the dust inhalation pathway could not be calculated because inhalation slope factors and reference doses are not available. Even though the risk due to NG in site soil could not be calculated, the detected concentrations appear low enough for no significant risk to be present.

As discussed in Appendix D, the UBK developed by EPA for lead is only applicable to children; therefore potential exposure to lead under the military land use scenario can not be quantitatively evaluated. Based on the concentration of lead detected in site soil and the fact that two potential complete exposure pathways are identified for SWMU 13, the potential exposure to lead and corresponding hazard is estimated as low to moderate.

Although elevated concentrations of several metals were detected in surface soil, it is unlikely that environmental receptors would directly contact the surface soil, except possibly on an infrequent basis. Therefore, potential exposure to environmental receptors and the potential for environmental threat appears to be minimal.

5.5 SUMMARY AND CONCLUSIONS

The SWMU 13 field program has provided chemical data useful for defining the extent and magnitude of soil, sediment, surface water, and groundwater contamination from the Waste Propellant Burning Ground. Additionally, the results of the soil boring and monitoring well program have been used to define the hydrogeologic properties of the subsurface. These investigations have led to the following conclusions:

- Approximately 15 to 20 feet of unconsolidated sediments ranging in texture from sandy silt to gravel underlie the burning ground area and overlie disturbed shaly limestone/dolostone of the Elbrook Formation.
- Groundwater is present 12 to 19 feet below the ground surface and flows generally southward towards the New River at a calculated average linear velocity of 19 to 69 feet per year. The water table of the unconfined aquifer is a few feet above the bedrock surface at the burning pads but is below the bedrock surface 200 feet north of the pads.
- Surface water infiltration at the western half of the burning ground appears
 to physically affect (mounding, change in flow direction) the groundwater
 table.

- Arsenic, beryllium, cobalt, lead, thallium, 135TNB, 246TNT, 24DNT, and
 26DNT were detected in on-site SWMU 13 soils and sediments at
 concentrations greater than HBNs. The distribution and concentrations of
 arsenic, beryllium, cobalt and thallium in off-site background, upgradient and
 downgradient soil samples and at all depths indicate that these constituents
 are naturally occurring and not due to activities at SWMU 13.
- Lead was detected above the HBN in 11 of the 16 surface soil samples collected as well as in the two settling pond sediment samples.
- The presence of TNT in soils at the eastern half of the burning ground (USAEHA, 1987) was confirmed, but the concentration of 246TNT detected did not exceed 130 ug/g even though previous concentrations up to 10,900 ug/g were reported. However, the maximum RFI detected concentration was from ditch sediments (13SS2) immediately downslope from the area (Pad 3) previously reported as being most impacted. Historical data also indicated the presence of low concentrations (less than 17.1 ug/g) of NG in soils throughout the burning ground.
- No explosive concentration exceeded HBN in any surface soil sample collected in the western half of SWMU 13. Only one explosive (246TNT), was detected and only once in one sample (13SC3, 0.5 feet) in the western half.
- The shallow soil sample (13SC3, 0.5 feet) collected at pad 3 was the most impacted composite soil sample with three explosives detected and the concentration of 135TNB exceeding the HBN. The downgradient ditch sample (13SS2) also showed the greatest detected concentrations of 135TNB, 246TNT, 24DNT, and 26DNT, all above HBNs.
- Some volatile and semivolatile compounds were detected in the soil samples,
 but concentrations did not exceed HBNs indicating that they should not be of concern.

- The majority of contaminants detected in the soil samples were usually
 present only in the shallow soils. Samples collected from deeper locations
 generally were free of contaminants and always at concentrations below
 HBNs, indicating that contaminants are not migrating vertically within the
 soils.
- Based on the diversity and concentrations of contaminants detected in the
 drainage ditch surface samples and the settling basin sediments and surface
 water, it appears that surface water transport is operating as a pathway for
 contaminant migration from the shallow surface soils of the eastern half of the
 burning ground.
- Explosives contamination of the shallow soil appears to be contained within the bermed area of the burning ground, except for the shallow soil immediately east of the eastern berm and near the settling pond. The shallow soil boring sample from this area exhibited a 246TNT concentration of 29 ug/g. The occurrence of explosives in this area may be due to activities at the former burning pits prior to construction of the berm (reworking of soil) or may be due to particulate deposition during burning activities.
- The five soil and sediment samples which exhibited the greatest overall level
 of contamination--13SB6 (0.5 feet), 13SC3 (0.5 feet), 13SC6 (0.5 feet), 13SS2
 and 13SE1-- were subjected to TCLP analyses. None of the TCLP parameters
 exceeded TCLP criteria, indicating that site soil does not exhibit RCRA
 characteristic toxicity.
- Only carbon tetrachloride and trichloroethene were detected in the groundwater at concentrations exceeding the HBNs. These constituents were detected in downgradient samples only. The samples from well 13MW7 exhibited the maximum concentration of trichloroethene. Trichloroethene was also detected in the ditch soil sample (13SS1) west of well 13MW7. The only

detection of carbon tetrachloride was from well 13MW3. These data indicate that activities at SWMU 13 may have impacted groundwater quality.

- Two VOCs, possibly related to lawn chemicals application, were detected in the two upgradient wells. These data suggest that there may be an impact on groundwater quality due to prior or current lawn maintenance practices.
- Low concentrations of two explosives -- RDX and HMX -- were detected in
 the groundwater samples indicating that they are migrating from the shallow
 soils. However, none of the levels were greater than the HBNs and are not
 expected to be a concern.
- The data for indicator parameters of samples collected from downgradient wells were determined to be statistically similar to the upgradient values based on the results of the Student's T-Test. This analyses supports the relatively minor impact measured for individual parameters.
- The baseline risk assessment found no unacceptable current risk posed by detected concentrations of contaminants but published toxicological inhalation/ingestion data is insufficient to provide a complete quantitative evaluation and a risk is still possible. Since access to the installation is restricted, burning ground personnel would be most at risk to exposure, but occupational exposure could be minimized through the proper use of personal protective equipment or procedures.
- The surface water sample from the settling basin shows high concentrations
 of the same compounds detected in the surface soils and pond sediments and
 contact with this water should also be minimized due to the potential for an
 unacceptable risk.
- Carbon tetrachloride and trichloroethene were detected in groundwater samples at concentrations above HBNs. If groundwater in the immediate vicinity of the site were ingested then a potential unacceptable risk would be present. However, there are no current downgradient groundwater uses, and,

given the industrial use of the facility, there are not expected to be any future users. Therefore, this pathway is not considered to be operable. Shallow groundwater in the vicinity of SWMU 13 flows toward the New River and discharged contaminants would not likely migrate at detectable concentrations away from the area due to volatilization and dilution.

Persons boating, fishing, or swimming in the river could potentially be exposed to contaminants migrating from SWMU 13 via shallow groundwater. However, due to the immediate significant dilution capacity of the river, potential exposure is considered minimal. Samples collected of the New River water and sediments did not indicate any SWMU 13 impact on the river.

5.6 RECOMMENDED ACTION

Based on available information, a corrective measures study does not appear to be currently warranted for this site. Potential health risks identified at the site can be effectively controlled by use of protective clothing and equipment. However, routine monitoring of the existing groundwater well network is considered appropriate to assess changes to existing conditions over time. Improvements to the drainage system are also recommended in order to minimize infiltration of surface water into the subsurface and mitigate the ongoing adverse impact to the groundwater.

The available information indicates that the groundwater at SWMU 13 has been degraded and should not be used as a drinking water source. The soil data indicate that the burning ground is likely to be the source of the contamination.

The baseline risk assessment determined that since there are no current nor anticipated future groundwater uses in the vicinity at SWMU 13, exposure to contaminated groundwater should not be of concern. However, exposure via inhalation to contaminants in the shallow surface soils may result in an unacceptable risk to workers at the burning grounds.

An occupational health and safety program should be developed or amended, if a current one exists, to instruct workers at the burning ground in the use of personal protective equipment (such as particulate respirators) to prevent exposure to dust and particulates during burning activities.

Procedures for the application of pesticides/herbicides used for lawn maintenance should be reviewed and all uses should conform to manufacturer specifications.

Surface water infiltration into the subsurface appears to be an avenue for contaminants to exit the burning ground. Grading the drainage at the area to eliminate ponding and installing a culvert through the central berm are recommended to minimize infiltration into the subsurface. All runoff should be directed to the settling basin and the basin construction improved to handle the increased flow including an impermeable liner to prevent infiltration into the subsurface. Regulatory implications due to the reconfiguration of the drainage and retention basin would need to be defined prior to construction.

It is recommended that continued monitoring of groundwater be performed to monitor the groundwater quality in the unconfined aquifer. Parameters should be those considered as contaminants of concern -- lead (filtered and unfiltered), explosives and VOCs. VOC analyses could probably be deleted from a monitoring program once drainage is improved since volatilization would result in reduction of concentrations of these compounds. Restrictions on the possible future use of groundwater at the site are also recommended to prevent inadvertent exposure to contaminated groundwater.

6.0 RCRA FACILITY INVESTIGATION OF SWMU 17, CONTAMINATED WASTE BURNING AREAS

6.1 SWMU 17 INVESTIGATION PROGRAM

6.1.1 <u>SWMU History</u>

This unit is located in the south-central part of the Main Manufacturing Area (Figure 6-1 and Insert 4). It is used for burning wastes potentially contaminated with explosives or propellants. SWMU 17 consists of the following five components:

- Stage and Burn Area (17A)
- ACD Staging Area (17B)
- Air Curtain Destructor (ACD) (17C)
- ACD Ash Staging Area (17D)
- Runoff Drainage Basin (17E)

Directly west of the ACD Ash Staging Area is SWMU 17E, described as an unlined settling basin (Figure 6-1). This unit appears to be a natural drainage depression rather than a constructed basin. Surface water runoff from the ACD and Ash Staging Area drains into SWMU 17E; water from the settling basin at unit 17B also discharges to this drainage basin.

6.1.1.1 <u>SWMU 17A. Stage and Burn Area.</u> Materials consisting mostly of large metallic items in need of explosives decontamination are accumulated into large piles in the Stage and Burn Area. This unit is a level area about 30 feet below grade and approximately 200 by 300 feet in size at its widest point. Using a crane, the materials are piled on the ground to a height of approximately 30 feet and ignited. Facility representatives reported that waste oil and diesel fuel are used to fuel the burning operations. Wood, paper, cardboard, etc., are often added to the piles to increase combustion. Waste oil used for these operations was stored in the two waste oil underground storage tanks (SWMU 76), formerly located along the Stage and Burn Area embankment east of the waste pile.

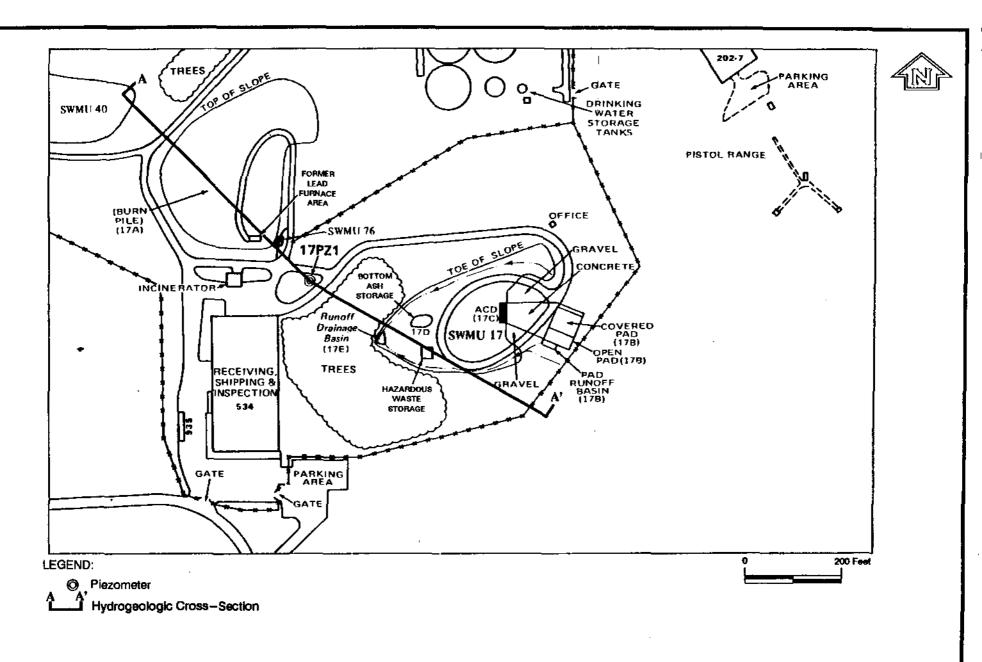


FIGURE 6-1
LOCATION MAP
SWMU 17 — CONTAMINATED WASTE BURNING AREA
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

Pames & Moore

Following burning of the waste pile, scrap metal is removed from the residue and accumulated in piles prior to sale for recycling. Hazardous ash is transported off-post for disposal whenever testing indicates it as such.

When the USTs were removed in 1991, lead slag was detected in soils at the SWMU 76 area. Because of this, a new SWMU was added to the VI at RAAP. This unnumbered SWMU was identified as the Former Lead Furnace Area (FLFA), a facility used at the time of World War II. The results of the VIs for the FLFA and SWMU 76 are included in the VI (Dames & Moore, 1992b) conducted at RAAP simultaneously with the RFI.

6.1.1.2 SWMUs 17B Through 17E, ACD Staging Area, ACD, ACD Ash Staging Area, and Runoff Drainage Basin. Contaminated wastes small enough to feed into the burn chamber are burned in the ACD (17C), a large concrete pit enclosed within a metal structure. Forced air blowers increase burning efficiency. The system does not qualify as an incinerator under EPA definitions and is considered simply a form of controlled open burning (USAEHA, 1980a).

Unit 17B, a staging area for the ACD, is divided into two bays--one is covered with a roof and the other is open. Both are constructed with concrete floors and 6-foot high concrete walls on three sides. Materials are accumulated in this staging area prior to burning in the ACD.

Adjacent to the uncovered storage bay is a below-grade, concrete-lined settling basin that collects surface water runoff from the staging pads. The pit is equipped with a sump pump that periodically pumps the collected water into a drainage ditch leading to the Runoff Drainage Basin (17E).

SWMU 17D, a staging area adjacent to the ACD, is used for accumulating and storing ACD ash and scrap metal prior to disposal. A storage shed with a concrete floor has since been constructed at SWMU 17D to temporarily store the ash.

6.1.2 Previous Investigations

The lead furnace area was discovered when sample results from closure of USTs at SWMU 76 showed detection of high lead concentrations in the soils (Hercules, 1991). A sample of ash from unit 17A was analyzed in 1980 for EP toxicity and was found to be nonhazardous, but it was not analyzed for reactivity (USAEHA, 1980a).

During the February 1990 facility visit, an accumulation of burned scrap metal was observed on the gravel surface at SWMU 17D. Scrap metal is sold for recycling (USATHAMA, 1984). Roll-off containers for the ash were situated on a gravel surface prior to shed construction. Hazardous ash is disposed of off-post in a regulated facility. Analysis of a sample of ash from SWMU 17C yielded the following results (USAEHA, 1980a):

<u>Parameter</u>	Concentration (mg/L)	Maximum* (mg/L)
As	0.159	5.0
Ba	0.39	100
Cd	2,42	1.0
Cr	0.093	5.0
Pb	2.55	5.0
<u>Parameter</u>	Concentration (mg/L)	Maximum* (mg/L)
Hg	ND	0.2
Se	ND	1.0
Ag	ND	5.0

^{*}Virginia maximum allowable limit.

When the concentration of any metal exceeds the Virginia allowable limit, as cadmium did in this sample, the ash is considered hazardous by characteristic of EP toxicity. The sample was not analyzed for reactivity.

^{**}ND = not detected.

6.1.3 RFI Program

Technical data on the hydrogeologic environment for SWMU 17 was acquired from one on-site boring (17PZ1) to 133 feet for piezometer installation, three shallow soil borings for the FLFA and one boring (40MWIA) to 162 feet immediately west of SWMU 17 for the SWMU 40 VI. The locations of these data points are shown in Figure 6-2.

No water table was encountered while drilling either deep boring, but a 4-inch piezometer was installed in one boring (17PZ1) to a depth of 132.5 feet to intercept a possibly higher water table at a future date. The other boring was abandoned by grouting. A topographic survey was created of this SWMU and the piezometer coordinates were determined.

The sampling and analysis program for each component area is presented separately in the following subsections.

6.1.3.1 <u>SWMU 17A</u>, Stage and Burn Area. Because potentially contaminated wastes are burned directly on the ground surface at the Stage and Burn Area (17A), surface and near-surface soil samples were collected from SWMU 17A to determine if soils have been contaminated by burning activities. Samples were collected from two locations (Figure 6-2) from a depth of 0 to 1 foot at each location (17ASS1 and 17ASS2). The hand auger would not penetrate past 1 foot, and the deeper soil planned to be collected at a depth of 3 to 4 feet was not sampled.

To assess the potential for contaminant migration via surface water runoff or infiltration, one surface water sample (17ASW1) was collected from accumulated surface water in a low area at the southern end of the SWMU 17A area. The soil samples were analyzed for TAL metals, TCLP metals and explosives. The surface water sample was analyzed for TAL metals, explosives, TOC, TOX and pH.

6.1.3.2 <u>SWMU 17B, ACD Staging Area</u>. At the ACD Staging Area (17B), one sediment sample (17BSE1) was collected from the concrete-lined settling basin (Figure 6-3) to

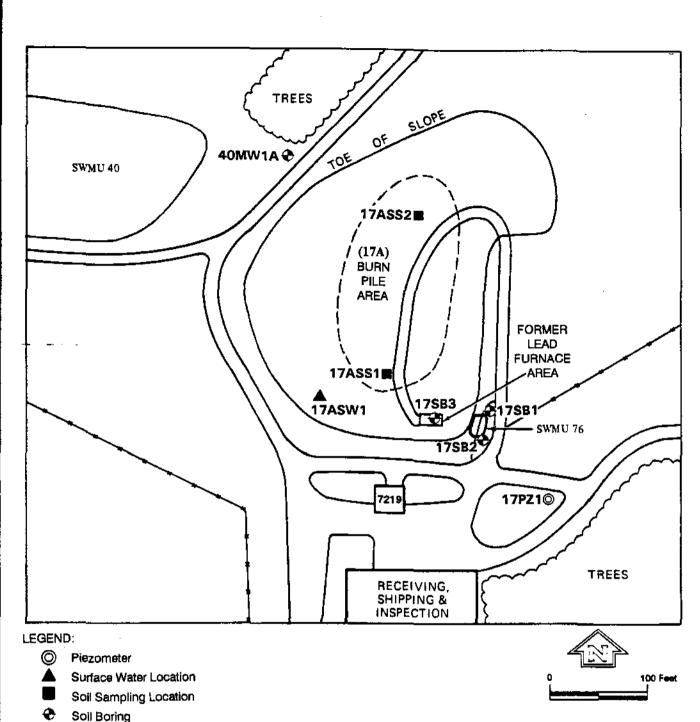
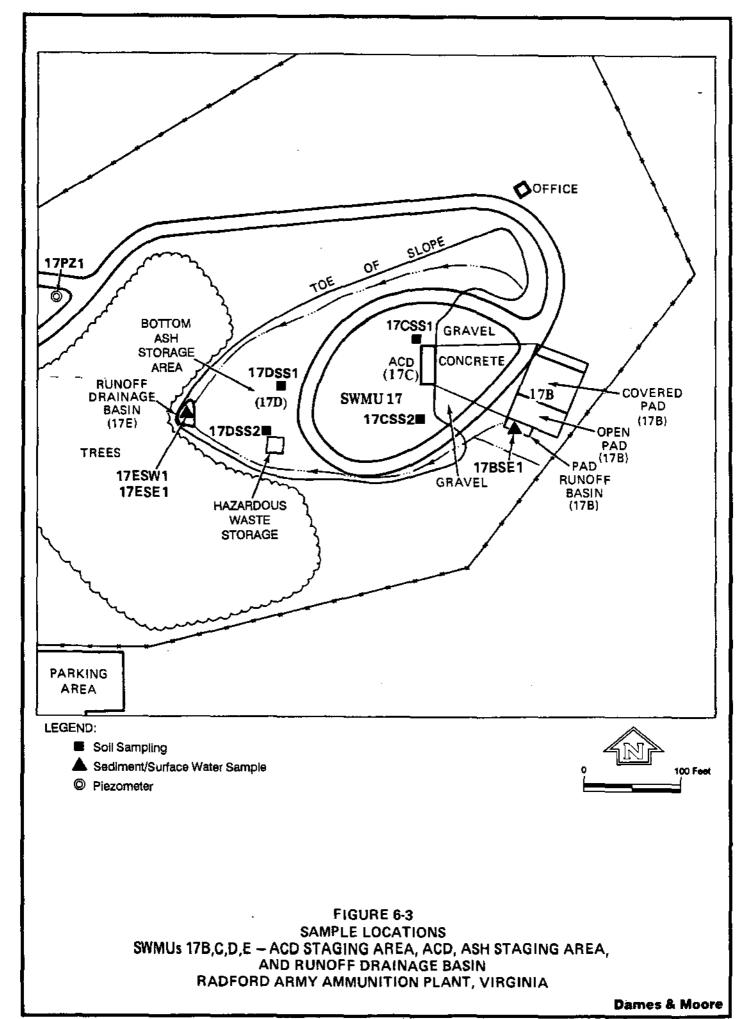



FIGURE 6-2 **SAMPLE LOCATIONS** SWMU 17A - STAGE AND BURN AREA RADFORD ARMY AMMUNITION PLANT, VIRGINIA

determine if runoff from the staging bays is potentially carrying contaminants. This sediment sample was analyzed for TAL metals, TCLP metals and explosives.

6.1.3.3 <u>SWMU 17C</u>, Air Curtain Destructor. At the ACD (17C), there is the possibility for contamination of surface soils from the accumulation of burned scrap metal and potentially contaminated ACD ash. To determine if soils are contaminated, surface and near-surface soil samples were collected from the locations shown in Figure 6-3. Samples were collected from 0 to 1 foot and 3 to 4 foot depths at each location (17CSS1 and 17CSS2). These soil samples were analyzed for TAL metals, TCLP metals and explosives.

6.1.3.4 <u>SWMU 17D, ACD Ash Staging Area</u>. The soil at ACD Ash Staging Area (17D), west of the ACD, was sampled (17DSS2) to assess potential soil contamination from the storage of ACD ash. In addition, the soil at the coal bottom ash pile (17DSS1) at this unit was sampled to evaluate the impact from this potential contaminant source (Figure 6-3). Only samples from 0 to 1 feet were collected. The hand auger would not penetrate past 2 feet, and deeper samples planned to be collected at the depth of 3 to 4 feet were not collected. The soil samples were analyzed for TAL metals, TCLP metals and explosives.

6.1.3.5 SWMU 17E, Runoff Drainage Basin. To determine whether potential hazardous waste constituents are migrating from SWMUs 17B, 17C, and 17D to the Runoff Drainage Basin (17E) via surface water runoff, one surface water sample (17ESW1) and one sediment sample (17ESE1) were collected from the basin (Figure 6-3). The sediment sample was collected from 0 to 12 inches below the sediment/surface water interface. A duplicate of each sample was also collected and analyzed. The surface water samples were analyzed for TAL metals, explosives, TOC, TOX and pH. The sediment samples were analyzed for TAL metals, TCLP metals and explosives.

6.2 ENVIRONMENTAL SETTING

6.2.1 Topography

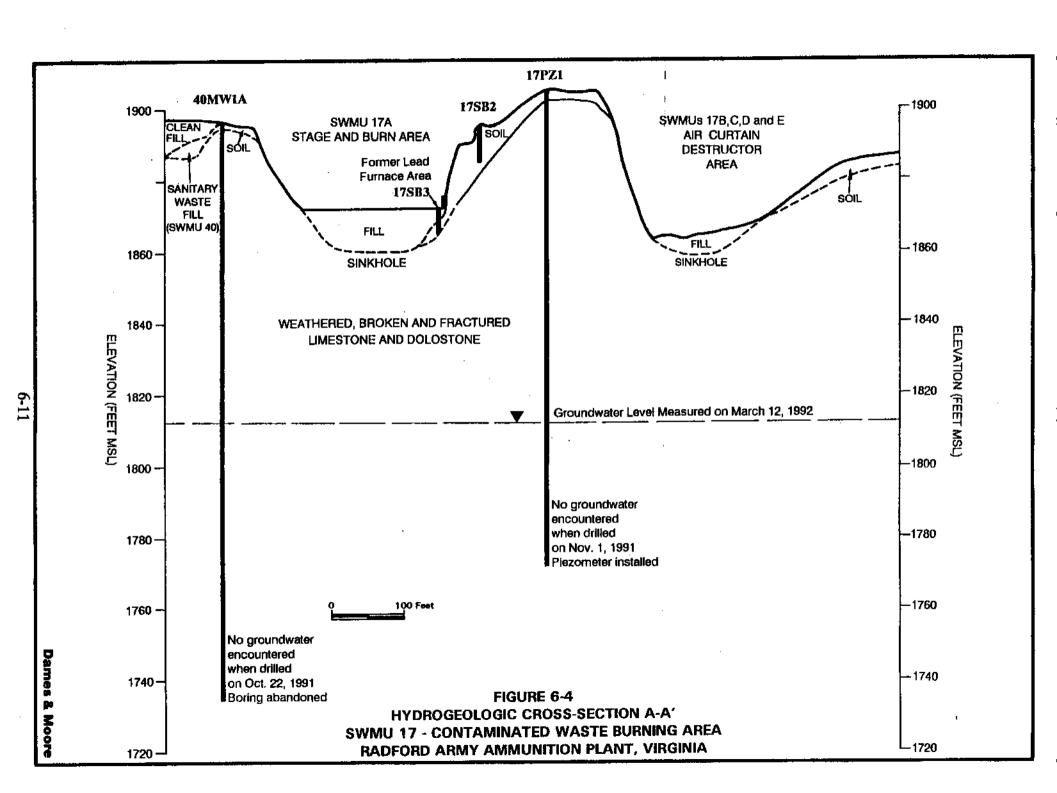
The Contaminated Waste Burning Area (SWMU 17) is located in the south-central part of the Main Manufacturing Area (Insert 1). There are five components of SWMU 17 in two main areas (Insert 4) and both main areas of SWMU 17 are located in natural

depressions that probably correspond to sinkholes in the Elbrook Formation. The Stage and Burn Area (SWMU 17A) is located in the northwest portion of SWMU 17 in one of the natural depressions (Figure 6-2). The other four components of SWMU 17 (B, C, D and E) are located southeast of SWMU 17A in or near the other natural depression (Figure 6-3). Installation maps for RAAP identify the Stage and Burn Area depression as a sinkhole, and the other depression is almost identical in appearance.

SWMU 17A is a level area about 30 feet below grade at approximately 1,873 feet msl. It is almost oval-shaped and approximately 200 by 300 feet in size. Waste oil used to fuel the burning operations used to be stored in two waste oil underground storage tanks (SWMU 76) located at the top of the Stage and Burn Area embankment, southeast of the waste pile. The elevation at the top of the depression in which SWMU 17A is situated is approximately 1,890 feet msl to 1,900 feet msl.

The ACD (SWMU 17C), the ACD Ash Storage Area (SWMU 17D), and the Runoff Drainage Basin (SWMU 17E) are located in a level area within the other natural depression, southeast of SWMU 17A. SWMU 17B is located at the east end of this area at an elevation of 1,880 feet msl. SWMUs 17C, 17D and 17E are located to the west of 17B at approximately 1,865 to 1,867 feet msl. SWMU 17E appears to be a natural drainage depression, surrounded by a steep slope on its northwestern, western, and southwestern sides. The floor of the depression slopes gently westward toward SWMU 17E.

The Sanitary Landfill (SWMU 40) is approximately 100 feet west of SWMU 17. The Flash Burn Parts Area (SWMU 71) which overlies a part of SWMU 40, is approximately 300 feet west of SWMU 17. There are six water tanks bordering the northeastern corner of SWMU 17. Several buildings are in the area including the RAAP Shipping and Receiving Building. Both gravel and paved roads are in the area of SWMU 17.


6.2.2 <u>Hydrogeology</u>

6.2.2.1 <u>Geologic Units</u>. The geology of the SWMU 17 area has been evaluated for the RFI from data on one on-site deep boring for the installation of a piezometer (17PZ1), the drilling of three shallow soil borings in the FLFA and a deep boring for SWMU 40

immediately west of SWMU 17A. Subsurface data from the drilling of three other rock borings around SWMU 40 further from SWMU 17 was also utilized for the SWMU 17 elevation. The subsurface data from SWMU 17 and SWMU 40 was used to construct a hydrogeologic cross-section of the SWMU 17 area shown in Figure 6-4. The following subsections describe the unconsolidated soil and bedrock geology of SWMU 17 as revealed through the boring program. The topography of SWMU 17 is illustrated on the Topographic Survey Map included as Insert 4.

6.2.2.1.1 Unconsolidated Soil. Soils in the vicinity of SWMU 17 are similar to other high elevation upland areas in the south portion of RAAP. In the high, nearly level areas surrounding the main areas of SWMU 17 a thin layer of residual soil approximately 2 to 3 feet thick overlies weathered limestone or dolostone bedrock as shown in Figure 6-4. These soils were generally described as a dry very stiff, reddish-brown silty clay (CL). The main areas of SWMU 17 located in the two topographic low areas that are suspected to occupy sinkholes. It is also suspected that both of these areas have been filled with soil and rubble over the depressed bedrock surface (Figure 6-4). Three soil borings performed in the stage and burn area to investigate environmental conditions in the FLFA confirm the presence of fill proximate to these areas. Soil borings 17SB1 and 17SB2 which were performed at the top of the depression wall encountered a layer of suspect gravelly fill to the depths explored (7 to 10 feet). Auger refusal was encountered in 17SB1 at a depth of 9 feet and boring 17SB2 was terminated on gravels at a depth of 10 feet. Soil boring 17SB3 which was performed in the FLFA adjacent to the suspect sinkhole encountered suspect gravelly fill until auger refusal at 7 feet. It is not known if the auger refusal for borings 17SB1 and 17SB3 was on bedrock or on a subsurface obstruction. The only geotechnical boring performed for SWMU 17 (17PZ1) encountered rock at less than 3 feet.

6.2.2.1.2 <u>Bedrock</u>. Elbrook Formation bedrock in the area of SWMU 17 consists of argillaceous limestone and dolomite that is highly deformed as a result of intense thrusting and faulting. The bedrock was observed in some outcrops on the New River to have a dip

of approximately 30 degrees. As discussed previously, there is surficial evidence of large scale subsurface solution features (sinkholes) present in the main areas of SWMU 17. The potential for these features was generally confirmed during installation of the deep piezometer 17PZ1 at SWMU 17 and the deep borings performed at SWMU 40. During drilling, numerous difficulties were encountered as a result of subsurface karst features. Bedrock encountered was characterized by frequent zones of intense weathering and deformation with numerous interbedded clay and mudstone seams and solution features. A number of these solution features consisted of substantial voids which resulted in large losses of drilling water and air circulation. As a result of these features two borings were abandoned after consultation with USATHAMA. The remaining two wells installed in SWMU 40 were limited to a maximum depth of 60 feet due to caving in of borings at greater depths. No static groundwater table was encountered in any boring.

6.2.2.2 <u>Groundwater</u>. The hydrogeologic conditions in the vicinity of SWMU 17 were investigated through field examination of soil and rock samples, and data from piezometers and monitoring wells installed at SWMU 17 and 40. Groundwater elevations measured from the wells in the SWMU 17 area during the field program are presented in Table 2-4. One hydrogeologic cross-section (Figure 6-4) was also constructed from the data collected during the RFI program.

Water table conditions were not encountered during the drilling of the soil and rock borings in SWMU 17 and 40. The borings were extended to a maximum depth of 162 feet below ground surface. The piezometer in SWMU 17 was installed to a depth of 133 feet and a 20 foot screen set at the bottom of the boring.

The two monitoring wells installed at SWMU 40 (40MW2 and 40MW4) utilized 20 foot screens to a maximum depth of 60 feet below ground surface. The wells were installed to intercept future groundwater flow through fractures, bedding planes or solution features within the screened interval of each well.

6.2.2.2.1 <u>Potentiometric Surface</u>. Water level measurements taken at 17PZ1, 40MW2, and 40MW4 during November 1991 indicated that both the piezometer and wells were dry.

Subsequent water level measurements performed at 17PZ1 on March 12, 1992 indicated groundwater present at a depth of 90 feet below land surface (elevation of 1,814 feet msl). Water level measurements at 40MW2 and 40MW4 also taken at this time indicated that these wells were still dry. Additional water level measurements at 17PZ1 on July 10, 1992 indicated groundwater at a depth of 78 feet below ground surface (1,826 feet msl).

The groundwater fluctuations observed in piezometer 17PZ1 are indicative of deep groundwater flow through fractures, bedding planes, and karst solution features. The groundwater observed in the piezometer likely represents a potentiometric surface formed through the collection of karst groundwater. As mentioned previously groundwater and water table conditions were not encountered in the deep boring 40MW1A to a depth of 162 feet (1,743 feet msl). It is likely based on this data that the potentiometric surface which represents static water table conditions is located at an elevation significantly below that of 17PZ1 possibly near the elevation of the New River.

6.2.2.2.2 Flow Patterns. Groundwater flow patterns are highly irregular below SWMU 17 due to the presence of karst features below SWMU 17. Subsurface data from the RFI program indicates that groundwater flow in the subsurface is through primarily through karst features present below the site. It is suspected that the groundwater measured in piezometer 17PZ1 is groundwater moving through fractures, bedding planes, and solution features rather than water table conditions. Because the data at the site is limited and groundwater flow in karst terrains is highly irregular the groundwater flow patterns below the site cannot be determined at this time. It is suspected that groundwater flow through karst features below the site will reach water table conditions at an elevation below the depths explored at the site. However, it is not known whether groundwater flow is dominantly vertical, horizontal or both.

6.2.2.2.3 Recharge and Discharge. Groundwater recharge to the depths explored for the RFI program is likely through karst groundwater flow which eventually reaches the unconfined water table. Surface infiltration in the suspected sinkhole areas should be rapid due to surface runoff being directed to the low areas occupied by the sinkholes. It is likely that the fill placed over the bedrock surfaces in the sinkhole is permeable and allows rapid

infiltration of surface water to the subsurface. Once water has infiltrated the subsurface groundwater flow directed through karst features would expected to be rapid. Published data for permeability of karst limestone indicate that groundwater flow rates can exceed 1 foot/minute.

Groundwater discharge below the site would be expected below the depths explored, likely occurring at the unconfined water table surface. Eventual discharge would be expected to the New River about 1 mile west of SWMU 17, however local discharge could be to the water table surface which slopes northward towards the main plant area. A ravine present 2,400 feet east of SWMU 17 may also act as a discharge zone when water elevations are as high as those measured at the site.

6.2.2.2.4 Aquifer Properties. Although specific aquifer properties for the site were not determined, some aquifer properties which relate to karst terrains would apply to the site. Published velocities of water in karst environments are variable, ranging up to 3 miles/day with an average velocity of 0.8 miles/day, and no correlation has been found between average flow velocity and gradient (Milanovic, 1981). Any physical aquifer tests (i.e. pump test, slug test) would apply only to the immediate area of the test. Since water table conditions were not encountered at SWMU 17 and flow is not Darcian, conventional aquifer tests would not be applicable.

6.2.2.2.5 <u>Hydrogeologic Interrelationships</u>. It is evident from the investigation performed in the vicinity of SWMU 17 that groundwater flow is principally controlled by the karst features of the Elbrook Formation bedrock underlying SWMU 17. Any surface infiltration and groundwater with associated contaminants would probably move rapidly through karst features until reaching the water table aquifer located at an elevation similar to that of the New River. Subsequent groundwater discharge would likely be to the New River, but the exact discharge point (or points) is unknown and pathways to the west, north, and east are equally likely to be present.

6.2.3 **Soils**

Soils in the vicinity of SWMU 17 are similar to other high elevation upland areas in the south portion of RAAP. In the high, nearly level areas surrounding the main areas of SWMU 17 a thin layer of residual soil approximately 2 to 3 feet thick overlies weathered limestone or dolostone bedrock. These soils are described as a reddish-brown silty clay (CL). Three soil borings were also performed to a depth of approximately 10 feet in the main area of SWMU 17 which is located in one of the suspected sinkholes at SWMU 17. Surficial and near surficial soils encountered in these borings consist of a layer of suspect gravelly fill approximately 3 to 10 feet thick. Two of the borings encountered a reddish-brown silty clay, possibly fill, under the gravelly fill. Auger refusal was encountered in two of the borings between 9 and 10 feet. Because these borings were planned for a maximum depth of 10 feet, it is not known whether refusal was on a subsurface obstruction or on bedrock.

6.2.4 Surface Water and Sediment

The Stage and Burn Area, SWMU 17A, is located within a depressed area that apparently corresponds to a sinkhole in the Elbrook Foundation. Surface runoff from the surrounding embankment including SWMU 76 would probably collect in SWMU 17A. The sinkhole is a surface drainage inlet for the karst aquifer flow system in the Elbrook Formation.

Adjacent to the uncovered storage bay of SWMU 17B is a below-grade, concrete-lined settling basin that collects surface water runoff from the staging pads. The pit was equipped with a sump pump that periodically pumped the collected water into a drainage ditch leading to the Runoff Drainage Basin (SWMU 17E). This practice was discontinued; water is now shipped off-post for treatment. Surface water runoff from the ACD, the Ash Storage Area, and surrounding embankments drains into SWMU 17E. SWMU 17E is an unlined settling basin which appears to be a natural drainage depression rather than a constructed basin. Surface water in SWMU 17E will infiltrate to the ground water table and part will evaporate. Groundwater discharge would likely occur into the New River.

6.3 CONTAMINATION CHARACTERIZATION

Soil, surface water and sediment samples were collected from the five component areas of SWMU 17. The results of the investigation indicated that concentrations of several metals exceeded the HBN criteria in all three media and may be a concern at the sites. Concentrations of several other metals in soils and sediment samples were greater than the background criteria but were less than any HBN criterion. One explosive, 24DNT, was detected at all sites except SWMU 17D, the Ash Staging Area. Concentrations of 24DNT may be a concern in surface water and sediment samples collected at SWMUs 17A, 17B, and 17C. Results of the chemical analyses of the soil, surface water and sediment samples are presented in Tables 6-1 through 6-3.

6.3.1 SWMU 17A

One surface water and two shallow soil samples were collected at the Stage and Burn Area. The results of the chemical analyses indicated that elevated levels of several metals and an explosive were detected in both the surface water and soil samples.

6.3.1.1 Soil. A total of 22 metals were detected in either or both soil samples collected at SWMU 17A. The number and concentrations of metals exceeding HBNs or background levels were greatest for sample 17ASS1, collected from the southern portion of the site. As shown in Table 6-1, concentrations of arsenic, beryllium, cobalt, copper, lead, and thallium exceeded the HBN criteria in one or more samples. In sample 17ASS1, concentrations of 15 metals exceeded background comparison criteria for uplands soil, but only four of these metals (arsenic, copper, lead, and thallium) also exceeded HBNs. Cobalt also exceeded the HBN, but did not exceed the background criterion. Four metals exceeded the background comparison criteria in sample 17ASS2, but only arsenic also exceeded the HBN. Lead, cobalt, and beryllium also exceeded the HBN, but not background criteria. Based on the data for these two soil samples, arsenic, copper, lead, and thallium are potential contaminants of concern in SWMU 17A soils. Copper and thallium concentrations were only slightly greater than the HBN criteria and were limited to one sample only, and may not reflect widespread contamination. Additionally, thallium is a relatively immobile

Table 6-1
Summary of Analytical Data For Soil Samples Collected At SWMU 17
Radford Army Ammunition Plant, Virginia

	SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS	PQLs UGG	17ASS1 RFIS*56 26-feb-92 1.0 CSO <u>UGG</u>	17ASS2 RFIS*58 26-feb-92 1.0 CSO UGG	17CSS1 RFIS*71 27-feb-92 1.0 CSO <u>UGG</u>	17CSS1 RFIS*72 27-feb-92 2.8 CSO <u>UGG</u>	17CSS2 RFIS*73 27-feb-92 1.0 CSO UGG	17CSS2 RFIS*74 27-feb-92 2.4 CSO UGG	17DSS1 RFIS*76 27-feb-92 0.3 CSO UGG	17DSS2 RFIS*78 27-feb92 1.0 CSO UGG	HBN <u>UGG</u>
TAL Inorganics	<u>i</u>										
ALUMINIUM		14.1	24200	17600	8830	20200	37600	27600	12000	7170	230000
ANTIMONY		20	22.9	LT 7.14	LT 7.14	LT 7.14	LT 7.14	LT 7.14	LT 36	17	30
ARSENIC		30	[100]	[9.35]	[6.23]	[5.55]	[7.37]	[5.64]	[100]	[34]	0.5
BARIUM		1	941	124	[1120]	68	290	39.3	800	459	1000
BERYLLIUM		0.2	LT 0.5	[1.07]	[0.692]	[2.11]	[1.27]	[1.15]	LT 2.5	LT 0.5	0.1
CADMIUM		2	10.2	LT 0.7	LT 0.7	LT 0.7	LT 0.7	LT 0.7	LT 3.5	5.43	40
CALCIUM		100	17300	2220 B	87000	1460 B	14800	76000	76000	130000	NSA
CHROMIUM		4	167	46	25.8	42.9	126	41.1	210	76.8	400
COBALT		3	[15.1]	[19.7]	[10.7]	[27.5]	[24.9]	[7.83]	[14]	[8.24]	0.8
COPPER		7	[3500]	64.4	20.8	16.6	569	149	[4000]	888	2900
IRON		1000	50700	23000	18500	38000	46300	23400	110000	24100	NSA
LEAD		2	[1990]	[216]	24.4	16.2	123	41.7	[1600]	[781]	200
MAGNESIUM		50	10100	13400	48200	5270	18300	92000	43000	32900	NSA
MANGANESE	•	0.275	901	834	482	466	745	200	880	430	8000
MERCURY		0.1	0.569	LT 0.05	LT 0.05	0.075	0.079	LT 0.05	0.138	0.133	20
NICKEL		3	99.5	17.4	9.7	29.4	73.1	27.5	120	56.4	1000
POTASSIUM		37.5	2070	1600	523	1450	3870	8580	1240	1040	NSA
SILVER		4	23	1.07	1.71	1.08	1.89	1.94	5.2	2.65	200
SODIUM		150	1450 B	491 B	259 B	180 B	1390 B	671 B	3240	384 B	NSA
THALLIUM		20	[15.4]	LT 6.62	[17.5]	LT 6.62	[25.1]	[28.1]	[79]	[34.5]	6
VANADIUM		0.775	37.5	54.6	45.1	69 .1	64.5	42.8	32	27.9	560
ZINC		30.2	11000	288	86.9	63.1	615	202	5500	2060	16000
Explosives											
24DNT		0.424	0.963	LT 0.424	LT 0.424	LT 0.424	0.558	LT 0.424	LT 0.424	LT 0.424	1

B = Analyte was detected in corresponding method blank; values are flagged if the sample concentration is less than 10 times the method blank concentration for common laboratory constituents and 5 times for all other constituents.

CSO - Chemical soil.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

LT = Concentration is reported as less than the certified reporting limit.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

TAL = Target Analyte List.

UGG = Micrograms per gram.

^{[] =} Brackets indicate that the detected concentration exceeds the HBN.

constituent in the environment and is not expected to impact soil, groundwater or surface water at the site. This assumption is supported by sample 17ASW1, a surface water sample collected downslope of the soil samples, where thallium was not detected, and copper was below the HBN criterion. Concentrations of aluminum, antimony, barium, cadmium, chromium, iron, mercury, nickel, silver, sodium, and zinc in soil sample 17ASS1 exceeded the background criteria but were less than permit HBNs and are not considered a concern. Samples 17ASS2 also had concentrations of barium, copper, and sodium above background but below HBNs. One explosive, 24DNT, was detected in one soil sample (17ASS1). The concentration of 0.963 ug/g, however, was slightly less than the HBN criterion of 1 ug/g and is not considered a concern.

6.3.1.2 Surface Water. The results of the chemical analyses of the surface water sample collected downslope of SWMU 17A are presented in Table 6-2. Sample 17ASW1 contained 15 metals at detectable concentrations with three of these exceeding HBN criteria. Arsenic, chromium and lead exceeded the HBNs by factors ranging from two to three and may be a concern. The explosive 24DNT was detected in this surface water sample at a concentration of 0.372 ug/l, a level slightly less than 10 times the HBN of 0.05 ug/l. This compound was the only explosive detected in Stage and Burn Area soil samples and may be a concern. TOC and TOX concentrations for 17ASW1 were 9,330 ug/l and 80.2 ug/l, respectively. Copper and thallium, which were at anomalously high concentrations and above HBNs in the soil, were below HBNs in the surface water sample.

6.3.2 <u>SWMU 17B</u>

One sediment sample was obtained from the collection basin which receives surface water drainage from the staging pads. As shown in Table 6-3, a total of 19 metals were detected in sample 17BSE1. Of these 19, arsenic, cobalt and lead concentrations exceeded the HBN criteria. Cobalt is not a concern because the reported level is less than the background criterion and represents concentrations expected to occur naturally in upland soil. Concentrations of lead and arsenic, however, were five to 20 times greater than the soil background criteria and may be a concern. Nine other metals (i.e., barium, cadmium, chromium, copper, mercury, nickel, silver, sodium and zinc), although at levels less than the

Table 6-2
Summary of Analytical Data For Surface Water Samples Collected At SWMU 17
Radford Army Ammunition Plant, Virginia

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS	PQLs <u>UGL</u>	17ASW1 RDWC*38 27-feb-92 0.0 CSW <u>UGL</u>	17ESW1 RDWC*101 05-mar-92 0.0 CSW UGL	17ESW1 RDWC*102 05-mar-92 0.0 CSW UGL	HBN <u>UGL</u>
TAL Inorganics					
ALUMINIUM ARSENIC BARIUM CALCIUM CHROMIUM COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SILVER SODIUM VANADIUM	141 10 20 500 10 60 38.1 10 500 2.75 2 50 375 2 500 40	4000 [96.3] 86.9 30200 [156] 266 3940 [150] 7800 67.7 0.268 LT 34.3 11400 0.396 32000 LT 11	11000 [59.2] 126 40200 [52.9] 411 19000 [300] 16900 231 0.236 LT 34.3 8330 0.594 14600 45.4	21000 [66] 175 47400 [90] 682 31200 [520] 25700 339 0.383 44.5 9770 1.25 14400 68.7	101500 50 1000 NSA 50 1295 NSA 50 NSA 3500 2 700 NSA 50 NSA 50 NSA
ZINC	50	624	1030	1700	7000
Explosives 24DNT	0.064	[0.372]	[0.102]	[0.092]	0.05
Other					
TOTAL ORGANIC CARBON TOTAL ORGANIC HALOGENS pH	1000 1 NA	9330 80.2 7.41 L	11200 44.9 7.71	12900 96.5 7.64	NSA NSA NSA

CSW = Chemical surface water.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

L = Indicates holding time for analysis was missed, but data quality is not believed to be affected.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

NSA = No standard (HBN) available, health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method

TAL = Target Analyte List.

UGL = Micrograms per liter.

^{[] =} Brackets indicate that the detected concentration exceeds the HBN.

Table 6-3
Summary of Analytical Data For Sediment Samples Collected At SWMU 17
Radford Army Ammunition Plant, Virginia

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	17BSE1 RFIS*69 27-feb-92 0.5 CSE UGG	17ESE1 RVFS*111 05-mar-92 1.0 CSE UGG	17ESE1 RVFS*112 05-mar-92 1.0 CSE UGG	HBN UGG
TAL Inorganics					
ALUMINIUM	14.1	22700	24800	27200	230000
ARSENIC	30	[200]	[33.5]	[38]	0.5
BARIUM	1	273	243	245	1000
CADMIUM	2	14.1	LT 0.7	2.87	40
CALCIUM	100	58100	11600	11000	NSA
CHROMIUM	4	232	93.9	96.7	400
COBALT	3	[13.5]	[14.5]	[14.6]	0.8
COPPER	7	1130	494	475	2900
IRON	1000	35900	27600	28400	NSA
LEAD	2	[1370]	[544]	[542]	200
MAGNESIUM	50	26800	16800	16600	NSA
MANGANESE	0.275	427	253	253	8000
MERCURY	0.1	1.69	0.272	0.206	20
NICKEL	3	56.1	38.2	42	1000
POTASSIUM	37.5	1730	2670	2920	NSA
SILVER	4	6.31	2	1.92	200
SODIUM	150	1400 B	704 B	834 B	NSA
VANADIUM	0.775	49.1	65.2	65.2	560
ZINC	30.2	4230	1510	15 6 0	16000
Explosives					
24DNT	0.424	[56]	[1.26]	[1.04]	1
TCLP Metals (UGL)					
ARSENIC	10	97	NΤ	NT	5000
BARIUM	20	1520	NΓ	NT	100000
CHROMIUM	10	102	NT	NT	5000
SILVER	2	13.2	NT	NT	5000

Footnotes:

B = Analyte was detected in corresponding method blank; values are flagged if the sample concentration is less than 10 times the method blank concentration for common laboratory constituents and 5 times for all other constituents.

CSE = Chemical sediment.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

LT = Concentration is reported as less than the certified reporting limit.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

NT = Not tested; parameters were not tested (included) in the sample analyses.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

TAL = Target Analyte List.

TCLP = Toxicity Characteristic Leaching Procedure.

UGG = Micrograms per gram.

Units(#) = Units are in UGG except for TCLP constituents, which are expressed in UGL.

[] = Brackets indicate that the detected concentration exceeds the HBN.

HBNs, were detected at concentrations greater than the background soil criteria for upland soils. A moderately high concentration (i.e., 56 ug/g) of the explosive 24DNT in this sample exceeded the HBN of 1 ug/g and may be a concern at the site. Four metals were detected in TCLP analyses. Concentrations of arsenic, barium, chromium and silver in the sample leachate were one to two orders of magnitude less than the TCLP criteria.

6.3.3 <u>SWMU 17C</u>

A total of 20 metals were detected in the four soil samples collected at SWMU 17C. As shown in Table 6-1, concentrations of arsenic, beryllium and cobalt exceeded the HBN criteria in all samples collected at the ACD. Concentrations of barium in 17CSS1 and thallium in three of four samples also exceeded the HBN criteria. However, only barium, beryllium and thallium were detected above both HBN and background and comparison criteria. Barium was detected above the HBN only in one sample and only by 10 percent, and is not considered to be a concern. Thallium is relatively immobile in soil and is not expected to impact soil, groundwater or surface water at the site. Beryllium was detected at less than twice the background criteria and is not considered contaminant of concern. Several other metals (e.g. aluminum, chromium, copper, iron, magnesium, mercury, nickel, potassium, silver, sodium and zinc) were reported at concentrations greater than the upland soil background criteria but were less than the HBN criteria. Most of the elevated metal concentrations were reported for the two samples collected from 17CSS2, which was located at the southern end of the site. One explosive compound was detected during one analysis of the ACD samples and was reported for the 1-foot sample collected at 17CSS2. However, the concentration of the explosive 24DNT (0.558 ug/g) did not exceed the permit HBN criterion of 1 ug/g and is not a concern.

6.3.4 <u>SWMU 17D</u>

As shown in Table 6-1, two shallow soil samples collected at SWMU 17D, the Ash Staging Area, contained a total of 21 metals. The results of the chemical analyses indicated that concentrations of five metals exceeded the HBN criteria and as many as 11 other metal concentrations were elevated above background soil criteria. In both samples collected,

arsenic, cobalt, lead and thallium concentrations exceeded the HBN criteria. With the exception of cobalt, the concentrations of these metals also exceeded the soil background criteria by factors ranging from nearly 6 to greater than 10 and may be a concern at this site. Although elevated in both samples, copper exceeded the HBN criterion in one sample only (17DSS1), but by less than 40 percent, and is not considered a concern. Concentrations of antimony, barium, cadmium, calcium, chromium, iron, mercury, nickel, silver, sodium and zinc, although less than any applicable HBN, were greater than the soil background criteria and are not a concern. Explosives were not detected in either sample.

6.3.5 <u>SWMU 17E</u>

Surface water and sediment samples collected from SWMU 17E, the Runoff Drainage Basin, contained three metals and one explosive at concentrations greater than HBN criteria. Concentrations of 10 additional metals in the sediment sample were greater than the soil background criteria but were less than applicable HBNs. As expected, concentrations of organic and inorganic constituents were greatest in the sediment sample. Additionally, three metals detected in the sediment sample were not detected in the surface water sample. The results of the analyses indicated that elements resulting from past disposal practices have accumulated or have been adsorbed to drainage basin sediments. The results also indicated that metals and an explosive may have been transported downstream of the basin. Chemical analytical results for the surface water and sediment samples are presented in Tables 6-2 and 6-3. Duplicate samples of both surface water and sediment were also collected.

- 6.3.5.1 <u>Surface Water</u>. A total of 17 metals were detected in sample 17ESW1. Of these 17, arsenic, chromium and lead concentrations exceeded the HBNs by factors ranging from slightly greater than 1 for arsenic to greater than 10 for lead and may be a concern. Additionally, the explosive 24DNT was detected at a concentration approximately twice the HBN criterion of 0.05 ug/l and may be a concern at the site.
- 6.3.5.2 <u>Sediment</u>. A total of 19 metals were detected in sample 17ESE1. Of these 19, arsenic, cobalt and lead concentrations exceeded the HBN criteria. Cobalt is not a concern

because the reported level is less than the background criterion and represents concentrations expected to occur naturally in upland soil. Ten other metals (i.e., aluminum, barium, cadmium, chromium, copper, mercury, nickel, silver, sodium and zinc), although at levels less than the HBNs, were detected at concentrations greater than the background soil criteria and are not a concern. The explosive 24DNT was detected in sample 17ESE1 at a concentration which slightly exceeded the HBN of 1 ug/g.

6.4 BASELINE RISK ASSESSMENT FOR SWMU 17--CONTAMINATED WASTE BURNING AREA

The Baseline Risk Assessment for SWMU 17 has been performed separately for each component area using the contaminants of concern identified in Section 6.3. Only contaminants of concern that are not expected to be significantly attenuated by the soils were evaluated in the risk assessments rather than all contaminants that exceeded HBNs. The HBNs were developed using a residential scenario and are too conservative to determine potential risk to workers who may be exposed to site contaminants. The following sections evaluate potential risk to workers as well as to environmental receptors.

6.4.1 Baseline Risk Assessment for SWMU 17A--Stage and Burn Area

Based on the contamination assessment presented in Section 6.3.1.1 and 6.3.1.2, contaminants of concern have been identified for soil and surface water at SWMU 17A. Groundwater samples were not collected at this site. Two metals--arsenic and lead--were identified as contaminants of concern for soil. Four contaminants of concern--arsenic, chromium, lead, and 24DNT--were identified for surface water collected downslope of the Stage and Burn Area. The potential impact of these contaminants to human health and the environment is discussed below in Sections 6.4.1.1 and 6.4.1.2, respectively.

6.4.1.1 <u>Human Health Evaluation</u>. Contamination was detected in surface soil of the Stage and Burn Area. Contaminated materials and combustibles are piled on the ground to a height of approximately 30 feet and ignited. Potential soil exposure routes typically include incidental ingestion, inhalation, and dermal absorption of soil contamination. Because arsenic and lead were detected at elevated levels in surface soil and the area is currently

active, there is the possibility of contaminated dust to become airborne and for workers in the vicinity of SWMU 17A to be exposed via inhalation of contaminated dust. It should be noted that this exposure pathway evaluates the potential for exposure to particulate emissions from contaminated soil due to wind erosion, and is not meant to evaluate the potential for air emissions that may occur during burning operations. Workers may also be exposed via incidental ingestion of contaminated soil. Because the dermal absorption of inorganics is expected to be insignificant, and only metals were identified as contaminants of concern in site soil, the dermal absorption of soil contamination pathway is not considered a significant exposure pathway and is not further evaluated.

The HBNs were developed for screening purposes assuming a worst case residential land use scenario. Because future land use is considered to be similar to the current land use scenario--i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development of RAAP--exceedances of HBNs do not necessarily indicate a contamination problem at RAAP, but do indicate the necessity for a more detailed analysis. Because arsenic and lead exceeded HBNs developed for the residential land uses scenario in site soil, these contaminants will be evaluated using a more realistic military land use scenario.

The methodologies and general assumptions for quantifying the inhalation and incidental ingestion pathways are presented in Appendix A; site-specific assumptions are discussed below. The areal extent of arsenic and lead contamination is unknown, but will be assumed to be the entire burn area (200 by 300 feet). Therefore, the width of contaminated area (LS) will be assumed to be 300 feet (91.4 m) and the area of contamination (A) will be assumed to be 6E+04 feet (5.6E+03 m). Substitution of these values into Equation A-2 results in a particulate emission factor (PEF) of 3.4E+09 m³/kg; substitution of 3.4E+09 into Equation C of Table A-4 results in a dust concentration of 2.9E-04 mg/m³.

Tables 6-4 and 6-5 present the exposure point concentrations and carcinogenic and noncarcinogenic intakes for the incidental soil ingestion and dust inhalation exposure pathways, respectively, for the military land use scenario at SWMU 17A. The soil

Table 6-4

Estimated Contaminant Concentrations in Soil and Estimated Human Intakes Due to Incidental Ingestion of Soil at SWMU 17A Military Land Use Scenario Radford Army Ammunition Plant, Virginia

	Exposure Point Concentration	Carcinogenic Intake	Noncarcinogenic Intake
Analyte	<u>(mg/kg)(a)</u>	(mg/kg/day)	(mg/kg/day)
Arsenic	100	1.96E-06	4.57E-05

9.09E-04

Footnotes:

Lead

1990

- The 95 percent upper confidence limit on the arithmetic mean exceeds (a) the maximum detected concentration; therefore, the maximum detected concentration is used as the exposure point concentration.
- Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

Table 6-5 Estimated Contaminant Concentrations in Air and Estimated Human Intakes Due to Inhalation of Dust at SWMU 17A Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Source—Related Dust Concentration for SWMU 17A is 2.9E-04 mg/m3 (see Text)

		Exposure		
	Concentration	Point	Carcinogenic	Noncarcinogenic
	in Soil	Concentration	Intake	Intake
Analyte	(mg/kg)(a)	$(mg/m^3)(b)$	(mg/kg/day)	(mg/kg/day)
Arsenic	100	2.90E-08	2.27E-10	5.30E-09
Lead	1990	5.77E-07		1.05E-07

- (a) The 95 percent upper confidence limit on the arithmetic mean exceeds the maximum detected concentration; therefore, the maximum detected concentration is used.
- (b) The exposure point concentration is the product of the total source—related dust concentration and the contaminant concentration in surface soil. The assumption is made that the contaminants are distributed in the air in the same proportion as they are in the surface soil.
- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

concentration used is the maximum detected concentration in shallow soil (to a depth of 2 feet) because the 95 percent confidence limit on the arithmetic mean exceeded the maximum detected concentration. Tables 6-6 and 6-7 present the carcinogenic intakes, noncarcinogenic intakes, slope factors, references doses, potential risks, and potential hazards, as applicable, for the incidental soil ingestion and dust inhalation exposure pathways, respectively, for the military land use scenario at SWMU 17A. The total potential carcinogenic risk and noncarcinogenic hazard for the incidental ingestion of soil are 3E-06 and 2E-01, respectively. The hazard index is below one, indicating a low potential for noncarcinogenic effects. The potential carcinogenic risk only slightly exceeds 1E-06; EPA uses the general 10⁻⁴ to 10⁻⁵ risk range as a "target range" within which the agency strives to manage risks as part of a Superfund cleanup. The total potential carcinogenic risk for the dust inhalation pathway is 3E-09, which is well below the EPA target range. Because inhalation reference doses are not available, a noncarcinogenic hazard index could not be calculated.

Table 6-8 presents the multiple pathway potential carcinogenic risk and noncarcinogenic hazard for the military land use scenario at SWMU 17A, which are 3E-06 and 2E-01, respectively. The multiple pathway hazard index is below one, indicating a low potential for noncarcinogenic effects. The multiple pathway potential carcinogenic risk only slightly exceeds 1E-06, which is the lower end of the EPA target risk range.

Although noncarcinogenic intakes are calculated for lead, as discussed in Appendix E, an RfD is not available for lead; therefore, a potential noncarcinogenic hazard index for lead cannot be calculated. As discussed in Appendix D, the UBK developed by EPA for lead is only applicable to children; therefore, potential noncarcinogenic effects resulting from exposure to lead under the military land use scenario at SWMU 17A cannot be quantitatively evaluated. However, it should be noted that the maximum concentration detected in site soil is 1,990 mg/kg, which is almost ten times the lower end of the HBN range and four times the upper end of the HBN range developed for lead under the residential land use scenario. Based on the high concentration of lead detected in site soil

Table 6-6 Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Incidental Ingestion of Soil at SWMU 17A Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Analyte Arsenic Lead	Carcinogenic Intake (mg/kg/day) 1.96E-06 	Slope Factor 1/(mg/kg/day) 1.75E+00 	Risk 3E-06
Total			3E-06
Analyte Arsenic Lead	Noncarcinogen Intake (mg/kg/day) 4.57E-05 9.09E-04	Reference Dose (mg/kg/day) 3.0E-04 **	Hazard Quotient 2E-01 **
Total			2E-01

- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.
- **** Reference dose is not available.

Table 6-7 Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Inhalation of Dust at SWMU 17A Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Analyte Arsenic Lead Total	Carcinogenic Intake (mg/kg/day) 2.27E-10 	Slope Factor 1/(mg/kg/day) 1.4E+01	Risk 3E-09 3E-09
<u>Analyte</u> Arsenic Lead	Noncarcinogenic Intake (mg/kg/day) 5.30E-09 1.05E-07	Reference Dose (mg/kg/day) ** **	Hazard Quotient ** **
Total			0E+00

[&]quot;--" - Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

[&]quot;**" Reference dose is not available.

Table 6-8 Multiple Pathway Potential Carcinogenic Risks and Noncarcinogenic Hazards at SWMU 17A Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Pathway <u>No.</u>	Pathway <u>Description</u>	<u>Risk</u>	<u>Hazard Index</u>
2	Incidental Ingestion of Soil	3E-06	2E-01
3	Inhalation of Dust	3E-09	0E+00
	Total	3E-06	2E-01

and the fact that two potential complete exposure pathways are identified for SWMU 17A, the potential exposure to lead and corresponding hazard is estimated as moderate to high.

Although four metals were detected in surface water collected downslope of SWMU 17A, because this was standing water and not a surface water body, the typical surface water exposure routes are not applicable. Although workers may occasionally contact the surface water, exposure is expected to be infrequent. Therefore, exposure to contaminants in the surface water is expected to be insignificant and these exposure pathways are not evaluated further.

6.4.1.2 Environmental Evaluation. The surface water sample was collected from standing water, not a surface water body. Therefore, potential impacts to aquatic life are not considered. Although, wildlife may have access to the burn area, because this area is active and paved roads/buildings are present in the surrounding area, it is not likely that wildlife would frequent this area. Therefore, potential exposure of environmental receptors to the surface water/soil contamination at the Stage and Burn Area appears to be minimal and these exposure pathways are not further evaluated.

6.4.1.3 Conclusions of Human Health and Environmental Evaluation. Two potentially complete exposure pathways--incidental soil ingestion and dust inhalation--were identified for SWMU 17A and were quantitatively evaluated. The noncarcinogenic hazard index for the incidental ingestion and dust inhalation exposure pathways are below one, indicating a low potential for noncarcinogenic effects. The multiple pathway potential carcinogenic risk only slightly exceeds 1E-06, which is the lower end of the EPA target risk range, and is mainly due to the incidental soil ingestion exposure pathway.

As discussed in Appendix D, the UBK developed by EPA for lead is only applicable to children; therefore potential exposure to lead under the military land use scenario cannot be quantitatively evaluated. Based on the high concentration of lead detected in site soil and the fact that two potential complete exposure pathways are identified for SWMU 17A, the potential exposure to lead and corresponding hazards is estimated as moderate to high.

Although elevated concentrations of several metals were detected in surface water downslope of SWMU 17A, it is unlikely that human and environmental receptors would directly contact the surface water, except possibly on an infrequent basis. Therefore, potential exposure of environmental and human receptors to the surface water contamination at the Stage and Burn Area appears to be minimal and these exposure pathways are not further evaluated.

6.4.2 Baseline Risk Assessment for 17B-ACD Staging Area

Based on the contamination assessment presented in Section 6.3.2, three contaminants of concern--arsenic, lead, and 24DNT--have been identified for the sediment sample collected from this site. Samples were not collected from other media at this site. The potential impact of these contaminants to human health and the environment is discussed below in Sections 6.4.2.1 and 6.4.2.2, respectively.

6.4.2.1 Human Health Evaluation. The sediment sample was collected from a concrete-lined settling basin that collects surface water runoff from the staging pads. The pit is equipped with a sump pump that periodically pumps the collected water into a drainage ditch leading to the Runoff Drainage Basin (SWMU 17E). There are no potential human receptors to the sediment within this basin, except for workers who may occasionally contact the sediment during cleaning operations. Workers would presumably follow standard operating procedures (SOPs) and wear protective equipment (i.e., gloves) and exposure is expected to be infrequent. Therefore, exposure to contaminants in the sediment via incidental ingestion and dermal absorption of contaminants is expected to be insignificant and these exposure pathways are not evaluated further. Because the sediment is frequently covered with surface water, it is not likely that sediment would become airborne as dust; therefore, the inhalation of contaminated dust exposure pathway is not considered operable for this site. Although surface water samples were not collected from the basin, worker exposure to surface water would also be infrequent and is considered insignificant.

6.4.2.2 <u>Environmental Evaluation</u>. As discussed above, the sediment sample was collected from a concrete-lined settling basin. Because the burn area is active and paved

roads/buildings are present, it is not likely that wildlife would frequent the burn area. In addition, even if wildlife were to enter the burn area, it is not likely that they would access the concrete-lined settling basin. Therefore, potential exposure to wildlife is considered negligible and exposure to environmental receptors is not further evaluated.

6.4.2.3 Conclusions of Human Health and Environmental Evaluation. Exposure to contaminants in the sediment of the concrete-lined settling basin is expected to be insignificant for both human and environmental receptors. Therefore, these pathways were not quantitatively evaluated. Although SWMU 17B does not appear to present a current or potential future human health risk or environmental threat, the presence of contamination in the sediment sample collected from the concrete-lined settling basin does indicate the potential for runoff of contamination from the staging bays.

6.4.3 Baseline Risk Assessment for 17C--ACD

No contaminants of concern were identified for SWMU 17C, therefore, a Risk Assessment is not required.

6.4.4 Baseline Risk Assessment for 17D-ACD Ash Staging Area

Based on the contamination assessment presented in Section 6.3.4, contaminants of concern have been identified for shallow soil at SWMU 17D. Samples were not collected from other media at this site. Three metals--arsenic, lead, and thallium--were identified as contaminants of concern for soil. The potential impact of these contaminants to human health and the environment is discussed below in Sections 6.4.4.1 and 6.4.4.2, respectively.

6.4.4.1 <u>Human Health Evaluation</u>. Contamination was detected in surface soil of the ACD Ash Staging Area. The ACD Ash Staging Area is currently active and is used for accumulating and storing ACD ash and scrap metal prior to disposal. Potential soil exposure routes typically include incidental ingestion, inhalation, and dermal absorption of soil contamination. Because arsenic, lead, and thallium were detected at an elevated level in surface soil and the area is currently active, there is the possibility of contaminated dust to become airborne and for workers in the vicinity of SWMU 17D to be exposed via inhalation of contaminated dust. Workers may also be exposed via incidental ingestion of

contaminated soil. Because the dermal absorption of inorganics is expected to be insignificant, and only metals were identified as contaminants of concern in site soil, the dermal absorption of soil contamination pathway is not considered a significant exposure pathway and is not further evaluated.

The HBNs were developed for screening purposes assuming a worst case residential land use scenario. Because future land use is considered to be similar to the current land use scenario--i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development of RAAP--exceedances of HBNs do not necessarily indicate a contamination problem at RAAP, but do indicate the necessity for a more detailed analysis. Because arsenic, lead, and thallium exceeded HBNs developed for the residential land uses scenario in site soil, these contaminants will be evaluated using a more realistic military land use scenario.

The methodologies and general assumptions for quantifying the inhalation and incidental ingestion pathways are presented in Appendix A; site-specific assumptions are discussed below. The areal extent of arsenic, lead, and thallium contamination appears to be limited to the vicinity of the bottom ash pile (approximately 50 x 25 feet). Therefore, the width of contaminated area (LS) will be assumed to be 50 feet (15.2 m) and the area of contamination (A) will be assumed to be 1,250 square feet (116 m²). Substitution of these values into Equation A-2 results in a particulate emission factor (PEF) of 2.8E+10 m³/kg; substitution of 2.8E+10 into Equation C of Table A-4 results in a dust concentration of 3.6E-05 mg/m³.

Tables 6-9 and 6-10 present the exposure point concentrations and carcinogenic and noncarcinogenic intakes for the incidental soil ingestion and dust inhalation exposure pathways, respectively, for the military land use scenario at SWMU 17D. The soil concentration used is the maximum detected concentration in shallow soil (to a depth of 2 feet) because the 95 percent confidence limit on the arithmetic mean exceeded the maximum detected concentration. Tables 6-11 and 6-12 present the carcinogenic intakes, noncarcinogenic intakes, slope factors, references doses, potential risks, and potential hazards, as applicable, for the incidental soil ingestion and dust inhalation exposure

Table 6-9 Estimated Contaminant Concentrations in Soil and Estimated Human Intakes Due to Incidental Ingestion of Soil at SWMU 17D Military Land Use Scenario Radford Army Ammunition Plant, Virginia

	Exposure		
	Point	Carcinogenic	Noncarcinogenic
	Concentration	Intake	Intake
Analyte .	(mg/kg)(a)	(mg/kg/day)	(mg/kg/day)
Arsenic	100	1.96E-06	_4.57E-05
Lead	1600		7.31E-04
Thallium	79		3.61E-05

- (a) The 95 percent upper confidence limit on the arithmetic mean exceeds the maximum detected concentration; therefore, the maximum detected concentration is used as the exposure point concentration.
- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

Table 6-10 Estimated Contaminant Concentrations in Air and Estimated Human Intakes Due to Inhalation of Dust at SWMU 17D Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Source - Related Dust Concentration for SWMU 17D is 3.6E-05 mg/m3 (see Text)

		Exposure		
	Concentration	Point	Carcinogenic	Noncarcinogenic
	in Soil	Concentration	Intake _	Intake
Analyte	(mg/kg)(a)	(mg/m3)(b)	(mg/kg/day)	(mg/kg/day)
Arsenic	100	3.60E-09	2.82E-11	6.58E-10
Lead	1600	5.76E-08		1.05E - 08
Thallium	79	2.84E-09		5.19E-10

- (a) The 95 percent upper confidence limit on the arithmetic mean exceeds the maximum detected concentration; therefore, the maximum detected concentration is used.
- (b) The exposure point concentration is the product of the total source—related dust concentration and the contaminant concentration in surface soil. The assumption is made that the contaminants are distributed in the air in the same proportion as they are in the surface soil.
- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

Table 6-11 Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Incidental Ingestion of Soil at SWMU 17D Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Analyte Arsenic Lead Thallium	Carcinogenic Intake (mg/kg/day) 1.96E-06	Slope Factor 1/(mg/kg/day) 1.75E+00 	<u>Risk</u> 3E-06
Total			3E-06
<u>Analyte</u> Arsenic Lead Thallium	Noncarcinogenic Intake (mg/kg/day) 4.57E-05 7.31E-04 3.61E-05	Reference Dose (mg/kg/day) 3.0E-04 ** 8.0E-05	Hazard Quotient 2E-01 **
Total			2E-01

- "--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.
- **** Reference dose is not available.

Table 6-12 Potential Carcinogenic Risks and Noncarcinogenic Hazards Due to Inhalation of Dust at SWMU 17D Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Analyte Arsenic Lead Thallium	Carcinogenic Intake (mg/kg/day) 2.82E-11	Slope Factor 1/(mg/kg/day) 1.4E+01	<u>Risk</u> 4E-10
Ţotal			4E-10
	Noncarcinogenic		
	Intake	Reference Dose	Hazard
<u>Analyte</u>	(mg/kg/day)	(mg/kg/day)	Quotient
Arsenic	6.58E-10	**	**
Lead Thallium	1.05E-08 5.19E-10	**	**
1 Hamam	5.172 10		

Footnotes:

Total

0E+00

[&]quot;--" Not calculated because contaminant is not considered a carcinogen or potency factor is not available.

^{****} Reference dose is not available.

pathways, respectively, for the military land use scenario at SWMU 17D. The total potential carcinogenic risk and noncarcinogenic hazard for the incidental ingestion of soil are 3E-06 and 2E-01, respectively. The hazard index is below one, indicating a low potential for noncarcinogenic effects. The potential carcinogenic risk only slightly exceeds the lower end of the EPA target risk range (10⁴ to 10⁶). The total potential carcinogenic risk for the dust inhalation pathway is 4E-10, which is well below the EPA target range. Because inhalation reference doses are not available, a noncarcinogenic hazard index could not be calculated.

Table 6-13 presents the multiple pathway potential carcinogenic risk and noncarcinogenic hazard for the military land use scenario at SWMU 17D, which are 3E-06 and 2E-01, respectively. The multiple pathway hazard index is below one, indicating a low potential for noncarcinogenic effects. The multiple pathway potential carcinogenic risk only slightly exceeds 1E-06, which is the lower end of the EPA target risk range.

Although noncarcinogenic intakes are calculated for lead, as discussed in Appendix D, an RfD is not available for lead; therefore, a potential noncarcinogenic hazard index for lead cannot be calculated. As discussed in Appendix D, the UBK developed by EPA for lead is only applicable to children; therefore, potential noncarcinogenic effects resulting from exposure to lead under the military land use scenario at SWMU 17D cannot be quantitatively evaluated. However, it should be noted that the maximum concentration detected in site soil is 1600 ug/g, which is eight times the lower end of the HBN range and three times the upper end of the HBN range developed for lead under the residential land use scenario. Based on the high concentration of lead detected in site soil and the fact that two potential complete exposure pathways are identified for SWMU 17D, the potential exposure to lead and corresponding hazard is estimated as moderate to high.

6.4.4.2 <u>Environmental Evaluation</u>. The surface soil sample was collected from near the coal bottom ash pile. Although wildlife may have access to the burn area, because this area is active and paved roads/buildings are present in the surrounding area, it is not likely that wildlife would frequent this area. Therefore, potential exposure to environmental

Table 6-13 Multiple Pathway Potential Carcinogenic Risks and Noncarcinogenic Hazards at SWMU 17D Military Land Use Scenario Radford Army Ammunition Plant, Virginia

Pathway <u>No.</u>	Pathway <u>Description</u>	<u>Risk</u>	<u>Hazard Index</u>
_2 _	Incidental Ingestion of Soil	3E-06	2E-01
3	Inhalation of Dust	4E-10	0E+00
	Total	3E-06	2E-01

receptors to the surface soil contamination at the ACD Ash Staging Area appears to be minimal and these exposure pathways are not further evaluated.

6.4.4.3 Conclusions of Human Health and Environmental Evaluation. Two potentially complete exposure pathways--incidental soil ingestion and dust inhalation--were identified for SWMU 17D and were quantitatively evaluated. The noncarcinogenic hazard index for the incidental ingestion and dust inhalation exposure pathways are below one, indicating a low potential for noncarcinogenic effects. The multiple pathway potential carcinogenic risk only slightly exceeds 1E-06, which is the lower end of the EPA target risk range, and is mainly due to the incidental soil ingestion exposure pathway. As discussed in Appendix D, the UBK developed by EPA for lead is only applicable to children; therefore potential exposure to lead under the military land use scenario cannot be quantitatively evaluated. Based on the high concentration of lead detected in site soil and the fact that two potential complete exposure pathways are identified for SWMU 17D, the potential exposure to lead and corresponding hazard is estimated as moderate to high.

Although elevated concentrations of several metals were detected in surface soil, it is unlikely that environmental receptors would directly contact the surface soil, except possibly on an infrequent basis. Therefore, potential exposure to environmental receptors and the potential for environmental threat appears to be minimal.

6.4.5 Baseline Risk Assessment for 17E-Runoff Drainage Basin

Based on the contamination assessment presented in Section 6.3.5, four contaminants of concern--arsenic, chromium, lead, and 24DNT--have been identified for the surface water sample collected from this site. Arsenic, lead, and 24DNT were contaminants of concern in the sediment but exposure to this medium is considered negligible compared to the surface water overlying the sediment, and will not be evaluated. The potential impact of these contaminants to human health and the environment is discussed below in Sections 6.4.5.1 and 6.4.5.2, respectively.

6.4.5.1 <u>Human Health Evaluation</u>. The surface water sample was collected from the runoff drainage basin, which is an unlined natural drainage depression. Due to topography, there

is no surface water outflow from the basin. There are no potential human receptors to the surface water within this basin, except for workers who may occasionally contact the surface water during cleaning operations. Workers would presumably wear protective equipment (i.e., gloves) and exposure is expected to be infrequent. Therefore, exposure to contaminants in the surface water via incidental ingestion and dermal absorption of contaminants is expected to be insignificant and these exposure pathways are not evaluated further.

- 6.4.5.2 Environmental Evaluation. As discussed above, the surface water sample was collected from an unlined drainage basin. Therefore, potential impacts to aquatic life are not considered. Because the burn area is active and paved roads/buildings are present, it is not likely that wildlife would frequent the burn area and use the drainage basin as a primary drinking water source. Therefore, potential exposure to wildlife is considered negligible and exposure to environmental receptors is not further evaluated.
- 6.4.5.3 Conclusions to Human Health and Environmental Evaluation. Exposure to contaminants in the surface water of the unlined drainage basin is expected to be insignificant for both human and environmental receptors. Therefore, these pathways were not quantitatively evaluated. Although SWMU 17E does not appear to present a current or potential future human health risk or environmental threat, the presence of contamination in the surface water sample collected from the unlined drainage basin does indicate the potential for surface runoff of contamination from the burn area, with possible infiltration into the groundwater. Even though SWMU 17E sediments were not evaluated, similar metals concentration evaluated for SWMU 17A soil indicated no noncarcinogenic risk, but a combined carcinogenic risk barely within the EPA target risk range. This indicates that if the sediments are exposed and dried out, a potential risk via the inhalation/ingestion pathway may be present if workers are exposed to windblown particles.

6.5 <u>SUMMARY AND CONCLUSIONS</u>

The RFI sampling program has provided chemical data for evaluating the potential impact the various SWMU 17 burning operations have on the near surface soils. Potential

impacts were assumed to be where burning or waste storage occurs and in the surface water and sediment of low areas/basins receiving runoff from the active areas. The results of the borings conducted at and near SWMU 17 have been used to provide information on the hydrogeologic properties of the subsurface. The physical and chemical investigations have led to the following conclusions:

- The five component subsites are present in two 30 foot deep depressions which have been identified as sinkholes. SWMU 17A is in the western depression and SWMUs 17B, 17C, 17D, and 17E are in the eastern one.
- The bottom of the sinkholes have been filled with rubble and graded flat with soil and gravel.
- The soil layer overlying bedrock away from the sinkholes is very thin, probably
 less than 10 feet. Bedrock is composed of tilted, weathered and broken
 limestone/dolostone of the Elbrook Formation.
- The bedrock is karst in character with groundwater present in fractures and conduits which have unpredictable flow characteristics. The groundwater elevation in the bedrock has been measured to vary between 1,826 feet msl to less than 1,730 feet msl.
- The depressions have no surface water outlet, all precipitation infiltrates into the subsurface or evaporates.
- Groundwater eventually discharges into the New River but the route or routes
 leading to the river are unknown. The highly imcompetent character of the
 bedrock prevented the installation of monitoring wells, but the karst character
 of the aquifer makes monitoring wells unsuitable for acquiring suitable
 groundwater data for contamination evaluation.
- No waste is buried or otherwise permanently disposed at SWMU 17.
 Contaminant impacts would be from residue potentially remaining after burning operations are performed.

- Arsenic, copper, lead and thallium were detected in SWMU 17A soils above HBNs and background concentrations. Arsenic and lead were identified as contaminants of concern based on chemical properties. Arsenic, chromium, lead and 24DNT were detected above HBNs in surface water receiving runoff from SWMU 17A and were identified as contaminants of concern.
- Arsenic, lead and 24DNT were detected above HBNs and background concentrations in a sediment sample from the basin (SWMU 17B) receiving runoff from the area used to store contaminated material prior to being burned in the ACD. These three parameters were also identified as contaminants of concern.
- Barium, beryllium and thallium were detected above HBNs and background concentrations in soil samples next to the ACD (SWMU 17C). Based on the detected concentrations and chemical properties, none of these metals were identified as contaminants of concern at SWMU 17C.
- Arsenic, lead and thallium were detected above HBNs and background concentrations in soils at the ash staging area (SWMU 17D) for the ACD.
 These metals were identified as contaminants of concern.
- Arsenic, chromium, lead and 24DNT concentrations exceeded HBNs in the surface water sample from the pond (SWMU 17E) receiving runoff from all areas of the eastern depression. Each parameter was identified as a contaminant of concern. Arsenic, lead and 24DNT concentrations exceeded HBNs and background concentration in the SWMU 17E sediment but no contaminants of concern were identified because the sediment is not exposed.
- The multiple pathway potential carcinogenic risk for incidental ingestion of SWMU 17A soils barely exceeds the lower end of the EPA target risk range. Soils at SWMU 17D have a similar risk. Because of the lack of exposure pathways or the calculated risks/hazards were below target levels, no other risks were identified at SWMU 17.

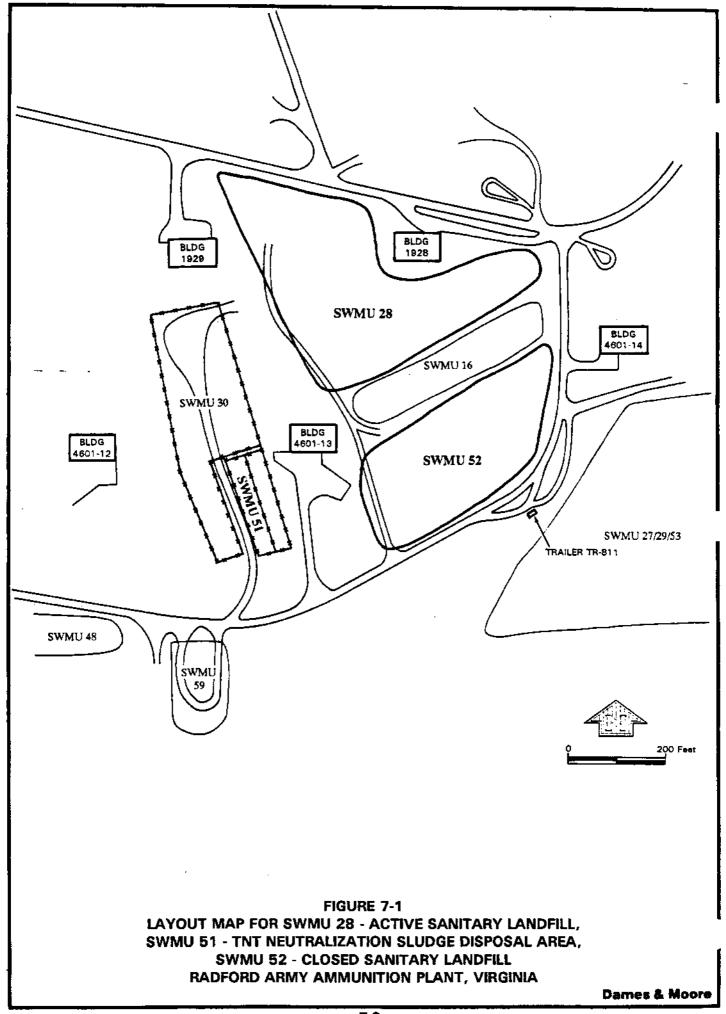
6.6 RECOMMENDED ACTION

A Corrective Measures Study is not recommended, but a CMS may be needed after additional data has been collected. Based on available information, contaminants of concern remaining at one or more SWMU 17 component areas after the burning operations consist of arsenic, chromium, lead, thallium and 24DNT. A slight risk to site workers has been identified due to the potential for incidental ingestion/inhalation of these contaminants. Due to the complicated hydrogeologic environment, no groundwater data were collected for the SWMU 17 contamination assessment. The following recommendations address the identified risks and the data gaps in the RFI.

- Standard operating procedures for site workers should be revised, if needed, to include procedures to reduce dust generation and prevent incidental exposure via ingestion/inhalation for all post-burning waste handling operations including site grading and soil handling. Settling basin (SWMUs 17B and 17E) water and sediment handling procedures should also be included in the revised SOPs. Even though the waste may not exceed TCLP criteria when tested for disposal, a risk due to ingestion/inhalation still is possible.

The sinkholes allow for direct discharge of site contaminant into the bedrock aquifer via infiltration of precipitation through subsurface conduits. The lack of significant standing water in the depressions suggests that infiltration is the primary route of water outflow compared to evaporation. The discharge points for site groundwater should be determined and sampled in order to evaluate the magnitude of contamination in the groundwater due to SWMU 17. A dye tracing study is recommended for SWMU 17 to determine these discharge points. This study should be combined with the dye tracing study recommended for nearby VI SWMU 40 and the on-site FLFA SWMU (Dames & Moore, 1992b). The area of the study should include the New River to the west and the unnamed tributary to Stroubles Creek to the east. A sampling program for the identified discharge points should be developed with results combined with the existing RFI data.

The hydrogeologic conditions at the site make discharge of site contaminants, in both dissolved and solid states, through the bedrock aquifer a potentially significant route of off-site and even off-post migration. However, the lack of groundwater receptors and the significant dilution factor of the New River suggest little risk of exposure to contaminants at concentrations which may pose a health or environmental risk.


7.0 RCRA FACILITY INVESTIGATION OF SWMU 28, ACTIVE SANITARY LANDFILL, SWMU 51, TNT NEUTRALIZATION SLUDGE DISPOSAL AREA AND SWMU 52, CLOSED SANITARY LANDFILL

7.1 SWMU 28, SWMU 51 AND SWMU 52 INVESTIGATION PROGRAM

SWMUs 28, 51, and 52 are geographically proximate to each other in the eastern end of the Horseshoe Area, generally at the area of highest elevation within RAAP (Figure 7-1 and Insert 5). Each SWMU consists of a subsurface burial area of waste material with the three SWMUs encompassing an area of approximately 15 acres. Because of the proximate nature of these SWMUs and the similar disposal methods used at each SWMU, one combined study area was delineated for the RFI. Two other disposal SWMUs (16 and 30) are also located within the study area, but these SWMUs were not included in the RCRA permit and have not been specifically targeted as areas of investigation. SWMU 30, Closed Asbestos Waste Site, is located at the western limit of the study area and should not have an impact on the chemical data acquired for the RFI. SWMU 16, Closed Hazardous Waste Landfill, is located in the central part of the study area and contaminants therefore, migrating from this SWMU, if any, could have a measurable impact on the groundwater being evaluated. Waste placed in SWMU 16 consisted of ash residue from contaminated waste burning operations which failed the EP toxicity testing. Due to the nature and location of this waste, the detections of high metals, explosives and VOCs in wells along the eastern (downgradient) side of the study area should not be assumed to be a result of migration from the RFI SWMUs. The contamination characterization presented in Section 7.3 considers the potential for SWMU 16 to be the source of detected contaminants if the wells located downgradient of SWMU 16 exhibit obviously different groundwater quality.

7.1.1 **SWMUs History**

7.1.1.1 Active Sanitary Landfill--SWMU 28. This landfill is located in the southeast section of the Horseshoe Area (Figure 7-1 and Insert 5). It replaced the sanitary landfill immediately to the south (SWMU 52), which reached design capacity and was closed in 1984. SWMU 28 is contiguous with the Closed Hazardous Waste Landfill (SWMU 16) and is approximately 200 feet northeast of the TNT Neutralization Sludge Disposal Area

(SWMU 51). SWMU 28 was permitted by the Virginia Department of Health (Permit No. 401) in April 1983 as a sanitary landfill to receive municipal solid waste, agricultural waste, debris waste, inert waste, and asbestos waste. The asbestos waste is required to be bagged, labelled, and placed in a designated area, now identified as SWMU 30, which is located 100 feet west/southwest of SWMU 28. The daily estimated volume of disposal as reported in the permit was 0.25 ton of asbestos and 2 tons of municipal waste.

Landfill plans for SWMU 28 called for five trenches to be excavated and filled (Figure 7-2). Three trenches (6, 7, and 8 on Figure 7-2) are oriented in a northwest/southeast direction and range in length from approximately 225 to 300 feet. Each is approximately 30 feet wide. The remaining two trenches, 5 and 9, are oriented in a northeast/southwest direction, approximately 450 and 250 feet long, respectively, and 30 feet wide. When filled, the trenches were covered with clean soil and seeded to prevent erosion of the cover.

7.1.1.2 TNT Neutralization Sludge Disposal Area-SWMU 51. This unit is located approximately 200 feet west of the Closed Sanitary Landfill (SWMU 52), and 200 feet southwest of the Active Sanitary Landfill (SWMU 28). SWMU 51 reportedly consists of one trench, approximately 20 feet wide by 200 feet long, located within the southern half of the central trench of a series of three north-south trending disposal trenches (Figure 7-1). The other two and a half trenches were reportedly used for asbestos disposal (SWMU 30) and are not part of this unit. SWMU 51 is surrounded by a barbed-wire fence and marked with a sign. The barbed wire fence apparently encompasses more than just the reported SWMU 51 trench. The barbed wire encloses an area which appears to correlate to the southern halves of both the central and eastern trenches. A central barbed wire fence also divides the enclosed area into east and west halves. This suggests that the southern halves of both trenches were used for TNT waste burial rather than only the one trench. The trench has been filled to natural grade and is weed covered.

An unknown quantity of TNT neutralization sludge from the treatment of red water was disposed of in this unlined trench in the 1970s. Sludges were generated in the red water treatment plant's equalization/neutralization basin. Sludges are not currently produced.

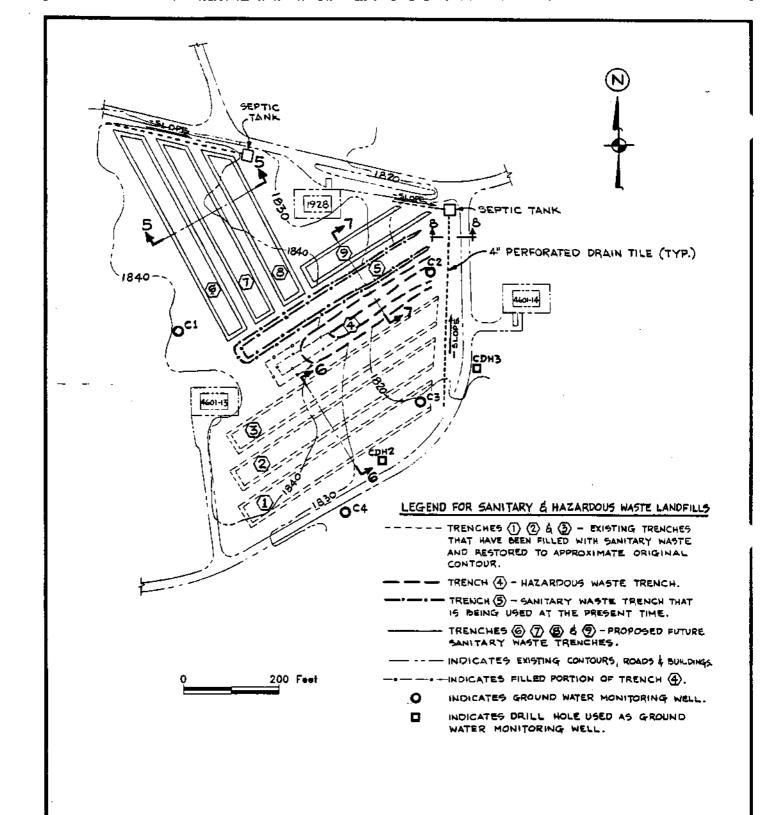
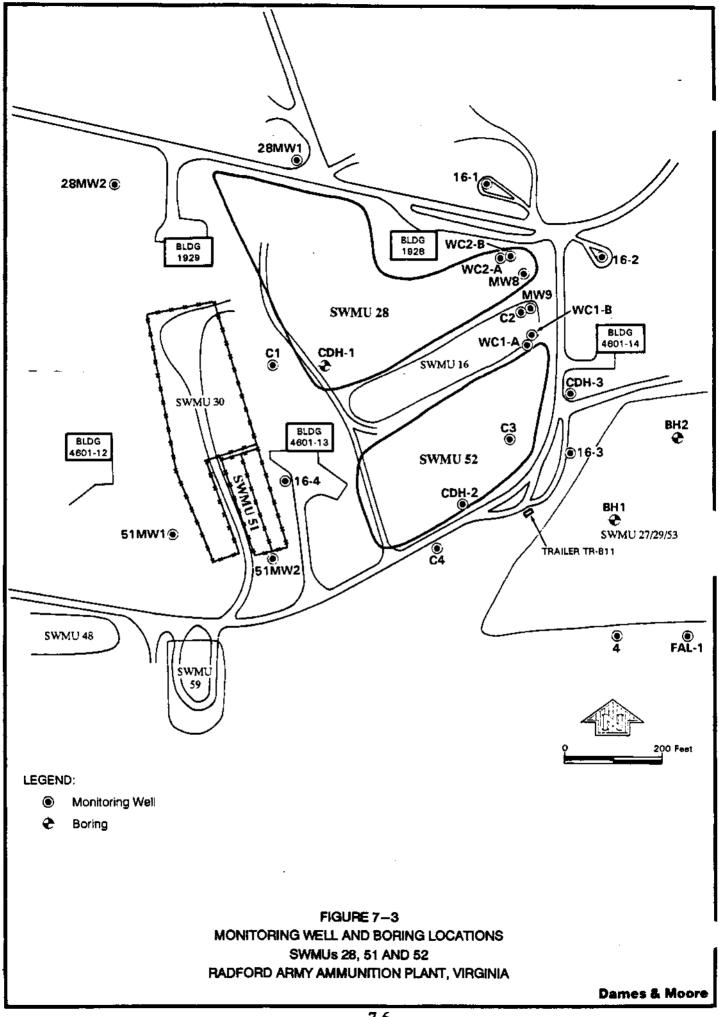


FIGURE 7-2
TRENCH LOCATIONS FOR SWMUS 16, 28 AND 52
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

SOURCE: Hercules, 1983.

In addition to sludge disposal, an estimated 10 tons of red water ash was reportedly disposed of in the trench from 1968 to 1972. Red water is a waste product that is generated during the production of TNT. It contains numerous TNT byproducts including alpha, beta, and gamma TNT isomers and TNT sodium disulfates. From 1968 to 1972, red water was concentrated by evaporation and burned in four rotary kilns located in the TNT manufacturing area (USATHAMA, 1976). The ash produced from these kilns was disposed of in SWMU 41 (Red Water Ash Landfill), SWMU 42 (an off-post landfill), and SWMU 51. From 1972 to 1974, the red water was sold to the paper industry, which recovered the sulfur compounds for use in paper production.

Red water ash has been described as yellowish-tan in color when dry. When wet it turns a dark red and generates a dark red leachate. It is corrosive and fine-grained, though it may contain large clinkers.


7.1.1.3 <u>Closed Sanitary Landfill--SWMU 52</u>. This unit is located contiguous to and immediately south of the closed RAAP Hazardous Waste Landfill (SWMU 16) (Figure 7-1). SWMU 52 was first used in 1976 and was closed in 1984 when it reached design capacity. The unit was not permitted by the Commonwealth of Virginia.

SWMU 52 contains three trenches (1, 2, and 3 on Figure 7-2), each approximately 35 feet wide by 500 feet long by 14 feet deep. The landfill was used primarily for the disposal of municipal refuse, though some asbestos (in double plastic bags) was disposed of in this area (USACE, 1981). The one trench used for SWMU 16 (trench 4 on Figure 7-2) is located immediately north of SWMU 52 and immediately south of SWMU 28.

7.1.2 <u>Previous Investigations</u>

In 1980, six monitoring wells (C1, C2, C3, C4, CDH-2, and CDH-3) were installed at SWMU 52 as part of a hydrogeologic evaluation of four SWMUs at RAAP (USACE, 1981). Well locations are shown in Figure 7-3.

Groundwater sample analyses performed at SWMU 52 indicated that the total dissolved solids (TDS) concentration was below the Secondary Drinking Water Standard of

500 mg/L. TDS concentrations ranged between 84 and 199 mg/L in the four samples collected from wells at the site. In fact, the minimum TDS concentration (84 mg/L) measured was found in the downgradient well C2, which should be the well most likely to reflect groundwater quality beneath the landfill.

All samples collected showed groundwater degradation from man-made organic chemicals. The organics found include 4-nitrophenol; chlorinated solvents such as 1,2-dichloroethane, chloroform, methylene chloride, trichlorofluoromethane, and trichloroethylene; plasticizers such as butyl benzyl phthalate and bis(2-ethylhexyl) phthalate; and volatile organics including benzene and toluene. All organics except methylene chloride were found at levels near or below the available accepted drinking water and ambient water quality standards, and Suggested No Adverse Response Levels (SNARLs). The data were considered inadequate to determine direct cause-and effect relationships, which would indicate that the source of these organic contaminants was SWMU 52.

No borings or monitoring wells had been installed specifically for SWMU 51 prior to the RFI. However, extensive investigations have been conducted at the three landfills to the east and northeast of this unit.

Groundwater monitoring conducted at SWMU 16 in 1984 and 1985 indicated detection of low levels of explosives compounds in wells upgradient of SWMU 16, but downgradient of SWMU 51. These compounds included 24DNT, 26DNT, and tetryl. These detections were thought to be more indicative of wastes disposed of in SWMU 51 than those disposed of in SWMU 16. No explosives contaminants were detected in samples collected after 1985 (USACE, 1988).

The permit for SWMU 28 requires quarterly groundwater monitoring of wells installed around the site. Wells in this area have been installed at various times since 1988 with a total of 16 wells having been installed prior to the RFI. Samples collected from downgradient wells indicate groundwater contamination (USEPA, undated).

7.1.3 RFI Program

Because these three SWMUs are located close to each other and landfilling operations at each unit have potentially impacted the local groundwater quality, they were combined into one study area, as allowed by the RCRA permit. The RFI was designed to assess whether hazardous constituents have migrated from any of the units into the groundwater.

The following existing nine wells were included in the RFI sampling program-16-1, 16-3, 16-4, MW9, C1, C4, CDH-2, WC1-A, and WC2-A. Four additional monitoring wells were installed to provide a more complete upgradient and downgradient sampling regime for all three units. As discussed in Section 3.7.1, groundwater sampling conducted in 1984 and 1985 indicated explosives constituents in wells supposedly downgradient of SWMU 51. Two of the proposed new wells were needed around SWMU 51 to provide more complete upgradient and downgradient sampling locations. Two wells were needed north and west of SWMU 28 to provide sampling locations in these directions. Locations for these wells (28MW1, 28MW2, 51MW1, and 51MW2) are shown in Figure 7-3.

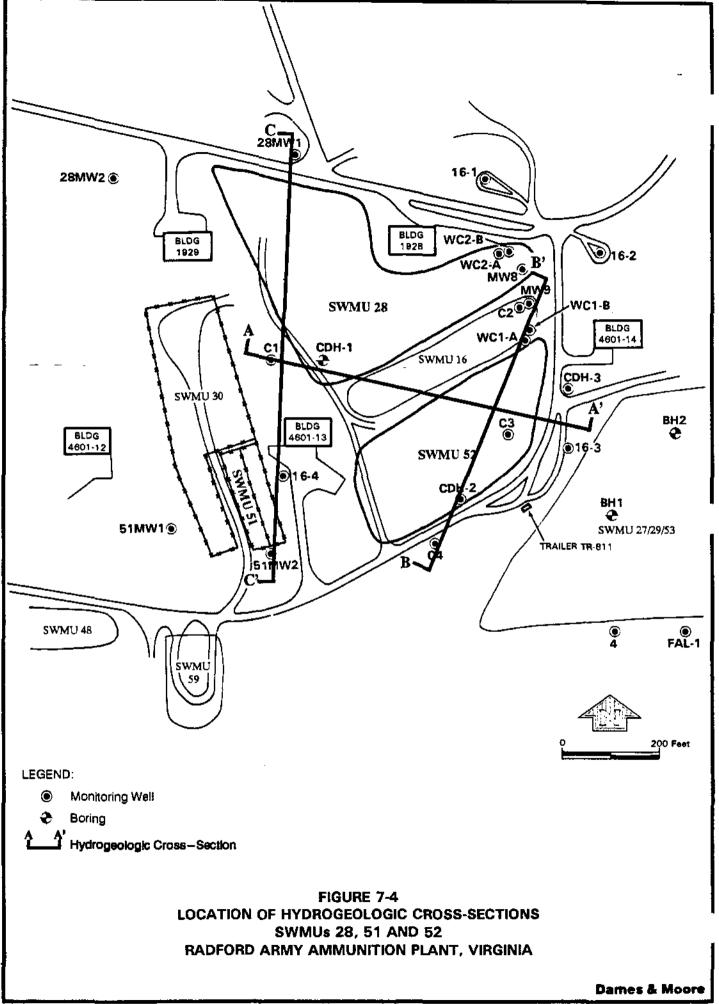
Five representative soil samples were collected from the well borings for physical testing—at least one sample from each boring. Following well installation, the new wells were developed as outlined in Section 3.4.2. Nine of the existing wells and four new wells were sampled and analyzed for metals, VOCs, SVOCs, explosives, TOC, TOX, and pH. The physical setting of the three SWMUs only allows for the potential for off-site migration of contaminants via groundwater. No surface soil samples were collected for chemical analyses because the waste in each SWMU was buried and covered with clean fill. No subsurface soil samples from below the fill material were collected because to do so would result in penetration of the landfill and possible release of contaminants.

As described in Section 3.8, surveying was conducted to determine location coordinates and elevations of the monitoring wells and the exact SWMU boundaries. A topographic survey was also conducted resulting in mapping with a scale of 1 inch equals

100 feet and a contour interval of 2 feet. Well coordinates are presented in Appendix F and Insert 5 is the topographic survey of the study area.

7.2 <u>ENVIRONMENTAL SETTING</u>

7.2.1 Topography


SWMUs 28, 51, and 52 are located on a plateau in the southeastern section of the Horseshoe Area. SWMUs 16 and 30 are also on the same plateau in this area. The elevation of the plateau ranges from approximately 1,810 to 1,840 feet msl. The plateau is generally flat to slightly sloping. The SWMU 16 cap results in an even more raised area on the plateau. SWMU 52 is the furthest SWMU on the plateau to the southeast. SWMU 52 gently slopes towards the east. The maximum elevation of SWMU 52 is approximately 1,834 feet msl in the northwest corner and the minimum elevation is approximately 1,811 to 1,813 feet msl along the east boundary.

7.2.2 <u>Hydrogeology</u>

The hydrogeology of the SWMUs 28/51/52 area was investigated for the RFI through the drilling of four soil and rock borings and the installation of four monitoring wells to supplement the existing boring and well data. The new wells were installed to further investigate upgradient and downgradient hydrogeologic conditions in the SWMUs 28/51/52 landfill area.

7.2.2.1 <u>Geologic Units</u>. The subsurface conditions revealed by the four borings generally confirm previous investigations performed in this area. Generally, the subsurface stratigraphy consists of three distinct strata; unconsolidated alluvium, residual soils weathered from bedrock, and limestone/dolostone bedrock.

Three hydrogeologic cross-sections have been provided to illustrate the subsurface conditions (Figure 7-4). Two cross-sections developed from a previous site investigation (USACE, 1981) are included as Cross-section A-A' (Figure 7-5), trending west to east through the center of the study area, and Cross-section B-B' (Figure 7-6) trending south to north along the eastern edge of the area. Cross-section C-C' (Figure 7-7) trending north to

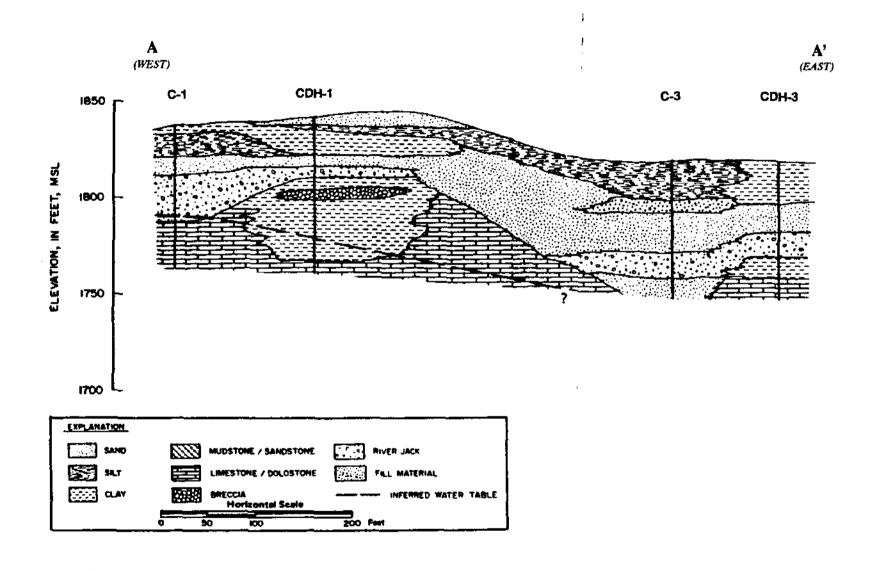


FIGURE 7-5
HYDROGEOLOGIC CROSS-SECTION A-A'
SWMUs 28, 51 AND 52
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

SOURCE: USACE, 1981.

Dames & Moore

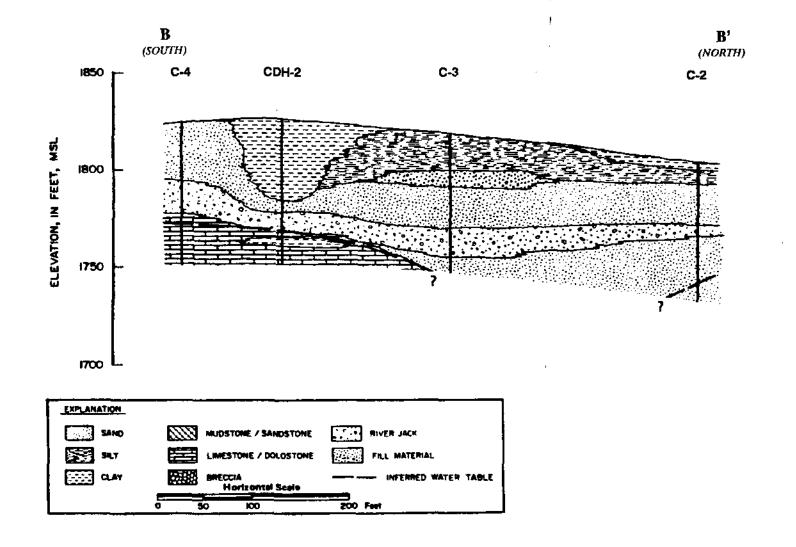
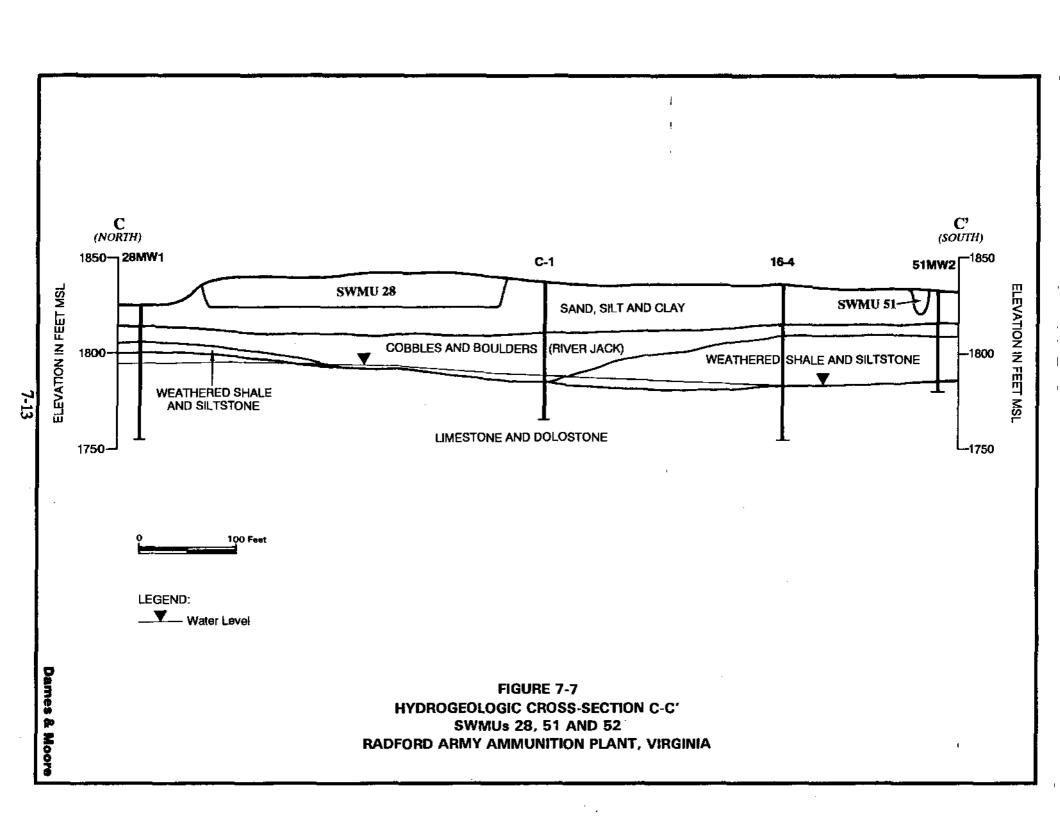
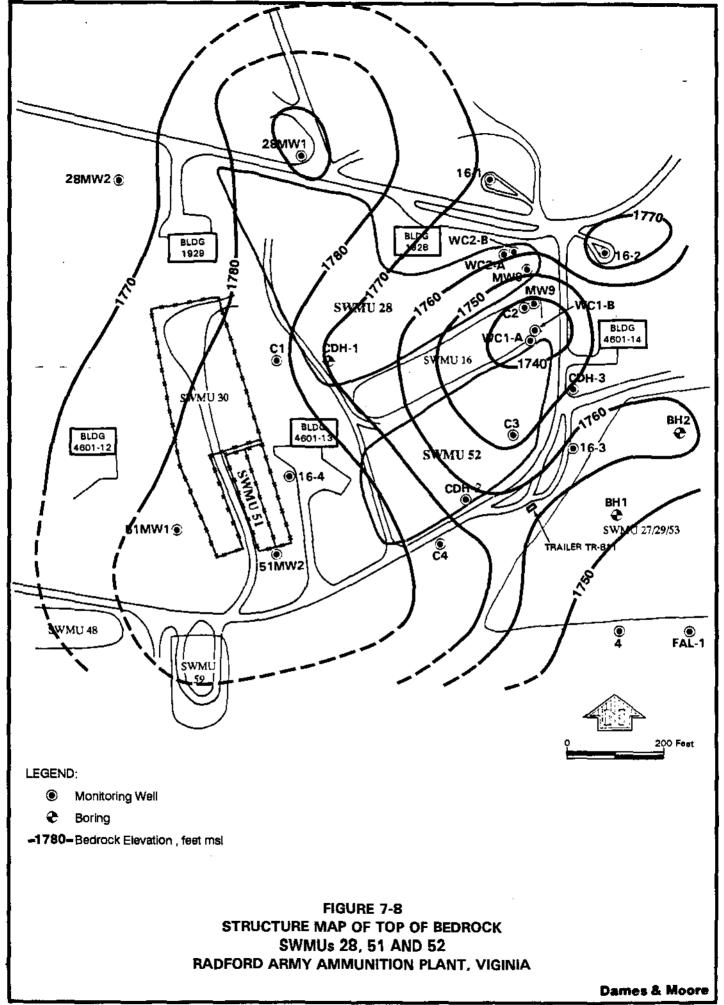



FIGURE 7-6
HYDROGEOLOGIC CROSS-SECTION B-B'
SWMUs 28, 51 AND 52
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

SOURCE ACE, 1981.

Pemes & Moore

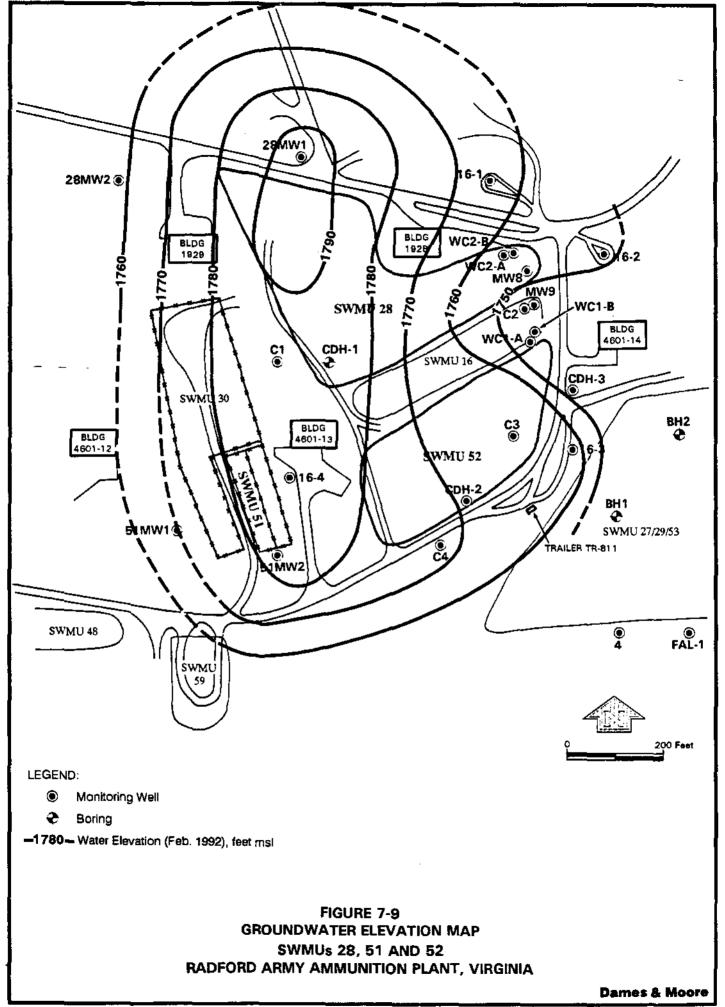


south along the western side of the study area includes subsurface data from the well borings performed for the RFI.

7.2.2.1.1 <u>Unconsolidated Sediment</u>. The area is underlain by two general units of unconsolidated deposits. The first unit is composed of terrace deposits generally consisting of reddish-brown silty clay (CL) that mantles the surface to a depth of up to 38 feet. Overlying bedrock is fine- to coarse-grained, yellowish brown sand with layers of large cobbles (river jack) found throughout the sand strata. Underlying the second unit of the alluvial deposits are fine-grained residual deposits generally described as a yellow-brown micaceous clayey silt (ML) or CL which is probably a very weathered shale and siltstone layer.

Available permeability data for the terrace deposits indicates that the clay material exhibited a permeability range from less than 3.28×10^{-6} to 1.31×10^{-4} cm/sec. Average permeability for the sand and gravel unit is 2.31×10^{-3} cm/sec with a range between 2.0×10^{-5} and 5.72×10^{-3} cm/sec (USACE, 1981).

7.2.2.1.2 Bedrock. The depth to bedrock in the landfill area varies considerably ranging from 30 to 70 feet below ground surface. As shown in Figure 7-8, the bedrock surface under the western half of the area is at a higher elevation than under the eastern half. The bedrock surface elevation decreases significantly toward the northeast where a depression is apparent. This bedrock low is likely the result of the formation of a sinkhole. Bedrock encountered in the vicinity of the landfill area consists primarily of a gray argillaceous limestone and dolomite with interbedded beds of greenish gray mudstone and siltstone. This unit is variable with intense zones of fracturing and weathering and occasional brecciated and vuggy zones. Frequent solution channels were also observed in rock cores. The high degree of weathering and fracturing was confirmed by low rock quality density (RQD) and recovery values for NX rock coring, and by the large quantities of drilling water lost to fractures when well boring 28MW2 was drilled.



7.2.2.2 Groundwater.

7.2.2.2.1 Potentiometric Surface. The groundwater below the study area is present in an unconfined aquifer with the water table encountered from 32 to 69 feet below ground surface (Table 2-4). The groundwater elevation map (Figure 7-9) illustrates the radially sloping pattern of the water table with the highest elevation present below the western side of SWMU 28 and the lowest elevation at the eastern end of SWMU 16. Even though the maximum water elevation was measured in well 28MW1, an elongated north-south water table high appears present on the entire western side of the SWMU 28 and 52 area. This high also appears to underlie SWMU 51. Observed groundwater conditions in the vicinity of monitoring well 51MW1 vary considerably from those at nearby 51MW2 and other wells in the landfill area. The groundwater elevation measured at 51MW1 during the RFI program has fluctuated seasonally from apparent water table conditions near the overburden-bedrock interface to a seasonally high perched water table condition within 5 feet of the ground surface.

7.2.2.2.2 Flow Patterns. Based on available data collected during the RFI program, groundwater flows radially from the water table, topographic and bedrock high in the western portion of the landfill area (Figure 7-9). The groundwater also appears to drain into the bedrock depression east of SWMU 28, supporting the interpretation of the depression as being a sinkhole. Groundwater below SWMU 52 appears to flow eastward or northeastward, and wells C4, CDH-2, 16-3, and WC1-A should be properly situated to act as downgradient monitoring wells. Well C1 also appears to be situated to act as an upgradient sampling location. The flow gradient (as measured from Figure 7-9) for SWMU 52 is approximately 6 percent, a fairly steep groundwater gradient.

The majority of SWMU 28 overlies groundwater which flows eastward toward the bedrock low. Wells 16-1, WC2-A, and MW9 should act as downgradient monitoring wells. The flow gradient on each side of the mound was estimated from Figure 7-9 to be approximately 9 percent. The water table mound indicates that the groundwater would flow generally to the north and west in this area. No well appears situated to act as an

upgradient well due to the water table mound and well C1 may even be somewhat downgradient of the western end of SWMU 28.

The flow pattern below SWMU 51 also appears to be radially away from the waste disposal area. The water elevation in 51MW2 was 2 feet higher than in well 16-3. This indicates that a small water table mound may be present under this SWMU. If this is true, then no upgradient monitoring location is available and these two wells and well 51MW1 are all downgradient locations.

7.2.2.3 Recharge and Discharge. The measured water table elevations and the resulting groundwater elevation map indicates that this study area overlies a water table mound. The water table aquifer is recharged by infiltration of precipitation through the permeable soils naturally found in this area. Recharge would be more likely to occur through the natural, undisturbed soils which have not been capped and graded when the landfills were closed. The series of trenches dug for SWMU 30 and SWMU 51 waste disposal have not been capped and graded, thereby allowing for increased infiltration of precipitation and recharge to the aquifer.

Groundwater flowing from the study area would eventually discharge into the New River without migrating to any other off-post areas. The groundwater flows radially from SWMU 28/51/52. (Insert 2) to all parts of the eastern end of the Horseshoe Area.

7.2.2.2.4 Aquifer Properties. In order to further investigate the groundwater aquifer in the landfill area, three rising head slug tests were performed on wells installed on the west and south sides of the SWMU 28 and 51 landfills. The calculated hydraulic conductivities for these wells ranged from 6.27 x 10⁻⁷ cm/sec to 4.17 x 10⁻⁵ cm/sec. Data and results from the rising head slug tests are summarized in Table 7-1. These hydraulic conductivity values are within the normal range of values for flow within fractured limestone and dolomite bedrock (Freeze and Cherry, 1979). However, these conductivity values are generally less than those hydraulic conductivity values given for the wells tested on the east side of the landfill in

Table 7-1
Summary of Hydraulic Conductivity
SWMUs 28, 51 and 52
Radford Army Ammunition Plant, Virginia

Well_	Hydraulic Conductivity (cm/sec)	Reference
WC1-A	9.14 x 10 ⁻⁶	USACE, 1988
WC1-B	3.12 x 10 ⁻⁴	USACE, 1988
WC2-A	5.02 x 10 ⁻⁶	USACE, 1988
WC2-B	3.37×10^{-7}	USACE, 1988
28MW1	1.06×10^{-6}	RCRA Facility Investigation
28MW2	6.27×10^{-7}	RCRA Facility Investigation
51MW2	4.17×10^{-5}	RCRA Facility Investigation

1987 (F&R, 1987a) where the hydraulic conductivities calculated for those wells ranged from 9.5×10^{-3} cm/sec to 1.2×10^{-5} cm/sec (Table 7-1). These values indicate groundwater flow is through more fractured/weathered bedrock likely attributable to karst features in this area. Utilizing groundwater level measurements taken during the RFI program and the above hydraulic conductivity values, an estimated groundwater flow velocity below the landfill area may be determined as detailed below.

Assuming a hydraulic conductivity value (k) of 4.17 x 10⁻⁵ cm/sec calculated for 51MW2, an average hydraulic gradient (i) of 9 percent observed west of the landfill, and an average published value of 10 percent for the porosity (n) of limestone (Freeze and Cherry, 1979), the groundwater flow velocity through the formation may be calculated using a form of Darcy's law as shown below:

$$V = \underline{ki}$$

Substituting the above values the calculated groundwater flow velocity below the western portion of the landfill is 37 feet/year. By substituting the average hydraulic conductivity value of 1 x 10⁻⁶ cm/sec observed in the vicinity of 28MW1 and 28MW2 into the above equation results in an estimated groundwater velocity of 1 foot/year. These results indicate that groundwater flow is variable through the fractured rock and is likely dependent on the nature of fracture and solution features. It would be expected that groundwater flow velocity would be significantly greater where bedrock is highly fractured with solution channels.

For comparison the groundwater flow velocity may also be calculated beneath the eastern portion of the landfill area utilizing hydraulic conductivity values from previous investigations (F&R, 1987a). Assuming an average hydraulic conductivity value (k) of 2 x 10⁻⁴ cm/sec derived from values listed in Table 7-1, an average hydraulic gradient (i) of 9 percent calculated for the eastern landfill area, and an average porosity (n) of 10 percent for limestone, the resulting groundwater velocity calculated from the Darcy equation would be approximately 186 feet/year. It is expected that the groundwater flow velocity in the vicinity of karst features would be significantly higher.

7.2.2.2.5 Hydrogeologic Interrelationships. The significant hydrogeologic features of the landfill study area are: 1) the depth to the water table is significantly below the bottom of the fill (15 to 35 feet); 2) the sinkhole underlying the sediment below the northeastern corner of the study area acts as a groundwater drain; 3) the water table generally coincides with the bedrock surface and, therefore, groundwater flow is predominantly through the fractured bedrock; 4) groundwater can flow in every direction away from the area, but discharge occurs into the New River prior to leaving RAAP; and 5) groundwater originates at the site via infiltration of precipitation through unconsolidated sediments.

These hydrogeologic features combine to form a disposal area which can be ideal for waste landfilling if proper management practices are utilized. Groundwater recharge can be controlled through the proper capping and drainage of the area and, therefore, migration of groundwater can also be controlled. The deep water table means that neither surface nor groundwater will interact with the waste if infiltration of precipitation is prevented. Additionally, the location of the study area in the Horseshoe Area does not allow for contaminants to migrate to off-post well users through the groundwater, since discharge will occur into the New River.

7.2.3 Soils

Remediation of soils is not a potential corrective action since these SWMUs are landfill disposal areas and potential contamination can occur through groundwater. Surface soils have not been impacted by SWMU practices and all exposed areas are actually clean fill used to cover the waste. However, a summary of the USDA soil properties may be useful since infiltration of precipitation is an important mechanism for recharging the groundwater.

7.2.3.1 <u>USDA Soil Classification</u>. The landfill area was constructed upon Braddock loam (2-7 percent slope) and Cotaco loam (2-7 percent slope) soils (SCS, 1985a). Braddock soils have a USCS classification of CL, SM, ML, and SC loam from 0 to 7 inches and MH, CH, CL, and SC clay loam, gravelly sandy clay and clay from 7 to 60 inches. The AASHTO

classifications for 0 to 7 inches are A-1 and A-4, while the 7 to 60 inch layer are classified as A-7 and A-2. Cotaco soils are classified in the USCS as ML, CL-ML, SM, and SM-SC loam from 0 to 15 inches. The 15 to 60 inch layer is classified as SC, SM, ML, and CL sandy clay loam, clay loam and loam. AASHTO classifies the 0 to 15 inch layer as A-4 and the 15 to 60 inch layer as A-2, A-4, and A-6.

7.2.3.2 Physical and Chemical Properties. According to the SCS (1985a), Braddock soils from the 0 to 7 inch layer have 10 to 25 percent clay, 1.20 to 1.50 g/cm³ moist bulk density, 0.6 to 6.0 inches per hour permeability, 0.14 to 0.19 inches per inch available water capacity and a low shrink-swell potential. The 7 to 60 inch layer is similar except that this layer has 35 to 55 percent clay, 0.6 to 2.0 inches per hour permeability and a moderate shrink-swell potential. The 0 to 15 inch Cotaco layer has 7 to 27 percent clay, but is otherwise the same as the 0 to 7 inch Braddock layer. The 15 to 60 inch Cotaco layer differs from the 7 to 60 inch Braddock only with 18-35 percent clay, 0.07 to 0.15 inches per inch available water capacity, and a low shrink-swell potential.

Four cation-exchange capacity (CEC) tests were also performed by the USACE on selected samples of unconsolidated material (Appendix F). All samples tested were silty sand or clay exhibiting a CEC between 2.5 and 8.5 meq/100 gm of soil which indicates a limited availability of excess ions in these soil types.

7.2.3.3 Relationship to Groundwater and Bedrock. As discussed in Section 7.2.2, the water table and bedrock are found more than 35 feet below the surface and no significant interrelationship is apparent.

7.2.4 Surface Water and Sediment

Based on topography, surface water from the southern portion of SWMU 52 appears to drain to the south/southeast towards the asphalt road bordering the southern side of the SWMU. Surface drainage along the southern road will flow east then north as the road bends and follows the eastern boundary of SWMU 52. Surface water from the northern

portion of SWMU 52 appears to flow east and then north once reaching the asphalt road bordering the eastern side of the plateau. Surface runoff from SWMU 16 immediately flows northwest and southeast before entering a boundary ditch and flowing northwest until reaching drainage and storm sewers associated with the eastern paved road. The southern portion of SWMU 28 appears to discharge eastwardly into the storm sewer located to the east of SWMU 28. Surface water runoff in the northern portion of SWMU 28 appears to flow north until reaching the drainage and storm sewers associated with the road to the north of SWMU 28. Surface water along the northern road flows to the east. Storm sewers and natural drainage patterns along the paved road on the eastern boundary of the plateau appear to flow northeast and discharge into a tributary of the New River, approximately 500 feet northeast of SWMU 28. The tributary flows northeast about 700 feet where it joins with another tributary of the New River, just east of SWMU 74. The tributary flows east to this point and discharges into the New River approximately 1,500 feet east of SWMU 74 and approximately 300 feet northeast of SWMU 54.

7.3 CONTAMINATION CHARACTERIZATION

Thirteen groundwater samples were collected in the vicinity of SWMUs 28, 51 and 52. The results of the chemical analyses indicated the presence of metals, explosives, VOCs and SVOCs in groundwater (Table 7-2). The majority of the metals are common constituents of groundwater and were detected at levels expected to be present in groundwater of a limestone formation. All metal concentrations were less than the HBN criteria, and do not appear to be anomalously high and are not considered a concern at these sites.

Low levels of two explosives were detected in three groundwater samples. The explosive 1,3-dinitrobenzene (13DNB) was detected downgradient of SWMU 52 in the groundwater sample from well 16-3 at a level slightly greater than the analytical detection limit. The concentration of 13DNB was four times less than the HBN and is not considered a concern. However, concentrations of the explosive 26DNT exceeded the HBN criterion in samples from well 16-4 and 51MW2. B2EHP in sample 16-4 also exceeded the HBN

Table 7-2 !
Summary of Analytical Data For Groundwater Samples Collected At SWMUs 28, 51, & 52
Radford Army Ammunition Plant, Virginia .

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS	PQLs <u>UGL</u>	16-1 RDWC*13 04-feb-92 46.0 CGW UGL	16-1 RDWC*34 05-feb-92 46.0 CGW UGL	16-1 RDWC*33 07-feb-92 46.0 CGW UGL	16-3 RDWC*14 28-jan-92 72.0 CGW UGL	16-4 RDWC*15 23-jan-92 62.0 CGW UGL	16-4 RDWC*90 28-jan-92 62.0 CGW UGL	28MW1 RDWC*6 30-jan-92 53.0 CGW UGL	HBN UGL
TAL Inorganics ALUMINIUM ARSENIC BARIUM CALCIUM IRON LEAD MAGNESIUM MANGANESE POTASSIUM SODIUM ZINC	141 10 20 500 38.1 10 500 2.75 375 500 50	141 LT 2.54 147 69400 180 LT 1.26 29500 22.2 4190 4490 26.4	NI NI NI NI NI NI NI NI NI NI	NT NT NT NT NT NT NT NT NT NT	LT 141 LT 2.54 381 23100 LT 38.8 LT 1.26 22400 3.95 3110 922 LT 21.1	LT 141 LT 2.54 113 24700 LT 38.8 1.41 18900 LT 2.75 1800 941 LT 21.1	NT NT NT NT NT NT NT NT NT	LT 141 LT 2.54 78 27600 83.9 LT 1.26 22100 LT 2.75 1710 1330 30.9	101.500 50 1000 NSA NSA 50 NSA 3500 NSA NSA 7000
Explosives 13DNB 26DNT	0.611 0.074	NT NI	LT 0.611 LT 0.074	NT NT	0.799 LT 0.074	LT 0.611 [0.147]	NT NT	LT 0.611 LT 0.074	3.5 0.051
Volatiles 1,1,1-TRICHLOROETHANE 1,1-DICHLOROETHANE CARBON DISULFIDE METHYLENE CHLORIDE TOLUENE TRICHLOROFLUOROMETHANE	5 5 5 5 5 5	LT 0.5 LT 0.68 1.7 LT 2.3 LT 0.5 LT 1.4T	NI NT NT NI NI NI	NT NT NT NT NT	LT 0.5 LT 0.68 0.669 LT 2.3 0.51 LT 1.4	LT 0.5 B LT 0.68 LT 0.5 LT 2.3 LT 0.5 6.51	NT NT NT NI NI NI	1.49 LT 0.68 1.25 LT 2.3 LT 0.5 LT 1.4 T	200 0.4 4000 5 10000 10000
Semivolatiles BIS(2-ETHYLHEXYL) PHTHALATE	10	МT	NT	LT 4.8	LT 4.8	[8.55]	NI	LT 4.8	3
Semivolatile TICs 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 2-CYCLOHEXEN-ONE 2-ETHYHEXANOL BENZOTHIAZOLE CYCLOHEXENE OXIDE 'CLOPENTANONE LUENE	NA NA NA NA NA NA	NT NT NT NT NT NT NT	NI NI NI NI NI NI NI	ND ND ND ND ND ND ND ND	7 S 7 S 5 S ND 5 S ND 9 S ND	ND ND ND ND ND ND ND	NT NT NT NT NT NT NT	ND ND ND ND ND ND ND ND ND ND ND ND ND	NSA NSA NSA NSA NSA NSA NSA

Table 7-2 (Cont'd)

	SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	16-1 RDWC*13 04-feb-92 46.0 CGW UGL	16-1 RDWC*34 05-feb-92 46.0 CGW UGL	16-1 RDWC*33 07-feb-92 46.0 CGW UGL	16-3 RDWC*14 28-jan-92 72.0 CGW UGL	16-4 RDWC*15 23-jan-92 62.0 CGW UGL	16-4 RDWC*90 28-jan-92 62.0 CGW UGL	28MW1 RDWC*6 30jan92 53.0 CGW UGL	HBN UGL
Semivolatile TICs										
TOTAL UNKNOWNTICs		NA	ND	ND	(2)15	(13)1046	(7)193	ND	ND	NSA
<u>Other</u>										
TOTAL ORGANIC CARBON		1000	36.7	NT	NΤ	11.3	NΓ	2.41	3.75	NSA
TOTAL ORGANIC HALOGENS		1	180	NT	NT	145	NT	150	59.7	NSA
рH		NA	7.32 K	NT	NΓ	7.92	NT	8.06	7.29 K	NSA

Table 7-2 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS	PQLs UGL	28MW2 RDWC*7 04feb92 76.0 CGW <u>UGL</u>	51MW1 RDWC*10 28-jan-92 30.0 CGW <u>UGL</u>	51MW2 RDWC*11 23-jan-92 48.0 CGW <u>UGL</u>	51MW2. RDWC*89 28-jan-92 48.0 CGW UGL	C1 RDWC*8 30-jan-92 63.0 CGW <u>UGL</u>	C4 RDWC*18 04-feb-92 63.0 CGW UGL	CDH-2 RDWC*20 23-jan-92 55.0 CGW UGL	HBN UGL
TAL Inorganics ALUMINIUM ARSENIC BARIUM CALCIUM IRON LEAD MAGNESIUM MANGANESE POTASSIUM SODIUM ZINC	141 10 20 500 38.1 10 500 2.75 375 500 50	LT 141 LT 2.54 268 46800 44.3 LT 1.26 23600 3.46 2670 4400 49.4	LT 141 LT 2.54 9.72 18800 41.4 LT 1.26 4840 3.58 2840 1340 LT 21.1	LT 141 LT 2.54 11.5 36400 LT 38.8 1.52 10500 LT 2.75 1290 1560 LT 21.1	NT NI NI NI NI NI NI NI NI	LT 141 LT 2.54 42.7 37200 LT 38.8 2.82 15600 LT 2.75 2580 2540 LT 21.1	LT 141 6.4 125 45100 72.4 LT 1.26 21100 135 1190 2420 LT 21.1	LT 141 LT 2.54 108 76600 LT 38.8 LT 1.26 27400 LT 2.75 2430 2800 LT 21.1	101500 50 1000 NSA NSA 50 NSA 3500 NSA NSA 7000
Explosives 13DNB 26DNT	0.611 0.074	LT 0.611 LT 0.074	LT 0.611 LT 0.074	LT 0.611 [0.126]	NT NT	LT 0.611 LT 0.074	LT 0.611 LT 0.074	LT 0.611 LT 0.074	3.5 0.051
Volatiles 1,1,1-TRICHLOROETHANE 1,1-DICHLOROETHANE CARBON DISULFIDE METHYLENE CHLORIDE TOLUENE TRICHLOROFLUOROMETHANE	5 5 5 5 5	LT 0.5 LT 0.68 18.1 LT 2.3 LT 0.5 LT 1.4T	LT 0.5 LT 0.68 LT 0.5 LT 2.3 LT 0.5 LT 1.4	LT 0.5 B LT 0.68 LT 0.5 LT 2.3 LT 0.5 2.51	NT NT NT NT NT	4.95 LT 0.68 1.13 LT 2.3 LT 0.5 9.62 T	LT 0.5 LT 0.68 19.3 LT 2.3 LT 0.5 2.1 T	LT 0.5 B LT 0.68 LT 0.5 LT 2.3 LT 0.5 LT 1.4	200 0.4 4000 5 10000 10000
Semivolatiles BIS(2-ETHYLHEXYL) PHTHALATE	10	LT 4.8	LT 4.8	LT 4.8	NT	LT 4.8	LT 4.8	LT 4.8	3
Semivolatile TICs 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 2-CYCLOHEXEN-ONE 2-ETHYHEXANOL BENZOTHIAZOLE CYCLOHEXENE OXIDE CYCLOPENTANONE TOLUENE	NA NA NA NA NA NA NA	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NT NT NT NT NT NT NT	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND 6 S ND	NSA NSA NSA NSA NSA NSA NSA

Table 7-2 (Cont'd)

FIELI S. D. DEPTH MAT	ATE I (ft)	28MW2 RDWC*7 04-feb-92 76.0 CGW UGL	51MW1 RDWC*10 28-jan-92 30.0 CGW UGL	51MW2 RDWC*11 23-jan-92 48.0 CGW UGL	51MW2 RDWC*89 28-jan-92 48.0 CGW UGL	C1 RDWC*8 30-jan-92 63.0 CGW UGL	C4 RDWC*18 04-feb-92 63.0 CGW UGL	CDH-2 RDWC*20 23-jan-92 55.0 CGW UGL	HBN <u>UGL</u>
Semivolatile TICs									
TOTAL UNKNOWN TICs	NA	(1)5	(4)26	ND	NT	(6)96	(3)37	(2)170	NSA
<u>Other</u>									
TOTAL ORGANIC CARBON	1000	4.06	4.55	NT	3.83	37.1	7.33	NT	NSA
TOTAL ORGANIC HALOGENS	1	82.5	158	NT	174	97	75.8	NT	NSA
pH	NA	8.13 K	8.63	NΓ	8.81	7.34 K	7.53 K	NT	NSA

_				
1.0	Ne i	1-2.	(Co	nt'd'

1

					1			
			Table	7-2 (Cont'd)	į			
SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	CDH-2 RDWC*91 28-jan-92 55.0 CGW <u>UGL</u>	MW9 RDWC*16 29-jan-92 70.0 CGW UGL	MW9 RDWC*4 29-jan-92 70.0 CGW UGL	WC1-A RDWC*21 24-jsn-92 89.0 CGW UGL	WC1 – A RDWC*92 28 – jan – 92 89.0 CGW UGL	WC2A RDWC*22 29-jan-92 65.0 CGW UGL	HBN <u>UGL</u>
TAL Inorganics			t m 4 44	7 PM 4 4 4	T		T. T. 4.4	101500
ALUMINIUM ARSENIC	141 10	NT NT	LT 141 LT 2.54	LT 141 LT 2.54	LT 141 LT 2.54	NT NT	LT 141 LT 2.54	101500 50
BARIUM	20	NT	165	165	136	NT NI	132	1000
CALCIUM	500	NT	59900	61700	76100	NT	23200	NSA
IRON	38.1	NT	LT 38.8	LT 38.8	LT 38.8	NT	LT 38.8	NSA
LEAD	10	NT	LT 1.26	LT 1.26	5.64	NI	LT 1.26	50
MAGNESIUM	500	NT	23500	24200	29800	NT	18500	NSA
MANGANESE	2.75	NT	4.37	3.67	23.9	NT	18.8	3500
POTASSIUM	375	NΓ	6190	6660	7050	NT	3370	NSA
SODIUM	500	NΓ	7400	7410	7670	NT	4910	NSA
ZINC	50	NT	LT 21.1	LT 21.1	LT 21.1	NT	LT 21.1	7000
Explosives								
13DNB	0.611	NT	LT 0.611	LT 0.611	LT 0.611	NΤ	LT 0.611	3.5
26DNT	0.074	NŢ	LT 0.074	LT 0.074	LT 0.074	NT	LT 0.074	0.051
Volatiles					•			
1,1,1-TRICHLOROETHANE	5	NT	4.36	4.26	LT 0.5 B	NT	LT 0.5	200
1,1,1-1 RICHLOROETHANE 1,1-DICHLOROETHANE	5 5	NT NT	4.30 [1.42]	4.26 [1.32]	LT 0.68	NT	LT 0.68	0.4
CARBON DISULFIDE	5	NΤ	LT 0.5	LT 0.5	0.998	NT	LT 0.5	4000
METHYLENE CHLORIDE	5	NT	[6.6]	[5.66]	LT 2.3	NT	[5.57]	5
TOLUENE	5	NT	LT 0.5	LT 0.5	LT 0.5	NT	LT 0.5	10000
TRICHLOROFLUOROMETHANE	5	NT	1.9	1.8	LT 1.4	NT	LT 1.4	10000
Semivolatiles								
BIS(2-ETHYLHEXYL) PHTHALATE	10	NT	LT 4.8	LT 4.8	[5.27]	NT	LT 4.8	3
Semivolatile TICs								
1,1,2,2-TETRACHLOROETHANE	NA	NT	ND	ND	ND	NT	ND	NSA
1,1,2-TRICHLOROETHANE	NA	NI	ND	ND	ND	NT	ND	NSA
2-CYCLOHEXEN-ONE	NA	NT	ND	ND	ND	NT	ND	NSA
2-ETHYHEXANOL	NA	NT	7 S	6 S	ND	NT	ND	NSA
BENZOTHIAZOLE	NA	NT	ND	ND	ND	NT	ND	NSA
CYCLOHEXENE OXIDE	NA	NΓ	ND	ND	ND	NT	ND	NSA
CYCLOPENTANONE	NA	NT	ND	ND	ND	NT	ND	NSA
TOLUENE	NA	NT	ND	ND	ND	NT	ND	NSA.

Table 7-2 (Cont'd)

FII S DEF		PQLs	CDH-2 RDWC*91 28-jan-92 55.0 CGW UGL	MW9 RDWC*16 29-jan-92 70.0 CGW UGL	MW9 RDWC*4 29-jan-92 70.0 CGW UGL	WC1-A RDWC*21 24-jan-92 89.0 CGW UGL	WC1-A RDWC*92 28-jan-92 89.0 CGW UGL	WC2-A RDWC*22 29-jan-92 65.0 CGW UGL	HBN UGL
Semivolatile TICs									
TOTAL UNKNOWNTICS	ľ	NA	NΓ	ND	ND	(4)69	NI	ND	NSA
<u>Other</u>									
TOTAL ORGANIC CARBON	1	1000	5.25	3.02	4.64	NT	11.4	9.47	NSA
TOTAL ORGANIC HALOGENS	1	l	212	140	177	NΓ	51.2	118	NSA
pН	r	NA	6.99	7.42 K	7.62 K	NT	7.14	7.99 K	NSA

Footnotes:

CGW = Chemical groundwater.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

K = Indicates holding time for extraction and preparation was not met, but data quality is not believed to be affected.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

NT = Not tested; parameters were not tested (included) in the sample analyses.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

S = Results are based on an internal standard; flag is used for TICs detected in library scans.

T = Analyte was detected in corresponding trip blank; values are flagged if the sample concentration is less than 10 times the trip blank concentration for common laboratory constituents and 5 times for all other constituents.

TAL = Target Analyte List.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

UGL = Micrograms per liter.

- () = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.
- [] = Brackets indicate that the detected concentration exceeds the HBN.

B = Analyte was detected in corresponding method blank; values are flagged if the sample concentration is less than 10 times the method blank concentration for common laboratory constituents and 5 times for all other constituents.

criterion. The samples were collected east and south of the TNT Sludge Neutralization Disposal Area (SWMU 51). However, these constituents were not detected in groundwater west of SWMU 51 (i.e., sample 51MW1). Although only slightly greater than the HBN criteria, 26DNT and B2EHP may be a concern at this site. Soils at 51MW1 were different from those found at 16-4 and 51MW2 and this well could be sampling a perched groundwater zone and not the unconfined aquifer.

Concentrations of the VOC 1,1-dichloroethane (11DCLE) in the samples from MW9 exceeded the HBN criterion and may be a concern. Both samples were collected in the area downgradient of SWMU 16. No other detection of 11DCLE occurred. VOC B2EHP also exceeded the HBN criterion in the only two samples in which it was detected. B2EHP was detected in method blanks and is, therefore, considered a laboratory artifact and not considered a concern since no pattern of detection is apparent at the site. Methylene chloride was also detected in well MW9 samples and in the well WC2-A sample, both wells located downgradient of SWMU 16 near the groundwater drain. Because the duplicate MW9 samples are almost identical, this VOC is probably present in the groundwater and is not a laboratory contaminant. However, the results of other groundwater samples collected in the vicinity of SWMU 52 (i.e., C4, CDH-2 and 16-3), the nature of the material disposed of in SWMU 16 and the location of MW9 and WC2-A indicated that the presence of these constituents in groundwater is likely due to SWMU 16, the Closed Hazardous Waste Landfill.

With the exception of 11DCLE and methylene chloride, the remaining VOCs and SVOC TICs are reported at trace concentrations several orders of magnitude less than available HBNs and are not considered a concern. Toluene was reported in only 1 of 13 samples, was marginally above the analytical detection limit of 0.5 ug/l and is also a common artifact of laboratory analysis. Although not detected in the laboratory method blank, toluene in sample P-1 is most likely a laboratory artifact. Other detected VOCs, such as 1,1,1-trichloroethane and trichlorofluoromethane, were reported in method and trip blanks, and could be analytical artifacts. Because the concentrations are so low and their origins are uncertain, these VOCs are not considered to be a concern at this site.

7.4 BASELINE RISK ASSESSMENT FOR SWMUs 28, 51, AND 52-ACTIVE SANITARY LANDFILL THE THE SANITARY LANDFILL AND CLOSED SANITARY LANDFILL

Based on the contamination assessment presented in Section 7.3, three contaminants of concern-26DNT, 11DCLE, and methylene chloride—have been identified for groundwater downgradient of SWMUs 28, 51, and 52. 26DNT is attributable to SWMU 51, but the other two contaminants appear related to SWMU 16 rather than to the RFI SWMUs. Samples were not collected from other environmental media. The potential impact of these contaminants in site groundwater to human health and the environment is discussed below in Sections 7.4.1 and 7.4.2, respectively.

7.4.1 <u>Human Health Evaluation</u>

No groundwater wells other than for monitoring purposes are located downgradient of SWMUs 28, 51, and 52. Groundwater in the vicinity of these SWMUs generally flows radially away from the center of the landfill area and may discharge to the New River. As discussed in Section 2.5, future land use is considered to be similar to the current land use scenario--i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development of RAAP. Therefore, it is highly unlikely that groundwater wells would be installed in the future in the vicinity of SWMUs 28, 51, and 52. Based on this evaluation, potential groundwater exposure pathways are not considered operable under the current or future land use scenario.

As discussed above, there is the potential for discharge of groundwater contamination to the New River. Persons boating, fishing, or swimming in the river could potentially be exposed to contaminants migrating from SWMUs 28, 51, and 52 via shallow groundwater. In addition, a drinking water intake is located 6 miles downstream of RAAP. However, due to the significant capacity of the river which would result in significant dilution, and the low levels of 26DNT (maximum concentration of 0.147 ug/l), methylene chloride (maximum concentration of 6.6 ug/l) and 11DCLE (1.42 ug/l) detected in groundwater, which were less than an order of magnitude above their HBNs, potential exposure is considered negligible.

Therefore, these potential exposure pathways are not considered significant and are not evaluated further.

7.4.2 Environmental Evaluation

As discussed above, there is the potential for discharge of groundwater contamination to the New River, which could potentially impact aquatic life. Although data are insufficient for establishing aquatic life criteria for 26DNT, the lowest observed effect level (LOEL) for chronic effects to freshwater aquatic life is reported as 230 ug/l (USEPA, 1986). Because the maximum concentration of 26DNT detected in groundwater is 0.147 ug/l and significant dilution would occur upon discharge of groundwater to the New River, this detection of 26DNT in SWMU 28, 51, and 52 groundwater does not appear to be of environmental concern.

AWQC are not available for 11DCLE. However, because the maximum detected concentration of 11DCLE in groundwater is 1.42 ug/l and significant dilution would occur immediately upon discharge of groundwater to the New River, this detection of 11DCLE in SWMU 28, 51, and 52 groundwater does not appear to be of environmental concern.

7.4.3 Conclusions of Human Health and Environmental Evaluation

Although 26DNT, 11DCLE, and methylene chloride were detected above their HBNs, due to the lack of groundwater receptors and the fact that significant dilution would immediately occur upon discharge of groundwater to the New River, resulting in insignificant exposure, the detection of these constituents in site groundwater does not appear to present a current or potential future human health risk or environmental threat.

7.5 SUMMARY AND CONCLUSIONS

The RFI sampling program has provided chemical data for evaluating the impact SWMUs 28, 51, and 52 are having on the groundwater migrating from the combined landfill area. The results of the RFI boring and well installation program, in conjunction with the previous site investigations, has been used to define the hydrogeologic properties of the subsurface. The physical and chemical investigations have led to the following conclusions:

- Between 35 and 80 feet of unconsolidated sediments are present above the karstic limestone/dolostone Elbrook Formation.
- An unconfined groundwater table approximately coincidental with the bedrock surface is present below the study area.
- Groundwater flows radially from the landfill area. A groundwater mound is
 present underneath the western side study area which is recharged from
 infiltration of precipitation.
- The groundwater flow of the unconfined aquifer is very variable, calculated to be at various velocities up to 200 feet per year, but the true flow through the karst bedrock can locally be much greater.
- The waste present at SWMUs 28, 51, and 52 is positioned in subsurface burial trenches and covered with clean fill. No waste is exposed at the surface and surface runoff is not impacted.
- Metals concentrations in the groundwater samples appear representative of natural conditions with no anomalously high concentrations detected for any analyte.
- One explosive, two VOCs and one SVOC were detected in the groundwater samples at concentrations above the HBNs--26DNT, 1,1-dichloroethane, methylene chloride and bis(2-ethylhexyl) phthlate.
- The explosive 26DNT was only detected in two wells (16-4 and 51MW2) adjacent to SWMU 51, TNT Neutralization Sludge Disposal Area. The VOC 1,1-dichloroethane was only detected in a well (MW9) directly downgradient of SWMU 16, Hazardous Waste Landfill which indicates that the RFI SWMUs are not the source. The VOC methylene chloride was only detected in two wells (MW9 and WC2-A) at the northeast corner of the study area and are probably due to migration from SWMU 16. The SVOC bis(2-ethylhexyl) phthlate was found in only two samples from widely spaced wells and in

method blank samples, and is considered a laboratory contaminant and not a site contaminant.

- One explosive, four VOCs, and several SVOC TICs were detected sporadically around the site at concentrations below HBNs.
- Three contaminants of concern-26DNT, 11DCLE, and methylene chloridewere evaluated in the Baseline Risk Assessment. No current or potential future human health risk or environmental threat was identified.

7.6 RECOMMENDED ACTION

A Corrective Measures Study is recommended for one of the SWMUs included in this study area. The RFI for SWMUs 28, 51, and 52, has identified two possible instances of migration of contaminants from the combined landfill area. Two contaminants at concentrations above HBNs were detected in wells at the northeast corner of the study area, but these contaminants are most likely due to SWMU 16, Closed Hazardous Waste Landfill and not the RFI SWMUs. The other contaminant migration problem is the detection of one explosive in samples from two wells next to SWMU 51, TNT Neutralization Sludge Disposal Area. The following recommendations address these two identified problems.

A Corrective Measures Study for the purpose of isolating the waste and preventing leachate generation is recommended for the SWMU 51 area. The explosive detected in the two wells next to SWMU 51 probably has its source due to infiltration of precipitation into this disposal area and the adjacent SWMU 30 disposal area, which allows for leachate generation and contaminant migration to the groundwater. These SWMUs have not been capped with low permeability materials and no surface water diversion measures have been constructed. The placement of a suitable cap and surface water diversion structures is the recommended corrective action alternative for SWMU 51 and SWMU 30 in order to reduce the potential for contaminant migration. Methods of capping using both natural and synthetic liners should be evaluated as well as the proper design and routing of a surface water diversion system. The natural conditions have been considered in recommending the capping and surface drainage corrective action alternative rather than other alternatives such

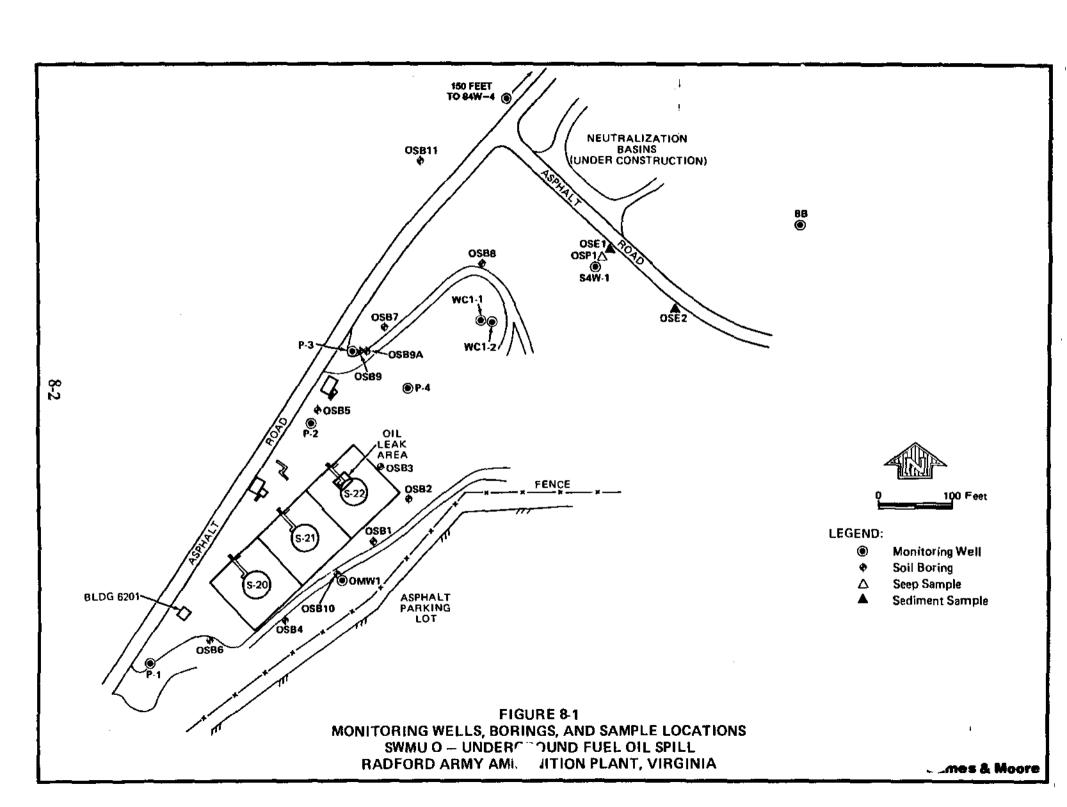
as fixing the waste in place, excavation, off-site disposal or incineration. The low levels of detected contamination and the favorable hydrogeologic conditions allow for the possible implementation of this relatively simple corrective action. The three wells around SWMU 51 should continue to be monitored for explosives to insure that the cap is reducing infiltration of contaminant concentrations as planned.

The exceedances of HBNs in groundwater samples collected from wells downgradient of SWMU 16 should be evaluated through the existing closure requirements by which this landfill is governed. The cap and surface water diversion structures should be inspected to insure that no surface water infiltration is occurring. The construction of appropriate caps and surface water diversion methods for the entire combined landfill area is also recommended when SWMU 28 is closed.

The hydrogeologic conditions of this area are ideal such that with proper maintenance of the landfills prevention of precipitation infiltration will result in little or no leachate generation and, therefore, little or no contaminant migration into groundwater.

8.0 RCRA FACILITY INVESTIGATION OF SWMU O, UNDERGROUND FUEL OIL SPILL

8.1 <u>SWMU O INVESTIGATION PROGRAM</u>


8.1.1 SWMU History

This unit is located in the east section of the Main Manufacturing Area, southwest of the Inert Gas Plant (Figure 8-1 and Insert 6). It consists of three 269,000-gallon aboveground storage tanks that are situated on a concrete base and surrounded by a concrete secondary containment system. Two of the tanks contain fuel oil; the southwesternmost tank contains alcohol. The tanks are located on the southeast side of a drainage valley that slopes gently to the northeast before dropping 30 feet down a steep scarp on the north (Insert 6). At the base of the scarp is the site of the former Acidic Wastewater Lagoon (SWMU 4). SWMU 4 has been closed and new neutralization basins are being constructed at the same location (Figure 8-1).

8.1.2 Previous Investigations

In 1982, oil-contaminated water was encountered during the installation of one of the monitoring wells around SWMU 4. During subsequent field investigations at SWMU 4, up to 6 inches of oil was measured floating on top of the groundwater in well W-1 (later renamed S4W-1). During development of well S4W-1, a large quantity of oil-contaminated water was flushed out of several seeps that discharge along the steep scarp next to the well. A subsequent investigation concluded that an underground pipeline connecting a filling station to the tanks had leaked. The station was reportedly located in the office area southeast of the tanks. A pressure test on the line indicated leakage, and the line was replaced. An oil audit originally estimated the leakage quantity to be 80,000 gallons, but a revised audit placed the leakage at approximately 3,000 gallons (USACE, 1984).

During the March 1990 facility visit, plant personnel stated that the leaking fuel line was not a filling pipeline, as described in the 1982 investigation, but a discharge line that

ran from the northeasternmost fuel tank to a pumping station located a short distance to the north (Insert 6). This line was subsequently replaced with an aboveground line.

In 1983, four monitoring wells were installed at SWMU O to characterize groundwater flow and quality at the site. These data assisted in determining the source, extent, and severity of oil contamination known to exist in the groundwater immediately downgradient of SWMU O. One upgradient and three downgradient monitoring wells were installed. The upgradient well was designated P-1, and the downgradient wells were designated P-2, P-3, and P-4 (Figure 8-1). Additional downgradient wells have been installed as part of an investigation of SWMU 4 northeast of SWMU O. These wells have not been sampled for fuel-related contaminants.

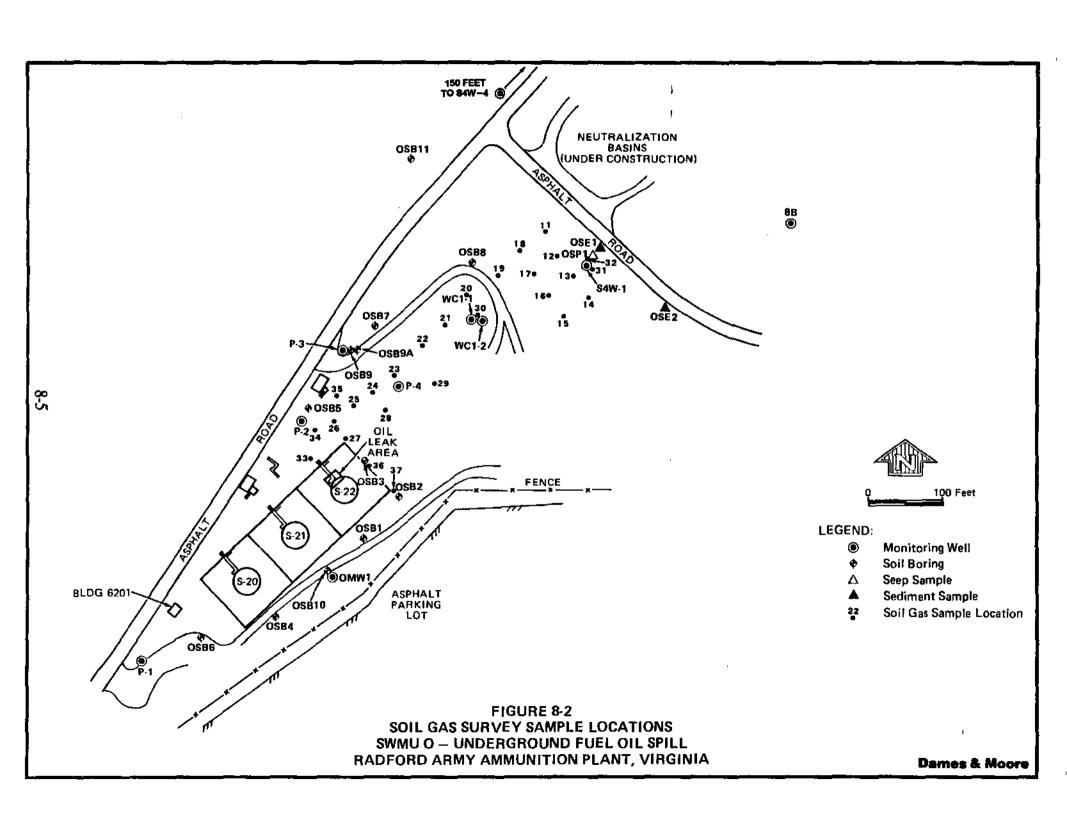
Analytical results indicated high fuel content in well S4W-1 only, with the next highest concentration of fuel constituents in well W-2 (later renamed S4W-2). Because of the low levels in other wells, it was concluded that wells P-1, P-2, P-3, and P-4, and SWMU 4 wells W-3 (S4W-3) and W-4 (S4W-4) were not located within the major contaminant plume. The explanation for low concentrations of oil between these locations was that the main oil plume probably passed through this region via a narrow sand/gravel channel imbedded in low-permeability sediments, which would not easily permit a dispersed flow of oil through the soils and groundwater. If this was the case, some oil residual would remain in the soils that the oil passed through and would be detectable at much higher concentrations than were obtained during the sampling. Therefore, monitoring wells P-2, P-3, and P-4 most probably were installed in locations outside of the oil-contaminated groundwater flow channel.

Plant personnel stated that following periods of heavy rain, some oil is still observed seeping from the spring at the bottom of the scarp.

In October 1985 a terrain conductivity survey was performed in the vicinity of SWMU 4, for the purpose of delineating subsurface conductivity anomalies—which could indicate

contaminant plumes. Due to the proximity of SWMU O to SWMU 4, information from this study was reviewed during the evaluation of SWMU O.

During the terrain conductivity survey, two anomalous areas were noted in the vicinity of SWMU 4. The first extends northeast from SWMU 4 and was thought to be related to SWMU 4 activities. Another anomalous area extends southeast from SWMU 4. This anomaly was thought to be either associated with activities at SWMU 4, or a reflection of upgradient (to the south) activities.


Wells WC1-1 and WC1-2 were installed in 1987 as part of a program that installed 19 wells at SWMUs 4, 5, and 7 (F&R, 1987b). No groundwater sampling was conducted for this program but aquifer tests were performed on the wells.

8.1.3 RFI Program

There are four existing monitoring wells (P-1 through P-4) in the vicinity of SWMU O, with at least 15 other wells associated with SWMU 4 to the northeast. Wells from both areas were used to assess SWMU O. During the 1983 investigation (discussed in Section 8.1.2), significant fuel oil contamination was detected only in well S4W-1. This well was one of five monitoring wells originally installed northeast (downgradient) of the fuel oil tanks as part of the initial groundwater monitoring network at the Acidic Wastewater Lagoon (SWMU 4). These five wells have been used for quarterly groundwater monitoring. With the exception of one sampling event in 1983, the wells have not been sampled for the petroleum compounds that are of interest at SWMU O.

It is speculated that fuel oil may be migrating from the spill site via shallow subsurface flow in gravel lenses and underground pipeline trenches, rather than via groundwater. As shown in Insert 6, numerous below-ground pipelines traverse the site at various depths between the reported fuel oil leak location and the observed seep at the bottom of the hill. Some of these trenches, especially near the roads, may be deep enough to intersect the migrating fuel oil.

To provide information on the potential pathways carrying fuel oil from the leakage area, a soil gas survey consisting of 26 sampling points was conducted (Figure 8-2),

with samples collected beginning at the seep (where fuel oil continues to be observed) and working in a southwesterly direction toward the fuel oil tanks.

To define any remaining source of the fuel oil plume, seven soil borings (OSB1 through OSB6 and OSB10) were drilled around the tank farm dike and the former underground fuel line. The depth of each boring was between 12 feet and 35 feet. A maximum of two soil samples were collected from each boring. One sample was collected from the most heavily contaminated soil, based on visual inspection and photoionization detection meter (PID) readings; and one sample was collected from deeper, uncontaminated soil if uncontaminated soil was found. These soil samples were analyzed for VOCs and SVOCs.

Four soil borings were drilled along the pipelines (OSB7, OSB8, OSB9, and OSB11) in areas where the interception of migrating fuel may be possible to determine whether the underground pipelines that traverse the site are serving as pathways for contaminant migration. The maximum depth of each boring was between 12 and 29 feet in depth. Based on visual inspection and PID readings, the most heavily contaminated soil from each boring was sampled. These four soil samples were analyzed for VOCs and SVOCs.

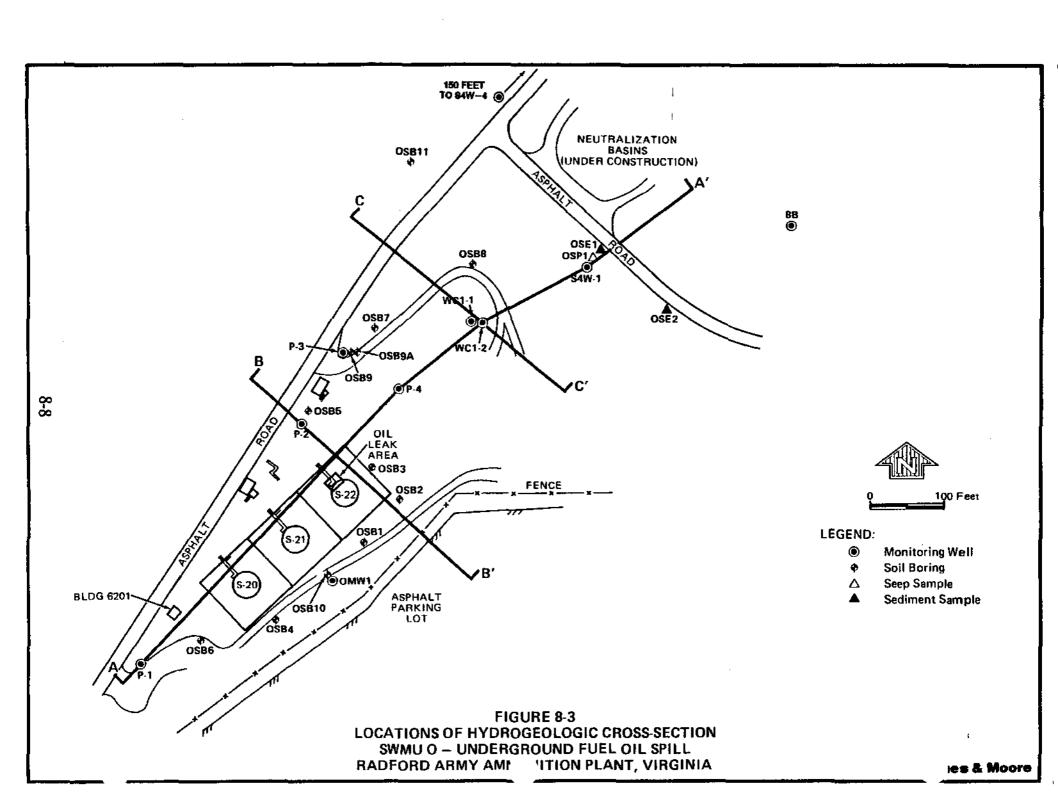
A representative soil sample was collected from most of the borings and submitted for physical testing.

Existing and newly installed monitoring wells were sampled to determine whether groundwater had been contaminated with fuel oil. The following eight existing wells were selected for sampling--P-1, P-2, P-3, P-4, WC1-1, S4W-1, S4W-4, and 8B. Well WC1-1 was dry during the sampling effort, well WC1-2 was substituted with USATHAMA approval.

To supplement data from these eight wells, it was proposed that two additional monitoring wells be installed to provide additional downgradient sampling locations potentially impacted by the migrating fuel oil. The locations of these wells were to be selected dependent upon results of the soil gas survey and soil boring sampling program. After the soil gas survey and soil boring sampling program were completed, it was

decided to install only one additional well (OMW1). Samples collected from the wells were analyzed for VOCs, SVOCs, TOC, TOX, and pH.

As described in Section 3.2, surveying was conducted to determine location coordinates of the monitoring wells and the exact SWMU boundary. A topographic survey encompassing the SWMU O area was conducted.

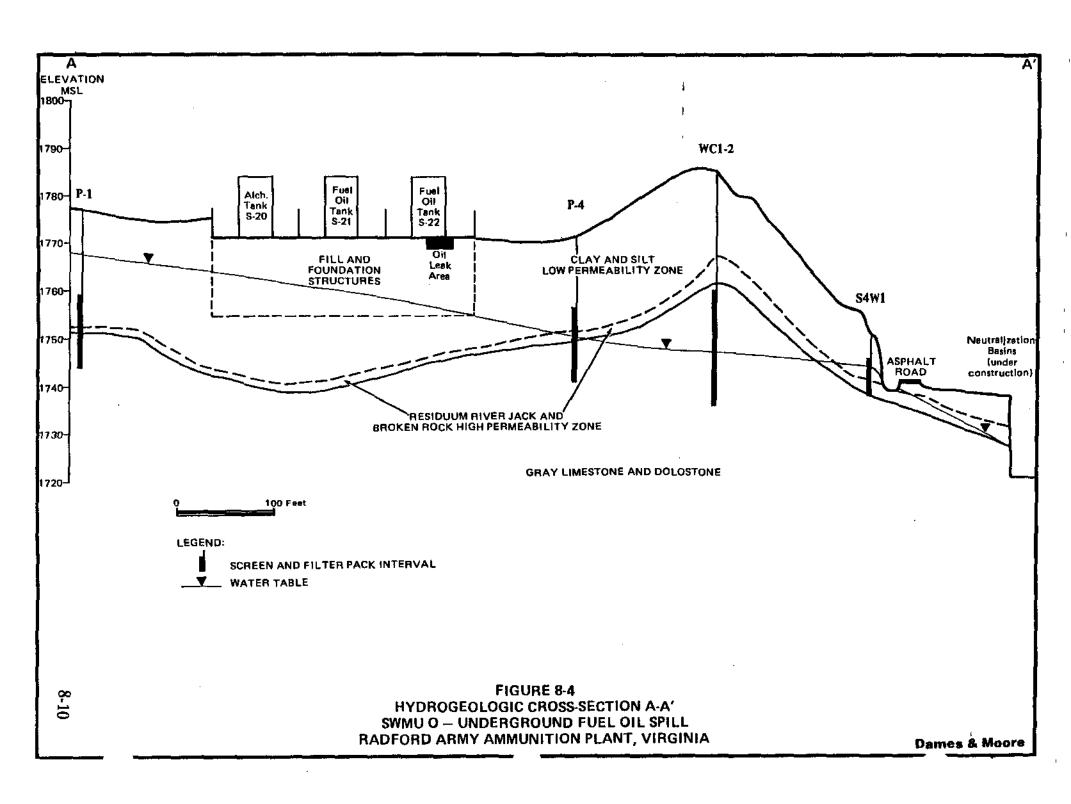

8.2 ENVIRONMENTAL SETTING

8.2.1 Topography

SWMU O (the Underground Fuel Oil Spill) is located in the east section of the Main Manufacturing Area, southwest of the Inert Gas Plant. SWMU O is present on the southeast side of a northeastward sloping drainage valley. Surface elevations in the valley range from 1,775 feet msl near well P-1 to 1,740 feet msl at the asphalt road northeast of the tanks. The southeast side of the valley remains relatively level up to about 300 feet from the tanks where a hillside has a 30 foot drop in elevation within a distance of only 150 feet. At the base of the scarp is the site of the former Acidic Wastewater Lagoon (SWMU 4). The base of the tank containment structure is at an elevation of 1,771 feet msl. The land surface elevation immediately to the southeast is 1,775 feet msl and the ground surface to the northwest near the road is at an elevation of 1,760 feet msl.

8.2.2 <u>Hydrogeology</u>

8.2.2.1 Geologic Units. The geology of the SWMU O area has been explored for the RFI through the drilling of nine exploratory soil borings and one monitoring well. These borings, ranging from 12 to 38 feet in depth, allow for a general understanding of subsurface conditions. The monitoring well boring OMW1 fully penetrated the unconsolidated soil and was terminated in bedrock. Data from these bores, borings from previous investigations and site wells were used to construct three cross-sections, one structure map of top of bedrock, one groundwater elevation map, and one water table to bedrock relationship map. As shown in Figure 8-3, the three cross-sections (A-A', B-B', C-C') illustrate the subsurface conditions at SWMU O. The following subsections describe the unconsolidated soil and bedrock geology of SWMU O as revealed through the RFI boring program and previous



studies performed at this site. The topography of SWMU O is illustrated on the Topographic Survey map included in the map pocket at the end of this report (Insert 6).

8.2.2.1.1 Unconsolidated Soil. The site is underlain by 10 to 35 feet of unconsolidated soil deposits consisting principally of terrace alluvial deposits. The exploratory boring and well boring logs are presented in Appendix F. The primary unconsolidated soil deposits below SWMU O consist of a brown to yellowish-brown, fine-grained, plastic silt and clay. These deposits are highly interbedded in most locations below the site with occasional thin sand and gravel zones. Unconsolidated soil deposits were usually described as being stiff in consistency and moist. Where the silts and clays exhibited a higher plasticity (MH-CH) the soils were usually more soft and moist. Borings performed in the area of the aboveground storage tanks (OMW1, OSB4, OSB2 OSB10,) encountered fill associated with the construction of the aboveground storage tanks and the parking lot bordering the site to the east.

The deposits of river jack overlying bedrock which were encountered in boring S4W-1 at the site during a previous investigation were noticeably absent from the exploratory borings performed for RFI (USAEHA, 1981). However, a thin layer of river jack was encountered above bedrock in soil boring OSB11 performed west of the site. Minor amounts of gravel were encountered in other borings, therefore, it is likely that the thicker gravel deposits encountered in S4W-1 are localized along the steep slope in the vicinity of the scarp at the north end of the site. Underlying the terrace deposits in some areas of the site (noticeably in the area of OSB5 and OSB8) are fine-grained residual soils weathered from the underlying limestone/dolostone bedrock. Residual soils usually consist of a yellowish-brown, silt (ML) which is stiff in consistency. The extent of residual deposits is apparently limited due to the erosion and deposition of alluvial deposits over bedrock in most areas below the site.

Cross-section A-A' (Figure 8-4) generally trends southwest to northeast across the entire SWMU O area. Cross-section B-B' (Figure 8-5) trends generally northwest to southeast across the site just downgradient from the oil leak area. Cross-section C-C' (Figure 8-6) trends generally northwest to southeast across the site in the north-central

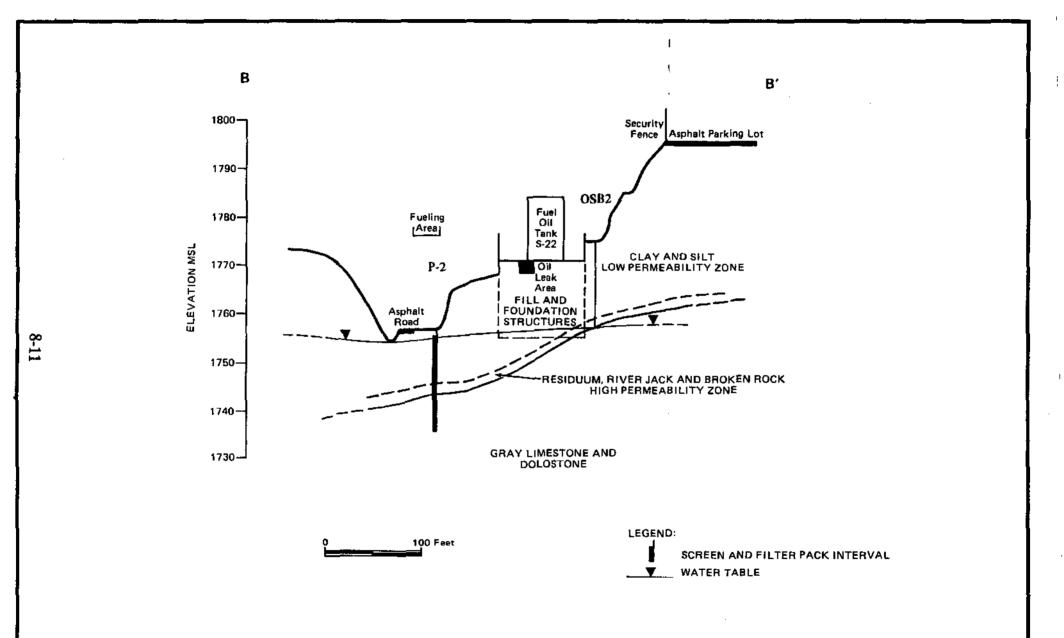


FIGURE 8-5
HYDROGEOLOGIC CROSS-SECTION B-B'
SWMU O — UNDERGROUND FUEL OIL SPILL
RADFORD ARMY AMMUNITION PLANT, VIRGINIA

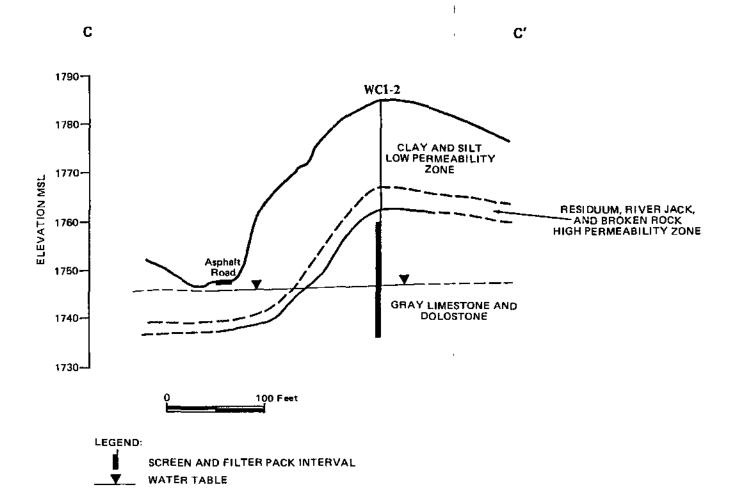
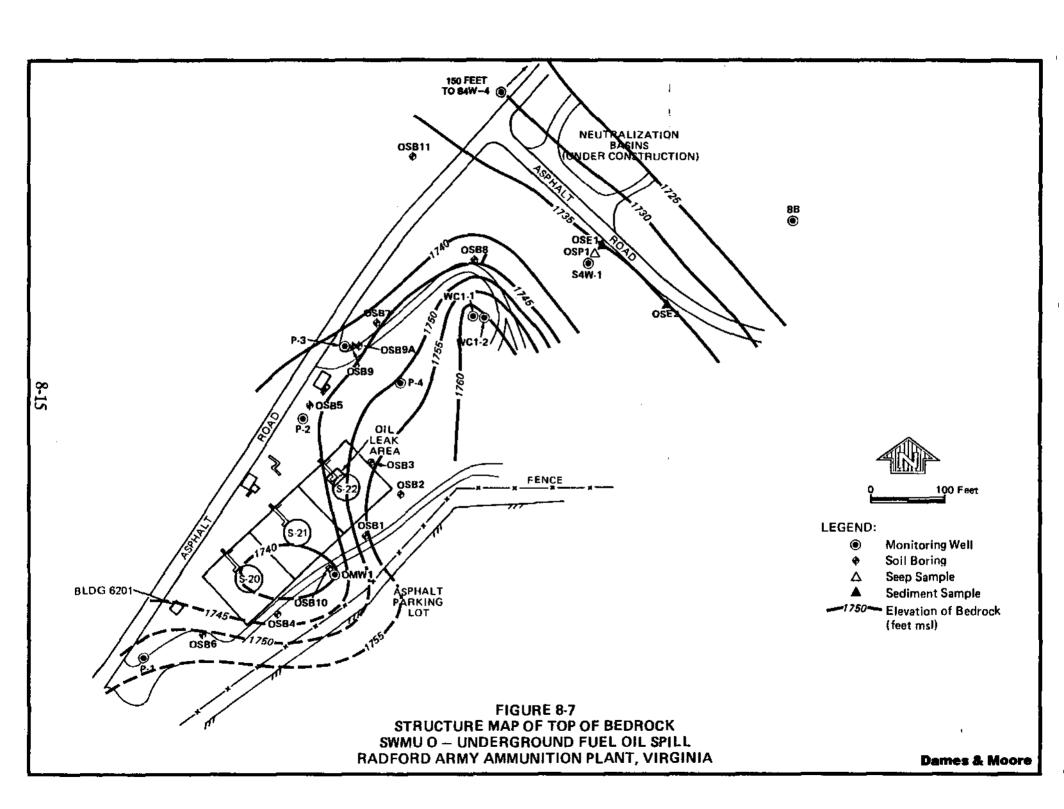


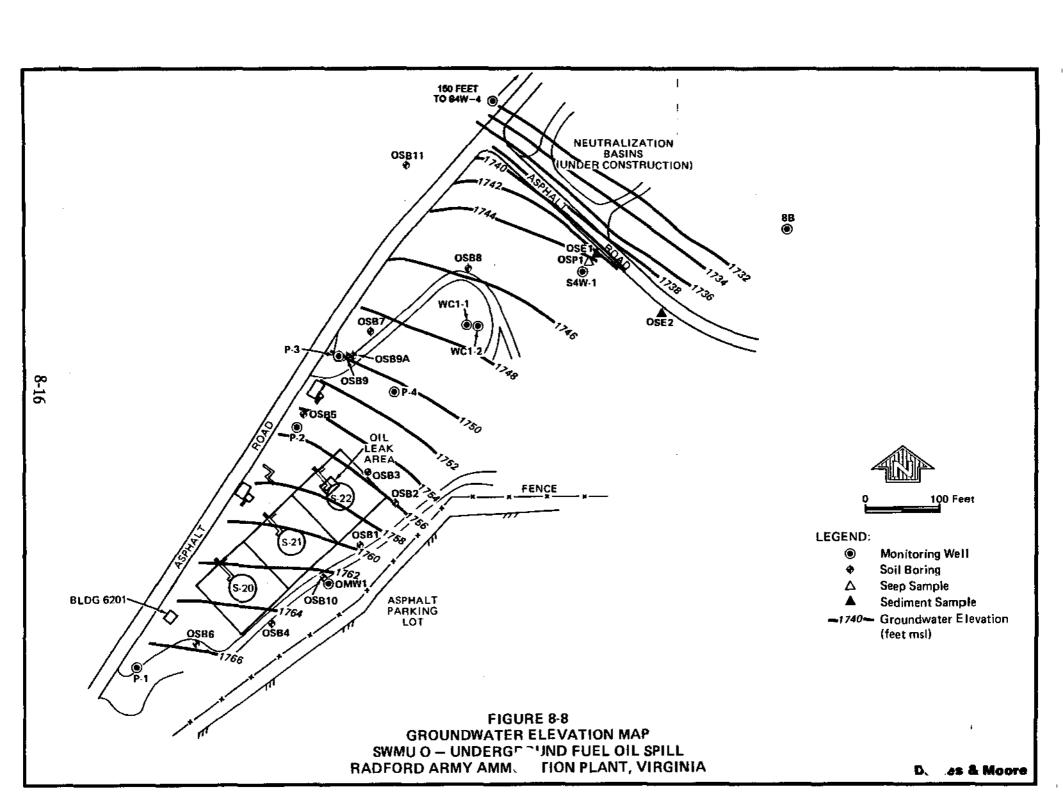
FIGURE 8-6
HYDROGEOLOGIC CROSS-SECTION C-C'
SWMU O — UNDERGROUND FUEL OIL SPILL
RADFORD ARMY AMM' "ITION PLANT, VIRGINIA

portion of the site between the oil leak area and the spring/seep area. These cross-sections illustrate the variable depth of unconsolidated soil deposits over an irregular bedrock surface and also illustrate the disturbed-fill area encountered during the boring program in the vicinity of the aboveground storage tank area.

Ten soil samples were submitted for grain size (sieve) analysis and Atterberg limits testing, and classification by the USCS (Table 3-4). These samples were collected from representative soil zones encountered in the boring program. Generally, the laboratory data reflected the highly interbedded nature of the soil deposits below SWMU O with soil samples classified as a silty clay (CL), highly plastic clay (CH) or a clayey sand (SC). The soil samples generally exhibited a moderate to high liquid limit (LL), plastic limit (PL), and plasticity index (PI). Based on the results of the Atterberg limits testing most of the fine-grained soils below SWMU O would exhibit a moderate shrink swell potential. The high plastic limit of these soils usually results in high natural moisture contents ranging from 18 to 57 percent.

Several samples (OSB2, OSB4, OSB5, OSB10) have natural moisture contents near the liquid limit of the soil which represents soils located in the saturated capillary fringe zone above the water table. The soil classifications and values obtained by physical testing were consistent with the soil characteristics observed while logging the soil borings during field activities. The laboratory data sheets are presented in Appendix F.


8.2.2.1.2 <u>Bedrock</u>. Underlying the unconsolidated soils in SWMU O is the gray limestone/dolostone of the Elbrook Formation. Previous investigations at SWMU O penetrated from 7 to 25 feet of bedrock using NX rock coring. The limestone/dolostone below the site is finally laminated, argillaceous, with frequent breciatted, conglomeratic, and vuggy zones. The bedrock is highly weathered and fractured with small quartz and calcite veins (BCM 1983; USACE, 1988). The observation of bedrock outcropping at the western border of the site along a steep scarp confirms the above descriptions of bedrock below the site. The apparent dip of bedrock from this outcrop is approximately 30 degrees to the southeast with a strike trending northeast-southwest. Extensive exposures of bedrock were also observed in the excavation for the new neutralization basins in the SWMU 4 area.


Bedrock was penetrated during the RFI to a depth of three feet during the installation of monitoring well OMW1. The bedrock was soft and highly weathered as indicated by the rapid penetration of the roller bit used during drilling. The boring and well logs from the RFI and previous investigations are included in Appendix F.

The bedrock surface below SWMU O, as revealed by the RFI borings and previous investigations varies considerably, generally following the surface topography. A structure map showing the bedrock surface below the site is shown in Figure 8-7. The hydrogeologic cross-sections A-A', B-B', and C-C' also show the bedrock surface and surface topography relationship. An apparent bedrock low is present below the southwestern end of the aboveground storage tanks. This bedrock low is shown in both Figure 8-4 and Figure 8-7. The depth to bedrock in this area is approximately 35 feet below ground surface, significantly greater than other areas at SWMU O.

8.2.2.2 Groundwater. The hydrogeologic conditions within the unconsolidated soil and consolidated bedrock were investigated through field examination of soil and rock samples, physical tests of 10 soil samples consisting of grain size (sieve) analysis, determination of Atterberg limits, data from rising head slug tests on three monitoring wells and available information from previous investigations conducted at the site. Groundwater elevations measured from the wells in SWMU O during the field program are presented in Table 2-4.

8.2.2.2.1 Potentiometric Surface. A relatively shallow groundwater table is present below the site at a depth ranging from 2 to 24 feet below the ground surface (Figure 8-8). Based on groundwater measurements obtained on March 13, 1992, the unconfined water table gradient slopes northeast at an average gradient of 5 percent in the southern half of the site, and an average gradient of 2 percent in the northern half of the site, except at the extreme northern border of the site where the gradient steepens to approximately 11 percent. Because of the low hydraulic gradient over most of the site and the considerable bedrock elevation differences below the site, water table conditions may be found in either unconsolidated-consolidated materials or only within consolidated bedrock. As shown in the hydrogeological cross-sections A-A', B-B', and C-C' (Figures 8-4, 8-5, and 8-6) groundwater

flow occurs through bedrock only in the areas of highest bedrock elevation. The measured water table does not appear to be significantly affected by whether it is in soil or bedrock.

8.2.2.2.2 Flow Patterns. A local groundwater discharge zone for the site occurs along the steep scarp bordering the site on the north. Several seeps/springs discharge along nearly the entire length of this scarp. This seep/spring has apparently been formed as the result of an outcropping of a gravel and cobble lens present between the clay soil and the bedrock. Based on information from previous investigations conducted at the site this discharge zone (seep/spring) was created when the scarp hillside was excavated after the discovery of liquid hydrocarbons in monitoring well S4W-1. Apparently the surging during development of this well flushed liquid hydrocarbons out of the seep and into the drainage ditch bordering SWMU O (BCM, 1983; USACE, 1988). Another possible groundwater discharge zone is located just west of the site across the asphalt road in the drainage ditch area. Wells located in this area have groundwater levels close to the ground surface with water frequently observed in this drainage ditch.

Because groundwater is present within the unconsolidated deposits above bedrock at the suspected source area for liquid and dissolved phase petroleum hydrocarbon contamination at SWMU O, knowing the flow velocity for the saturated sediment layer and consolidated bedrock is important for evaluating potential contaminant pathways from the source area at SWMU O.

The hydrological characteristics of each unit are different resulting in different groundwater flow regimes. Estimated hydraulic conductivity data for the unconfined aquifer were calculated from rising head slug tests conducted on monitoring wells OMW1, P-1, and P-4 installed at SWMU O. These wells were not installed entirely into bedrock and a hydraulic conductivity test solely for this unit was not conducted. However, the potentiometric surface of well P-4 was within the bedrock and data from these wells could be considered applicable for the bedrock. Additional slug tests on various monitoring wells within SWMU O were also performed during previous investigations of the SWMU O area (BCM, 1983; USACE, 1988). Section 8.2.2.2.4 discusses aquifer characteristics.

8.2.2.2.3 <u>Recharge and Discharge</u>. Groundwater recharge in the SWMU O area is principally through two mechanisms; groundwater flow onto the site and infiltration through unsaturated sediments. As indicated in the previous section groundwater flows onto the site principally from the northwest through both unconsolidated and consolidated formations. To a lesser degree groundwater recharge would also occur through the infiltration of water through the unsaturated sediments above the water table.

A local groundwater discharge zone for the site occurs along the steep scarp bordering the site on the north. Several seeps/springs discharge along nearly the entire length of this scarp. The majority of these seeps were apparently formed when the hillside was excavated after the discovery of liquid hydrocarbons in well S4W-1. Once the gravel and cobble area buried within less permeable sediments was exposed the discharge zone had a sustained flow throughout the year.

Another possible groundwater discharge zone is located just west of the site across the asphalt road in the drainage ditch area where surface water is frequently observed. This ditch is located in a low area where local groundwater flow may be directed from the north, west, and east. Additional evidence that this area may be a discharge zone is suggested by the high water levels measured close to the ground surface at well P-2. The water table elevations on Figure 8-8 roughly coincide with the elevations in the ditch on the northwest side of the road.

8.2.2.2.4 Aquifer Properties. Three rising head slug tests were conducted on newly installed well OMW1 and existing wells P-1 and P-4. Monitoring wells OMW1 and P-1 were selected because these two wells are in locations which groundwater flow is through both unconsolidated soil deposits and the upper broken-weathered bedrock zone. Monitoring well P-4 was selected because groundwater flow at this location is through bedrock only. Previous investigations at SWMU O have conducted rising head slug tests on wells P-1, P-2, P-3, P-4, and WC1-2. The results of hydraulic conductivity data for SWMU O are summarized in Table 8-1.

Table 8-1
Summary of Hydraulic Conductivity Testing
SWMU O, Underground Fuel Oil Spill
Radford Army Ammunition Plant, Virginia

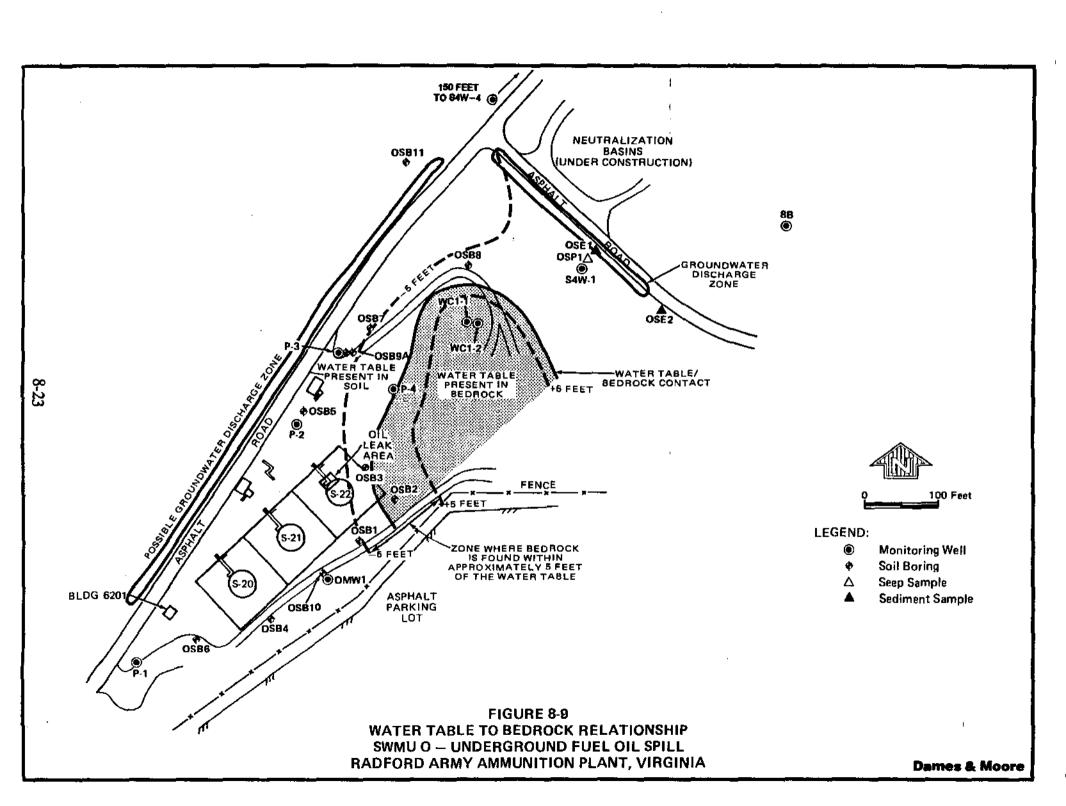
	Hydraulic Conductivity	
Well	(cm/sec)	Reference
P-1	2.07×10^{-4}	BCM, 1984
P-1	1.01×10^{-3}	RCRA Facility Investigation
P-2	4.61×10^{-5}	BCM,1984
P-3	1.62×10^{-4}	BCM, 1984
P-4	8.26×10^{-6}	BCM, 1984
P-4	2.20×10^{-5}	RCRA Facility Investigation
W-8B	1.95×10^{-4}	BCM, 1984
W2B	3.63×10^{-5}	USACE, 1988
W4B	5.7×10^{-6}	USACE, 1988
8B	5.32×10^{-6}	USACE, 1988
9B	8.99×10^{-7}	USACE, 1988
WC1-2	1.43×10^{-5}	USACE, 1988
WC2-1	1.21×10^{-5}	U\$ACE, 1988
WC2-2	4.98×10^{-6}	USACE, 1988
WC2-3	3.76×10^{-6}	USACE, 1988
WC3-1	1.70×10^{-5}	USACE, 1988
WC3-2	7.49×10^{-6}	USACE, 1988
WC4-1	1.02×10^{-5}	USACE, 1988
WC4-2	1.31×10^{-5}	USACE, 1988
WC4-3	2.22×10^{-5}	USACE, 1988
OMW1	2.50×10^{-3}	RCRA Facility Investigation

The highest conductivity values calculated for the RFI program at SWMU O were at locations where groundwater flow is through unconsolidated soil deposits and the upper broken-weathered bedrock zone. The calculated hydraulic conductivities for wells OMW1 and P-1, which are representative of this groundwater flow regime, are 2.50 x 10⁻³ cm/sec and 1.01 x 10⁻³ cm/sec respectively. The lowest hydraulic conductivity values calculated at SWMU O are at locations where groundwater flow is through bedrock only. The calculated hydraulic conductivity for well P-4, which is representative of this flow regime, is 2.20 x 10⁻⁵ cm/sec. Comparison of the hydraulic conductivity values calculated during the RFI program with hydraulic conductivity values calculated during previous investigations confirms that the highest hydraulic conductivity values at the site are found in areas where groundwater flow is through unconsolidated soil and broken-fractured bedrock. As shown in Table 8-2 wells P-1, P-2, P-3, and OMW1 which are installed within the unconsolidated soil and broken-fractured rock interval have hydraulic conductivities in the range of 1.62 x 10⁻⁴ cm/sec to 2.5 x 10⁻³ cm/sec. Wells P-4 and WC1-2 which are installed within the bedrock have hydraulic conductivities in the range of 8.26 x 10⁻⁶ cm/sec to 2.2 x 10⁻⁵ cm/sec.

Because the site hydrogeology was very irregular, using averages of values from the slug tests to estimate hydraulic conductivity was considered less appropriate than selecting results from wells representative of groundwater flow through the unconsolidated soil and broken-fractured rock zone and groundwater flow through consolidated bedrock only.

The groundwater flow through the unconsolidated soil and broken-fractured rock deposits in the area of the aboveground storage tanks may be calculated by knowing the estimated hydraulic conductivity (OMW1 = 2.5 x 10⁻³ cm/sec), the hydraulic gradient (5 percent) as measured from Figure 8-8, and the estimated effective formation porosity (30 percent). The estimated porosity of 30 percent for silt, clay and sand mixtures is based on a range of porosities common for unconsolidated silt, clay, and sand mixtures (25-50 percent; Freeze and Cherry, 1979). By using the Darcy equation for flow (V=ki/n) where V is velocity, k is the hydraulic conductivity, i is hydraulic gradient and n is effective porosity, the estimated horizontal groundwater flow velocity was calculated to be 4.17 x 10⁻⁴ cm/sec (431 feet/year). This velocity is probably more representative of flow conditions at the broken-

fractured rock interface rather than the unconsolidated plastic silt and clay deposits. The effective porosity of plastic silt and clay typically ranges from 35 to 70 percent and permeability would be approximately 1 x 10^{-6} cm/sec (Freeze and Cherry, 1979). Therefore, an effective porosity of 50 percent yields an estimated groundwater flow velocity of only 1.0×10^{-7} cm/sec (0.1 feet/year) but secondary features such as cracks or root zones would allow for greater velocities.


For comparison the groundwater flow through the unconsolidated soil and broken-fractured bedrock zone downgradient of the aboveground storage tanks may be calculated by knowing the estimated hydraulic conductivity (P-3 = 1.62×10^4 cm/sec), the hydraulic gradient (5 percent) as measured from Figure 8-8, and the estimated effective formation porosity for sand and gravel mixtures (30 percent). By using the Darcy equation for flow (V=ki/n) where V is velocity, k is the hydraulic conductivity, i is hydraulic gradient and n is effective porosity, the estimated horizontal groundwater flow velocity was calculated to be 2.7×10^{-5} cm/sec (28 feet/year). To estimate the groundwater flow velocity at the northern portion of the site through unconsolidated soil and broken-fractured bedrock zone a hydraulic gradient of 2 percent calculated from Figure 8-8 is substituted into the Darcy equation. The estimated groundwater flow velocity below the northern portion of the site would be 1.08×10^{-5} cm/sec (11 feet/year).

The groundwater flow through consolidated bedrock at SWMU O may be calculated by knowing the estimated hydraulic conductivity ($P-4 = 2.20 \times 10^5$ cm/sec), the hydraulic gradient (2 percent) as measured from Figure 8-8, and the estimated effective formation porosity (10 percent). The estimated porosity of 10 percent for consolidated bedrock is based on a range of porosities common for consolidated limestone/dolostone bedrock (0-20 percent; Freeze and Cherry, 1979). By using the Darcy equation for flow (V=ki/n) where V is velocity, k is the hydraulic conductivity, i is hydraulic gradient and n is effective porosity, the estimated horizontal groundwater flow velocity was calculated to be 4.4 x 10^6 cm/sec (4.6 feet/year). This velocity is an estimate only since measurements of the bedrock conductivity will be variable due to irregular water bearing fractures and solution features.

Additional aquifer data was accumulated during the development and sampling of monitoring wells at SWMU O. The newly installed well OMW1 and existing well P-1 which are installed through the unconsolidated soil deposits and broken-fractured rock exhibited high pumping rates on the order of 5 gallons/minute for a duration of 1 hour. The drawdown in both of these wells was in the range of 2 to 3 feet. The yields indicate that the transmissivity of the unconsolidated soil deposits and broken-rock are relatively high. Because the thickness of soft saturated sediments and broken rock is at least 20 feet in the area of OMW1, it would be expected that the yield from OMW1 would be relatively high.

8.2.2.2.5 <u>Hydrogeologic Interrelationships</u>. Determining the hydrogeologic relationships of the uppermost groundwater flow regimes below the site are important because the contaminants of concern are petroleum hydrocarbons which are less dense and immiscible in water. Several hydrogeologic factors present at the site are discussed below which will control the transport of multiphase liquids in the subsurface.

The additional exploratory borings performed at SWMU O allow for a better understanding of the groundwater flow regime below the site. When considering the potential migration route of liquid hydrocarbons and associated dissolved phase hydrocarbons it is important to determine the relationship between groundwater flow direction, the bedrock surface gradient, and the permeability of the various saturated layers. As discussed previously there is a distinct relationship between the water table gradient, the bedrock surface gradient, and relative permeabilities of each saturated media. As shown in Figure 8-8 groundwater flow below the site (i.e at the source) is to the northeast at a gradient of approximately 5 percent. The bedrock surface in the area of the source is shown in Figure 8-7 and indicates that the bedrock surface in the area of the source dips to the northwest at a gradient of approximately 5 percent. When comparing the water table surface elevations to the bedrock surface below the site, the relationship illustrated in Figure 8-9 is apparent. Because liquid hydrocarbons are immiscible and less dense than water, the tendency will be for the liquid to migrate vertically from the source area until either reaching the capillary fringe zone above the water table or the bedrock surface if

groundwater is not present. Hydrocarbons will then mound on the water table or bedrock surface eventually migrating along the groundwater or bedrock gradient. During multiphase flow the liquid hydrocarbons migrating on the water table surface will tend to be transported more readily through zones of higher permeability rather than zones of lower permeability.

Applying these properties of miscible liquids and multiphase flow to the specific hydrogeologic and subsurface conditions below SWMU O results in the following likely scenario. Because the water table below the source area at SWMU O is above the consolidated bedrock, it is suspected that liquid hydrocarbons migrated vertically through the unsaturated sediments to the capillary fringe zone above the water table. Liquid hydrocarbons would then mound on the water table surface eventually migrating along the water table surface downgradient to the northeast. It is likely that because of the large size of the reported fuel leak some of the mounded liquid may have also migrated along the water table-bedrock surface accumulating in the bedrock low shown in Figure 8-7. This is supported by the apparent liquid hydrocarbon encountered in OSB10 in the bedrock low area. Eventually a significant portion of the mounded liquid hydrocarbons would flow from the source area downgradient (northeast) along the water table surface within the saturated unconsolidated sediments. Because the water table in the area of the leak and immediately downgradient of the leak is within the relatively high permeability river jack and broken rock zone close to the bedrock surface, it is likely that the liquid hydrocarbons preferentially migrated through this zone. Liquid hydrocarbons would then be free to eventually migrate to the gravel zone on bedrock located in the vicinity of S4W-1 near the scarp. Hydrocarbons were then restricted within this gravel zone surrounded by relatively impervious clays above and bedrock below. It is suspected that liquid hydrocarbons were not able to migrate laterally very far from the source area because of the confining bedrock layer to the east and nearly impervious silts and clays present in the saturated zone to the west.

Transport of dissolved phase hydrocarbons in groundwater below the site would have migrated at a rate close to the calculated groundwater flow velocity for each type of saturated media at the site. The dissolved contaminants would have been less restricted by subsurface bedrock irregularities and anisotropic unconsolidated deposits present below SWMU O. This is supported by the presence of detectable concentrations of dissolved phase contaminants in most of the wells at SWMU O. The dissolved contaminant plume would migrate primarily by advection in the direction of the water table gradient with some associated lateral dispersion perpendicular to groundwater and plume movement.

The assumed preferred path of oil migration should be within a section of the high permeability zone present at the elevation of the local water table. A zone of preferred flow, which is defined as the high permeability zone within 5 feet of the measured water table, was determined by combining the bedrock structure map (Figure 8-7) with the groundwater elevation map (Figure 8-8). This assumed pathway is present just northeast of the oil leak location and continuing northward as a narrow path (100 feet wide) for 350 feet before the zone greatly widens to encompass the known discharge zone along the base of the scarp.

8.2.3 <u>Soils</u>

8.2.3.1 <u>USDA Soil Classification</u>. The USDA has mapped Unison-Urban soils as underlying SWMU O with slope modifiers of two to seven percent at the tank area and 15 to 25 percent under the hill and steep slope area to the northeast (SCS, 1985a). Unison soil makes up roughly half, Urban land a quarter, and other soils a quarter of the total unit. A typical profile of Unison soil has a surface layer of dark brown and brown loam about 15 inches thick, a yellowish-red sticky and plastic clay subsoil about 43 inches thick, and the substratus is red sandy clay loam below 58 inches. The surface soil layer is classified in the USCS as CL, ML, and CL-ML and in AASHTO as A-4 and A-6; the subsoil is CL and CH, and A-6 and A-7, respectively; and the substratum classifications are CL-ML, CL, ML and GM-GC (USCS), and A-1, A-2, A-6 and A-7 (AASHTO).

8.2.3.2 <u>Physical and Chemical Properties</u>. The Unison soil physical and chemical properties for both slope modifiers for SWMU O were listed under one grouping by the USDA (SCS, 1985a). The 15 inch surface soil layer generally has 10 to 25 percent clay, 1.35 to 1.65 g/cm³ moist bulk density, 0.6 to 6.0 inches/hour permeability, 0.14 to 0.20 inches/inch available

water capacity, pH of 4.5 to 6.0, low shrink-swell potential, and one to three percent organic matter. The subsoil layer from 15 to 58 inches has the following properties, respective to the above: 30 to 70 percent, 1.30 to 1.60 g/cm³, 0.6 to 2.0 inches/hour, 0.12 to 0.18 inches/inch, 4.5 to 6.0 pH, moderate, and one to three percent. The substratus has the same properties as the subsoil except for 30 to 50 percent clay, 0.6 to 6.0 inches/hour permeability and 0.08 to 0.16 inches/inch available water capacity. No properties are given for the Urban land included in this soil type.

8.2.4 Surface Water and Sediment

No surface water body is present on or near SWMU O. Drainage ditches present along the asphalt roads receive all precipitation runoff with flow proceeding northeastward toward Stroubles Creek 1,500 feet away. A storm sewer line originates southwest of the site and passes beneath the T-intersection north of SWMU O. This sewer does not have a catch basin at the site and apparently does not receive site runoff enroute to discharge into Stroubles Creek.

8.3 <u>CONTAMINATION CHARACTERIZATION</u>

The field investigation conducted at SWMU O included nine groundwater samples, fourteen soil samples, two sediment samples, and one surface water sample. The samples were analyzed for VOCs and SVOCs. Groundwater samples were also analyzed for TOX, TOC and pH. The samples collected at SWMU O were not analyzed for explosives or metals because of the nature of the known contaminant (fuel). The results of the chemical analyses indicated that low concentrations of petroleum-related VOCs and SVOCs were detected in a limited number of groundwater, soil and surface water samples collected near the fuel seepage zone and fuel tank. However, concentrations of only three SVOCs in groundwater and one SVOC in surface water near the fuel seepage zone exceeded HBN criteria and may be a concern at the site.

8.3.1 Groundwater

No exceedances of HBNs for VOCs were detected in groundwater samples (Table 8-2). Six TCL VOCs were detected in five of the nine groundwater samples collected for

Table 8-2
Summary of Analytical Data For Groundwater Samples Collected At SWMU O
Radford Army Ammunition Plant, Virginia

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS	PQLs <u>UGL</u>	8B RDWC*47 25-feb-92 25.0 CGW <u>UGL</u>	OMW1 RDWC*51 24-feb-92 31.0 CGW UGL	P-1 RDWC*43 24-feb-92 25.0 CGW UGL	P-2 RDWC*48 20-feb-92 11.0 CGW <u>UGL</u>	P-3 RDWC*49 20-(eb-92 18.0 CGW <u>UGL</u>	P-4 RDWC*50 20-feb-92 23.0 CGW UGL	S4W-1 RDWC*44 24-feb-92 10.0 CGW UGL	HBN UGL
Volatiles									
BENZENE	5	LT 0.5	2.18	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 1	5
CARBON DISULFIDE	5	4.76	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 1	4000
CHLOROFORM	5	LT 0.5	0.697	2.67	LT 0.5 B	LT 0.5 B	LT 0.5 B	LT i	600
CHLOROMETHANE	10	6.83	LT 3.2	LT 3.2	LT 3.2	LT 3.2	LT 3.2	LT 6.4	30
ETHYLBENZENE	5	LT 0.5	0.895	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 1	4000
TOLUENE	5	LT 0.5	LT 0.5	5.2	LT 0.5	LT 0.5	LT 0.5	LT 1	10000
TI Laudine									
Volatile TICs				r					
2-METHYLNAPHTHALENE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
3-METHYLPENTANE	NA	ND	ND	88	ND	ND	ND	ND	NSA
HEXANE	NA	ND	ND	40 S	ND	ND	ND	ND	NSA
METHYLCYCLOPENTANE	NA	ND	ND	10 S	ND	ND	ND	ND	NSA
TOTAL UNKNOWNTICs	NA	(1)5	(6)41	ND	ND .	ND	ND	(4)82	NSA
Semivolatiles									
2-METHYLNAPHTHALENE	10	LT 1.7	LT 1.7	LT 1.7	LT 1.7	LT 1.7	LT 1.7	53.3	NSA
ACENAPHTHENE	10	LT 1.7	LT 1.7	LT 1.7	LT 1.7	LT 1.7	LT 1.7	18	2100
BIS(2-ETHYLHEXYL) PHTHALATE	10	LT 4.8	LT 4.8	LT 4.8	LT 4.8	LT 4.8	LT 4.8	[4.45]	3
FLUORANTHENE	10	LT 3.3	LT 3.3	LT 3.3	LT 3.3	LT 3.3	LT 3.3	4.02	200
FLUORENE	10	LT 3.7	LT 3.7	LT 3.7	LT 3.7	LT 3.7	LT 3.7	42.7	1400
N-NITROSODIPHENYLAMINE	10	LT 3	LT 3	LT 3	LT 3	LT 3	LT 3	[46]	7
PHENANTHRENE	7	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5	[87]	2
PYRENE	10	LT 2.8	LT 2.8	LT 2.8	LT 2.8	LT 2.8	LT 2.8	5.53	4000
							-		
Semivolatile TICs									
2,6,10,14-TETRAMETHYLPENTADECANE	NA	ND	ND	ND	ND	ND	ND	90 S	NSA
CYCLOHEXENE OXIDE	NA	ND	5 S	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICS	NA	ND	(11)246	(1)5	(3)28	(3)33	(1)50	(22)10640	NSA
<u>Other</u>									
TOTAL ORGANIC CARBON	1000	6570	7110	6340	1940	2060	LT 1000	9930	NSA
TOTAL ORGANIC HALOGENS	1	102	36	41.2	58.8	60.7	134	46.1	NSÁ
рН	NA	7.67 L	7.13 K	6.96 K	7.04	7.02	7.27	7.28 K	NSA
-		—							

Table 8-2 (Cont'd)

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs <u>UGL</u>	\$4W-4 RDWC*46 28-feb-92 14.0 CGW UGL	WC1-2 RDWC*45 28-feb-92 39.0 CGW UGL	HBN <u>UGL</u>
Volatiles				
BENZENE CARBON DISULFIDE CHLOROFORM CHLOROMETHANE ETHYLBENZENE	5 5 5 10 5	LT 0.5 0.794 LT 0.5 LT 3.2 LT 0.5	LT 0.5 LT 0.5 LT 0.5 5.99 LT 0.5	5 4000 600 30 4000
TOLUENE	5	LT 0.5	LT 0.5	10000
Volatile TICs				
2-METHYLNAPHTHALENE 3-METHYLPENTANE HEXANE METHYLCYCLOPENTANE	NA NA NA NA	6 S ND ND ND	ND ND ND ND	NSA NSA NSA NSA
TOTAL UNKNOWNTICs	NA	ND	(2)14	NSA
Semivolatiles				
2-METHYLNAPHTHALENE ACENAPHTHENE BIS(2-ETHYLHEXYL) PHTHALATE FLUORANTHENE FLUORENE N-NITROSODIPHENYLAMINE PHENANTHRENE PYRENE	10 10 10 10 10 10 10 7	LT 1.7 LT 1.7 LT 4.8 LT 3.3 LT 3.7 LT 3 LT 0.5 LT 2.8	LT 1.7 LT 1.7 LT 4.8 LT 3.3 LT 3.7 LT 3 LT 0.5 LT 2.8	NSA 2100 3 200 1400 7 2 4000
Semivolatile TICs				
2,6,10,14-TETRAMETHYLPENTADECANE CYCLOHEXENE OXIDE	NA NA	ND ND	ND ND	NSA NSA
TOTAL UNKNOWN TICs	NA	(1)5	(1)10	NSA
<u>Other</u>				
TOTAL ORGANIC CARBON TOTAL ORGANIC HALOGENS pH	1000 1 NA	14900 75 7.49 L	18300 60.3 7.42 L	NSA NSA NSA

Footnotes:

B = Analyte was detected in corresponding method blank; values are flagged if the sample concentration is less than 10 times the method blank concentration for common laboratory constituents and 5 times for all other constituents.

CGW = Chemical groundwater.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

K = Indicates holding time for extraction and preparation was not met, but data quality is not believed to be affected.

L = Indicates holding time for analysis was missed, but data quality is not believed to be affected.

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

NT = Not tested; parameters were not tested (included) in the sample analyses.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

S = Results are based on an internal standard; flag is used for TICs detected in library scans.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

UGL = Micrograms per liter.

() = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.

[] = Brackets indicate that the detected concentration exceeds the HBN.

the RFI, but the most VOCs detected in any one sample were three (benzene, chloroform and toluene) in the sample from well OMW1. Two TCL VOCs were identified in the samples from wells 8B (carbon disulfide and chloromethane) and P-1 (chloroform and toluene), one TCL VOC was detected in the samples from wells S4W-4 (carbon disulfide) and WC1-2 (chloromethane), and no TCL VOCs were detected in samples from wells P-2, P-3 and P-4. Three identified VOC TICs were detected in the sample from P-1 (3-methylpentane, hexane and methylcyclopentane) and one from the sample from well S4W-4 (2-methylnaphthalene). Unknown VOC TICs were detected in samples from wells 8B, OMW1, S4W-1 and WC1-2.

No VOC was detected more than twice and except for chloroform in samples from wells OMW1 and P-1, no two adjacent wells had the same VOC. No pattern or plume to the detected VOCs are apparent except that wells OMW1 and P-1, present at the south end (upgradient of the fuel leak), of SWMU O, are near to each other and are most impacted.

Health based numbers for three of the eight TCL SVOCs detected in the sample collected from well S4W-1 were exceeded. This sample was the only sample to have TCL SVOCs detected but at least one SVOC TIC was detected in every sample except for the well 8B sample.

Concentrations of N-nitrosodiphenylamine and phenanthrene in the groundwater sample from well S4W-1 exceeded HBN criteria and may be a concern at the site. The concentration of B2EHP also exceeded the HBN criterion; however, B2EHP was determined to be a laboratory artifact because it was detected in method blanks and the detected concentration (4.45 ug/L) was less than the method detection limit (4.8 ug/L).

The two well samples to be most impacted by SVOC (both TCL and TICs) are S4W-1 with 31 detections and OMW1 with 12 detections; no other sample had more than three detections. No pattern or plume is apparent from the detections of SVOCs except that the originally impacted well (S4W-1) is still the most impacted well and well OMW1 is the well most impacted by VOCs and SVOCs (except for S4W-1).

TOC concentrations range from less than 1,000 ug/L at well P-4 to 18,300 ug/L in the next downgradient well WC1-2. No plume or pattern in TOC concentrations are apparent at SWMU O. TOX concentrations range from 36 ug/L at well OMW1 to 134 ug/L at well P-4. The only apparent pattern is that the two lowest TOX concentrations are in the two upgradient wells (OMW1 and P-1). Concentrations in downgradient wells show no pattern in TOX distribution. Another pattern is that the three wells with the greatest VOC and SVOC impacts (P-1, OMW1 and S4W-1) also have the three lowest TOX concentrations. Well P-4 also has the lowest TOC concentration and the highest TOX concentration. Groundwater pH values have exhibited a trend where the groundwater becomes more basic (higher pH values) in the downgradient direction.

8.3.2 <u>Soil</u>

A total of 14 soil samples (and one duplicate) were collected from 11 borings located in the vicinity of SWMU O (Table 8-3). Low concentrations of several different petroleum-related constituents were detected in samples from just three borings (OSB3, OSB4 and OSB10). None of the detected contaminants exceeded a HBN. Three TCL VOCs (acetone, chloroform and ethylbenzene) were detected but only once each at concentrations below HBN, in three different samples. However, two of the samples were from boring OSB10 and the other sample was from boring OSB2. VOC TICs were also detected in the OSB10 sample from 16 feet and the two samples from boring OSB4. All detected VOCs were from borings adjacent to the tanks and the two borings (OSB4 and OSB10) most impacted were located southwest (upgradient) of the fuel leak.

Nine TCL SVOCs were detected in four samples from three borings; OSB3 at 18.0 feet, OSB4 at 22.5 feet, and OSB10 at 16.0 and 32.0 feet. Over 20 SVOC TICs were also detected in these four samples as well as the duplicate OSB5 sample from 7.0 feet. The detected constituents are PAHs and variously substituted saturated hydrocarbons associated with petroleum fuels and oils. The presence of petroleum-related constituents in samples OSB10 at 16 and 32 feet suggests that liquid hydrocarbons mounded on the water table have accumulated in the soils throughout bedrock low discussed in Section 8.2.2.1.2.

Table 8-3
Summary of Analytical Data For Soil Samples Collected At SWMU O
Radford Army Ammunition Plant, Virginia

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS	PQLs UGG	OSB1 RFIS*86 24-oct-91 16.0 CSO UGG	OSB1 RFIS*87 24-oct-91 22.0 CSO UGG	OSB10 RFIS*104 24-oct-91 16.0 CSO UGG	OSB10 RFIS*101 24-oct-91 32.0 CSO <u>UGG</u>	OSB11 RFIS*102 25-oct-91 13.0 CSO <u>UGG</u>	OSB2 RFIS*88 23-oct-91 16.0 CSO UGG	OSB3 RFIS*90 23-oct-91 18.0 CSO <u>UGG</u>	HBN UGG
Volatiles									
ACETONE CHLOROFORM ETHYLBENZENE	0.1 0.005 0.005	LT 0.017 LT 0.001 LT 0.002	LT 0.017 LT 0.001 LT 0.002	LT 0.017 LT 0.001 0.003	0.028 LT 0.001 LT 0.002	LT 0.017 LT 0.001 LT 0.002	LT 0.017 0.002 LT 0.002	LT 0.017 LT 0.001 LT 0.002	1000 100 1000
Volatile TICs									
1,4-DIMETH YLCYCLOHEXANE 2-METHYLPENTANE HEXANE	NA NA NA	ND ND ND	ND ND ND	0.004 S ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	NSA NSA NSA
TOTAL UNKNOWNTICs	NA	ND	ND	(6)0.109	ND	ND	ND	ND	NSA
Semivolatiles									
2-METHYLNAPHTHALENE	0.3	LT 0.049	LT 0.049	10.5	0.144	LT 0.049	LT 0.049	0.291	NSA
ACENAPHTHENE	0.3	LT 0.036	LT 0.036	LT 0.036	LT 0.036	LT 0.036	LT 0.036	LT 0.036	4800
ACENAPHTHYLENE	0.3	LT 0.033	LT 0.033	0.184	LT 0.033	LT 0.033	LT 0.033	LT 0.033	NSA.
ANTHRACENE	0.1	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	40
DIBENZOFURAN	0.3	LT 0.035	LT 0.035	0.425	LT 0.035	LT 0.035	LT 0.035	LT 0.035	NSA
FLUORENE	0.3	LT 0.033	LT 0.033	1.03	0.087	LT 0.033	LT 0.033	0.099	3200
NAPHTHALENE	0.3	LT 0.037	LT 0.037	1.89	LT 0.037	LT 0.037	LT 0.037	LT 0.037	1000
PHENANTHRENE	0.5	LT 0.033	LT 0.033	1.98	0.23	LT 0.033	LT 0.033	0.205	40
PYRENE	0.3	LT 0.033	LT 0.033	0.122	LT 0.033	LT 0.033	LT 0.033	LT 0.033	1000
Semivolatile TICs									
1-METHYLNAPHTHALENE	NA	ND	ND	2.95 S	ND	ND	ND	ND	NSA
2,3,6TRIMETHYLNAPHTHALENE	NA	ND	ND	ND-	0.446 \$	ND	ND	ND	NSA
2,6,10,14-TETRAMETHYLPENTADECANE	NA	ND	ND	ND	4,46 S	ND	ND	5.67 S	NSA
DODECANE	NA	ND	ND	11.8 S	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	ND	ND	ND	ND	1.13 S	NSA.
PENTADECANE	NA	ND	ND	29.5 S	0.744 S	ND	ND	ND	NSA
TETRADECANE	NA	ND	ND	58.9 S	0.595 S	ND	ND	0.708 S	NSA
TOTAL UNKNOWNTICs	NA	ND	(8)95.7	(17)1342	(17)145	ND	ND	(18)156	NSA

Table 8-3 (Cont'd)

					•				
SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS (#)	PQLs UGG	OSB4 RFIS*92 02-nov-91 22.5 CSO UGG	OSB4 RFIS*93 02-nov-91 35.0 CSO UGG	OSB5 RFIS*105 25-oct-91 7.0 CSO UGG	OSB5D, RFIS*94 25-oct-91 7.0 CSO UGG	OSB6 RFIS*96 02-nov-91 23.5 CSO UGG	OSB7 RFIS*98 04-nov-91 19.5 CSO UGG	OSB8 RFIS*99 25-oct-91 29.0 CSO UGG	HBN UGG
Volatiles									
	0.1	LT 0.017	TT 0.015	LT 0.017	LT 0.017	LT 0.017	LT 0.017	LT 0.017	1000
ACETONE CHLOROFORM	0.1 0.005	LT 0.017 LT 0.001	LT 0.017 LT 0.001	LT 0.001	LT 0.001	LT 0.017 LT 0.001	LT 0.001	LT 0.001	100
ETHYLBENZENE	0.005	LT 0.001	LT 0.001	LT 0.001	LT 0.002	LT 0.002	LT 0.002	LT 0.002	1000
EIIIIEBUVEENE	0.005	DI 0.002	21 0.002	DI 0.002	DI 0.002	E1 0.002	11 0.002	21 0.000	2000
Volatile TICs									
1.4-DIMETHYLCYCLOHEXANE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
2-METHYLPENTANE	NA	0.004 S	ND	ND	ND	ND	ND	ND	NSA
HEXANE	NA	ND	0.004 S	ND	ND	ND	ND	ND	NSA
TOTAL UNKNOWN TICs	NA	(3)0.051	ND	ND	ND	ND	ND	ND	NSA
Co-1-letiles									
<u>Semivolatiles</u>									
2-METHYLNAPHTHALENE	0.3	26.5	LT 0.049	LT 0.049	LT 0.049	LT 0.049	LT 0.049	LT 0.049	NSA
ACENAPHTHENE	0.3	2.3	LT 0.036	LT 0.036	LT 0.036	LT 0.036	LT 0.036	LT 0.036	4800
ACENAPHTHYLENE	0.3	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	NSA
ANTHRACENE	0.1	0.808	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033 LT 0.035	40 NG 4
DIBENZOFURAN FLUORENE	0.3 0.3	0.991 3.08	LT 0.035 LT 0.033	LT 0.035 LT 0.033	LT 0.035 LT 0.033	LT 0.035 LT 0.033	LT 0.035 LT 0.033	LT 0.033	NSA 3200
NAPHTHALENE	0.3	2.22	LT 0.033	LT 0.033	LT 0.033	LT 0.037	LT 0.037	LT 0.037	1000
PHENANTHRENE	0.5	4.68	LT 0.037	LT 0.037	LT 0.033	LT 0.033	LT 0.033	LT 0.033	40
PYRENE	0.3	0.399	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	LT 0.033	1000
	0.00	0.073	27 01000	51 4.055	51 41455	2. 0	22		
Semivolatile TICs									
1-METHYLNAPHTHALENE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
2.3.6-TRIMETHYLNAPHTHALENE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
2,6,10,14-TETRAMETHYLPENTADECANE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
DODECANE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA	ND	ND	ND	ND	ND	ND	ND	NSA
PENTADECANE	NA	ND	ND	ND	ND	ND	ND	ND ·	NSA
TETRADECANE	NA	ND	ND	ND	ND	ND	ND	ND	NSA
money theresees and	27.1	(71)100		(10)110	(04)004	. 130 410		NID	270.4
TOTAL UNKNOWN TICs	NA	(21)129	(1)2.94	(12)149	(21)301	(1)0,412	ND	ND .	NSA

SITE ID FIELD ID S. DATE DEPTH (ft) MATRIX UNITS (#)	PQLs UGG	OSB9 RFIS*100 04-nov-91 12.0 CSO <u>UGG</u>	HBN <u>UGG</u>
Volatiles			
ACETONE	0.1	LT 0.017	1000
CHLOROFORM	0.005	LT 0.001	100
ETHYLBENZENE	0.005	LT 0.002	1000
DITT LEBENZES	0.005	DI 0.002	1000
Volatile TICs			
1,4-DIMETHYLCYCLOHEXANE	NA	ND	NSA
2-METHYLPENTANE	NA	ND	NSA
HEXANE	NA	ND	NSA
TOTAL UNKNOWN TICs	NA	ND	NSA
Semivo latiles			
2-METHYLNAPHTHALENE	0.3	LT 0.049	NSA
ACENAPHTHENE	0.3	LT 0.036	4800
ACENAPHTHYLENE	0.3	LT 0.033	NSA
ANTHRACENE	0.1	LT 0.033	40
DIBENZOFURAN	0.3	LT 0.035	NSA
FLUORENE	0.3	LT 0.033	3200
NAPHTHALENE	0.3	LT 0.037	1000
PHENANTHRENE	0.5	LT 0.033	40
PYRENE	0.3	LT 0.033	1000
Semivolatile TICs			
1-METHYLNAPHTHALENE	NA	ND	NSA
2,3,6-TRIMETHYLNAPHTHALENE	NA NA	ND ND	NSA NSA
2,6,10,14-TETRAMETHYLPENTADECANE	NA NA	ND	NSA
DODECANE	NA NA	ND	NSA
HEXANEDIOIC ACID, DIOCTYL ESTER	NA NA	ND	NSA
PENTADECANE	NA NA	ND	NSA
TETRADECANE	NA NA	ND	NSA
LUINERGERE	M	110	TABLE
TOTAL UNKNOWN TICs	NA	(1)0.954	NSA

Ç

Footnotes:

CSO = Chemical soil.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

LT = Concentration is reported as less than the certified reporting limit.

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

S = Results are based on an internal standard; flag is used for TICs detected in library scans.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

UGG = Micrograms per gram

() = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.

Although the results indicated contamination of deep soil near the fuel oil spill area, concentrations of these petroleum-related constituents were several orders of magnitude less than applicable HBN criteria and are not considered a concern. The results of the investigation indicated that residual soil contamination is present at the site.

8.3.3 Surface Water and Sediments

The surface water sample collected from the seep out of which fuel is sometimes observed contained six SVOCs, two VOCs, 22 SVOC TICs, and five VOC TICs (Table 8-4). The SVOC constituents confirms that the seep has been impacted by the fuel leak. The SVOC concentrations, except for phenanthrene, were two or more orders of magnitude less than-applicable HBNs. Phenanthrene slightly exceeded the HBN criterion. Although phenanthrene was detected in one of the 31 method blanks, the presence of the other SVOCs indicates that the concentration of phenanthrene is a result of the fuel leak and not an analytical artifact.

Four of the SVOCs detected were also detected in the groundwater sample from well S4W-1. The VOC methylene chloride was detected in the surface water sample at a concentration less than 10 times the corresponding trip blank and is, therefore, not considered reliable. The other VOC, chloromethane, was not detected in the sample from adjacent upgradient well S4W-1 but was detected in one well further upgradient (WC1-2) and one well downgradient (8B).

Two sediment samples were collected at SWMU O; one was upgradient from the seepage (OSE1) and the other was downgradient. Other seeps and springs that discharge along the scarp north of the site are upgradient from both sediment samples. As presented in Table 8-5, one VOC and five VOC TICs were detected in OSE1 and one VOC and one VOC TIC was detected in OSE2. No SVOCs or SVOC TICs were detected in either sample. The presence of VOC TIC 1,1,3-trimethylcyclohexane in OSE1 suggests that the sediment is slightly impacted from the fuel leak because it is not a naturally occurring sediment constituent. The contaminant could be a result of soil mixing from excavation

Table 8-4
Summary of Analytical Data For Surface Water Samples Collected At SWMU O
Radford Army Ammunition Plant, Virginia

SITE ID		OSP1	
FIELD ID		RDWA*37	
S. DATE		26-sep-91	
DEPTH (ft)		0.0	
MATRÌX	PQLs	CSW	HBN
UNITS	<u>UGL</u>	<u>UGL</u>	<u>ugl</u>
Volatiles			
CHLOROMETHANE	10	10.5	30
METHYLENE CHLORIDE	5	4.91 T	5
	•		•
Volatile TICs			
(1-METHYLPROPYL) BENZENE	NA	9 S	NSA
TOTAL UNKNOWN TICs	NA	(4)31	NSA
Semivolatiles			
2-METHYLNAPHTHALENE	10	2.07	NSA
ACENAPHTHENE	10	2.43	2100
DIBENZOFURAN	10	1.81	120
FLUORENE	10	5.21	1400
NAPHTHALENE	10	2.33	10000
PHENANTHRENE	7	[2.2]	2
Semivolatile TICs			
2-(2-N-BUTOXYETHOXY)ETHANOL	NA	8 S	NSA
TOTAL UNKNOWN TICS	NA	(21)192	NSA

Footnotes:

CSW = Chemical surface water.

HBN = Health based number as defined in the RCRA permit, HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

NA = Not available; PQLs are not available for TICs detected in the library scans.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

S = Results are based on an internal standard; flag is used for TICs detected in library scans.

T * Analyte was detected in corresponding trip blank; values are flagged if the sample concentration is less than 10 times the trip blank concentration for common laboratory constituents and 5 times for all other constituents.

UGL = Micrograms per liter.

^{() =} Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.

^{[] =} Brackets indicate that the detected concentration exceeds the HBN.

Table 8-5
Summary of Analytical Data For Sediment Samples Collected At SWMU O
Radford Army Ammunition Plant, Virginia

SITE ID FIELD ID S. DATE DEPTH(ft) MATRIX UNITS	PQLs UGG	OSE1 RFIS*106 26-sep-91 0.5 CSE UGG	OSE2 RFIS*107 26-sep-91 0.5 CSE UGG	HBN UGG
<u>Volatiles</u>				
ACETONE	0.1	0.061	0.122	1000
Volatile TICs				
1,1,3-TRIMETHYLCYCLOHEXANE	NA	0.016 S	ND	NSA
TRICHLOROTRIFLUOROETHANE	NA	ND	0.016 S	NSA
TOTAL UNKNOWN TICs	NA	(4)0.038	ND	NSA
<u>Semivolatiles</u>	NA	None Detected	None Detected	NSA

Footnotes:

CSE = Chemical sediment.

HBN = Health based number as defined in the RCRA permit. HBNs not specified in the permit were derived using standard exposure and in take assumptions consistent with EPA guidelines (51 Federal Register 33992, 34006, 34014, and 34028).

NA = Not available; PQLs are not available for TICs detected in the library scans.

ND = Analyte was not detected.

NSA = No standard (HBN) available; health effects data were not available for the calculation of a HBN. HBNs were not derived for TICs.

PQL = Practical quantitation limit; the lowest concentration that can be reliably detected at a defined level of precision for a given analytical method.

S = Results are based on an internal standard; flag is used for TICs detected in library scans.

TICs = Tentatively identified compounds that were detected in the GC/MS library scans.

UGG = Micrograms per gram.

() = Parenthesis are used to indicate the number of unknown TICs that were detected in either the volatile or semivolatile GC/MS library scans. The number beside the parenthesis is the total concentration of all TICs detected in each respective scan.

procedures conducted after the fuel oil spill occurred. Trichlorotrifluoroethane was detected in method blanks at concentrations higher than that detected in OSE2 and is, therefore considered a laboratory artifact. Acetone is also considered a laboratory artifact at the concentrations detected in both sediment samples.

8.3.4 Subsurface Gas Contamination

A soil gas survey was conducted at SWMU O for investigation of the subsurface routes through the unconsolidated soils in which fuel has migrated. Each soil sample was analyzed for the VOCs most likely associated with the fuel oil under investigation. These VOCs were determined in the field by analyzing a sample of the fuel oil stored in the aboveground storage tanks. Pentane/MTBE, benzene, toluene, ethylbenzene, xylene, and total volatiles were analyzed.

Fuel oil was previously detected at a seep located 400 feet northeast of the reported discharge point of the aboveground storage tank. The seep acted as a starting point for a line of soil gas samples taken approximately perpendicular to the line connecting the seep to the discharge leakage point (Figure 8-2). The soil gas samples were analyzed in the field so that subsequent survey lines could be adjusted as needed to identify the migration route(s).

The targeted VOCs (pentane/MTBE and BTEX) were below detectable limits (1.0 ug/L) in the 27 samples collected during the soil gas survey. The results are provided in Appendix I. The only detections occurring in any of the 27 samples collected were in three samples collected near the seep and one sample collected in the vicinity of the tanks. The three samples (13, 16, and 32) by the seep exhibited total volatile concentrations ranging from 1.1 to 4.3 ug/L. A total volatile concentration of 33 ug/L was detected in the sample (33) collected near the source. It is likely that the fuel contaminants are essentially highly weathered and are probably in the form of less volatile SVOCs. The clayey soils in the area are less permeable sediments, therefore volatiles would not migrate as well through the sediments and soils. Groundwater and soil analytical results indicate only a trace of aromatic volatiles and low concentrations of SVOCs.

Because the fuel contaminants remaining at the site were primarily SVOCs, VOCs concentrations were not sufficient to sample during the soil gas survey and this method could not be used to locate the migration pathways of the leaked fuel.

8.4 <u>BASELINE RISK ASSESSMENT FOR SWMU O--UNDERGROUND FUEL OIL</u> SPILL

Based on the contamination assessment presented in Section 8.3, two contaminants of concern-N-nitrosodiphenylamine (NNDPA) and phenanthrene-have been identified for groundwater downgradient of SWMU O. Contaminants of concern were not identified for site soil because all detected constituents were well below HBNs. Phenanthrene is considered a potential contaminant of concern for surface water. No contaminants of concern were identified for sediment. The potential impacts of these contaminants of concern to human health and the environment are discussed below in Sections 8.4.1 and 8.4.2, respectively.

8.4.1 Human Health Evaluation

No shallow groundwater wells other than for monitoring purposes are located downgradient of SWMU O. The main groundwater flow is to the northeast, resulting in discharge via stream channel seepage into Stroubles Creek, which flows north into the New River. Therefore, shallow groundwater would not likely migrate toward any groundwater users in the vicinity of RAAP. As discussed in Section 2.5, future land use is considered to be similar to the current land use scenario—i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development of RAAP. Therefore, it is highly unlikely that groundwater wells would be installed in the future between SWMU O and Stroubles Creek. Based on this evaluation, potential groundwater exposure pathways are not considered operable under the current or future land use scenario.

As discussed above, there is the potential for discharge of shallow groundwater contamination to Stroubles Creek. However, there are no known domestic or recreational uses of this stream and a large portion of the flow in Stroubles Creek is attributable to

effluent from the Blacksburg municipal sewage treatment plant. Although there is the potential for workers, employees, or trespassers to contact the surface water of the Stroubles Creek tributary, these events would presumably be isolated and infrequent. In addition, NNDPA was only detected in one of the nine groundwater samples at a concentration less than an order of magnitude above its HBN; and phenanthrene was only detected in one of nine groundwater samples, although its concentration was approximately 40 times its HBN. The concentrations of these constituents in groundwater would presumably be diluted during migration to Stroubles Creek and upon discharge to Stroubles Creek. Therefore, the potential impact of SWMU O groundwater discharge to Stroubles Creek is considered negligible and these exposure pathways are not evaluated further.

Phenanthrene was detected in the sample collected from the seepage zone at a concentration (2.2 ug/L), just slightly elevated above its HBN (2 ug/L). Because this is a fuel seepage zone and not a surface water body, the traditional surface water exposure pathways are not considered applicable. Although there is the potential for workers, employees, or trespassers to contact the surface water seepage, these events would presumably be isolated and infrequent. Because phenanthrene only slightly exceeded its HBN and contact with the seepage is expected to be infrequent, exposure is estimated to be negligible and this exposure pathway is not considered significant.

8.4.2 Environmental Evaluation

As discussed above, there is the potential for discharge of groundwater contamination to Stroubles Creek, which could potentially impact aquatic life. Although data are insufficient for establishing aquatic life criteria for phenanthrene and NNDPA, as discussed above, they were only detected in one of the nine groundwater samples. The concentrations of these constituents in groundwater would presumably be diluted during migration to Stroubles Creek and upon discharge to Stroubles Creek. Therefore, the potential impact of SWMU O groundwater discharge to Stroubles Creek is considered negligible and these pathways are not further evaluated.

Because the surface water sample was collected from a fuel seepage area and not a surface water body, potential impacts to aquatic life are not considered applicable. Although other wildlife may potentially use the seep as a drinking water source, because the area surrounding SWMU O is well-developed and currently active, it is not likely that wildlife would frequent the area. Because phenanthrene only slightly exceeded its HBN and contact with the seepage is expected to be infrequent, potential exposure to environmental receptors is considered negligible and this pathway is not evaluated further.

8.4.3 Conclusions of Human Health and Environmental Evaluation

Although phenanthrene and NNDPA were detected above their HBNs in SWMU O groundwater, due to the lack of groundwater and surface water receptors and the fact that dilution would occur upon discharge of groundwater to Stroubles Creek, resulting in insignificant exposure, the detections of these constituents does not appear to present a current or potential future human health risk or environmental threat. Although phenanthrene was detected in the surface water seep exceeding its HBN, because phenanthrene only slightly exceeded its HBN and contact with the seepage is expected to be infrequent for both human and environmental receptors, potential exposure to human and environmental receptors is considered negligible. Therefore, the detection of phenanthrene in the surface water seep sample does not appear to present a current or potential future human health risk or environmental threat.

8.5 **SUMMARY AND CONCLUSIONS**

The RFI sampling program has provided chemical data for evaluating the impact SWMU O has had on the groundwater and soil due to a release of fuel oil. The results of the RFI boring and well installation program, in conjunction with data acquired in previous investigations, have been used to define the hydrogeologic conditions at the site. The RFI and previous investigations have led to the following conclusions:

Approximately 10 to 35 feet of unconsolidated sediments underlie the SWMU
 O area and overlay limestone/dolostone of the Elbrook Formation. Most of

the sediment consists of silt and clay except for a thin layer of river jack (cobbles and boulders) occasionally present on bedrock.

- The bedrock surface is irregular with the bedrock surface elevation higher northeast of the leak area and lower to the southwest. A basin-shaped depression in the bedrock surface is present under the tank area.
- An unconfined water table which flows northeastward is present below the site. The water table is present in soil on the northwest side of the area and in rock on the southeast side.
- Discharge zones for the unconfined aquifer are present in the road side ditches northwest and northeast of the tank area. Seeps in the hillside northeast of the site have been observed to have greater discharges after rainfall events.
- Ambient groundwater velocities downgradient of the tank area were estimated to be 28 feet/year in the river jack/broken rock zone and 5 feet/year in the bedrock. The velocity through the plastic silt and clay was estimated to be 0.1 feet/year but flow is probably faster due to secondary permeability features. The most likely path for contaminant migration appears to be through the river jack/broken rock zone during periods of precipitation and high groundwater levels.
- Several VOCs were detected in groundwater samples but only sporadically at
 concentrations below HBNs. TCL SVOCs were only detected in the
 groundwater sample from well S4W-1 with three of the eight SVOCs
 exceeding HBNs--n-nitrosodiphenylamine, phenanthrene, and bis(2-ethylhexl)
 phthlate (a laboratory artifact). SVOC TICs were detected in eight of the
 nine wells sampled.
- Only borings next to the tanks had detectable VOCs and SVOCs but none exceeded an HBN.

- Seven VOCs and 35 SVOCs, including VOC and SVOC TICs, were detected
 in the sample from the seep adjacent to well 54W-1. Only the SVOC
 phenanthrene exceeded a HBN.
- Only trace levels (near the PQL) of a few VOCs and SVOCs were detected in sediment collected from the ditch near the seep. No organic exceeded a HBN.
- Contaminants appear to be localized to the soil and groundwater within the bedrock depression under the tanks.
- No health or environmental risk was identified for RAAP workers under current or expected future conditions.

8.6 RECOMMENDED ACTION

A Corrective Measures Study is recommended for the treatment of the groundwater at the site. No significant accumulation of fuel has been identified at SWMU O however, fuel contaminants are present in the soil and dissolved in the groundwater below the tanks. Fuel contaminated groundwater also migrates towards and discharges into the nearby roadside drainage ditches but does not migrate more than 450 feet northeast of the aboveground tanks. The exact path(s) and the location of any accumulated oil in pockets along the path(s) are unknown but are thought to be along the high permeability zone overlying bedrock.

Corrective measures consisting of groundwater removal and treatment appears to be most suitable for known hydrogeologic conditions. It is recommended that well OMW1 be used to remove the contaminated water underlying the tanks. The removed water appears to be suitable for inclusion in the Bio-Plant waste stream which has a sewer line along the road adjacent to the tanks. Samples of the water/oil removed from the pumping wells should be analyzed for the parameters that Bio-Plant personnel need to evaluate what effect this liquid would have on the treatment system and conversely, the effect the treatment would have on the liquid. The Virginia Water Control Board would also need to approve

changes to the waste stream. An additional well should also be installed immediately southwest of the tanks at the edge of the parking area to provide another dewatering location. Well S4W-1 should also be included in the remedial actions if the removed liquid is suitable for Bio-Plant treatment. Other alternatives, such as in-situ biological treatment and on-site treatment of groundwater are much more complicated to implement and would fail to employ on-post treatment systems readily available for use without a noticeable increase in efficiency or protection. Off-post disposal of waste oil pumped from well S4W-1 is an alternative if the waste is unsuitable for Bio-Plant treatment.

The path between the tanks and the seepage zone was estimated to run approximately northward from the tanks along a narrow (60 foot wide) area from 30 feet to 90 feet northwest of wells WC1-1 and WC1-2. A line of five soil borings spaced at 10 feet are proposed for this area to investigate for fuel products and to confirm the presence of the migration pathway. Four exploratory soil borings are also proposed along an eastwest line, two on each side of well P-4 and spaced at 10 feet, to better determine the subsurface conditions in this area. Well P-4 groundwater samples were uncontaminated even though it is positioned within the estimated migration pathway suggesting that the actual pathway would be on either side of the well.

The recommended CMS for the groundwater treatment program in conjunction with the exploratory soil boring program are the only measures considered appropriate until more significant contamination problems are discovered at SWMU O.

9.0 CONCLUSIONS AND RECOMMENDATIONS

SWMU 13, SWMU 17, SWMUs 28/51/52, and SWMU O at RAAP were subjected to a RFI, as directed by the RCRA Permit for Corrective Action and Incinerator Operation (USEPA, 1989). Each RFI SWMU was found to have contaminants present within the SWMU boundaries. The SWMU investigations also detected contaminants leaving the confines of the structures specifically designed to contain the waste.

SWMUs 13 and 17 are explosives contaminated waste burning areas where on-site disposal of waste residue is not performed. The burning operations could have resulted in the inadvertent discharge of contaminants to soil, sediment, groundwater and surface water. SWMU 17 contaminants have impacted contact soil, on-site surface water and on-site sediments in runoff basins. The migration of contaminants from SWMU 17 to groundwater could not be evaluated because of the hydrogeologic environment in which it is located. SWMU 13 contaminants were found to impact contact soils, on-site surface water and on-site sediments in runoff basins and impact off-site groundwater, but only slightly.

SWMUs 28, 51 and 52 are burial areas for sanitary waste, TNT contaminated waste, and sanitary waste, respectively. The impact to groundwater was considered the only potential off-site scenario considered relevant and was the only contaminant pathway evaluated. No impact above HBNs was detected attributable to SWMUs 28 and 52. An unacceptable concentration of one explosive was detected in wells around SWMU 51.

SWMU O is not a hazardous waste treatment, storage or disposal facility but a fuel oil storage area at which an aboveground tank experienced a discharge of oil when a transfer pipe ruptured. Fuel entered the underlying soil and groundwater and migrated 400 feet northeastward where it was detected in a well installed for another SWMU. The soil near the well was excavated and a large quantity of fuel flowed out of the ground and into a roadside drainage ditch. A number of contaminants were detected during the RFI in the soil and groundwater below the tank area but at concentrations less than HBNs. Soil, sediment and groundwater samples collected away from the tank area contained only a few

fuel related contaminants and at concentrations below HBNs. The only detections of fuel contaminants above HBNs were from samples collected from the well which originally encountered fuel and the adjacent seep.

Summaries of current environmental conditions for each of the six SWMUs addressed by the RFI are presented in Sections 5.0 through 8.0. Table 9-1 lists pertinent characteristics of each SWMU with respect to groundwater flow direction, surface water flow direction, whether source contaminants have been detected, whether contaminants have been detected away from the source, potential health risk from the Baseline Risk Assessment, and the location of the site with respect to the installation boundary. The levels of constituents detected with respect to HBNs are indicated. The information provided in Table 9-1 is useful for summarizing the potential adverse impact of each site on human health and the environment and for help in determining whether corrective measures are warranted. For sites where contaminants have been confirmed in site media. the suspected or confirmed groundwater and surface water flow direction indicate the direction of potential contaminant movement. Where site contamination has been confirmed, the potential for off-site migration is based on hydrogeologic and topographic conditions. The distance from the site to the installation boundary is useful to help evaluate whether contaminant concentrations will be significantly reduced by attenuation, adsorption, dissipation, or dilution prior to potentially exiting the installation.

Table 9-2 summarizes the constituents detected at each SWMU and in which medium they were detected. Constituent concentrations that are above background criteria and HBNs are also indicated.

The information provided in Sections 5.0 through 8.0 and summarized in Tables 9-1 and 9-2 was useful to develop the proposed corrective action, monitoring or data collection recommendations provided in Table 9-3.

Table 9-4 presents a summary of the recommended action for each RFI SWMU. A Corrective Measures Study is recommended for SWMU 51 and SWMU O. The recommended remedial alternative for SWMU 51 is a cap to cover SWMU 51 and SWMU

Table 9-1
Summary of Environmental Conditions at SWMUs Investigated
Radford Army Ammunition Plant, Virginia

	SMWU Nos.	SWMU Name	Potential Groundwater Flow Direction	Surface Water Runoff Direction	Contaminant Source Present	Contamination Detected Away from Source	Health Risk Within EPA Target Range	Distance from Installation Boundary (feet)
	13	Waste Propellant Burning Ground	South	East	Yes-AHBN	Yes-AHBN	Maybe-SO/IN(s)	100
	17	Contaminated Waste Burning Areas	Unknown	None	Yes-AHBN	NS	Yes-SO/IN(c)	2500
	28	Active Sanitary Landfill	Radial	East	Unknown	No	No	1400
	51	TNT Neutralization Sludge Disposal Area	East	Southwest	Yes-NS	Yes	No	1100
	52	Closed Sanitary Landfill	Radial	East	Unknown	No	No	1100
9	0	Underground Fuel Oil Spill	Northeast	Northeast	Yes-BHBN	Yes-AHBN	No	2500

Footnotes:

AHBN = Above health based number

BHBN = Below health based number

NS = Not sampled

SO/IN = Soil Inhalation/Ingestion Risk

(s) = Suspected, available health advisory data insufficient to calculate

(c) = Calculated using available health advisory data

Table 9-2 Summary of Parameters Detected for RFI Radford Army Ammunition Plant, Virginia

	SWMUe											
COMPOUND		•	13			17_	26,	51, 52			0	
Modia (a):	SW.	80	SE	SW	<u>80 9</u>	W SE	Ţ	GW	ζ¥₩.	80	SW	SE
EXPLOSIVES 1,3,5-TNB	l_	x	0	0	l	_	1	_	l_	_	_	_
1,3-DNB		ၳ	ĕ:	Ž:		::::: <u>+</u> ::		0	****	***	-	d -1 888
2,4-DNT	–	0	X	X	οх	X		-	-	_	-	_
24.6-TNT		X	0						-		7.3	
2,6-DNT HMX	-	o.	X	X			:::: :::::::::::::::::::::::::::::::::	X ::::::::::::::::::::::::::::::::::::	-	 ⊗≆⊙		_ **********
ROX	0		ecopy	<u> </u>		-			∤	<u> </u>		(<u>T</u>) (8)
TETAYL	Ō.	*		* :::								+
METALS											- 1.11	
ALUMINUM	0		0	0	00	٥		0	-	— 8肇4.	-	_
ARTMONY ARSENIC	0	**************************************	0	O	0 -	X		0	-		4 <u>4</u>	
BARIUM	ŏ	ŏ.	ಶ	ŏ	ôô			Ŏ	<u> </u>	 3 `— 333	- ::::::::::::::::::::::::::::::::::::	#30
BERYLLIUM	-	0	0	_	0 -	_		-	T -	-		-
CADMEM	***	Ō	Ď		0 -			•	•		3	*
CALCIUM CHROMIUM	0	ိ	0	o X	0 O		980 8088800000	0	_ 	_ ::43::::	 -czgowo	_
COBALT	- -	Ö	Ö	X	0 X	ဗ			1.7000			<u> </u>
COPPER	0	ō	Ö	Ö	x o	_	XX 1 00,000	3 # 333553	1 			
IRON	0	0	0	0	00			0	[-		_	_
LEAD MAGNESIUM	ŏ	×	X	×	XX	111.00		Ö	=:			
MANGANESE	0	ŏ	Ö	ő:	0 0		***************************************	O D	l Z	_ 	 :: <u></u> :::::::::::::::::::::::::::::::	
MERCURY		ō	D		o ő	· · · · · · · · · · · · · · · · · · ·	000000000000000000000000000000000000000		-	-	-	-
Nickel	-	0	0	0	00	O						
POTASSILIM	0	0	0	٥	0 0	0		0	I-		_	-
SILVER SODIUM	0	C	0	0	00	W. C. W. T. C.		C	<u> </u>	·-		
THALLIUM	ĭ	ŏ	ŏ .	Ŭ	×÷		300000000000000000000000000000000000000	¥	1	- 34433		-
VANADIUM	0	0	Ō	0	0 0	0	0.0000000000000000000000000000000000000	_	-	-	_	-
ZINC	0	0	0	0	00	O		0				
VOCS 1,1,1—TRICHLOROETHANE		O	44333	33223333	-40	3333 <u>34</u> 34	000-00400000000000000000000000000000000	0	lesson.	30222333	::: <u>::::</u> ::::::	0220000
1,1-DICHLOROETHANE	-	_	-	_		-	500,000,000,000	X	- -		-	-
1,2-DICHLORGETHANE	0					# (H)			1 48 000			
1,2-DICHLOROETHENE	0		-	_ :*****		-	erior a constant i to	-	_			
1,2-DICHLOROPROPANE ACETONE	o .	o								-	******	~
CARBON DISULFIDE	o		-	ø.	** **	<u>-</u>	00 00% (0.0 00)	0	0	. 	- ::::::::::::::::::::::::::::::::::::	
CARBON TETRACHLORIDE	X	_	-	_			****	-	1-	-	_	_
CHLOROFORM	0	.				::::::::::::::::::::::::::::::::::::::			0	O		
CHLOROMETHANE ETHYLBENZENE	.222	<u>-</u>	_ ::::::::::::::::::::::::::::::::::::	_ ::::::::::::::::::::::::::::::::::::		 3378320		_ : <u>4</u> **********	0	_ ::::::::::::::::::::::::::::::::::::	0	_ ::::::::::::::::::::::::::::::::::::
METHYLENE CHLORIDE	550 c	<u>-</u>	-	******	<u> </u>			X	ο	O	0	<u>-</u>
TOLLIENE	-	0		eries.				Ô	0) 18 00	ı.	*******
TRICHLOROETHYLENE	X	_	-	-		-		-	i –		-	-
TRICHLOROFLUOROMETHANE	(T)			•		383 <u>80</u>		0	-			
2-METHYLNAPHTHALENE	3488				<u></u>	21.3 <u>4.</u> 9		88 4 8888887-0	0	0	0	<u>8-46988</u>
ACENAPHTHENE	- -	_	-	-	9000000		3064 20060 5000000	**************************************	• •••••	~~	~	<u>-</u>
ACENAPHTHYLENE	*****			(4 88)		-			0	Ò	ıĒ.	***
ANTHRACENE			-	-		-			<u> -</u>	0		_
BISQ-ETHYLHEXYL) PHTHALATE DI-N-BUTYL PHTHALATE	-	Ö	0	<u> </u>				×	.			
DIBENZOFURAN	<u>₩</u>	×			- : <u>- : : : : : : : : : : : : : : : : :</u>	::- ::-:::::::::::::::::::::::::::::::		- 	-	0	0	
DIETHYL PHTHALATE		0	-	-				— ————————————————————————————————————	7	~ ~	CECTR T	
FLUORANTHENE	****	**	O	•	156	% +			0	###		
FLUORENE	_ ::: <u>::::</u> :::::::::::::::::::::::::::::	_ 9#3	_ '≼≟≾⊴	_ ::::::::::::::::::::::::::::::::::::		_ 	200000000000000000000000000000000000000	 0 <u>44</u> 00000000000	0	O.	D	-
NAPHTHALENE N-NITROSODIPHENYLAMINE	<u>-</u>	0	- 78	• •					×	•	o	· -
PHENANTHRENE	+	¥::	0	- (8)	+ +			*	Î.	0	<u> </u>	- -
PYRENE	_		0_	- 2222			***	n responsible	Ö	Õ	ाचा १८ =	-
OTHER PARAMETERS			*****									,
NITRATE+NITRITE	0	***	```	0	*	÷			1 +	•	#	<u> </u>

Footnotes:

Solution Set in Section Sec

Table 9-3
Summary of Proposed Recommendations
Radford Army Ammunition Plant, Virginia

		Recommended Actions and Corrective Measures Alternatives							
		Collect	Corrective		Groundwater	Surface		Develop/	Perform
SMWU	SWMU	Additional	Measures	Capping	Treatment	Drainage	Monitor	Revise	Dye Tracer
Nos.	Name	RFI Data	Study	Alternative	Alternative	Controls	Site	SOPs	Study
13	Waste Propellant Burning Ground				236.4	X	X	X	300000000000000000000000000000000000000
17	Contaminated Waste Burning Areas	X	(a)				(a)	X	X
28	Active Sanitary Landfill					×	X		87886
51	TNT Neutralization Sludge Disposal Area		X	х		X	X		
52	Closed Sanitary Landfill					X	X		
O	Underground Fuel Oil Spill	X	X		X	(2)	X		

Footnotes

(a) = May be warranted after evaluation of additional RFI data.

Table 9-4 Summary of SWMU Specific Recommended Actions Radford Army Ammunition Plant, Virginia

SMWU Nos.	SWMU Name	Recommended Action
13	Wasse Propellant Burning Ground	Regrade drainage and improve settling pond. Monitor groundwater for VOCs and explosives to assess effectiveness of drainage improvements. Revise SOPs to protect against windblown particles.
17	Contaminated Waste Burning Areas	Perform dye tracer study and devise monitoring plan. Revise SOPs to protect against windblown particles. Re-evaluate RFI after collection of new hydrogeologic and monitoring data.
28	Active Sanit try Landfill	Complete capping and grading of landfill area upon closure. Evaluate suspected SWMU 16 contaminant releases under existing closure requirements. Monitor groundwater to assess effectiveness of capping alternative.
.51	TNT Neutralization Studge Disposal Area	Perform Corrective Measures Study to isolate waste via capping. Design surface water drainage controls. Monitor groundwater to assess effectiveness of capping alternative.
52	Closed Sanitary Landfill	Complete capping and grading of landfill area upon closure. Monitor groundwater to assess effectiveness of capping alternative.
O	Underground Fuel Oil Spill	Perform Corrective Measures Study to mitigate on—site groundwater contamination via disposal into Bio—Plant treatment system. Perform exploratory soil borings to locate groundwater migration path. Monitor groundwater to assess effectiveness of dewatering alternative.

30 along with a surface water diversion system for the purpose of preventing precipitation infiltration and the resultant leachate generation. The recommended alternative for SWMU O is the removal of groundwater underlying the storage tank with disposal into the Bio-Plant treatment system. A limited soil boring program at SWMU O to attempt to find the subsurface groundwater flow path and possible accumulation of fuel oil is also recommended. Corrective actions for which a CMS is unnecessary for implementation are recommended for SWMU 13, SWMU 28 and SWMU 52. These actions consist primarily of improvements to the drainage at SWMU 13 and the completion and maintenance of the cap at SWMUs 28 and 52. SWMU 16, which is not an RFI site, but is located between SWMU 28 and SWMU 52, may be discharging contaminants above HBNs and should be investigated through the existing SWMU 16 closure plan.

The RFI for SWMU 17 needs to be expanded to include groundwater dye tracing investigations for the underlying karst bedrock aquifer. After discharge springs are located by the dye tracing, samples should be collected for analyses.

The Baseline Risk Assessment identified a risk due to incidental ingestion/inhalation of soil contaminants at SWMU 17. A similar risk at SWMU 13 may also be present but advisory health risk data were unavailable to calculate this risk. Revisions of SOPs at these two active SWMUs to include measures to protect against the incidental ingestion/inhalation of wind blown particles is recommended. No health risks under current or expected future conditions have been identified for the other RFI SWMUs.

10.0 BIBLIOGRAPHY

- American Society of Hospital Pharmacists, Inc. (ASHP), 1992. Nitroglycerin: Drug Information fulltext Version 5.00/1.13 (1992 edition) Database.
- BCM Eastern, Inc. (BCM), 1984. Groundwater Quality and Site Assessment Study of Hazardous Waste Management Sites 4, 5, 6 and 7; Solid Waste Management Sites 8 and 9, Pollution Spill Area, at the Radford Army Ammunition Plant, Radford, Virginia.
- Bouwer, H. and R.C. Rice, 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Res. Research, v. 12, pp. 423-428.
- Burrows, E.P., D.H. Rosenblatt, W.R. Mitchell, and D.L. Parmer (Burrows), 1989. Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901.
- Chas. T. Main of Virginia, Inc. (CTM), 1988. <u>Preliminary Hydrogeologic Investigation for Ash Landfill Permit Application</u>. Prepared for the Corps of Engineers, Revised 1989.
- Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.p., Fowler, C.F., et al. (Callahan), 1979.

 <u>Water-Related Environmental Fate of 129 priority Pollutants</u>. Washington, DC:

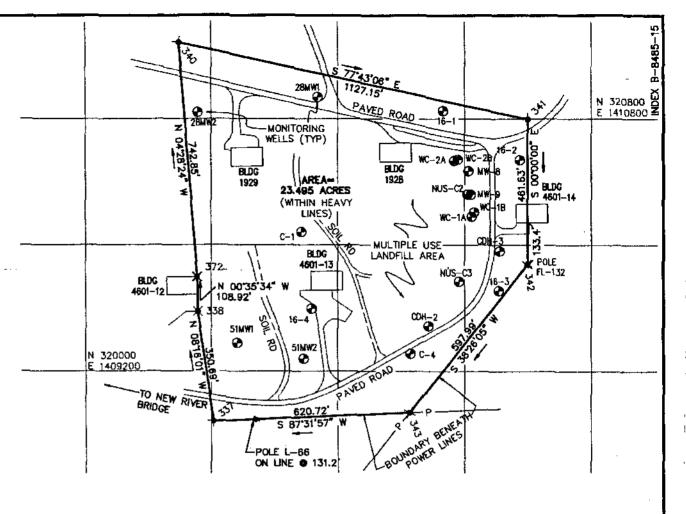
 U.S. Environmental Protection Agency, Office of Water Planning and Standards.

 EPA-440/4-79-029ab.
- Clement Associates, Inc. (Clement), 1985. <u>Chemical, Physical, and Biological Properties of Compounds Present at Hazardous Waste Sites</u>. Prepared for U.S. Environmental Protection Agency, September 27, 1985.
- Cowherd, C., Muleski, G., Engelhart, p., and Gillete, D. (Cowherd), 1985. <u>Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination</u>. Prepared for EPA Office of Health and Environmental Assessment. EPA/600/8-85/002.
- Dames & Moore, 1992a. <u>Task Order No. 16, SWMU 13 Characterization Report for Radford Army Ammunition Plant, Virginia (Draft)</u>. Prepared for U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland.
- Dames & Moore, 1992b. <u>Task Order No. 4, Draft Verification Investigation Radford Army</u>
 <u>Ammunition Plant, Virginia.</u> Prepared for U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland.

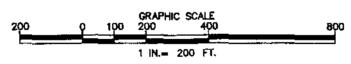
- Dames & Moore, 1990a. RCRA Facility Investigation Work Plan for Radford Army Ammunition Plant, Virginia. Prepared for U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland.
- Dames & Moore, 1990b. <u>Verification Investigation Work Plan for Radford Army Ammunition Plant, Virginia (Draft)</u>. Prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency, May 25, 1990.
- Freeze, R. Allan and Cherry, John A. (Freeze and Cherry), 1979. <u>Groundwater</u>. Prentice-Hall, Inc.
- Froehling & Robertson, Inc. (F&R), 1987a. Monitoring Well Installation SWMU 16, November 16, 1987.
- Froehling & Robertson, Inc. (F&R), 1987b. Monitoring Well Installation SWMUs 4.5 and 7. May 30, 1987.
- Hercules Aerospace Company (Hercules), 1991. Oily Waste Water Spill Building 7219.

 Letter to Administrative Contracting Office, Radford Army Ammunition Plant, July 1, 1991.
- Hercules Incorporated (Hercules), 1983. Ash Landfill No. 1, Sanitary and Hazardous Waste Landfills Plot Plans and Sections. Radford Army Ammunition Plant Reference Drawing 30669-F351, Revision 01.
- Johnson Filtration Systems, Inc., 1986. <u>Groundwater and Wells</u>. Second Edition, Edited by Fletcher G. Driscoll.
- Milanovic, Petar T., 1981. Karst Hydrogeology. Water Resources Publications.
- National Oceanic and Atmospheric Administration (NOAA), 1973. Climatology of the United States--Virginia, Vol 38, nos. 11 and 86. U.S. Department of Commerce, NOAA Environmental Data Service, Asheville, North Carolina.
- New River Valley Planning district Commission (NRVPDC), 1989. The Economy of the New River Valley of Virginia, Radford, Virginia.
- Olver, Inc., Consulting Engineers and Environmental Laboratories, 1980; 1983; 1989. Sample analyses: November 7, 1980; September 29, 1983, March 24 and September 18, 1989.
- Pieper, L.D., 1989. Personal communication. Letter from L. D. Pieper (RAAP) to M. Beck (EPA), August 14, 1989.

- Soil Conservation Service (SCS), 1985a. Soil Survey of Pulaski County, Virginia. U.S. Department of Agriculture.
- Soil Conservation Service (SCS), 1985b. <u>Soil Survey of Montgomery County, Virginia</u>. U.S. Department of Agriculture.
- U.S. Army Corps of Engineers (USACE), 1988. Feasibility Study for Hazardous Waste Management Sites 4, 5, 7 and 16, Radford Army Ammunition Plant, Radford, Virginia. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- U.S. Army Corps of Engineers (USACE), 1981. <u>Hydrogeologic Evaluation of Ash Landfill B. Sanitary Landfill C. Acid Neutralization Lagoon D. Acid Neutralization Lagoon H at the Radford Army Ammunition Plant.</u>
- U.S. Army Environmental Hygiene Agency (USAEHA), 1987. <u>Hazardous Waste Study No.</u> 37-26-0785-88, Soil Sampling Study at the Radford Army Ammunition Plant Open Burning Ground, Radford Army Ammunition Plant, Radford, Virginia.
- U.S. Army Environmental Hygiene Agency (USAEHA), 1981. <u>Army Pollution Abatement Study. Installation of Monitoring Wells</u>. Radford Army Ammunition Plant, Radford, Virginia (USAEHA No. 81-26-8252-81).
- U.S. Army Environmental Hygiene Agency (USAEHA), 1980a. <u>Hazardous Waste Management Survey No. 39-26-0134-82</u>. Radford Army Ammunition Plant, Radford, Virginia.
- U.S. Army Environmental Hygiene Agency (USAEHA), 1980b. <u>Land Disposal Study No.</u> 38-26-0128-81. Radford Army Ammunition Plant, Radford, Virginia.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1990. <u>Ouality</u>
 <u>Assurance Program</u>.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1985. <u>Installation</u>
 <u>Restoration Program Quality Assurance Program</u>.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1984. <u>Installation Reassessment of Radford Army Ammunition Plant, Radford, Virginia</u>. Report No. 103R.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), 1976. <u>Installation Assessment of Radford Army Ammunition Plant</u>. Records Evaluation Report No. 103.

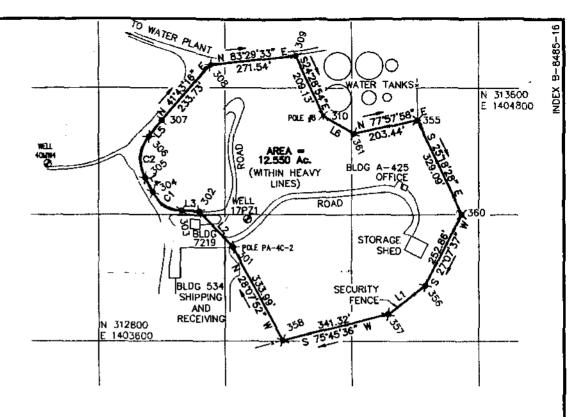

- U.S. Department of Agriculture (USDA), 1985. Soil Survey of Montgomery County, Virginia. Soil Conservation Service, 1985.
- U.S. Environmental Protection Agency (USEPA), 1992. <u>Integrated Risk Information System (IRIS)</u>. Environmental Criteria and Assessment Office, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (USEPA), 1991a. <u>Health Effects Assessment Summary Table (HEAST), First Ouarter.</u>
- U.S. Environmental Protection Agency (USEPA), 1991b. <u>Technical Support Document on Lead</u>. Preliminary Draft, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, Ohio, January 1991.
- U.S. Environmental Protection Agency (USEPA), 1991c. Risk Assessment Guidance for Superfund: Volume I.-Human Health Evaluation Manual (Part B. Development of Risk-Based Preliminary Remediation Goals. Interim, Publication 9285.7-01B. Office of Emergency and Remedial Response, Washington, DC.
- U.S. Environmental Protection Agency (USEPA), 1991d. <u>Human Health Evaluation</u>
 <u>Manual, Supplemental Guidance: "Standard Default Exposure Factors"</u>. Interim
 Final, OSWER Directive 9285.6-03, Office of Emergency and Remedial Response.
- U.S. Environmental Protection Agency (USEPA), 1989a. <u>Permit for Corrective Action and Incinerator Operation</u>.
- U.S. Environmental Protection Agency (USEPA), 1989b. <u>Risk Assessment Guidance for Superfund</u>. EPA 540/1-89/002, Office of Emergency and Remedial Response.
- U.S. Environmental Protection Agency (USEPA), 1988a. Superfund Exposure Assessment Manual. EPA 540/1-88/001, Office of Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency (USEPA), 1988b. <u>Public Health Risk Evaluation</u>
 <u>Database (PHRED)</u>, Office of Emergency and Remedial Response, Washington,
 D.C.
- U.S. Environmental Protection Agency (USEPA), 1987a. RCRA Facility Assessment of Radford Army Ammunition Plant, Radford, Virginia.
- U.S. Environmental Protection Agency (USEPA), 1987b. Expert Systems Questionnaire, Survey Concerning Biodegradation, EPA 68-02-4254, prepared by B. Gregg, N.W. Gabel, and S.E. Campbell (Versar, Inc.) for Office of Toxic Substances, Washington, D.C.

- U.S. Environmental Protection Agency (USEPA), 1986a. Quality Criteria for Water. EPA440/5-86-001, Office of Water Regulations and Standards.
- U.S. Environmental Protection Agency (USEPA), 1986b. <u>Development of Advisory Levels</u> for PCBs Cleanup. Office of Health and Environmental Assessment. EPA/600/21.
- U.S. Environmental Protection Agency (USEPA), 1980. Ambient Water Quality Criteria for Antimony. EPA-400/5-80-020, Office of Water Regulations and Standards, Washington, D.C.
- U.S. Geological Survey (USGS), 1992. Telephone communication with Byron Prugh and Howard Williams of USGS Water Resources Division, Richmond, Virginia.
- U.S. Public Health Service (USPHS), 1990. <u>Draft Toxicological Profile for Antimony</u>. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, October.
- Virginia Department of Health (VaDOH), 1982. Solid Waste Management Permit for Fly Ash Landfill No. 2 at RAAP.
- Virginia Department of Waste Management (VDWM), 1988. Commonwealth of Virginia Hazardous Waste Management Regulations. January 1, 1988.
- Virginia State Water Control Board (VWCB), 1992. Office of Spill Response and Remediation, Groundwater Well Summary Data of the Coastal Plain. August 6, 1992.
- Wagner, Terry, 1992. Interview with Terry Wagner (VWCB) on August 3, 1992.
- Webb, R. C., 1982. Site Development, Construction and Operational Plan, Ash Landfill No. 2. Feb. 1980 (Revised March 1982).


	JRVE C1	RADIUS 302,48'	LENGTH 151.58	CHORD 150.00'	BEARING S 61'39'42" E		S 8	MONITORING WELLS (TYP)		B-B B-B DUNDARY FOLLOWS DGE OF ROAD
	BOUNDA	RY COORDINATES						WC3-1 20 WC1-2	N 316000 E 1408000	CARD DO
Point		Coordinates	Desc		1	BOUNDARY FOLLO	ws P-3	WC1-2	E 1408000	CY POAD
1	N E_	315505.94 1407290.77	ROD SET		누현	EDGE OF ROAD -	×/ 🏲	AREA= 5.893 ACRES		/ '
2	N E	315011.59 1407633.68	ROD SET	_	TE PLANE NE SYSTEM OATHW		/ _ ⊕ ^p	O-4 (WITHIN HEAVY LINES)	,	
3	N E	316137.88 1407735,31	ROD SET		VA. STATE COORDINATE		⊘ P-2	Писэ	9	
4	N E	316204.98 1407798.93	ROD SET		VA. STA		✓ / FO	UNDARY LLOWS	ES NO	7
5	N E	316202.68 1407825.08	ROD SET		"		/ 4~ \ ~	CURITY NCE 9 187,22		· · ·
6	N E	316012,62 1408031.07	ROD SET					N 89'49'49	5° W	-
7	N E	315941.42 1408163.10	ROD SET			None of	LINE 33			
8	N E	315746.32 1407943,25	ROD SET		N 315800 € 1407200		OMW-1 S S			
9	N E	315746.88 1407756.04	POST		· · · · · · · · · · · · · · · · · · ·	BLDG 6201				_
10	N E	315606.30 1407622.54	POST		37	P-1	H TTT REPUBLIC	Ref.		
11	N E	315433,13 1407378,22	POST	•	10°/1	4. 23 C. 14	P ARRE		PLAT OF SURVEY	
									5.693 ACRE KNOWN AS	.S
						THE STATE OF THE S	H Op	SOLID	WASTE MONITORI	
						2003/13	102-100	RADI	FORD ARMY AMMUN	ITION PLANT
						JOHN R. (HRISTHAN F.	Pl	RICES FORK MAGISTERIA MONTGOMERY COUNTY,	VRGINIA
					1	goin R	Shirt war			
	NIDEDE	SOAL 1				A Skylidan	1414			INDEX 8-8485-14
$\mathbf{A} \setminus \mathbf{A}$	NDERS AND	DATES, Inc.	Engineera Surveyora Plannera	Black Virgir	sburg,	**************************************	HANGE OF THE COLUMN TWO IS NOT THE COLUMN TW	Scale 1"=100'	Date MAR, 05, 1992	Drawing No. 08485014

	BOUND	ARY COORDINATES	
Point	C	oordinates	Desc
337	N E	319841.94 1409607.41	ROD SET
338	N E	320188.98 1409556.99	ROD SET
372	N E	320297.90 1409555.86	BARRICADE CORNER
340	N E	321038.48 1409497.92	ROD SET
341	N E	320798.71 1410599.28	ROD SET
342	N E	320337.08 1410599.28	POLE FL-132
343	N E	319868.66 1410227.56	ROD SET

PLAT OF SURVEY OF 23.495 ACRES KNOWN AS SOLID WASTE MONITORING UNIT 28/51/52


LOCATED WITHIN
RADFORD ARMY AMMUNITION PLANT
DUBLIN MAGISTERIAL DISTRICT
PULASKI COUNTY, VIRGINIA

ANDERSON AND ASSOCIATES, Inc

Engineers Surveyors Planners

Btocksburg, Virginia Scale Date 1"=200' MAR. 04, 1992 INDEX B-8485-15 Drawing No. 08485015

		ARY COORDINATE	S Desc.			
Point	C	Coordinates				
358	N	312801.91	ROD IN FNC			
	<u>E</u>	1404182.60				
301	N	31.3096,45	POLE			
	<u>E_</u>	1404025.13				
302	· N	313210.57	ROD SET			
	Ε	1403918.04				
303	N	313211.95	ROD SET			
	Ε	1403863.45				
304	N	313270.75	ROD SET			
	E	1403769.60				
305	N	313315.91	ROD SET			
	<u> </u>	1403746.27				
306	N .	313446.46	ROD SET			
	<u> </u>	1403758.32				
307	N	313497.15	ROD SET			
	<u>E</u>	140 <u>3</u> 797,73				
308		313671.61	ROD SET			
	<u>E</u>	1403953.28				
309	N	313702.39	ROD SET			
	<u> </u>	1404223.07				
310	N	313512.06	POLE			
	<u>E</u>	1404309.73				
361	N .	313456.62	POST			
	E	14 <u>044</u> 07.53				
355	N	313499.04	POST			
	E	1404606.50				
360	N	313201.53	Post			
	<u>.E</u>	1404747.18				
356	N	312976.49	POST			
	<u> </u>	1404631.88				
315	N	312885.87	POST			
	E	14045{3.44				

BOUNDARY LINE TABLE

LINE	DIRECTION	DISTANCE
L1	S 52'34'57" W	149.13
L2	N 4310'46" W	156.5 <u>0</u> '
L3	N 88'32'43" W	54.61
L4	N 2718 59 W	50.83
L5	N 37'51'37" E	. 64.22
L6	S 60°27'00" E	112.41

BOUNDARY CURVE TABLE

	_		_	
CURVE	RADIUS	LENGTH	CHORD	8E ARING
C1	108.74	116.20	110.75	N 57'55'51" W
C2	121.70	138.44	131.10	N 05"6'19" E

PLAT OF SURVEY OF
12.550 ACRES
KNOWN AS
SOLID WASTE MONITORING UNIT 17
LOCATED WITHIN

RADFORD ARMY AMMUNITION PLANT PRICES FORK MAGISTERIAL DISTRICT MONTGOMERY COUNTY, VIRGINIA

AND AND ASSOCIATES, Inc.

Engineers Surveyors Planners

Blacksburg, Virginia INDEX B-8485-16

Į	Scale	Date	Drawing No.		
١	1"=200"	MAR. 04, 1992	08485016		
-					

RCRA FACILITY INVESTIGATION VOLUME II Appendix A through Appendix J

(Final Draft)

Task Order No. 4
Radford Army Ammunition Plant, Virginia

Submitted to:

Commander, U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Ground, Maryland 21010-5401

Contract No. DAAA15-90-D-0015

Prepared by:

Dames & Moore 2807 N. Parham Road, Suite 114 Richmond, VA 23294

October 29, 1992

APPENDIX A
Methodology for the Baseline Risk Assessment

APPENDIX A

METHODOLOGY FOR THE RISK ASSESSMENT

Appendix A presents the general baseline risk assessment methodology followed for the RCRA Facility Investigation (RFI) sites at RAAP. This appendix includes a discussion of the identification of potential contaminants of concern; the exposure assessment; a summary of contaminant fate and transport properties; the toxicity assessment; the risk characterization; and a discussion on the methodology of the environmental evaluation.

A.1 IDENTIFICATION OF POTENTIAL CONTAMINANTS OF CONCERN

The identification of potential contaminants of concern is conducted in the contamination assessment portion of the RFI. The goal of selecting potential contaminants of concern is to limit the risk assessment to those constituents that are likely to have adverse impacts. This approach avoids the necessity of evaluating relatively innocuous analytes or analytes detected at relatively low concentrations at RAAP and focuses instead on contaminants that have been detected at levels that may be of concern.

The first step in selecting potential contaminants of concern is to identify those that were detected at the facility. Analytical data were reviewed to identify all analytes detected at concentrations above their detection limits. Sampled media include soil, groundwater, surface water, and sediment. The selection process considers all analytes that were detected in soil, groundwater, surface water, and sediment; this includes metals and other inorganic constituents, explosives, volatile organics, semivolatile organics, and pesticides. Contaminants of concern were identified using the following general criteria:

- Concentration
- Toxicity
- Mobility and Persistence
- QA/QC

Potential contaminants of concern are those observed at each of the sites at concentrations that exceed both health based numbers (HBNs) and background

concentrations. The HBNs are permit specified numbers; if HBNs for a particular detected analyte were not available in the permit, then HBNs were developed according to the procedures outlined in Appendix D. In general, those analytes detected at levels greater than their HBNs in at least one sample from an environmental medium were considered as potential contaminants of concern if the concentration detected also exceeded background levels. If a detected analyte was found at a concentration below its HBN or below background concentrations, it was generally not selected as a contaminant of concern. Exceptions to this are noted in the text for each site. By using exceedances of HBNs as guidelines for the selection of potential contaminants of concern, the influence of toxicity and concentration is considered in the selection process. Analytes detected at concentrations within the limits defined by the HBNs are considered to be present at levels that would not likely present a risk to public health.

Chemicals that are essential human nutrients, toxic at only very high doses (e.g., iron, magnesium, calcium, potassium, and sodium), and detected at low concentrations (i.e., only slightly elevated above what appears to be naturally occurring levels) were not selected for evaluation. Similarly, naturally occurring organic chemicals (e.g., benzoic acid, carbon disulfide) present at low levels or low frequency and inconsistent with the possible source were not selected for evaluation.

Mobility and persistence of chemicals were considered during the selection of potential contaminants of concern. If an analyte was detected slightly above its HBN or background, and is also known to be a relatively immobile constituent in the media of concern, it may not be selected as a contaminant of concern. Conversely, a highly mobile or very persistent chemical may be selected as a contaminant of concern even if it only slightly exceeds its HBN or background.

Analytes may have been excluded from consideration as potential contaminants of concern on a site- or medium- specific basis if they did not meet the QA/QC requirements. For example, detected analytes suspected to be laboratory blanks or sampling artifacts based on analysis of various blanks (method blanks, equipment blanks, trip blanks, etc.) were excluded from further consideration unless they are expected to be site related or were

detected at significantly elevated concentrations. Examples of common laboratory artifacts include acetone, 2-butanone, chloroform, methylene chloride, toluene, and phthalate esters.

A.2 EXPOSURE ASSESSMENT

Under current EPA guidelines (USEPA, 1989a) the assessment of human exposure at sites contaminated with potentially toxic constituents is carried out in three steps:

- Characterization of exposure setting (i.e., relevant physical characteristics of the site and potentially exposed populations)
- Identification and evaluation of pathways by which the previously identified populations may become exposed
- Quantification of the exposure (i.e., estimation of exposure point concentrations and human intake of contaminants).

Relevant physical characteristics of each site are discussed in Sections 2.0 through 9.0. The remaining items are discussed below.

A.2.1 IDENTIFICATION OF POTENTIAL RECEPTORS

The RCRA permit issued to RAAP requires that data be collected to identify human populations and environmental systems that are susceptible to exposure from contamination at the subject SWMUs. Demographics, groundwater and surface water use, and ecological characteristics data are necessary to identify potential receptors and pathways of contamination exposure. These issues are discussed in the following sections.

Future land use is considered to be similar to the current land use scenario—i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development for RAAP. Therefore, potential future and current receptors are assumed to be similar.

A.2.1.1 <u>Local Demographics</u>. As described in Section 2.5, the area surrounding RAAP is mostly rural, with minimal development. The estimated 1988 populations of Montgomery and Pulaski Counties was 101,000 combined, with an approximate overall population density

of 143 persons per square mile. The closest residential community is Fairlawn, approximately 3 miles to the southwest. Figure 2-6 and Table 2-6 identify the owners and locations of properties bordering RAAP.

In 1980, the median age of persons in Montgomery and Pulaski Counties was 23.7 and 31.3, respectively. Population characteristics of the two counties are shown in Table A-1.

The 6 SWMUs being investigated under this RFI are located well within the installation boundaries, with SWMU 17 being the closest to the RAAP property boundary (almost 0.5 mile inside the installation). Due to the military nature of activities at RAAP, access to the installation is limited to official visitors. However, the general public does have access to the New River, which flows through RAAP and near several SWMUs, but a security fence separates the river from RAAP. Of particular concern in the RFI is SWMU 13, which is located on the banks of the New River (See Figure 2-3). Persons boating, fishing or swimming in the river could potentially be exposed to contaminants migrating from SWMU 13, but a fence separates the river from SWMU 13. The most probable route of exposure would likely be inhalation of airborne contaminants during burning operations. Standard operating procedures for the burning ground are that a warning message be broadcast over loudspeakers so that the public can evacuate the area. The river is also visually inspected to verify that the public has evacuated the area prior to burning activities.

Hunting is not permitted on RAAP property, and recreation by RAAP employees is limited to activities such as softball, jogging, etc.

A.2.1.2 <u>Groundwater Receptors</u>. There are two known supply wells at RAAP (Insert 1)—well No. 1 is not currently used, well No. 2 is used as a backup potable supply for a tenant activity, the U. S. Army Research, Development and Acquisition Information Systems Agency. Although potential contamination of groundwater is a concern at many of the SWMUs being investigated under this RFI, neither of these two RAAP supply wells are located in the immediate vicinity of any of the SWMUs.

Table A-1

Population Characteristics (1989)

Montgomery and Pulaski Counties

	<u>Male</u>	<u>Female</u>	White	Nonwhite	19 and <u>Under</u>	20-64 <u>Yr</u>	Over <u>65 Yr</u>
Montgomery County	52.4%	47.6%	96.3%	3.7%	26.0%	66.7%	7.3%
Pulaski County	48.5%	51.5%	94.3%	5.7%	26.9%	60.0%	13.1%

SOURCE: NRVDPC, 1989.

At SWMU 13, the assumed direction of groundwater flow is directly south into the New River. At SWMU 17, the direction of groundwater flow is unknown, but neither of the two RAAP wells is nearby. At SWMUs, 28, 51, and 52, the assumed direction of groundwater flow is southeast into the New River. At SWMU O, the assumed direction of groundwater flow is northeast to Stroubles Creek. RAAP Supply Well No. 2 is approximately 0.5 mile east of SWMU O, but Stroubles Creek is probably a groundwater divide that would prevent contaminant migration to the well.

Groundwater is a source of water supply to some residents in the Town of Blacksburg, but the supply wells are located more than 5 miles east of RAAP. In addition, shallow groundwater for many of the SWMUs flows toward the New River and would not likely migrate toward any groundwater users in the vicinity of RAAP.

Groundwater usage in the vicinity of RAAP has not been directly characterized. An off-post well inventory to identify potential receptors was conducted as an RFI activity. The survey involves a records search of well logs maintained by the Virginia State Water Control Board and/or the Pulaski and Montgomery County Health Departments. Pertinent data such as well locations, depths, production rates, and uses were collected.

A.2.1.3 <u>Surface Water Receptors</u>. The majority of water used at RAAP is taken from the New River via two intakes--one located approximately 2 miles upstream of the mouth of Stroubles Creek and the other located approximately 6 miles downstream of the mouth of Stroubles Creek (Figure 2-5). Upstream of RAAP, the New River serves as a source of water supply for the cities of Blacksburg and Christiansburg.

The Commonwealth of Virginia has classified the stretch of the New River that passes through RAAP as water generally satisfactory for public or municipal water supplies, secondary contact recreation, and propagation of fish and aquatic life.

Stroubles Creek, which drains approximately one-third of the RAAP Main Manufacturing Area, enters the New River approximately 1 mile east of the New River Bridge (Figure 2-5). A large portion of the flow in Stroubles Creek is attributable to

effluent from the Blacksburg municipal sewage treatment plant. There are no known domestic or recreational uses of this stream.

A.2.1.4 <u>Air Quality</u>. Much of the two-county area is susceptible to inversion layers in the fall, causing entrapment of particulate matter as well as gases from manufacturing processes and auto exhaust.

Air emissions are of concern at the two SWMUs where burning operations take place-SWMU 13 and SWMU 17. These burning areas are permitted by the Virginia Air Pollution Control Board. Due to the easterly prevailing wind direction at RAAP, air emissions from SWMU 17 would likely be carried over the general vicinity of the RAAP administration area. Air emissions from SWMU 13 would likely be carried over the rolled powder area before crossing the RAAP property boundary approximately 0.5 mile east of the burning ground.

A.2.1.5 Threatened and Endangered Species. Available date indicate that no threatened or endangered species are suspected of inhabiting RAAP, nor are there any known species with unusual aesthetic value. No species are know to occur exclusively at RAAP or to be absent from the rest of the two counties or the State. There are no species know for which the installation lies at the limit of their ranges. Indications are that the numbers of some species, including the ruffed grouse and upland plovers, have become depleted or have disappeared from RAAP (USATHAMA, 1976).

A.2.2 <u>Identification of Exposure Pathways</u>

The exposure pathways assessment for RAAP is based on environmental conditions, an evaluation of contaminants of concern, and an evaluation of potential receptors. Table A-2 is a preliminary evaluation of potential exposure pathways at RAAP. An exposure pathway is composed of a contaminant source, a release mechanism or transport medium by which the contaminant is transported to the location of exposure, an exposure route by which the contaminant enters the receptors body, and a potential receptor. The site-specific analysis

Table A-2 Preliminary Evaluation of Potential Exposure Pathways Radford Army Ammunition Plant, Virginia

	<u>Exp</u>	osure Pathway	Source	Release Mechanism or Transport Medium	Exposure Route	Potential Receptors
	1	Direct dermal contact with contam - inated soil and subsequent absorption of contaminants by skin.	Contaminated soil	Direct, wind erosion	Direct dermal contact	RAAP employees; recreationists
	2	Inadvertent ingestion of contami— nated soil.		Direct, wind erosion	Ingestion	RAAP employees; recreationists
•	3	Inhalation of contaminated soil as dust.		Wind erosion	Inhalation of dust	RAAP employees; recreationists;
	4	Inhalation of vapors volatilized from soil.		Volatilization, wind	Inhalation of vapors	RAAP employees; recreationists; downwind residents
	5	Ingestion of contaminated drinking water.	Contaminated groundwater	Leaching, advection, dispersion, well	Ingestion	RAAP employees; downgradient residents
	6	Inhalation of volatile contaminants emitted from groundwater during showering and other indoor activities using household water.		Leaching, advection, dispersion, well	Inhalation of volatiles during showering, etc.	Downgradient residents
	7	Absorption of contaminants subse- quent to dermal contact with ground- water during showering and other		Leaching, advection, dispersion, well	Direct dermal contact	Downgradient residents

å

indoor activities using household

4

Exposure Pathway		Source	Release Mechanism or Transport Medium	Exposure Route	Potential Receptors
8	Ingestion of contaminated surface water used as a drinking water source.	Contaminated surface water	Surface runoff, leaching, downstream transport	Ingestion	RAAP employees; downstream residents
9	Absorption of contaminants subse- quent to dermal contact with surface water during swimming.		Surface runoff, leaching, downstream transport	Direct dermal contact	Recreationists in New River
10	Inadvertent ingestion of contami nated surface water during swimming.		Surface runoff, leaching, downstream transport	Ingestion	Recreationists in New River
11	Inhalation of volatile contaminants emitted from surface water during swimming.		Surface runoff, leaching, downstream transport	Inhalation	Recreationists in New River
12	Absorption of contaminants subsequent to dermal contact with sediment during swimming.	Contaminated sediment	Surface runoff, downstream transport	Direct dermal contact	Recreationists in New River
13	Inadvertent ingestion of contami— nated sediment during swimming.		Surface runoff, downstream transport	Ingestion	Recreationists in New River
14	Inhalation of volatile contaminants emitted from sediment during swimming.		Surface runoff, downstream transport	Inhalation	Recreationists in New River

Exposure Pathway		Source	Release Mechanism or Transport Medium	Exposure Route	Potential Receptors
15	Consumption of game that feed on vegetation growing in contaminated soil or that have ingested contam — inated surface water.	Indirect pathways	Biouptake, animals, hunting	Ingestion of game	Hunters and their families
16	Consumption of fish that have ingested contaminated surface water, food, or sediment.		Biouptake, fish, fishing	Ingestion of fish	Fishermen and their families

of whether these pathways are operable or complete (or the rationale for why they are incomplete) under current land use is discussed in each SWMU-specific section of the RFI report.

Future land use is considered to be similar to the current land use scenario--i.e., RAAP will continue to remain an active army installation and there are no plans for future residential development for RAAP. Therefore, potential future and current exposure pathways are assumed to be similar.

After identification of complete exposure pathways, those pathways to be quantified are selected. The pathways selected for quantitative analysis include those that are considered to represent the greatest potential for human exposure. Other less significant complete pathways are identified and discussed, but are not quantitatively evaluated. Exposure point concentrations and daily uptake for each contaminant of concern are estimated for each potential exposure pathway selected for quantitation.

A.2.3 Methodology to Quantify Selected Exposure Pathways

Tables A-3 and A-4 (which appear in this test as part of each pathway discussion; see Sections A.2.3.1 and A.2.3.2) summarize the quantitative details necessary to calculate estimated intakes of contaminants by incidental ingestion of soil and inhalation of contaminated soil as dust pathways respectively. These are the only two exposure pathways selected for quantitation at RAAP. These tables provide the intake formulas, definitions of the parameters within the intake formulas, and specific assumptions used for the parameters for each exposure scenario.

Reasonable maximum exposure (RME) values presented in Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual, Supplemental Guidance, Standard Default Exposure Factors (USEPA, 1991a) are used, when available, for the military land use scenario. In general assumptions for the military land use scenario are assumed to be identical to the light industrial land use scenario. In the absence of specific guidance for exposure assumptions, reasonable conservative exposure assumptions are selected and are indicated in each pathway-specific table.

As defined by EPA (USEPA, 1991a), the RME is considered the highest exposure that is reasonably expected to occur at a site. The intent is to estimate a conservative exposure case (i. e., well above the average case), that is still within the range of possible exposures. Although the selection of parameters to evaluate the military use scenario is based on actual uses of the various sites, exposure levels and corresponding risk estimates developed for the military scenarios are estimates of RME and should not be misconstrued as actual exposure levels or risk estimates for individuals currently present at RAAP.

One parameter common to all of the exposure pathways and land use scenarios is the averaging time (AT). The selected AT depends on the type of toxic effect being assessed. When evaluating noncarcinogenic compounds, intakes are calculated by averaging the intake over the period of exposure. For carcinogens, intakes are calculated by averaging over a lifetime. This distinction between carcinogens and noncarcinogens relates to the currently held scientific opinion that for carcinogens, a higher dose over a shorter exposure time is equivalent to a corresponding low dose spread over a lifetime (USEPA, 1989b).

The following sections discuss in more detail the methodology used to quantify each of the exposure pathways.

A.2.4 Determination of Exposure Point Concentrations

In accordance with EPA guidance (USEPA, 1989b), the exposure point concentrations are calculated as the 95 percent upper confidence limit on the arithmetic mean of the analytical results for the representative samples. However, there are two exceptions. The first exception concerns cases in which a contaminant is detected in the only sample collected; here, the single concentration value reported is used as the exposure point concentration. The second exception occurs when the 95 percent upper confidence limit on the arithmetic mean exceeds the maximum detected value for a group of samples. In this case, the maximum detected concentration, not the 95 percent upper confidence limit on the arithmetic mean, is considered to be the RME and is used as the exposure point concentration. Exposure point concentrations are obtained from analytical results for soil samples collected from depths between 0 and 2 feet.

A.2.5 Pathway 2; Inadvertent Ingestion of Contaminated Soil

Table A-3 presents the methodology and assumptions used to quantify pathway 2 for the military land use scenario. This exposure pathway requires direct contact with contaminated soil onto hands, or on lips as dust, followed by inadvertent hand-to-mouth contact or licking of the lips. The intake of the various contaminants of concern is estimated by relating the contaminant concentrations in surface soil to the estimated soil ingestion rate (IR), modified by exposure frequency (EF), exposure duration (ED), body weight (BW), and AT.

A.2.6 Pathway 3: Inhalation of Contaminated Soil as Airborne Dust

Table A-4 presents the methodology and assumptions used to quantify pathway 3 for the military land use scenario. This exposure pathway is used to estimate the intake of contaminants in soil by breathing air in which contaminant-bearing soil particles are suspended as dust. It should be noted that this pathway evaluates the potential for exposure to particulate emissions from contaminated sites due to wind erosion, and is not meant to evaluate the potential for air emissions that may occur during burning operations. Intake of contaminants is estimated by relating concentrations of contaminants in air (CA) to an assumed inhalation rate of receptors (IR), modified by EF, ED, BW, and AT. The site-specific contaminant concentrations in air are a function of the site-specific particulate emission factor (PEF) and the 95 percent upper confidence limit contaminant concentration in surface soil. The assumption is made that contaminants are distributed in air in the same proportion as they are in soil.

The PEF relates the contaminant concentration in soil with concentration of respirable particles (PM₁₀) in the air to fugitive dust emissions from surface contamination sites by:

Table A-3 Quantitative Summary of Exposure Pathway 2

Radford Army Ammunition Plant, Virginia

Description: Inadvertent ingestion of soil.

Exposure Point

95 percent upper confidence limit on the arithmetic mean chemical concentration.

Concentration:

Intake Formula: Intake = $\frac{CS \times IR \times CF \times EF \times ED}{CS \times IR \times CF \times EF \times ED}$

BWxAT

Parameter Defini-

tions and Units: Intake in (mg/kg-day)

CS = Exposure point chemical concentration in soil (mg/kg)

IR = Ingestion rate (mg soil/day)

CF = Conversion factor (kg/mg)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)
AT = Averaging time (days)

Assumptions:

Military Land Use: IR = 50 mg/day (USEPA, 1991b)

CF = 1E - 06 kg/mg

EF = 250 days/year (USEPA, 1991b)

ED = 3 years (estimated duration of job assignment)

BW = 75 kg (USEPA, 1989a)

AT = 70 years x 365 days/year = 25,550 days for carcinogens (USEPA, 1991b) = 3 years x 365 days/year = 1,095 days for noncarcinogens (USEPA, 1991b)

Sample Calculation:

Intake = $[(CS (mg/kg) \times 50 (mg/day) \times 1E - 06(kg/mg) \times 250(days/yr) \times 3 (years)$

+ 75 (kg) x 25,550 (or 1,095) days

= $CS(mg/kg) \times 1.96E - 08(1/day)$ (carcinogens)

= $CS(mg/kg) \times 4.57E - 07(1/day)$ (noncarcinogens)

Table A-4

Quantitative Summary of Exposure Pathway 3
Radford Army Ammunition Plant, Virginia

Radford Army Ammunition Plant, Virginia

Description: Inh:

Inhalation of contaminated soil as airborne dust.

Exposure Point Concentration:

Determined according to Equation B below, using airborne dust concentration calculated

by analytical model presented in Appendix A.

Intake Formula:

 $Intake = \underline{CA \times IR \times EF \times ED}$

(Equation A)

BW x AT

Parameter Defini-

 $CA = CD \times CS \times CF$

(Equation B)

tions and Units:

 $CD = (1(PEF) \times CF)$

(Equation C)

(Equation A)

Intake in (mg/kg-day)

CA = Contaminant concentration in air (mg/m³)

IR = Inhalation rate (mg³/day) EF = Exposure frequency (days/year) ED = Exposure duration (years)

BW = Body weight (kg) AT = Averaging time (days)

(Equation B):

CD = Concentration of dust in air at exposure point (see Equation C (mg dust/m³)

CS = Contaminant concentration in soil (mg/kg)

CF = Conversion factor (1E-06 kg/mg)

(Equation C):

PEF = Particulate Emission Factor (See text; (m³/kg))

Assumptions:

Military Land Use:

 $IR = 20 \text{ m}^3\text{/workday (USEPA, 1991b)}$

EF = 250 days/year (USEPA, 1991b)

ED = 3 years (estimated duration of job assignment)

BW = 75 kg (USEPA, 1989a)

AT = 70 years x 365 days/year = 25,550 days for carcinogens (USEPA, 1991b) = 3 years x 365 days/year = 1,095 days for noncarcinogens (USEPA, 1991b)

Sample Calculation:

(Equation A):

Intake = $\frac{\text{CA} \times 20 \text{ m}^3/\text{day} \times 250 \text{ (days/yr)} \times 3 \text{ (yrs)}}{\text{CA} \times 20 \text{ m}^3/\text{day} \times 250 \text{ (days/yr)} \times 3 \text{ (yrs)}}$

75 (kg) x 25,550 (or 10,950) (days)

= $CA (mg/m^3 \times 7.83E - 03(m^3/kg - day))$ (carcinogens)

= $CA (mg/m^3 \times 1.83E - 01(m^3/kg - day) (noncarcinogens)$

(Equation B):

 $CA (mg/m^3) = CD (mg/m^3) \times CS(mg/kg) \times 1E - 06(kg/mg)$

PEF (m³/kg) =
$$\frac{LS \times V \times DH \times 3600 \text{ s/hr}}{A}$$
 X $\frac{1000 \text{ g/kg}}{0.036 \times (1-G) \times U_m/U_t)^3 \times F(x)}$ (Eq. A-1)

where:

<u>Parameter</u>	Definition (units)	Value
PEF LS	particulate emission factor (m³/kg) width of contaminated area (m)	site-specific site-specific
V	wind speed in missing zone (m/s)	2.25 m/s
DH	diffusion height (m)	2 m
A	area of contamination (m ²)	site-specific
0.036	respirable fraction (g/m ² -hr)	$0.036 \text{ g/m}^2\text{-hr}$
G	fraction of vegetative cover (unitless)	0
$\mathbf{U}_{\mathbf{m}}$	mean annual wind speed (m/s)	4.5 m/s
$\mathbf{U}_{\mathbf{t}}$.	equivalent threshold value of wind speed at 10 m (m/s)	. 12.8 m/s
F(x)	function dependent on U _m /U _t (unitless)	0.0497 (determined using Cowherd 1985)

This relationship is derived by Cowherd (1985) for a rapid assessment procedure applicable to a typical hazardous waste site where the surface contamination provides a relatively continuous and constant potential for emission over an extended period of time (e. g. years). The particulate emissions from contaminated sites are generally due to wind erosion and, therefore, depend on the erodability of the surface material. The PEF equation presented above and used in this assessment is representative of a surface with unlimited erosion potential, which is characterized by bare surfaces of finely divided material such as sandy agricultural soil with a large number (unlimited reservoir) of erodible particles. Such surfaces erode at low wind speeds, and particulate emission rates are relatively time-independent at a given wind speed.

This model is recommended for use in RAGS Part B (USEPA, 1991c) because it represents a conservative estimate for intake of particulates. The wind speed in mixing zone (V), diffusion height (DH), respirable fraction, fraction of vegetative cover (G), mean annual wind speed (V_m), equivalent threshold value of wind speed (V_t), and F(x) are default values provided by Cowherd (1985) and EPA (USEPA, 1986b). The widths of contaminated

area (LS) and area of contamination (A) are site specific values. Because the mean annual wind speed for Radford is estimated at 3.6 m/sec (USAEHA, 1976), use of the EPA default values is a conservative estimate.

Application of the default values to Eq. A-1, reduces it to:

PEF
$$(m^3/kg) = \frac{LS(m)}{A(m^2)} \times 2.1E + 11 (m^4/kg)$$
 (Eq. A-2)

For each SWMU evaluated with the inhalation of contaminated dust pathway, one site-specific LS, A, and PEP are presented in each of the site specific exposure discussions.

A.3 ENVIRONMENTAL FATE AND TRANSPORT OF CONTAMINANTS

Potential human and environmental exposure to each of the contaminants of concern is influenced by the environmental fate and transport properties of each contaminant. Environmental fate and transport information is summarized in Tables A-5 and A-6 for potential inorganic and organic contaminants of concern, respectively.

A4 TOXICITY ASSESSMENT

The purpose of the toxicity assessment is twofold:

- To weigh available evidence regarding the potential for particular contaminants to cause adverse effects in exposed individuals.
- To estimate, where possible, the relationship between the extent of exposure to a contaminant and the increased likelihood or severity of adverse effects.

A slope factor and the accompanying weight-of-evidence determination are the toxicity data most commonly used to evaluate potential human carcinogenic risks. The slope factor is a plausible upper-bound estimate of the probability of a response per unit intake of a chemical over a lifetime. The slope factor is used to estimate an upper-bound probability of an individual developing cancer as a result of a lifetime of exposure to a particular level of a potential carcinogen.

Table A-5
Summary of Environmental Fate and Transport of Metals Selected as Potential Contaminants of Concern (a)
Radford Army Ammunition Plant, Virginia

	Chemical	Chemical Speciation	Volatilization	Sorption	Bioaccumulation/ Biotransformation	Aquatic Bioconcentration Factor (BCF)	Principal Environmental Fate
	Arsenic	Formation of elemental As and arsine are un- likely in soils, ground— water or surface water. Arsenic (V) oxide can become reduced to the arsenic (III) oxide; the corresponding anions are very soluble and mobile.	The biotransformation products, dimethylarsine and trimethylarsine are very volatile.	Monovalent arsenate and arsenite ions are the most strongly sorbed soluble species. Other soluble species appear to be mobile.	Microbial methylation in soils is considered to be very slow. Methylarsines can be produced by many yeasts, bacteria, and fungi. Bioaccumulation of ar—senic from soils is slight.	44	Environmental transport of arsenic is cyclical but landfilled material can act as a long—term source. Leaching of the mobile forms of arsenic probably occurs.
A-18	Chromium	Speciation may determine mobility since chromium (III) hydroxide is in—soluble but chromium (VI) complexes are usually soluble.	Not considered signi— ficant.	Chromium (III) hydroxide is insoluble but chromium (VI), if present as chromate, is reported to be mobile in landfills.	Chromium (VI) can be accumulated by plants and animals.	16	Leaching of chromium (VI) is possible, but chromium (III) is much less mobile.
	Lead	The carbonate and sulfate control solu—bility in aerobic envi—ronments; under an—aerobic conditions the sulfide will precipitate.	Not significant.	Strongly sorbed by components of soil.	Lead is accumulated from the atmosphere by both plants and animals.	49	Sorption is the dominant fate in landfills.

⁽a)Based on information given in Callahan et al. (1979) and USEPA (1987 and 1988b).

Table A-6
Summary of Environmental Fate and Transport of Organic Chemicals Selected as Potential Contaminants of Concern (a)
Radford Army Ammunition Plant, Virginia

	Category/ Chemical	Photolysis/ Oxidation	Hydrolysis	Volatilization	Sorption	Biodegradation	Environmental Fate	
	BNA's:							
Pol }>	N-Nitrosodi-phenylamine	Photolysis is slow. No information found on oxidation.	Not easily hydrolyzed under normal environ—mental conditions. Rapid hydrolysis in conditions of high tem—perature and/or low pH.	Unlik ely to volatilize; confirming data not found in literature.	High potential for significant sorption to soil.	Only important in con- dition with active microbial population.	Sorption to soil is the most important fate process. Sorption, oxidation, and biodegradation constitute the environmental fate of PAHs in soils and groundwater.	
A-19	Polycyclic Aromatic Hydrocarbons	In aerated soil, oxidation is estimated to occur with a half—life of 96 hours for benzo(a)pyrene.	Not relevant.	Volatilization from wet soil may occur with a half—life of 1 day.	Strongly sorbed.	Bioaccumulated but not persistent in living organisms since they are biodegradable.		
	Explosives:							
	2,4-D NT	Important process in surface water (half— life = 5 days)	Not relevant.	Important process for surface water (half-life = 2 days)	Sorption by clay may be important at RAAP sites.	Microbial destruction in soil and ground— water is slow but may be significant for RAAP sites.	Sorption by clay and bio— degradation are important in soil and groundwater; photo— lysis and volatilization are important in surface water.	
	2,6-D NT	Important process. (t 1/2 = 1 day)	Not relevant.	Important process from surface water (t 1/2 = 9 days)	Sorption to clay may be important at RAAP sites.	Microbial transforma – tion in the ground – water is slow but may be significant	Sorption to clay and bio— degradation are important in groundwater; photolysis and volatilization are dominant	
	1,3,5-TNB	Not significant.	Not relevant.	Not significant.	Sorption by clay may be important at LSAAP sites	Significance is uncertain.	Sorption by clay is important. Ultimate fate is uncertain.	

⁽a) Based on information presented in Callahan et al (1979) and USEPA (1987 and 1988b). Additional information on explosives is provided by Burrows et al (1989).

	Category/ Chemical	Photolysis/ Oxidation	Hydrolysis Volatilizati		Sorption !	Biodegradation	Environmental Fate		
	Explosives (cont'd):				1				
	2,4,6-TNT	Rapid in surface water but may not be relevant in soils.	Not relevant.	Not significant.	Sorption by clay may be important.	The process is slow but may be significant in a soil environment.	The most probably fate is photolysis in surface water and slow biodegradation in soil.		
	VOC's:								
	1,1 – Dichloroethane	Iloroethane Tropospheric half— life is approximately 1.5 months due to photo— oxidation. Photolysis not significant.		Dominant physical process with a half—life of approximately 0.5 hours.	Probably not important.	Uncertain but probably occurs at a slow rate.	Principally volatilization to the atmosphere, with subsequent photoxidation by hydroxyl radicals in the troposphere.		
A-20	Trickoroethylene	Estimated tropospheric half—life is 2.4 days.	Half-life is estimated as 21 months at 15 °C.	Dominant physical process with a half-life of several hours.	Slightly sorbed by soil materials.	Important process under anaerobic conditions.	Environmental fate is blodegradation and vola—tilization to the atmosphere. Some leaching into ground—water is also possible.		
	Carbon tetrachioride	Photolysis in stratosphere is primary fate. Oxidation is not a significant fate process.	Very slow.	Dominant physical process with a half—life of approximately 0.5 hours.	Significance is uncertain although no clear evidence of concentration in sediments.	Probably occurs at an extremely slow rate.	Volatilization to the atmosphere is the dominant process with subsequent photolysis in the stratosphere.		

⁽a) Based on information presented in Callahan et al (1979) and USEPA (1987 and 1988b). Additional information on explosives is provided by Burrows et al (1989).

A reference dose (RfD) is the toxicity value used most often in evaluating noncarcinogenic effects. RfDs for noncarcinogenic effects are estimates of daily exposure levels for the human population, including sensitive subpopulations, that are likely without an appreciable risk of deleterious effects during a lifetime. Chronic RfDs are specifically developed to be protective for long-term exposure to a compound (7 years or longer).

Table A-7 presents available oral and inhalation slope factors and RfDs, as applicable, for the contaminants of concern. Also shown are the weight-of-evidence classification and type of cancer(s) for chemicals with slope factors, and the uncertainty factor, confidence level, and critical effects for chemicals with RfDs.

RfDs are not presented for lead, because--after careful consideration of toxicity date on lead--EPA has decided that the derivation of RfDs is inappropriate (USEPA, 1992). Rather, EPA has developed an uptake/biokinetic (UBK) model that estimates the total lead uptake (ug Pb/day) in children from diet, inhalation, and ingestion of soil, dust, and pain, and predicts a blood lead level (ug Pb/dL) based on total lead uptake. Blood lead is considered the best indicator of recent lead exposure and has been reliably correlated with neurotoxicity measures in developing children. Therefore, the UBK model for lead is used to assess potential exposure to lead at RAAP sites. This model is discussed in more detail in Appendix D.

A.5 RISK CHARACTERIZATION

In the risk characterization section, estimated intakes of contaminants of concern, determined by the analysis of exposure pathways, are combined with health effects criteria to calculate potential carcinogenic risks and noncarcinogenic health hazards.

Potential carcinogenic risk is estimated using the linear low-dose form of the carcinogenic risk equation from EPA (USEPA, 1989b):

Table A-7
Summary of Toxicity Criteria for the Contaminants of Concern

Chemicals	RfDo (mg/kg/day)	<u>uf</u>	Confidence	Critical Effect	RfDi <u>(mg/kg/day)(aa)</u>	<u>U</u> F	Confidence	Critical Effect
TAL Inorganics Arsenic	3.0E-04	3	Medium	Hyperpigmentation, keratosis vascular complications	UR			
Chromium III	1.0E+00	100(c)	Low	NOAEL; highest level tested	6.0E-07	1000		Nasal mucosal atrophy
Chromium VI	5.0E-03	500	Low	NOAEL; highest level tested	6.0E-07	1000	+क स्वर	Nasal mucosal atrophy
Lead	IUBK Model (see text)			Neurotoxicity in children	ID			
Thaläum	8.0E-05(g)	3000	Low	NOAEL; highest level tested	ND			
Explosives 2,4 – DNT	20E-03	190		NOAEL; higher levels produced enemia, neurological effects, methemoglobinemia, bile duct hyperplasia	ND		.gga .ma	
26-DNT	1.0E-03	3000		Mild splenic hematopoeisis, lymphoid depletion	ND			
1,3,5 – Trinitrobenzene	5.0E-05	10,000	Low	By analogy to 1,3-DNB	ND			
2,4,6-TNT	5.0E-04	1000	Medium	Liver, circulating blood, testicular damage	ND			
TCL Volatiles 1,1 - Dichlorethan e	1E-01	1000		By analogy to inhalation	1E-01	1000		Kidney damage
Trichloroethylene	UR				UR			
Carbon Tetrachloride	7E-04	1000	Medium	Liver lesions	ND			
Methylene Chloride	6E-02	100	Medium	Liver Toxicity	ID			
TCL Semi-Volatiles Phenanthrene	ND				ND			
.itrosodiphenylamine	ND				ND			

Table A-7 (cont'd)

Chemicals	SFo 1/(mg/kg/day)	Types of Cancer	SFi <u>1/(mg/kg/day)</u>	Types of Cancer	Weight-of- Evidence <u>Class</u>	Sources(a)
TAL Inorganics Arsenic	1.75E+00	Skin cancers	1.4E+01	Lung cancers	A	1,1,1,1
Chromium III	ND		ND			1,2,1,1
Chromium VI	ND		4.2E+01	Lung tumors	A	1,2,1,1
Lead	ΙD	Renel tumors	ID	Digestive tract; respiratory system; peritoneum	B2	4,4,1,1
Thallium	ID		ND		Ð	1,1,1,1
Explosives Z4 – DNT	6.8E-01	Hepatocellular carcinomas, mammary fibroadenomas	ND		B 2	5,1,1,1
2,6 - DNT	6.8E-01	Hepatocellular carcinomas, mammary libroadenomas	ND		B2	5,1,1,1
1,3,5-Trinitrobenzenc	ND		1D			1,1,1,1
2,4,6TNT	3.0E-02	Urinary bladder carcinomas and papillomas	ID		С	1,1,1,1
TCL Volatiles 1,1 - Dichlorethane	ID	Hemangiosarcoma	ID		c	1,1,1,1
Trichloroethylene	1.1E-02	Hepatocellular carcinomas and adenomas	6E-03	Lung tumors	UR	1,1,8,8
Carbon Tetrachloride	1.3E-01	Hepatocellular carcinomas	1.3E-01	By analogy to oral data	B2	1,1,1,1
Methylene Chloride	7.5E-3	Hepatocellular carcinomas and neoplastic nodules	1.7E-03	Liver and lung tumors	B2	1,1,1,1
TCL Semi-Volatiles Phen anthrene	ND		ND		D	1,1,1,1
N-nitrosodiphenylamine	4.9E-03	Bladder tumors	ND		B2	1,1,1,1

Footnotes:

- (a) Source codes are listed below. The 4 values shown in this column are the sources for the oral RfD, the inhalation RfD, the oral slope factor, and the inhalation slope factor, respectively. Dashes indicate that no information was found in any of the cited regulatory documents or communications.
- (1) USEPA, 1992
- (2) USEPA, 1991a
- (3) USEPA, 1991b
- (4) USEPA, 1991c
- (5) Brower, 1992
- (b) The oral slope factors are listed for cadmium in water and dietary cadmium, respectively.
- (c) A modifying factor of 10 was also used to reflect uncertainty in the data base and the variable absorption of chromium.
- (d) A modifying factor of 3 was also used to account for the uncertainty in manganese exposure levels in the principal study.
- (e) Listed value is for the soluble salts of nickel
- (f) Listed values are for nickel refinery dust and nickel subsulfide, respectively.
- (g) Value is for thallium as thallium sulfate
- (h) Under RfD/RfC Work Group review.
- "_" Not applicable

Acronyms:

RfDo = Oral Reference Dose

UF = Uncertainty Factor

RfDi = Inhalation Reference Dose

SFo = Oral Slope Factor

SFi = Inhalation Slope Factor

ND = No Data

UR = Under Review

NOEL = No observable effect level

NOAEL = No observable adverse effect level

MCL = Maximum Contaminant Level

CNS = Central nervous system

RfC = Reference concentration

CRAVE = Carcinogen Risk Assessment Verification Endeavor

A-2

$$Risk = CDI \times SF$$
 (Eq. A-3)

where:

CDI = chronic daily intake averaged over the receptor's lifetime (mg/kg/day)

SF = slope factor $(mg/kg/day)^{-1}$.

The linear cancer risk equation is valid only at low risk levels (i. e., below estimated risks of 1E-02). For sites and pathways where chemical intakes may be high and yield risks exceeding 1E-02, the one-hit equation—which is consistent with the linear low-dose equation—is used to estimate cancer risks (USEPA, 1989b):

$$Risk = 1 - exp (-CDI \times SF)$$
 (Eq. A-4)

EPA uses the general 10⁻⁴ to 10⁻⁶ risk range as a "target range" within which the agency strives to manage risks as part of a Superfund cleanup.

For noncarcinogenic effects, the human health hazards related to exposure are estimated from EPA (USEPA, 1989b) as:

$$HQ = I/RfD (Eq. A-5)$$

where:

HQ = hazard quotient

I = intake or exposure level (mg/kg/day)

Rfd = reference dose (mg/kg/day).

As a general rule, the greater the value of the hazard quotient above unity, the greater the level of concern for noncarcinogenic effects (USEPA, 1989b).

Using these two equations, the risks and hazards associated with the pathways selected for quantitation are calculated for each of the contaminants of concern.

In accordance with recommended EPA methodology (USEPA, 1989b), the pathwayspecific total risk and total hazard index for all contaminants of concern are also presented. These totals for each pathway are probably overestimated, because combining risk and hazard quotients assumes the additivity of toxic effects within the human body. In fact, chemicals with different mechanisms of toxic action may act independently. For noncarcinogenic effects, this approach assumes that the magnitude of adverse health effects is proportional to the sum of chemical-specific hazard quotients (i. e., proportional to the sum of the ratios of the subthreshold exposures to acceptable exposures).

In addition, multiple human exposures by two or more pathways may be possible for receptors. Exposure to site contaminants via two or more pathways would increase exposure point risk levels and, therefore, increase the potential for carcinogenic and noncarcinogenic health effects. The most conservative approach is to assume that each receptor would be exposed via all complete pathways for that site. Therefore, for each site, the potential carcinogenic risk and hazard quotients are added to derive the total potential carcinogenic risk and the total hazard quotient (USEPA, 1989b).

The potential carcinogenic risks and noncarcinogenic hazards for the pathways selected for quantitation for the current and future land use scenarios are presented in the site specific RFI sections.

As previously discussed, EPA has developed an UBK model for lead. The UBK model is used in this risk assessment to evaluate potential exposure to lead at RAAP sites. Section A presents a discussion of the UBK model and results.

A.6 <u>ENVIRONMENTAL EVALUATION</u>

The environmental evaluation was conducted using the same general steps identified above for the human health risk assessment.

- Identification of potential contaminants of concern
- Characterization of exposure setting (i.e., relevant physical characteristics of the site and potentially exposed populations)
- Identification and evaluation of pathways by which the previously identified populations may become exposed
- Qualitative evaluation of exposure and potential environmental threat

Relevant physical characteristics of the facility are discussed in Section 2.0. A description of the environmental setting and flora and fauna at RAAP are included in Sections 2.4 and 2.6, respectively.

Potential contaminants of concern were identified using the procedures discussed in Section A.1. Potential environmental effects were qualitatively evaluated by consideration of potential access of wildlife to the individual SWMUs, potential for contact of wildlife with contamination detected at the SWMUs, and a qualitative evaluation of potential exposure to ecological receptors. For evaluation of potential exposure to surface water contaminants, detected concentrations were compared to Ambient Water Quality Criteria (AWQC).

APPENDIX D
Health Based Numbers and Other Comparison Criteria

APPENDIX D.1
RFI Derived Health Based Numbers and Other Comparison Criteria

APPENDIX D HEALTH BASED NUMBERS AND OTHER COMPARISON CRITERIA

A set of health based numbers (HBNs) and other comparison criteria were developed for this report. Included in the set were analytes detected at Radford Army Ammunition Plant (RAAP) that did not have HBNs specified in the Resource Conservation and Recovery Act (RCRA) permit for RAAP. The methodology for development of these HBNs and other comparison criteria is described below. Table D-1 presents the HBNs and other comparison criteria developed for analytes detected at RAAP during the VI that do not have permit-specified HBNs. It is important to note that several detected analytes exhibit both carcinogenic and noncarcinogenic toxic effects. The HBN for a given analyte is the lesser of the carcinogenic and noncarcinogenic values.

D.1 <u>GROUNDWATER AND SURFACE WATER HBNs AND OTHER</u> <u>COMPARISON CRITERIA</u>

If HBNs were not specified in the RAAP permit, maximum contaminant levels (MCLs) are used as the groundwater and surface water comparison criteria, if available. Groundwater and surface water criteria are assumed to be identical because there is a municipal drinking water intake downstream of RAAP on the New River; therefore, drinking water criteria are generally applicable to both surface water and groundwater at RAAP. In the absence of MCLs, HBNs were developed according to the methodology provided in RCRA Part 264 Subpart S regulations (40 CFR Part 264; July 27, 1990), as described below.

In the absence of an MCL, an HBN for noncarcinogenic effects is calculated according to the following equation (Eq. D-1):

 $HBN = (RfD \times BW)/(Iw)$

where:

HBN = Health based number (mg/l)

RfD = Reference dose (mg/kg/day)

BW = Body weight (kg)

Iw = Intake of water (1/day)

For noncarcinogenic effects a water intake (Iw) of 2 l/day is assumed for a 70 kg adult (BW) (40 CFR 264; July 27, 1990). The reference dose (RfD) is the toxicity value used most often in evaluating noncarcinogenic effects. RfDs for noncarcinogenic effects are estimates of daily exposure levels for the human population, including sensitive subpopulations, that are likely without an appreciable risk of deleterious effects during a lifetime. The RfD is used in risk assessments to estimate the potential for noncarcinogenic health effects, which is measured by the hazard quotient (HQ). In summary, the HQ is the intake divided by the RfD. EPA guidance suggests that there may be concern for potential noncarcinogenic health effects if a HQ exceeds one (USEPA, 1989). In general, the greater the value of the HQ above unity, the greater the level of concern for noncarcinogenic effects. In developing HBNs, the RfD is used to estimate the contaminant concentration that provides a daily intake that results in a HQ of 1.

In the absence if an MCL, an HBN for carcinogenic effects is calculated according to the following equation (Eq. D-2):

 $HBN = (R \times BW \times LT)/(SF \times IW \times ED)$

where:

R = Assumed risk level (unitless)

LT = Assumed lifetime (years)

SF = Carcinogenic Slope Factor (1/(mg/kg/day))

ED = Exposure duration (years)

For carcinogenic effects, a water intake (Iw) of 2 1/day is assumed for a 70 kg adult (BW); exposure is assumed to be 70 years (ED) of a 70 year lifetime (LT) (40 CFR 264; July 27, 1990). The slope factor (SF) and the accompanying weight-of-evidence determination are the toxicity data most commonly used to evaluate potential human carcinogenic risks. The slope factor is a plausible upper-bound estimate of the probability of a response per unit intake of a chemical over a lifetime. The slope factor is used in risk assessments to estimate an upper-bound probability of an individual developing cancer as a result of a lifetime exposure to a particular level of a potential carcinogen. In developing

HBNs, the slope factor is used to estimate the contaminant concentration that, given lifetime exposure, would result in the specified probability of an individual developing cancer. As specified in RCRA Part 264, for potential carcinogens, a risk level of 1E-06 is assumed for Class A and B carcinogens and a risk level of 1E-05 is assumed for Class C carcinogens.

In the absence of an MCL and relevant health effects values (RfD or SF), other comparison criteria were considered. These include the drinking water equivalent level (DWEL), secondary maximum contaminant level (SMCL), maximum contaminant level goal (MCLG), and other criteria, as available. Table D-1 indicates whether these comparison criteria were used as the HBN.

D.2 SOIL HBNs AND OTHER COMPARISON CRITERIA

If HBNs were not specified in the RAAP permit, HBNs were developed according to the methodology provided in RCRA Part 264 Subpart S regulations (40 CFR Part 264; July 27, 1990), as described below.

HBNs for noncarcinogenic effects are calculated according to the following equation (Eq. D-3):

```
HBN = (RfD \times BW)/(Is \times CF)
```

where:

HBN = Health based number (mg/kg)

RfD = Reference dose (mg/kg/day)

BW = Body weight (kg)

Is = Intake of soil (g/day)

CF = Conversion factor (1E-03 kg/g)

HBNs for carcinogenic effects are calculated according to the following equation (Eq. D-4):

 $HBN = (R \times BW \times LT)/(SF \times Is \times ED \times CF)$

where:

R = Assumed risk level (unitless)

LT = Assumed lifetime (years)

SF = Carcinogenic Slope Factor (1/(mg/kg/day))

ED = Exposure duration (years)

In deriving HBNs for hazardous constituents in soil, other than those which are known or suspected to be carcinogens, a soil intake (Is) of 0.2 g/day for a 16 kg child (BW) over a five year exposure period (age 1-6) is assumed (40 CFR Part 264; July 27, 1990). A conversion factor of 1E-03 kg/g is required for unit adjustment. For hazardous constituents which are known or suspected to be carcinogens, a soil intake of 0.1 g/day (Is) for a 70 kg adult (BW) over a 70 year lifetime exposure period (ED and LT) is assumed (40 CFR Part 264; July 27, 1990). The RfD and SF are discussed in Section D.1.

An RfD is not available for lead, because--after careful consideration of toxicity data on lead--EPA has decided that the derivation of an RfD is inappropriate (USEPA, 1992a). Rather, EPA has developed an uptake/biokinetic (UBK) model that estimates total lead uptake (ug Pb/day) in children from diet, inhalation, and ingestion of soil, dust, and paint, and predicts a blood lead level in micrograms of lead per deciliter (ug Pb/dL) based on total lead uptake. Blood lead is considered the best indicator of recent lead exposure and has been reliably correlated with neurotoxicity measures in developing children. Therefore, the UBK model for lead is used to develop soil HBNs for lead. This model and the development of HBNs for lead are discussed in detail in Section D.3.

D.3 DEVELOPMENT OF HBNs FOR LEAD IN SOIL

A description of the UBK model is presented below in Section D.3.1; this information was obtained form <u>Users' Guide for Lead: A PC Software Application of the Uptake Biokinetic Model</u>, Version 0.50 (USEPA, 1991c). Application of the UBK model for development of HBNs for lead at RAAP is discussed in Section D.3.2.

D.3.1 Uptake/Biokinetic Model for Lead

The purpose of the lead UBK model is to estimate the total lead uptake (ug Pb/day) in humans that results from diet, and inhalation and ingestion of soil, dust, and paint, and to predict a blood lead level (ug Pb/dL) based on total lead uptake. The current version

of the model estimates lead uptake and blood lead levels in children from 0 to 6 years old. Therefore, this model applies only to the residential land use scenario. The UBK model contains two separate sections: (1) the uptake section, which estimates the monthly uptake of lead from diet, air, soil/dust, water, and paint; and (2) the biokinetic section, which uses the monthly lead uptake to estimate blood levels. Final results are reported on an annual basis. These sections of the model are described briefly below. A more detailed description of the UBK model is presented in the reference cited above (USEPA, 1991c).

D.3.1.1 <u>Uptake Section of the Model</u>. The uptake section of the model uses the user-entered values or default values to estimate a daily intake of lead from air, diet, water, soil/dust, and paint. It is important to understand that "intake" of lead is different from "uptake" of lead. Intake is the amount of lead brought into the body by the various exposure routes. Uptake is the amount of lead absorbed into the body's blood-plasma system. Uptake is calculated from intake by the following general formula:

UPTAKE = INTAKE X ABSORPTION factor

For each of the exposure routes, the following formulas are used:

UPAIR = INAIR X ABSAIR

UPDIET = INDIET X ABSDIET

UPDUST = INDUST X ABSDUST

UPSOIL = INSOIL X ABSOIL

UPWATER = INWATER X ABSWATER

UPPAINT = INPAINT X ABSPAINT

The absorption factors are determined by either the linear absorption method or the nonlinear active passive method. The linear method uses a constant absorption percentage (for each age and exposure route) that is multiplied by the lead intakes to calculate the lead uptakes. In the nonlinear method, the absorption percentage varies with lead concentration, volume of the gut, and other factors. The nonlinear method is the program default. The intakes entered by the user are on a daily basis. Multiplying the daily intakes by 30 yields the estimated monthly intakes. The total monthly uptake, is therefore:

UPTAKE = UPAIR + UPDIET + UPDUST + UPSOIL + UPWATER + UPPAINT

The monthly uptakes are then passed to the biokinetic section of the model for estimation of blood lead levels.

Information pertaining to the intake values for various exposure routes are discussed below.

D.3.1.1.1 <u>Air Intake</u>. The daily intake of lead resulting from air exposure is calculated using a time-weighted average (TWA) method, as follows (the asterisk symbolizes multiplication):

Intake (ug Pb/day) = ((TO*CO + TI*CI)/24) * Vent Rate (m³ air/day) where:

TO and TI are the time outdoors and indoors (in hours), and CO and CI are the concentrations outdoors and indoors (ug PB/m³).

D.3.1.1.2 <u>Water Intake</u>. The daily drinking water intake of lead is calculated by multiplying the water concentration (ug Pb/L) by the daily consumption rate (in liters). Alternate factors (which include "first-draw" and fountain" water) are included in the formula if the user specified their use. If specified, the formula for drinking water intake becomes:

INWATER = water consumption x ((flushed concentration x flushed fraction)
+ (first draw concentration x first draw fraction) + (fountain
concentration x fountain fraction))

D.3.1.1.3 Soil and Dust Intake. The lead concentrations of soil are directly entered by the user. For each age group, the soil intake is calculated by multiplying the soil concentration by the amount of soil and dust ingested. This value is then multiplied by the fraction of the soil and dust amount that is soil. The program uses defaults of 45 percent soil to 55 percent dust.

If the user selects a constant dust concentration or variable dust concentrations, the dust intake is calculated exactly the same as for soil. Dust differs from soil in that it has the

added option of using multiple source analysis to determine dust intake. Multiple source analysis sums the dust intake from three primary sources: (1) contribution to house dust from soil dust, (2) contribution to house dust from airborne fallout, and (3) contribution from alternate dust sources. The alternate dust sources include lead in house dust from paint sources and lead exposures at occupational settings, second homes, daycare facilities, and schools. If the user does not use alternate dust sources, the dust intake is calculated only from contributions (1) and (2) above, which is the program default.

D.3.1.2 <u>Biokinetic Section of the Model</u>. The biokinetic section of the model uses the total lead uptake for each month to calculate the amount of lead that occurs in a number of body compartments. The body compartments include the plasma and extra cellular fluid (ECF) pool, the red blood cell (RBC) pool, the kidney, the liver, trabecular bone, cortical bone, and other soft tissue pools.

The first consideration is the amount of lead occurring in these compartments at time zero (birth). This is determined by the maternal contribution. The user selects either the infant method or the fetal method to estimate the maternal contribution. The fetal method is the program default. The infant method uses default values to determine the compartment lead levels for a newborn. For example, the blood lead level of a newborn is estimated to be 85 percent of the maternal blood level (current default for maternal level; is 7.50 ug Pb/dL). The newborn organ lead levels are then estimated from the blood lead level. The fetal method is a self-contained model that iteratively determines lead levels in a fetus during pregnancy.

Although complicated mathematically, the biokinetic model is relatively simple in concept. In general, lead enters the body through uptake, lead leaves the body through urine and feces, and lead is exchanged among body compartments. (The uptake section of the model is discussed in Section D.3.1.1.) The important factor of the biokinetic model is the transition of lead among body compartments (which includes its removal by urine and feces via transition to kidney and liver). The transition times (residence times) are the rate-determining factors that give the rate at which lead enters, leaves, and remains in each compartment during each monthly iteration. The formulas used to estimate the transition

times are provided in Appendix B of the referenced EPA document (USEPA 1991c). The transition times are calculated on a monthly basis and depend on body weight and weight of the organs at that monthly age.

Blood lead levels increase with increases of lead uptake. If the lead uptake is increased to excessively high levels (several hundred ug Pb/day or more), the lead concentration in the red blood cells begins to equal or exceed the saturation concentration of the red blood cells. When the program recognizes this condition, the biokinetic model iterations are terminated and a warning is displayed. It is still possible, however, to get very close to the saturation concentration without a warning being issued. In some of these situations, unrealistically high blood levels are being generated.

D.3.1.3 <u>Values of Default Parameters</u>. The values of various default parameters that can be changed by the user are listed below. Default values for gastrointestinal tract absorption and biokinetic residence times are provided in Appendices A and B (USEPA, 1991c), respectively.

Air Data:

Air Concentration: 0.20 ug Pb/m³ Lung Absorption: 32 percent Vary Air Conc by Year: NO

Ventilation Rate:

Age 0-1: 2.0 m³/day Age 1-2: 3.0 m³/day Age 2-3: 5.0 m³/day Age 3-4: 5.0 m³/day Age 4-5: 5.0 m³/day Age 5-6: 7.0 m³/day Age 6-7: 7.0 m³/day

Water Data:

Water Concentration: 4.00 ug/L Use Alternate Values: NO

Water Consumption:

Age 0-1: 0.20 L/day Age 1-2: 0.50 L/day Age 2-3: 0.52 L/day Age 3-4: 0.53 L/day Age 4-5: 0.55 L/day Age 5-6: 0.58 L/day Age 6-7: 0.59 L/day

Diet Data:

Use Alternate Values: NO

Diet Intake:

Age 0-1: 5.88 ug Pb/day Age 1-2: 5.92 ug Pb/day Age 2-3: 6.79 ug Pb/day Age 3-4: 6.57 ug Pb/day Age 4-5: 6.36 ug Pb/day Age 5-6: 6.75 ug Pb/day Age 6-7: 7.48 ug Pb/day

Soil and Dust Data:

Constant Soil Conc: 200 ug Pb/g
Constant Dust Conc: 200 ug Pb/g
Percent of Soil and Dust That is Soil: 45
Amount Ingested Daily: 0.10 g Pb (all ages)

Multiple Source Analysis:

Soil Contribution to House

Lead Dust (conversion factor): 0.28

Air Contribution to House

Lead Dust (conversion factor): 100

Use Alternate Dust Sources: NO

Paint Data:

Amount Ingested Daily: 0.0 ug Pb (all ages)

Maternal Data:

Infant Model:

Mother's Blood Lead Conc at Birth: 7.50 ug Pb/L

Fetal Model:

Air:

Conc Outdoors: 0.200 ug Pb/m³
Conc Indoors: 0.060 ug Pb/m³
Conc at Work: 0.060 ug Pb/m³
Vent Rate Outdoors: 1.0 m³/hr

Vent Rate Outdoors: 1.0 m³/hr
Vent Rate Indoors: 1.0 m³/hr
Vent Rate at Work: 1.0 m³/hr
Vent Rate Sleeping: 1.0 m³/hr

Water:

Conc at Home:

Conc at Work:

Consumption at Home:

Consumption at Work:

9.00 ug Pb/L

2.0 L/day

2.0 L/day

Diet:

Consumption: 1,000 g food/day Conc: 0.10 ug Pb/g food

Dust:

House Consumption:
0.020 g dust/day
House Conc:
200.0 ug Pb/g dust
0.00 ug Pb/day

Other Dust Intake: 0.00 ug Pb/day

Absorption:

Air: 50.0% (in lungs)

Diet: 10.0% (in gastrointestinal tract)
Water: 10.0% (in gastrointestinal tract)
Dust: 10.0% (in gastrointestinal tract)

Graph Values:

GSD: 1.42

Cutoff: 10 ug Pb/dL

D.3.2 Application of the UBK Model to Development of Soil HBNs

EPA (1991d) has identified blood lead concentrations of 10 to 15 ug/dL as levels of concern for adverse effects. Therefore, these levels are used as the basis for developing soil HBNs for lead. The UBK model was run using the default values presented and discussed

in Section D.3.1, a lead groundwater concentration of 15 ug/l, and a varying soil concentration. A concentration of 15 ug/l in groundwater is used because this is the MCL for lead and, therefore, the HBN for lead in groundwater.

Based upon application of the UBK model, two potential HBNs for lead in RAAP soil are identified-200 and 500 mg/kg total lead. The HBN for lead depends, in part, upon what percentage of the population you want to protect and the blood lead cutoff selected. Figure D-1 presents a graph of the bell-shaped probability density function at a soil concentration of 200 mg/kg Pb; at this soil concentration, the model estimated a high degree of protectiveness of >99.6 percent of children in a residential setting (i.e., at 200 mg/kg, >99.6 percent of an exposed sensitive population (young children) would be expected to have blood lead levels of less than or equal to 10 ug/dL).

Figures D-2 and D-3 present graphs of the bell-shaped probability density function at a soil concentration of 500 mg/kg Pb and using cutoffs of 10 and 15 ug/dL blood lead levels, respectively. At a soil concentration of 500 mg/kg, the model predicts that >89.6 percent of the children would have blood lead levels of less than or equal to 10 ug/dL. As indicated in Figure D-3, at 500 mg/kg, >99.2 percent of the children would have blood lead levels of less than or equal to 15 ug/dL.

TABLE D-1

HBNs and Other Comparison Criteria Developed for Detected Analytes Without Permit Specified HBNs

		Oral RID					Noncerolnogenia GW HBN (m)		Carolnogenic GW HBN (n)		Noncercinogenic Soil HBN (a)		Carcinogenic Soil HBN (p)	
Contambent.	(mo/lea/s	ing)	مائلان	g/kg/dayl)	(mo/l		_	(ma/s		(ma/	kai	tma/ka	<u>4</u>	
Motels:	_						_							
Aluminum		!.9E+00 (c)	NA			1.0E+02	?	NG			2.3E+05	NG		
Catclum	NA .		NA		NC			NC		NC		NC		
Cobalt		.0E –05 (c)	NA.			3.5E-04		NC			8.0E-01	NC		
Соррег		l.7E-02 (c)	NA			1.3E+00		NC			3.0E+03	NC		
tran	NA		NA			3.0E01		NC		NC		NC		
Lead	IUBK (se	s text)	NA.			1.5E -02	2 (4	NC		200 -	- 500 (1)	NC		
Magnesium	NA.		NA		NC			NC		NC		NC		
Man gan et e		.0E-01 (a)	NA			3.5E+00)	NC			8.0E+03	NC		
Potestum .	NA.		NA		NC			NC		NC		NC		
Sodi: m	NA.		NA			2.0E+01		NC		NC		NC		
Venadium	7	.0E -03 (a)	NA			2.5E-01	ļ [—]	NC			5.8E+02	NC		
Zinc	2	.OE-O1 (b)	NA			7.0E+00)	NC			1.6E+04	NC		
Other thorganics:														
Chloride	NA		NA.			2.5E+02	! (#	NC		NC		NC		
Nitrogen	NA		NA		NC			NG		NC		NC		
Nitrate/hit ite	1	.6E+00 (w)	NA			1.0E+01	0	NC			1.3E+05	NC		
Phosphate	NA.		NA		NC			NC		NC		NC		
Sulfalo	NA		NA		400/50	20	()	NC		NC		NC		
0-ul 1004.														
<u>Semi-VOAs:</u> Acenaphere		.0E-02 (w)	NA			2.1E+00		NC			4.8E+03	NC		
Acensphiliplese	NA G	.uc -uz (a)	NA.		NC	216+00		NG NG		NC	4.0C TUO			
Carbon Disulfide		.0E-01 (a)	NA NA		140	3.5E+00		NC NC		m.	8.0E+03	NC		
Diberzoiuran	NA 1	.uz =u1 (mg	NA NA			1.2E =01		NC NC		NC	8.0E+03	NC		
									'	PAC		NC		
Fluorene		.0E-02 (m)	NA			1.4E+00	l	NC			3.2年+03	NC		
2-Methylnephthalene	NA _	_ _	NA		NC			NC		NC		NC		
Phenolica	8	.0E-01 (m)(e)	NA			2.1E+01		NC			4,8E+04	NC		
TPH	NA		NA	·	, MC			NC		NC		NC		
Explosives:	_	··												
135TNB		.0E-05 (a)	NA			1.86 ~03		NC			4.0E+00	NC		
13DNB		.0E-04 (a)	NA	_		3,5E-03		NC			8,0E+00	NC		
248TNT		.0E-04 (#)		3.0E-02 (a)		1.8E-02			1.2E-02 (h)		4.0E+01		2.3E+02 (h)	
26DNT		.0E−03 (dj		8.8E –01 (a)		3,5E,02			5.1E-05 (g)		8.QE+01		1.0E+00 (g)	
24DNT		.OE-03 (d)		6.8€-01 (a)		7.0E02			5.1E-05 (g)		1.8E+02		1.0E+00 (g)	
HMX		.0E-02 (a)	NA.			1.BE+00		NC			4.0E+03	NÇ		
FIDX		.OE-03 (a)		1.1E-01 (a)		1.1E-01			3.2E-03 (h)		2.4E+02		0.4E+01 (h)	
Tetyl	1.	.0E-02	NA			3.5E-01		NC			6.0E+02	NC		
2-Nitroenliine	NA		NA		NC			NC		NC		NC		

TABLE D-1 (cont'd)

```
Bources: (a) — USEPA, 1992a.

(b) USEPA, 1991b

(c) USEPA, 1991b

(d) Brown, 1992.

(e) — Based on Rid for phared.

(f) — Based on the organoloptic wester criterion (USEPA, 1987).

(g) — Cless A or B carcinogen; therefore, a risk level of 1E—05 used.

(h) — Cless C carcinogen; therefore, a risk level of 1E—05 used.

(j) — Maximum contaminant level (MCL).

(j) — Orhiving weber equivalent level (MCL).

(j) — Secondary maximum contaminant level (BMCL) (not health based).

(j) — Secondary maximum contaminant level (BMCL) (not health based).

(j) — Unless of herwise noted, calculated according to Equation D—1.

(o) — Unless of herwise noted, calculated according to Equation D—2.

(d) — Unless otherwise noted, calculated according to Equation D—3.

(g) — Unless otherwise noted, calculated according to Equation D—4.

NA — Not assultable.
```

D-13

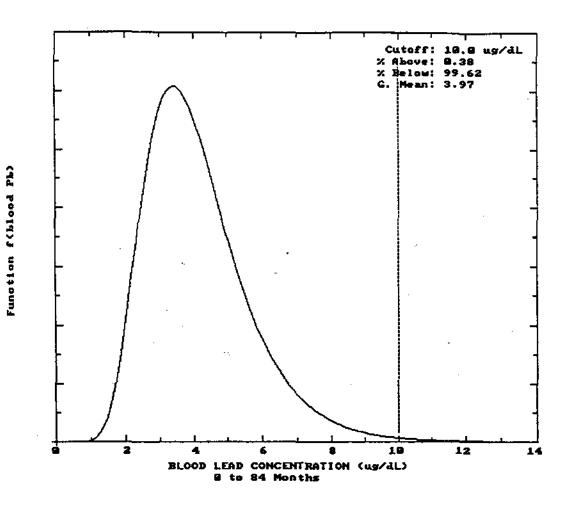


FIGURE D-1

Bell-Shaped Probability Density Function at a Soil Concentration of 200 mg/kg Pb

Probability Density

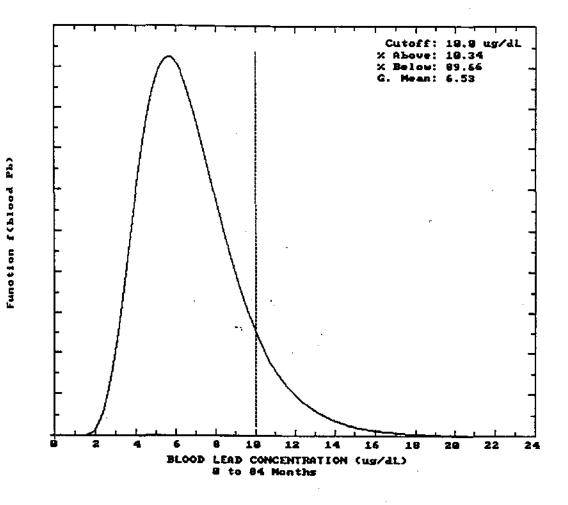



FIGURE D-2

Bell-Shaped Probability Density Function at a Soil Concentration of 500 mg/kg Pb Using a Cutoff of 10 ug/dL Blood Lead

Probability Density

FIGURE D-3

Bell-Shaped Probability Density Function at a Soil Concentration of 500 mg/kg Pb Using a Cutoff of 15 ug/dL Blood Lead

REFERENCES

- Brower, M., 1992. Personal communication between Charles O. Shore, Dames & Moore, and M. Brower, March 1992.
- U. S. Environmental Protection Agency (USEPA), 1987. <u>Health Effects Assessment for Dibenzofuran</u>, Environmental Criteria and Assessment Office, Cincinnati, Ohio.
- U. S. Environmental Protection Agency (USEPA), 1992. <u>Integrated Risk Information</u>
 <u>System (IRIS)</u>, Environmental Criteria and Assessment Office, Cincinnati, Ohio.
- U. S. Environmental Protection Agency (USEPA), 1991a. <u>Health Effects Assessment Summary Table (HEAST)</u> First Quarter.
- "U.S. Environmental Protection Agency (USEPA), 1991b. Updated Reference Concentration
 Table Memorandum from Roy Smith, EPA Region III to Dick Brunker, EPA Region
 III, January 31, 1991.
- U. S. Environmental Protection Agency (USEPA), 1991c. <u>User's Guide for Lead: A PC Software Application of the Uptake/Biokinetic Model, Version 0.50</u>, Preliminary Draft, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, Ohio, January 1991.
- U. S. Environmental Protection Agency (USEPA), 1991d. <u>Technical Support Document on Lead</u>, Preliminary Draft, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, Ohio, January 1991.
- U. S. Environmental Protection Agency (USEPA), 1989. <u>Risk Assessment Guidance for Superfund</u>, USEPA 540/1-89/002, Office of Emergency and Remedial Response.

APPENDIX D.2
RCRA Permit health Based Numbers

VOLATILES & SEMIVOLATILES, LIST 1

		HBN	HBN	POL	PQL	A MARATEA
HAZARĐOUS CONSTITUENT	CAS NO.	SGIL mg/kg	WATER mg/l	SOIL ag/kg	WATER mg/l	Suggested: Method
			g- •	99		, , , , , ,
Acetone	67- 64-1	1E+3	4E0	iE-i	1E−i	8240
Acrolein	107-02-8	1E+3	5E-2	5E-3	5E-3	8240
Acrylonitrile	107-13-1	1E0	6E-5	5E-3	5E- 3	8240
Benzene	71-43-2	2E+1	2E-3	5E- 3	5E-3	8260 (8240)
Bis(2-chloroethoxy) methane *syn.* Dichloromethoxy ethane	111-91-1			3E-1	1 E- 2	8270
Bis(2-chloroethyl) ether #syn.* Dichloroethyl ether	111-44-4	6E-1	3 E- 5	3E-1	1E-2	8270
Bis(2-chloroisopropyl) ether *syn.* Dichloroisopropyl ether		9E+1	4E-2	3E-1	1E-2	8270
Bis(2-ethylhexyl) phthalate *syn.* Diethylhexyl phthalate	117-81-7	5E+1	3E-3	3E-1	1E-2	8270
Bromodichloromethane	75-27-4 75-35-3	1E+3	7E-1	5E-3	5E-3	8260 (8240)
Bromofors *syn.* Tribromomethane	75-25-2 101-55-3	IE+3	7E-1	5E-3 3E-1	5E-3 1E-2	8260 (82 4 0) 8270
4-Bromophenyl phenyl ether Butyl benzyl phthalate	85-68-7	1E+3	9E0	3E-i	1E-2	B270
Carbon disulfide	75-15-0	1E+3	4E0	5E-3	5E-3	8240
Carbon tetrachloride	56-23-5	5E+1	5E-3	5E-3	5E-3	B240
p-Chloroaniline	106-47-8	3E+2	1E-1	3E-1	1E-2	8270
Chlorobenzene	108-70-7	1E+3	1E0	5E-3	5E-3	B250 (B240)
p-Chloro-a-cresol	59- 5 0-7	1E+3	2E-1	3E-1	1E-2	8270
Chloroethane *syn.* Ethyl chloride	75-00-3		•	1E-2	1E-2	8240
Chlorofore	67-66-3	1E+2	6E-1	5E-3	5E-3	8260
2-Chioronaphthalene	91-58-7			3E-1	1E-2	8270
2-Chlorophenol	95-57 - 8	4E+2	2E-1	3E-1	1E-2	8270
n-Cresol	108-39-4	1E+3	2E0	3E-1	1E-2	8270
o-Cresol	95-48- 7	1E+3	2E0	3E-1	1E-2	8270
p-Cresal	106-44-5	1E+3	2E0	3E−i	1E-2	8270
Di-n-butyl phthalate	84-74-2	1E+3	4E0	3E-1	1E-2	8270
o-Dichlorobenzene	95-50-1	1E+3	3E0	1E-2	1E-2	8260 (8270)
a-Dichlorobenzene	541-73-1	1E+3	3E0	5E-3	5E- 3	8260 (8270)
p-Dichlorobenzene	10 6-46- 7	4E+2	7.5E-2	5E-3	5E -3	8260 (8270)
3,3'-Dichlorobenzidine	91-94-1	2E0	8E-5	1E0	2E-2	B270
Dichlorodifluoromethane	75-71-0	1E+3	7E0	5E-3	2 €-3	8260 (8240)
1,1-Dichloroethane	75-34-3	8E0	4E-4	5E-3	5E-3	8260 (8240)
1,2-Bichloroethane	107-06-2	BEO	5E-3	5E-3	5E-3	8260 (8240) 8260 (8240)
1,1-Dichloroethylene	75-35-4	1E+1	Æ−3 Æ−1	5E-3 5E-3	5E-3	8260 (8240)
trans-1,2-Dichloroethylene	156-60-5 120-83-2	1E+3 2E+2	1E-1	2E-1	1E-2	8270
2,4-Dichlorophenol	78-87-5	1E+2	6E-3	5E-3	5E-3	8250 (8240)
1,2-Dichloropropane cis-1,3-Dichloropropene	10061-01-5	4E0	2E-4	1E-2	1E-2	B240
trans-1,3-Dichloropropene	10061-02-6	4E0	2E-4	1E-2	1E-2	8240
Diethyl phthalate	64-66-2	1E+3	3E+1	3E-1	1E-2	8270
2,4-Dimethylphenol	105-67-9	4E+2	2E-2	3E−1	1E-2	8270
Dimethyl phthalate	131-11-3	1E+3	4E+2	3E−L	1E-2	8270
4,6-Dinitro-o-cresol	534-52-1	8E+1	4E-2	5E0	5E−2	8270
2,4-Dinitrophenol	51-29-5	2£+2	7E-2	2E0	5E-2	8270
2,4-Dinitrotaluene	121-14-2	1E0	5E-5	3E-1	lE−2	8270
2,6-Dinitrotoluene	606-20-2			3E−i	1E-2	8270
Di-n-octyl phthalate	117 -84- 0			3E−1	1E-2	8270
Ethylbenzene	100-41-4	1E+3	4E0	5E-3	5 E −3	8260 (8240)
Hexachlorobenzene	118-74-1	4E-1	2E-5	3E−1	1E-2	8270
Hexachlorobutadiene	87-68-3	9E+1	5E- 3	5€-3	5 E -3	8260 (8120)

HBM = Health Based Number

PGL = Practical Quantitation Limit

VOLATILES & SEMIVOLATILES (Continued) LIST 1

HAZARDOUS CONSTITUENT ·	CAS NO.	HBN 501L mg/kg	HBN WATER mg/1	PQL SOIL mg/kg	PGL WATER #9/1	SUGGESTED Method
Hexachlorocyclopentadiene.	77-47-4	6€+2	2E-1	3E-1	1E-2	8270
Hexach1proethane	67-72-1	8E+!	3E-1	3E-1	1E-2	8270
Methyl bromide *syn.* Bromomethane	74-83-9	1E+2	5E-2	1E-2	1E-2	8260 (8240)
Methyl chloride *syn.* Chloromethane	74-87-3	5E+2	3E-2	1E-2	1E-2	8260 (8240)
Methylene chloride *syn, * Dichloromethane	75-09-2	9E+1	5E-3	5E-3	5E-3	8240
Methyl ethyl ketone *syn.* 2-Butanone	78-93-3	1E+3	2E0	iE-i	1E-1	8240
Methyl isobutyl ketone #syn.# 4-Methyl-2-pentanone	108-10-1	1E+3	2E0	1E-1	iE-1	8240
Naphthalene	91-20-3	1E+3	1E+1	3E-1	1E-2	8270
p-Nitroaniline	100-01-6			1E0	2E-2	8270
Ni trobenzene	98-95-3	4E+1	2E-2	3E-1	1E-2	8270
p-Nitrophenol	100-02-7			3 E 0	5€-2	82 70
N-Mitrosodiphenylamine	86-30-6	1E+2	7E-3	3E-1	1E-2	B270
N-Mitrosodi-n-propylamine	621-64-7	1E-1	5E-6	3E-1	1E-2	8270
Pentachlorophenol	87 -86- 5	1E+3	1E0	2E0	5E-2	8270
Phenol-	108-95-2	1E+3	2E+1	3E-1	1E-2	B270
Pyrene	129-00-0	1E+3	4E0	3E-1	1E-2	8270
i, i, i, 2-Tetrachioroethane	630-20-6	3E+2	1E-2	5E -3	5E-3	8260 (B240)
1, 1, 2, 2-Tetrachloroethane	79-34-5	4E+1	2E-3	5E-3	5E-3	8260 (B240)
Tetrachloroethylene	127-19-4	1E+2	7E-3	5E-3	5€- 3	8260 (8240)
Toluene	10 8-88- 3	1E+3	1E+1	5E-3	5E-3	8260 (8240)
1,2,4-Trichlorobenzene	120-82-1	1E+3	7E-1	1E-2	1E-2	8260 (8270)
1,1,1-Trichloroethane	71-55-6	1E+3	2E-1	5€ -3	5€-3	8260 (8240)
1,1,2-Trichloroethane	79-00-5	1E+2	6E-3	5E-3	5E-3	8260 (8240)
Trichloroethylene	79-01-6	6E+1	5E −3	5E-3	5E- 3	8260 (8240)
Trichlorofluoromethane	75-69-4	1E+3	1E+1	5E-3	5E-3	8260 (8240)
2,4,5-Trichlarophenol	95-95-4	1E+3	4E0	2E0	5E-2	B270
2.4.6-Trichlorophenol	88-04-2	4E+1	2E-3	6E-1	1E-2	B270
Vinyl chloride	75-01-4	3E−t	2E-3	1E+2	1 E -2	8240
Xylene (total)	1330-20-7	1E+3	7E+1	5€- 3	5E-3	8260 (8240)

VOLATILES & SEMIVOLATILES , LIST 2

		H en Soil	HBN Water	POL Soil	PQL Water	Suggested
HAZARDOUS CONSTITUENT	CAS NO.	e g/kg	mg/l	s g/kg	mg/l	METHOD
Acetone	67-64-1	1E+3	4E 0	1E-1	1E-i	8240
Acrolein	107-02-8	1E+3	SE-2	5E-3	5E- 3	8240
Acrylonitrile	107-13-1	1E0	6E-5	5E −3	5E-3	8240
Anthracene	120-12-7	4E+1	2E-3	1 E -1	2E-3	8310
Benzene	71-43-2	2E+1	5E-3	5€- 3	5E-3	8260 (8240)
Benzolalanthracene	56-55-3	2E-i	1E-5	9E− 3	1E-4	8310
Benzolblfluoranthene	205-99-2	4E-1	2E-5	ZE-2	2E-4	8310
Benzo(k) fluoranthene	207-08-9	BE+1	4E-3	2E- 2	2E-4	8310
Benzola i pyrene	50-32-8	6€-2	3E-6	2E-2	2E-4	8310
Bis(2-chloroethoxy) methane #syn.+ Dichloromethoxy ethane	111-91-1			3E−1	1E-2	827 0
Bis(2-chloroethyl) ether *syn. * Dichloroethyl ether	111-44-4	6E-1	3E-5	3E-1	1E-2	8270
Bis(2-chloroisopropyl) ether *syn.+ Dichloroisopropyl ether		9E+L	4E-2	3E-1	iE-2	8270
Bis(2-ethylhexyl) phthalate *syn.* Diethylhexyl phthalate	117-81-7	5E+1	3E-3	3E-1	IE-2	8270
Browodichloromethane	75-27-4	IE+3	7E-1	5E-3	5E- 3	8260 (8240)
Brownform #syn.* Tribromomethane	75-25-2	1E+3	,7E+1	5E-3	5E-3	8240 (8240)
4-Bromophenyl phenyl ether	101-55-3	15.7	050	3E-1	1E-2	8270
Butyl benzyl phthalate Carbon disulfide	85-68-7	1E+3	9E0	3E-1	1E-2	B270
Carbon tetrachloride	75-15-0 54-37-5	1E+3	4E0	5E+3	5E-3	B240
p-Chloroaniline	56-23-5	5E+1	5E-3 ,	5E-3	5E-3	82 40
Chiorobenzene	10 6-4 7 -8 10 8-9 0-7	3E+2 - 1E+7	1E-1 1E0	3E-1 5E-3	1E-2 5E-3	8270 8260 (8240)
p-Chloro-a-cresol	59-50-7	1E+3	2E-1	3E-t	1E-2	8270
Chloroethane *syn.* Ethyl chloride	75-00-3	IETJ	25-1	1E-2	1E-2	8240
Chloroform	67-66-3	1E+2	6E- 1	5E-3	5E-3	8240 8260
2-Chloronaphthalene	91-58-7	***	.	3E-1	1E-2	8270
2-Chlorophenol	95-57-8	4E+2	2E-1	3E-1	1E-2	B270
Chrysene	218-01-9	4E0	ZE-4	2E-2	2E-3	8310
a-Cresq1	108-37-4	1E+3	2E0	3E-1	1E-2	B270
c-Cresol	95-48-7	1E+3	2£0	3E-1	1E-2	8270
p-Cresol	106-44-5	1E+3	2E0	3E-1	1E+2	8270
Dibenz[a,h]anthracene	53-70-3	1E-2	7E-7	2 E -2	3E-4	B310
Di-n-butyl phthalate	84-74-2	1E+3	4E0	3E-1	1E-2	8270
o-Dichlorobenzene	95-50-1	1E+3	3 E 0	1E-2	1E-2	8260 (8270)
a-Dichlorobenzene	541-73-1	1E+3	3E0	5E-3	5E-3	8260 (8270)
p-Dichlorobenzene	10 6-46- 7	4E+2	7. 5E -2	Œ- 3	5E −3	8260 (8270)
3,3'-Dichlorobenzidine	91- 94- 1	2E0	Æ- 5	1E0	2E- 2	8270
Dichlorodifluoromethane	75-71 -8	1E+3	7E0	5E-3	5E- 3	8260 (B240)
1,1-Dichloroethane	75-34-3	8E0	Æ-4	5€- 3	2E− 3	8260 (8240)
1,2-Dichloroethane	107-0 6- 2	8E0	5E −3	5E-3	5E-3	8260 (8240)
1,1-Dichloroethylene	75-35-4	1E+1	7E-3	5E- 3	5E-3	8260 (8240)
trans-1,2-Dichloroethylene	156-60-5	1E+3	7E-1	5E-3	5E-3	8260 (8240)
2,4-Dichlorophenol	120-83-2	2E+2	1E-1	3E-1	1E-2	8270
1,2-Dichloropropane	78-87-5	1E+2	6E-3	5E-3	5E-3	8260 (8240)
cis-1,3-Dichloropropene	10061-01-5	4E0	2E-4	1E-2	1E-2	B240
trans-1,3-Dichloropropene	10061-02-6	4E0	2E-4	1E-2	1E-2	8240 8230
Diethyl phthalate	84-66-2	1E+3	3E+1	1-3E	1E-2	B270
2,4-Dimethylphenol	105-67-9	4E+2	2E-2	Œ-1	1E-2	8270
Dimethyl phthalate	131-11-3	1E+3	4E+2	Œ-1	1E-2	8270
4,6-Dinitro-o-cresol	534-52-1	8E+1	4E-2	5E0	5€- 2	B270

VOLATILES & SEMIVOLATILES, LIST 2 (Continued)

MATER SOIL MATER SUBJECTED MATER SUBJECTED MATER SUBJECTED MATER SUBJECTED MATER SUBJECTED MATER MATER SUBJECTED MATER MATER SUBJECTED MATER M
2,4-Dinitrotoluene 121-14-2 1EO 5E-5 3E-1 1E-2 8270 2,6-Dinitrotoluene 606-20-2 3E-1 1E-2 8270 Din-octyl phthalate 117-84-0 3E-1 1E-2 8270 Ethylbenzene 100-41-4 1E+3 4E0 3E-1 1E-2 8270 Ethylbenzene 100-41-4 1E+3 4E0 3E-3 5E-3 8260 Eluoranthene 206-44-0 5E+2 2E-1 3E-1 1E-2 8270 Ethylbenzene 118-74-1 4E-1 2E-5 3E-2 3E-2 3E-1 Exachlorobenzene 118-74-1 4E-1 2E-5 3E-2 3E-3 3E-3 Exachlorobutadiene 87-68-3 9E-1 3E-1 3E-1 3E-1 Exachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 3E-1 Exachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 3E-1 Exachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 3E-1 Exachlorocyclopentadiene 67-72-1 9E+1 3E-1 3E-1 3E-2 Exachlorocyclopentadiene 193-39-5 4E+1 2E-3 3E-2 4E-4 Exachlorocyclopentadiene 193-39-5 4E+1 3E-1 3E-2 Exachlorocyclopentadiene 193-39-5 4E+1 3E-3 3E-3 3E-3 Exachlorocyclopentadiene 193-39-5 4E+1 3E-3 3E-3 Exachlo
2,4-Dinitrotoluene 121-14-2 1EO 5E-5 3E-1 1E-2 8270 2,6-Dinitrotoluene 606-20-2 3E-1 1E-2 8270 Din-octyl phthalate 117-84-0 3E-1 1E-2 8270 Ethylbenzene 100-41-4 1E+3 4E0 3E-1 1E-2 8270 Ethylbenzene 100-41-4 1E+3 4E0 3E-3 5E-3 8260 Eluoranthene 206-44-0 5E+2 2E-1 3E-1 1E-2 8270 Ethylbenzene 118-74-1 4E-1 2E-5 3E-2 3E-2 3E-1 Exachlorobenzene 118-74-1 4E-1 2E-5 3E-2 3E-3 3E-3 Exachlorobutadiene 87-68-3 9E-1 3E-1 3E-1 3E-1 Exachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 3E-1 Exachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 3E-1 Exachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 3E-1 Exachlorocyclopentadiene 67-72-1 9E+1 3E-1 3E-1 3E-2 Exachlorocyclopentadiene 193-39-5 4E+1 2E-3 3E-2 4E-4 Exachlorocyclopentadiene 193-39-5 4E+1 3E-1 3E-2 Exachlorocyclopentadiene 193-39-5 4E+1 3E-3 3E-3 3E-3 Exachlorocyclopentadiene 193-39-5 4E+1 3E-3 3E-3 Exachlo
2.6-Dinitrotoluene 606-20-2
Di-m-octyl phthalate
Ethylbenzene 100-41-4 1E+3 4E0 5E-3 5E-3 8260 (8240) Fluoranthene 206-44-0 5E+2 2E-1 3E-1 1E-2 8270 Hexachlorobenzene 118-74-1 4E-1 2E-5 3E-2 5E-4 8120 Hexachlorobutadiene 87-68-3 9E+1 5E-3 5E-3 5E-3 8260 (8120) Hexachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 1E-2 8270 Hexachlorocyclopentadiene 67-72-1 8E+1 3E-1 3E-1 1E-2 8270 Indeno(1,2,3-cd)pyrene 193-39-5 4E+1 2E-3 3E-2 4E-4 8310 Methyl bromide *syn.* Bromomethane 74-83-9 1E+2 5E-2 1E-2 1E-2 8260 (8240) Methyl chloride *syn.* Chloromethane 74-87-3 5E+2 3E-2 1E-2 1E-2 8260 (8240) Methyl chloride *syn.* Dichloromethane 75-09-2 9E+1 3E-3 5E-3 5E-3 8240 Methyl ethoride *syn.* 2-8utanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 2-8utanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 SE-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 SE-2 8270 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 100-01-6 1E0 2E-2 8270 SE-2 8270 S
Fluoranthene 206-44-0 5E+2 2E-1 3E-1 1E-2 8270 Hexachlorobenzene 118-74-1 4E-1 2E-5 3E-2 5E-4 8120 Hexachlorobutadiene 87-68-3 9E+1 5E-3 5E-3 5E-3 8260 (8120) Hexachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 1E-2 8270 Hexachlorocyclopentadiene 67-72-1 8E+1 3E-1 3E-1 1E-2 8270 Indeno(1,2,3-cd)pyrene 193-39-5 4E+1 2E-3 3E-2 4E-4 8310 Methyl broadde *syn.* Bromomethane 74-83-9 1E+2 5E-2 1E-2 1E-2 8260 (8240) Methyl chloride *syn.* Chloromethane 74-87-3 5E+2 3E-2 1E-2 1E-2 8260 (8240) Methylene chloride *syn.* Dichloromethane 75-09-2 9E+1 5E-3 5E-3 5E-3 8240 Methyl ethyl ketone *syn.* 2-Butanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 108-10-1 1E-3 2E0 1E-1 1E-1 8240 Methyl indenoclaride *syn.* 4-Methyl-2-pentanone 108-10-1 1E-3 2E0 1E-1 1E-1 8240 Mitrobenzene 98-95-3 4E+1 2E-2 3E-3 5E-3 8250 p-Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 N-Nitrosodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Hexachlorobenzene 118-74-1 4E-1 2E-5 3E-2 5E-4 8120 Hexachlorobutadiene 87-68-3 9E+1 5E-3 5E-3 5E-3 8260 (8120) Hexachlorocyclopentadiene 77-47-4 6E+2 2E-1 3E-1 1E-2 8270 Hexachlorocyclopentadiene 67-72-1 8E+1 3E-1 3E-1 1E-2 8270 Indeno[1,2,3-cd]pyrene 193-39-5 4E+1 2E-3 3E-2 4E-4 8310 Methyl bromide *syn.* Bromomethane 74-83-9 1E+2 5E-2 1E-2 1E-2 8260 (8240) Methyl chloride *syn.* Chloromethane 74-87-3 5E+2 3E-2 1E-2 1E-2 8260 (8240) Methyl chloride *syn.* Dichloromethane 75-09-2 9E+1 5E-3 5E-3 5E-3 8240 Methyl ethyl ketone *syn.* 2-Butanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 82-60 p-Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 N-Nitrobodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Hexachlorobutadiene
Hexachlorocyclopentadiene
Hexachloroethane
Indenoil 1, 2, 3 - cd pyrene 193 - 39 - 5 4E+1 2E - 3 3E - 2 4E - 4 8310
Methyl bromide #syn.* Bromomethane 74-83-9 1E+2 5E-2 1E-2 8260 (8240) Methyl chloride #syn.* Chloromethane 74-87-3 5E+2 3E-2 1E-2 8260 (8240) Methyl ene chloride #syn.* Dichloromethane 75-09-2 9E+1 5E-3 5E-3 5E-3 8240 Methyl ethyl ketone #syn.* 2-Butanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone #syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 8260 p-Nitroaniline 100-01-6 1E0 2E-2 8270 N-Nitrosodiphenylamine 86-30-6 / 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1
Methyl chloride *syn.* Chloromethane 74-87-3 5E+2 3E-2 1E-2 1E-2 8260 (8240) Methylene chloride *syn.* Dichloromethane 75-09-2 9E+1 5E-3 5E-3 8240 Methyl ethyl ketone *syn.* 2-Butanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 8260 p-Nitroaniline 100-01-6 1E0 2E-2 8270 Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Nitrosodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Methylene chloride *syn.* Dichloromethane 75-09-2 9E+1 5E-3 5E-3 8240 Methyl ethyl ketone *syn.* 2-Butanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 8260 p-Nitroaniline 100-01-6 1E0 2E-2 8270 Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Nitrophenol 100-02-7 3E0 5E-2 8270 N-Nitrosodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Methyl ethyl ketone #syn.* 2-Butanone 78-93-3 1E+3 2E0 1E-1 1E-1 8240 Methyl isobutyl ketone #syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Naphthalene 91-20-3 1E+3 1E+1 SE-3 SE-3 8260 p-Nitroaniline 100-01-6 1E0 2E-2 8270 Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Nitrophenol 100-02-7 3E0 3E-2 8270 N-Nitrosodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Methyl isobutyl ketone *syn.* 4-Methyl-2-pentanone 108-10-1 1E+3 2E0 1E-1 1E-1 8240 Naphthalene 91-20-3 1E+3 1E+1 5E-3 5E-3 8260 p-Nitroaniline 100-01-6 1E0 2E-2 8270 Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Nitrophenol 100-02-7 3E0 5E-2 8270 N-Nitrosodi-n-propylamine 86-30-6 · 1E+2 7E-3 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Naphthalene 91-20-3 1E+3 1E+1 SE-3 SE-3 8260 p-Ni troaniline 100-01-6 1E0 2E-2 8270 Ni trobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Ni trophenol 100-02-7 3E0 5E-2 8270 N-Ni trosodi-n-propylamine 86-30-6 / 1E+2 7E-3 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
p-Ni troaniline 100-01-6 1E0 2E-2 8270 Ni trobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Ni trophenol 100-02-7 3E0 5E-2 8270 N-Ni trosodiphenylamine 86-30-6 · 1E+2 7E-3 3E-1 1E-2 8270 N-Ni trosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Nitrobenzene 98-95-3 4E+1 2E-2 3E-1 1E-2 8270 p-Nitrophenol 100-02-7 3E0 5E-2 8270 N-Nitrosodiphenylamine 86-30-6 / 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
p-Ni trophenol 100-02-7 3E0 5E-2 8270 N-Ni trosodiphenylamine 86-30-6 · 1E+2 7E-3 3E-1 1E-2 8270 N-Ni trosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
N-Nitrosodiphenylamine 86-30-6 1E+2 7E-3 3E-1 1E-2 8270 N-Nitrosodi-n-propylamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
N-Ni trosodi -n-propy lamine 621-64-7 1E-1 5E-6 3E-1 1E-2 8270 Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Pentachlorophenol 87-86-5 1E+3 1E0 2E0 5E-2 8270
Phononthropa
Phenanthrene 85-01-8 4E+1 2E-3 5E-1 7E-3 8310
Phenol 108-95-2 1E+3 2E+1 3E-1 1E+2 8270
Pyrene 129-00-0 1E+3 4E0 3E-1 1E-2 8270
1, 1, 1, 2-Tetrachloroethane 630-20-6 3E+2 1E-2 5E-3 5E-3 8260 (8240)
1,1,2,2 Tetrachloroethane 79-34-5 4E+1 2E-3 1E-4 1E-4 8310
Tetrachloroethylene 127-18-4 1E+2 7E-3 5E-3 8260 (8240)
Toluene 108-88-3 1E+3 1E+1 5E-3 5E-3 8260 (8240)
1,2,4-Trichlorobenzene 120-62-1 1E+3 7E-1 1E-2 1E-2 8260 (8270)
1,1,1-Trichloroethane 71-55-6 1E+3 2E-1 5E-3 5E-3 8260 (8240)
1,1,2-Trichloroethane 79-00-5 1E+2 6E-3 5E-3 5E-3 8260 (8240)
Trichloroethylene 79-01-6 6E+1 5E-3 5E-3 5E-3 8260 (8240)
Trichlorofluoromethane 75-69-4 1E+3 1E+1 5E-3 5E-3 8260 (8240)
2,4,5-Trichlorophenol 95-95-4 1E+3 4E0 2E0 5E-2 8270
2,4,6-Trichlorophenol 88-06-2 4E+1 2E-3 6E-1 1E-2 8270
Vinyl chloride 75-01-4 3E-1 2E-3 1E-2 1E-2 8240
Xylene (total) 1330-20-7 1E+3 7E+1 5E-3 5E-3 8260 (8240)

SEMIVOLATILES

HAZARDOUS CONSTITUENT	CAS NO.	HBN SOIL ag/kg	HBN NATER eg/1	POL SOIL mg/kg	POL Water mg/1	Suggested Hethod
Anthracene	120-12-7	4E +1	2E-3	1E-1	2E-3	8310
Benzolalanthracene	56 -55- 3	2E-1	1E-5	9E-3	1E-4	8310
Benzo(b)fluoranthene	20 5-99 -2	4E-1	2E-5	2E-2	2E-4	8310
Benzo[k]fluoranthene	207-08-9	8E+1	4E-3	2E-2	2E-4	8310
Benzo[a]pyrene	50-32 -8	6E−2	3E-6	2E-2	2E-4	8310
Bis(2-chloroethoxy) methane *syn.* Dichloromethoxy ethane	111-91-1			Æ-1	1E-2	8270
Bis(2-chloroethyl) ether #syn.* Dichloroethyl ether	111-44-4	6 E −1	3E-5	3E-1	1E-2	8270
Bis(2-chloroisopropyl) ether *syn.⇒ Dichloroisopropyl ether	108-60-1	9E+1	4E-2	Œ-1	1E-2	8270
Bis(2-ethylhemyl) phthalate #syn.* Diethylhemyl phthalate	117-01-7	5€ +1	3E-3	3E-1	IE-2	8270
4-Bromophenyl phenyl ether	101-55-3			3E-1	1E-2	8270
Butyl benzyl phthalate	85-68-7	1E+3	7E 0	3E-1	1E-2	8270
p-Chloroaniline	106-47-8	3E+2	1E-1	3E−1	1E-2	8270
p-Chloro-a-cresol	59-50- 7	1E+3	2E-1	3E-1	1E-2	B270
2-Chloronaphthalene	91-58-7			3E-1	1E-2	8270
2-Chlorophenol	95-57-8	4E+2	2E-1	Œ−i	1E-2	8270
Chrysene	218-01-9	4E0	2E-4	2E-2	2E-3	8310
æ-Cresol	108-39-4	1E+3	2E0	3E-1	1E-2	8270
o-Cresol	95-48- 7	1E+3	2E0	Œ-1	1E-2	8270
p-Cresol	106-44-5	1E+3	2E0	3E-1	1E-2	8270
Dibenz[a,h]anthracene	53-70-3	1E-2	7E-7	2E-2	3E-4	8310
Di-n-butyl phthalate	B4-74-2 -		4E0	3E-1	1E-2	8270
a-Dichlarabenzene	95-50-1	1E+3	3E0	1E-2	1E-2	8260 (8270)
m-Bichlorobenzene	541-73-1	1E+3	3E0	5E-3	5E-3 5E-3	8260 (8270)
p-Dichlorobenzene	10 6-46- 7 91 -94- 1	4E+2 2E0	7.5E-2 8E-5	5€~3 1E0	2E-2	8260 (8270) 8270
3,3'-Dichlorobenzidine 2,4-Dichlorophenol	120-83-2	2E+2	IE-I	3E-1	1E-2	8270
Diethyl phthalate	84-66-2	1E+3	3E+1	3E-1	1E-2	8270
2,4-Dimethylphenol	105-67-9	4E+2	2E-2	3E-1	1E-2	8270
Disethyl phthalate	131-11-3	1E+3	4E+2	3E-1	1E-2	B270
4,5-Dinitro-o-cresol	534-52-1	8E+1	4E-2	5E0	5E-2	8270
2,4-Dinitrophenol	51-29-5	2E+2	7E-2	2E0	5E-2	8270
2,4-Dinitrotaluene	121-14-2	1E0	5€- 5	Œ-1	1E-2	8270
2,6-Dinitrotaluene	606-20-2					
Di-n-octyl phthalate	117-84-0			Œ-1	1E-2	8270
Fluoranthene	206-44-0	5E+2	2E-1	Œ-1	1E-2 1E-2	8270 8270
	118-74-1	4E-1	2E-5	3E-2	5E-4	8120
Hexachlorobenzene	87- 68- 3	9E+1	5E-3	5E-3	5E-3	B260 (B120)
Hexachlorobutadiene	77-47-4	6E+2	2E-1	3E-1	1E-2	8270
Hexachlorocyclopentadiene	67-72-1	BE+i	3E-1	3E-1	1E-2	8270
Hexachloroethane	193-39-5	4E+1	2E-3	3E-2	4E-4	8310
Indeno[i, 2, 3-cd]pyrene	91-20-3	1E+3	1E+1	5E-3	5E-3	8260
Naphthalene p-Mitroaniline	100-01-6			1E0	2E-2	8270
P-Mitrobenzene	98-95- 3	4E+1	2E-2	3E-1	1E-2	8270
p-Nitrophenal	100-02-7		-	3E0	5E- 2	8270
N-Nitrosodiphenylamine	86-30-6	1E+2	7E-3	3E-1	1E-2	8270
N-Nitrosodi-n-propylanine	621-64-7	1E-1	Œ~6	3E-1	1E-2	8270
Pentachlorophenol	87-86-5	1E+3	1E0	2E0	5E-2	8270
Phenanthrene	85-01-8	4E+1	2E -3	5E-1	7E-3	8310
Phenol.	108-95-2	1E+3	2E+1	3E-1	1E-2	8270
· ·	_					

SEMIVOLATILES (Continued)

HAZARDOUS CONSTITUENT :	CAS NO.	HBN SOIL mg/kg	HBN WATER ag/1	PQL SOIL eg/kg	PQL WATER mg/l	Suggested Method
Pyrene	129-00-0	1E+3	4E0	Œ-1	1E-2	B270
1,2,4-Trichlarobenzene	120-82-1	1E+3	7E-1	1 E- 2	1E-2	8260 (8270)
2,4,5-Trichlorophenal	95- 95- 4	1E+3	4E0	2E0	5E-2	8270
2.4.6-Trichlorophenol	89-04-2	4F+1	2F-3	AF-1	tE-7	9270

METALS

HAZARDOUS CONSTITUENT .	CAS NO.	HBN SOIL mg/kg	HBN MATER eg/1	P Q L SOIL eg/kg	PQL WATER mg/l	Suggested Method
Antimony	7440-36-0	3E+1	1E-2	2E+1	3E-2	6010(s) 7041(w)
Arsenic	7440-38-2	5E-1	5E−2	3E+1	1E-2	6010(s) 7060(w)
Barium	7440-39-3	1E+3	150	IE0	2E-2	6010
Beryllium	7440-41-7	18-1	7E-6	2E-1	3E-3	6010
Cadmium	7440-43-9	4E+1	1£-2	2E0	18-3	6010(s) 7131(w)
Chromium	7440-47-3	4E+2	5 E -2	4E0	1E-2	6010(s) 7191(w)
Lead	7439-92-1		5€- 2	2E0	1E-2	6010(s) 7421(w)
Mercury	7 4 39 -9 7-6	2E+1	2E-3	1E-1	2E-3	7470
Nickel	7440-02-0	1E+3	7E-1	3E0	5E-2	6010
Selenium	77 82-49- 2	2E+2	1E-2	4E+1	2E-2	6010(s) 7740(w)
Silver	7440-22-4	2E+2	5E −2	4E0	2E-3	6010(s) 7761(w)
Thallium	74 4 0-28-0	6E0	3E-3	2E+1	1E-2	6010(s) 7870(w)

EXPLOSIVES

Cyclotrimethylenetrinitramine - RDX 1.3.5.7-tetranitro-1.3.5.7-tetraazacyclooctane - HMX Trinitrotoluene - TNT 2.4.6-Trinitrophenol-methylnitramine - Tetryl 2.6-Dinitrotoluene 2.4-Dinitrotoluene

In the submitted work plans, the Permittee shall identify the Health Based Number and Method Detection Limits to be used for the above constituents.

APPENDIX E
Chemical Abbreviations

ELEMENT IS USED IN THE FOLLOWING IR RECORDS AND DATA BASE TABLES:

1		Level 1		Level 2	į į	evel 3
1	Record	Column(s)	Report	Column(s)	Table(e)	D8 Column
İ	Analysis	2-7	SCC(ell)	75-60	shem/sqa	test_nm

ELEMENT SIZE AND CHARACTERISTICS:

6 alphanumeric characters, left justified

ELEMENT DESCRIPTION:

Code to identify the analyte or parameter being measured.

ACCEPTABLE CRITERIA:

- Required on all chemical and radiological records
- · Must match one of the acceptable codes listed below
- For unknowns, must be within the range of UNK001 through UNK999
- Lab must be certified for the specific Test Name except when one of the following conditions exists:

Method is "99", non-USATHAMA approved or semiquantitative screening Method is "00", which is valid for the following Test Names:

ACIDIT	CORRTY	SALINE
ALK	CROCO	SALINI
ALKB!C	DO	SSOL
ALKCAR	DOC	TASTE
ALKHYD	EPTOX	TDS
ALKPHE	FIBGLS	TEMP
ALPHAG	FLASH	TOC
AMOS	FSTREP	TOTASH
ANPHO	HARD	TOX
ASBEST	IGNIT	TPHAVG
BÉTAG	MINWOL	TPHC
BOD	ODOR	TPHDSL
CHARD	OILGR	TPHGAS
CHRYS	ORGFIB	TREACT
COD	PARTIC	CLIOST
COLI	PH	TSS
COLOR	REACTY	TURBID
COND	RESIST	

8.24 Test Name (Analyte)

NOTE: For unknown compounds, use the code "UNKXXX" where "XXX" represents the number assigned by the field lab to the unknowns from 001 thru 999. The numbers are full field, so "unknown one" would be expressed as "UNK001" with the zeros included. The description of what "UNK001" represents will be defined in the contractor's reports and other documentation and be consistent within the same installation. Therefore "UNK001" can only represent one unique unknown for each installation.

ACCEPTABLE ENTRIES:

Chemical and Radiological Data:

(Sorted alphabetically by Test-Name code)

01NHCL	0.1N Hydrochloric acid
10CUDM	10-Cyclopentylundecanoic acid, methyl ester
10MEOH	10% Methanol
10MUDM	10-Methylundecanoic acid, methyl ester
100EME	10-Octadecenoic acid, methyl ester
111TCE	1,1,1-Trichloroethane
112TCE	1,1,2-Trichloroethane
113MCH	1,1,3-Trimethylcyclohexane
11C1PE	1,1-Dichloro-1-propene
11C1PN	1,1-Dichloropropane
11DCE	1,1-Dichloroethylene / 1,1-Dichloroethene
11DCLE	1,1-Dichloroethane
11DCPE	1,1-Dichloropropene
11DMEB	(1,1-Dimethylethyl) benzene
11DPH	1,1-Diphenylhydrazine
11MCPE	1,1-Dimethylcyclopentane
1234MB	1,2,3,4-Tetramethylbenzene
123CPR	1,2,3-Trichloropropane
123MCH	1,2,3-Trimethylcyclohexane
123PDA	1,2,3-Propanetriol diacetate
123TCB	1,2,3-Trichlorobenzene
123TMB	1,2,3-Trimethylbenzene
124MCH	1,2,4-Trimethylcyclohexane
124TCB	1,2,4-Trichlorobenzene
124TMB	1,2,4-Trimethylbenzene
12DB3C	1,2-Dibromo-3-chloropropane
12DBD4	1,2-Dichlorobenzene-D4
12DBRE	1,2-Dibromoethane / Ethyl dibromide
12DCD4	1,2-Dichloroethane-D4
	•

Test Name (A	nalyte) 8.24	8.24	Test Name (Analyte
ACCEPTABLE	ENTRIES: (Cont.)	ACCEPTABL	E ENTRIES: (Cont.)
12DCE	1,2-Dichloroethenes / 1,2-Dichloroethylenes (cis and trans isomers)	14DMB	I,4-Dimethylbenzene / p-Xylene
12DCLB	1,2-Dichlorobenzene	14DMCH	1,4-Dimethylcyclohexane
12DCLE	1,2-Dichloroethane	14DMNP	1,4-Dihydro-1,4-me thanonap hthalene
12DCLP	1,2-Dichloropropane	14D MXA	1,4Dimethoxyanthracene
12DCPE	1,2-Dichloropropene, total	14DNB	1,4-Dinitrobenzene
12DMB	1,2-Dimethylbenzene / o-Xylene	14HXDE	1,4-Hexadiene
12DNAP	1,2-Dimethylnaphthalene	14MPME	14-Methylpentadecanic acid, methyl ester
12DPB	1,2-Diphenylbenzene	15DNAP	1,5-Dimethyinaphthalene
12DPH	1,2-Diphenylhydrazine	15MHME	15-Methylhexadecanoic acid, methyl ester
12EPCH	Cyclohexene oxide / 1.2-Epoxycyclohexene	167TMN	1,6,7-Trimethylnaphthalene
12EPEB	1,2-Epoxyethylbenzene / Styrene oxide	16DMIN	1,6-Dimethylindan
12MCPE	1,2-Dimethylcyclopentane	16DNAP	1,6-Dimethylnaphthalene
12MTDM	12-Methyltetradecanoic acid, methyl ester	16MHME	16-Methylheptadecanoic acid, methyl ester
12TMCP	1,1,2,2-Tetramethylcyclopropane	17PTCE	17-Pentatriacontene
135MCH	1,3,5-Trimethylcyclohexane	18DNAP	1,8-Dimethylnaphthalene
135TMB	1,3,5-Trimethylbenzene	18O18D	1,2,3,4,4A,5,8,8A-Octahydro-1,4,5,8-dimethanol-naphthalen-2-ol
35TNB	1,3,5-Trinitrobenzene	ZAMEA	1-Acetyl-3-methyl-5-pyrazolone
138DE	1,3-Butadiene	1A4HMB	1-Acetyl-4 (1-hydroxy-1-methylethyl) benzene
13CPDO	1,3-Cyclopentadione	1BY4HB	1-Benzyl-4-hydroxybenzimidazole
13DBD4	1,3-Dichiorobenzene-D4	1C3L	1-Propanol
13DCLB	1,3-Dichlorobenzene	1C4L	1-Property
13DCP	1,3-Dichloropropane	1CDMPZ	
ISDCPE	1,3-Dichloropropene	1CH	1-Carbamoyl-3,5-dimethyl-2-pyrazoline 1-Chloroherane
ISDEB	1,3-Dichloropropene	1CL24H	1-Chloro-2,4-hexadiene
ISDEB ISDFB	1,3-Diethylbenzene	1CLODC	1-Chlorooctadecane
	1,3-Difluorobenzene	1CNAP	
3DMB	1,3-Dimethylbenzene / m-Xylene	1DODCL	1-Chloronaphthalene 1-Dodecanol
I 3DMBB	(1,3-Dimethylburyl) benzene		= = - · · · · · · · · · · · · · · · · ·
3DMCH	1,3-Dimethylcyclohexane	1E24DB 1E1:MB	1-Ethyl-2,4-dimethylbenzene
3DNAP	1,3-Dimethylnaphthalene		1-Ethyl-2-methylbenzene
3DNB	1,3-Dinitrobenzene	1:JIB	1-Ethylhexylbenzene
3DPPR	1,1'-(1,3-Propanediyi) bis[benzene] / 1,3-Diphenyipropane	1EHIND	1-Ethylidene-1H-indene
3HIND	1,3-Dihydro-2H-indol-2-one	1EPB	1-Ethylpropylbenzene
3MCPE	1,3-Dimethylcyciopentane	1FNAP	1-Fluoronaphthalene
3TDAM	13-Tetradecynoic acid, methyl ester	1HPDOL	1-Heptadecanol
4D2EB	1,4-Dimethyl-2-ethylbenzene	1HX3OL	1-Hexen-3-ol
4DACB	1,4-Diacetylbenzene	1HXE	1-Hexene
4DBD4	1,4-Dichlorobenzene-D4	1M2PEC	1-Methyl-2-(2-propenyl) cyclopentane
4DCBU	1,4-Dichlorobutane	1M7MEN	1-Methyl-7-(1-methylethyl) naphthalene
4DCLB	1,4-Dichlorobenzene	1MBAAN	1-Methylbenz (A) anthracene
4DFB	1,4-Diffuorobenzene	1MCPNE	1-Methylcyclopentene
4DIOX	1.4-Dioxane	1MDB	1-Methylderylbenzene

8.24-3

ACCEPTABLE	ENTRIES: (Cont.)	ACCEPTABLE E	ENTRIES: (Cont.)
4 - 4 B CM TW	1-Methylethylcyclohexane	24STCP	2,4,5-Trichlorophenol
1MECHX	1-Methylethylcyclopropane	245TP	2-(2,4,5-Trichlorophenoxy) Propionic Acid
1MECPR	1-Methylindan	246MPY	2,4,6-Trimethylovridine
1MEIND	1-Methylindan 1-Methyl-9H-fluorene	246TBP	2,4,6-Tribromophenol
1MFLRE		246TCA	2,4,6-Trichloroaniline
1MNAP	1-Methylnaphthalene	246TCP	2,4,6-Trichlorophenol
1MNB	1-Methylnonylbenzene	246TMO	2,4,6-Trimethyloctane
1MPRB	(1-Methylpropys) benzene	246TNP	2,4,6-Trinitrophenol / Picric acid
1MPYR	1-Methylpyrene	246TNR	2,4,6-Trinitroresorcinol / Styphnic acid
1MX1PE	1-Methory-1-propene	246TNT	2,4,6-Trinitrotoluene / alpha-Trinitrotoluene
1N2ONE	1-Nitro-2-octanone	247HOI	2.2,4,4.7,7-Hexamethyloctahydro-1H-indene
1NAPA	1-Naphthylamine	247TMO	2.4.7-Trimethyloctane
1NHP	1-Nitroheptane	24D	2,4-Dichlorophenoxyacetic acid / 2,4-D
1NKCL	1.0N Potassium chloride solution	24DB	4-(2,4-Dichlorophenoxy)butyric acid / 2,4-DB
1NPN	1-Nitropropane	24DCB	2,4'-Dichlorobiphenvl
10CTOL	1-Octanol	24DCLP	2,4-Dichlorophenol
1PECHX	1-Propenylcyclohexane	24DMC5	2.4-Dimethylpentane
1PNAP	1-Phenylnaphthalene	24DMD	2,4-Dimethylpentalie
1TBCHA	1-t-Butylcyclohexanecarboxylic acid	24DMHX	2,4-Dimethylhexane
210DMU	2,10-Dimethylundecane	24DMPN	2,4-Dimethylphenol
2255 CB	2,2',5,5'-Tetrachlorobiphenyl	24DNP	2,4-Dinitrophenol
225TCB	2,2',5-Trichlorobiphenyl	24DNT	2,4-Dinitrotoluene
226TMO	2,2,6-Trimethyloctane	24M2PL	2,4-Dimethyl-2-pentanol
22DCP	2,2-Dichloropropane	24NPD3	2,4-Dinitrophenol-D3
22DMC4	2,2-Dimethylbutane	24T13P	2,2,4-Trimethyl-1,3-pentanediol
2345CB	2,3,4,5-Tetrachlorobiphenyl	256TMD	2,5,6-Trimethyldecane
2346CP	2,3,4,6-Tetrachlorophenol	25C14D	2,5-Cyclohexadien-1.4-dione
2356CP	2,3,5,6-Tetrachlorophenol	25CI4D 25DCLP	2,5-Cyclonexagen-1,4-gione 2,5-Dichlorophenol
235TCP	2,3,5-Trichlorophenol	25DMP	2,5-Dimethylphenol
235TMD	2,3,5-Trimethyldecane	25DMPA	2,5-Dinethylphenor 2,5-Dimethylphenanthrene
236TMN	2,3,6-Trimethyinaphthalene	25DTHF	2,5-Dintethylphenanthrene 2,5-Dimethyltetrahydrofuran
237TMO	2,3,7-Trimethyloctane	250THF 25ETHF	2,5-Dinethyltetrahydrofuran
23C1PE	2,3-Dichloro-1-propene	25ETHF 25HPCB	
23D2HL	2,3-Dimethyl-2-hexanol	25HCB 25HXCB	2,2',3,4,5,5',6-Heptachlorobiphenyl
23DCLP	2,3-Dichlorophenol	2SOCCB	2.2',3,4,5,5'-Hexachlorobiphenyl
23DMC4	2,3-Dimethylbutane	2611MD	2,2',3,3',4,4',5,5'-Octachlorobiphenyl
23DMC5	2,3-Dimethylpentane		2,6,11-Trimethyldodecane
23DMP	2,3-Dimethylphenol	26DBMP 26DCLP	2,6-Di-tert-butyl-4-methylphenol / 2,6-Di-tert-butyl-4-cresol
23DNAP	2,3-Dimenthylnaphthalene		2,6-Dichiorophenol
23TMP	2,2,3,3-Tetramethylpentane	26DMO	2,6-Dimethyloctane
- 245PCB	2,2'4,5,5'-Pentachlorobiphenyl	26DMP	2,6-Dimethylphenol
245T	2,4,5-Trichlorophenoxyacetic acid	26DMST	2,6-Dimethylstyrene

8.24-5

8.24

8.24

13 Merch 1992

Test Name (Analyte)

8.24-6

13 March 1992

Test Name (Analyte)

ACCEPTABLE	ENTRIES: (Cont.)	ACCEPTABLE	ACCEPTABLE ENTRIES: (Cont.)		
26DMUD	2,6-Dimethylundecane	2EC6A	2-Ethylhexanoic acid		
26DNA	2,6-Dinitroaniline	2ECYBL	2-Ethyleyeiobutanol		
26DNT	2.6-Dinitrotoluene	2 EP	2-Ethylphenol		
26HPCB	2,2',3,4,4',5,6-Heptachlorobiphenyl	2FBP	2-Fluorobiphenyl		
27DMO	2.7-Dimethyloctane	2FNAP	2-Fluoronaphthaiene		
27DNAP	2,7-Dimethylnaphthalene	2FP	2-Fluorophenol		
29DMUD	2,9-Dimethylundecane	2HBD DM	2-Hydroxybutanedioic acid, dimethyl ester		
2A46DA	2-Amino-4,6-dinitroaniline	2HBNZL	2-Hydroxybenzaidehyde / Salicylaldehyde		
2A46DT	2-Amino-4,6-dinitrotoluene	2HNDOL	2-Hendecanol / 2-Undecanol		
2A4NT	2-Amino-4-nitrotoluene	2НҮВР	2-Hydroxybiphenyl		
2ACAMF	2-Acetylaminofluorene	2M1DDL	2-Methyl-1-dodecanol		
281CP	2-Bromo-1-chloropropane	2M1PNE	2-Methyl-1-pentene		
2B100L	2-Butyl-1-octanol	2M24P	2-Methyl-2,4-pentanediol		
2B4MFU	2-(t-butyl)-4-methylfuran	2M2BDA	2-Methyl-2-butenediamide		
2BEETO	2-(2-N-Butoxyethoxy) ethanol	2M2C3L	2-Methyl-2-propanol / tert-Butanol		
2BEMDE	2,2-Bis(ethylmercapto) diethyl ether	2M2H3B	2-Methyl-2-hydroxy-3-buryne		
2BMMPR	2.2-Bis(methylmercapto) propane	2M3HXE	2-Methyl-3-hezene		
2BNMNM	2-Butyl-N-methylnorleucine, methyl ester	2M3PNO	2-Methyl-3-pentanone		
2BRHXA	2-Bromohexanoic acid	2MBZA	2-Methylbenzyl alcohol		
2BUTHF	2-Butyltetrahydrofuran	2MC3	2-Methylpropane / Isobutane		
2BUXEL	2-Butoryethanol	2MC4	2-Methylbutane / Isopentane		
2C4E	2-Butene	2MC6	2-Methylhexane / Isoheptane		
2C6MPZ	2-Chloro-6-methoxy-10H-phenothiazine	2MC7	2-Methylheptane / Isooctane		
2C7O	2-Heptanone / Methylpentyl ketone	2MCPNE	2-Methylcyclopentanone		
2CBMN	o-Chlorobenzylidine malonomitrile	2MCYPL	2-Methylcyclopentanol		
2CECHO	2-(2-Cyanoethyl) cyclohexanone	2MDEC	2-Methyldecane		
2CH46D	2-Cyclohexyl-4,6-dinitrophenol	2MDOD	2-Methyldodecane		
2CHAEE	2-Cyclopentene-1-hendecanoic acid, ethyl ester	2MENAP	2-(1-Methylethyl) naphthalene		
2CHE1L	2-Cyclohexen-1-ol	2MEODE	2-Methyloctadecanoic acid		
2CHE1O	2-Cyclohexen-1-one	2MEPEN	2-Methylpentane		
2CLBP	2-Chlorobiphenyl	2MMECO	2-Methyl-5-(1-methylethyl)-2-cyclohexen-1-one		
2CLEVE	(2-Chloroethoxy) ethene / 2-Chloroethylvinyl ether	2MNAP	2-Methylnaphthalene		
2CLP	2-Chlorophenol	2MP	2-Methylphenol / 2-Cresol / o-Cresol		
2CLPD4	2-Chlorophenol-D4	2MPA1E	2-Isobutyric acid		
2CLT	2-Chlorotoiuene	2MPAHT	2-Methylpropanoic acid, 3-hydroxy-2,4,4-trimethyl-1,3-propanediyl ester		
2CMCHO	2-(Cyanomethyl) cyclohexanone	2MPAME	2-Methylpropanoic acid, methyl ester		
2CNAP	2-Chloronaphthalene	2MPEAE	2-Methyl-2-propenoic acid, 1,2-ethanediyl ester		
ZOMAP ZDMPEN	2.2-Dimethylpentane	2MPYR	2-Methylpyrene		
ZEIHXL	2,2-puneurypemane 2-Ethyl-1-hexanol	2MTETD	2-Methyltetradecane		
2E2HPD	2-Ethyl-2-hydroxymethyl-1, 3-propanediol	2MTHF	2-Methyltetrahydrofuran		
2E2HPU 2E4MPL	2-Ethyl-4-methyl-1-pentanol	2M1HP 2MTHPM	2-Methylthio-4-hydroxypyrimidine		
ZEAMPL	2-cmyl-1-memyl-1-pentanot	4NI 1 mr (vi	г-метунтио- 4- пулгохуругишшпе		

8.24

13 March 1992

Test Name (Analyte)

8.24-8

8.24-7

Test Name (Analyte)

CCEPTABLE ENTRIES: (Cont.)		ACCEPTABLE	E ENTRIES: (Cont.)
MX1PE	2-Methoxy-1-propene	35DNP	3,5-Dinitrophenol
MXEXL	2-(2-Methoxyethoxy) ethanol / Diethylenegylcol monomethyl ether	35DNT	3,5-Dinitrotoluene
MXMC3	2-Methoxy-2-methylpropane / tert-Butylmethyl ether	35M3HL	3,5-Dimethyl-3-hexanol
MXTMB	2-Methoxy-2,3,3-trimethylbutane	36DF9O	3,6-Dichlorofluoren-9-one
N3C	3-Methyl-2-nitrophenol / 2-Nitro-m-cresol	36DMO	3,6-Dimethyloctane
NANIL	2-Nitroaniline	36TMPA	3,4,5,6-Tetramethylphenanthrene
APA	2-Naphthylamine	37DMNN	3,7-Dimethylnonane
VBZLZ	2-Nitrobenzalazine	38DMUD	3,8-Dimethylundecane
VKCL	2.0N Potassium chloride solution	ЗВРЕТН	3-Butenylpentyl ether
NNDPA	2-Nitro-N-nitrosodiphenylamine	3C1C3E	3-Chloro-1-propene / Allyl chloride
NODCO	2-Nonadecanone	3CHXID	3-Cyclohexyldecane
(P	2-Nitrophenol	3CLP	3-Chlorophenol
NPN	2-Nitropropane	3CLPRN	3-Chloropropionitrile
TV	2-Nitrotoluene	3CLT	3-Chlorotoluene
OXBÉL	2,2-Oxybis[ethanol] (obsolete - use DEGLYC)	3CMCH	3-(Chloromethyl) cyclohexene
ETOH	2-Phenylethanol	3DCHEO	3,5-Dimethyl-2-cyclohexen-1-one
HXEL	2-Phenoxyethanol	3E22MP	3-Ethyl-2.2-dimethylpentane / 3-(t-Butyl)-pentane
ICO	2-Picoline	3E25DH	3-Ethyi-2,5-dimethyl-3-hexene
NAP	2-Phenylnaphthalene	3EE2BO	3,4-Epoxy-3-ethyl-2-butanone
ROL	2-Propanoi	3EEBOD	3-Ethyl-5-(2-ethylbutyl) octadecane
XEXL	2-(2-Phenoxyethoxy) ethanol	3EHXDE	3-Ethyl-1,4-hexadiene
YIOL	2-Propyn-1-ol	3EP	3-Ethylphenol
B46D	2-sec-Butyl-4,5-dinitrophenol	3HDMPL	3-(Hydroxymethyl)-4,4-dimethylpentanal
CLEA	1.1.1.2-Tetrachloroethane	3HDMPT	3-Hydroxy-2,7-dimethyl-4-[3H]-pteridinone
MHPD	2,6,10,14-Tetramethylheptadecane	3HXE2O	3-Hexen-2-one
MPD	2,6,10,14-Tetramethylpentadecane	3HYBA	3-Hydroxybenzaidehyde
DCBD	3.3'-Dichlorobenzidine	3M1PL	3-Methyl-1-pentanol
DMBP	3,3'-Dimethoxybiphenyl / 3,3'-Dimethoxybenzidine	3M2C1O	3-Methoxy-2-cyclopenten-1-one
DMEB	3,3'-Dimethylbiphenyl / 3,3'-Dimethylbenzidine	3M2C5E	3-Methyl-2-pentene
DMHX	3,3-Dimethylhexane	3М2СНО	3-Methyl-2-cyclohexen-1-one
DMPN	3,3-Dimethylpentane	3M2HXL	3-Merhyl-2-hexanol
4TPE	3,4,4-Trimethyl-2-pentene	3M5PNN	3-Methyl-5-propylnonane
ST1H	3,4,5-Trimethyl-1-hexene	ЗМВР	3-Methylbiphenyl
BZFA	3.4-Benzofluoranthene	змС6	3-Methylhexane
CBD6	3,3',4,4'-Tetrachlorobinhenyl-D6	3MCA	3-Methylcholanthrene
DIDE	3,4-Dimethyl-1-decene	3MCHRY	3-Methylchrysene
DCLP	3,4-Dichlorophenol	3MDEC	3-Methyldecane
DMP	3,4-Dimethylphenol	3MEPEN	3-Methylpentane
IDNT	3.4-Dinitrotoluene	3MP	3-Methylphenol / 3-Cresol / m-Cresol
DMP	3,5-Dimethylphenol	3MPANR	3-Methylphenanthrene
SDNA	3.5-Dinitroaniline	3MUND	3-Methylundecane

8.24

Test Name (Analyte)

Test Name (Analyte)

13 March 1992 5.24-9 8.24-10 13 March 1992

AST Astronomy	ACCEPTABLE	ENTRIES: (Cont.)	ACCEPTABL	E ENTRIES: (Cont.)
ANIL 3-Nitronium	змхімх			
	ЗМХТ			
Accordance Acc	3NANIL	-		
MAZPNO	BNT	* ···		
AMEPH	OCTOL			
3-Propyltolenen 4MBP 4-Methylbiphenyl 58531 3-Propyltolenen 4MBS 4-Methylbiphenyl 3-(t-Buyl) phenol 3-(t-Buyl) phenol 4MC7 4-Methylbiphenol 4-Methylb	OPPAE			
SESIL Gbeta) Stigmast-5-en-3-ol AMBSA Amethylberacen sulfonamide	3PC3AC		,	
Supple 3-(L-Buryl) Phenol AMC7	3PT			
MCHP	355 E3 L			
MEHP	3TBUP			
DCBZ	STCHEO			
DBPS	41MEHP			
DMME	44DCBZ			
April	44DFBZ			
April	44DMPE			
DNAC 2-Methyl-4,6-dinitrophenol 4,6-Dinitro-2-cresol 4MXCP 4-Methoxycychhezanol 4-MXCP 4-Methoxychhecane 4-MXCR 4-Methoxychhenol 4-Methoxychhe	44DMUD			
DMHD	468T1N			
ABDMED ABDMED ABDMED ABDMED ABDMED ABDMED	46DN2C			
1	47DMUD		•	
Amino-3,5-dinitrotoluene	48DMHD			
A-Aminobiphenyl	4A2NT			
A-Cetylmorpholine	4A35DT	,	,	
Supple S	4ABP			
### ABromofluorobenzene #### ABromophenytphenyl ether ####################################	4AMORP			
## SRPPE **Bromophenylphenyl ether 50 WMAN 50% Water - 25% Methanol - 25% acetonitrile ### SCI_2C 5-Chloro-o-cresol / 2-Methyl-5-chlorophenol ### SEMHP 5-Ethyl-5-methylheptane ### SEMHP 5-Methyl-5-hydroxylexanoic acid lactone ### SEMHP 5-Methyl-5-hydroxylexanoic acid lactone ### SEMHP 5-Norton-3-methylheptane ### SEMHP 5-Norton-3-methylheptane ### SEMHP 5-Norton-3-methylheptane ### SEMHP 5-Ethyl-5-methylheptane ### SEMHP 5-Ethyl-5-hydroxylexanoic acid lactone ### SEMHP 5-Norton-3-hydroxylexanoic acid lactone ### SEMHP 5-Ethyl-5-hydroxylexanoic acid lactone ### SEMHP 5-Norton-3-hydroxylexanoic acid lactone ### SEMHP 5-Ethyl-5-hydroxylexanoic acid lactone ### SEMHP 5-Norton-3-hydroxylexanoic acid lactone ### SEMHP 5-Ethyl-5-hydroxylexanoic acid lactone ### SEMHP 5	483P2O			
### AChloro-3-methyl-1-butene #### AChloro-3-methyl-1-butene ###################################	4BFB			
ANII. 4-Chloroaniline CCHNI. 4-Chlorocyclohexanol CL2C 2-Methyl-4-chlorophenol / 4-Chloro-2-cresol CL3C 3-Methyl-4-chlorophenol / 4-Chloro-m-cresol / 4-Chloro-3-cresol / 5M2HXO S-Methyl-2-hexanone CL3C 3-Methyl-4-chlorophenol / 4-Chloro-m-cresol / 4-Chloro-3-cresol / 5M2HXI S-Methyl-5-hydroxyhexanoic acid lactone 4-Chloro-3-methylphenol SN2OL S-Norboren-2-ol CLPPE 4-Chlorophenylphenyl ether SNOTOL S-Nitro-o-toluidine CLT 4-Chlorochuene SPTRID S-Propyltridecane DM2PL 4,4-Dimethyl-2-pentanol GCL3C 3-Methyl-6-chlorophenol / 6-Chloro-3-cresol EZMHX 4-Ethyl-2-methylhexane ECMHX 4-Ethyl-2-octene GE6MFV 6-Ethyl-6-methylfulvene ECOCE 4-Ethyl-2-octene GM3HPL 6-Methyl-3-heptanol 6-Methyl	4BRPPE			
CHXL 4-Chlorocyclohexanol 2-Methyl-4-chlorophenol / 4-Chloro-2-cresol 3-Methyl-4-chlorophenol / 4-Chloro-3-cresol / 5MSHAL 4-Chloro-3-methylphenol 4-Chlorophenylphenyl ether 5NOTOL 5-Norboren-2-ol 6-Morboren-2-ol 6-Morb	4C3MBE			
CL2C 2-Methyl-4-chlorophenol / 4-Chloro-2-cresol 5M2HXO 5-Methyl-2-hexanone CL3C 3-Methyl-4-chlorophenol / 4-Chloro-m-cresol / 4-Chloro-3-cresol / 5M5HAL 5-Methyl-5-hydroxyhexanoic acid lactone 4-Chloro-3-methylphenol 5N2OL 5-Morboren-2-ol CLPPE 4-Chlorophenylphenyl ether 5NOTOL 5-Nitro-o-n-luidine CLT 4-Chlorotoluene 5PTRID 5-Propyltridecane DM2PL 4,4-Dimethyl-2-pentanol 6CL3C 3-Methyl-6-chlorophenol / 6-Chloro-3-cresol EZMHX 4-Ethyl-2-methylhexane 6E5MFV 6-Ethyl-6-methylfulvene EZOCE 4-Ethyl-2-octene 6M3HPL 6-Methyl-3-heptanol ETMHP 4-Ethyl-2,2,6,6-tetramethylheptane 6MDOD 6-Methyldodecane FANIL 4-Fluorotoluene 6MTRID 6-Methylpurine FT 4-Fluorotoluene 6MTRID 6-Methyltridecane	4CANIL	·		
3-Methyl-4-chlorophenol / 4-Chloro-m-cresol / 4-Chloro-3-cresol / 5MSHAL 5-Methyl-5-hydroxyhexanoic acid lactone 4-Chloro-3-methylphenol 5N2OL 5-Norboren-2-ol 5N2OL 5-Norboren-2-ol 5N2OL 5-Norboren-2-ol 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 5N2OL 5-Nitro-o-toluidine 6N2OL 5-Nitro-o-toluidi	4CCHXL			
4-Chloro-3-methylphenol CLPPE 4-Chlorophenylphenyl ether LT 4-Chlorocoluene SPTRID 5-Propyltridecane DM2PL 4,4-Dimethyl-2-pentanol EZMHIX 4-Ethyl-2-methylhexane EZOCE 4-Ethyl-2-octene EZOCE 4-Ethyl-2-ctene ETMHP 4-Ethyl-2,2,5,6-tetramethylheptane FANIL 4-Fluorotoluene 6-Methyl-2-methylhexane 6-Methyl-2-methylhexane 6-Methyl-2-methylhexane 6-Methyl-3-heptanol 6-Methyl-3-h	4CL2C			
CLPPE 4-Chlorophenylphenyl ether 5NOTOL 5-Nitro-o-toluidine CLT 4-Chlorotoluene 5PTRID 5-Propyltridecane DM2PL 4,4-Dimethyl-2-pentanol 6CL3C 3-Methyl-6-chlorophenol / 6-Chloro-3-cresol EZMHX 4-Ethyl-2-methylhexane 6E5MFV 6-Ethyl-6-methylfulvene EZOCE 4-Ethyl-2-octene 6M3HPL 6-Methyl-3-heptanol ETMHP 4-Ethyl-2,2,5,6-tetramethylheptane 6MDOD 6-Methyldodecane FANIL 4-Fluoroaniline 6MEPUR 6-Methylpurine FT 4-Fluorotoluene 6MTRID 6-Methyltridecane	4CL3C			
### AChlorotoluene	4		•	
DM2PL 4,4-Dimethyl-2-pentanol 6CL3C 3-Methyl-6-chlorophenol / 6-Chloro-3-cresol EZMHX 4-Ethyl-2-methylhexane 6E5MFV 6-Ethyl-6-methylfulvene EZOCE 4-Ethyl-2-octene 6M3HPL 6-Methyl-3-heptanol ETMHP 4-Ethyl-2,2,6,6-tetramethylheptane 6MDOD 6-Methyldodecane FANIL 4-Fluoroaniline 6MEPUR 6-Methylpurine FT 4-Fluorotolnene 6MTRID 6-Methyltridecane	4CLPPE		*	• · · · • · · · · · · · · · · · · · · ·
### AFT Companies ### AFT Comp	4CLT			
### 4-Ethyl-2-octene 6M3HPL 6-Methyl-3-heptanol ###################################	4DM2PL			
ETMHP 4-Ethyl-2,2,6,6-tetramethylheptane 6MDOD 6-Methyldodecane FANIL 4-Fluoroaniline 6MEPUR 6-Methylpurine FT 4-Fluorotoluene 6MTRID 6-Methyltridecane	4EZMHX			
FANIL 4-Fluoroaniline 6MEPUR 6-Methylpurine FT 4-Fluorotoluene 6MTRID 6-Methyltridecane	4E2OCE			
FT 4-Fluorotoluene 6MTRID 6-Methyltridecane	4ETMHP	4-Ethyl-2,2,6,6-tetramethylheptane		
	4FANIL	4-Fluoroaniline	6MEPUR	
3 March 1992 8.24-11 8.24-12 13 Mar	4FT	4-Fluorotoluene	6MTRID	6-Methyltridecane
3 March 1992 8.24-11 8.24-12 13 Mar			<u></u>	<u> </u>
	13 March 1992	8.24-11	8,24-12	13 March

8.24

Test Name (Analyte)

Test Name (Analyte)

Test Name (A	Analyte)	8.24	8.24	
ACCEPTABL	E ENTRIES: (Cont.)		ACCEPTABL	E ENTRIES: (Cont.)
6TBU2C	2-Methyl-6-(t-butyl) phenol / 6-t-Butyl-2-cresol		ALKPHE	Alkalinity - phenolphthalein
712DMA	7,12-Dimethylbenz[A]anthracene		ALPGF ALPGL	Alpha gross-field
7MTRID	7-Methyltridecane		ALPGLA	Alpha gross-lab Alpha gross-soluble acid fraction
8MNNDL	8-Methyl-1,8-nonanediol		ALPGLW	Alpha gross-soluble water fraction
9FLENO	9-Fluorenone		ALPHAG	Alpha gross-soluble water fraction
9HFLRE 9MBAAN	9H-Fluoren-9-one		ALPHPN	alpha-Pinene
9MXANT	9-Methylbenz[A}anthracene 9-Methoxvanthracene		ALYLOL	Allvi alcohol
AACHXE	Acetic acid, cyclohexyl ester		AM241	Americium 241
AADMP	alpha, alpha-Dimethylphenethylamine		AMCARB	Aminocarb
ABHC	aipha-Benzenehexachloride / alpha-Hexachlorocyclohexane		AMGD	Aminoguanidine
AC	Hydrogen cyanide / Hydrocyanic acid		AMINCR	4-(Dimethylamino)-3-methylp henolmethyl-carban
AC228	Actinium 228		AMOS	Amosite asbestos
ACDHMW	Arids (high molecular weight)		ANAPNE	Acenaphthene
ACET	Acetone		ANAPYL	Acenaphthylene
ACHE	Anticholinesterase		ANELNT	Anion elutent
				· · · · · ·

ACHLOR alpha-Chlordane (obsolete-use ACLDAN)
ACND10 Acenaphthene-D10
ACPHN Acetophenone

ACPHN Acetophenon
ACROLN Acrolein
ACRYLO Acrylonitrile

ADHP Ammonium dihydrogen phosphate
AENSLF alpha-Endosulfan / Endosulfan 1

Acidity

alpha-Chlordane

AG Silver

ACIDIT

ACLDAN

AG110M Silver 110 (metastable)

AL Aluminum
ALACL Alachlor
ALAL Aliphatic alcohols
ALDEHY Aldehydes

ALDI Aldicarb / 2-Methyl-2-(methylthio)propanal O-[(methylamino)carbonyl]

oxime

ALDRN Aldrin

ALHC Aliphatic hydrocarbons

ALHMW Alcohols (high molecular weight)

ALK Alkalinity

ALKBIC Alkalinity - bicarbonate
ALKCAR Alkalinity - carbonate
ALKHYD Alkalinity - hydroxide

ALKN Alkanes

amate / Mexacarbate ANELNT ANIL Aniline ANPHO Anthophyllite asbestos ANTRO Anthracene ANTRON 9-Anthracenecarbonitrile ANTRQU 9,10-Anthracenedione / Athraquinone ARAMT Aramite AS Arsenic ASBEST Asbestos ASEXT Arsenic extractable ASTOT Arsenic total ATNBA 2,4,6-Trinitrobenzaldehyde ATNT alpha-Trinirrotoluene (obsolete - use 246TNT) ATZ Atrazine ΑU Gold AYLETH Allyl ether AZACN Azacylononane AZM Azinphos methyl Вогол B2CEXIM Bis (2-chloroethoxy) methane B2CIPE Bis (2-chloroisopropyl) ether **B2CLEE** Bis (2-chloroethyf) ether **BZEHP** Bis (2-ethylhexyl) phthalate BA Barium BA140 Barium-140 BAANTR Benzo[A]anthracene

6.24-13

Test Name (Analyte)

Test Name (i	Analyte)	8.24	8,24	Test Name (Analyte)	
ACCEPTABL	ACCEPTABLE ENTRIES: (Cont.)		ACCEPTABL	E ENTRIES: (Cont.)	
BAC	Benzal chloride		B[214	Bismuth 214	
BAHXE	Butanoic acid, 1-hexyl ester		BICYHX	Bicyclohexyl	
BAPYR	Benzo(A)pyrene		BIDBI	1,5-Bis (1,1-dimethylethyl)-3,3-dimethylbicyclo[3,1.0]hexane-2-one	
BARBAN	4-Chloro-2-butyl m-chlorocarbanilate / Barban		BINAP	Binaphthyl	
BBFANT	Bento[B]fluoranthene		BJFANT	Benzo[J]fluoranthene	
BBFLRE	Benzo(B)fluorene		BKFANT	Benzo[K]fluoranthene	
BBHC	beta-Benzenehexachloride / beta-Hexachlorocyclohexane		BLDX	Bladex	
BBNFN	Benzo[B]naphtho[2,3-D]furan		ВМР	Butylmethyl phthalate	
BBNTHP	Benzo(B]naphtho[1,2-D]thiophene		BOD	Biological oxygen demand	
BBZP	Butylbenzyl phthalate		2308	Bolstar	
BCHPD	Bicyclo[2,2,1]hepta-2,5-diene		BPBG	Butylphthalyl butylglycolate	
BCLDAN	beta-Chlordane		BR	Bromide	
BCLME	Bis (chloromethyl) ether		BRC6H5	Bromobenzene	
BCMSO	Bis (carboxymethyl) sulfoxide		BRCLM	Bromochloromethane	
BCMSO2	Bis (carboxymethyl) sulfone		BRDCLM	Brotnodichloromethane	
BCPHCE	2,2-Bis(chlorophenyl)chloroethylene (DDT related)		BRMCIL	Bromacil	
ВСУЗНХ	Bicyclo[3,1,0]hexane		BTAZON	3-(1-Methylethyl)-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide /	
BDADME	Butanedioic acid, dimethyl ester			Bentazon	
BDEANT	7H-Benz[DE]anthracen-7-one		BTC	Benzotrichloride	
BE	Beryllium		BTHIOL	Benzenethiol	
BE7	Beryllium 7		BTMSOA	Bis (trimethylsilyl) oxalic acid	
BEETO	1-(2-Butoxyethoxy) ethanol		BTZ	Benzothiazole	
BEGAG	Beta gamma gross		BUC6H5	Butylbenzene	
BENSLF	betz-Endosulfan / Endosulfan II		BUEETH	Butylethyl ether	
BENZA	Benzanthrone		BZ	3-Quinuclidinyl benzilate	
BENZAL	Benzaldehyde		BZAL2M	alpha, alpha-Dimethylbenzenemethanol	
8ENZID	Benzidine		BZALC	Benzyl alcohol	
BENZOA	Benzoic acid		BZAPAN	Benzo [A]phenanthrene	
BEP	2-Butoxyethanol phosphate		BZCPAN	Benzo[C]phenanthrene	
BEPYR	Benzo[E]pyrine		BZFANT	Benziiuoranthene	
BETAG	Beta gross		BZHQUN	Benzo[H]quinoline	
BETGF	Beta gross-field		BZOAME	Benzoic acid, methyl ester / Methyl benzoate	
BETGL	Beta gross-lab		BZONH4	Benzoic acid, ammonium salt	
BETGLA	Beta gross-soluble acid fraction		BZOTHP	Senzo[B]thiophene	
BETGLW	Beta gross-soluble water fraction		BZOTRP	Benzo[B]triphenviene	
BF2ANT	Benzobifluoroanthene		BZOTRZ	1H-Benzotriazole / 1,2,3-Benzotriazole	
BGHIFA	Benzo[G.H.]]fluroanthene		BZPA	Benzenephosphonic acid	
BGHIPY	Benzo[G,H,I]perylene		BZYLBR	Benzyl bromide / alpha-Bromotoiuene	
BHC	BHC - nonspecific		BZYLCL	Benzyl chloride	

13 March 1992

BI212

Βŧ

Bismuth 212

Benzo[G,H,I]fluroanthene Benzo[G,H,I]perylene BHC - nonspecific Bismuth

8.24-16

C10

C11

Decane

Hendecane

13 March 1992

Test Name (A	Test Name (Analyte)		8.24	Test Name (Analyte)
ACCEPTABL	E ENTRIES: (Cont.)		ACCEPTABLI	E ENTRIES: (Cont.)
C12	Dodecane		C36	Hexatriacontane
C12AMM	8-Methyldecanoic acid, methyl ester		C3A2MB	Propanoje acid, 2-methylbutyl ester
C12DCE	cis-1,2-Dichloroethylene / cis-1,2-Dichloroethene		СЗАМЕ	Propanoic acid, methyl ester
C13	Tridecane		C4	Butane
C13DCP	<u>cis-1,3-Dichloropropylene / cis-1,3-Dichloropropene</u>		C4HX1L	cis-4-Hexen-1-ol
C14	Tetradecane		C5A	Pentanoic acid / Valeric acid
C14A	Tetradecanoic acid / Myristic acid		C6D6	Benzene-D6
C14AME	Tetradecanoic acid, methyl ester		C6H6	Benzene
C15	Pentadecane		С6НОН	Cyclohexanol
C15A	Pentadecanoic acid		C7	Heptane
C16	Hexadecane		C7A	Heptanoic acid
C16A	Hexadecanoic acid / Palmitic acid		C7NB1	Heptachloronorbornene
C16ABE	Hexadecanoic acid, butyl ester		C8	Octane
C16ADM	Hexadecanoic acid, dimethyl ester		C8A	CB alkane
C16AEH	Hexadecanoic acid, bis (2-ethylhexyl) ester		CRAME	Octanoic acid, methyl ester
C16AME	Hexadecanoic acid, methyl ester		C9	Nonane
C16SAT	Saturated hydrocabons (C16)		CA	Calcium
C17	Heptadecane		CAAH	Chloroacetaldehyde
C17A	C17 alkane		CACO3S	Calcium carbonate solution
C17AM	Heptadecanoic acid, methyl ester		CALLMW	Hydrocarbons (all molecular weights)
C18	Octadecane		CAMBEN	3-Amino-2,5-dichlorobenzoic acid / Chloramben
C185FP	Bis (pentafluorophenyl) phenyl phosphine		CAME	Carbamic acid, methyl ester
C18A	C18 alkane		CAMP	Camphor
C18ABE	Octadecanoic acid, butyl ester		CAPLCT	Gaprolactam / 6-Aminohexanoic acid lactam
C18AE	Octadecanoic acid, ethyl ester		CAPTAN	Captan
C18AME	Octadecanoic acid, methyl ester		CARB14	Carbon 14
C18AOD	Octadecanoic acid, octadecyl ester		CARBAZ	9H-Carbazole / Carbazole
C18UNS	C18H30O Unknown		CARBOF	2,3-Dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate
C19	Nonadecane		CATOL	Catechol
C19A	Nonadecanoic acid		CBA	o-Chłorobenzaldehyde
C1ADME	Carbonic acid, dimethyl ester		CBCCH	cis-1-Bromo-2-chlorocyclohexane
C20	Eicosane		CBOA	o-Chlorobenzoic acid
C21	Heneicosane		CC3	XXCC3
C22UNS	C22H40O Unknown		CCL2F2	Dichlorodifluoromethane
C25	Pentacosane		CCL3F	Trichlorofluoromethane
C2AEE	Acetic acid, ethyl ester / Ethyl acetate		CCL4	Carbon tetrachloride
C2AVE	Acetic acid, vinyl ester / Vinyl acetate		CCLDAN	cis-Chlordane
C2H3CL	Chloroethene / Vinyi chloride		CCLF	Chlorofluoromethane
C2H5CL	Chloroethane		CCLP2	Chlorodifluoromethane

13 March 1992 8.24-17 13 March 1992 8.24-18

CCLF2 CCLF3

Œ

Chlorodifluoromethane Trifluorochloromethane

Cadmium

Chioroethane

Pentatriacontane

C2H3CL C2H5CL

C30AME C35

Triacontanoic acid, methyl ester

Test Name (Analyte)		8.24	8.24	Test Name (Analyte
ACCEPTABLE	ENTRIES: (Cont.)		ACCEPTABLE	E ENTRIES: (Cont.)
CD2CL2	Methylene chloride-D2		CL3NAP	Trichloronaphthalenes
CDACH	cis-1,2-Diacetoxycyclohexane		CL3P	Trichlorophenols
CDCBU	cis-1,4-Dichloro-2-butene		CL4BP	Tetrachiorobiphenyls
DCL3	Chloroform-D		CL4NAP	Tetrachloronaphthalenes
DNBIS	Chlorodinitrobenzene isomer		CL4XYL	2,4,5,6-Tetrachlorometaxylene / Tetrachlorometaxylene
Œ	Cerium		CL5B	Pentachlorobenzene
CE141	Cerium 141		CL5BP	Pentachlorobiphenyls
CE144	Cerium 144		CLSET	Pentachloroethane
CEC	Cation exchange capacity		CL6BP	Hexachlorobiphenyls
CF2S2	Californium 252		CL6BZ	Hexachlorobenzene
CG	Phosgene / Carbonyl chloride		CL6CP	Hexachlorocyclopentadiene
CH2BR2	Methylene bromide		CL6ET	Hexachloroethane
CH2CL2	Methylene chloride		CL7BP	Heptachlorobiphenyls
CH3BR	Bromomethane		CL7NB	Heptachloronorbornadienes
CH3CL	Chloromethane		CLBZL	Chlorobenzilate
CH3CN	Acetonitrile		CLC2A	Chloroacetic acid
CH3I	lodomethane		CLC6D5	Chlorobenzene-D5
2H4	Methane		CLC6H5	Chlorobenzene / Monochlorobenzene
•	Calculated Hardness		CLCYHX	Chlorocyclohexane
CHARĎ CHBR3	Bromoform			Chlorine demand
	Dichloroiodomethane		CLD	Chlordane
CHCL21	Chloroform		CLDAN	Chlordene Chlordene
CHCL3	Ethanolamine		CLDEN	
CHNO			CLNAP	Chloronaphthalenes
CHNO2	Diethanolamine		CLO3	Chlorate
CHO	1,2-Cyclohexane oxide		CLP	Chlorophenols
CHOLA	Cholestane		CLPRPM	isopropyl m-chlorocarbanilate / Chlorpropham
CHONE	Cyclohexanone		CLTHL	Chlorothalonil
CHRY	Chrysene		CLVRA	2-Chlorovinyl arsonic acid
CHRYS	Chrysotile asbestos		CLXB	Chlorinated benzenes
CK	Cyanogen chloride		CLXNAP	Chlorinated naphthalenes
CL	Chloride		CMME	Chloromethyl methyl ether
CL10BP	Decachlorobiphenyl		CMONOX	Carbon monoxide
1.2	Chlorine		CN.	Chioroacetophenone
L2ACN	Dichloroacetonitrile		CO	Cobalt
I.2BP	Dichlorobiphenyls		CO2	Carbon dioxide
CL2BZ	Dichlorobenzenes		CO3	Carbonate
CL2CH2	Dichloromethane		CO57	Cobalt 57
LZETH	Ethylene chlorohydrin		CO58	Cobalt 58
CL2NAP	Dichloronaphthalenes		CO60	Cobalt 60
CL3BP	Trichlorobiphenyla		COD	Chemical oxygen demand
CL3C3E	Trichlorop ropenes		COLI	Fecal coliform
3 March 1992		8.24-19	B.24-20	13 Herch 199

Test Name (Ar	nalyte)	8.24	8.24	Test Name (Analyte)
ACCEPTABLE	ACCEPTABLE ENTRIES: (Cont.)		ACCEPTABL	E ENTRIES: (Cont.)
COLOR COND	Color Specific conductivity		CYPD CYPNE	Cyclopentadiene Cyclopentene
COND-F	Specific conductivity as tested in the field		CYSD12	Chrysene-D12
CORRTY	Corrositivity (tendency to corrode)		DALA	2,2-Dichloropropionic acid / Dalapon
COUMA	Coumaphos		DBABA	Dibenz[A,B]anthracene
COUMRN	2,3-Dihydrobenzofuran / Coumaran		DBAEPY	Dibenzo(A,E]pyrene
CPCXAL	Cyclopentanecarboxaldehyde		DBAHA	Dibenz[A,H]anthracene
CPMS	p-Chlorophenylmethyl sulfide		DBAHPY	Dibenzo[A,H]pyrene
CPMSO	p-Chlorophenylmethyl sulfoxide		DBAIPY	Dibenzo[A,I]pyrene
CPMSQ2	p-Chlorophenylmethyl sulfone		DBAJA	Dibenz[A,J]acridine
CPO	Cyclopentanone		DBATTS	2,4-Dihydroxybenzoic acid, tris-trimethysilyl
CPYR	Chloropyrifos		DBCP	Dibromochloropropane
CIR	Chromium		DBHC	delta-Benzenehexachloride / delta-Hexachlorocyclohexane
CR3	Chromium, III		DBRCLM	Dibromochloromethane
CR51	Chromium 51		DBRDCM	Dibromodichloromethane
CRBRL	Carbaryi Carbofuran		DBTSPY	4,5-Dimethyl-2,6-bis (trimethylsiloxy) pyrimidine
CRFRN	Carroruran Hexavalent chromium		DBUCLE DBZFUR	Dibutylchiorendate
CRHEX			DBZTHP	Dibenzofuran
CRO4 CROCO	Chromate Crocidolire asbestos		DEZIMP	Dibenzothiophene 2.4-Dichlorophenyl acetic acid / DCAA
CRUCE	Crotonaldehyde / trans-2-Butenal		DCAMBA	Dicamba / 2-Methoxy-3,6-dichlorobenzoic acid
CRYOF	Cryoflex		DCBPH	Dichlorobenzophenone
CS	Cestum		DCBUT	Dichlorobutane
CS134	Cesium 134		DCHP	Dicyclohexyl phthalate
CS137	Cesium 137		DCLB	Dichlorobenzene - nonspecific
CS2	Carbon disulfide		DCLRN	Dichloran / Dichlorobenzaikonium chloride
CSOL	Cresols		DCMBF	5.7-Dichloro-2-methylbenzofuran
CT	Chlorotoluene		DCMPSX	Decamethylcyclopentasiloxane
Cu	Copper		DCPA	2,3,5,6-Tetrachloro-1,4-benzenedicarboxylic acid dimethyl ester / Dacthal
CUEXT	Copper extractable		DCPD	Dicyclopentadiene
CUTOT	Copper total		DCPL	Dichlorophenlactic
CX	Phosgene oxime / Dichloroformoxime		DDVP	Vapona / Dichlorvos / Dichlorophos
CYDODC	Cyclododecane		DEA	Diethylamine
CYHX	Cyclohexane		DECYLB	Decylbenzene
CYHXA	Cyclohexylamine		DEDMP	Diethyldimethyl diphosphonate
CYHXB	Cycloherylbenzene / Phenylcyclohexane		DEETH	Diethyl ether
CYHXE	Cyclohexene		DEGLYC	2,2-Oxybis[ethanol] / Diethylene glycol
CYN	Cyanide		DEMBZA	N,N-Diethyl-3-methylbenzamide
CYNAM	Amenable cyanide		DEMO	Demeton-O
CYNF	Cyanide, free form		DEMP	Diethyl methylphosphonite / TR
CYOCTE	Cyclooctatetraene		DEMS	Demeton-S

8.24-21

8.24-22

13 March 1992

13 March 1992

Test Name (A	nalyte)	8.24	8.24		Test Name (Analyte)
ACCEPTABLE	E ENTRIES: (Cont.)		ACCEPTABL	E ENTRIES: (Cont.)	
DEP DEPD4 DHBZPY DHDMAC DIACAL DIADS DIAEL DIAEP DIAET DIALAT DIAS DIASO2 DIAZ DIBP DICLP DICOF DICOP DIDDP DIESEL	Diethyl phthalate Diethyl phthalate-D4 3.4-Dihydro-2H-1-benzopyran 9,10-Dihydro-9,9-dimethylacridine Diacetone alcohol / 4-Hydroxy-4-methyl-2-pentanone Bis (diisopropylaminoethyl) disulfide Bis (diisopropylamino) ethanol S-Diisopropylaminoethyl methylphosphonothioate Bis (diisopropylamino) ethanethiol Diallate / Diisopropylthiocarbamic acid Bis (diisopropylamino) ethylsulfide Bis (diisopropylamino) ethylsulfide Bis (diisopropylamino) ethylsulfionate Diazinon Diisobutyl phthalate Dichlorophenols Dicofol 2-(2,4-Dichlorophenoxy)propionic acid / Dichloroprop Diisopropyldimethyl diphosphonate Diesel fuel / Fuel oil no. 2		DMETDA DMETH DMIP DMMP DMOATE DMP DMPCHE DMPHEN DMYTHF DMXDMS DNBEE DNBP DNOP DNOP DNOPD4 DNPP DNTISO DO DOAD DOAZ DOC	N,N-Dimethyl-1,2-ethanediamine Dimethyl ether Dimethyl isophthalare Dimethyl isophthalare Dimethyl methylphosphare Dimethyl phthalate 3-(2,2-Dimethylpropoxy) cyclohexene Dimethyl phenol / Dimethylhydroxy benzene 2,2-Dimethyl-5-(1-methylpropyl) tetrahydrofuran Dimethoxydimethylsilane 1,1-Di-n-butylethylene / 1,1-Di-n-butylethene Di-N-butyl phthalate Di-N-octyl phthalate Di-N-octyl phthalate Di-N-pentyl phthalate	

DIOXOL Dioxolane
DIPETH Diisopropyl ether
DIPK Diisopropyl ketone / Dimethyl-2-propanone
DIPUR Diisopropyl urea
DISBCB Diisobutyl carbinol

Diisooctyl phthalate

DISP Phosphorus, dissolved (as P)

DITH Dithiane

DIMP

DINO

DIOP

DL2HPG

DIURON 3-(3,4-Dichlorophenyl)-1,1-dimethylurea / Diuron

Diisopropyl methylphosphonate 2,4-Dinitro-6-sec-butylphenoi / DINOSEB

dl-2-(3-Hydroxyphenyl) glycine

DLDRN Dieldrin
DM Adamsite

DM1ACH 2,2-Dimethyl-1-acetylcyclohexane

DMA Dimethylaniline (obsolete - use NNDMA)

DMCAR Dimethyl dithiocarbonate

DMCP Dimethylcyclopentane - nonspecific
DMCPDE 1,2-Dimethylcyclopentadiene

DMDS Dimethyl disulfide

DMEBZO 4-(1,1-Dimethylethyl)benzoic acid

DOC Dissolved organic carbon DODECB Dodecylbenzene DOETH Dioctyl ether DOPAM 4-(2-Aminoethyl) pyrocatechol / Dopamine DPA Diphenylamine DPETH Diphenyl ether DPETYN 1,1-(1,2-Ethynediyl) bis(benzene) DPH Diphenylhydrazines - nonspecific DPHNY Diphenyl DPNTLL D-(-)-Pantolyl lactone DPSO Diphenyl sulfoxide DPSULF 1.1-Thiobis[benzene] / Diphenyl sulfide DRBM Dibromomethane DSEDIN Diseleno diindole DSTON Disulfoton DTB4C 2,6-Di-tert-butyl-4-cresol (obsolete - use 26DBMP) DTCHBO 1.alpha.(E),4.alpha.-1-(1,4-Dihydroxy-2,6,6trimethyl-2-cyclohexen-1-yl)-2-buten-1-one DURS Dursban DXYA12 DXYA12 DYSCAN GC-MS dye scan EA2192 S-2-Diisopropylaminoethyl methylphosphonic acid

1

13 March 1992

8.24-24

5,24-23

13 March 1992

Test Name (Analyte)			 8.24
		•	

Ethyl-2,2-bis (4-chlorophenyl) glycolate

ACCEPTABLE ENTRIES: (Cont.)

EBCPGL

Dichloroethyl arsine ED **EDBDAS** 3-Phenylpropanol Ethylene glycol, monoethyl ether / 1,1-Oxybis(2-ethoxy) ethane EGMEE EICOSL 1-Eicosanol EMFUR 3-Ethyl-4-methyloctane **EMPA** Ethyl methylphosphonic acid / Ethyl methylphosphonate Ethyl methanesulfonate EMS Endrin ENDRN **ENDRNA** Endrin aldehyde ENDRNK T Endrin ketone Ethyl-N-hexyl ether ENHETH Epichlorohydrin / Chloromethyloxirane EPCLHD Ethyl phenol / Ethylhydroxy benzene EPHEN EPTOX Extraction procedure toxic organics ESFSO4 Endosulfan sulfate 1-Ethyl-3-methylbenzene ET3MBZ 1-Ethyl-4-methylbenzene ET4MBZ ETBD10 Ethylbenzene-D10 Ethylbenzene ETC6H5 ETCYHX **Ethylcyclohexane** Acetic acid / Ethanoic acid ETHACD Bromoethane / Ethyl bromide ETHBR Ether - nonspecific **ETHER** ETHION Ethion **ETHOPR** Ethoprop ETHPO4 Ethyl phosphate / Phosphoric acid, triethyl ester Ethyi methacrylate ETMACR Ethylmethyl benzene ETMEBZ ETOH Ethanol Ethylene oxide / Oxirane / Anprolene ETOX Europium Eυ Fluoride F Decafluorobiphenyl F10BP FABPEE Formic acid, beta-phenylethyl ester FACHXE Formic acid, cyclohexyl ester Famphur FAMPHR Fluoranthene FANT FARN Farnesol Fatty alcohols FATAL Fluoroacetic acid FC2A

8.24

Test Name (Analyte)

ACCEPTABLE ENTRIES: (Cont.)

	, ,
FE	Iron
FE59	iron 59
FENRN	3-Phenyl-1,1-dimethylurea / Fenuron
FENRNT	1,1-Dimethyl-3-phenylurea trichloroacetate
FIBGLS	Fibrous glass / Fiberglass
FLASH	Flash point
FLMTRN	1,1-Dimethyl-3-(A,A,A-trifluoro-m-tolyl)urea
FLRENE	Fluorene
FLUMET	Fluometuron
FNT	Fenthion
FOIL1	Fuel oil no. 1
FOIL6	Fuel oil no. 6
FORM	Formaldehyde / Methyl aldehyde
FREON	Freon / Dichlorofluoromethane
FRN112	Freon 112 / Tetrachlorodifluoroethane
FST	Fensulfothion
FSTREP	Fecal streptococci
FURAL	Furfuryl alcohol / 2-Furanmethanol
FURANS	Dibenzofurans - nonspecific
GA	Tabun / Ethyl-N,N-dimethyl phosphoramidocyanidate
GALM	Gallium
GAMAG	Gamma gross
GAMMAS	Gamma scan / Gamma screen
GAS	Gasoline / Gasoline, regular
GB	Sarin / isopropyl methylphosphonofluoridate
GBHC	gamma-Hexachlorocyclohexane (obsolete - use LIN)
GCHLOR	gamma-Chlordane (obsolete-use GCLDAN)
GCLDAN	gamma-Chlordane
GD	Soman / Pinacolyl methylphosphonofluoridate
GE	Germanium
GLPHST	Glyphosate
GRNDY	Green dye
GUNIT	Guanidine nitrate
н	Levinstein mustard
H2O	Water
H2S	Hydrogen sulfide
H3PO4	Phosphoric acid
HARD	Totai hardness
HCBD	Hexachlorobutadiene / Hexachloro-1,3-butadiene
HCNB	Hexachloronozbornadiene
エバンウン	_, ,

Bicarbonate

8.24-25

HCO3

Test	Name	(Analy	rte)

8.24

Test Name (Analyte)

ACCEPTABLE ENTRIES: (Cont.)

***	property of the court of the last
HD	Distilled mustard / Bis (2-chloroethyl) sulfide
HEDODA	N,N-Bis(2-hydroxyethyi) dodecanamide
HEXAC	Hexanoic acid / Caproic acid
HEXANE	Hexane
HG	Mercury
HGEXT	Mercury extractable
HGTOT	Mercury total
HMTCHE	2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetraeosakezane
нмх	Cyclotetramethylenetetranitramine
HN	Nitrogen mustard
HO	Holmium
HPCDD	Heptachlorodibenzodioxin - nonspecific
HPCDF	Heptachlorodibenzofuran - nonspecific
HPCL	Heptachlor
HPCLE	Heptachlor epoxide
HPLH2O	HPLC-grade water
HPO4	Hydrolyzable phosphate
HTH	Hypochlorite
HWX013	Halowax 1013
HWX099	Halowax 1099
HXAB2E	Hexanedioic acid, bis (2-ethylhexyl) ester
HXADBE	Hexanedioic acid, dibutyl ester / Dibutyl adipate
HXADME	Hexanedioic acid, dimethyl ester / Dimethyl adipate
HXADOE	Hexanedioic acid, dioctyl ester (obsolete - use DOAD)
HXCDD	Hexachlorodibenzodioxin - nonspecific
HXCDF	Hexachlorodibenzofuran - nonspecific
HXCOS	Hexacosane
HXCPEN	Perchloropropene / Hexachloropropene
HXHMAZ	4,5,6,7,8,8A-Hexahydro-8A-methyl-2-[1H]-azuleone
HXMETA	1,3,5,7-Tetranzatricyclo[3,3,13,7]decane / Hexamethylene tetramine
HXMTSX	Hexa methylcyclotris iloxane
HYDARO	Hydroxylated aromatics / Aromatics, hydroxylated
HYDRND	1H-indene, octahydro- / Hydrindane
HYDRZ	Hydrazine
HYNB	7-Hydroxynorbornadiene
I	Iodine (as I)
n31	iodine 131
ICDPYR	indeno[1,2,3-C,D]pyrene
IGNIT	Ignitability
IMPA	Isopropyl methylphosphonic acid / Isopropyl methylphosphonate
IN	Indium
IIN .	питем

INDAN INDENE INDOLE	1-Hydroxy-2,3-methylene indan [M.W.146] indene
INDOLE	Indole / 2,3-Benzopyrrole

IOCDF Octachlorodibenzofuran, C13 isomeric

IPA Isopropylamine

ACCEPTABLE ENTRIES: (Cont.)

ISODR Isodrin

ISOPBZ Isopropylbenzene / Cumene

ISOPHR Isophorone
ISOPT Isopropyirokiene
ISOQUN Isoquinoline

ISOVAL 3-Methylbutanoic acid / Isovaleric acid

ISOSAF Isosafrole

ITCDD 2,3,7,8-Tetrachlorodibenzodioxin, C13 isomeric ITCDF 2,3,7,8-Tetrachlorodibenzofuran, C13 isomeric

K Potassium K40 Potassium 40

KB 2-Diisopropylaminoethanol KEP Kepone / Chlordecone

KEND Ketoendrin
L Lewisite
LA Lanthanum
LA140 Lanthanum 140

LACYBB Lactic acid, cyclic butaneboronate

LAURIC Lauric acid
LI Lithium
LIGNIN Lignin

LIN Lindane / gamma-Benzenehexachloride / gamma-Hexachlorocyclohexane

LINRN 3-(3,4-Dichlorophenyl)-1-methoxy-1-methylurea / Linuron

LIPID Lipids, percentage LO Lewisite oxide

LT Bis (2-diisopropylaminoethyl) methylphosphonite LT-A Bis (2-diisopropylaminoethyl) methylphosphonate

MALO Malononitrile

MBADOE 3-Methylbutanoic acid, 3,7-dimethyl-2,4,6-octatrienyl ester

MBAS Foaming agents / Methylyne blue active substance

MBOH alpha-Methylbenzyl alcohol

MBZ Metribuzin

MBZA alpha-Methylbenzyl acetoacetate
MBZCAC 5-Methylbenzo[C]acridine

MBZCL alpha-Methylbenzyl-2-chloroacetoacetate
MCPA 4-Chloro-o-tolyloxyacetic acid / MCPA

8.24-27

Test Name (Analyte)

ACCEPTABLE ENTRIES: (Cont.)

MCPP	2-(4-Chioro-2-methylphenoxy)propionic acid / MCPP
MDCL	2-Methylundecanal / 2-Methylhendecanal
ME2AEA	Dimethyl arsenic acid
ME2C11	Dimethylundecanes
ME2HG	Dimethyl mercury
ME2HPL	Methyl-2-heptanols
ME2HPO	Methyl-2-heptanones
ME2NAP	Dimethylnaphthalenes
ME3C10	Trimethyldecanes
ME3C11	Trimethylundecanes
ME3C6	Trimethyl hexanes
ME3NAP	Trimethylnaphthalenes
MEAOA	Methyl arsonic acid
MEBPIP	1,1'-Methylenebis[pipendine]
MEC6D8	Toluene-D8
MEC6H5	Toluene
MECC6	Methylcyclohexane
MECYBU	Methylcyclobutane
MECYDC	Methylcyclodecane
MECYPE	Methylcyclopentane
MEHG	Methyl mercury
MEHGCL	Methyi mercury chloride
MEK	Methyl ethyl ketone / 2-Butanone
MELAM	Meiamine / 1,3,5-Triazine-2,4,6-triamine
MEOH	Methanol
MEPHEN	Methylethyl phenol / Methylethylhydroxy benzene
MEPOH	2-Methyipentanol
MERP	Merphos
MES	Methyl sulfide / Thiobismethane
MESTOX	Mesityl oxide / 4-Methyl-3-penten-2-one
METARB	Methioarb
METHCB	3,5-Dimethyl-4-(methylthio) phenyl methylcarbamate
METLAP	Methylnaphthalenes
METMYL	Methomyl
MEVIN	Mevinphos
MEXCLR	Methoxychlor
MG	Magnesium
MHYDRZ	Methylhydrazine
MIBCOH	Methyl isobutyl carbinol (4-methyl-2-pentanol)
MIBK	Methylisobutyl ketone
MINWOL	Mineral wool

ACC	CEPTABLE EN	TRIES: (Cont.)
MIP	К	Methylisopropyl ketone
M≀R	EX	Mirex
MLN	IAT	Molinate
MLT	HN	Malathion
MM:	S	Methyl methanesulfonate
MN		Manganese
MNS	54	Manganese 54
MN	BK	Methyl-N-butyl ketone / 2-Hexanone
MNO	CRPH	Dimethyl-(E)-1-methyl-2-methylcarbamoyivinyl phosphate
MNI	RNTC	3-(p-Chlorophenyl)-1-1-dimethylurea trichloroacetate
MO		Molybdenum
MOS	79	Molybdenum 99
MOI	NRN	3-(p-Chlorophenyl)-1,1-dimethylurea / Monuron
MP		Methylphenols
MPA	١.	Methylphosphonic acid
MPE	DDD	2-(m-Chlorophenyl)-2-(p-chlorophenyl)-1,1- dichloroethane
MPN	C	Methylpropyl ketone / 2-Pentanone
MPR	RTHN	Parathion methyl
MQI	FH2O	Milli-Q-filtered water
	CAN	GC-MS organic scan
MTF	ICRN	Methylacrylonitrile / 2-Methyl-2-propenenitrile / Methacrylonitrile
MTI	IMYL	S-Methyl-N-((methylcarbamoyl)-oxy)-thioactimidate
MTF	UTN	Methyl trithion
MTF	łZL	· Metrazol / Cardiazole
MXC	RBT	4-Dimethylamino-3,5-xylyl N-methylcarbamate
N2K	JEL	Nitrogen by Kjeldahl Method
NA		Sodium
NA2	2	Sodium 22
NAC	l.	Sodium chloride
NAC	IO	Sodium hypochlorite
NAL	.ED	Naled
NAC	HME	50% 1M NaOH - 50% Methanol
NAP)	Naphthaiene
NAP	D8	Naphthalene-D8
NB		Nitrobenzene
NB9	4	Niobium 94 / Columbium
NB9		Niobium 95 / Columbium
	CET	n-Butylacetate
NBE		Nitrobenzene-D5
•	//BSA	N-Butyi-4-methylbenzenesulfonamide
	JETH	1,1'-Oxybis[butane] / n-Butyl ether
	-	

8,24-30

Test	Name	(Analyte)

8.24

Test Name (Analyte)

ACCEPTABLE ENTRIES: (Cont.)

NC Nitrocellulose NC1 Nitrocellulose 12%N NC2 Nitrocellulose 13.4%N NCLN Nortrievcianol NCPPPA N-(4-Chlorophenyl)-3-phenyl-2-propenamide Neodymium ND NDHXA N-Nitrodihexylamine NDIOX Nitrogen dioxide **NDMBSA** N.4-Dimethylbenzenesulfonamide NDNPA Nitrosodi-N-propylamine NE2PEA N-Ethyl-2-propenamide 1-n-Butyl-3-(3.4-dichlorophenyl)-1-methylurea / Neburon NEBRN NECHXA N-Ethylcyclohexylamine Nitroglycerine NG NH3 Ammonia NH3N2 Ammonia nitrogen NH4 Ammonium NH4NIT Ammonium nitrate NH4PIC Ammonium pierate / 2.4.6-Trinitrophenol ammonium salt NHEDCA N-(2-Hydroxyethyl) decanamide Νī Nickel N163 Nickel 63 NIOB Niobium NIT Nitrite, nitrate - nonspecific NITARO **Nitroaromatics** NMANIL. N-Methylaniline NMCANE N-Methylcarbamic acid, I-naphthyl ester N-Methyl-N-nitrosoaniline NMNSOA N-Nitroso-4-hydroxyproline NN4HPL NNADME Nonanedioic acid, dimethyl ester NNDEA N-Nitrosodiethylamine N.N-Dimethylaniline NNDMA NNDMEA N-Nitrosodimethylamine NNDNB N-Nitroso-di-N-butylamine NNDNPA N-Nitrosodi-N-propylamine NNDPA N-Nitrosodiphenylamine NNMEA N-Nitrosomethylethylamine NNMORP N-Nitrosomorpholine N-Nitrosopiperidine NNPIP NNPIPA N-Nitrosopentylisopentylamine NNPYRL N-Nitrosopyrrohidine

ACCEPTABLE ENTRIES: (Cont.)

1

NO2 Nitrite NO3 Nitrate NONPHE Nonyl phenol (any isomer) NPOX Nonpurgeable organic halides NPO Naphthoduinone NQ Nitroguanidine NTMBSA N,N,4-Trimethylbenzenesulfonamide 02 Oxygen **OCADME** Octanedioic acid, dimethyl ester OCDD Octachlorodibenzodioxin - nonspecific OCDF Octachlorodibenzofuran - nonspecific ODAPDM Octadecanoic acid, (2-phenyl-1,3-dioxolan-4-yl) methyl ester ODECA Octadecanoic acid / Stearic acid ODMNSX Octadecamethylcyclononasiloxane ODGR CEMP O-Ethyl methylphosphonate OILGR Oil & grease OMCTSX Octamethylcyclotetrasiloxane OPDDD 2-(o-Chlorophenyl)-2-(p-chlorophenyl)-1.1- dichloroethane OPDDE 2-(o-Chlorophenyl)-2-(p-chlorophenyl)-1.1-dichloroethene OPDDT 2-(o-Chlorophenyl)-2-(p-chlorophenyl)1,1,1-trichloroethane OPO4 Organophosphates ORGFIB Organic fibers OS Osmium OXAL Oxalic Acid Methyl N',N'-dimethyl-N-{(methylcarbamoyl)oxy}-1-amylacetate / Oxamyl 1.4-Oxathiane

OXAMYL. OXAT OXCN Oxacvelononane OZ:JNE Ozone F4 Phosphorus

PA234 Protactinium 234 **PA2HDE** Propanoic acid, 2-hydroxydecyl ester PA2MBE Pentanoic acid, 2-methylbutyl ester PAD4NE Phosphoric acid, diethyl-4-nitrophenyl ester PAH Polynuclear aromatic hydrocarbons

PAODPE Phosphoric acid, octyldiphenyl ester Particulate matter / Particulates measured by filter PARTIC

Propanoic acid, t-butyl ester PATBUE PATPE Phosphoric acid, triphenyl ester

PB Lead PB211 Lead 211

8.24-31

ACCEPTABLE ENTRIES: (C	ont.)
------------------------	-------

PHOR Phorate **PHTHA** 1,2-Benzenedicarboxylic acid / Phthalic acid Phthalates PHTHL PHXAA Phenoxyaceric acid PHYCP 1.2.3.4.5-Pentahvdroxycyclopentane PHYDR Phosphorus, total hydrolyzable (as P) PHYETH 1,1'-(1,3-Phenylene)ethanone PIC3 3-Picoline PIPER Piperidine Methyl methacrylate / Plexiglass PLEXI Propyl methylphosphonic acid **PMPA** Phosphate PO4 Orthophosphate PO4ORT PORG Phosphorus, total organic (as P) POX Purgeable organic halogen PPDDD 2,2-Bis (p-chlorophenyl)-1,1-dichloroethane PPDDE 2,2-Bis (p-chlorophenyl)-1,1-dichloroethene 2,2-8is (p-chlorophenyl)-1,1,1-trichloroethane PPDDT PPTDE 2,2-Bis (p-chlorophenyl)-2-phenyl-1,1- dichloroethene **PQUIN** 1,4-Benzoquinone / p-Benzoquinone Propylbenzene / n-Propylbenzene PRC6H5 PROACD Propionic acid PROMET Prometon / Primatol / 2,4-Bis(isopropylamino)-6-methoxy-1,3,5-triazine PRONA Pronamide PROPHM Isopropyl carbanilate / IPC / Propham Propylene oxide / Methyl oxirane PROPOX PROPER 2-(1-Methyloxy)phenol methylcarbamate / Propoxur Parathion PRTHN Platinum PT Phthalazinone PTHZ PU238 Plutonium 238 isotope PU239 Plutonium 239 isotope PU240 Plutonium 240 isotope PYLD12 Perylene-D12 PYR Pyrene PYRD10 Pyrene-D10 Pyridine PYRDIN OA. 2-Diisopropylaminoethyl methylphosphinate QALT Co-eluting compounds QA and LT (q.v.) 2-Diisopropylaminoethyl ethyl methylphosphonate QВ

QL / Ethyl 2-diisopropyiaminoethyl methylphosphonite

PCB 1248 PC8248 PCB 1254 PCB254 PCB 1260 PCB260 PCB 1262 PCB262 Pentachlorodibenzodioxin - nonspecific PCDD Pentachlorodibenzofuran - nonspecific PCDF Pentachlorohexane PCH Dimethyl-2,3,5,6-trichloropicolinic acid / Picloram PCLORM Pentachioronitrobenzene PCNB Pentachlorophenol PCP 4-(1-Methylethyl) toluene / p-Cymene PCYMEN Dichlorophenyl arsine PD Phosphorus, dissolved hydrolyzable (as P) PDHYD p-Dimethylaminoazobenzene BAMOS Polydimethyl siloxane / Dimethylpoly siloxane PDMSLX Phosphorus, dissolved organic (as P) **PDORG** Polyethyleneglycol ethers PEGE N-Pentamide PENAMD Pentane PENTAN Perthane PERTHN Petroleum distillates PETDIL Pentaerythritol tetranitrate PETN Pentafluorophenol PFP

pH as tested in the field

Phenolics - nonspecific

Phenanthrene-D10

Phenylacetic acid

Phenanthrene

Phenacetin

Phenoi-D5

Phenol-D6

Phenol

Lead 212

Lead 214

PCB 1016

PCB 1221

PCB 1232

PCB 1242

pН

Lead styphnate

Lead, retraethyl / Tetraethyllead

PB212

PB214

PBSTY

PCB016

PCB221

PCB232

PCB242

PBTE

8.24-34

8.24-33

QL.

PH

PH-F

PHAD10

PHANTR

PHENA

PHENAA

PHEND5

PHEND6

PHENLC

PHENOL

Test Name (Analyte)

est Name (A	nalyte)	8.24	8.24	Test Name (Analyte
ACCEPTABLE	E ENTRIES: (Cont.)		ACCEPTABL	.E ENTRIES: (Cont.)
סאועס	Quinoline / Benzo[B]pyridine		SILVEX	Silvex
lA.	Radium		SIMAZ	Simazine / 6-Chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine
RA223	Radium 223		SN	Tin
LA224	Radium 224		SO2	Sulfur Dioxide
tA225	Radium 226		SO3	Sulfite
RA228	Radium 228		SO4	Sulfate
 В	Rubidium		SPIRO	(1',5 trans)-7-Chloro-6-hydroxy-2',4- dimethoxy-6'-methyl spiro
XDX	Cyclonite / Hexahydro-1,3,5-trinitro-1,3,4-triazine			[benzofuran-2-(3H)-1'-(2)-cyclohexene]-3, 4'-dione
Œ	Rhenium		5QUAL	Squalene
REACTY	Reactivity		SR	Strontium
REDDY	Red dye		SR90	Strontium 90
RESACI	Resin acids		SSOL	Settleable solids
RESIST	Resistivity		STB	Super tropical bleach
UESO	Resorcinol / 1,3-Benzenediol		STERO	Steroids
N	Radon		STIGMA	Stigmastenal
N226	Radon 226		STIR	Stirophos / Tetrachlorvinphos
.0	Rhodium		STROBN	Strobane / Terpine polychlorinates
0106	Rhodium 106		STYPH	Styphnate ion
	Ronnel		STYPHA	Styphnic acid (obsolete - use 246TNR)
ION IOTEN			STYR	Styrene Styrene
	Rotenone		SUADME	Sulfuric acid, dimethyl ester
U	Ruthenium		SULFID	Sulfide
U103	Ruthenium 103		SUPONA	
lU106	Ruthenium 106			Supona / 2-Chloro-1-(2,4-dichlorophenyl) vinyldiethyl phosphate
	Sulfur		SWEP	Methyl-N-(3,4-di-chlorophenyl)carbamate / Swep
12CL2	Sulfur monochloride		T12DCE	trans-1,2-Dichloroethene / trans-1,2-Dichloroethylene
AFROL	Safrole / S-(2-Propenyl)-1,3-benzodioxole		T13DCP	trans-1,3-Dichloropropene
ALINE	Saline		T1B2BC	trans-1-Bromo-2-butylcyclopropane
alini	Salinity		T2DEC	trans-2-Decene
В	Antimony		TA	Tantalum
B124	Antimony-124		TANNIN	Tannin
B125	Antimony-125		TASTE	Taste
BBEN	sec-Butylbenzene / 2-Phenylbutane		TBA	Tributylamine
C	Scandium		TBASDE	Thiobutyric acid, S-decyl ester
CN	Thiocyanate		TBBEN	tert-Butylbenzene / 2-Methyl-2-phenylpropane
E	Selenium		TBCARB	2,2-Dimethyl-1-propanol / tert-Butylcarbinol / Neopentyl alcohol
EVIN	Sevin / 1-Naphthalenol methylcarbamate		ТВР	Tributyl phosphate
FOTEP	Suifotepp / Thiodiphosphoric acid, tetraethyl ester		TCB	Tetrachiorobenzenes
I	Silica		TCB1	1,2,4,5-Tetrachiorobenzene
IDRN	1-(2-Methylcyclohexyl)-3-phenylurea / Siduron		TCB2	1,2,3,4-Tetrachlorobenzene
SIL	Silicone		TCB3	1,2,3,5-Tetrachlorobenzene
ILCON	Silicon		TCDD	2,3,7,8-Tetrachloro dibenzo-p-dioxin / Dioxin

13 March 1992

8,24-35

8.24-36

Test Name (Analyte)		8.24	8,24	Test Name (Analyte)
ACCEPTABL	E ENTRIES: (Cont)		ACCEPTABL	E ENTRIES: (Cont.)
TC DF	2,3,7,8-Tetrachlorodibenzofuran		THF	Tetrahydrofuran
TCHDCS	trans-1,2-Cyclohexandiol, cyclic sulfite		THMNAP	1,2,3,4-Tetrahydro-1H-methylnaphthalene
TCLDAN	trans-Chlordane		THNAP	1,2,3,4-Tetrahydronaphthalene / Tetralin
TCLEA	1,1,2,2-Tetrachloroethane		THNCRB	Thinocarb
TCLEE	Tetrachloroethylene / Tetrachloroethene		THP2ML	Tetrahydropyranyl-2-methanol
TCLTFE	1,1,2-Trichloro-1,2,2-trifluoroethane		THPCDD	Total heptachlorodibenzo-p-dioxins
TCN	Trichloronate		THPCDF	Total heptachlorodibenzofurans
TCOS	Tetracosane		TT	Titanium
TCP	Trichloropropane		TINNIN	Tannin and lignin combined
TCSAME	15-Tetracosenoic acid, methyl ester		TL	Thallium
TCST	Trichlorostyrenes		TL208	Thallium 208
TCYN	Total cyanide		TM3PL	2,3,4-Trimethyl-3-pentanol
TDCBU	trans-1,4-Dichloro-2-butene		TMBPET	2-(2-(4-(1,1,3,3-Tetramethyl)butyl)phenoxy)ethanol
TDEMET	Demeton total		TMHPDO	3,3,6-Trimethyl-1,5-heptadien-4-one
TDGCL	Thiodiglycol		TMHXL	3,5,5-Trimethyl-1-hexanol
TDGCLA	Thiodigtycolic acid		TMNT	Total mononitrotoluenes
TDMHSX	Tetradecamethyl hexasiloxane		TMODEO	2,2,7,7-Tetramethyl-4,5-octadien-3-one
TDODTL	tert-Dodecanethiol		TMP	Trimethyl phosphate
TDS	Total dissolved solids		TMPHAN	Tetramethylphenanthrene
TE	Tellurium		TMPO	Trimethylphosphonate
TEGLME	Triethylene glycol, methyl ether		ТМРОЗ	Trimethyl phosphite
TEGLYC	2,2'-[1,2-Ethanediylbis(oxy)] bis[ethanol] / Triethylene giycol		TMPO4	Trimethyl phosphate (obsolete - use TMP)
TEMP	Temperature		TMTCON	3.5.24-Trimethyltetracontane
TEMP-F	Temperature as tested in the field		TMUR	Tetramethylurea
TEPO4	Triethyi phosphate		TNBISO	Trinitrobenzene isomer
	Tetrachlorocyclopentene		TNTISO	Trinitrotoluene isomer
TETPT	Tetrazene Tetrazene		TOC	Total organic carbon
TETR	Nitramine / N-Methyl-N,2,4,6-tetranitroaniline / Tetryl		TOCOD	Total octochlorodibenzo-p-dioxins
TETRYL	Trifluoroacetic acid, 1,5-pentanediyi ester		TOCDE	Total octachlorodibenzofurans
TFAAPE	1,1,2-Trifluoro-I,2-dichloroethane		TOKU	Tokuthion / Prothiophos
TFDCLE	1,1,2-trindoro-1,2-dicindoroethane		TORC	Total organic content, 444C (ASTM)
TFTCLE	• • • • • • • • • • • • • • • • • • • •		TOTASH	Total ash / Ash, total
TGLYME	Tetraglyme		TOTCOL	Total coliform
TH	Thorium		TOTODT	Total value of all DDT, DDE, DDD isomers
TH227	Thorium 227		TOTGAF	Total gravimetric, acid fraction
TH228	Thorium 228		TOTHG2	Total gravimente, acid fraction Total mercury
TH230	Thorium 230		TOTPCB	Total mercury Total PCBs
TH232	Thorium 232			
TH234	Thorium 234		TOX	Total organic halogens
THBNC	Thiobencarb		TPCDD	Total pentachlorodibenzo-p-dioxins
-THCDD	Total hexachlorodibenzo-p-dioxins		TPCDF	Total pentachlorodibenzofurans
THEFT	Total herachlerodihengofurane		TPH	Thionhene

8.24-37

8.24-38

Thiophene

TPH

THCDF

Total hexachlorodibenzo-p-dioxins Total hexachlorodibenzofurans

Test Name (Analyte)		

ACCEPTABLE ENTRIES: (Cont.)

Total petroleum hydrocarbons, aviation gasoline fraction TPHAVG Total petroleum hydrocarbons TPHC Total petroleum hydrocarbons, diesel fraction TPHDSL Total petroleum hydrocarbons, gas fraction TPHGAS Total phosphates TPO4 Triphenylphosphate TPP Trichloroethylene / Trichloroethene TRÇLE Tramolite-actinolite asbestos TREACT Trifluraiin / Treflan TREFLN Trichlorobenzenes TRIBZ Trimethylbenzenes TRIMBZ Trichlorocyclopentene TRIPT Tritium TRITIU Trithion TRITN 2.3.4-Trimethyl-4-tetradecene TRMTDE Diethyl methylphosphonate TRO Terphenyl-D14 TRPD14 Triphenylene TRPHEN Trihalomethanes TRXMET Total sulfur TS p-Toluenesulfonic acid, heptyl ester TSAHPE Total solids TSOLID Total suspended solids TSS Total tetrachlorodibenzo-p-dioxins TTCDD Total tetrachiorodibenzofurans TICDF Tetrachlorophenol TTCP Trichlorotrifluoroethane TTCTFE Total toxic organics TTO Total uranium TU Turbidity TURBID Total volatile solids TVS Toxaphene TXPHEN Xylenes, total combined TXYLEN Uranium U Uranium 234 U234 Uranium 235 U235 U238 Uranium 238 Unsymmetrical dimethyl hydrazine UDMH Unknown compound, XXX = 001 thru 999. UNKXXX Urea / Carbamide / Carbonyl diamide UREA

8.24 Test Name (Analyte)

ACCEPTABLE ENTRIES: (Cont.)

8.24

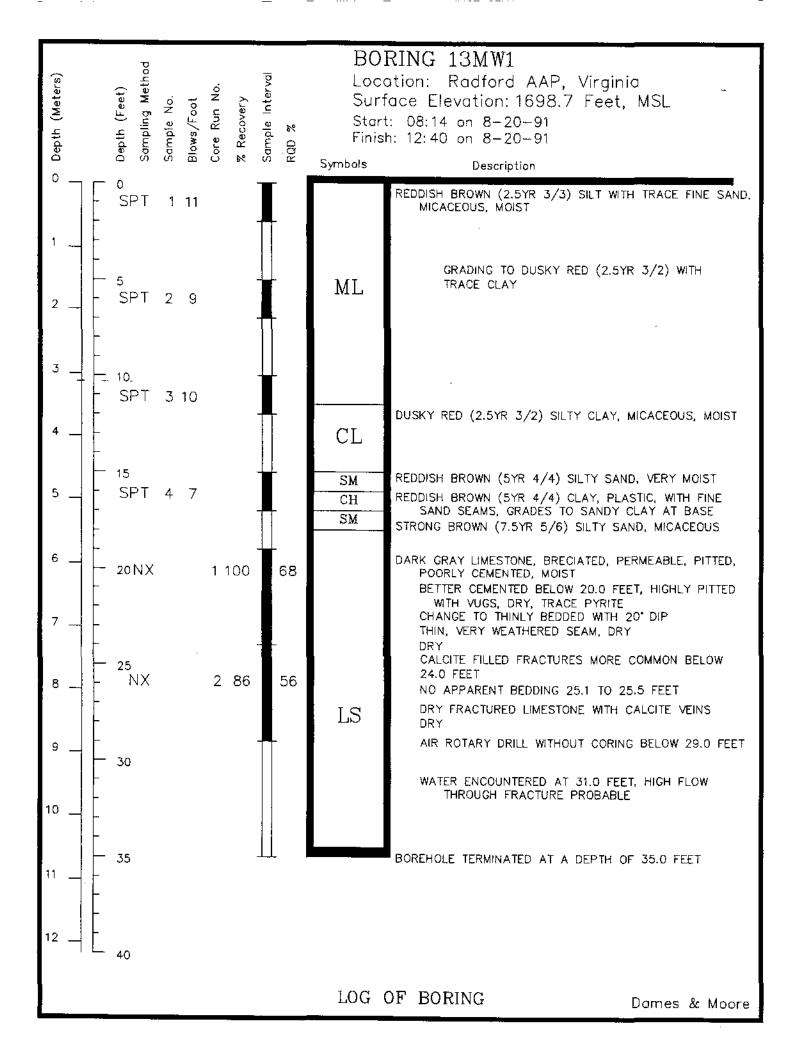
VARHY	Various hydrocarbons with increasing M.W.
VFA	Vinyl formate
VM	O-Ethyl-S-(2-diethylaminoethyl) methylphosphonothiolate
VX	O-Ethyl-S-(2-diisopropylaminoethyl) methylphosphonothiolate
W	Tungsten
WP	White phosphorus
XPLOSV	Explosive spray
XYLEN	Xylenes
Y	Yttrium
YΒ	Ytterbium
YELDY	Yellow dye
YL	Ethyl methylphosphinate
YLQLTR	Co-eluting compounds YL, QL and DEMP (q.v.)
ZINPHS	Zinophos / Thionazin
ZN	Zinc
ZN65	Zinc 65
ZR	Zirconium
ZR95	Zirconium 95

Chemical and Rediological Data:

(Sorted alphabetically by Test Name)

(1-Methylpropyl) benzene	1MPRB
(1',5 trans)-7-Chloro-6-hydroxy-2', 4-dimethoxy-6'-methyl	SPIRO
spiro[benzofuran-2-(3H)-1'-(2)-cyclohexene]-3, 4'-dione	
(1,1-Dimethylethyl) benzene	11DMEB
(1,3-Dimethylbutyl) benzene	13DMBB
(2-Chloroethoxy) ethene	2CLEVE
(3beta)-Stigmast-5-en-3-ol	3S5E3L
0.1N Hydrochloric acid	01 NHCL
1-(2-Butoxyethoxy) ethanol	BEETÓ
1-(2-Methylcyclohexyl)-3-phenylurea	Sidrn
1-Acetyl-3-methyl-5-pyrazolone	1A3MPZ
1-Acetyl-4-(1-hydroxy-1-methylethyl) benzene	1A4HMB
1-Benzyl-4-hydroxybenzimidazole	1 B Y4HB
1-Butanol	1C4L
1-Carbamoyl-3,5-dimethyl-2-pyrazoline	1CDMPZ
1-Chloro-2,4-hexadiene	1CL24H
1-Chlorohexane	1CH
1-Chloronap hthalene	1 CNAP

Vanadium

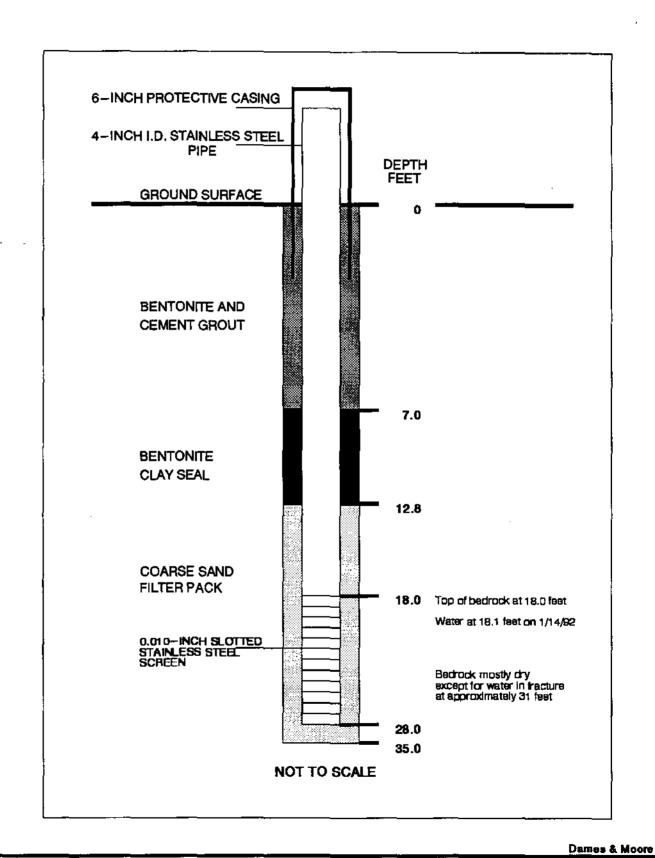

v

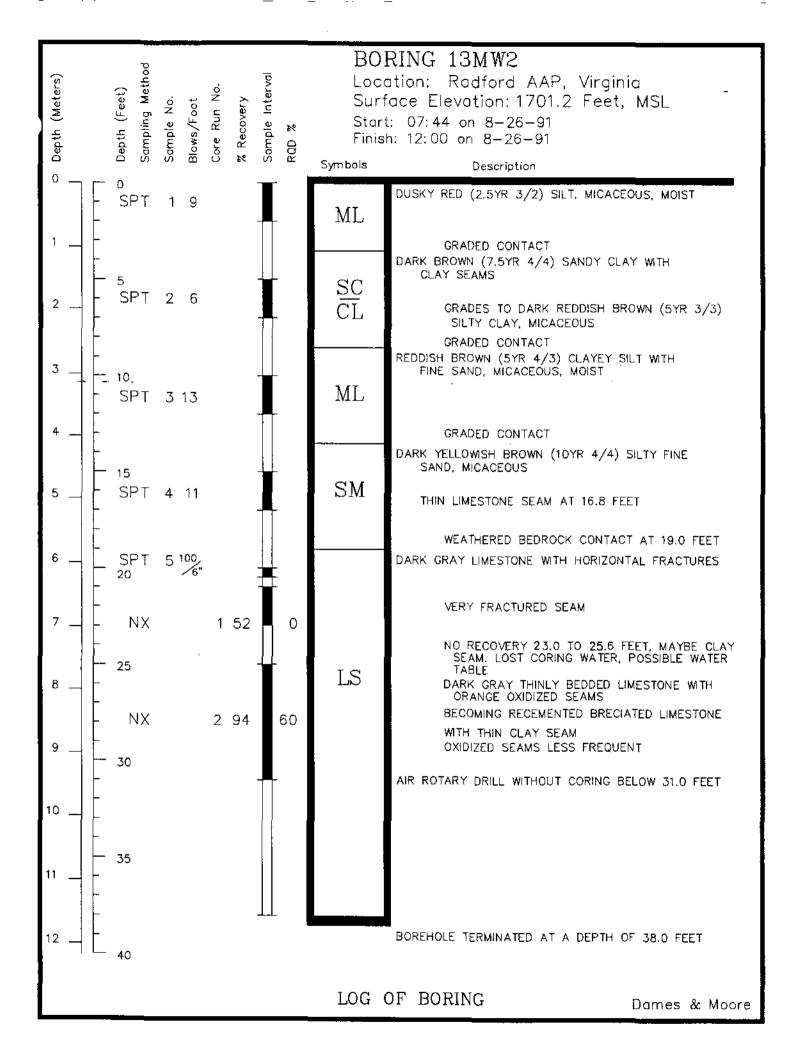
8.24-39

APPENDIX F
Site-Specific Geotechnical and Analytical Data

APPENDIX F.1

Boring Logs, Well Construction Diagrams and Survey Data

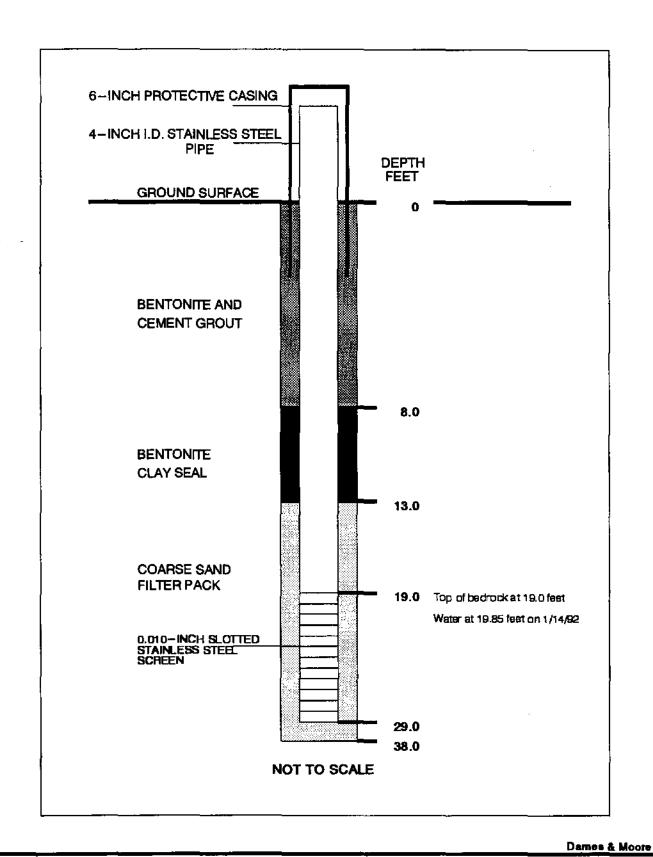


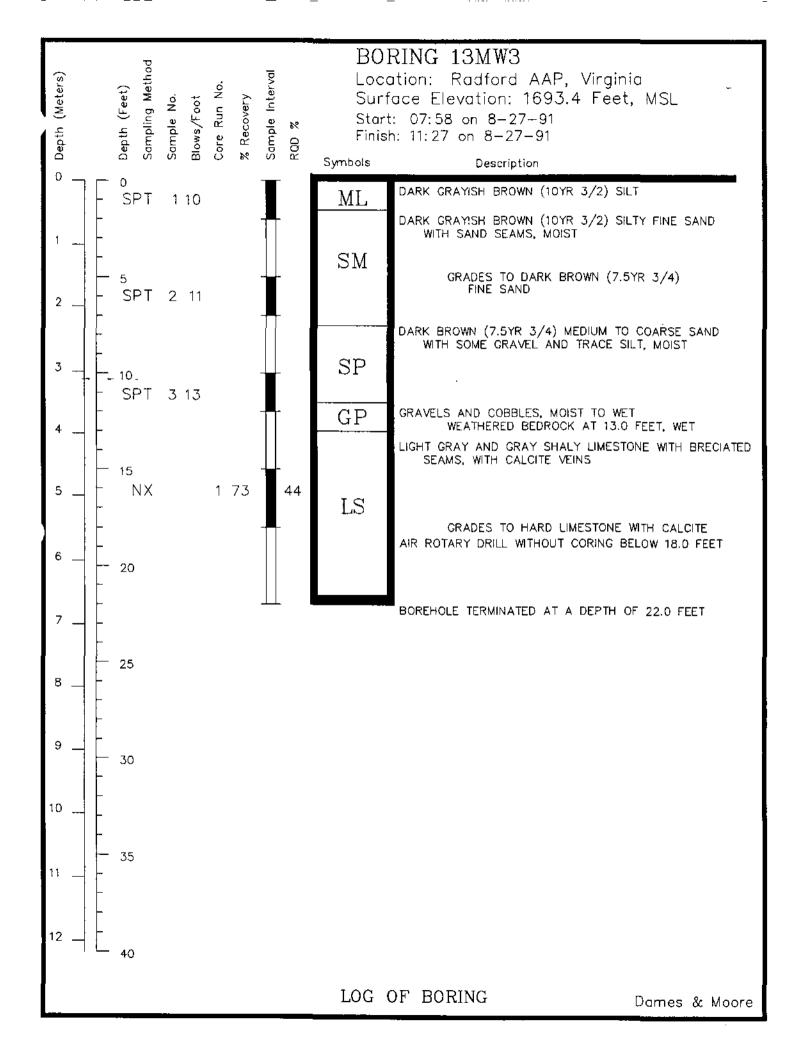

WELL INSTALLATION DIAGRAM FOR RCRA FACILITY INVESTIGATION RADFORD AAP, VIRGINIA

Location: 13MW1

Installation Date: 8/20/91

Surface Elevation: 1698.7 Feet Top of SS Elevation: 1701.44 Feet

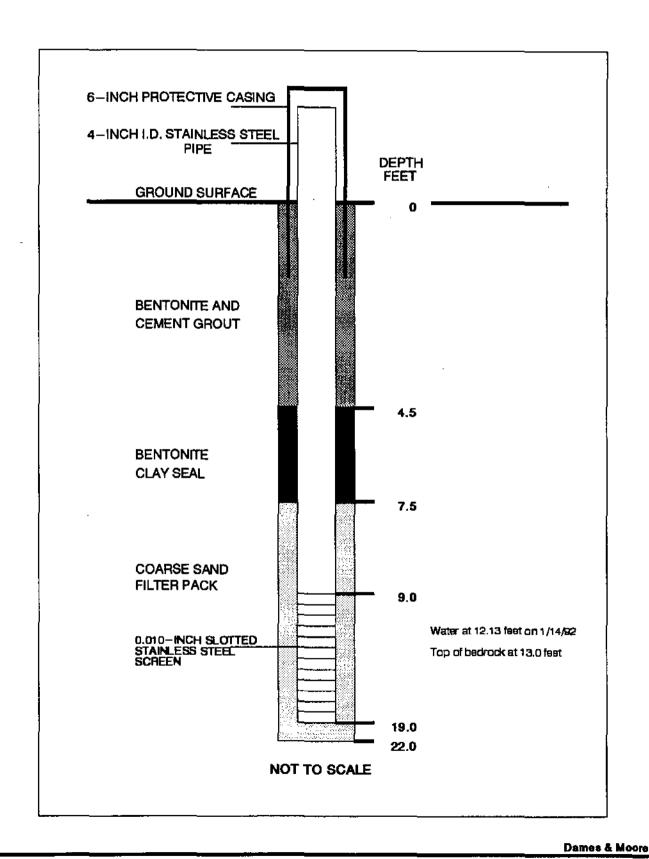


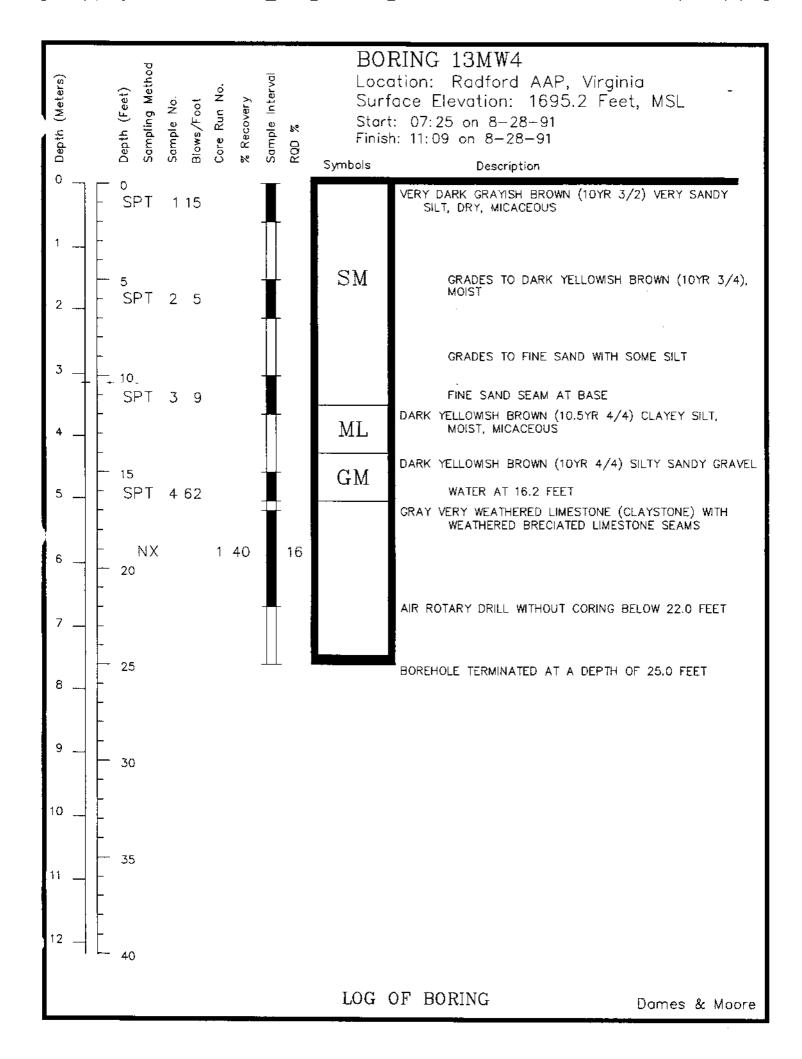

WELL INSTALLATION DIAGRAM FOR RCRA FACILITY INVESTIGATION RADFORD AAP, VIRGINIA

Location: 13MW2

Installation Date: 8/29/91

Surface Elevation: 1701.2 Feet Top of SS Elevation: 1702.62 Feet

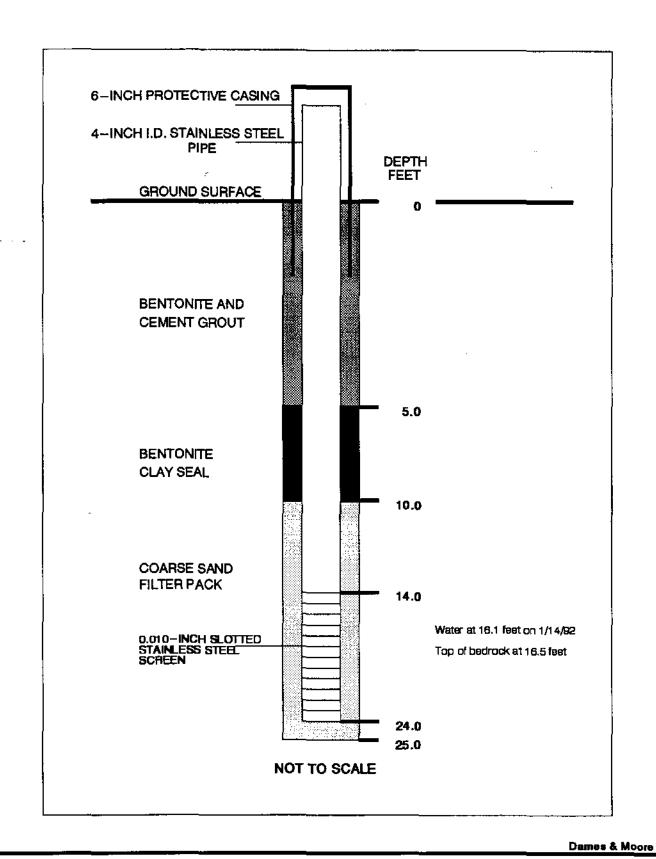


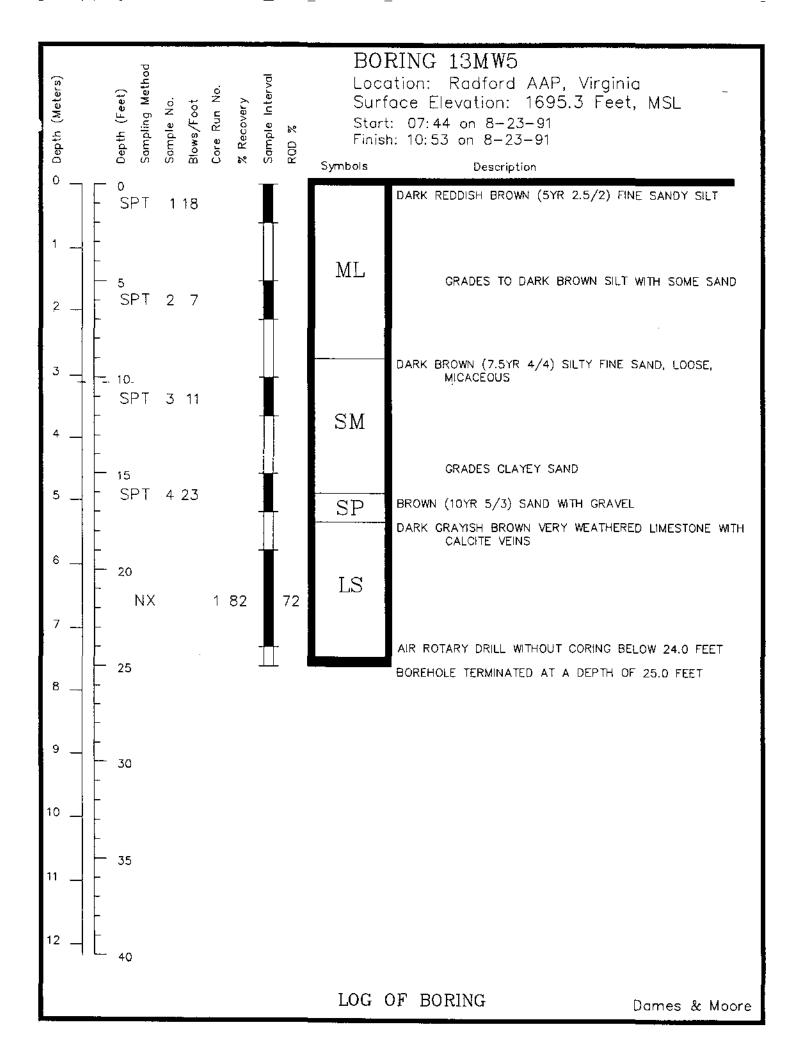


Location: 13MW3

Installation Date: 8/27/91

Surface Elevation: 1693.4 Feet Top of SS Elevation: 1694.47 Feet

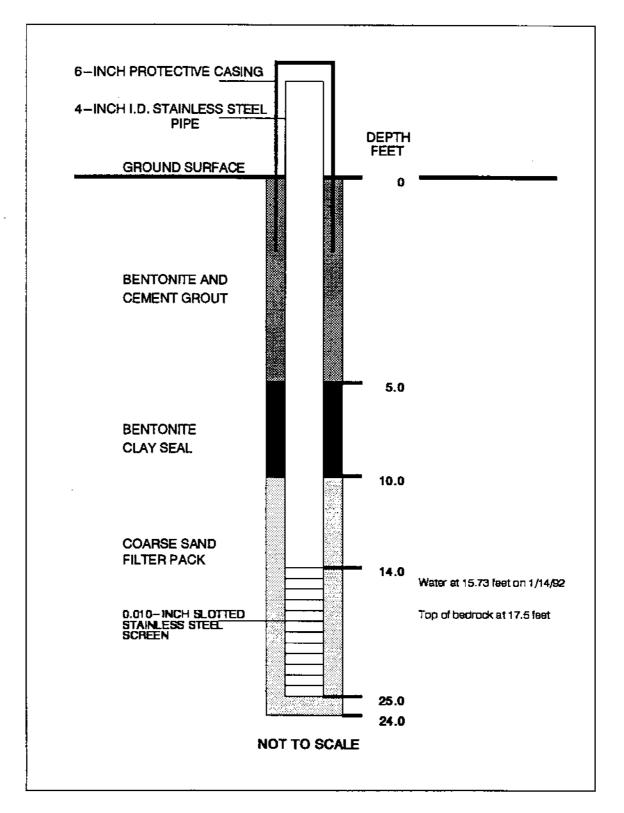




Location: 13MW4

Installation Date: 8/28/91

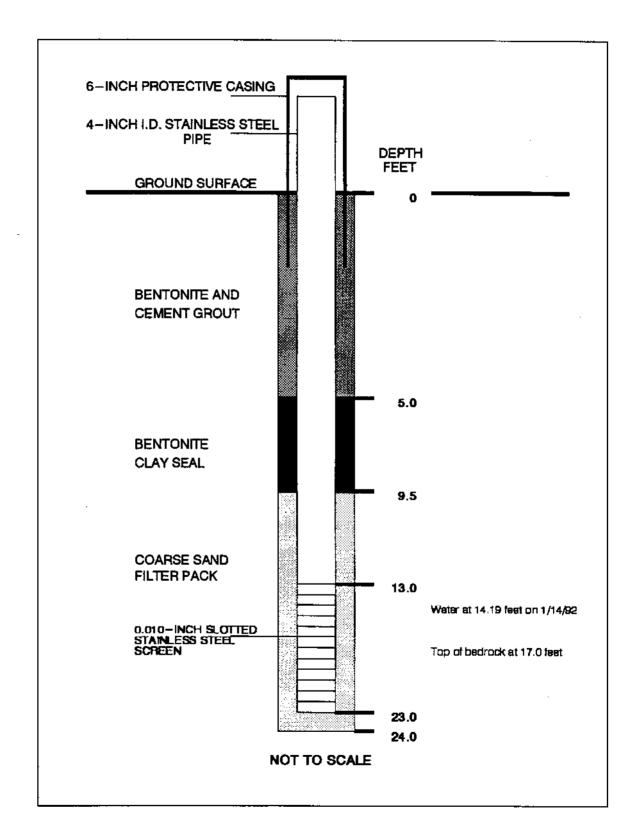
Surface Elevation: 1695,2 Feet Top of SS Elevation: 1696,40 Feet

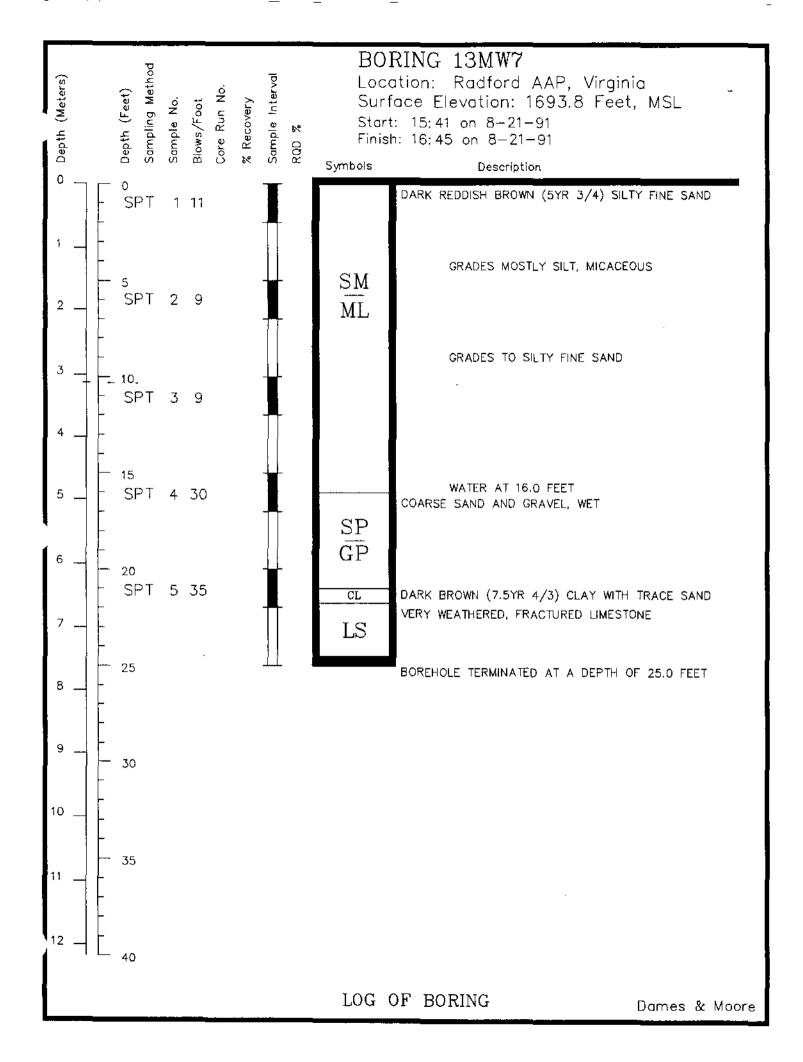


Location: 13MW5

Installation Date: 8/23/91 Surface Elevation: 1695.3 Feet

Top of SS Elevation: 1696.40 Feet

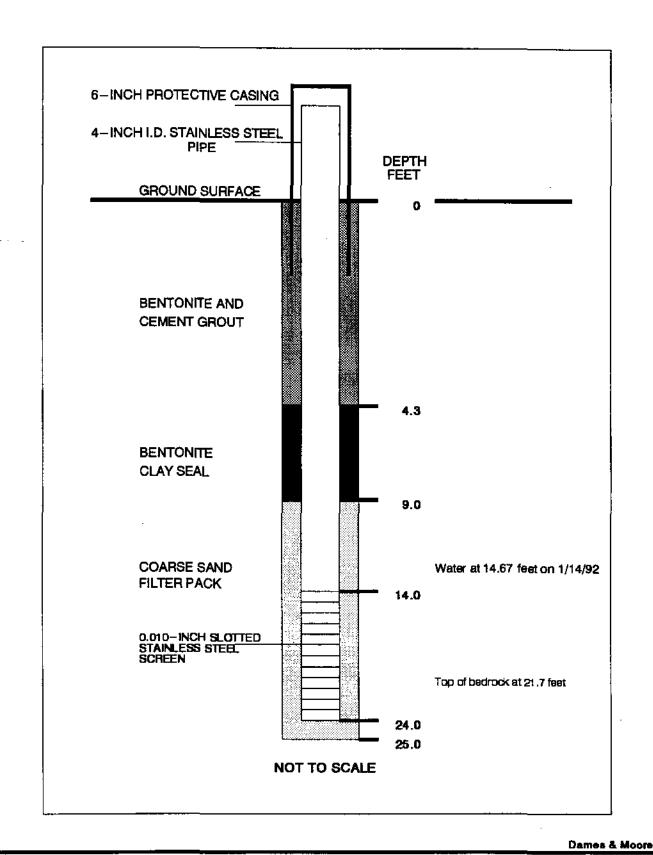


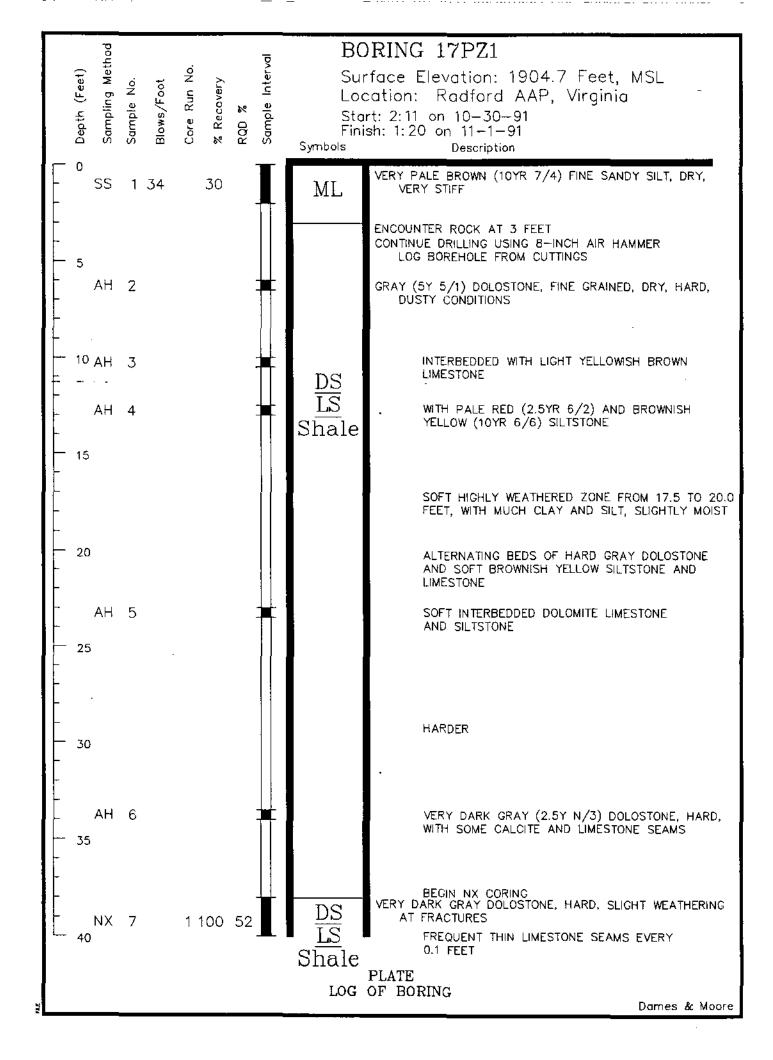


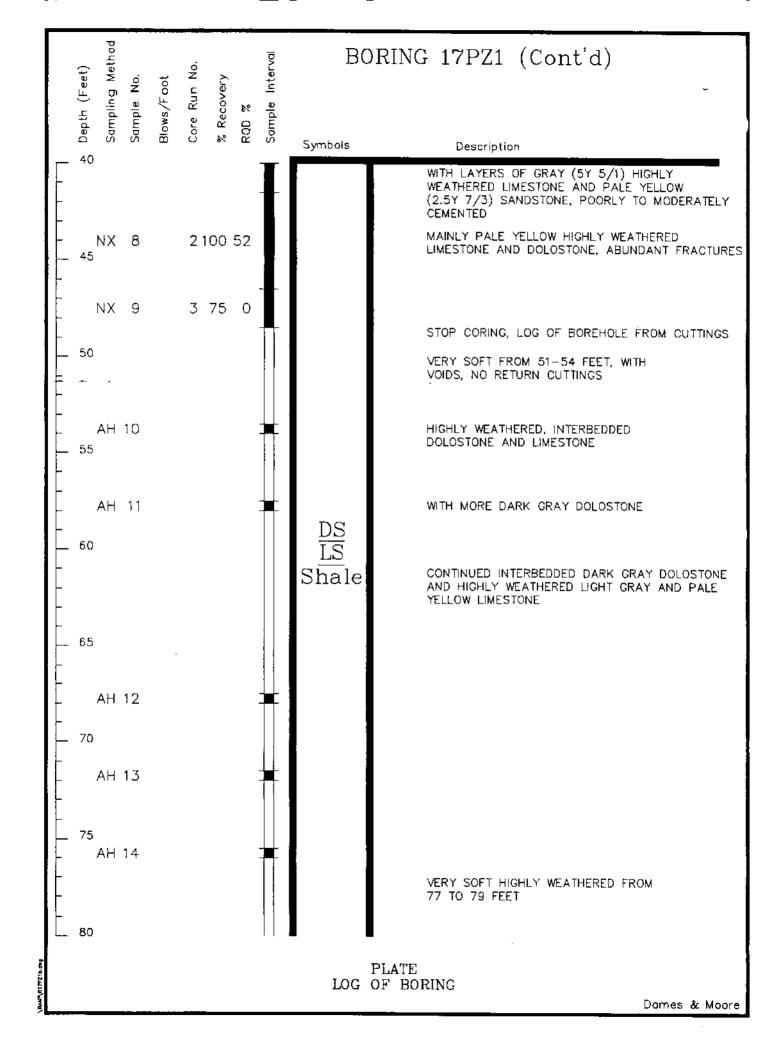
Location: 13MW6

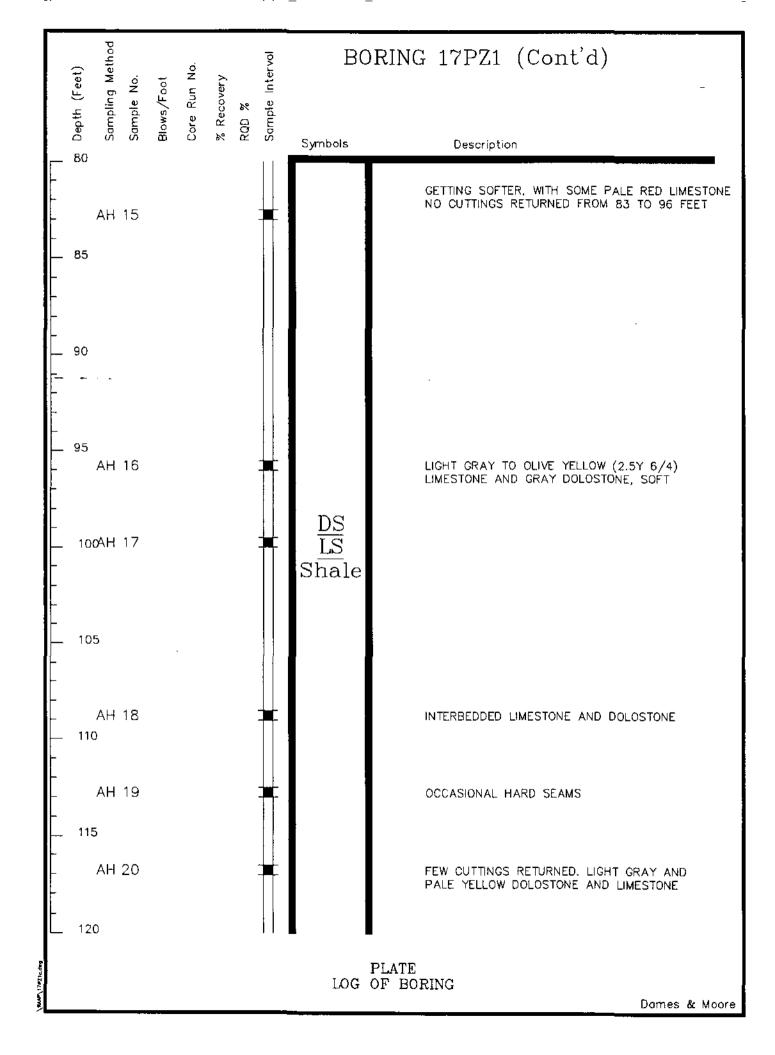
Installation Date: 8/21/91

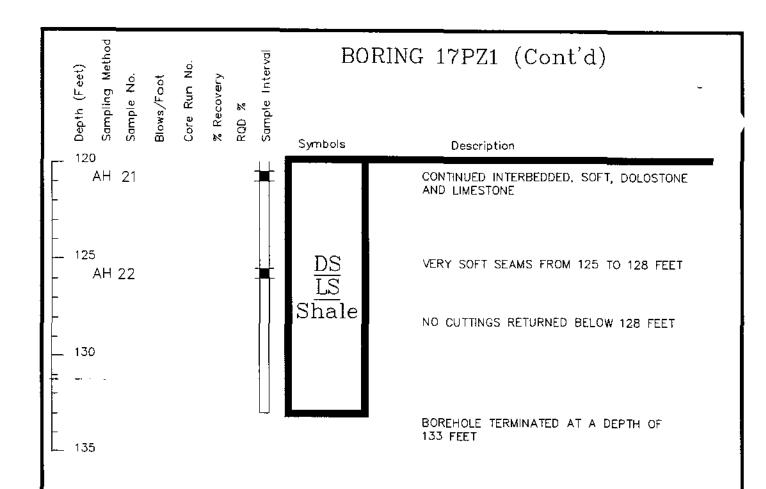
Surface Elevation: 1693.8 Feet Top of SS Elevation: 1696.05 Feet

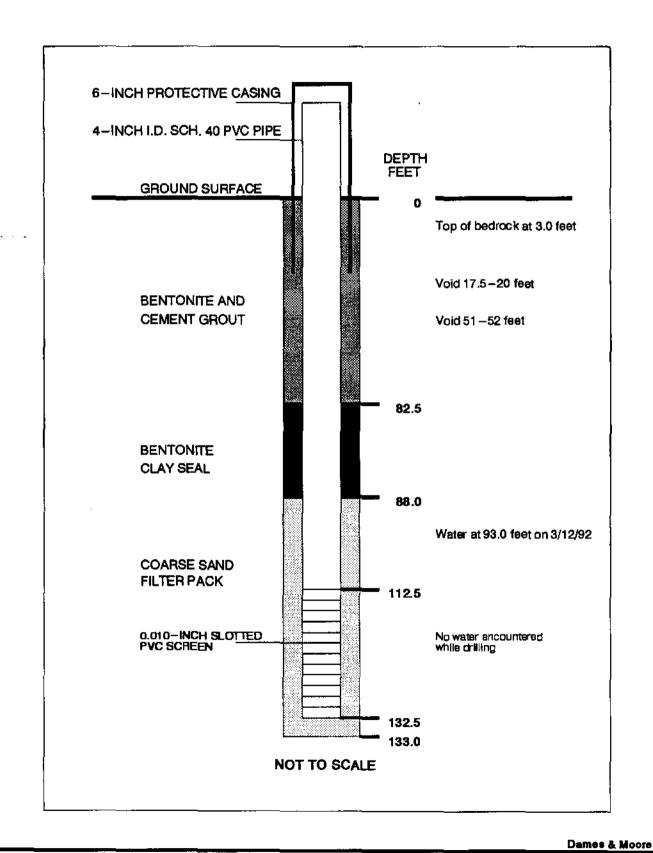


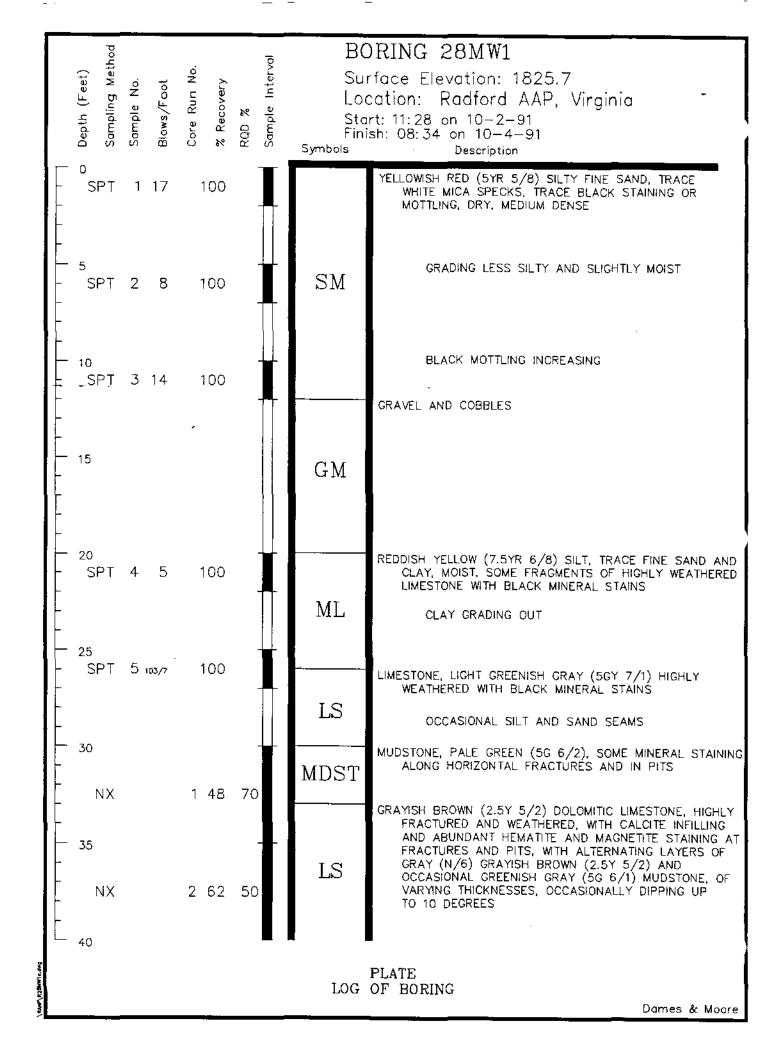


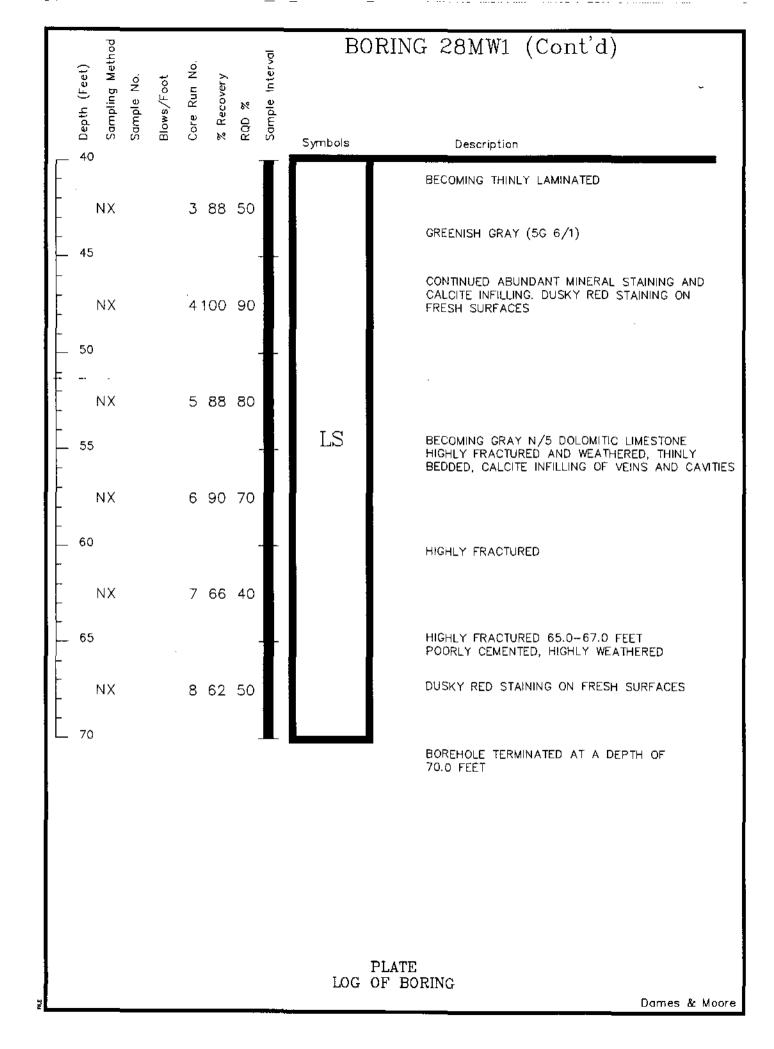

Location: 13MW7


Installation Date: 8/22/92


Surface Elevation: 1693.8 Feet Top of SS Elevation: 1695.21 Feet

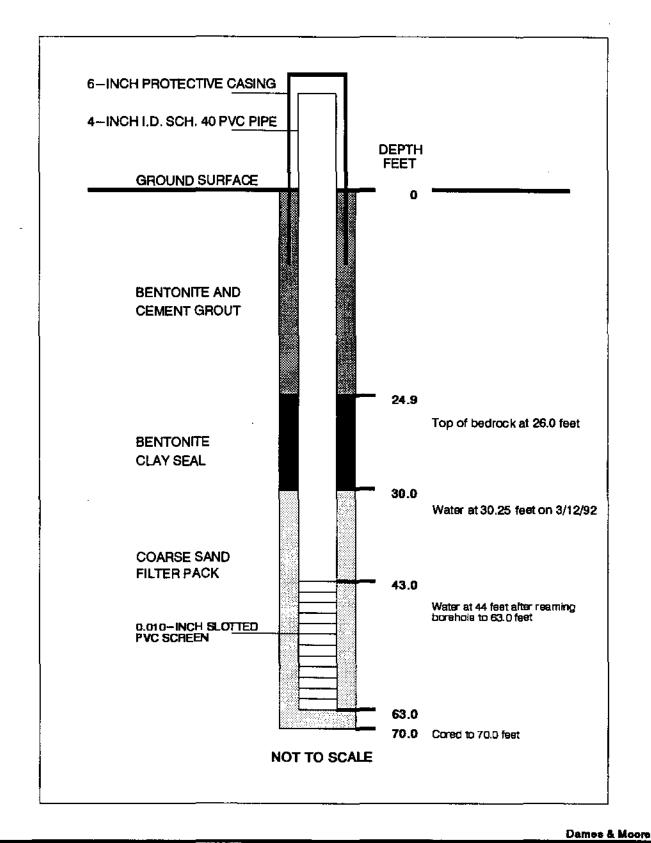


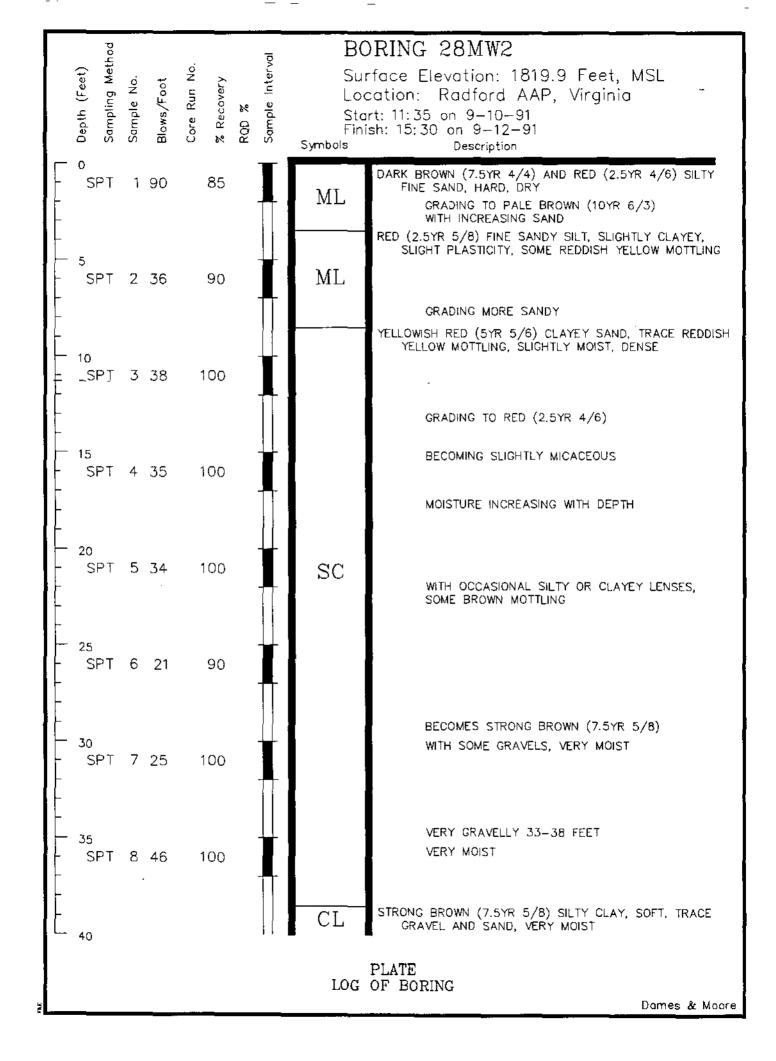


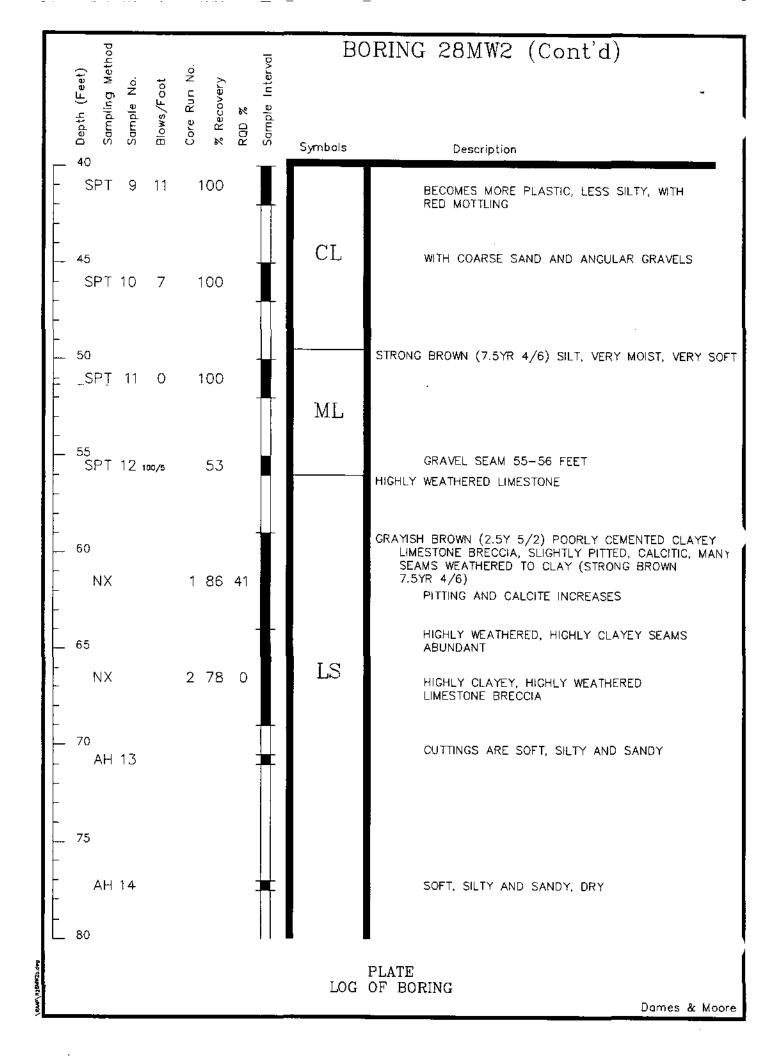


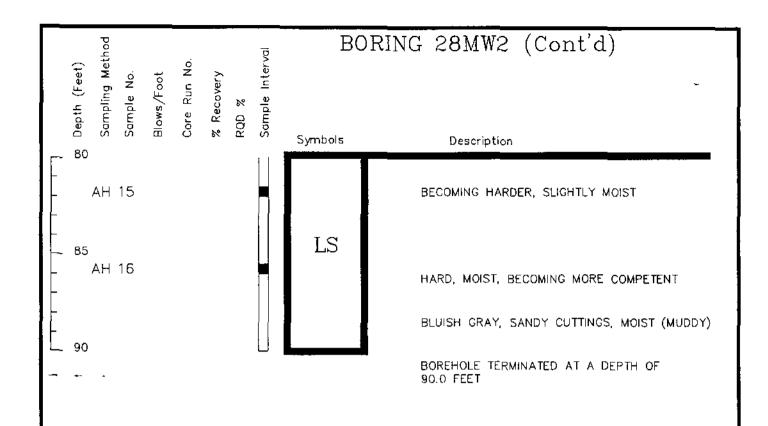
Location: 17PZ1

Installation Date: 11/1/91 -Surface Elevation: 1906.1 Feet Top of PVC Elevation: 1907.02 Feet

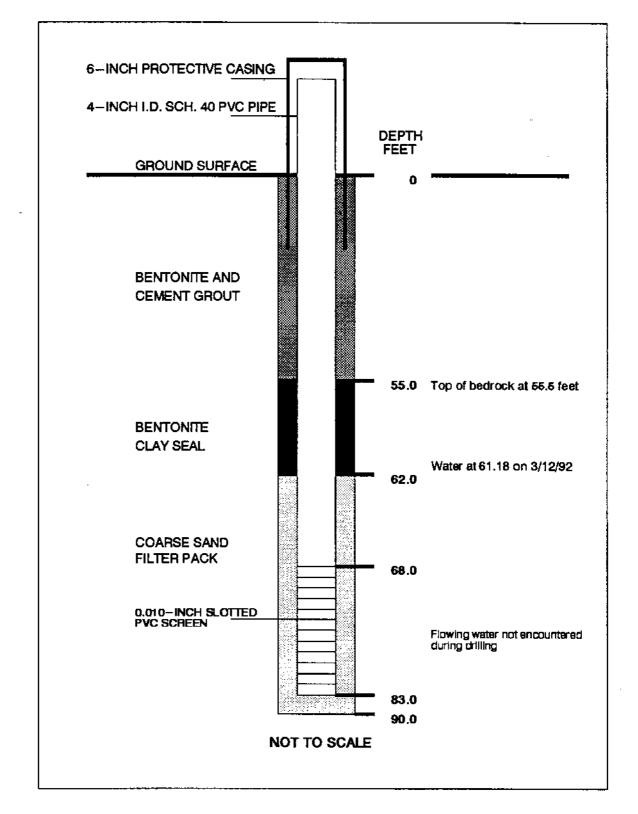







Location: 28MW1 Installation Date; 9/4/91

Surface Elevation: 1825.7 Feet Top of PVC Elevation: 1827.18 Fee.

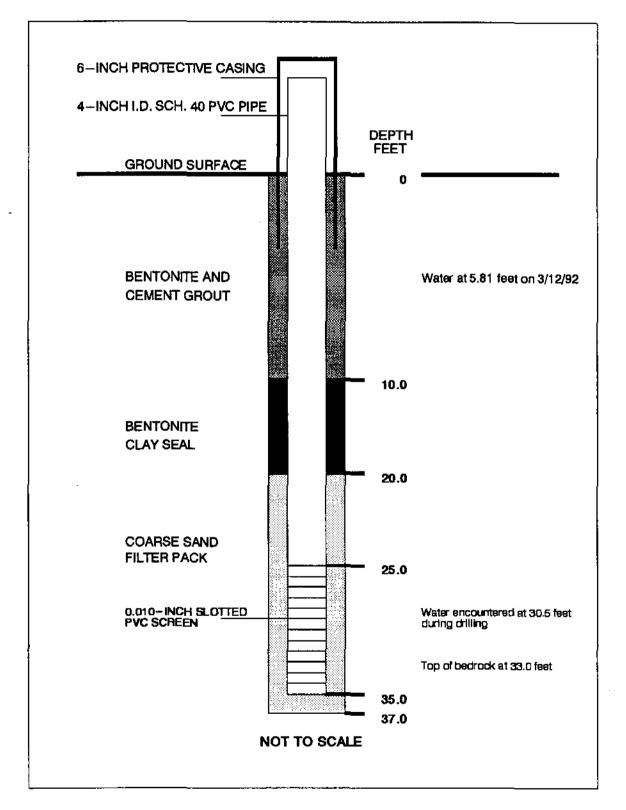


Location: 28MW2

Installation Date: 9/10/91

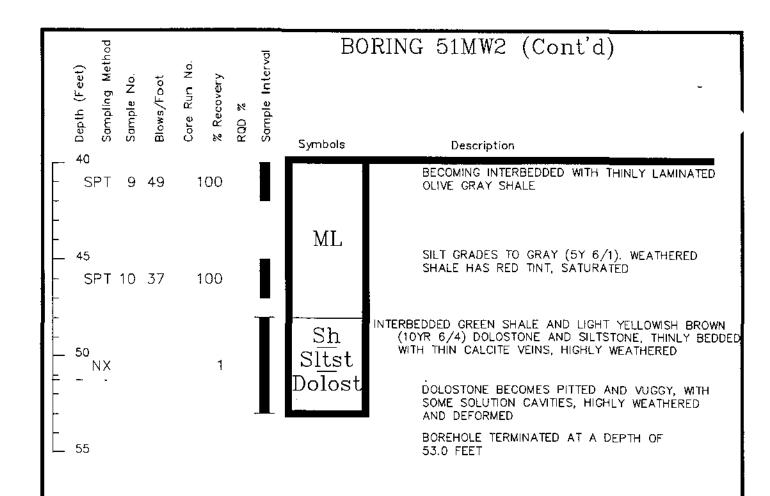
Surface Elevation: 1819.9 Feet

Top of PVC Elevation: 1821.56 Feet

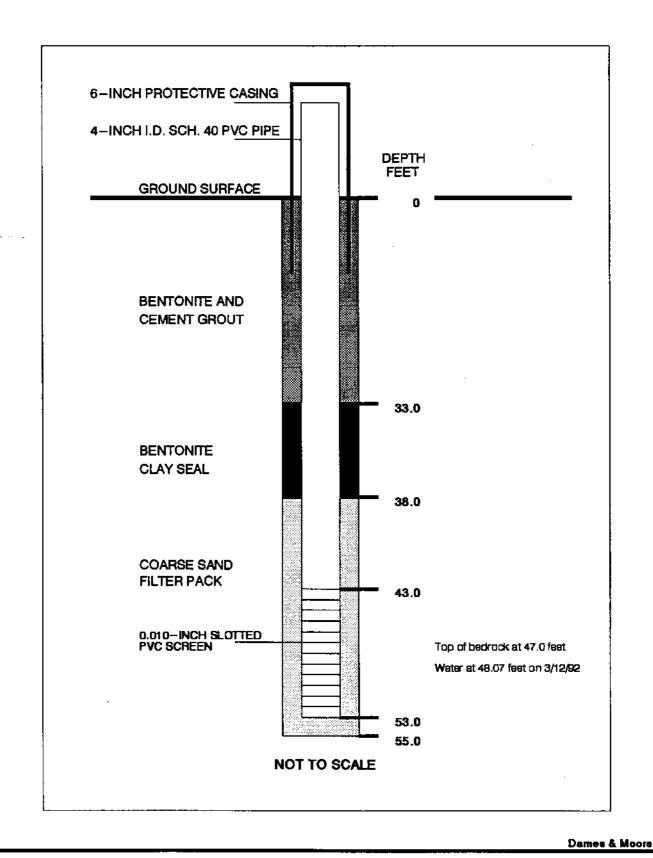


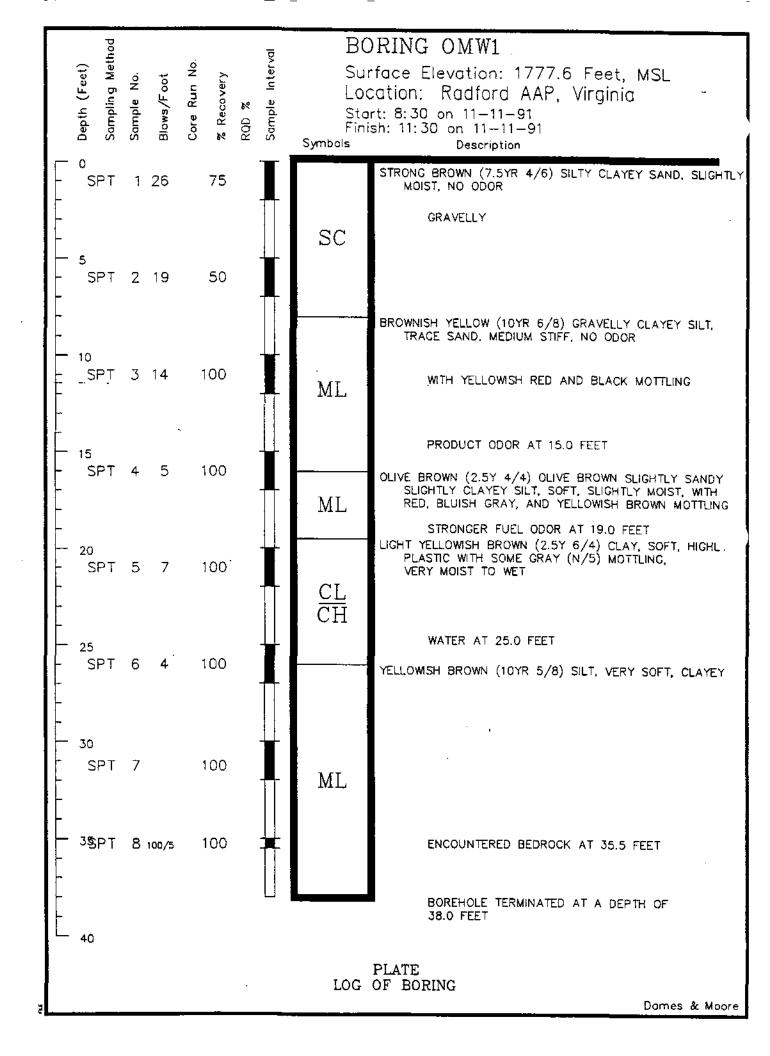
Location: 51MW1

Installation Date: 9/24/91

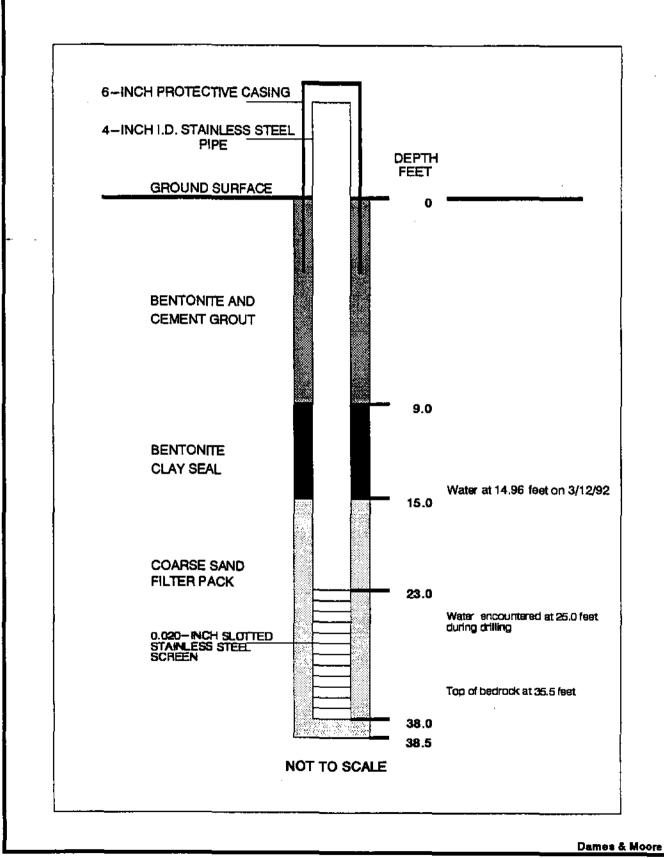

Surface Elevation: 1821.2 Feet

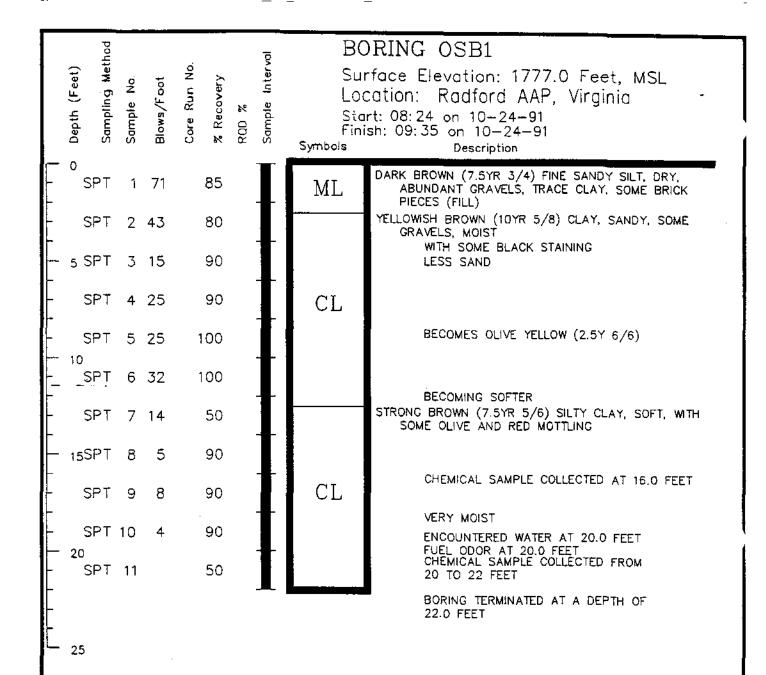
Top of PVC Elevation: 1823.13 Fee.

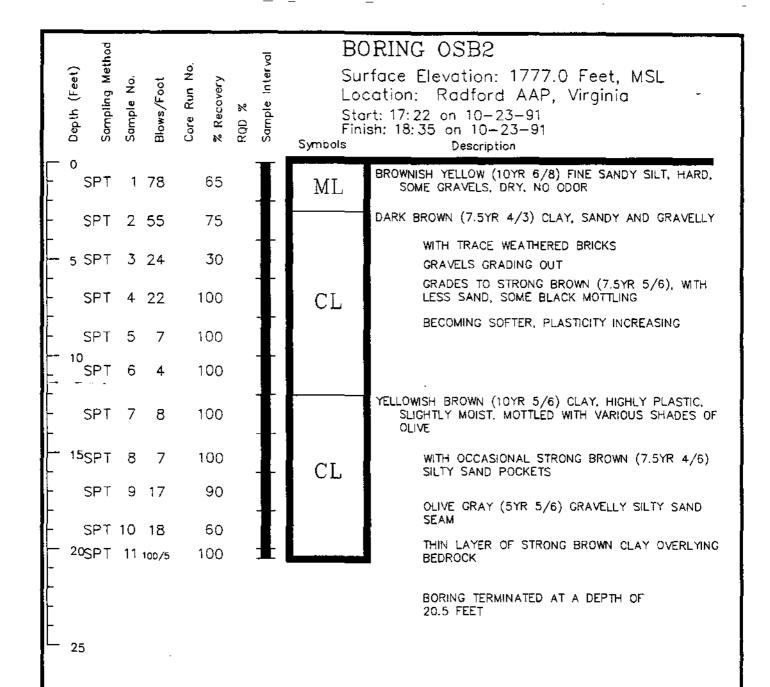

Depth (Feet) Sampling Method Sample No.	Blows/Foot Core Run No. % Recovery RQD % Sample Interval	BORING 51MW2 Surface Elevation: 1833.3 Feet, MSL Location: Radford AAP, Virginia Start: 07:45 on 9-7-91 Finish: 12:30 on 9-9-91 Symbols Description	
- SPT 12	25 60	ML	DARK BROWN (7.5YR 4/2) FINE SAND AND SILT, DRY, MEDIUM DENSE
- - - 5	of I	CL	GRADED CONTACT RED CLAY (2.5YR 4/6) MEDIUM PLASTICITY, WITH SOME YELLOWISH RED (5YR 5/8) MOTTLING
SPT 2 2	23 95		RED (2.5YR 4/6) SANDY CLAY, STICKY, SLIGHTLY MOIST, MICACEOUS, WITH VARYING SHADES OF YELLOWISH RED AND LIGHT GRAY MOTTLING
- - 10 = _SPJ 3 2	20 90		OCCASIONALLY GRAVELLY WITH THIN LENSES OF BLACK MOTTLING APPROXIMATELY EVERY 0.3 FEET
		SC	BECOMING SILTY, LESS CLAY
- 15 - SPT 4 -	10 60		SILTY SAND SEAM 14.5-16.5 FEET
	•		STRONG BROWN (7.5YR 4/6) SANDY CLAYEY GRAVEL
20 - SPT 5 10	00/6 90	G <u>M</u> GC	WITH YELLOW AND DARK BROWN MOTTLING
- - 25 - SPT 6 3	35 100		COBBLES AND GRAVELS GRADE OUT STRONG BROWN (7.5YR 5/6) CLAY WITH SAND, STIFF, WITH BROWNISH YELLOW CLAYEY MOTTLING
		CL	
- 30 - SPT 7	15 100		DARK YELLOWISH BROWN (10YR 4/4) SOFT SILT, VERY
	_		MOIST TO WET, INTERBEDDED WITH STIFF SILT AND SILTSTONE
- 35 - SPT 8	0	ML	
	-		BECOMING GRAVELLY
L 40 PLATE			
LOG OF BORING Domes & Moore			

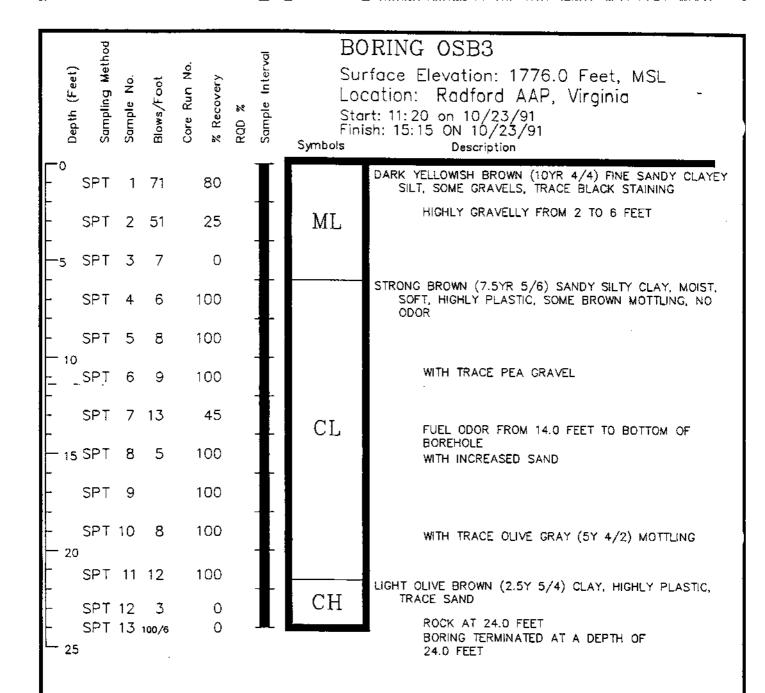

-- -

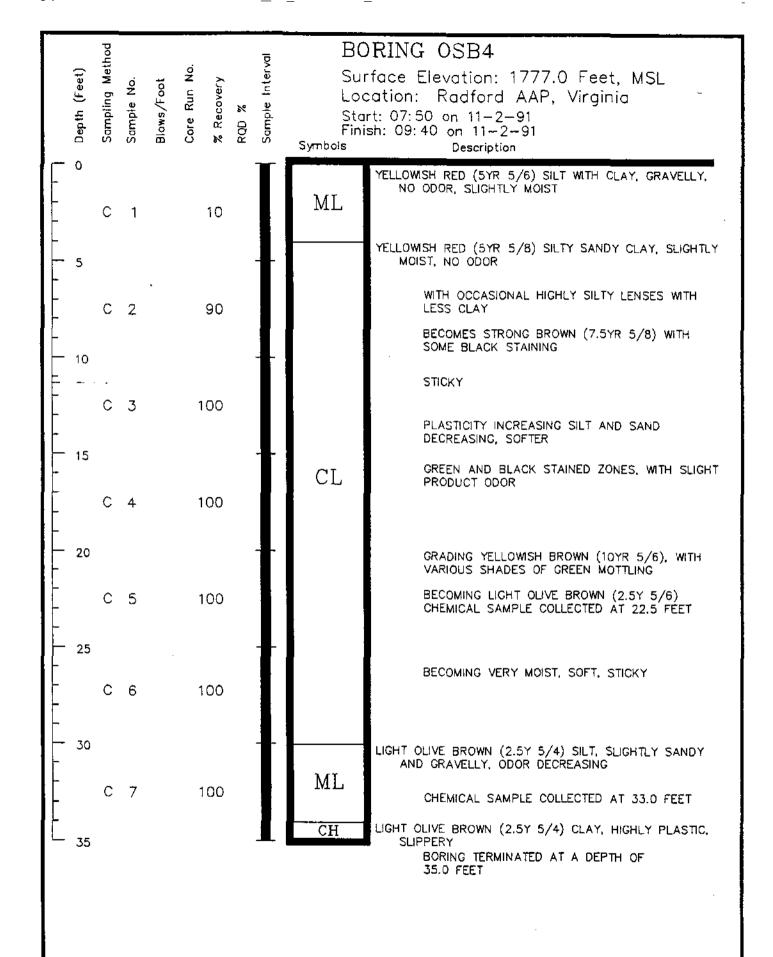
Location: 51MW2 Installation Date: 9/9/91

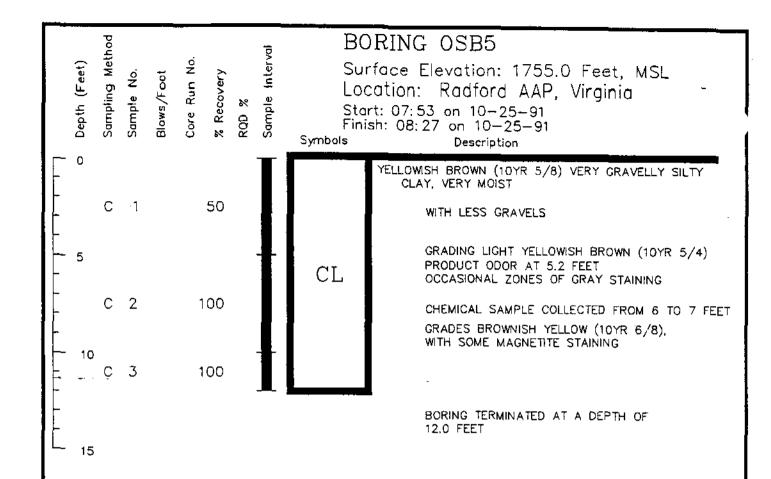

Surface Elevation: 1833.3 Feet Top of PVC Elevation: 1834.77 Feet

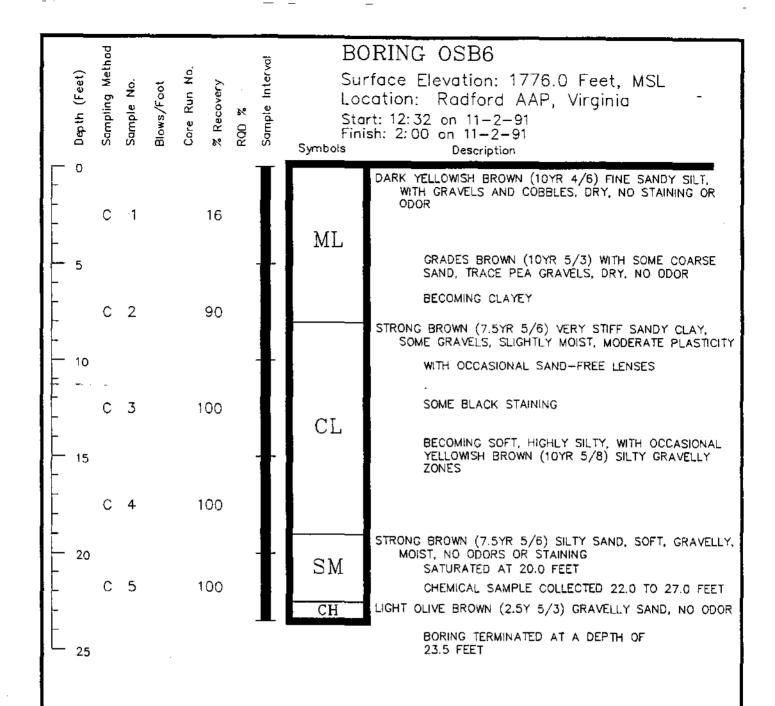


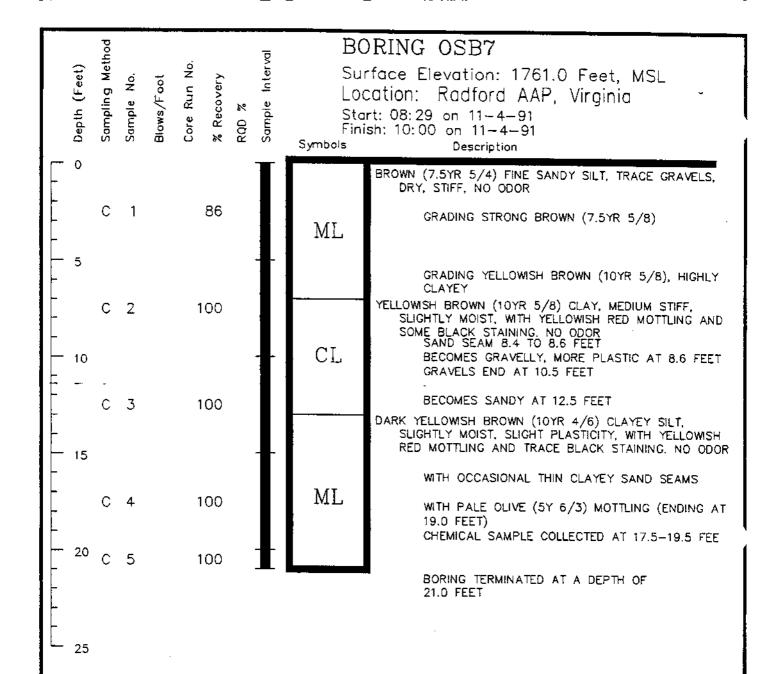


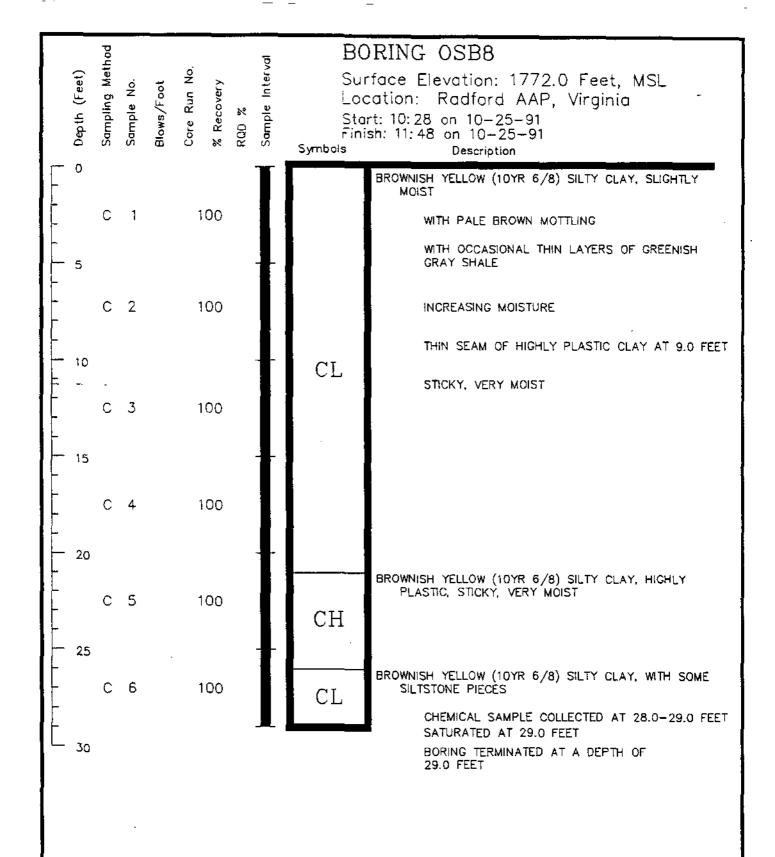

Location: OMW1


Installation Date: 11/11/91 Surface Elevation: 1777.6 Feet
Top of SS Elevation: 1780.04 Feet









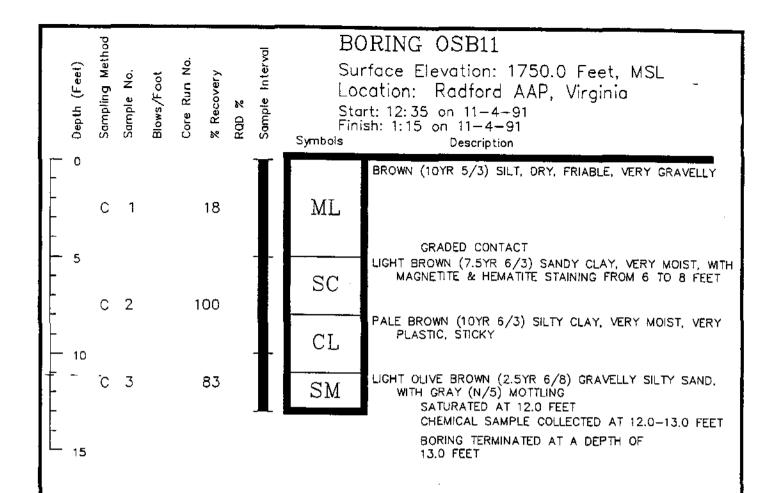

PLATE LOG OF BORING

PLATE LOG OF BORING

	Depth (Feet)	Sampling Method	Sample No.	Blows/Foot	Core Run No. % Recovery	RQD %	Sample Interval	Sur Loc Sta	PRING OSB10 Trace Elevation: 1776.0 Feet, MSL cation: Radford AAP, Virginia rt: 11:34 on 10-24-91 sh: 13:30 on 10-24-91 Description
	- 0	SPT	1	129	40		, - 	ML	DARK BROWN (10YR 4/3) FINE SANDY SILT, DRY, VERY HARD, VERY GRAVELLY GRAVELS DECREASING
-	•	SPT	2	38	90	_	-		GRADED CONTACT YELLOWISH RED (5YR 4/6) CLAYEY SAND, MOIST, NO ODOR, COHESIVE
		SPT			100	7	_	SC	WITH LESS CLAY, GRADES TO STRONG BROWN (7.5YR 5/8), TRACE YELLOW MOTTLING
		SPT			100	_	-		BROWNISH YELLOW (10YR 6/8) SANDY SILT, TRACE BLACK
	- 10			19	100	-	-		STAINING, MOIST. NO ODOR WITH LESS BLACK STAINING
		SP.T SPT	7	26 26	85 50	-	-	ML	- STRONG FUEL ODOR, MORE MOIST
		SPT		20 5	30	1.1	-		BECOMES LIGHT OLIVE BROWN (2.5Y 5/4) WITH TRACE GRAVEL
		SPT		9		-	-		CHEMICAL SAMPLE COLLECTED AT 14.0-16.0 FEET OLIVE YELLOW (10YR 6/6) SILTY SLIGHTLY SANDY CLAY, MOIST, SOFT, PLASTIC
-		SPT	10	6		-	-		BECOMES LIGHT OLIVE BROWN (2.5Y 5/4)
	- 20 S	SPT	11	6	100	-	· ;		GRADING SOFTER
	9	SPT	12	5	95	-	_	CL	
	- 25	SPT	13	3.	100		_		
		SPT	14	4	100				
-	- 30	SPT	15	5	100				STRONG ODOR AT 29.0 FEET WATER AT 30.0 FEET
-		SPT	16	3	100	j			CHEMICAL SAMPLE COLLECTED AT 30.0-32.0 FEET
								•	BORING TERMINATED AT A DEPTH OF 32.0 FEET
	- 35								
Į									PLATE

PLATE LOG OF BORING

eport No. ROL+62188 DATE November, 1984 Hercules, Inc. Client: Radford Army Ammunition Plant: Monitoring Wells, Horseshoe Area Radford. ٧A Project: Total Depth: 60.0* Location: Elevation: Boring No.: See plan Started: 10-25-84 10-25-84 Driller: W. Simmons, Sr. Type of Baring: Hollow-stem auger Completed: DESCRIPTION OF MATERIALS % Core REMARKS Elevation Country (Feet) Atown Red brown clayey SILT roots, organics 1.0 GROUNDWATER DATA Red-brown fine sandy SILT trace to little clay -FILL-[Reworked Alluvium] (ML) Dark brown fine sandy SILT roots, organics Medium stiff red-brown fine sandy SILT (ML) -ALLUYIUM-111.0 increase in sand 74.5 89 16.0 grades to 19.5 Orange-brown silty fine SAND, with mica (SM) 27.0 -ALLUVIUM-24.5 *6₅ 26.0 grades to 29.5 Silty medium to fine SAND (SM) 31.0 34.5 5

Jon No. ROL-62188 DATE November, 1984 Hercules, Inc. Client: Radford Army Ammunition Plant; Monitoring Wells, Horseshoe Area Radford, VA Project: Elevation: Location: Boring No.: 16-1 cont. Total Deoth: See plan Type of Boring: Hollow-stem auser Driller: W. Simmons, Sr. Started: Completed: 10-25-84 10-26-84 DESCRIPTION OF MATERIALS **N** Core Campia Conth BEMARKS Develon (Classification) Recovery (Feet) 10₂₆ Dense orange brown coarse to fine sandy 36.0 GROUNDWATER DATA GRAVEL, with silt (GM) Medium dense red brown coarse to fine sandy SILT, little mica (ML) 39.5 -ALLUVIUM-47.0 Water level measured @ 43.0' on 11-1-84 Yellow tan silty CLAY, trace fine sand relict structure -RESIDUUM- (CL) 44.5 44.7 * 40/0.2" Auger refusal Gray medium bedded SHALE & siltstone with <20% green glauconitic conglomerate, thin limestone interbeds 50.0 50.0 (ROME FORMATION) <20% 55.0 55.5 Gray and black Fault Breccia (silt matrix, pebble sized clasts) 73% 60.0 Boring terminated @ 60.0' 30' screen set from botton

No of blows regid for a 140 to hammer dropping 30 in to drive 2 in Q.D., 1.375 in 1.D. sampler a total of 18 inches in three 6 in increments. The sum of the last-two increments of penetration is termed the standard penetration resistance, N.

eport No. ROL-62188 DATE November, 1984 Hercules, Inc. Client: Radford Army Ameunition Plant; Monitoring Wells, Horseshoe Area Project: Radford, Total Depth: 72.01 Elevation: Boring No.: Location: See plan 10-25-84 10-23-84 Type of Bonng. Hollow-stem auger Started: Completed: Driller: W. Simmons, Sr. DESCRIPTION OF MATERIALS (Classification) % Core Elevation 0.0 Blows (Feet) Red brown clayey SILT, trace sand, organics 0.5 GROUNDWATER DATA Medium dense red-tan fine sandy SILT, trace clay, small mica flakes (ML) -ALLUVIUM-6₁₀ 16.0 9.5 13₅ 11.0 Grades to Medium dense silty fine SAND, slight micaceous (SM) 14.5 16.0 Grading to Dense red brown silty coarse to fine SAND, 19.5 few gravel (SM) 21.0 Grading to 24.5 Dense red coarse to fine sandy GRAVEL, 1413 some silt (GM) 26.0 29.0 -29.5 Medium dense yellow tan SILT trace fine sand & clay 31.0 -RESIDUUM-* 40/0.0' 33.5 Auger refusal @ 33.5'; begin coring @ 33.5' Lost water at 35.0' 35.0-

'No of blows radid for a 140 to hammer dropping 30 in, to drive 2 in 0 D., 1.375 in 1 D. sampler a total of 15 inches in three6 in increments. The sum of the last, two increments of penetration is termed the standard penetration resistance, N.

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES - ENGINEERING CHEMICAL TONE HUNDRED YEARS OF SERVICE

DATE November, 1984 -

son No. ROL-62188 Hercules, Inc. Jient: Radford Army Ammunition Plant; Monitoring Wells, Horseshoe Area Radford. Project: Total Depth: Elevation: Baring No.: 16-2 cont. Location: See plan 10-25-84 Type of Bonng: Hollow-stem auger Started: 10-23-84 Completed: Driller: W. Simons, Sr. DESCRIPTION OF MATERIALS Depth 35.0 REMARKS (Fest) Blows Dove gray vuggy, conglomeratic fractured GROUNDWATER DATA DOLOMITIC LIMESTONE, thin bedded to shaley 67% in some sections 38.5 Conglomerate; limestone matrix, quartzite, pebbles, grades back to conglomeratic DOLO-MITE with vugs, shaley partings 48% 40.5 Yold in Rock 43.5 Shows steep (> 45%) dip Black to gray shale & limestone clasts in 72% conglomerate 83% Black SHALE fragments in conglomerate 53.5 * 3.5' core run 62% 57.0 Angular fragments 98% Fault Breccia Limestone matrix (sand-sized limestone particles) with angular fragments of shale and dolomite 87% 67.0 67.0 Mud seam - yellow tan clayey SILT 69.0-67% Black calcareous thin bedded SHALE, highly deformed, steep dip

'No of blows req d for a 140 to hammer dropping 30 in to drive 2 in O.D., 1.375 in 1.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is formed the standard penetration resistance, N

Scale 17×5' unless otherwise noted

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES + ENGINEERING CHEMICAL TONE HUNDRED YEARS OF SERVICE

port No. ROL-62188 DATE Movember, 1984 -Hercules, Inc. , Ulient: Radford Army Ammunition Plant; Monitoring Wells, Horseshoe Area Radford, VA Project: 16-2 cont. | Total Depth: Elevation: Boring Na : Location: See plan 10-23-84 10-25-84 Type of Bonng: Hollow-stem auger Started: Oriller: W. Simmons, Sr. Completed: DESCRIPTION OF MATERIALS REMARKS Depth 70.0 Elevation (Classification) Reco Blows GROUNDWATER DATA See description on previous page 95% Water level measured @ 53.7' on 11-1-84 77.0 -Boring terminated @ 77.0' 25' screen set from bottom

No of blows req d. for a 140 ib hammer gropping 30 in to drive 2 in 0.00, 1.375 in 1.00 sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance, N.

Scale 17+5' unless otherwise noted

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES + ENGINEERING CHEMICA - ONE HUNDRED YEARS OF SERVICE

DATE November, 1984

eport No. ROL-62188 Hercules, Inc. Chern. Radford Army Ammunition Plant: Monitoring Wells, Radford, Horseshoe Area Project Elevation: Total Depth: 89 51 Location: Boring No.: 16-3 See plan Driller W. Stamons, Sr. Started: 10-26-84 Completed: 10-30-84 Type of Bonng: Hollow-stem auger DESCRIPTION OF MATERIALS REMARKS O.O (Classification) Recover Blown (Feet) Red brown fine sandy SILT, organics 1.0 GROUNDWATER DATA Medium dense orange-brown silty fine SAND, little mica (SM) ^{'7}و 6.0 grades to 9.5 Orange-brown fine sandy SILT, little mica 11.0 -ALLUVIUM-13.5 14.5 Medium dense orange-brown gravelly coarse 77.7 to fine SAND (SP) 16.0 -ALLUVIUM-19.5 ¹²10 15 21.0 24.5 ⁹12₁₈ 26.0 25,0 Stiff tan clayey SILT, shale fragments little fine sand -RESIDUUM-29.5 15₉1931.0 34.5

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABOHATORIES . ENGINEERING CHEMICAL TONE HUNDRED YEARS OF SERVICE

POR NO. ROL-62188 DATE November, 1984 -Hercules, Inc. Client: Radford Army Ammunition Plant: Monitoring Wells. Horseshoe Area Radford, Project: Elevation: Boring No.: 16-3 cont. Total Depth: Location See plan 10-26-84 10-30-84 Started: Driller: W. Simmons, Sr. Completed: Type of Boring: Hollow-stem auger DESCRIPTION OF MATERIALS REMARKS Depth (Feet) Elevation (Classification) 16₁₆ GROUNDWATER DATA 19 21 25 39.5 41.0 44.5 ND 46.0 49.5 50.0 * 40/0.5* والموارد والموافي الاعتصار ومعمول الميا الميعود الهراء Water level measured @ 54.8' on 11-1-84 * 40/0.3* 54.5 54.8 Auger refusal 0 59.5' Auger refusal @ 59.5' Brown to greenish gray SHALE and SILTSTONE. < 20% Highly fractured with layers of soil (ROME FORMATION) 64.5 Brecciated shale & siltstone, green siltstone matrix with gray and white quartzite 60% and limestone pebble-sized clasts 69.5 70.0

*No of blows req differ a 140 to hammer dropping 30 in, to drive 2 in 0.D., 1.375 in, I 0, sampler a total of 18 inches inthree 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance, N

Scale 1"=5" unless otherwise noted

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES . ENGINEERING CHEMICAL TONE HUNDRED YEARS OF SERVICE

sport No. ROL-62188 DATE November, 1984 Hercules, Inc. Client: Radford, Radford Army Ammunition Plant: Monitoring Wells, Horseshoe Area VA Project: Boring No.: 16-3 cont. Total Depth: Elevation: Location: See plan Oriller: W. Simmons, Sr. Started: 10-26-84 Completed: 10-30-84 Type of Boring Hollow-stem auger DESCRIPTION OF MATERIALS % Core REMARKS Figure on 70.0 Recovery /Class/heatless (Foot) Breccia, gray siltstone matrix green shale GROUNDWATER DATA clasts, gray dolomitic clasts 93% 53¥ 79.5 40% 84.5 86.0 -Greenish gray well graded fine to medium 95% SAND. Probable fault plane 88.5 Breccia, gray, SILTSTONE matrix, green 89.5 shale & gray dolomite clasts 20' screen set from 80.0' Boring terminated @ 89.5' (Bottom 9.5' collapsed)

No. of blows reqid. for a 140 lb. hammer dropping 30 in ito drive 2 in O.D., 1.375 in I D. sampler a total of 18 inches in three 6 in increments. The sum of the last, two increments of penetration is fermed the standard penetration resistance, N.

Scale 1" #5" unless otnerwise noted

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES . ENGINEERING CHEMICAL ONE HUNDRED YEARS OF SERVICE

port No. ROL-62188 DATE November, 1984 -Hercules, Inc. :liem! Radford Army Ammunition Plant; Monitoring Wells. Horseshoe Area Radford. Project: 80.01 Total Cepth: Elevation: Baring No.: Location: See plan Started: 10-31-84 11-2-84 Driller: W. Simmons, Sr. Type of Boring: Hollow-stem auger Completed: Samore DESCRIPTION OF MATERIALS Elevation O.O (Cines/Seation) Blows (Feet) Red brown clayey SILT trace fine sand, roots OFGATICS GROUNDWATER DATA 0.9 Stiff red-brown clayey SILT, trace to little medium to fine sand (ML) -FILL-[Reworked Alluvium] 4.5 6.0 7,5 Medium dense orange-brown fine sandy SILT. 9.5 little mica, mangamese stains (ML) -ALLUVIUM-11.0 grades to 14.5 Loose red brown silty medium to fine SAND (SM) 16.0 grades to 19.5 Silty coarse to fine SAND, some gravel 21.0 grades to 24.5 (15₁₆₎ Coarse to fine sandy GRAVEL (GC) 25.5 26.0 Stiff yellow-tan clayey SILT, shale chips, relict shaley structure (ML) -RESIDUUM-29.5 1017 31.0 34.5

'No of blows regid for a 140 to hammer dropping 30 in, to drive 2 in O.D., 1 375 in 1 D sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is firmed the standard penetration resistance, N.

Scale 1"=5" unless otherwise noted

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES . ENGINEERING CHEMICAL
"ONE HUNORED YEARS OF SERVICE"

DATE November 1004 M NA DOL-62100

port No.	ROL-6218		1.8			DATE November, 1984
Client:	Hercules					
Project.	Radford	Army Ammunition Plant; Monitoring Wells, Horse	shoe A	rea	Radfor	d. YA
Bonng No.:	16-4 cor			Locat		See plan
Type of Bo	ring: Hollo	w-stem auger Started: 10-31-84 Come	pleted:	11-2-8	34 0	tritler: W. Simmons. Sr.
Elevation	0eptn 35.40	DESCRIPTION OF MATERIALS (Classification)	Sample Blows	Sample Depth (Feet)	% Core Recovery	REMARKS
		Hard gray-tan clayey SILT, trace fine sand, relict structure -RESIDUUM- Weathered SHALE Auger refusal - coring commenced Highly fractured green and maroon thinly laminated SHALE with calcite-healed fractures and dolomitic laminae (ROME FORMATION)	24 ₃₀	20.5	27% -/ 48% / 70%	# 40/0.1' Water level measured @ 48.5' on 11-5-84 * 50/0.5' 55.0 60.0

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES - ENGINEERING CHEMICAL TONE HUNDRED YEARS OF SERVICE

port No. ROL-62188 DATE November, 1984 Hercules, Inc. Client Radford Army Ammunition Plant; Monitoring Wells, Horseshoe Area Radford. ٧A Project. Elevation: Bonng No.: 16-4 cont. Total Depth: Location: See plan Completed: 11-2-84 Driller: W. Simmons, Sr. Started: Type of Boring: Hollow-stem auger 10-31-84 DESCRIPTION OF MATERIALS REMARKS Elevation 70.0 (Classification) (Feet) Nous Mud seam brown silty CLAY, very wet GROUNDWATER DATA 40% 74.0 Greenish gray SHALE, slightly calcareous 75% 80.0 35' screen set from bottom Boring terminated # 80.0'

FROEHLING & ROBERTSON, INC.

THE REPORT OF SERVICE

ROM-62085 DATE November, 1985 leport No Hercules, Inc. Client Radford Army Ammunition Plant Radford, Virginia Project Monitoring Wells 54.5 Total Depth: Elevation: Boring No.: Location: W. Simmons, Sr. Hollow stem auger Started: 10-22 -85 Onlier: Completed: Type of Boning 10-23-85 DESCRIPTION OF MATERIALS Elevation Depth REMARKS Depth 0.0 (Classification) ROD % (Feet) Blows Brown fine sandy SILT 1.0 GROUNDWATER DATA Loose brown fine sandy SILT, trace clay, 1.5 3₄ mica flakes -ALLUVIUM-3.0 4.0 Hard brown clayey SILT -RESIDUUM-* 30/0.11 5.0 5.0 Blue gray dolomite, calcite healed fractures 95% 95% 10.0 92% 95% Development Data: Sloshed for 2 hrs. Bailed to 26.0'. 15.0 Recovered to 16.9' after 24 hrs. Yellow-brown to green-gray fault breccia, 57% 27% LIMESTONE, DOLOMITE, and shale clasts 20.0 B6% 35% 23.0 B2% 0% 25.0 0% 0% 30.0 0%. 0% 34.5 97% 33%

PORING LOG

FROEHLING & ROBERTSON, INC.

CLE CLAVICE LABORATORIES & ENGLEEE RING CHEMICAL ONE MUNORED YEARS OF SERVICE

DATE November, 1985 ROM-62085 Report No. Chent Hercules, Inc. Radford Army Ammunition Plant Radford, Virginia Monitoring Wells Project: 16-5 cont. 54.51 Total Depth: See plan Boring No.: Elevation: Location: 10-22-85 W. Simmons, Sr. Type of Borng: Hollow stem auger Started: Completed: Doller: 10-23-85 DESCRIPTION OF MATERIALS S Core Depth REMARKS Elevation 40.0 ROD % 37% 15% GROUNDWATER DATA Green-gray FAULT BRECCIA, LIMESTONE, DOLOMITE, and shale clasts 44.5 75% 8% 49.5 92% 58% 54.5 Boring terminated @ 54.5'

				4	14		Hele No.		_	
DRILL	ING LO		NAD	INSTALL N	ATION IAO	-		SHEET T]	
PROJECT			NATE OF THE PARTY			OF BIT	2" OD SS	100 4 SHEETS		
EXPLORE				II. BAYO	M FOR EL	EVATION	ZHOAN (SAN - WE	L)	\dashv	
LOCATION	Coordina	ntes er år.	arier)		MSL				_	
DRILLING	AGENCY			12. MANUFACTURER'S DESIGNATION OF DRILL CME-75						
CUNNING	HAM C	DRE DR			L HO. OF EN SAMPI	OVER-	DISTURBED	UNDISTURBE		
MOLE NO.		-	DH-1	DÜRC	EH SYMPI	LES TAKE	16		_	
HANE OF	RILLER				L NUMBE					
B:11 Mc				IS. ELEV	ATION G			_	_	
DIRECTION			DEG. FROM VERT.	18. DATE	HOLE		7 Feb 80	28 Feb 80		
				17. ELEV	ATION TO				┪	
THICKHES							Y FOR BORING		₹ 1	
. DEPTH DA				15. 2(GH	TURE OF	INSPECT	POR		7	
. TOTAL DE			73.0		3 CORF	BOX CO	8.54	ARKS	\dashv	
ELEVATION	DEPTH	r Farms				BOX OR SAMPLE NO.		ster leas, depth of -, if eignificant	\perp	
- 1			(SM) SAND, V fp-fn, son				Advanced hol	e in OVB	F	
	=	1	tr clay slt, plast, moi	.at			w/6" H.S.		F	
1836.5	3 ==	1	1		Ì	1	Auger		<u> </u>	
1030.3	3.5		(ML) SILT, some v fn-fn	gand		 	 	 -	ļ	
ļ	_=	1	little clay low plast.			1	Split Spoon	9-10-12	- [- .	
	Ξ	}	moist		1		!		Ė	
1832.5	, , =	1				1			F	
1034.3	<u> </u>		(M) CIAV		<u></u>	l			3	
	_	1	(CL) CLAY, some micaced silt and v. fn-fn sand.			2	Split Spoon	13-14-18	Ē	
!	_	}	brn, low to med plast,		 _	-	Serie Shoon	13=14=16	_ [[
	_	})	•]				F	
	=	}				1	1		E	
		3			<u>L. </u>				_F	
-	=	3				3	Split Spoon	12-15-23		
1		}	1			+	-F-TC SPOOR	1	<u> </u>	
l	=	3			[1			E	
		}							드	
	=	}				<u></u>			3	
1821.0	19.0		(mt) care		1	4	Split Spoon	6-7-6	<u> </u>	
	<u>-</u>	1	(SM) SAND, v. fn-fn, so milt, micaceous, yel-br		-	+			-20	
i İ	l -	‡	N.P., moist	,	l	1	1			
] _	‡	1				-		F	
	=	‡			-		 	 _	_₽	
	=	‡				5	Split Spoon	9-7-9	F	
	=	1							Ë	
1813.5	26.5	1 –	·		4		1		F	
	-	7	(SM) some gravel and			1	[F	
	[=	7	cobbles below 26.5				 	, -		
	7	7				6_	Split Spoon	50/-4	\ \	
1	=	3	1			7	7		Ë	
1808.0	132 -	<u> </u>	<u> </u>]	1	i		F	
1000.0	"-		(CL) CLAY, some silt, 1	ittle]				E	
	=	∃	sand & gravel, yel-bru		-	+	-		<u>F</u>	
	[_=	\exists	plast., v. moist			7	Split Spoon	34-13-17		
Ì	1 3	<u> </u>							7: 	
1803.0	37.0]		1		E	
1	-	Ⅎ ̄ ̄	Badly decomposed breco:	ia,	}		}		Ŀ	
ŀ	=	_	gray and yel. brn.			+	1 -	1	- 1.	
1	_	=				8	Split Spoon	42-100		
<u> </u>	-:	=	,		1				F	
1798.0	42.0	4	<u> </u>		4	1	1		F	
1	\ <u>``</u>	┪	(ML-CL) SILT & CLAY, 1:		1	1			1	
	:	╛	sand & gravel size roc	ε,	 	+		1	-+3	
1	-	Ⅎ	trags yel-brn, low plan	st.,	<u></u>	9_	Split Spoon	37-47-85	_	
(:	⇉	boist (Decomposed Breccia)	1		[{		E	
1		⇉	(vecomposed preccia,	•		Ì	İ		=	
١ ـــ	-	Ⅎ			1		ļ		Æ	
$\vdash \nabla$	48.8	╡				+	1	1	7	
1791.2		<u> </u>			1	10	Split Spoon	43-61-29	7	
ENG FOR					しゃきのよこと	. 7	WTT. HAN	INULL NO.		

(TRANSLUCENT) B-39

DH-I Hala Na INSTALLATION SMEET DIVISION DRILLING LOG NAD NAG ACTIVES 18. SIZE AND TYPE OF BIT 2" OD SS EXPLORE-LANDFILL "C" LOCATION (Commitmeter or Justice) MSL. 12. MANUFACTURER'S DESIGNATION OF DAILL CME-75 CUNNINGHAM CORE DRILLING 13. TOTAL MO. OF OVER-BURDEN SAMPLES TAKEN 0 14. TOTAL NUMBER CORE BOXES 0 L HAME OF DRILLER IE. ELEVATION GROUND WATER Bill Monroe DIRECTION OF HOLE M. DATE HOLE Z VERTICAL THELINED 27 Feb 80 28 Feb 80 IT. ELEVATION TOP OF HOLE 1840 7. THICKNESS OF OVERBURDEN 73.0 18. TOTAL CORE RECOVERY FOR BORING . DEPTH DRILLED INTO ROCK ٥ 19. SIGNATURE OF INSPECTOR 4. TOTAL DEPTH OF HOLE 73.0 REMARKS RECOVE SAMPLE DEPTH LEGEND CLASSIFICATION OF MATERIALS (Deliting time, mater leas, depth of meathwring, sea, it significant) ELEVATION (CL-ML) CLAY & SILT, little Advanced hole w/6" sand & gravel size rock H.S. Auger frags, yel-brn w/red, orange and green frags, low plast, moist (badly weath. Breccia) 11 Split Spoon 31-22-15 12 Split Spoon 28-16-23 13 saturated sample from Split Spoon 6-7-4 64.0 to 65.0 water on rods at 63.0 Same badly weathered 14 Split Spoon 18-19-1 Breccis-sample is only moist 1767 Top of Rock w/boring at 70.0' measured Installed 1 1/2" PVC ground water at 51.0' pipe to 72.0 slotted from 62.0 to 72.0' with ուլեակավայերոկակար gravel filter from water at completion of hole at 48.7" 50.0' to 72.0' at end of day, filled standpipe--water level following morning at 47.8' filled standpipe again in morning water level fell to 48.8 in less than 8 hours March 7:30 AH - 48.8 9:30 - filled standpipe 10:30 - fell to 43.9 11:30 - fell to 46.0 12:30 - fell to 48.8 1:30 - @ 48.8

ENG FORM 1836 PREVIOUS EDITIONS ARE OBSOLETE.

Ł

EXPLORE-LANDFILL "C""

			SITE C				Hole No		
DRILL	ING LOG	1	ISION	MATALL				SHEET 1	
L PROJECT			NAD	NAO		OF BIT	" fishtail:	NY DIA -	┧
LANDFI	LL "C" -	RAD	FORD AAP	11. DATU	M TON IL	EVATION	SHOWN (TRA - 4	ILA PAD.	ヿ
LOCATION	(Cuirdinates	er Tim	(41)	12 MARIE	MSL	A't mitsic	HATION OF DRIL		•
3. DRILLING					CME -			•	
CUNNIN	GHAM COR	E DR	ILLING	13. TOTA	L MO. OF	OVER-	MSTURBED	UMDISTURBED	7
			DH-1A	10. 7074	L HUMBE	COSE		. 2	
BILL M		_			ATION GR				┥
4. DIRECTION				IS. DATE	HOLE	STA		COMPLETED	┪
E VERTIC	THE THE	IMED.	PES. PROM VERT.			!_			
7. THICKNES	07 OVER81	HOEH	_73 n		ATION TO		F 1840	1 21 24 2	_
S. DEPTH DA	ILLED INTO	ROCK	21.0		TURE OF			1.5' 54.7	긕
S. TOTAL CE	PTH OF HOL	Σ	94.0	<u> </u>					_
ELEVATION	DEFTH LE	SEND.	CLASSIFICATION OF MATERI (Decembrism)	ALS	ERY	BOX OR SAMPLE HO.	(Drilling lime, a measuring, a	(ARKS recor loos, depth of is. if eignificant)	
			Same OVB profile as D	H-1			Offset D	H-1	E
	#			!					. ⊨
j [==	(·	set NX casi	fishtail and	, <u>†</u> =
	=	- 1	cored riverjacks from	:			14		F
1767	73		72-0 - 73-0		'				- 7
[\exists	Í	Limestone, lt gray to auto-brecciated, nume		·	Run 1 Box 1			E
	三	ŀ	calcite healed fractu		'	,	NX Core		E
	⋰≒	į	no consistent bedding	,]	RQD = 132		E
j i	milim	ĺ	orientation, v. fn-fn		ĺ	l	1		F
[ŀ	mod hard to soft, mod badly weathered, some		32%	[F
1	7		small calcite filled		İ				F
[Í		_	ľ	ł	}		E
i i	_ ∃	ŀ			Ì	3.2			Е
		1				3.2	<u></u>		
[i ≓	ĺ			ł	Run 2			<u> </u>
1755	85.0				87.5	Box 1	RQD = 257	ž.	•
1	=====================================	_]	Limestone, shaly, lt.	green		2.8		<u> </u>	<u>tē</u>
f 1	[∃	ĺ	gray, thin bedded, v.		ł	Run 3	NX Core ROD = 142	<u></u> -	E
•		ļ	grained to dense, mod	l.	827	2.3	MOD - 14,	•	
	#	1	weathered, partially fragmented			Run 4	NX Core		
['		- 1			642	Box 1	RQD = 8Z		F
	📮					1			F
	E	ļ	i		į				E
1746	94.0					3.2			_6
t	=		BOH		}			_	E
]	=	1			1		[F
]	\			-	i	ĺ	Í		F
1	–	1				1	Į		E
]	\ ∃						1		
1					1		1		E
1]]								E
]	=]	ļ	ļ		þ
1	=				Ì	1	ì		F
]]								
1									E
[∃	,			1	1	i		E
1	=				1	1			E
l	🗄				1	}			þ
1	1 =				ľ	ì			F
ţ	=	:	1		ļ				F
	ļ · ‡					1			E
1	1		ĺ		1	1	-		-
1	=		[1						F
1	1 크		1		[þ
1	। न			-41	1	1	}		F
L	⊥ ╡		B-	-41	ļ	1	<u> </u>		_ F
ENG FORM	1836 -	REVIO	US EDITIONS ARE DESCLETE.		LANDE	777 (10	"-RADFORD AA	P DH-1	<u>.</u>

(TRANSLUCENT)

RED STATION THE STATE OF THE ST	
protector pipe	
The second surface.	
ZO FUE SOUTHIERE	
250 flebjoint rise p	Lpe
48.8 V WATER ASSOCIATION BETTONES SEATING THE SEATING	
TASKET TO SECTION OF S	
المراجع المراجع والمراجع والمراجع المراجع والمراجع	
والمراجع والم	
NOT TO SCALE THE	

							Hole No.	
DRIL	LING LOG	Di.	NAD	NAC	-	•	_	OF 2 SHEETS
I. PROJECT			140			OF SIT	2" OD SS: NX	
	DFILL C			11. BAYE	H FOR EL	EVATION	2" OD SS: NX	,
2. LOCATIO	# (Comdition		niem)	12 44477	MSL	404 APE	SHATION OF DRILL	
1 DRILLING	AGE#CY			_ '* =^*'	CME -		THAT I ON THE PRINT	
CUN	NINGHAM	CORE	DRILLING	13. TOTA	L NO. OF		1 DISTURBED	UNDISTURBED
*** #10 m	. (As shows a		DH-2	├		——	<u> </u>	<u>; </u>
S. HANE OF		-			ATION GP			
	VIN DEAN			IL ELEV	ATION G		34.2) 044PLETED
,			DES. FROM VER	T. N. DATE	HOLE	<u>.</u> -	_ •	23 JULY 80
					ATION TO			<u> </u>
	SI OF OVER		<u> </u>				Y FOR BORING 8.	.3 54 1
	EPTH OF HO			15. SIGN/	ATURE OF	HSPECT	OR	
	1		70.5		1 CORE	BOX OR	REMAI	
	(DEPTH L		CLAMIFICATION OF MATE		S CORE RECOV- ERY	SAMPLE!	(Drilling time, see	ur loon, depth of , if aignificant
<u> </u>	 	<u></u> -	4		•		 1	<u> </u>
	1]		2" topsoil	ļ		S-1	Split Spoon	3-5-6
1	<u>-</u> _		(CL)Clay, some silt (v fn,				
}	1 7		fn sand, med plast.,		ĺ	i	1	
1	=		red brn, moist	į	'	1	K(0-5)=.75 f	t./dav
1	1 4				<u> </u>	 		
1					ļ	S-2	Split Spoon	3-4-5
1		-]	•		 		
1	1 1		-			'		
1	1 🚽]		
1	1 3				L	<u> </u>	K(0-15)28	ft./day
1			[S-3	Split Spoon	4-4-7
1	1 3				 		 	
1	-7		l		1		Shelby Tube	11.5-13
1	1 7		}		ł	1	1	
1	1 7		1		L	<u> </u>	K(0-15)=.22	ft./day
	"=		·				S=14= 5	1
1	1 =]]	S-4	Split Spoon	6-8-11
1	4				ļ	1		
{	=		1		l		1	
!	=		1		1	1	K(15-20)=.37	ft./day
1	1 7				<u> </u>	S-5	Colds Care	7-9-11
1	=		!		<u> </u>	3-3	Split Spoon	7-8-11
1	#		!		į		Shelby Tube	21.5-23
1	1 =		l		1	}		-
1						1	K(20-25)=.29	ft./day
1			1		-	 	 	
1) 3]		<u> </u>	S-6	Split Spoon	4-5-10
1	∃		i	·		-		
1	=		!			1	K(25-31.5)	.17 ft/da
i	1 =		!		[1		, ,
1	111111111111111111111111111111111111111			•	 	┿┈─	 -	
1	1 3		ļ		L	S-7	Split Spoon	4-4-7
1	327		L		I			
1	1		CL - More Silt and i		Ţ	1	K(30-35) = .0	06 ft/day
	=		CT - Wole Silt and I	THE SELLO]	ļ		
1	1 -7		 	-	├	┼	 	
]) =		}		<u>L</u>	<u> 5−8</u>	Split Spoon	3-3-6
1	1 =		1				Shelby Tube	36.5-38
	387				1	1	, , , ,	
j	_ ~~ _		(SM) SAND, very fine	fine	}	1	K(35-40) = .	11 ft/day
	1 4		some silt, yellow-bro)WIL	├	——		
]	#		moist		1	5-9	Split Spoon	6-11-16
1	1 3				 	+	1	
-	1		}		ļ]	K(40-45)	69 ft/day
1	443		<u> </u>		<u>l</u>	1	1,4,4,0,4,3) = .	O FLICES
1	1		(SM) Some Gravel (1"	_ _ .		\bot	<u> </u>	
1	1 7		below 44'	•.		S-10	Split Spoon	11-9-9
1	(#				 		 	
1	1 4				<u> </u>	[
			1		1	1	K(45-50) = 1	6.2 ft/day
1			1		ı	1	1	-

								Hele Ne.	DH-2	
DAILL	MG LOC	. 0	/ISION		INSTALL				SHEET 2	i
PROJECT	.,	<u>. i</u>	. N	<u></u>	MA 4174	NAO	OF 227	2" OD SS: 1	OF 2 SHEETS	ł
	T13. C :	_ 20-04	CTITE	nγ				HOWN (TEM - MEX.	44B	Į
LOCATION	(Coardina	ion or Sta		<u>,, </u>	1	MSL				ı
. ORILLING	*****							HATION OF DRILL		1
	NGHAM	CORE I	BTT.L.	TNG		CME - 1) DISTURBED	: UNDISTURBED	1
. HOLE NO. (As almos	-	ne citi's		T BUAD	ŽN BAMPL	OVER- ES TAKES	11	3	1
NAME OF D			1	DH-2	14. TOTA	L HUMBEI	CORE BO	exes 1		1
	N DEAN				18 ELEV	ATION GR	OUMB WAT	TER (54.2)		1
DIRECTION					18. DATE	- MAI F	STAP	TED Č		1
T VERTIC	AL	46LIMED		DEG. FROM VENT.	72.00	, muci		7 JULY 80 :	23 JULY BO	1
. THICKHES	OF OVE		u .		17. ELEY	ATION TO	P OF HOL	<u> </u>	. — —	1
. DEFTH DRI				55 7				FOR BORING 8.	3 54 x	1
TOTAL DE				15.3	IR. SIGHA	TURE OF	INSPECT	38		1
. TOTAL DE				70.5	<u> </u>	S CORE	DOX OR	REMA	Det 3	1
ELEVATION	DEPTH	FEGEND	,	LAMIFICATION OF MATERIA (Decembrical)	`"	S CORE RECOV- ERY	MO.	(Briffing case, see	er loos, depth of if significant	l _
_ • -	•				-	•		1		<u>↓</u> 5
- 1	⊣						11	Split Spoon	2-2-2	F۶
]	Ⅎ				1	_				t'
								K(50-55) =	15.6 ft/day	
ŀ	=		Riv	er Jack 53'-55.2'						F
	55-2		1	TOR 55.2'			<u> </u>			Es
1	~~ ~		Lima	stone - Lt. Grey -	Ten		Run 1	NX Core		F
	56. 5			STREE - NE. ALE.			Box 1	RQD = 0Z		F
ļ	٣٣		Clav	Seam						E
	╛		/				{			F
•			1			287				
1	-]				[]			E
								K(55-62.6)		F
	6 <u>2.2</u>					l	2.0		day	生
	*===		Line	stone, Lt. Grey-Ta	п .	-	1	NY Come		╆,
1				grained, mod to b			Run 2	NX Core		E
	_ =		VEA	thered, fragmented			Box 1	RQD = 10Z		E
	=		hard	1		١.				-
	1111					80%	<u> </u>	K(55-68.8)	= 7.5 ft/day	乍
			ļ			.	1			F
	=		1			İ	4.9			_ <u></u>
] =					822	Run 3	NX Core		ኈ
	70.5	<u> </u>	<u> </u>			1.4	Box 1	RQD = 0%	_	╨
			\Box	BOH 70.5						E
	=	j	1	DOR 70.3		ļ	1			Е
	=	1								F
	=	ļ		ter at completion-		1				F
	_	1	Wa	ter after 24 hrs.	-54.2					⊨
	=	1	1							F
	} =		ł	•		ļ	{			E
		1	1				l			
	=	}					1			F
	=	1				ì	1			F
	=	1				i	1			=
	=	1	1			1		1		F
] _=	1	1			1	1			E
	=	}				1	l	ļ		<u></u>
	=	1	1			1	1	l .		E
	I —	1	i			ŀ	1	1		F
	=	1	1			}	1	!		F
	1 =	1	1			1		ł		F
		•				1		1		F
	: =	3	1			i	1	I		E
	=	7	1			1		!		F
	1 =	1	1			[1	Ţ		F
	=	1	1			ì				E
	-	1	1			1	1	1		E
I	1 -	3				1		!		F
	=	1								F
	1 -	1					1			þ
	· -	1	1			ì				E
i	=	3								
		7				1	4	ļ		
İ										E
				В-	44					

(TRAVELUCENT)

B-45

			Partition	INSTALL.	. T.C.			_
DRILL	JNG LO	G	NAD	IRSTALL		AO	SHEET OF 2 SHEETS	
PROJECT				10, 1124	HO TYPE	OF 917	2" OD SS NX DIA	1
RCRA-RAA	(Coardin	DFILI	, "C"	IL BATU	MSI.	KVAT ION	SHOWN (784 @ MIL)	1
			<u> </u>		FACTURE		HATION OF BRILL	1
DRILLING CUNNING!	IAM CO	RE DE	RILLING			HENWOO		4
HOLE NO.	(Ae olos	-	pained title	BURG	EN SAMP	OVER- ES TARE	9	
HAME OF			DH-3	14 TOTA	LHUMBE	R CORE S	oxes 1]
BOB MONE	LOE _			IL ELEV	ATION OF	OUND WA	MOI KECOKDED]
DIRECTION			ED DEG. FROM YERT.	IS. DATE	HOLE		JULY 80 24 JULY 80	ı
				17. ELEV	ATION TO	P OF HOL		7
DEPTH OR							FOR BORING 8.7 87 1	1
TOTAL DE			68.6	18. SIGN/	TURE OF	INSPECT	OA .	7
		-		1.	Z CORE	BOX OR	REMARKS	┥
LEVATION		LEGE	To (Description)			BOX OR SAMPLE NO.	(Brilling time, worse love, depth of meathering, sie., if significant)	L
•	<u> </u>	-	(CL) CLAY w/some silt		•	S-1	Splitspoon 4-56	
	=	İ	fine sand, red brown,	1		3-1	Splitspoon 4-56	£
		1	plastic moist	-				E
	_	1				!!	K(0-5)=0	F
	=							F
Į	5.5	 - -				6.2	Sal/sence 2 / 5	F
		i	(CL) Brown	1		S-2	Splitapoon 2-4-5	£
		1		i			K(0-10)=0	E
	_ =	1						E
	9.5	_	(C) C AV w/174			igsquare		上
	=	1	(CL) CLAY w/some silt fine sand, red brown:			 	SHELBY TUBE	4
	=	1	plastic moist					þ
		1					K(0-15)=0	þ
	=	}]	· ·	F
		}	· .			 		+
	=	1				S-3	Splitspoon 7-13-17	Ē
		1	!	1				F
		1	1				K(0-20)=0	E
	=	1]		E
	20.5=	 				· · · · · ·		+
	=	į	(SM) Very fine, w/lit			S-4	Splitspoon 5-10-14	4
		3	silt trace clay, mois yellow brown clay-red		•		F(A_25)=A	þ
	=	1	Jerres promit CTEA-LEG				K(0-25)≈0	þ
	_	}	1			<u> </u>		_F
	=	1				S-5	Splitspoon 7-10-13	E
	=	1		•		<u> </u>	-b	4
	-=	1					K(0-30)=.07 ft/day	E
ļ	=	1.	1			1 :		þ
		1	•	•		ļ		4
	=	7				S-6	Splitspoon 3-4-7	þ
	=	3			-	1		7
	<u>-=</u>	ŀ	1			1	K(0-35)=.05 ft/day	ţ
	1 =	1				1		F
	35.0	_	+			 		[
	=	1	No recovery for 5-7 of S-8 probably (GM)	er .		S-7	Splitspoon 9-9-7	4
		1	a a branent's (ms)				K(35-40)=7.3 ft/day	t
	: -	1					Min and the relati	þ
	=	3			L.	1		_
	k,	1	1				G-145-F 1/ 15 10	7
	41.5	3	(GM) (5") Clay conter			\$ - 8	Splitspoon 14-13-10	+
		1	red brown, very moist				K(40-45)=6.5 ft/day	F
	-	1				1		E
		Ⅎ				<u> </u>		⅃
	=	†				S-9	Splitspoon 2-1-2	E
] -	₫				+		+
	-	‡					#44 F FAX F B F 1	þ
	=	‡					K(45-50)=5.8 ft/day	ŧ
		-	1			1	Ī	-

B-46

							Note Re.		_	
DRILL	ING LO	6)	NAD	HETALL		AO		SHEET 2	.]	
1. PROJECT					AND TYPE		2" OD SS NX			
RCRA-RA	AP-LAI		"C"	(11. DATUM FOR ELEVATION SHOPE (THE - MEL)						
ł_					PACTURE		HATION OF BRILL		_	
CUNNING			ILLING	SPRAGUE & HENWOOD 40C 12. TOTAL NO. OF OVER- DISTURBED UNIOSTURBED SAMPLES TAKEN						
A. HOLE NO.	(As she		e Htte	13. TOTA	EN SAMPL	ES TAKE	9	- UNIONSTURBED	1	
S. HAME OF			<u>iDH-3</u>		L NUMBE					
BOB MOR				IS. ELEV	ATION OF		1-04 1-0-0.		_	
& DIRECTION			DEG. FROM VERT.	H. DATE	HOLE		•	24 JULY 80	_	
				17. ELEV	ATION TO			<u> </u>	┥	
7. THICKNES			- Y Y . Y				FOR BORING 8.7	87	<u>.</u>	
S. TOTAL OF			10.0 68,6	th. SIGH	TURE OF	INSPECT	OR .			
			CLASSIFICATION OF MATERIA	ALS	1 CORE	EOX OF	REMA	RKS	┪	
ELEVATION	OEPTH !	LEGEND	(Dearintum)	!	NECOV.	BOX OF SAMPLE NO.	(Drilling time, materials, etc.,	er hose, siepth of il significant)	1.	
-			(CL) CLAY w/silt, san	d 6	-	<u> </u>			╁,	
]	=		gravel v. moist med p	lastic		S-10	Splitspoon	2-2-3	- ⊨51	
]		1 1	red brown						E	
1] =	ii		!	ł	1 :	K(50-55)=4.5	ft./day	Е	
1	=	}					·		<u> </u>	
	=					S-11	Splitspoon	2-2-3	<u> </u>	
1			,	•		<u> </u>			-F 56	
}	58.6		 			1	K(56+58.6)=7	.4 ft./day	_E_58	
	P°•°=		Top 58.6			Run I	NX Core		E,	
	ļ <u>-</u> Ξ]	LIMESTONE - Badly fra			Box 1	RQD-07		E	
	1 =]	Ltdark grey, calcit	Ç e	90				E	
	ļ <u>-</u> =	;	healed fractures.) 30)		2.6	上	
•	=	1			j		K(58.6-68.6)		layE	
i	=	1			1	6.2		•	/ =	
1		1 1			100	Run Z	NA DOTE RUD	-07	<u> </u>	
J		1		•		Run 3	NX Core		— E°3.	
l]			80	Box 1	RQD-02			
i	68.6	}	307 (0 (2.1			╾╻ᄻ	
1	_=	1	BOH 68.6						上	
1	=	1	Water level not recommend dry after installing		_		<u> </u>		F	
1	[<u>-</u>	}	ing well.	EOHI CO	Ţ -	1	1		E	
1	Ī =	3				1			E	
ŀ	1 =	1							F	
	~=	‡			ļ	i i	1		F	
Í	=	1			1	1	ł		F	
l		}							<u>-</u>	
1	! =	∃.			1	1			E	
	<u> </u>	-				Ì	}		느	
1	=	⇉] [l	1	ļ		=	
1	=	1			1	1			F	
ļ		‡			İ				F	
1	=	7			1	1	\		Е	
ł) -	3	<u> </u>)	}	J		<u></u>	
1] =	3			1	1	Į.		╞	
	-	=	1				1		F.	
1		‡				-	ļ		F	
j) :	7	1			-			F	
1	~	3	[1				F	
1	-	3	1		1	1			E	
1	-	3				1	1		<u>-</u>	
1		Ⅎ.	}						E	
{	1 -	₫ .				1	(ᆫ	
	-	=			1					
1	1:	‡				1	1			
ł	-								F	
1		3	}		1		}		E	
ENC FOR	M 14 7 4				PROJEC		LANDFILL "C"	HOLE NO.		
ENG FOR	1270	PREVIO	STELLOSS ARE COSCLETE.		RCR	A-RAAP-	LANDFILL "C"	DH-3		

RANSLUCERT)

B-47

	HE D	5 4				
			10D			
		THE CILICAL				
		DF				
			Drote	clor PI		
			2 - 19 ^{ro}	ind surta	Yee	
		/ /	CLA	(50 i	hile	
		Z = Z		D FUSO	oint hise	CDIDE
DRY			7			
nale col	:					
dove s						
POSSIBLY Water Zo	Sealed					
Mater ZO	ne of A					
w berton	i e - s		Bend	onde se	al line	
or clay	į į į					
		===				
			· coar	se sand	filler	
			2"1	D. Well sc	reen	
				laguari a del el colores		
<u> - </u>		177				
58.6 To	P OF ROCK					
	<u> </u>		••• •			
		.]. , [
		1.				
						1
	The state of the s	aparet (aetae)); apareta	BOH-	<u>i</u>		
	The second secon		1			
	NO7]- To S	CALE			

WELL LOG

 PROJECT
 RADFORD

 CLIENT
 NUS

 Date Prepared
 7/31/80
 By G.F.S.

lt	****		OWNERCorps of Engineers
[]	SAMPLE INTERVAL	DESCRIPTION	WELL No. C-1
[]	111 C/17AG		LOCATION Site C - Solid Waste
	0	2122 21122	Landfill in use
l	411	Clay, silty, brown	TOPO SETTING
}			GROUND ELEV. 1836.78
ll .	711		
[l	1	Silty, clayey, some fine sand,	
[]	-41!	brown	DRILLING STARTED 7/31/80
? (5 — 7	DIOWI	
li 💮	* F4 !		DRILLING COMPLETED 8/1/80
11	_ - 		DRILLER R. A. Monroe
lł .	4 1		TYPE OF RIG C-40
	_ 1		
II.	1 1		WELL DATA
j)	7		HOLE DIAM.5" to 48 ft; 3" to 70 ft
	10 1	Same as above	TOTAL DEPTH 70 ft
!	-171		CASING DIAM. 2 in Timco PVC
JJ.	اال		CASING LENGTH 55 ft
11	7 1		SCREEN DIAM. 2 in
11	 	Sand, fine, silty, brown	SCREEN SETTING 55-70 ft
ll	411		SCREEN SETTING
[]		•	SCREEN SLOT & TYPE 010 PVC
	15 7		WELL STATUS Completed
<u> </u>	7		
^μ . ο			GROUT
_ {	411		TYPE OF GROUTNeat cement
π . Ξ		Sand grades to medium	GROUT DEPTHO-40 ft
i q	- 1	tour grower in measure	VOLUME 2.2 cu ft
	20 —	River Jack	TYPE OF PLUG Bentonite
₩ 5		ALVEL DECK	PLUG DEPTH 39-40_ft
	411		VOLUME 1 1b
DEPTH, IN FEET, BELOW LAND SURFACE	ا از		OF US AN USUS
=	7 H		DEVELOPMENT
# ₹	7,1	-	METHODAir
. B	25 —	Same as above	RATE 0.5 gpm
			LENGTH 60 min
H .	_		TEST DATA
11	_		STATIC DEPTH TO WATER 48.62
	7 1		DATE MEASURED 8/11/80
11	7_1		PUMPING DEPTH TO WATER
1]	30 —	Same as above	
1	-[~]	In and out of River Jack to	DURATION OF TEST
11	11	Top of Rock	PUMPING RATE
11		TOP OI MOCK	DATE OF TEST
	7 1		TYPE OF TEST
1	-	}	PUMP SETTING
ll .	35 — 🔀	Same as above	SPECIFIC CAPACITY
11	~~ 		FINAL PUMP CAPACITY
((<u> </u>	}	FINAL PUMP SETTING
11	71	[·	AVERAGE PUMPAGE
11	┥┃	1	
	-	Lost circulation (10-15 gpm)	WATER QUALITY
11	40	mar criediarion (10-13 dbm)	
}	40	•	
R			∦
1			<u> </u>
II.		B-31	<u> </u>

WELL LOG

RADFORD PROJECT. NUS CLIENT . By G.F.S. 7/31/80 Date Prepared.

SAMF INTER	PLE VAL	DESCRIPTION	OWNERCorps of Engineers WELL NoC-1 LOCATIONSite C - Solid Waste Landfil
40 7			in_use TOPO SETTING
45 -		Changed from 5" fishtail bit to 3" NX core barrel	DRILLING STARTED _7/31/80 DRILLING COMPLETED _8/1/80 DRILLER _ R. A. Monroe TYPE OF RIGC-40
-50	7 - 1	Top of Rock Water Table Limestone, soft, calcite, greenish	REMARKS
SURFACE 25			
DEPTH, IN FEET, BELOW LAND SURFACE		Same as above	
IN FEET, BE			
0EPTH,			
70		Same as above	
		Bottom of Hole	
1			
	1	•	
		B-32	

WELL LOG

INTE	APLE RVAL DESCRIPTION	OWNERCorps of Engineers
l ° I	Clay, silty, dark brown	TOPO SETTING
5	Silt, sandy, brown	DRILLING STARTED
10	Sand, fine, silty, brown	WELL DATA HOLE DIAM. 5" to 40 ft: 3" to 70 ft TOTAL DEPTH
URFACE 51	Sand grades into medium	SCREEN SETTING 55-70 ft SCREEN SLOT & TYPE .010 PVC WELL STATUS Completed
DEPTH, IN FEET, BELOW LAND SURFACE	Same as above	GROUT TYPE OF GROUT Neat cement GROUT DEPTH 0.40 ft VOLUME 2 cu ft TYPE OF PLUG Bentonite PLUG DEPTH 39-40 ft VOLUME 1 lb
DEPTH, IN	Same as above	DEVELOPMENT METHOD Air RATE 0.1 gpm LENGTH 31 min TEST DATA
30 —	Sand grades into coarse River Jack	STATIC DEPTH TO WATER 63.09 DATE MEASURED 8/12/80 PUMPING DEPTH TO WATER DURATION OF TEST PUMPING RATE
35	Same as above	DATE OF TEST TYPE OF TEST PUMP SETTING SPECIFIC CAPACITY
		FINAL PUMP CAPACITY FINAL PUMP SETTING AVERAGE PUMPAGE WATER QUALITY
40	Changed from 5" fishtail bit to to 3" NX core barrel	
	B-	33

WELL LOG

PROJECT RADFORD

CLIENT NUS

Date Prepared 7/30/80 By G.F.S.

	SAMPLE INTERVAL	DESCRIPTION	OWNERCorps of Engineers WELL NoC-2 LOCATIONSite C - Solid Waste
40		No recovery	Topo SETTING
	761		GROUND ELEV. 1805. 20.
1			4,44,4
	- 1 /2/		
45	T/A !		DRILLING STARTED
1 -3	-61 I		DRILLING COMPLETED 7/30/80
1	-61 I		DRILLER R. A. Monroe
1	- 1 /2		TYPE OF RIG C-40
	-19 I		
	- 1 /4		REMARKS
50	K/1	No recovery	REMARKS
	-121		
1	-121		
1		Lost circulation	
ש ש		'	
F 23	7/3		
B			
2 5	- [2]		
ک ل	+121		
- ₹	- 1/3		
₩ 60	- 2	No recovery	
1 2	-1/3		
	+//		
ž	<u>-121-₹</u>	Water Table	
DEPTH, IN FEET, BELOW LAND SURFACE	-1/2		
65	-12		
	1/2	1	
1	<u> 1</u> 21		
II.	3 /2	<u> </u>	
ŀ	7/3		
70	7/3	No recovery	
'0		Bottom of Hole	
H	11	<u> </u>	
N .	- 1 1		
li .	- 1		
11	-4 1	·	
1	4 l		
	41	•	
1] [
3]		
ıl .	_]	· ·	
li .	- ·	•	
 		. В-	34
		B*-	Y

WELL LOG

 PROJECT
 RADFORD

 CLIENT
 NUS

 Date Prepared
 7/29/80
 By _G_F_S_

SAMPLE INTERVAL	DESCRIPTION Silt, sandy, pieces of styrofoam, brown	Corps of Engineers WELL No
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Sand, fine to medium, silty, pieces of styrofoam, brown Same as above	WELL DATA HOLE DIAM. 5" to 20 ft: 3" to 70 ft TOTAL DEPTH
DEPTH, IN FEET, BELOW LAND SURFACE	Changed from 5" fishtail bit to 3" NX core barrel Trash	GROUT TYPE OF GROUT Neat cement GROUT DEPTH 0-40 ft VOLUME 1.2 cu ft TYPE OF PLUG Bentonite PLUG DEPTH 39-40 ft VOLUME 1 1b DEVELOPMENT
25 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Sand grades into coarse	METHOD Air RATE Dry LENGTH 5 min TEST DATA STATIC DEPTH TO WATER Dry OATE MEASURED 8/12/80 PUMPING DEPTH TO WATER DURATION OF TEST PUMPING RATE DATE DATE OF TEST
35		TYPE OF TEST PUMP SETTING SPECIFIC CAPACITY FINAL PUMP CAPACITY FINAL PUMP SETTING AVERAGE PUMPAGE WATER QUALITY
40 1/1	Same as above B-35	

WELL LOG

PROJECT RADFORD

CLIENT NUS

Date Prepared 7/30/80 By G.F.S.

SAMPLE		OWNER Corps of Engineers
INTERVAL	DESCRIPTION	LOCATION Site C - Solid Waste
40		Landfill in use TOPO SETTING
I -8		GROUND ELEV1819_22
-8	1	<u></u>
		DRILLING STARTED 7/29/80
45 —		DRILLING COMPLETED 7/29/80
	1	DRILLER R. A. Monroe
1 1	River Jack	TYPE OF RIG C-40
1 1/3		
-50	Same as above	REMARKS
	ballo ab above	
-[/]	Lost circulation (10-15 gpm)	
	1	
ال ال		
¥ 55		
5 +/		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
E 60	No recovery	
DEPTH, IN FEET, BELOW LAND SURFACE		
<u> </u>		
65		
	·	
	No recovery	
70	Bottom of Hole	
4	Ì	
4		
∥ - .		
∥ -	1	
4 1		
	•	
	B-36	
1 }	- · ·	<u> </u>

WELL LOG

PROJECT RADFORD

CLIENT NUS

Date Prepared 7/29/80 By G.F.S.

SAMPLE INTERVAL	DESCRIPTION	OWNER Corps of Engineers WELL No. C-4 LOCATION Site C - Solid Waste Landfill in use
-	Silt, clayey, brown	TOPO SETTING
5 — 2	Sand, fine, very silty, brown	DRILLING STARTED 7/29/80 DRILLING COMPLETED 7/29/80 DRILLER M. J. Dean TYPE OF RIG CME-75
10	Same as above	WELL DATA HOLE DIAM.5" to 27.5 ft; 3" to 70 ft TOTAL DEPTH
15 - 15	Same as above	SCREEN SETTING 55-70 ft SCREEN SLOT & TYPE .010 PVC WELL STATUS Completed
DEPTH, IN FEET, BELOW LAND SURFACE	Same as above	GROUT TYPE OF GROUT Neat cement GROUT DEPTH 0-40 ft VOLUME 1.5 cu ft TYPE OF PLUG Bentonite PLUG DEPTH 39-40 ft VOLUME 1 lb
# 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Same as above	DEVELOPMENT METHODAir RATEOlgpm LENGTH15 min
30 -	Changed from 5" fishtail bit to 3" NX core barrel	TEST DATA STATIC DEPTH TO WATER 54.96 DATE MEASURED 8/12/80 PUMPING DEPTH TO WATER DURATION OF TEST PUMPING RATE DATE OF TEST
35	In and out of River Jack to Top of Rock Same as above	TYPE OF TEST PUMP SETTING SPECIFIC CAPACITY FINAL PUMP CAPACITY FINAL PUMP SETTING AVERAGE PUMPAGE
	B-37	WATER QUALITY

		
	*	OWNER Corps of Engineers
SAMPLE		WELL No. C-4
INTERVAL	DESCRIPTION	LOCATION Site C - Solid Waste Landfill
		in use
40 7/1		
I - K/3		TOPO SETTING
. [2]		GROUND ELEV. 1824.61
1 7/1		
I [2].		
I +/21		DRILLING STARTED 7/29/80
l 45 — [/2]		DRILLING COMPLETED 7/29/80
45	1	DRILLING COMPLETED
i +/21	Top of Rock	DRILLER M. J. Dean
	Limestone, brecciated, gray	TYPE OF RIG
1 7/1	bimes come, biecolated, gray	
1 -1/2		
I	Lost Circulation (10-15 gpm)	1
I7//		REMARKS
50 -	· ·	
1 30 1/1		
1 7/1	Regained Circulation	
I -[//i		i
į Ki	j	
l - ₹∕/1		
1 1/2		<u> </u>
₹ 55 - ▼	Water Table	
l €	Same as above	
I		
' ä +//		
3 1/2		
. 3 7/3		
₂		
6 //		
DEPTH, IN FEET, BELOW LAND SURFACE		
<u> </u>	Lost circulation (10-15 gpm)	
11 15 12 12 1	bose circulation (10-15 gpm)	
≝		
∥ ≝ 1/4		
‼ ≊ 7⁄/		
= -[/]		
H F [2]	<u>}</u>	
1		
∥ • -//	}	
II 1∕1		
II		
∥ <i>_</i> 1 ∕2/		<u> </u>
\$ * 21		
+\/1	Same as above	
70 - 		
\mathbb{H} \sim \mathbb{T} \mathbb{T}	Bottom of Hole	
}		
ו ב		
II T		
∥ - 1 1	1	<u> </u>
1	1	<u> </u>
ון דו		
∥ → 1	i	
11 I I		
11 TI		
11		
ן ⊢ ן		
<u>,</u> [] [
∥ ` → '	1	#
II		
ll.		1
14		
ii .	B-38	
II.	D-30	
11		11

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERS & CHEMIST "OVER ONE HUNDRED YEARS OF SERVICE"

DATE November, 1987 Report No.0-62084 Client: Hercules, Inc. Radford Army Ammunition Plant, Radford, Virginia Project: WCT-A Total Deptn: 68.2 ft. Elevation: Location: See Location Plan Boring No.: Hollow Stem Auger Driller: Started: 10/5/87 Type of Soring: Completed: 10/5/87 W. Simmons DESCRIPTION OF MATERIALS Samole REMARKS C.U Death Eievalion (Cinnelfication) (Feet) Blows GROUNDWATER DATA Subsurface water encountered at: -67.8 ft. below ground surface No sampling conducted see WC1-B (new) for at 1:50 p.m. on 10/5/87 subsurface conditions -62.0 ft. below ground surface at 2:45 p.m. on 10/13/87 20.0 30.0 Boring terminated at 68.2 ft.

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES • ENGINEERS & CHEMISTOVER ONE HUNDRED YEARS OF SERVICE"

Report No.0-62084 DATE November, 1987									
	rcules,	Inc.							
Project: Rac	dford Ar	my Ammunition Plant	, Radfor	rd, Virginia					
Boring No.: W			ft.	Elevation:			Locati	on:	See Location Plan
Type of Borin	g: Ho	llow Stem Auger	Started	10/20/87	Compl	leted:]			riller: W. Simmons
Elevation	Depin 0.0		TION OF M Classificatio			Sample Blows	Sample Depth (Feet)	% Core Recovery	REMARKS
		Auger refusal at 73 Highly fractured do healed joints	ted, sed	e WC1-B for sul	osur-	Biows	73.0 78.0 80.0 83.0	15.0	GROUNDWATER DATA Subsurface water encountered at: -68.7 ft. below ground surface at 10:20 a.m. on 10/23/87 -68.3 ft. below ground surface at 9:30 a.m. on 11/6/87 -68.5 ft. below ground surface at 11:30 a.m. on 11/9/87 RQD = 0 RQD = 0 RQD = 0 RQD = 0

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES • ENGINEERS & CHEMIST "OVER ONE HUNDRED YEARS OF SERVICE"

Report No.0	-62084	188:	I				DATE November, 1987
	rcules,	Inc.					1,00
		rmy Ammunition Plant, Radford, Virginia					
Boring No.:	WCI-A ((new) Total Depth: 100.0 ft. Elevation:			Locati	on:	See Location Plan
Type of Boris	ng: Ko	ollow Stem Auger Started: 10/20/87	Comp	leted:]	1/2/87	Dril	ler: W. Simmons
Elevation	95.0	DESCRIPTION OF MATERIALS (Classification)		Sample Blows	Sample Depth (Feet)	% Care Recovery	REMARKS
			:		96.5	4	GROUNDWATER DATA
;						28.6	RQD - 0
	100.0				100.0		
		Boring terminated at 100.0 ft.					
	=				ļ		
]]	
	1111[1111	·				.	
	=						
						-	•
		·			Í		
l	1111						
ľ	╡				,	}	
ļ							
	= =	•					
	=				}		
	Ξ						
	=						
	二						_
	= =	•					
]						}	
ļ	3		•	:			
	E						
	╛						
	matandanlaa						
1	ヸ				ĺ		
	ヸ						
	_ =					1	

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES • ENGINEERS & CHEMISTS
"OVER ONE HUNDRED YEARS OF SERVICE" -

ort No.0-62084

DATE November, 1987

oring No.:	WCl_R	Total Depth: 86.0 ft. Elevation:		Locati	<u></u>	See Location Plan
rpe of Boring			ompleted:	10/7/B		riller: W. Simmons
Elevation	6.6	DESCRIPTION OF MATERIALS (Cleasification)	Sample Blows	Semple Depth (Feet)	% Care Recovery	REMARKS
	Lun	Loose orange to green brown medium to fine sandy SILT, trace clay, debris (ML)	333	1.5		GROUNDWATER DATA
			268	4.5		Subsurface water encountered at -68.5 ft. below ground surface at 1:20 p.m. on 10/6/87
	7.0	-FILL	_	6.0		
		Medium-stiff red brown silty CLAY some fine sand (CL)	33 ₄	8.5		
				10.0		
	1	to	⁵ 8 ₁₃	13.5		
	1111	Medium dense orange brown silty medium to SAND, manganese stairs.	fine	15.0		·
	1111		4711	18.5		
	unti				<u> </u>	
		·	5813	23.5		
			<u>.</u>			
	ulu		⁵⁹ 12	28.5 30.0		
	արարույնույնու	to		33.5		
	11		468	35.0		
	耳			}		ļ

Client:

BORING LOG

Hercules, Inc.

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES • ENGINEERS & CHEMISTS
"OVER ONE HUNDRED YEARS OF SERVICE"

DATE November, 1987

Report No.0 - 62084

Radford Army Ammunition Plant, Radford, Virginia

Boring No.: WC1-B	Total Depth: 86.0 1	t. Elevation:		Locati	on:	See Location Plan		
ype of Baring:	Hollow Stem Auger		mpleted:	10/7	/87 Drille	r: W. Simmons		
Elevation Depth 40.0		ON OF MATERIALS	Sample Blows	Sample Depth (Feet)	% Core Recovery	REMARKS		
61.5	Medium dense brown of to		789 789 71311	43.5 45.0 48.5 50.0 53.5 55.0		GROUNDWATER DATA		
69.2	Medium stiff tan to k to fine sand (ML) -RESIDU Auger refusal at 69.2 Highly fractured dolo joints	rown SILT, trace medium	*24	63.5 65.0 68.5 69.2	6.6	*Weight of Hammer *30/1 inch ** No Recovery RQD = 0		

Page 3 of 3

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES • ENGINEERS & CHEMIST:
"OVER ONE HUNDRED YEARS OF SERVICE"

an No.0-62084 DATE November, 1987 Hercules, Inc. Radford Army Ammunition Plant, Radford, Virginia Project. Total Depth: 86.0 ft. Elevation: Boring No.: Location: See Location Plan Hollow Stem Auger Started: 10/5/87 Type of Boring: Completed: 10/7/87 Driller: W. Simmons DESCRIPTION OF MATERIALS % Core Elevation 80.0° REMARKS (Classification) Recover Blows (Feet) GROUNDWATER DATA 81.0 *50% Recovery R00 = 0*No Recovery 86.0 Boring terminated at 86.0 ft.

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES • ENGINEERS & CHEMISTS
"OVER ONE HUNDRED YEARS OF SERVICE"

Report No.0-62084 DATE November, 1987 Hercules, Inc. Radford Army Ammunition Plant, Radford, Virginia Boring No.: WCT B (new) Total Depth: 79.3 ft. Elevation: Location: See Location Plan Hollow Stem Auger Type of Boring: Started: 10/7/87 Orlier; Completed: 10/9/87 W. Simmons DESCRIPTION OF MATERIALS % Core Flevelion REMARKS (Classification) Recovery (Feet) GROUNDWATER DATA No sampling conducted see WC1-B for subsurface conditions Subsurface water encountered at: -71.4 ft. below ground surface at 10:50 a.m. on 10/8/87 -66.8 ft. below ground surface at 12:20 p.m. on 10/8/87 -68.0 ft. below ground surface at 2:50 p.m. on 10/13/87 -64.3 ft. below ground surface at 2:00 p.m. on 10/30/87 -68.5 ft. below ground surface at 9:30 a.m. on 11/6/87 -68.6 ft. below ground surface at 11:30 a.m. on 11/9/87 68,4 ana 232 20.0 71.8 71.8 Highly fractured dolomite with calcite healed doints 25.0 RQD = 0 75.8 54.8 RQD = 079. 79.3 Boring terminated at 79.3

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERS & CHEMIST "OVER ONE HUNDRED YEARS OF SERVICE"

Report No.0 - 62084 DATE November, 1987 Hercules, Inc. Client: Radford Army Ammunition Plant, Radford, Virginia Project: 82.0 ft. Elevation: Total Depth: See Location Plan Boring No.: Location: Hollow Stem Auger Started: 10/13/87 Type of Boring: Completed: 10/13/87 Driller: W. Simmons % Core DESCRIPTION OF MATERIALS Depth REMARKS Elevation Den:n Recovery (Clussification) GROUNDWATER DATA No sampling conducted, see WC2-B for subsurface conditions Subsurface water encountered at: -62.0 ft. below ground surface at 1:50 p.m. on 10/13/87 -60.7 ft. below ground surface at 3:30 p.m. on 10/14/87 -62.5 ft. below ground surface at 2:10 p.m. on 10/30/87 -61.8 ft. below ground surface at 9:30 a.m. on 11/6/87 -61.9 ft. below ground surface at 10:00 a.m. on 11/9/87 72.0 Auger Refusal 72.0 Highly fractured dolomite with calcite healed joints No Recovery 77.0 10.0 ROD = 0 82.0 82.0 Boring terminated at 82.0 ft.

FROEHLING & ROBERTSON, INC. "OVER ONE HUNDRED YEARS OF SERVICE"

Report No.0-62084 DATE November, 1987 Hercules. Inc. Client: Radford Army Ammunition Plant, Radford, Virginia Project. Total Depth: 104.0 ft. Elevation: See Location Plan Location: Boring Na.: WC2-B Hollow Stem Auger Started: 10/14/87 10/19/87 Oriller: W. Simmons Type of Boring: Completed: DESCRIPTION OF MATERIALS % Core REMARKS Death Elevation O.O (Classification) Recover Blows (Feet) GROUNDWATER DATA Stiff brown clayey SILT, furnace slag and 1.5 477 debris (ML) Subsurface water encountered at: 3.0 -85.8 ft. below ground surface 4.5 at 2:14 p.m. on 10/19/87 3₃₈ 6.0 -52.2 ft. below ground surface at 2:15 p.m. on 10/30/87 8.5 -51.9 ft. below ground surface 1089 at 9:30 a.m. on 11/6/87 10.0 -52.0 ft. below ground surface at 10:00 a.m. on 11/9/87 13.5 ⁵611 15.0 18.5 Medium dense orange-brown medium-fine sandy 7₁₀₁₂ SILT, debris (ML) 20.0 23.5 12119 25.0 28.5 13₆₇ 30.0 -FILL-31.5 -Loose yellow brown silty fine SAND, trace manganese stains (ML) 33.5 10109 35.0 38.5 33

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES . ENGINEERS & CHEMISTS "OVER ONE HUNDRED YEARS OF SERVICE"

ort No.0-62084 DATE November, 1987 Hercules. Inc. Liteat Radford Army Ammunition Plant, Radford, Virginia WC2-B Total Depth: 104.0 ft. Elevation: Location: See Location Plan Boring No.: Hollow Stem Auger Started: 10/14/87 Driller: Type of Boring Completed: 10/19/87 W. Simmons DESCRIPTION OF MATERIALS % Core Elevation REMARKS Depth (Classification) Recover 40 n Blows (Feet) GROUNDWATER DATA -to-43.5 223 Soft yellow brown to gray SILT, trace clay 45.0 and coarse to fine sand sized particles 48.5 -ALLUYIUM-50.0 51.5 53.5 *Weight of RODS 55.0 Very dense gray weathered rock g: [8 *30/3*

Page 3 of 3 FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERS & CHEMISTS "OVER ONE HUNDRED YEARS OF SERVICE"

DATE November, 1987

Report No.0-62084 Hercules, Inc. Client: Radford Army Ammunition Plant, Radford, Virginia Project. WC2-B 104.0 ft Elevation: Total Depth: Location: See Location Plan Boring No.: Hollow Stem Auger Started: 17/14/87 Completed: Dritter: W. Simmons Type of Boring: 1/19/87 DESCRIPTION OF MATERIALS % Core Depth Semple REMARKS Elevation 80.00 (Classification) Recovery Blows GROUNDWATER DATA Very dense gray weathered rock 33:5 *30/2* Boring terminated at 104.0 ft.

oject: Radford Army Ammunition Plant	Driller: W. Simmons	WELL No.
ocation: Radford, Virginia	Inspector: Smith	, we be 110.
Hercules, Inc.	Date Installed: 10/9/87	WC1-B (new)
reen Description: 0.010" slot. 2.0" I.D. Teflon Screen	Sand Size: D (10) = 0.45-0.55π
ser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size:	inch/NX
weathered rock encountered at 71.8 ft. Water loss noted during coring operations Subsurface water encountered at: -71.4 ft. below ground surface at 10:50 a.m. on 10/8/87 -66.8 ft. below ground surface at 12:20 a.m. on 10/8/87 -68.0 ft. below ground surface at 2:50 p.m.	Casing Stickup (ft.) = Elev. = Riser Stickup (ft.) = Elev. = Ground Elev. = Depth to Bentonite (f Elev. Depth to Sand Filter(f Elev. Depth to Well Bottom Elev. Depth of Hole (ft.)	2.1 t.)= 57.0* = 62.0* =

Project: Radford Army Ammunition Plant	Driller: W. Simmons	WELL No.
Location: Radford, Virginia	Inspector: Smith	WELL No.
Client: Hercules, Inc.	Date Installed: 10/19/87	WC2-B
Screen Description: 0.010" slot. 2.0" I.D. Teflon Screen	Sand Size: D (10)	= 0.45 - 0.55r
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size; 6	
Subsurface Conditions Summary Weathered rock encountered at 61.0 ft. Rock lenses encountered at 95.0 ft. Subsurface water encountered at: -85.8 ft. below ground surface at 2:14 p.m. on 10/19/87 -52.2 ft. below ground surface at 2:15 p.m. on 10/30/87 -51.9 ft. below ground surface at 9:30 a.m. on 11/6/87 -52.0 ft. below ground surface at 10:00 a.m. on 11/9/87	Casing Stickup (ft.)= Blev. = Riser Stickup (ft.) = Elev. = Ground Elev.= Depth to Bentonite (ft Elev. Depth to Sand Filter(ft Elev.	1.9 - - - - - - - - - -
	Depth to Well Bottom	(ft.)= <u>102.5*</u> =
Actual measurement not obtainable	Depth of Hole (ft.)	=_104_0

30.0_

ort No. 0-62084 DATE May 1987 Hercules Inc. Chent: Radford Army Ammunition Plant Radford, Virginia Location: See Location Plan WC2-1 Total Depth: 30.0 ft. Elevation: Boring No.: 4/2/87 Driller: W. Simmons Started: 4/1/87 Type of Boring: Hollow Stern Auger Completed: DESCRIPTION OF MATERIALS % Care Elevation Depth Depth REMARKS (Cinadification) Recover Blows (Feet) 0.0 GROUNDWATER DATA 1.5 Dense yellow brown silty medium to fine SAND, 102430 trace fine augular gravel (SM) 3.0 Boring dry at 3:30 p.m. on April 1, 1987 4.5 71222 to 6.0 Dense tan to gray brown medium to fine SAND, 8.5 223 little coarse angular gravel, trace silt (SP-SM) 10.0 13.5 ³⁸38 15.0 -RESIDUUM-18.5 44* 19.3 *50/3* Subsurface water at 22.8 ft. at 9:45 A.M., April 2, 1987 23.5 23.9 *50/4*

28.5

30.0

50/3

3548.

Boring terminated at 30.0 ft.

Report No.	Q-6208	4	18	31		DATE May 1987				
	ercules					-				
Project: Radford Army Ammunition Plant Radford, Virginia										
Baring No.:	WC2-2	Total Depth: 46.0 ft. Elevation:		Locati	on: See	Location Plan	_			
Type of Boris	e: Hollo	w Stem Auger Started: 4/2/87 Com	pieted;	4/6/87		Priller: W. Simmons				
Elevation	Depth D_0	DESCRIPTION OF MATERIALS (Classification)	Sample Blows	Sample Depth (Feet)	% Core Recovery	REMARKS				
	anduntuntuntuntuntuntuntuntuntuntuntuntuntu	Auger refusal at 34.0 ft. Auger refusal at 34.0 ft. Hard medium to light gray dolomite, vuggy, fractured, with occational calcareous streaks and shaley intervals		34.0	36.7	RQD = 11				

port No. 0-62084 DATE May 1987 Hercules Inc. پlient: Radford Army Ammunition Plant Project: Radford, Virginia 46.0 ft. Location: See Location Plan Boring No.: WC2-2 Total Depth: Elevation: .4/2/87 4/6/87 Driller: W. Simmons Started: Type of Boring: Hollow Stem Auger Campleted: DESCRIPTION OF MATERIALS **%** Core Depth Sample REMARKS Depin (Classification) Recevery (Feet) Riows GROUNDWATER DATA 14.2 ROD = 0WC2-2 Continued 14.6 RQD = 0 46.0 46.Q Boring terminated at 46.0 ft.

Report No.	<u>0-6208</u> 4	4			121	1		DATE	May 1987	
Client: He	ercules	Inc.		·				· 		
Project: R	adford /	Army Ammunition		Radfo	ord, V	¬;·				
Boring No.:		Total Depth: 63.5			<u></u>				ion Plan	<u> </u>
Type of Borio	e Hollo	w Stem Auger	Started: 4/6/87	Comp	teted;	4/6/87 Sampre	T - T	iller: W.	Simmons	
Elavation	Depth D.D.		ION OF MATERIALS		Sample Blows	Depth (Feet)	% Core Recovery		REMARKS	
		No sampling conducts subsurface condition	ns		-				GROUNDWATER	DATA
	materite	Hard medium to ligh fractured, with occ streaks and shaley	t gray dolomite, vu asional calcareous	9gy .		38.5	35.8	RQD	- 0	·

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERING/CHEMICAL *ONE HUNDRED YEARS OF SERVICE*

DATE May 1987

ort No. 0-62084 Hercules Inc. _ .ent; Project: Radford Army Ammunition Plant Radford, Virginia Boring No.: WC2-3 Total Depth: 63.5 ft. Elevation: Location: See Location Plan Driller: W. Simmons Staned: Type of Boring: Hollow Stem Auger 4/6/87 Completed: 4/6/87 DESCRIPTION OF MATERIALS % Core REMARKS Elevation Sample Deptn (Classification) (Feet) Blows GROUNDWATER DATA 15.0 RQD = 0 WC2-3 continued 43.5 13.3 ROD = 0 48.5 15.0 RQD = 053.5 20.0 ROD = 058.5 21.7 RQD = 063.5 63.5 Boring terminated at 63.5 ft.

DATE May 1987 Report No. 0-62084 Hercules Inc. Client: Radford Army Ammunition Plant Project: Radford, Virginia Total Depth: 29_5 Location: See Location Plan ft. Elevation: Boring No.: WC3-1 Driller: Started: 4/21/87 Type of Boring: Hollow Stem Auger Completed: 4/21/87 D. Fralin DESCRIPTION OF MATERIALS % Core REMARKS Elevation Depth Recovery (Classification) Blows (Feet) GROUNDWATER DATA 1.5 23, Loose mottled fine sandy SILT, trace little 3.0 clay (ML) 4.5 235 6.0 -to-8.5 ⁵11₁₄ Medium dense red brown to brown medium to 10.0 fine sandy SILT, trace clay and coarse sand (ML) 13.5 46₈ Subsurface water at 13.8 ft. 15,0 at 13.8 ft. at 10:35 p.m. April 21, 1987 18.5 *Weight of hammer to 20.0 drive spoon 18 inches -RESIDUUM-23.5 *30/1" 29,5-Boring terminated at 29.5 ft.

FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES + ENGINEERING/CHEMICAL
TONE HUNDRED YEARS OF SERVICE

epon No.									DATE	May 198/	<u>, </u>
lient: He	ercules	Inc							•		
Project: R	adford .	Army Ammunit		· ·	Radford	d, Vi					
Boring No.:	WC3-2	Total Depth:	45.0 ft.	Elevation: -						tion Plan	
Type of Borin	e: Hollo	w Stem Auger	Started	4/29/87	Complete	ed:	4/29	/87 0	riller;	D. Fralin	
Elevation	Depth 0.0	DE	SCRIPTION OF M (Classification			ample lows	Sample Depth (Feet)	% Core Recovery		REMA	1KS
	111									GROUNDWAT	ER DATA
	1	No sampling con subsurface cond		e WC3-1 for							
						:					
_					-						
i	liitl									•	
	tun			,				:		•	
	1111							:			
	1111								·		
	1111										
	II										
							-				
	1111										
	1111										
					•						
!	111										
	! =	Boring terminat	ed at 45.0	ft. ,							

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES . ENGINEERING/CHEMICAL ONE HUNDRED YEARS OF SERVICE"

DATE May 1987

Report No. 0-62084 Hercules Inc. Chent: Radford Army Ammunition Plant Radford, Virginia Project: ft. Elevation: Boring No.: WC4-1 Total Depth: 32.5 Location: See Location Plan ------3/11/87 3/11/87 Type of Boring: Hollow Stem Auger Started: Completed: Driller: D. Fralin DESCRIPTION OF MATERIALS % Core Elevation Depth 0.0 REMARKS (Classification) Recovery Blows (Feet) GROUNDWATER DATA Medium dense yellow brown silty coarse to fine 1.5 SAND, trace fine gravel and clay (SM) 3.0 4.5 cobbles encountered at 8.5 ft. 6.0 cobbles encountered at 13.5 ft. 8.5 Subsurface water at 8.5 ft. 10₅₈ at 12:55 p.m., March 11, 1987 Dense to medium dense yellow brown to gray 10.0 clayey coarse to fine SAND (SC) Subsurface water at 12.9 ft. Cobbles encountered at 18.5 ft. at 11:00 p.m., March 13, 1987 13.5 22301 Medium dense black to brown silty medium to 15.0 fine SAND (SM) to 18.5 Dense gray fine GRAVEL, some medium to 67▲ fine sand, trace silt (GP) 20.0 23.5 -ALLUVIUM-1511 25.0 28.5 12122 30.0 32.5 Boring terminated at 32.5 ft.

Paport No. (<u>O-6208</u> .	4	···.		18:	21		DATE	May 1987	
ent: He	ercules	Inc.						•		
		Army Ammunition		Radfe	ord, V					
Baring No.:	WC4-2	Total Depth: 77,0					- 1		ion Plan	
Type of Borin	ıs: Hollo	w Stem Auger	Started: 3/27/87	Comp	eleted:	3/27/87 Sample		riller:	D. Fralin	
Elevation	Depth 0_0		TON OF MATERIALS		Sample Blows	Depth (Feet)	% Core Recovery		REMARKS	
	Depin	No sampling conducts	CION OF MATERIALS Classification) ed, see WC4-1 for		Sample	Sample Depth	% Core			
				-		•				

Report No. 0-62084 DATE May 1987 Hercules Inc. Client Radford Army Ammunition Plant Project: Radford, Virginia Baring No.: WC4-2 Total Depth: 77.0 ft. Elevation: Location: See Location Plan Started: Driller: Type of Boring: Hollow Stem Auger Completed: 3/27/87 3/27/87 D. Fralin DESCRIPTION OF MATERIALS % Core Ceptn REMARKS (Classification) Recover Blows (Feet) GROUNDWATER DATA WC4-2 continued 64.5-64.5 Light gray to dark gray shaley limestone, vuggy and fractured; moderately well developed calcium crystals in vugs: probable 83.3 ROD = 20flow structure 69.5 37.5 RQD = 073.5 54.8 RQ0 = 077.0

FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERING/CHEMICAL TONE HUNDRED YEARS OF SERVICE

DATE May 1987 'eport No. 0-62084 Hercules Inc. Radford Army Ammunition Plant Radford, Virginia Project: Total Depth: 63.5 ft. Elevation: Location: See Location Plan Boring No.: WC4-3 Type of Boring: Hollow Stem Auger Started: Driller: Completed: 3/20/87 3/20/87 D. Fralin DESCRIPTION OF MATERIALS % Core Sample REMARKS Flevation (Classification) Recovery (Feet) Blows GROUNDWATER DATA No sampling conducted, see WC4-1 for subsurface conditions Cobbles encountered at 8.5 ft., 16.5 ft., and 30.0 ft. Subsurface water at 16.0 ft. at 2:00 p.m., March 20, 1987

Auger refusal at 40.0 ft.

Report No. 0-62084 DATE May 1987 Hercules Inc. Radford Army Ammunition Plant Radford, Virginia Project; Location: See Location Plan Total Depth: ft. Elevation: WC4-3 63.5 Boring No.: Type of Boring: Hollow Stem Auger 3/20/87 3/20/87 Driller: Started: Completed: D. Fralin DESCRIPTION OF MATERIALS Depth REMARKS Elevation Depth (Classification) Blows (Feet) Hard medium to dark gray dolomite, vuggy and GROUNDWATER DATA fractured with abundant calcareous infilling 10.0 RQD = 0of fractures, some with moderately well developed calcium crystals: numerous vertical fractures: some shale infill on fractures 45.0 and vugs; shaley streaks: probable flow structure: more calcareous bottom 5.0 ft. RQD = 27 100.0 50.0 100.0 RQD = 7255. 96.4 RQD = 88 58. 61.7 RQD = 3263. Boring terminated at 63.5 ft.

DATE sport No. 0-62084 May 1987 Hercules Inc. Radford Army Ammunition Plant Project: Radford, Virginia Total Depth: 38.8 Location: See Location Plan ft. Elevation: Boring No.: Driller: Started: Type of Boring: Hollow Stem Auger 4/13/B7 Completed: 4/13/87 D. Fralin DESCRIPTION OF MATERIALS % Care REMARKS Elevation Depth Samole Decin (Classification) (Feet) Blows Medium dense gray silty fine SAND, trace GROUNDWATER DATA 1.5 organics (SM) 555 3.0 -to-4.5 Medium dense yellow to orange brown coarse to fine sandy CLAY (CL) 6.0 8.5 5₇₈ -ALLUVIUM-10.0 Subsurface water at 10.3' at 11:20 a.m. on April 13, 1987 Dense yellow brown silty medium to fine SAND. 13.5 trace fine angular gravel. (SM) *30/5" 14.4 -to-18:5 Dense gray coarse to fine SAND, little silt *30/4" (SM) *30/4" 23.5 Decomposed rock fragments at depth *30/3* *30/3" -RESIDUUM-38.5 38.8 38.8 *30/3" Boring terminated at 38.8 ft.

Project: Radford Army Ammunition Plant Driller: Fralin WELL No. Location: Radford, Virginia Inspector: Smith WC1-2 Client: Hercules Inc. Date Installed: 3/18/87 Sand Size: D(10)= 0.45-0.55 mm Screen Description: 0.010" slot, 2.0" L.D. Teflon Screen Riser Description: 2.0" I.D. Teflon Riser and PVC Riser Bore/ Core Size: 6 inch/ NX Casing Stickup (ft.)= 2.6 ft. Elev. = Riser Stickup (ft.) = 2.0 ft.Elev. = Subsurface Conditions Summary Ground Elev.= Yellow Brown to Gray medium to fine sandy SILT, trace clay (SM) Depth to Bentonite (ft.)= 16.75 ft. Auger refusal at 24.0 ft. Elev. Depth to Sand Filter(ft.)=_ -----Elev. Depth to Well Bottom(ft.)= 45.75 ft. Elev. Depth of Hole (ft.) 48.75 ft.

- Maria Baran Bara

DATE May 1987 sport No. 0-62084

		Inc. Army Ammunition Plant Radf	ord, V	irginia	1	· · · · · · · · · · · · · · · · · · ·
Boring No.:	WCI-2	Total Depth: 50.0 ft. Elevation:				Location Plan
			pleted:	3/18/		iller: D. Fralin
Elevation	Depth 0.0	DESCRIPTION OF MATERIALS (Classification)	Sample Blows	Sample Depth (Feet)	% Care Recovery	REMARKS
		Stiff yellow brown clayey SILT, trace medium to fine sand (ML) manganese stains	5 ₅₆	1.5		GROUNDWATER DATA
	111	to .		3,0		
		Very loose mottled to gray medium to fine to fine sandy SILT, trace clay (ML)	² 48	4.5		
_	=	Increased fine gravel content at depth		6.0		
_	11111		2+	8.5 10.0		*12 inch spoon penetration o
	11111	•				•
	1111		*11	13.5		*weight of hammer
				15.0		
	<u> </u>	-RESIDUUM-		18.5		
	1111		113	20.0		•
	111	·				
	24.0		4+	23.5 24.4 25.0		*30/4 *
	1111	Medium hard to hard light gray to light brown limestone, with dolomitic and shaley intervals vuggy, fractured: occasional intervals of			65.0	RQD = 22
		dolomite and shale clasts in a calcareous matrix: moderately well developed calcium				
]1111	crystals in vugs: possible flow structure		30.0	90.0	RQD = 47
	1					•
	1711			35.0	/	•
					100.0	RQD * 55
		,		40.0		

Report No. 0-62084 DATE May 1987 Hercules Inc. Client: Radford Army Ammunition Plant Radford, Virginia Project: WCI-2 Location: See Location Plan Total Depth: 50.0 ft. Elevation: Boring No.: Dritter: Type of Boring: Hollow Stem Auger Started: 3/18/87 Completed: 3/18/87 D. Fralin % Care DESCRIPTION OF MATERIALS Depth REMARKS Elevation (Classification) Recovery Blows (Feet) 40.0 GROUNDWATER DATA 81.7 RQD = 42 MC1-2 Continued 45.0 81.7 RQD * 8 50.0 50.0 Boring terminated at 50.0 ft.

Project: Radford Army Ammunition Plant Location: Radford, Virginia Client: Hercules Inc.	Priller: Simmons Inspector: Smith Date Installed: 4/2/87	WELL No. WC2-1
Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen	Sand Size: D(10)=	
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size: 6	inch/ NX
Subsurface Conditions Summary Yellow Brown to Maroon silty medium to fine SAND (SM) to Gray medium to fine SAND, little coarse to fine gravel (SP) Cobbles encountered at; 3.0 ft., 5.0 ft., 15.0 ft., 17.0 ft.	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Ground Elev.= Depth to Bentonite (ft. Elev. Depth to Sand Filter(ft Elev.	3.0 ft.
Subsurface water at 22' 10" at 9:35 a 4/2/87	Depth to Well Bottom(Elev. Depth of Hole (fr.)	ft.)= 28.2 ft. = 30.0 ft.

		
Project: Radford Army Ammunition Plant	Driller: Simmons	WELL No.
Location: Radford, Virginia	Inspector: Smith	WC 2- 2
Client: Hercules Inc.	Date Installed: 4/6/87	
Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen	Sand Size: D(10)=	0,45-0,55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size: 6	inch/ NX
Subsurface Conditions Summary See WC2-1 for Conditions Cobbles encountered at; 5.0 ft., 8.0 ft., 22.0 ft. Auger refusal at 34.0 ft.	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Ground Elev.=	3.0 ft,
	Depth to Sand Filter(ft Elev. Depth to Well Bottom(Elev. Depth of Hole (ft.) Elev.	=

Project: Radford Army Ammunition Plant Location: Radford, Virginia Client: Hercules Inc. Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Driller: Simmons Inspector: Smith Date Installed: 4/8/87 Sand Size: D(10) Bore/ Core Size:	
Subsurface Conditions Summary See WC2-I for Conditions Cobbles encountered at; 5.0 ft., 22.0 ft. Auger refusal at 33.5 ft.	Riser Stickup (ft.) =	3.0 ft. t.)= 5.8 ft. = ft.)=

Project: Radford Army Ammunition Plant	Driller: Fralin	WELL No.
Location: Radford, Virginia	Inspector: Smith	WC3-1
Client: Hercules Inc.	Date Installed: 4/21/87	<u> </u>
Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen	Sand Size: D(10):	= 0.45-0.55 mm
Riser Description: 2.0" 1.D. Teflon Riser and PVC Riser	Bore/ Core Size:	6 inch/ NX
Subsurface Conditions Summary Yellow to Red Brown medium to fine sandy SILT (ML)	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Ground Elev.=	
Subsurface water at 13.8 ft. at 10:35 a 4/21 87	Depth to Bentonite (for Elev. Depth to Sand Filter(for Elev.	=
	Depth to Well Bottom Elev. Depth of Hole (ft.) Elev.	= 27.3 ft. = 29.5 ft.

Project: Radford Army Ammunition Plant	Priller: Fralin	WELL No.
Location: Radford, Virginia	Inspector: Smith	WC3-2
Client: Hercules Inc.	Date Installed: 4/30/87	1703-2
Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen	Sand Size; D(10)=	0.45-0.55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size:	inch/ NX
Subsurface Conditions Summary See WC3-I for Conditions Cobbles encountered at; 10,0 ft., 27,0 ft.	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Ground Elev.= Depth to Bentonite (ft Elev. Depth to Sand Filter(f Elev.	3.0 ft. .)=26.8 ft
	Depth to Well Bottom Elev. Depth of Hole (ft.)	(ft,)= 42,0 ft. = 45,0 ft.
	Elev,	=

Project: Radford Army Ammunition Plant Location: Radford, Virginia	Driller:		WELL No.
	Inspector		WC4-1
Client: Hercules Inc.	Date Inst	alled: 4/8/87	0.45.0.55
Screen Description: 0,010" slot, 2,0" I.D. Teflon Screen		Sand Size: D(10)=	
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser		Bore/ Core Size: 6	inch/ NX
Subsurface Conditions Summary Yellow Brown silty coarse to fine SAND/ coarse to fine dandy SILT (SM/ML)		Casing Stickup (ft.)=_ Elev. =_ Riser Stickup (ft.) =_ Elev. =_ Ground Elev.=_	
Graycoarse to fine SAND, some fine gravel (SP)		Depth to Bentonite (ft	.)= <u>8,4 ft.</u> =
Cobbles encountered at; 8.5 ft., 13.5 ft., 18.0 ft.	- 1	Depth to Sand Filter(fi	t.)= <u>17.2 ft.</u> =
Subsurface water at; 8.5 ft. at 12:55p 3/11/87 12.9 ft. at 11:00a 3/13/87			
		Depth to Well Bottom Elev. Depth of Hole (ft.) Elev.	(ft.)= <u>30.0 ft.</u> = = <u>32.5 ft.</u>

Project: Radford Army Ammunition Plant Driller: Fralin WELL No. Location: Radford, Virginia Inspector: Smith WC4-2 Client: Hercules Inc. Date Installed: 4/10/87 Screen Description: 0.010" slot, 2.0" l.D. Teflon Screen Sand Size: D(10)= 0.45-0.55 mm Riser Description: 2.0" I.D. Teflon Riser and PVC Riser Bore/ Core Size: 6 inch/ NX Casing Stickup (ft.)= 3.0 ft. Elev. = Riser Stickup (ft.) = 3.0 ft. Elev. = Subsurface Conditions Summary Ground Elev.= イベルライベル 三川三小三 See WC4-I for Conditions Cobbles encountered at; 8.5 ft., 15.0 ft. Depth to Bentonite (ft.)= 55.5 ft. Elev. Depth to Sand Filter(ft.)= Elev. Depth to Well Bottom(ft.)= 74.3 ft. Elev. Depth of Hole (ft.) = 77.5 ft.

Project: Radford Army Ammunition Plant Location: Radford, Virginia Client: Hercules Inc.	Driller: Fralin Inspector: Smith Date Installed: 3/24/87	WBLL No. WC4-3
Screen Description: 0.010" slot, 2.0" i.D. Teflon Screen	Sand Size: D(10)	= 0.45-0.55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size;	6 inch/ NX
Subsurface Conditions Summary See WC4-I for Conditions Cobbles encountered at; 8.5 ft., 16.5 ft., 30.0 ft.	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Cround Elev.= Depth to Bentonite (for Elev.) Depth to Sand Filter (for Elev.) Depth to Well Botton Elev. Depth of Hole (ft.) Elev.	3,0 ft.

Project: Radford Army Ammunition Plant Location: Radford, Virginia Client: Hercules Inc. Screen Description: 0.010" slot, 2.0" i.D. Teflon Screen	Driller: Fralin Inspector: Smith Date Installed: 4/13/87 Sand Size: D(10)=	WELL No. 9B 0.45-0.55 mm
Riser Description: 2.0" I.D. Teflon Riser and PVC Riser	Bore/ Core Size: 6	inch/ NX
Subsurface Conditions Summary Gray coarse to fine SAND, little silt (SM) Subsurface water at 10.3 ft. at 11:20a 4/13/87	Casing Stickup (ft.)= Elev. = Riser Stickup (ft.) = Elev. = Cround Elev.= Depth to Bentonite (ft. Elev. Depth to Sand Filter(ft. Elev. Depth to Well Bottom(2.2 ft.)= =
	Depth of Hole (ft.)	= 39.3 ft,

DRILLING LOG

ROJECT -	CT RAAP 81-26-8251-81		DATE 6 April 81		
OCATION Background well southwest			DRILLERS '	Smithson, Hodd	inott, Craig
of site 4.	May be	contaminated from old	Gates_(1c		
RILL RIG	Acker	POC spill. r II w/4 in.	BORE HOLE	_ MW-1	
continuous	flight a	auger	TD - 13 f	t	
S	AMPLE		24 hr - la	el initial - 1	0 ft
	YPE LOWS		,		
	ER 6 IN	DESCRIPTION		REMAI	RKS
		Reddish brown gravely (t - t in) wet	clay	3.75 ft of concrete grout	8 ft of 2 in ID, Schedule
					40, PVC Casing
7	:		-	1.5 ft of	
				Bentonite	
5 ft	:		·	7.5 ft of sand pack	
-		Brown gravely clay -			5 ft of slotted
-		POL smell - No. 2 fuel very strong	ioil		2 in ID PVC screen
10 ft	▼				
	•	Gravel layer (1-14 in Large cobbles at 12 f very difficult drilli	t		
		Refusal TD 13 ft (Riverjack)			Depth of well 13 ft
15 ft	•		•		

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

P!	ROJECT OCATION	RAAP 81-	26-8251-81 rth end of lagoon	DATE	6 Apr 81	oddinott.
		ext to Butane storage tanks (4941) Craig, C				
	RILL RI	G Acke	r II w/4 in auger	BORE HOLE	MW-2 TD = 33 ft water level	
	DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	-	initial - wet 24 hrs - wet pro	
	_		Light brown clayey s gravels (% - 1 in) m ramp		2 ft of concrete grout	20 ft of
	_ _ _				9 ft of Bentonite	schedule 40, 2 in ID PVC
	5 <u>ft</u>		Gravely clay (GC) da	mp	-	
	10 <u>ft</u>		Same material Getting wetter		21 ft of sand pack	
	-					

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECTRAAP 81-26-8251-81	DATE 6 Apr 81
LOCATION Site 4 Northeast of lagoon	DRILLERS Smithson, Hoddinott,
next to Butane storage tanks (4941)	Craig, Gates (logger)
DRILL RIG Acker II w/4 in continuous	BORE HOLE MW-2

Liight a				
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REM	ARKS
		Same material, getting wetter	·	
20 ft				10 ft of slotted, schedule 40, 2 in ID PVC screen
- -		Very wet but no free flowing water - hole may be sealed with wet clay NOTE: It is expected that water will infiltrate the well during a wetter season		
25 ft				
-		Elbrook FM (weathered) clay residuum, light and r gray		
_				5 ft of
30 ft	<u> </u>	hard drilling (5000 PSI) Elbrook	Dolomite	trap

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

PROJECT	RAAP 81-2	6-8251-81	DATE 6 Apr 81		
	LOCATION Site 4 NE of lagoon			Smithson, Ho	ddinott,
		inks (4941)	DRILLERS Craig, Gates	(logger)	
DRILL R	IG Acker	: II, w/ 4 in continuou	BORE HOLE	MW-2	
		nt auger			
	SAMPLE TYPE				
DEPTH	BLOWS PER 6 IN.	DESCRIPTION		REMAR	iks
					Trap
_	1		1		
-	1 '				<u> </u>
	 -	TD 33 ft Elbrook Dol	omite		
-	-	Refusal (+5000 PSI)			
35 ft	-		i		
_	4				
_	_		-	•	
_			- 1		
_			j		
40 ft					
-	1 .		Ì		
-	1	,			
-	-{				
-	-		j		
_	4				
45 ft	<u> </u>				

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

ΡI	PROJECT RAAP 81-26-8251-81			DATE -	6 Apr 81	
L	OCATION Site 4 North of lagoon			DRILLERS	Smithson, He	oddinott,
-	next to building 4909-1			Craig, Gates	(logger)	
D	RILL RI	6	II w/ 4 in	BORE HOLE		<u> </u>
•	continuous flight auger			ini:	= 25 ft ial - 16 ft	
	S.C.D.T.L	SAMPLE TYPE BLOWS	ACCOLUTION		0.00	ID.
	DEPTH	PER 6 IN		·		ARKS
			Yellowish brown sil with small gravels		4.5 ft of concrete grout	
	_					12 ft of schedule 40, 2 in
	5 ft		Same material		4.25 ft bentonite	· ID PVC casing
						·
				•		
	_					
	10 ft	мв 10-12	Dark brown clay - w damp	very plastic,	8.75 ft sand pack	
						screen

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

				•	•	
P	PROJECT RAAP 81-26-8251-81			DATE 6	April 81	
L	OCATION	Site 4	DRILLERS	Smithson, Ho	ddinott, Craig	
		building		Gates (log		·
ח	RILL RI	G Acke	r II, w/4 in	BORE HOLE	MW-3	
_		ous flight	auger	50,10	•	
		SAMP LE TYPE				·
		BLOWS			ber	4040
-	DEPTH	PER 6 IN		-	REM	ARKS
	 	₩	Same material - easy	drilling		
				·		
	-	1				9 ft of slotted.
	_	4	Light grayish brown	clay	Cand made	slotted, schedule 40;
	_		residuum with chunks chips - Elbrook FM	of dolomite	Sand pack	2 in ID PVC
	20 ft		CHIPS - EIDIOOK PM			screen
	20 10					
		-				
	_		Gray ground up rock	cuttings		Sediment trap
		·	coming to surface			
	-				Depth of t	ell 23 feet
	ļ <u> </u>	1			Fal:	lback
	25 ft	<u> </u>		•		
] .	25 ft TD Refusal Elbrook Dolon	ite		
	-	1				:
	_	-	·			
	l _	j				
	-]				
	-	1				
	30 ft	1		•	I	

HSE-ES Form 78, 1 Jun 80

DRILLING LOG

Pi	PROJECTRAAP 81-26-8251-81			DATE -	- 6 April 9	
L	OCATION Site 4, northwest of lagoon			DRILLERS	Smithson, I	loddinott
b	etween r	oad & bui	lding or 1600	Craig, G	atew (logger	:)
וח	RILL RI	Acker	II w/ 4in continuous	BORE HOLE	MW 4	
		flight	Auger	DONE HOLL	TD=20 ft	·
1		SAMPLE			water leve.	(-
		TYPE BLOWS			initial- 11. 24 hr 10'	25 ft. 9"
	DEPTH	PER 6 IN	DESCRIPTION		REM	ARKS
	_		Reddish brown, silt tight, dry	y clay-	concrete grout	9 ft of schedule 40,
	_			•	Bentonite :	2 in. ID, PVC casing
ļ					18 ft of sand pack	
	5 ft.	МВ				
. !	_	3–10	•		(may have a due to blo	void at depti kage)
	_					}
	10 ft		same material			9 ft of slot- ted schedule
		₩.		· ·		40, 2 in ID PVC screen
	 -					
] –	}				<u> </u>
	 15 ft	,	chatter in drill stem terial getting very we			
	15 ft	·	rerial Section Asia As	:L.		

HSE-ES Form 78, 1 Jun 80

US ARMY ENVIRONMENTAL HYGIENE AGENCY
Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

PROJECT RAAP 81-26-8251-81	DATE 6 April 81	
	DRILLERS Smithson, Hoddinott	
between road & building or 1600	Craig, Gates (logger)	
DRILL RIG Acker II, w/ 4 in continuous	BORE HOLE MW 4	

			,	_
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION	REMARKS	
		-	screen	
_		water surged up drillstem difficult drilling (5000 psi)	sediment tra	P
20 ft		TD 20 ft weathered Elbrook Dolomite FM	Depth of well 20 ft	1
_				
2 <u>5</u> ft		,		
-				
30 ft				

Drilling Log

Well Humber	<u>P-1</u>		<u> </u>
Client <u>Co</u> well Locati Driller/Com Drilling Me Sample Type Surface Ele Casing Mate			ford AAP Project No. 00-0008-01 k farm - POL area M Hole Diameter Nominal 4" Date(s) Drilled 2/4 - 7/83 Ample Interval spoon 5'* No. Samples Retained 6 asing Top Elevation 1779.77' Total Well Depth 33 PVC ** Cased Interval (s) 0-18' (+2' stickup) Grouted Interval 0 -117
Screening 1	laterial ar terial and tatic Water t Method	nd Size <u>2</u> Size <u>No.</u> r <u>12.58'</u> air	Grouted Interval 0 - 17 "ID PVC: 0.010" slots ** Screened Interval(s) 18 - 33 I sand Packed Interval 17 - 33 *** Date 2/24/83 Approx Well Yield 3 - 4 qpm Development Time 1.5 hours
Comments	- 		TCH MAP WELL DETAIL PROPERTY OF CALL
* continue samplin ** threade *** Measur PVC ca	g d couples ed from to	op of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Depth Scale	Sample	Spoon Blows	Description of Materials
0 - 1.5	spoon	5-12-6	medium to dark brown, dry, silty clay; very thin sand
5 - 6.5	spoon	5-12-15	lenses orange brown sandy clay, black/brown specks; some
10 - 11.5	spoon	3-7-9	fine gravel mottled grey-green and orange-brown sandy clay; occasional pebbles
13 15 - 16.5	spoon	1-1-3	coarse gravel moist orange-brown to yellow-brown clay; thin silt and
20 - 21.5	spoon	1-1-1	sand stringers soft, moist, mottled orange-brown/yellow-brown sandy
<u>25 - 2</u> 6.5	spoon	1-10-7	clay weathered blue-grey sandy dolomite; clay seams; grades to
26 - 33	core		top of rock at 26'; noticeable water above rock grey conglomeratic dolomite, angular to subangular clasts; clasts coarse sand to cobble gravel; clay seam from
			31.5 to 32.5
end of hol	e @ 33'		
	 	 	

Drilling Log

well number	<u> </u>				
ient <u>Cor</u>	ros of Fna	ineers/Radi	ford AAP	_ Project No	00-0008-01
Well Locati	On west	of norther	most tank - POL area	-	
Driller/Com	nanv nas	n/Cunningh:	·m		
Drilling Me	thod NY	COTE	Hole Diameter nominal 4	Date(s) Drill	ed 2/3 - 4/83
Sample Type	enlit sno	on/core Sa	Hole Diameter <u>nominal 4</u> mple Interval <u>spoons 5's</u> sing Top Elevation <u>1758.</u>	* No. Samples R	etained 3
Surface Ele	vation 1	756 20' Ca	sing Top Elevation 1758.	61' Total Wel	1 Depth 21
Casing Mate	rial and	Size 2" ID	PVC **	Cased Interva	1(s)0-1 (+2' stickup
Grouting Tv	THE cand o	omont: bon	tonite seal	- Grouted Inter	val 0-1 (0.5' bentoni
Screening 1)	laterial ar	nd Size 2"	tonite seal ID: 0.010 slots	Screened Inte	rval(s) 1 - 21
Dacking Hat	hne feivo	\$176 No.	D: 0.010 slots L sand Paite 2/24/83	Packed Interv	
Packing had	eria: anu estis Usto	3126 NO.	Sand	rackeu Interv	
Development	. Mathad	4.21 ***	Apaice 2/24/83	- Approx Well I	ield 4 - 5 qpm
DC 1 C 1 O Pincin o	The Grida La	.11		peveropment i	ime 4 hours
Logged by:	<u>Peter R.</u>	Jacobson		_	
Comments		SKE	TCH MAP	WELL DETA	IL WAS
		 		┼┼┤┊ ┑┈╻╻╻	Prot Steel
* continuo	ous core				CASIAS
sampling	<u></u>				Certant Stout
** all joi	nts thread	edN			Beatonie Seal
		CA17			╣╸┆╶╎╸┆╸┆╸
*** measure	ed from to	op of			1" TD 0.0 SLH
PVC cas	sing		/-/ P-2	<u> </u>	PVd Sareen
		 }	197 	┤ ┡	
			/ 	┤┤ ┤ ╏┋ ╏	E-No I Sand
		— H	*************************************	┤ ┼┤ ┤ ┤┤ ┋ ╽	
		—— <i> </i>		╵╵ ┤ ╵ ╋╏┇┋╽	
		— Z			
			┥ ┩╸ ┇┋	T V	1 Bottom Cap
	- · · 				
Donath	<u> </u>	20002			
Depth	Sample	Spoon	Descript	tion of Material	s
Scale		Blows	<u> </u>		
0 - 1.5	spoon	2-4-3	damp silty clay, minor	sand, occasion	al pebbles; medium
			brown occasional orang	e/brown streaks	; friable in zones
5 - 6.5	spoon	3-4-9	damp medium brown to o		
	<u> </u>		coarse sandy zones, mi		
10 - 11.5	spoon	50/3"	wet clayey sand, yello	w brown.gravel	at 11'
13 - 14	core		top of rock at 13'; yu	laav, arev, thin	ly laminated dolomite
14 - 15	core		orangé brown/greenish	arev dolomite.	thin veins of quartz:
* ***			irregular fracturing,	small vugs	
15 - 16	core		crumbly grey dolomite;	small vuns: sl	ightly brecciated
15 - 21	core		grev/white/buff thinly	?aminated dolo	mite: small quartz
10 E1		<u> </u>	veins	Taminated goto	mrees smarr quares.
		 	46.112		
end of hol	0 0 211	·	<u> </u>		
ena or not	6 6 71				
-	 	+	 	<u></u>	
		 			
	<u> </u>	 	· · · · · · · · · · · · · · · · · · ·		
	 		 		
	ļ <u>.</u>	 			
	<u> </u>				
	<u> </u>		<u> </u>		
	<u></u>	1		····	

Drilling Log

Well Humber P-3	Driffing Log
Client <u>Corps of Engineers/Radf</u> Well Location <u>POL site</u>	
Driller/Company <u>Dean/Cunning</u>	oham
Drilling Method NX core	Hole Diameter 4" nominal Date(s) Drilled 2/2 - 3/83
Sample Type split spoon/core Sa	mple Interval 5' spoon * No. Samples Retained 4 spoon *
Surface Elevation 1752.54' Ca	sing Top Elevation 1754.57' Total Well Depth 25'
Casing Material and Size 2" ID	pyc Cased Interval(s) 0 - 10 **
Grouting Type sand/cement grou	t Grouted Interval0 - 8
Screening Material and Size 2"	ID PVC: 0.010 slots Screened Interval(s) 10 - 25
Packing Material and Size No. Depth to Static Water 7.94 ***	1 sand Packed Interval g = 25
Depth to Static Water /.94 ***	Nate 2/24/83 Approx Well Yield 1 - 2 gpm
Development Method <u>air</u>	Development Time 4 hours
Logged by: Peter R Jacobson	· · · · · · · · · · · · · · · · · · ·
Comments SKE	TCH MAP WELL DETAIL POH STEEL
* continuous core samples;	
all core recovered	
retained	
	5) / COA 10 PVC CASING
** plus 2' stickup	A P 2 SATISFIES
Note: all screen and cas-	Screw Compliance
ing joints by threaded	~/
couples	
	1 19 1 Sand
No petroleum odors noted	
*** Measured from top	Le Bottom Cap
of PVC_casingVii	
Depth Sample Spoon	
Scale Sample Blows	Description of Materials
Scale Blows	
0 - 1.5 spoon 2-4-3	dark grey to brown silty clay, minor sand
5 - 6.5 spoon 18-28-38	medium brown clay, silty sandy lenses, occasional gravel:
	soil is damp, not saturated
6.5 - 10 core	cobble grayel, mostly white/buff sandstone
10 - 10'3 5"spaan 5-/3.5"	brown/buff clay and silt grading to decomposed dark
	grey limestone
10'3.5" - 15 core	brecciated dolomite: matrix is silt and clay. clasts are
	<u>sand to coarse gravel: most clasts are buff/grey dolomit</u>
	subangular to rounded
15 - 20 core	same as above to 18'; at 18' sharp contact from brown
	matrix to grey, clasts more angular coarse
20 - 25 core	same as above becoming coarser and more angular with
{ 	depth: 6" - 8" zones of vuggy dolomite separated by
	brecciated angular grey dolomite
end of hole at 25'	

•			Drilling Log	_
Well Number	P-4			-
Client Col	rps of Eng	ineer/Radf	ord AAP	Project No. <u>00-0008-01</u>
Well Locati	on <u>POL si</u>	<u>te</u>		
Driller/Com	ipany <u>Dea</u> i	<u>n/Cunningh</u>	- m	
Drilling He	etnod <u>NX</u>	core	Hole Diameter <u>nominal 4"</u>	Date(s) Drilled 2/17/83
Sample Type Surface Ele	split spo	<u>on/core</u> Sa	mple Interval 5' spoon *	No. Samples Retained 5
Surface Ele	vation 177	<u>'1.12'</u> Ca	ising Top Elevation 1773.	16' Total Well Depth 30'
Casing Mate	erial and S	size <u>2" ID</u>	PVC sched. 80 threaded i	offased Interval(s)-15 (+2' stickur
Grouting Ty	/pe_sand/c	ement		Grouted Interval 0 - 14
Screening N	laterial ar	id Size <u>2"</u>	PVC 0.010" slots	Screened Interval(s) 15 - 30
Packing flat	terial and	\$1ze	No. 1 sand	Packed Interval 14 - 30
Depth to St	tatic Water	^ <u>25.75'*</u> *	** Date <u>2/24/83</u>	Approx Well Yield **
Development				Development Time 1 hour
Logged by:	<u>Peter R.</u>	Jacobson		_
Comments		CVE	TOU MAD / / ANNAMA	Lieu perati
* continu	ous core	2KE	TCH MAP	WELL DETAIL Prof. Steel
samplin		—— <u> </u>		Casina
** very po	or vield d	uring W		A A Brade
devel on	ment, 0.1	0.00	5)//	
	er cleared		7/6/	1 1 2 1 TO Sek 80
<u> </u>	er Cleared	- 47	1/9/	
Noto: clic	ht other o			Ta to Cement Grout
Note: slig				Bantonite feet
dete	CLEU		<u> </u>	A SERVE COUPINS
*** measur	ad from to	2 of 1		
		<u> </u>		C/ L 1" ID 0.01
PVC_ca	sing	—— /- -	/ 	Sht PVG
				C.C.C.
		—— IZ		
· 		 		N B Ham Cap
			<u> </u>	
Pepth		Spoon		
Scale	Sample	Blows	Descripti	ion of Materials
0 - 1.5	spoon	1-1-2	moist brown silty clay	
5 - 6.5	spoon	16-16-18	medium brown. fissile.	
10 - 11.5		1-2-4		ninor fine sand and silt
15 - 16.5	spoon	1-1-2		sional medium to coarse sand
			lost water at 15'	······································
20 - 21.5	spoon	31-50/1.5		irock - wet. pebbly, sandy, silty
	<u> </u>	<u> </u>	clay	
22			top of solid rock	
22 - 30			<u> thinly laminated grey-t</u>	ouff dolomite; thin brecciated
			zones, many white quari	tz veins; lost water at 26'
	<u> </u>	<u> </u>		·
end of ho	le at 30'			
ļ. 	ļ			
	1	<u></u>		
	<u> </u>		·	
	ļ			
i				

RCRA Facility Investigation Radford Army Ammunition Plant Radford, Virginia

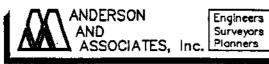
Monitoring Well Locations & Elevations for Dames & Moore

Site	Well	Top Elev. Inner (pvc) Pipe	Top Elev. Outer Casing	Top Elev. Concrete Pad	Ground Elev. At Well (Average)	Coordinates (Northing Easting)
SWMU-10	10MWI	1703.62	1703.84	1701.74	1701.28	319,145 1,407,606
	D-3	1702.95	1702.61	NO PAD	1700.51	319,112 1,407,702
	D-4	1714.38	1716.20	NO PAD	1713.42	318,631 1,407,800
	DDH2	1702.53	1702.10	NO PAD	1700.78	319,070 1,407,776
	DDH4	1715.85	1715.38	NO PAD	1713.16	318,741 1,407,605
	DG-1	1712.08	1712.27	NO PAD	1709.96	318,836 1,407,437
	D3D	1702.64	1703.00	NO PAD	1700.70	319,122 1,407,687
SWMU-13	13MW1	1701.44	1701.61	1699.11	1698.66	319,276 1,410,626
	13MW2	1702.62	1702.84	1701.76	1701.21	319,195 1,409,898
	13MW3	1694.47	1695,02	1693.81	1693.41	318,977 1,409,732
	13MW4	1696.40	1696.60	1695.56	1695.18	319,015 1,410,103
	13M%5	1696.40	1696.60	1695.51	1695.26	319,026 1,410,475
1	13MW6	1696.05	1696.27	1694.31	1693,81 85	319,091 1,410,872
	13MW7	1 695.21	1695.42	1694.11	1693,81 77	319,115 1,411,091
					correction made via call	
	NDEBSON	·	REVISED 12/31 COORDINATES	/91 VA. STATE F (1927) SHOWN.	PLANE SHEET NO. 1	OF 1

ANDERSON AND Surveyors ASSOCIATES, Inc.

Engineers

Blacksburg, Virginia


SHOWN.	SHEET	NO. 1OF	1
CALC	CHECKED	DATE	DOCUMENT NO.
CBK	ROC	18 DEC 91	08485005

RCRA Facility investigation Radford Army Ammunition Plant Radford, Virginia

Monitoring Well Locations & Elevations

for Dames & Moore

Site	Well	Top Elev. Inner (pvc) Pipe	Top Elev. Outer Casing	Top Elev. Concrete Pad	Ground Elev. At Well (Average)	Coordinates (Northing Easting)
SWMU-0	OMW1	1780.04	1780.24	1777.96	1777.6	315,632 1,407,586
	P-1	1779.69	1779.61	NO PAD	1777.1	315,520 1,407,326
	P-2	1758.64	1758.59	NO PAD	1756.8	315,842 1,407,547
	P-3	1754.59	1754,58	NO PAD	1753.2	315,938 1,407,607
-	P-4	1773.17	1773,32	1771.38	1771.2	315,890 1,407,681
	WC1-1	1787.48	1787.52	1785.31	1785.1	315,977 1,407,782
	WC1-2	1786.58	1787,47	1785.20	1784.8	315,975 1,407,795
	S4W-1	1753,27	1753.35	1750.77	1750.7	316,049 1,407,939
	88	1740.14	1740.48	1738.23	1738.2	316,103 1,408,219
SWMU 17	40MW4	1908.11	1908.33	1906.56	1906.1	313,361 1,403,439
	17PZ1	1907.02	1907.24	1904.97	1904,7	313,185 1,404,071
	40MW2	1882.51	1882.71	1881.25	1881.1	313,663 1,403,550

Blacksburg, VA Greensboro, NC

DRAWN	SCALE	DATE DOCUMENT N	÷
KJD	-	20 JAN 92 08485018	

RCRA Facility Investigation Radford Army Ammunition Plant Radford, Virginia

Monitoring Well Locations & Elevations for Dames & Moore

Site	Well	Top Elev. Inner (pvc) Pipe	Top Elev. Outer Casing	Top Elev. Concrete Pad	Ground Elev. At Well (Average)	Coordinates (Northing Easting)
SWMU-32	32MW1	1738.31	1738.64	1736.69	1736.40	321,026 1,404,613
SWMU-40	40MW2	1882.51	1882.71	1881.25	1881.1	313,663 1,403,550
<u> </u>	40MW4	1908.11	1908.33	1906,56	1906.1	313,361 1,403,439
SWMU43	43MW1	1705.87	1706.10	1704.25	1703.90	318,34€ 1,411,372
	43MW2	1707.62	170 7.86	1705.40	1704.95	318,206 1,410,585
	43MW3	1703.35	1703.57	1701.58	1701.15	318,402 1,410,435
	43MW4	1702.78	1703.01	1701.30	1700.90	318,440 1,410,643
	43MW5	1702.94	1703.16	1700.99	1700.40	318,539 1,411,209
	43MW6	1703.88	1704.09	1701.69	1701.24	318,584 1,411,422

ANDERSON AND
ASSOCIATES, Inc.
Surveyors
Planners

Engineers

Blacksburg, VA Greensboro, NC

				PLUT A1 .000=1
ļ	DRAWN	SCALE	DATE	DOCUMENT NO.
	KJD		24 JAN 92	08485020

RCRA Facility investigation Radford Army Ammunition Plant

Radford, Virginia

Monitoring Well Locations & Elevations for

Dames & Moore

Site	Weli	Top Elev. Inner (pvc) Pipe	Top Elev. Outer Casing	Top Elev, Concrete Pad	Ground Elev. At Well (Average)	Coordinates (Northing Easting)
28/51/52	51MW1	1823.13	1823.35	1821.49	1821.24	320,089 1,409,683
	51MW2	1834.77	1834.99	1833.41	1833,29	320,040 1,409,893
	C-1	1840.14	1839.71	NO PAD	1836.94	320, 44 1 1,409,886
	C-2	1808.18	1808.53	NO PAD	1806.99	320,561 1,410,410
	C-3	1822.10	1821.65	NO PAD	1819.09	320,285 1,410,383
	C-4	1824.57	1826.84	1824.96	1824.74	320,056 1,410,230
	16-1	1815.82	1816.15	1814.55	1814.54	320,826 1,410,333
	16-2	1810.99	1810.99	1809.32	1809.24	320,669 1,410,575
	16-3	1824.77	1825.14	1823.35	1823.37	320,256 1,410,509
	16-4	1836.76	1838.48	1836.10	1835.84	320,198 1,409,917
	WC-1A	1812.61	1812.70	1810.58	1810.54	320,490 1,410,423
	WC-2A	1818,05	1818.04	1816.45	1816.07	320,667 1,410,367
	WC-1B	1812.95	1812.97	NO PAD	1811.29	320,504 1,410,431
	CDH-2	1818.71 1826.28	1818.65 1825.89	1817.04	1816,97	320,671 1,410,379
	CDH-3			NO PAD	1823,79	320,144 1,410,286
	MW-8	1810.19 1815.82	1813.34	NO PAD	1810,71	320,381 1,410,511
	MW-9	1808.88	1809.05	1813.52	1813.42 1806.54	320,634 1,410,412
	28MW1	1827.18		NO PAD		320,560 1,410,421
]		1827.33	1825.96	1825,71	320,869 1,409,937
	28MW2	1821,56	1821.77	1819.97	1819,91	320,820 1,409,557

NOTE: WELL COH-1 APPEARS TO HAVE BEEN DESTROYED, FORMER LOCATION WAS N 320,441 E 1,410,000 (FROM OLD MAPPING, AMA JN 6268 DATED 6/28/88.)

ANDERSON AND ASSOCIATES, Inc. Planners

Engineers Surveyors

Blacksburg, VA Greensboro, NC

					PLUI A: .00
DRAWN	SCALE		DATE		DOCUMENT NO.
KJD	-	20	JAN	92	08485019

APPENDIX F.2

Physical Soil Testing

Wt soil and dish Dry soil & dish Dish

197.3 182.8 107.9

Boring 13SB2 Sample 1 Moisture Content = 19.4

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

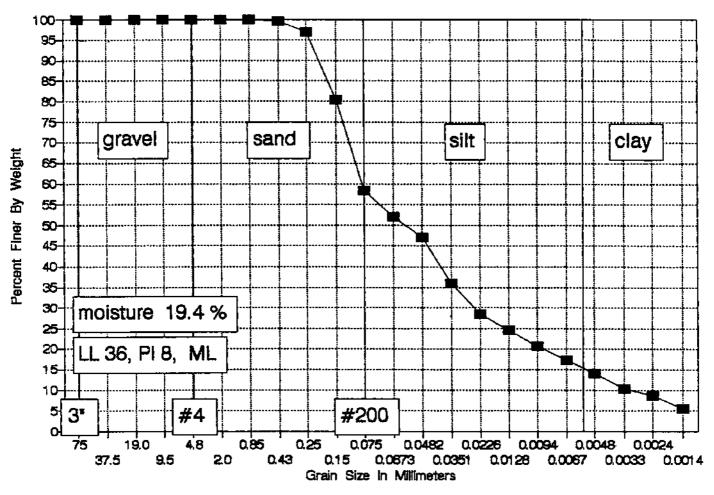
_ - -

Dry weight of TOTAL sample= 74.9 sample split -#10 sieve = 40.39

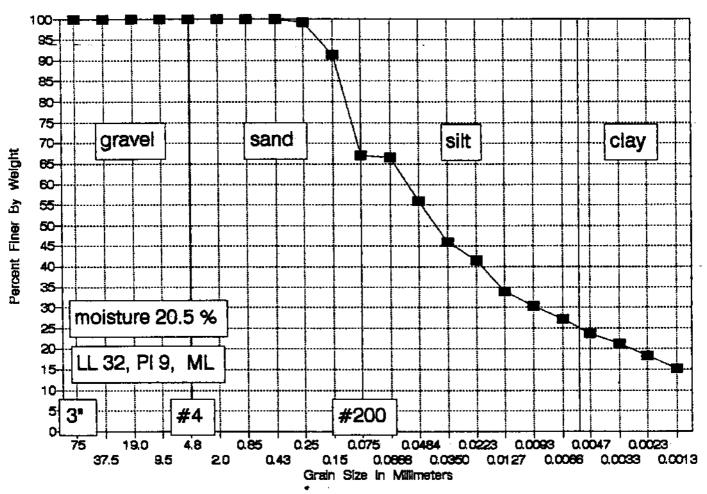
		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0	100.00%
# 20	0.07	99.83%
# 40	0.16	99.60%
# 60	1.24	96.93%
‡ 100	7.92	80.39%
# 200	16.87	58.23%

Constants this test

Gs= 2.65


20c=.01365 21c=.01348 22c=.01332 18c=.01399 19c=.01382

When 5 grams of Sodium


Hexametaphosphate used correction 6 =

Elapsed Particle Percent time Tc R' Zr Dia. mm Partial	Percent Finer
time To R ¹ Ir Dia mm Partial	
cruc to v nt transfer terrest	E3 00
0.5 19 27 11.85 0.0673 51.99	51.99
1 19 25 12.18 0.0482 47.04	47.04
2 19 20.5 12.92 0.0351 35.90	35.90
5 19 17.5 13.41 0.0226 28.47	28.47
16 19 15.9 13.68 0.0128 24.51	24.51
30 19 14.3 13.94 0.0094 20.55	20.55
60 19 13 14.16 0.0067 17.33	17.33
120 19 11.7 14.37 0.0048 14.11	14.11
250 19 10.2 14.62 0.0033 10.40	10.40
500 19 9.5 14.73 0.0024 8.67	8.67
1471 18 8.2 14.95 0.0014 5.45	5.45

Boring 13SB2 sample 1

Boring 13MW1 sample 3 at 11.5 to 12 ft

Wt soil and dish Dry soil & dish Dish 164.9 155 106.6

Boring 13MWl Sample 3 at 11.5-12 feet Moisture Content = 20.5

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

Dry weight of TOTAL sample= 48.4 sample split - \$10 sieve = 33.07

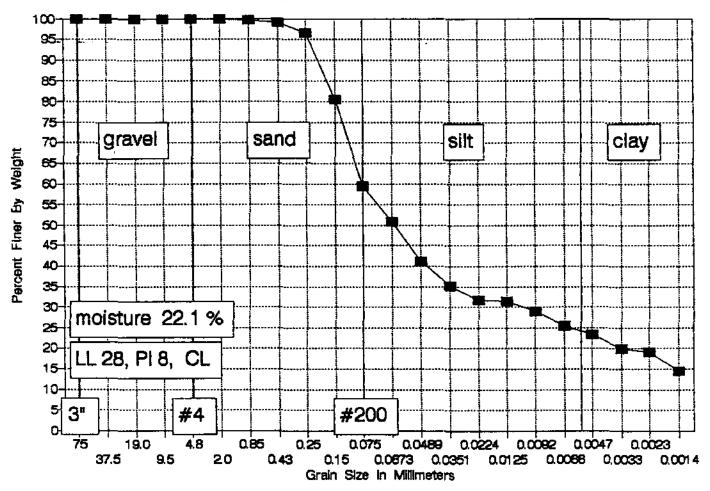
		Total
	Weight	Percent
Sieve 🛊	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
‡ 4	0	100.00%
# 10	0	100.00%
# 20	0	100.00%
# 40	0.03	99.91%
# 60	0.26	99.21%
# 100	2.89	91.26%
# 200	10.91	67.01%

Constants this test

Gs = 2.65

20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

= 6

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	28	11.68	0.0668	66.53	66.53
1	19	24.5	12.26	0.0484	55.94	55.94
2	19	21.2	12.80	0.0350	45.96	45.96
5	19	19.7	13.05	0.0223	41.43	41.43
16	19	17.2	13.46	0.0127	33.87	33.87
30	19	16	13.66	0.0093	30.24	30.24
60	19	15	13.83	0.0066	27.21	27.21
120	19	13.8	14.02	0.0047	23.59	23.59
250	19	13	14.16	0.0033	21.17	21.17
500	18	12.1	14.30	0.0023	18.45	18.45
1537	19	11	14.49	0.0013	15.12	15.12

Boring 13MW2 sample 2 at 5 to 7 feet

Wt soil and dish Dry soil & dish Dish

211.8 193.2 108.9

Boring 13MW2 Sample 2 at 5-7 feet Moisture Content = 22.1

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

_ _ _ _

Dry weight of TOTAL sample= 84.3 sample split -#10 sieve = 41.3

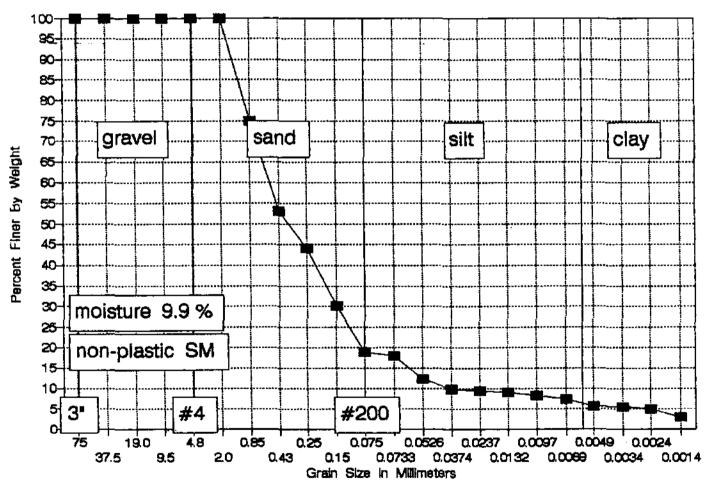
		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0.04	99.95%
# 20	0.12	99.66%
# 40	0.34	99.13%
# 60	1.42	96.52%
# 100	8.03	80.52%
# 200	16.72	59.49%

Constants this test

Gs= 2.65

20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

6

						Total
Elapsed		_		Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	27	11.85	0.0673	50.85	50.82
1	19	23	12.51	0.0489	41.16	41.14
2	19	20.5	12.92	0.0351	35.11	35.09
5	19	19.1	13.15	0.0224	31.72	31.70
16	19	19	13.17	0.0125	31.48	31.46
30	19	18	13.33	0.0092	29.06	29.04
60	19	16.5	13.58	0.0066	25.42	25.41
120	19	15.7	13.71	0.0047	23.49	23.48
250	19	14.2	13.96	0.0033	19.85	19.85
500	19	13.9	14.01	0.0023	19.13	19.12
1468	18	12	14.32	0.0014	14.53	14.52

Boring 13MW3 sample 2 at 5 to 7 feet

Wt soil and dish 242.2 Dry soil & dish 230.2 Dish 109.1

Boring 13MW3 Sample 2 at 5-7 feet Moisture Content = 9.9

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

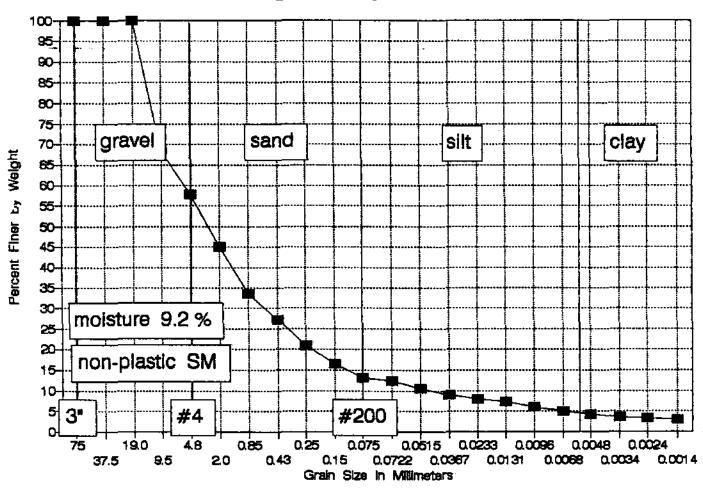
Dry weight of TOTAL sample= 121.1 sample split -#10 sieve = 41.73

		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0.03	99.98%
# 20	10.5	74.82%
# 40	19.55	53.14%
# 60	23.31	44.13%
‡ 100	29.14	30.16%
# 200	33.81	18.97%

Constants this test

Gs= 2.65 20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

6

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	13.5	14.07	0.0733	17.97	17.97
1	19	11.1	14.47	0.0526	12.22	12.22
2	19	10.1	14.63	0.0374	9.83	9.82
5	19	9.9	14.67	0.0237	9.35	9.34
16	19	9.8	14.68	0.0132	9.11	9.10
30	19	9.5	14.73	0.0097	8.39	8.39
60	19	9.1	14.80	0.0069	7.43	7.43
120	19	8.4	14.91	0.0049	5.75	5.75
250	19	8.3	14.93	0.0034	5.51	5.51
500	19	8.1	14.96	0.0024	5.03	5.03
1463	18	7.2	15.11	0.0014	2.88	2.87

Boring 13MW4 sample 4 at 15 to 16 feet

Wt soil and dish Dry soil & dish Dish 207.2 198.8 107.7

Boring 13MW4 Sample 4 at 15-16 feet Moisture Content = 9.2

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

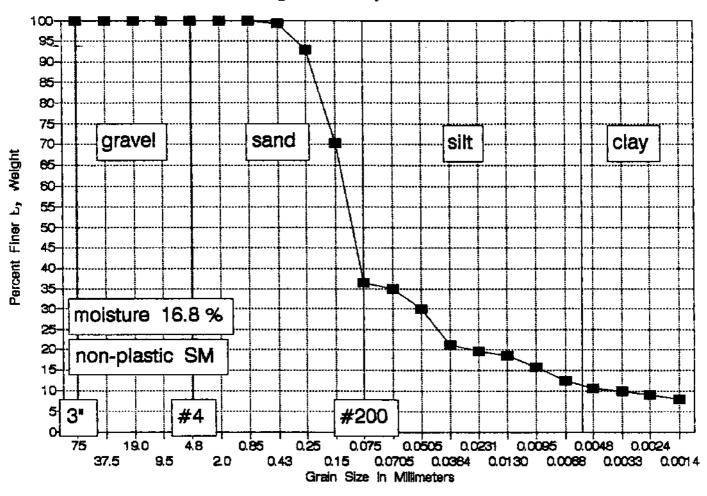
Dry weight of TOTAL sample= 91.1 sample split -#10 sieve = 36.52

		Total	
	Weight	Percent	
Sieve 🛊	Retained	Finer	
1.5 inch		100.00%	
3/4 inch	0	100.00%	
3/8 inch	28.88	68.30%	
‡ 4	38.45	12 2 57.798	57.8
‡ 10		45.06%	·
# 20	9.35	33.52%	
# 40		27.07%	
# 60	19.57	20.91%	
‡ 100	23.14	16.51%	
# 200		(Z / = 13.08%	131

Constants this test

Gs= 2.65 20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

6

Elapsed				Particle	Percent	Total Percent
time	T¢	R'	Zr	Dia. mm	Partial	Finer
0.5	19	16	13.66	0.0722	27.38	12.34
1	19	14.5	13.91	0.0515	23.27	10.49
2	19	13.3	14.11	0.0367	19.99	9.01
5	19	12.5	14.24	0.0233	17.80	8.02
16	19	12	14.32	0.0131	16.43	7.40
30	19	10.9	14.50	0.0096	13.42	6.05
60	19	10	14.65	0.0068	10.95	4.94
120	19	9.4	14.75	0.0048	9.31	4.20
250	19	9	14.82	0.0034	8.21	3.70
500	18	8.7	14.86	0.0024	7.39	3.33
1526	19	8.3	14.93	0.0014	6.30	2.84

Boring 13MW5 sample 1 at 0 to 2 feet

Wt soil and dish Dry soil & dish Dish 223.4 207.3 111.2

Boring 13MW5 Sample 1 at 0-2 feet Moisture Content = 16.8

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

_ - - -

Dry weight of TOTAL sample= 96.1 sample split -#10 sieve = 40.05

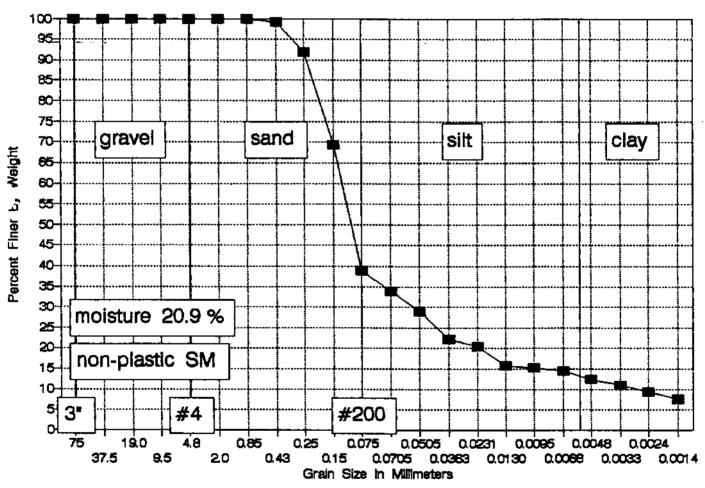
		Total
	Weight	Percent
Sieve 🛊	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0	100.00%
# 20	0.02	99.95%
# 40	0.25	99.38%
# 60	2.81	92.98%
# 100	11.91	70.26%
# 200	25.41	36.55%

Constants this test

Gs = 2.65

20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

= 6

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	20	13.00	0.0705	34.96	34.96
1	19	18	13.33	0.0505	29.96	29.96
2	19	14.5	13.91	0.0364	21.22	21.22
2 5	19	13.9	14.01	0.0231	19.73	19.73
16	19	13.4	14.09	0.0130	18.48	18.48
30	19	12.3	14.27	0.0095	15.73	15.73
60	19	11	14.49	0.0068	12.48	12.48
120	19	10.2	14.62	0.0048	10.49	10.49
250	19	10	14.65	0.0033	9.99	9.99
500	19	9.6	14.72	0.0024	8.99	8.99
1500	18	9.2	14.78	0.0014	7.99	7.99

Boring 13MW6 sample 2 at 5 to 7 feet

Wt soil and dish Dry soil & dish Dish

255.1 228.8 102.8

Boring 13MW6 Sample 2 at 5-7 feet Moisture Content = 20.9

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

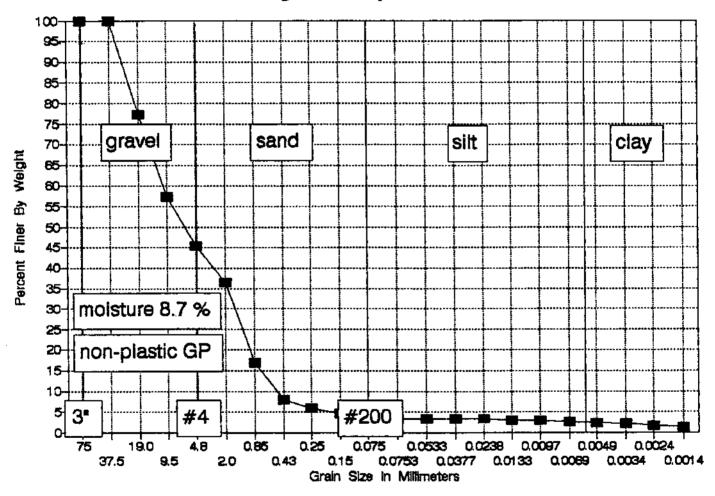
Dry weight of TOTAL sample= 126 sample split -#10 sieve = 41.3

		Total
	Weight	Percent
Sieve 🛊	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0	100.00%
# 20	0.04	99.90%
# 40	0.33	99.20%
# 60	3.39	91.79%
# 100	12.64	69.39%
# 200	25.25	38.86%

Constants this test

Gs= 2.65 20c=.01365 2lc=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

= 6

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	20	13.00	0.0705	33.90	33.90
1	19	18.	13.33	0.0505	29.06	29.06
2	19	15.2	13.79	0.0363	22.28	22.28
5	19	14.4	13.92	0.0231	20.34	20.34
16	19	12.5	14.24	0.0130	15.74	15.74
30	19	12.3	14.27	0.0095	15.25	15.25
60	19	12	14.32	0.0068	14.53	14.53
120	19	11.1	14.47	0.0048	12.35	12.35
250	19	10.5	14.57	0.0033	10.90	10.90
500	18	9.9	14.67	0.0024	9.44	9.44
1524	19	9.1	14.80	0.0014	7.51	7.51

Boring 13MW7 sample 4 at 15 to 17 feet

Wt soil and dish Dry soil & dish Dish

201.3 193.7 106

Boring 13MW7 Sample 4 at 15-17 feet Moisture Content = 8.7

SIEVE & HYDROMETER ANALYSIS

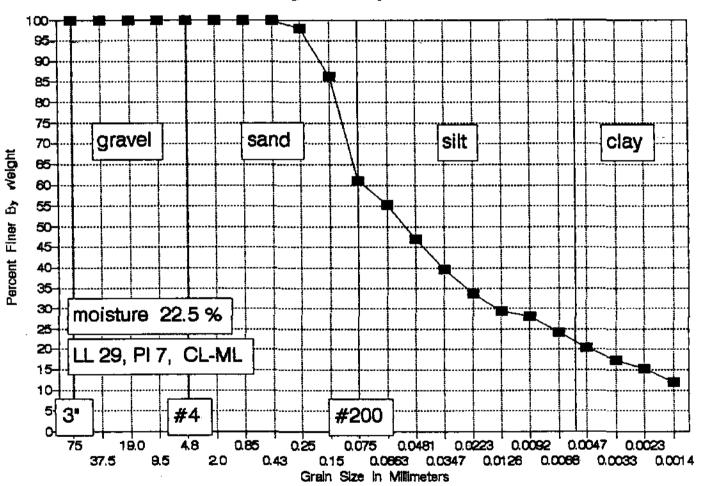
SIEVE PORTION

Dry weight of TOTAL sample= sample split -#10 sieve = 87.7 31.34

		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	19.9	77.31%
3/8 inch	37.42	57.33%
# 4	47.82	45.47%
# 10	55.65	36.55%
# 20	16.86	16.88%
# 40	24.56	7.91%
# 60	26.37	5.80%
# 100	27.46	4.52%
# 200	28.43	3.39%

Constants this test

Gs= 2.65 20c=.01365 21c=.01348 22c=.01332 18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

= 6

			. •			Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	8.8	14.85	0.0753	8.93	3.27
1	19	8.8	14.85	0.0533	8.93	3.27
2	19	8.8	14.85	0.0377	8.93	3.27
5	19	8.8	14.85	0.0238	8.93	3.27
16	19	8.5	14.90	0.0133	7.98	2.92
30	19	8.5	14.90	0.0097	7.98	2.92
60	19	8.1	14.96	0.0069	6.70	2.45
120	19	8	14.98	0.0049	6.38	2.33
250	18	7.9	15.00	0.0034	6.06	2.22
500	18	7.4	15.08	0.0024	4.47	1.63
1500	18	7.1	15.13	0.0014	3.51	1.28

Boring 13SB1 sample 2 at 5 feet

RAAP RFI
06702-077-155
Wt soil and dish
Dry soil & dish
Dish

189.7

174.9

109.1

Boring 13SBl Sample 2 at 5 feet Moisture Content = 22.5

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

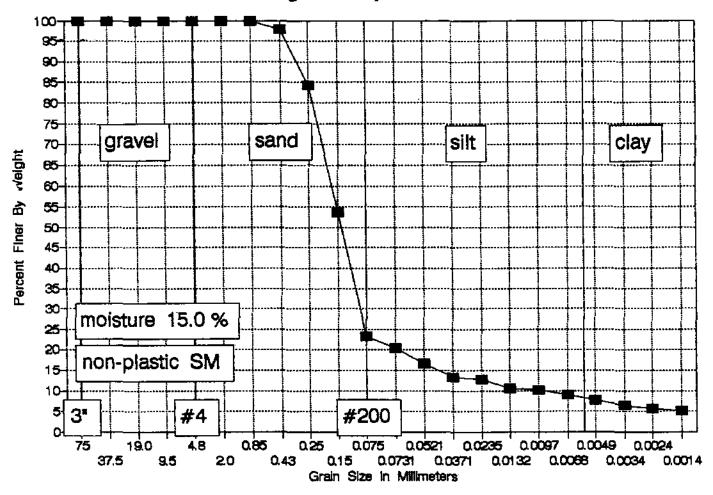
Dry weight of TOTAL sample= 65.8 sample split -#10 sieve = 41.55

		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	C	100.00%
# 4	0	100.00%
# 10	0	100.00%
# 20	0	100.00%
# 40	0	100.00%
# 60	0.84	97.98%
# 100	5.69	86.31%
# 200	16.18	61.06%

Constants this test

Gs= 2.65 20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

6

Elapsed				Particle	Percent	Total Percent
	T.o.	R'	7			
time	Tc		Zr	Dia. mm	Partial	Finer
0.5	19	29	11.52	0.0663	55.35	55.35
1	19	25.5	12.09	0.0481	46.93	46.93
2	19	22.5	12.59	0.0347	39.71	39.71
5	19	20	13.00	0.0223	33.69	33.69
16	19	18.2	13.30	0.0126	29.36	29.36
30	19	17.7	13.38	0.0092	28.16	28.16
60	19	16	13.66	0.0066	24.07	24.07
120	19	14.5	13.91	0.0047	20.46	20.46
250	19	13.2	14.12	0.0033	17.33	17.33
500	19	12.3	14.27	0.0023	15.16	15.16
1460	18	11	14.49	0.0014	12.03	12.03

Boring 13SB3 sample 3 at 10.0 feet

RAAP RFI 06702-077-155 Wt soil and dish Dry soil & dish Dish

204.8 192.5 110.4

Boring 13SB3 Sample 3 at 10 feet Moisture Content = 15.0

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

--- ·- <u>-</u>- ·- <u>-</u>

Dry weight of TOTAL sample= 82.1 sample split -#10 sieve = 39.02

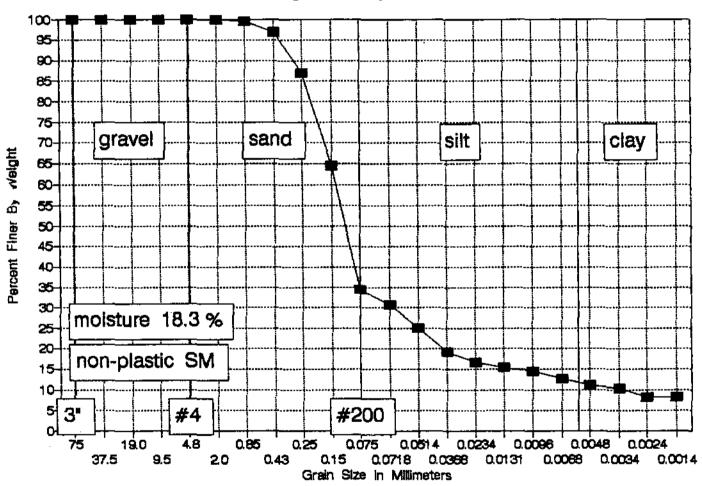
		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0	100.00%
# 20	0.02	99.95%
# 40	0.86	97.80%
# 60	6.16	84.21%
# 100	18.07	53.69%
# 200	29. 94	23.27%

Constants this test

Gs= 2.65

20c=.01365 21c=.01348 22c=.01332

18c=.01399 19c=.01382


When 5 grams of Sodium

Hexametaphosphate used correction

HYDROMETER ANALYSIS

Elapsed				Particle	Percent	Total Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	14	13.99	0.0731	20.50	20.50
1	19	12.5	14.24	0.0521	16.66	16.66
2	19	11.2	14.45	0.0371	13.33	13.33
5	19	11	14.49	0.0235	12.81	12.81
16	19	10.1	14.63	0.0132	10.51	10.51
30	19	10	14.65	0.0097	10.25	10.25
60	19	9.5	14.73	0.0068	8.97	8.97
120	19	9	14.82	0.0049	7.69	7.69
250	19	8.5	14.90	0.0034	6.41	6.41
500	18	8.2	14.95	0.0024	5.64	5.64
1525	19	8	14.98	0.0014	5.13	5.13

Boring 13SB4 sample 2 at 5 feet

RAAP RFI 06702-077-155 Wt soil and dish Dry soil & dish Dish

182.8 171 106.4

Boring 13SB4 Sample 2 at 5 feet Moisture Content = 18.3

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

_ _ . . .

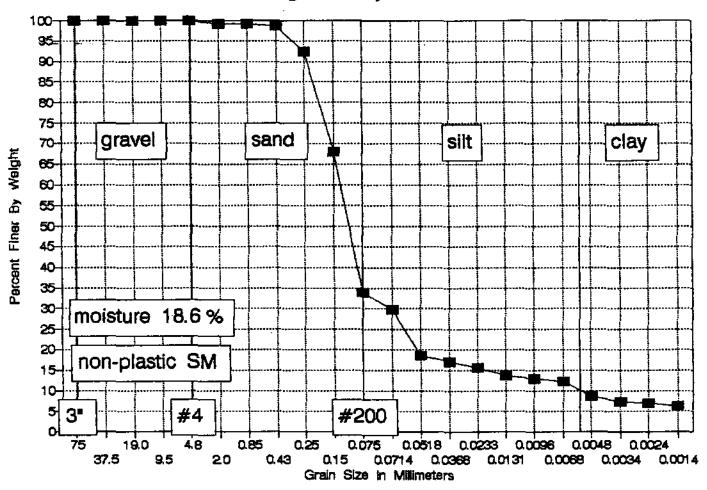
64.6 Dry weight of TOTAL sample= sample split -#10 sieve = 35.85

		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0	100.00%
# 20	0.15	99.58%
# 40	1.12	96.88%
# 60	4.63	87.09%
# 100	12.75	64.44%
# 200	23.51	34.42%

Constants this test

Gs= 2.65 20c=.01365 21c=.01348 22c=.01332 18c=.01399 19c=.01382

When 5 grams of Sodium


Hexametaphosphate used correction

6

HYDROMETER ANALYSIS

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	17	13.50	0.0718	30.68	30.68
1	19	15	13.83	0.0514	25.10	25.10
2	19	12.9	14.17	0.0368	19.25	19.25
5	19	12	14.32	0.0234	16.74	16.74
16	19	11.5	14.40	0.0131	15.34	15.34
30	19	11.2	14.45	0.0096	14.50	14.50
60	19	10.5	14.57	0.0068	12.55	12.55
120	19	10	14.65	0.0048	11.16	11.16
250	19	9.7	14.70	0.0034	10.32	10.32
500	18	9	14.82	0.0024	8.37	8.37
1527	19	9	14.82	0.0014	8.37	8.37

Boring 13SB5 sample 1 at 0.5 feet

RAAP RFI 06702-077-155 Wt soil and dish Dry soil & dish Dish 201.8 187.1 108

Boring 13SB5 Sample 1 at 0.5 feet Moisture Content = 18.6

SIEVE & HYDROMETER ANALYSIS

SIEVE PORTION

Dry weight of TOTAL sample= 79.1 sample split -#10 sieve = 40.01

		Total
	Weight	Percent
Sieve #	Retained	Finer
1.5 inch		100.00%
3/4 inch	0	100.00%
3/8 inch	0	100.00%
# 4	0	100.00%
# 10	0.65	99.18%
# 20	0.01	99.15%
‡ 40	0.22	98.63%
# 60	2.72	92.44%
# 100	12.55	68.07%
# 200	26.35	33.86%

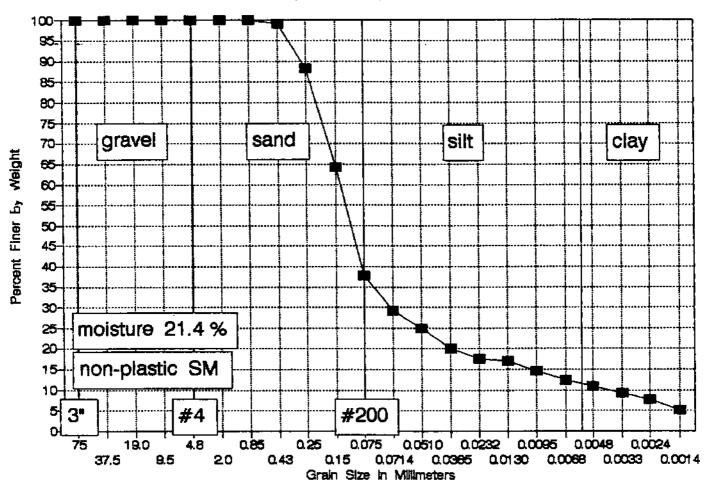
Constants this test

Gs≖ 2.65

20c=.01365 2lc=.01348 22c=.01332

18c=.01399 19c=.01382

When 5 grams of Sodium


Hexametaphosphate used correction

· 6

HYDROMETER ANALYSIS

						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	2r	Dia. mm	Partial	Finer
0.5	19	18	13.33	0.0714	29.99	29.75
1	19	13.5	14.07	0.0518	18.75	18.59
2	19	12.9	14.17	0.0368	17.25	17.10
5	19	12.3	14.27	0.0233	15.75	15.62
16	19	11.5	14.40	0.0131	13.75	13.63
30	19	11.2	14.45	0.0096	13.00	12.89
60	19	10.9	14.50	0.0068	12.25	12.15
120	19	9.5	14.73	0.0048	8.75	8.68
250	19	9	14.82	0.0034	7.50	7.44
500	18	8.8	14.85	0.0024	7.00	6.94
1527	19	8.5	14.90	0.0014	6.25	6.20

Boring 13SB6 sample 3 at 10 feet

RAAP RFI 06702-077-155 Wt soil and dish Dry soil & dish Dish 162.7 151 96.2

Boring 13SB6 Sample 3 at 10 feet Moisture Content = 21.4

SIEVE & HYDROMETER ANALYSIS

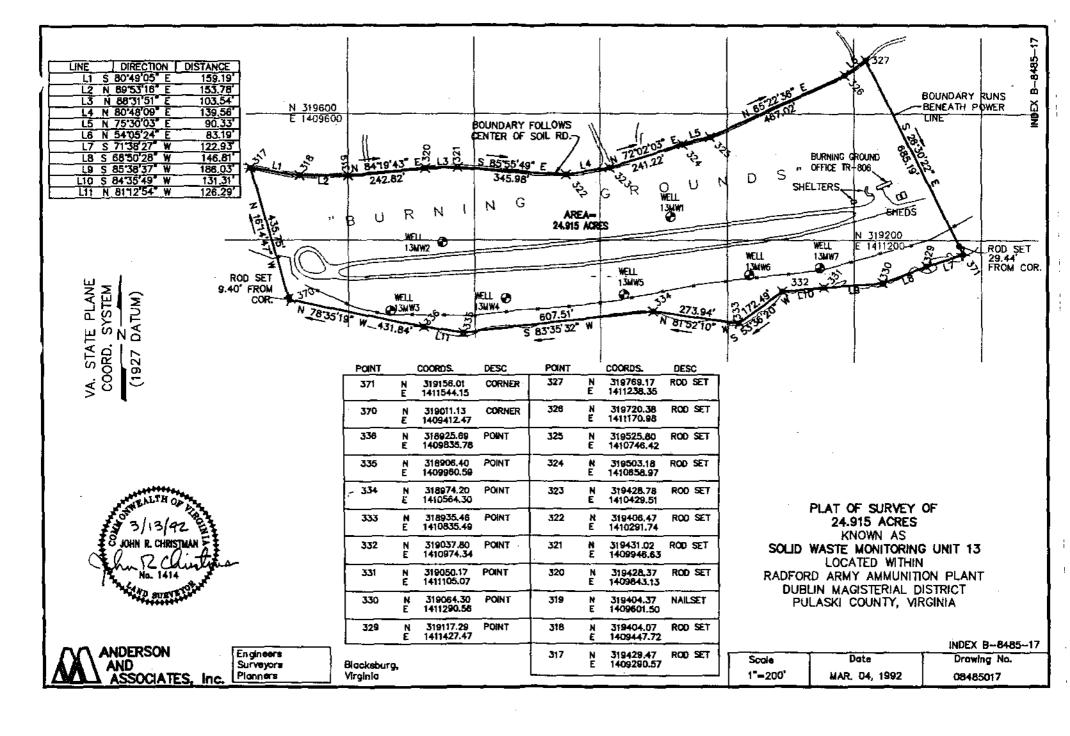
SIEVE PORTION

Dry weight of TOTAL sample= 54.8 sample split - \$\pm\$10 sieve = 40.99

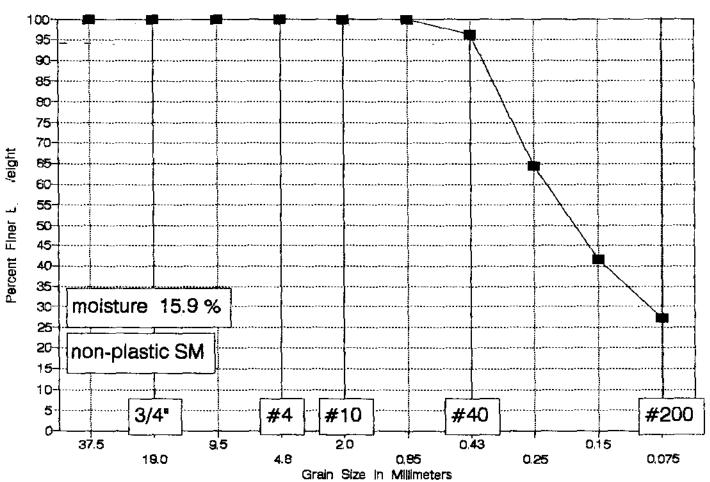
		Weight	Total Percent
•	Sieve #	Retained	Finer
	1.5 inch		100.00%
	3/4 inch	0	100.00%
	3/8 inch	0	100.00%
	# 4	Ó	100.00%
	# 10	0	100.00%
	# 20	0	100.00%
	# 40	0.43	98.95%
	# 60	4.8	88.29%
	# 100	14.63	64.31%
	# 200	25.51	37.77%

Constants this test

Gs= 2.65 20c=.01365 21c=.01348 22c=.01332


18c=.01399 19c=.01382

When 5 grams of Sodium


Hexametaphosphate used correction

HYDROMETER ANALYSIS

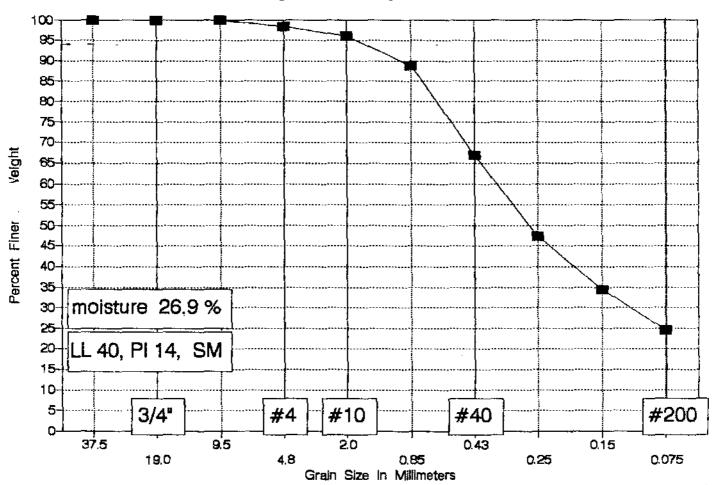
						Total
Elapsed				Particle	Percent	Percent
time	Tc	R'	Zr	Dia. mm	Partial	Finer
0.5	19	18	13.33	0.0714	29.28	29.28
1	19	16.2	13.63	0.0510	24.88	24.88
2	19	14.2	13.96	0.0365	20.00	20.00
5	19	13.2	14.12	0.0232	17.57	17.57
16	19	13	14.16	0.0130	17.08	17.08
30	19	12	14.32	0.0095	14.64	14.64
60	19	11.1	14.47	0.0068	12.44	12.44
120	19	10.5	14.57	0.0048	10.98	10.98
250	19	9.8	14.68	0.0033	9.27	9.27
500	19	9.2	14.78	0.0024	7.81	7.81
1459	18	8.1	14.96	0.0014	5.12	5.12

GRADATION CURVE Boring 28 MW 1, sample at 5-7 feet

Boring 28 MW 1 Sample at 5-7 feet Wt soil and dish 235.9 Dry soil & dish 218.4 Dish 108

Moisture Content = 15.9

SIEVE ANALYSIS



Dry weight of total sample=

110.4

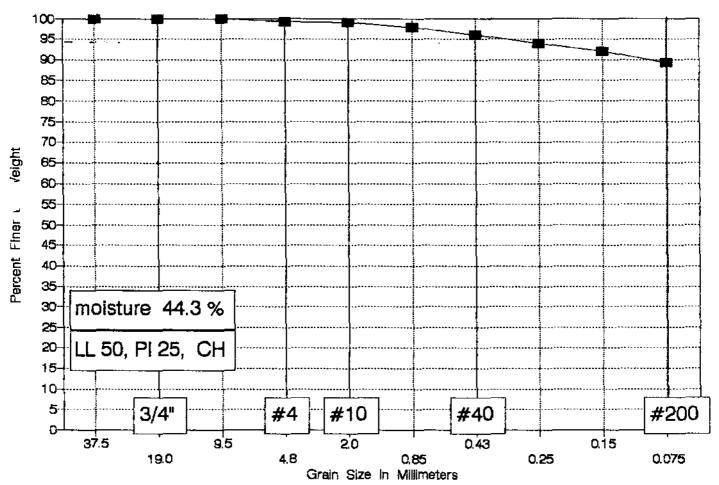
	weight	% `		
Sieve #	retained	Finer		
1.5 inch	ı 0	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	0	100.00%	100.0	4.8
# 10	0.1	99.91%	99.9	2.0
# 20	0.2	99.82%	99.8	0.85
# 40	4.1	96.29%	96.3	0.43
# 60	39.3	64.40%	64.4	0.25
# 100	64.4	41.67%	41.7	0.15
# 200	80.5	27.08%	27.1	0.075

Boring 28 MW 2, sample at 10-12 feet

Boring 28 MW 2 Dr Sample at 10-12 feet Dr

Wt soil and dish 203.4 Dry soil & dish 182.9 Dish 106.7

Moisture Content = 26.9


SIEVE ANALYSIS

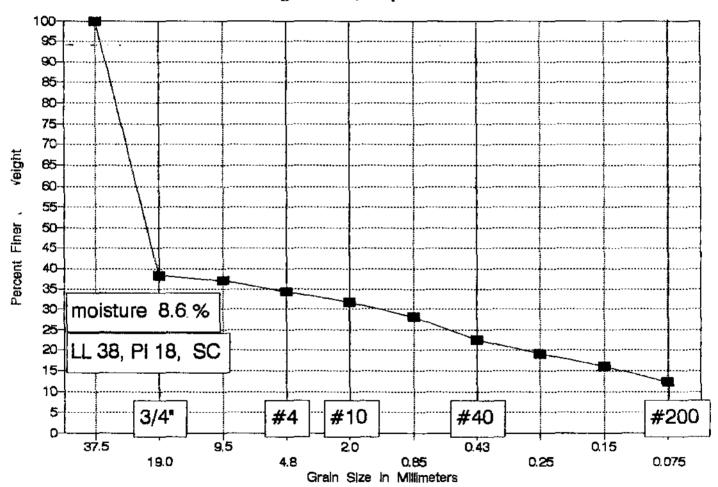
Dry weight of total sample=

76.2

§ . weight Sieve # retained Finer 1.5 inch 0 100.00% 100.0 37.5 0 100.00% 100.0 0 100.00% 100.0 3/4 inch 19.0 3/8 inch 9.5 1.2 98.43% 98.4 4.8
3 96.06% 96.1 2.0
8.4 88.98% 89.0 0.85
25.3 66.80% 66.8 0.43
40.1 47.38% 47.4 0.25
50 34.38% 34.4 0.15
57.5 24.54% 24.5 0.075 # 4 # 10 # 20 # 40 # 60 # 100 # 200

Boring 28 MW 2, sample at 40-42 feet

Boring 28 MW 2 Bory soil & dish 177.3 Sample at 40-42 feet Dish 108.2


Moisture Content = 44.3

SIEVE ANALYSIS

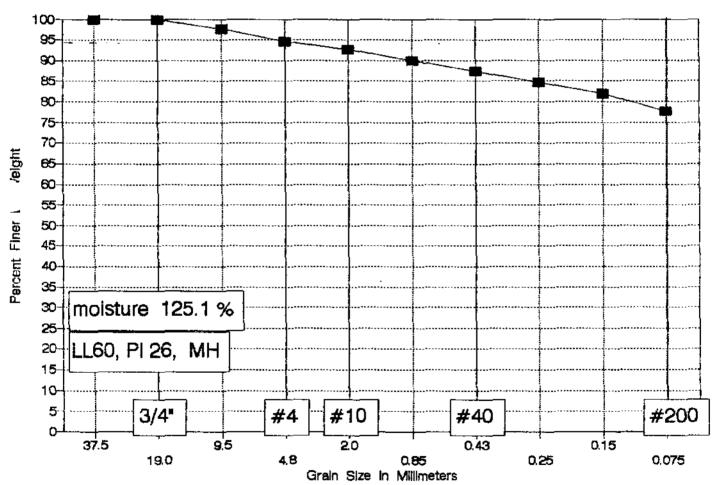
Dry weight of total sample= 69.1

7	weight	% .		
Sieve # :	retained	Finer		
1.5 inch	0	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	0.4	99.42%	99.4	4.8
# 10	0.7	98.99%	99.0	2.0
# 20	1.5	97.83%	97.8	0.85
# 40	2.8	95.95%	95.9	0.43
# 60	4.2	93.92%	93.9	0.25
# 100	5.5	92.04%	92.0	0.15
# 200	7.4	89.29%	89.3	0.075

Boring 51 MW 1, sample at 10-11.3 feet

Boring 51 MW 1 Dry soil & dish 211.4 Sample at 10-11.3 feet Dish 109.4

Moisture Content = 8.6


SIEVE ANALYSIS

Dry weight of total sample=

102

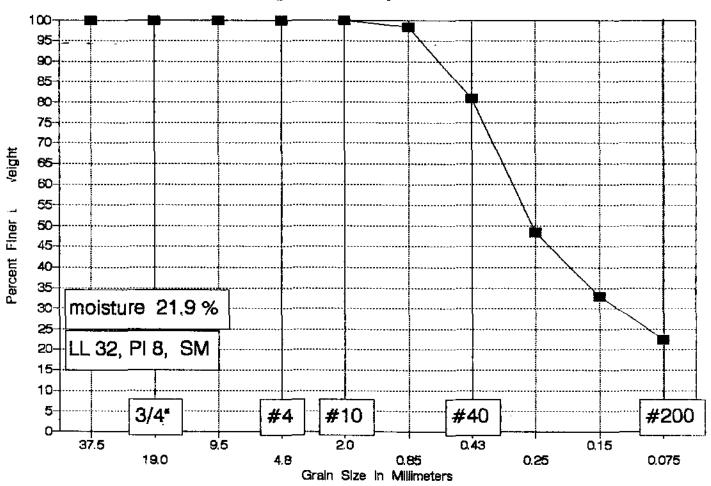
	weight	%		
Sieve #	retained	Finer		
1.5 inch	a 0	100.00%	100.0	37.5
3/4 inch	62.8	38.43%	38.4	19.0
3/8 inch	64.3	36.96%	37.0	9.5
# 4	67.1	34.22%	34.2	4.8
# 10	69.7	31.67%	31.7	2.0
# 20	73.4	28.04%	28.0	0.85
# 40	79	22.55%	22.5	0.43
# 60	82.5	19.12%	19.1	0.25
# 100	85.7	15.98%	16.0	0.15
# 200	89.6	12,16%	12.2	0.075

Boring 51 MW 1, sample at 30-32 feet

Boring 51 MW 1 Dry soil & dish 169.2 Sample at 30-32 feet Dish 105.4

Moisture Content = 125.1

-- -· -


SIEVE ANALYSIS

Dry weight of total sample=

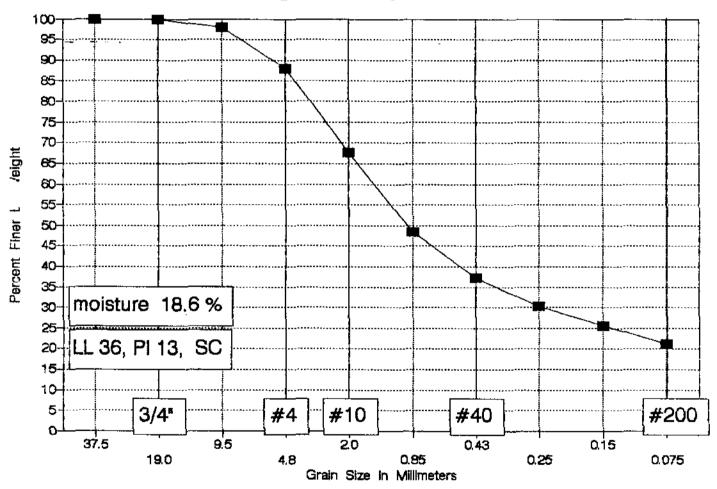
63.8

,	weight	%		
Sieve # :	retained	Finer		
1.5 inch	0	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	1.5	97.65%	97.6	9.5
# 4	3.4	94.67%	94.7	4.8
# 10	4.7	92.63%	92.6	2.0
# 20	6.4	89.97%	90.0	0.85
# 40	8	87.46%	87.5	0.43
# 60	9.8	84.64%	84.6	0.25
# 100	11.5	81.97%	82.0	0.15
# 200	14.2	77.74%	77.7	0.075

Boring 51 MW 2, sample at 10-12 feet

Boring 51 MW 2 Sample at 10-12 feet Wt soil and dish 202.3 Dry soil & dish 184.4 Dish 102.8

Moisture Content = 21.9


SIEVE ANALYSIS

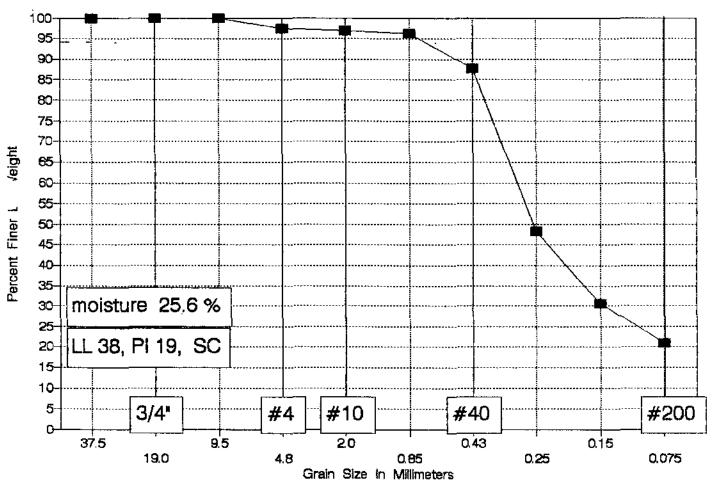
Dry weight of total sample=

81.6

weight Sieve # retained Finer 0 1.5 inch 100.00% 100.0 37.5 3/4 inch 100.00% 100.0 0 19.0 0 100.00% 100.0 0 100.00% 100.0 3/8 inch 9.5 # 4 4.8 0.1 99.88% 1.3 98.41% 15.6 80.88% 99.9 98.4 80.9 2.0 # 10 # 20 0.85 # 40 0.43 # 60 42.1 48.41% 48.4 0.25 54.8 32.84% 63.2 22.55% # 100 0.15 32.8 # 200 22.5 0.075

Boring 51 MW 2, sample at 25-27 feet

Boring 51 MW 2 Bry soil & dish 216.8 Sample at 25-27 feet Dish 108.9


Moisture Content = 18.6

SIEVE ANALYSIS

Dry weight of total sample= 107.9

weight Sieve # retained Finer 100.00% 1.5 inch 0 100.0 37.5 3/4 inch 0 100.00% 100.0 19.0 2.1 9.5 3/8 inch 98.05% 98.1 # 4 12.9 88.04% 88.0 4.8 # 10 34.9 67.66% 67.7 2.0 55.7 # 20 48.38% 48.4 0.85 # 40 67.8 37.16% 37.2 0.43 75.1 30.40% 0.25 # 60 30.4 # 100 80.2 25.67% 25.7 0.15 # 200 85.1 21.13% 21.1 0.075

Boring 0 MW 1, sample at 5-7 feet

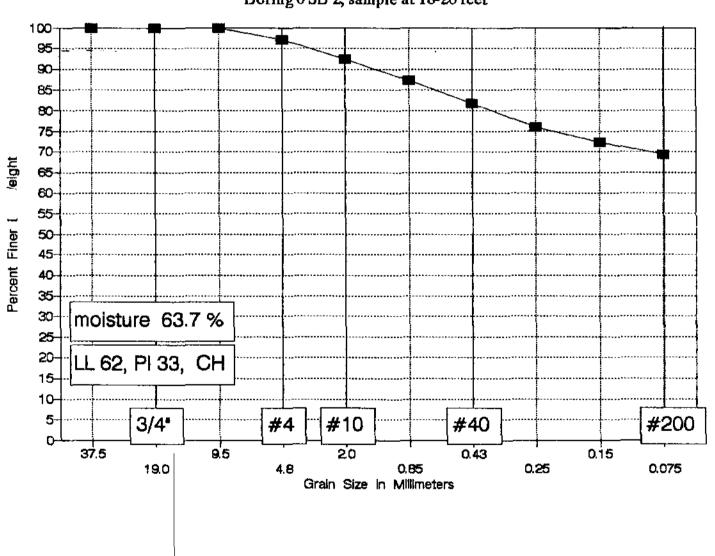
Boring 0 MW 1 Dry soil & dish 202.5 Sample at 5-7 feet Dish 110.6

Moisture Content = 25.6

SIEVE ANALYSIS

Dry weight of total sample= 91.9

% ` weight Sieve # retained Finer 1.5 inch 0 100.00% 100.0 37.5 0 100.00% 100.0 0 100.00% 100.0 3/4 inch 19.0 3/8 inch 9.5 2.3 97.50% # 4 97.5 4.8 # 10 2.9 96.84% 96.8 2.0
 3.3
 96.41%
 96.4
 0.85


 11.3
 87.70%
 87.7
 0.43

 47.6
 48.20%
 48.2
 0.25

 63.8
 30.58%
 30.6
 0.15

 72.6
 21.00%
 21.0
 0.075
 # 20 # 40 # 60 # 100 # 200

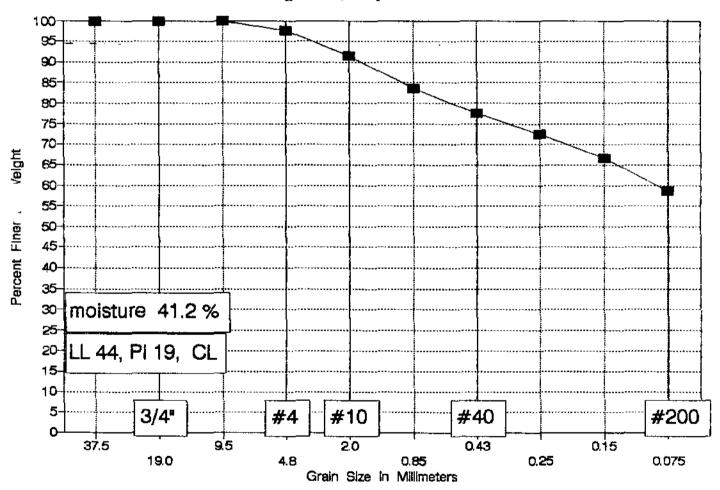
Boring 0 SB 2, sample at 18-20 feet

Boring 0 SB 2 Sample at 18-20 feet

_ _

Wt soil and dish 216.8 Dry soil & dish 174 Dish 106.8

Moisture Content = 63.7


SIEVE ANALYSIS

Dry weight of total sample=

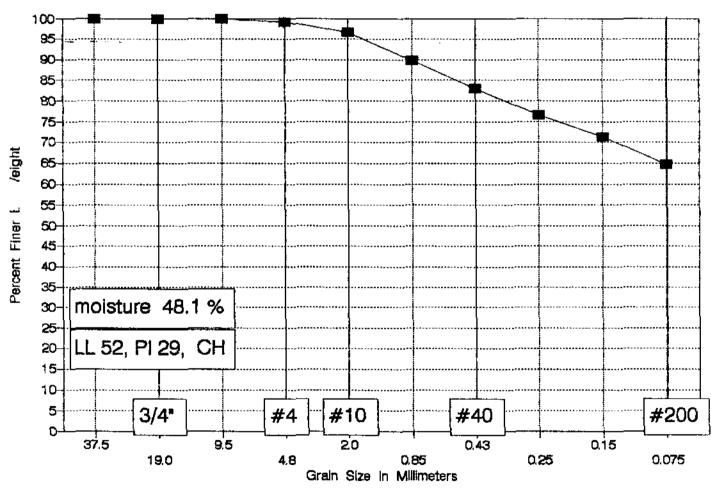
67.2

	weight	8		
Sieve #	retained	Finer		
1.5 inc	h O	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	2	97.02%	97.0	4.8
# 10	5.1	92.41%	92.4	2.0
# 20	8.4	87.50%	87.5	0.85
# 40	12.2	81.85%	81.8	0.43
# 60	16.1	76.04%	76.0	0.25
# 100	18.6	72.32%	72.3	0.15
# 200	20.6	69.35%	69.3	0.075

Boring 0 SB 3, sample at 10 - 12 feet

Boring 0 SB 3 Sample at 10-12 feet Wt soil and dish 205.8 Dry soil & dish 176.9 Dish 106.8

Moisture Content = 41.2


SIEVE ANALYSIS

Dry weight of total sample=

70.1

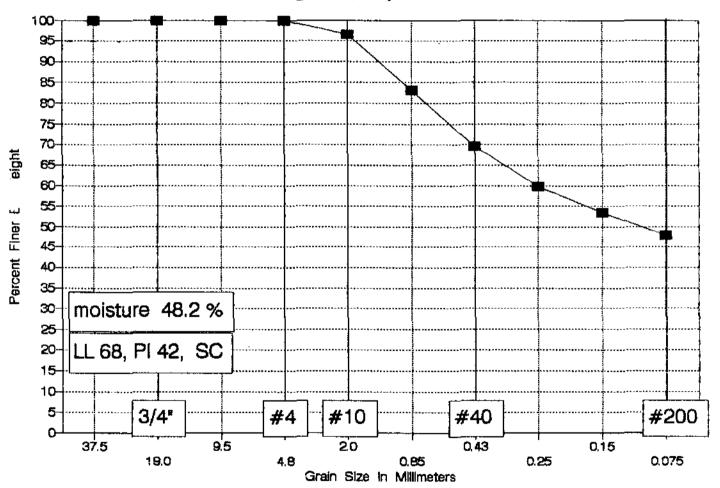
	weight	% ⁻		
Sieve #	retained	Finer		
1.5 inc	h O	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	1.6	97.72%	97.7	4.8
# 10	6	91.44%	91.4	2.0
# 20	11.4	83.74%	83.7	0.85
# 40	15.7	77.60%	77.6	0.43
# 60	19.3	72.47%	72.5	0.25
# 100	23.4	66.62%	66. 6	0.15
# 200	29	58.63%	58.6	0.075

Boring 0 SB 4, sample at 27.5 feet

Boring 0 SB 4 Sample at 27.5 feet Wt soil and dish Dry soil & dish Dish

222.1 183.2 102.4

Moisture Content = 48.1


SIEVE ANALYSIS

Dry weight of total sample=

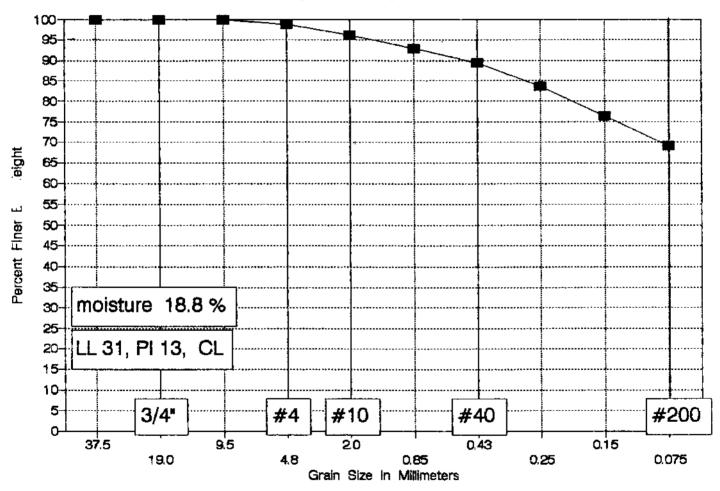
80.8

	weight	%		
Sieve #	retained	Finer		
1.5 incl	h 0	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	0.7	99.13%	99.1	4.8
# 10	2.7	96.66%	96.7	2.0
# 20	8.2	89.85%	89.9	0.85
# 40	13.8	82.92%	82.9	0.43
# 60	18.9	76.61%	76.6	0.25
# 100	23.2	71.29%	71.3	0.15
# 200	28.6	64.60%	64.6	0.075

Boring 0 SB 5, sample at 6-7 feet

Boring 0 SB 5 Sample at 6-7 feet Wt soil and dish 165.3 Dry soil & dish 146.7 Dish 108.1

Moisture Content = 48.2


SIEVE ANALYSIS

Dry weight of total sample=

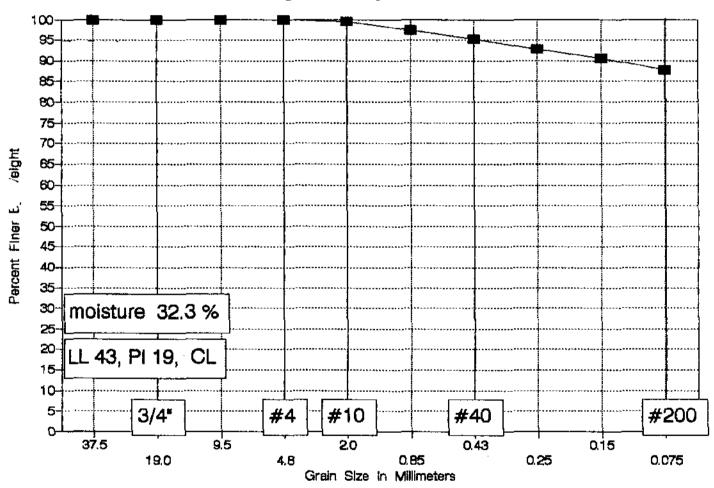
38.6

	weight	8		
Sieve #	retained	Finer		
1.5 inc	h O	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	0	100.00%	100.0	4.8
# 10	1.3	96.63%	96.6	2.0
# 20	6.5	83.16%	83.2	0.85
# 40	11.7	69.69%	69.7	0.43
# 60	15.5	59.84%	59.8	0.25
# 100	18	53.37%	53.4	0.15
# 200	20.1	47.93%	47.9	0.075

Boring 0 SB 6, sample at 7.5 feet

Boring 0 SB 6 Dry soil & dish 228.6 Sample at 7.5 feet Dish 109.6

Moisture Content = 18.8


SIEVE ANALYSIS

Dry weight of total sample=

119

	weight	8		
Sieve #	retained	Finer		
1.5 inc	h O	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	1.4	98.82%	98.8	4.8
# 10	4.5	96.22%	96.2	2.0
# 20	8.3	93.03%	93.0	0.85
# 40	12.5	89.50%	89.5	0.43
# 60	19.5	83.61%	83.6	0.25
# 100	28	76.47%	76.5	0.15
# 200	36.7	69.16%	69.2	0.075

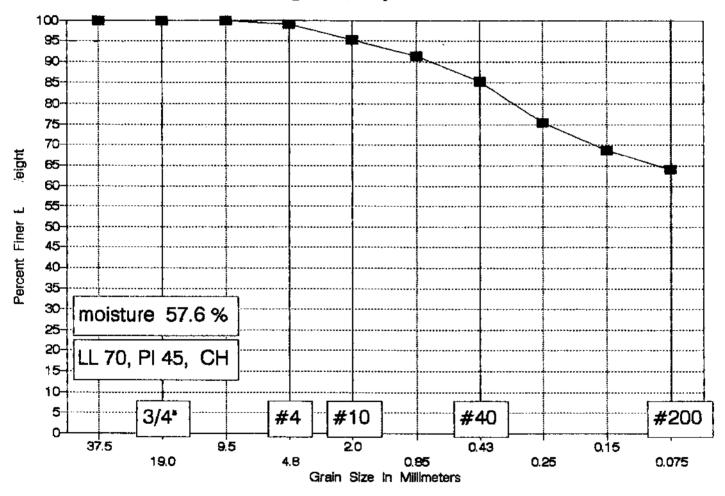
Boring 0 SB 7, sample at 7.5-10 feet

RAAP RFI Usathama Virginia

 Boring 0 SB 7
 Dry soil & dish 160.3

 Sample at 7.5-10 feet
 Dish 104.8

Moisture Content = 32.3


SIEVE ANALYSIS

Dry weight of total sample= 55.5

weight Sieve # retained Finer 0 1.5 inch 100.00% 100.0 37.5 3/4 inch 0 100.00% 100.0 19.0 3/8 inch 0 100.00% 100.0 9.5 # 4 0 100.00% 100.0 4.8 0.3 99.46% # 10 99.5 2.0 # 20 1.4 97.48% 97.5 0.85 2.6 95.32% 4 92.79% 5.2 90.63% 6.8 87.75% # 40 95.3 0.43 # 60 92.8 0.25 # 100 90.6 0.15 # 200 87.7 0.075

GRADATION CURVE

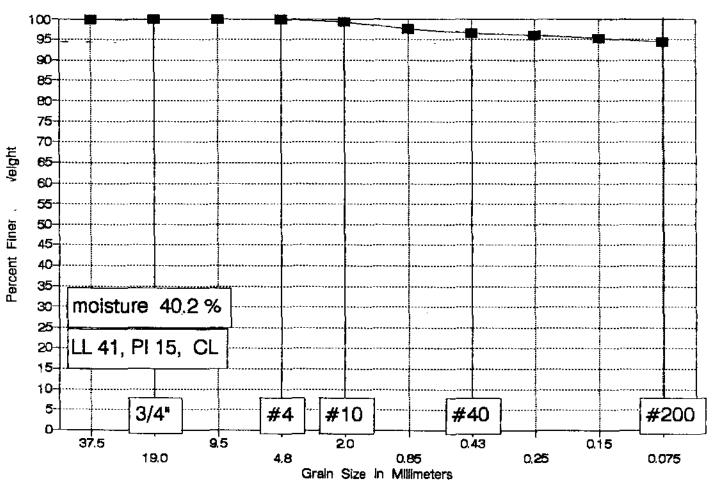
Boring 0 SB 8, sample at 14-15 feet

RAAP RFI Usathama Virginia

Boring 0 SB 8 Sample at 14-15 feet Wt soil and dish 199.2 Dry soil & dish 166.1 Dish 108.6

Moisture Content = 57.6

SIEVE ANALYSIS


Dry weight of total sample=

57.5

	weight	%		
Sieve #	retained	Finer		
1.5 incl	n O	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	0.6	98.96%	99.0	4.8
# 10	2.7	95.30%	95.3	2.0
# 20	5	91.30%	91.3	0.85
# 40	8.4	85.39%	85.4	0.43
# 60	14.1	75.48%	75.5	0.25
# 100	18	68.70%	68.7	0.15
# 200	20.6	64.17%	64.2	0.075

GRADATION CURVE

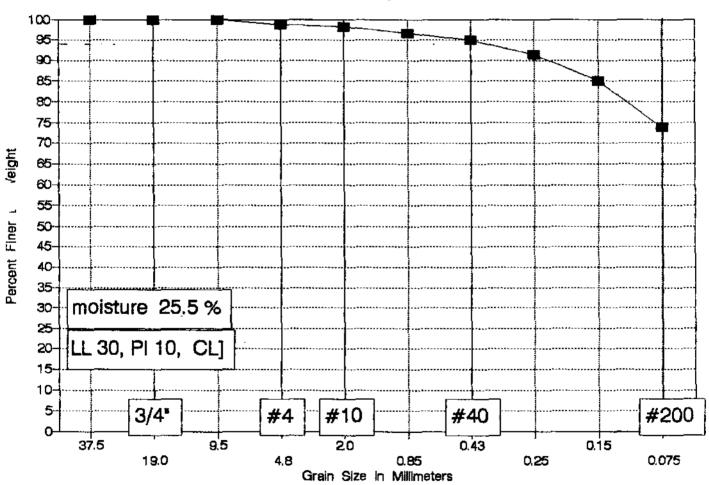
Boring 0 SB 10, sample at 20-22 feet

RAAP RFI Usathama Virginia

Boring 0 SB 10 Sample at 20-22 feet Wt soil and dish 242.8 Dry soil & dish 204.5 Dish 109.3

Moisture Content = 40.2

SIEVE ANALYSIS


Dry weight of total sample=

95.2

	weight	% .		
Sieve #	retained	Finer		
1.5 incl	h 0	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	0	100.00%	100.0	4.8
# 10	0.6	99.37%	99.4	2.0
# 20	2.2	97.69%	97.7	0.85
# 40	3.2	96.64%	96.6	0.43
# 60	3.9	95.90%	95.9	0.25
# 100	4.6	95.17%	95.2	0.15
# 200	5.5	94.22%	94.2	0.075

GRADATION CURVE

Boring 0 SB 11, sample at 8.0 feet

RAAP RFI Usathama Virginia

Boring 0 SB 11 Bry soil & dish 202.7 Sample at 8.0 feet Dish 109.7

Moisture Content = 25.5

__ · · _

SIEVE ANALYSIS

Dry weight of total sample= 93

	weight	%		
Sieve #	retained	Finer		
1.5 inch	0	100.00%	100.0	37.5
3/4 inch	0	100.00%	100.0	19.0
3/8 inch	0	100.00%	100.0	9.5
# 4	1.1	98.82%	98.8	4.8
# 10	1.7	98.17%	98.2	2.0
# 20	3	96.77%	96.8	0.85
# 40	4.6	95.05%	95.1	0.43
# 60	8.1	91.29%	91.3	0.25
# 100	14	84.95%	84.9	0.15
# 200	24.4	73.76%	73.8	0.075

SCHNABEL ENGINEERING ASSOCIATES

CONSULTING CEOTECHNICAL ENGINEERS

August 12, 1980

IAMES I SCHNABEL P. E.
RAY E. MARTIN PH. D., P. E.
RAYMOND A. DESTEPHEN P. E.

ONE WEST CARY STREET RICHMOND, VIRCINIA 23220 804: 649-7035

U. S. Army Corps of Engineers Norfolk District Fort Norfolk 803 Front Street Norfolk, Virginia 23510

Attn: Mr. Jack G. Starr

Chief, Engineering Division

Subject:

Contract V80256, Soil Laboratory Testing, RCRA Study, Army Ammunition Plant, Radford, Virginia

Gentlemen:

Submitted herewith are three copies of the results of soil laboratory tests performed at your request for samples obtained from lagoon and landfill sites "B", "C", "D", and "H". Thirteen thin wall undisturbed Shelby tube samples were obtained from Bill Barker at the site in July, 1980 and were tested in the soils laboratory in accordance with our proposal dated May 20, 1980.

Iaboratory tests were performed in accordance with the following methods: Grain size analysis - ASTM D-421 dry method; Liquid Limit ASTM D-423; Plastic Limit ASTM D-424; Specific Gravity ASTM D-854; Unit weight and respective Natural Moisture ASTM D-2937; Soil Classification ASTM D-2487. A 6 inch section of tube was used to determine natural density in lieu of using the total tube sample.

Permeability tests were performed on about 6 inch lengths of each Shelby tube. Permeability tests were generally performed in accordance with the procedures described by the Department of Army Engineering and Design Laboratory Soils Testing Manual 1110-2-1906. A constant head was obtained by applying a controlled pressure head of water to one end of the tube and permitting the sample to saturate. When a constant flow was obtained through the specimen, readings were recorded.

Tests for pH were performed using LaMotte-Hester soil testing equipment and procedures.

U. S. Army Corps of Engineers August 12, 1980 Page Two

Cation - Exchange Capacity results were obtained by the ammonium acetate method and were performed by Commonwealth Laboratories, Richmond, Virginia.

Note that the tube for the last sample entry on Sheet 2 was not marked in accordance with a particular site.

. We are pleased to be of service. Please do not hesitate to call if you have questions regarding these results.

Very truly yours,

SCHNABEL ENGINEERING ASSOCIATES, P.C.

Richard H. Wargo Senior Staff Engineer

RHW:maj

Enclosures

- (1) Laboratory Test Summary, Sheets 1 and 2
- (2) Gradation Curves, Sheets 3 thru 6

TABLE 3-B
RESULTS OF PERMEABILITY TESTS MADE AT SITE C

Soil Boring	Dept (ft)		Lithologic Description	Permeability (cm/sec)
DH-2	0 -	5	clay	2.65 x 10 ⁻⁴
	0 -	15	clay	9.88×10^{-5}
	11.5*		clay	7.1 \times 10 ⁻⁵
	15 -	20	clay	1.31×10^{-4}
	20 -	25	clay	1.02×10^{-4}
•	21.5*		silty sand	9.0×10^{-4}
	25 -	31.5	clay	6.00×10^{-5}
	· 30 -	35	clay	2.12 x 10 ⁻⁵
	35 -	40	sand	3.88×10^{-5}
	36.5*		sand	2.0×10^{-5}
	40 -	45.	sand	2.44×10^{-4}
	45 -	50	gravel	5.73×10^{-3}
	50 -	5 5	gravel	5.51×10^{-3}
	55 -	62.6	limestone and clay	3.77×10^{-3}
	55 -	68.8	limestone	$^{\circ}$ 2.65 x 10^{-3}
DH-3	0 -	5	clay	Super O+ Commercial Control
.•	0 -	10	clay	0+
	10*	•	clay	4.4×10^{-6}
	0 -	15	clay	0+
	0 -	20	clay	0÷
	0 :-	25	silt .	0+
	0 -	30	silt	2.47×10^{-5}
	0 -	35 .	silt	1.77 x 10 ⁻⁵
	35 -	40	gravel	2.58×10^{-3}
	40 -	45	gravel	$^{\prime}$ 2.29 x 10^{-3}
	45	50	gravel ·	2.05 x 10 ⁻³
	50 -	55	clay(?)	1.59×10^{-3}
	56 -	58.6	clay(?)	2.61×10^{-3}
	58.6 -	68.6	limestone	9.18×10^{-4}

Laboratory test; all others made in field.

Reported as 0, but probably less than 3.28 x 10^{-6} cm/sec. This is the minimum measurable with the equipment used.

SUMMARY OF SOIL LABORATORY TESTS

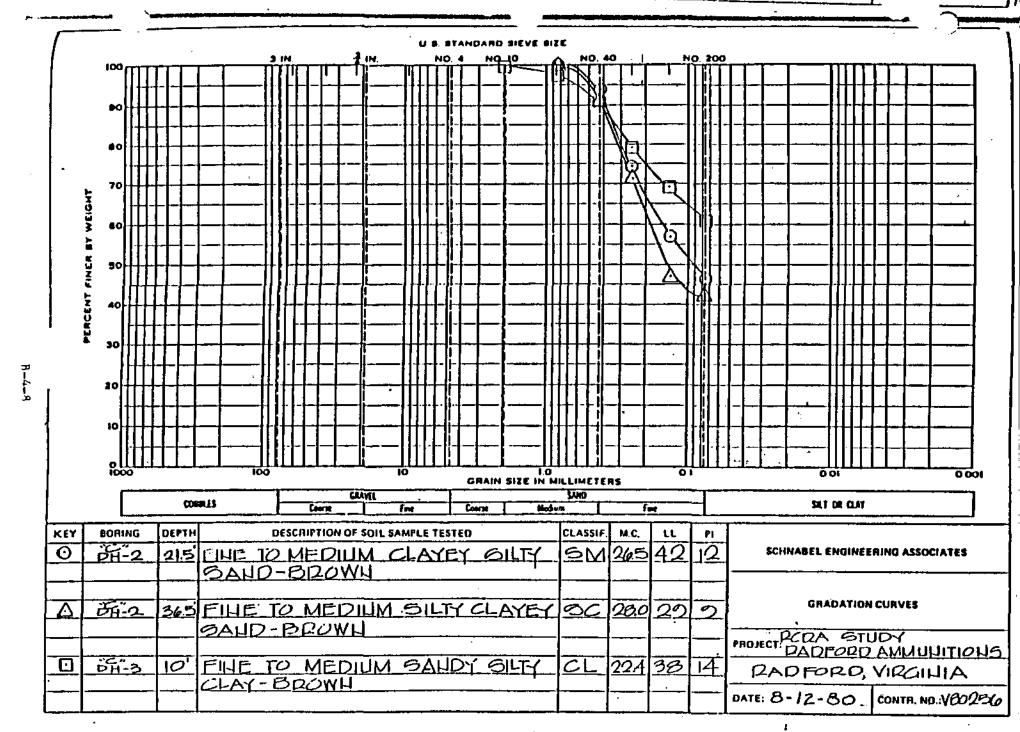
	Boring No	Sample Depth Elev.	Sample Type	Description of Soil Specimen	plt	Den	ural mity pet Dry		terbe Limit P.L.		Moisture	% Passing No. 200 Sieve	CEC meg/ 100gm	Perme- obidity (cm/sec)	Specific Gravity
	"B" -D! -1- Di -3	30.5	3" TUBE	FINE TO COARSE SANDY CLAYEY SILT, SOME GRAVE BROWN (ML)	5.4	.110	83	37	30	7	33.9	52	10.7	2.8 ^{×10-6}	2.74
	"B" DH-2	21.5	3" TUBE	FINE TO COARSE CLAYEY SILTY SAND - BROWN (SM)	5.2	120	94	41	32	9	28.1	46	10.2	2.8 ^{×10-6}	2.75
ъ ·	"B" D11-2	35.0	3" TUBE	FINE TO HEDIUM SAND, SOME SILTY CLAY - BROWN (SC)	5.0	111	86	36	24	12	29.5	27	6.1	1.3 ^{×10→5}	2.75
B-4-5	"C" DH-2	21.5	ETT THE E	FINE TO HEDIUM CLAYEY SILTY SAND - BROWN (SM)	5.4	120	95	42	30	12,	26.5	47	8.5	9.0*10-4	2.76
	"C" DH-2	36.5	3" TUBE	FINE TO MEDIUM SILTY CLAYEY SAND - BROWN (SC)	5.4	119	93	29	20	9	28.0	42	7.4	2.0 ^{×10-5}	2.66
	"C" DH-3	10.0	311 mune	FINE TO MEDIUM SANDY SILTY CLAY - BROWN (CL)	4.8	130	106	38	24	14	22.4	62	6.2	4.4 ^{×10~6}	2.67
	"D" DH-1	10.0		FINE SILTY SAND — BROWN (SM)	5.4	122	99	NP	NP	NP	22.4	44	10.5	1.7 ^{×10-5}	2.64

Notes: 1. Soil tests in accordance with applicable ASTH Standards

2. Soil classifications in accordance

3. Key to abbreviations: LL-Liquid Limit; PL-Plastic Limit; PI-Plasticity Index; NA-Hand Auger CEC=Cation Exchange Capacity

Soil Tests were conducted by J. Herbert & B. Fr


B-4-

SUMMARY OF SOIL LABORATORY TESTS

i	Boring No.	Sample Depth Elev.	Sample Type	Description of Soil Specimen	рH	Den	ural wity pcf Dry		terbe Limit P.L.		Natural Moisture %		CEC meg/ 100gm	Perme- ability (cm/sec)	Specific Gravity
	"p" Dii-2	10.0	3" TUBE	FINE SAND, SOME SILT - DARK BROWN (SM)	6.8	104	82	NP	ИР	NP	26.9	24	11.4	1. 2×10-3	2.72
	"D" DH-3	11.5	3" TUBE	FINE TO MEDIUM SAND, SOME SILT - BROWN (SM)	6.6	123	105	NP	NP	NP	17.1	12	2.9	3. 2 ^{×10-5}	2.72
	"D" • DII-3	18.0	3" TUBE	FINE TO MEDIUM SAND, TRACE SILT - BROWN (SP)	6.6	104	91	NP	NP	NP	14.1	2	7.4	5.4×10-3	2.70
2	"H" DH-1	6.5	3" TUBE	FINE SANDY CLAYEY SILT - BROWN (CL-ML)	5.4	129	106	26	20	6	21.2	52	9.0	L5*10-5	2.78
	"H" DII-1	11.5	3" TUBE	FINE TO MEDIUM CLAYEY SILTY SAND, TRACE FINE GRAVEL - BROWN (SM)	5.2	127	105	23	20	3	20.8	42	á. 3	3.4 ^{×10-5}	2.78
	Dii-2	11.5	3" TUBE	FINE TO MEDIUM SANDY SILTY CLAY - BROWN (SC)	5.4	113	.93	31	21	10	, 21.9	57	2.5	7.1 ^{×10-5}	2.71
													•		· · · · · · · · · · · · · · · · · · ·

- Hotes: 1. Soil tests in accordance with applicable ASTM Standards
 - 2. Soil classifications in accordance with Unified Soil Classification System
- . 3. Key to abbreviations: LL-Liquid Limit; PL-Plastic Limit; PI-Plasticity Index; NA-Hand Auger CEC-Cation Exchange Capacity
 - 4. Soil Tests were conducted by J. Herbert & B. Frey

1

ן שני ציעווי ייייי

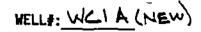
Summary of Cation Exchange Capacity (CEC) SWMUs 28, 51, and 52 Radford Army Ammunition Plant, Virginia

<u>Well</u>	<u>Depth</u>	CEC (meq/100 g)	Reference
CDH-2	11.5	2.5	USACE, 1981
CDH-2	21.5	8.5	USACE, 1981
CDH-2	36.5	7.4	USACE, 1981
CDH-3	10.0	6.2	USACE, 1981
BH2	11–16	13.3	USAEHA, 1980b
BH5	7–12	12.0	USAEHA, 1980b
ВН7	0-7	10.1	USAEHA, 1980b
вн9	3-5	11.5	USAEHA, 1980b

TABLE 3-B

RESULTS OF PERMEABILITY TESTS MADE AT SITE C

Soil Boring	De	ept. ft)	h.	Lithologia Description	Permeability (cm/sec)
Boring	()	(E)	····	Lithologic Description	
DH-2	0	-	5	clay	2.65×10^{-4}
	0	-	15	clay	9.88×10^{-5}
	11.5	+		clay	7.1×10^{-5}
	15	-	20	clay	1.31×10^{-4}
	20	-	25	clay	1.02×10^{-4}
	21.5	k.		silty sand	9.0×10^{-4}
	25	-	31.5	clay	6.00×10^{-5}
<u>-</u> -	30	-	35	clay	2.12×10^{-5}
	35	_	40	sand	3.88×10^{-5}
	36.5	*		sand	2.0×10^{-5}
	40	-	45	sand	2.44×10^{-4}
	45	-	50	gravel	5.73×10^{-3}
	50	-	55	gravel	5.51×10^{-3}
	55		62.6	limestone and clay	3.77×10^{-3}
	55	-	68.8	limestone	2.65×10^{-3}
DH-3	0	-	5	clay	0+
	0	_	10	clay	0+
	10*			clay	4.4×10^{-6}
	0	_	15	clay	0+
	0	_	20	clay	0+
	0	_	25	silt	0+
	0	-	30	silt	2.47×10^{-5}
	0	-	35	silt	1.77×10^{-5}
	35	-	40	gravel	2.58×10^{-3}
	40	-	45	gravel	2.29×10^{-3}
	45	-	50	gravel	2.05×10^{-3}
	50	-	55	clay(?)	1.59×10^{-3}
	56	-	58.6	clay(?)	2.61×10^{-3}
	58.6	_	68.6	limestone	9.18×10^{-4}


Laboratory test; all others made in field.

 $^{^{+}}$ Reported as 0, but probably less than 3.28 x 10 $^{-6}$ cm/sec. This is the minimum measurable with the equipment used.

TABLE OF CALCULATED PERMEABILITIES

WELL NO.	K (FT/SEC)	K(CM/SEC)		
WCI A (new)	9.08×10^{-6}	2.77×10^{-4}		
WCI B (new)	3.00×10^{-4}	9.14×10^{-3}		
_ WC2. A	4.50 x 10 ⁻⁶	1.37 x 10 ⁻⁴		
WC2 B	2.80×10^{-7}	8.53×10^{-6}		

IN-SITU PERMEABILITY TEST CALCULATIONS

PARAMETERS

Y(t) = drop in water level at time t (ft.) = 1.35

t = elapsed time (sec.) = \50

Y(0) = drop in water level at time 0 sec. = 4.97

L = length of screen which water enters (ft.) = 10.0

r(c) = inside radius of well casing (ft.) = 0.08

r(w) = radial distance from well center to undisturbed aquifer (ft.) = 0.25

H = submergence length of well into groundwater (ft.) = 25,03

C = coefficient relating Re/r(w) to L/r(w) = 2.4

K = hydraulic conductivity = unknown

EQUATIONS

In Re/r(w)=
$$\left[\frac{1.1}{\ln(H/r(w))} + \frac{C}{L/r(w)}\right]^{-1}$$

$$K = \frac{r(c)^2 \ln (Re/r(w))}{2L} \frac{1}{t} \ln \frac{Y(0)}{Y(t)}$$

RESULTS

$$LN R_{E}/r_{(N)} = \left[\frac{1.1}{LN\left(\frac{25.03}{0.25}\right)} + \frac{2.4}{\left(\frac{10.0}{0.25}\right)}\right] = 3.34$$

$$K = \frac{(0.08)^2}{2(10.0)} \frac{3.34}{(150)} \left(\frac{1}{150}\right) \ln \left(\frac{4.87}{1.35}\right) = 9.08 \times 10^{-6} \text{ Fr/sec}$$

WELLS: WCI B(NEW)

IN-SITU PERMEABILITY TEST CALCULATIONS

PARAMETERS

Y(t) = drop in water level at time t (ft.) = 0.75

t = elapsed time (sec.) = 180

Y(0)= drop in water level at time 0 sec. = 3.92

L = length of screen which water enters (ft.) = 4.32

r(c)= inside radius of well casing (ft.) = 0.33

r(w) = radial distance from well center to undisturbed aquifer (ft.) = 0.13

H == submergence length of well into groundwater. (ft.) = 4.52

C = coefficient relating Re/r(w) to L/r(w) = 2.1

K = hydraulic conductivity = unknown

EQUATIONS

$$\ln \text{Re/r(w)} = \left[\frac{1.1}{\ln(\text{H/r(w)})} + \frac{\text{C}}{\text{L/r(w)}} \right]^{-1}$$

$$K = \frac{r(c)^2 \ln (Re/r(w))}{2L} \frac{1}{t} \ln \frac{Y(0)}{Y(t)}$$

RESULTS

$$L_{N} R_{E}/\Gamma(N) = \left[\frac{1.1}{L_{N}(\frac{4.32}{0.13})} + \frac{2.1}{(\frac{4.32}{0.13})}\right]^{-1} = 2.70$$

$$K = \frac{(0.33)^2(2.70)}{2(4.32)} \left(\frac{1}{180}\right) LN\left(\frac{3.92}{0.75}\right) = 3.0 \times 10^{-4} FT/SEC$$

WELLS: WCZ A

IN-SITU PERMEABILITY TEST CALCULATIONS

PARAMETERS

Y(t) = drop in water level at time t (ft.) = 2.14

t = elapsed time (sec.) = 420

Y(0) = drop in water level at time 0 sec. = 2.35

L = length of screen which water enters (ft.) = 7.52

r(c)= inside radius of well casing (ft.) = 0.55

r(w)= radial distance from well center to undisturbed aquifer (ft.) = 0.13

H-= submergence length of well into groundwater (ft.) = 7.52

C = coefficient relating Re/r(w) to L/r(w) = 2.9

K = hydraulic conductivity = unknown

EQUATIONS

In Re/r(w)=
$$\left[\frac{1.1}{\ln(H/r(w))} + \frac{C}{L/r(w)}\right]^{-1}$$

$$K = \frac{r(c)^2 \ln (Re/r(w))}{2L} \frac{1}{t} \ln \frac{Y(0)}{Y(t)}$$

RESULTS

LN RE/
$$\Gamma(w) = \left[\frac{1.1}{\omega(\frac{7.52}{0.13})} + \frac{2.9}{(\frac{7.52}{0.13})}\right]^{-1} = 3.11$$

$$V = \frac{(0.33)^2 (3.11)}{2 (7.52)} \left(\frac{1}{420}\right) LN \left(\frac{2.35}{2.14}\right) = 4.50 \times 10^{-6} \text{ Kg}$$

INTRODUCTION

In situ permeability tests were conducted to measure the permeability of the geologic materials intercepted by the wells installed under BCM supervision (P-I, P-2, P-3, P-4, W-8B, W-11B and W-12B). The field test consisted of bailing a volume of water from these wells and measuring the rate of recharge. Methodology presented in A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifer with Completely or Partially Penetrating Wells (Bouwer and Rice, 1976) was utilized to calculate a hydraulic conductivity (permeability) figure for all but wells W-11B and W-12B. Wells W-11B and W-12B recovered too rapidly (i.e., exhibited extremely high permeability) to even draw the water level down far enough to measure a recovery rate. The above-cited methodology produced hydraulic conductivities that appear to be consistent with the groundwater regime at the respective sites. The hydraulic conductivity values obtained are presented below:

BAIL TEST PERMEABILITY (HYDRAULIC CONDUCTIVITY) VALUES

<u>Well</u>	Hydraulic Conductivity (cm/sec)
P-1	2.07 x 10 ⁻⁴
P-2	4.61 x 10 ⁻⁵
P-3	1.62×10^{-4}
P-4	8.26 × 10 ⁻⁶
W-8B	1.95 x 10 ⁻⁴

APPENDIX F.3

Chemical Data

Analytical Data Are Sorted In Alphanumeric Order By: NOTE:

- 1. Site ID
- Sample Depth Sample Date Field ID 2.
- 3.
- 4,

A List Of Samples Is Provided On The Following Page.

Summary Listing of Site IDs

13MW1	88
13MW2	BKSS1
13MW3	BKSS10
13MW4	BKSS2
13MW5	BKS\$3
13MW6	8KSS4
13MW7	BKSS5
13\$81	BKSS6
13SB2	BKSS7
13SB3	BKSS8
13SB4	BKSS9
13\$85	C1
13\$B6	C4
13SC1	CDH-2
13SC2	MW9
13SC3	NRSE1
13SC4	NRSE2
13SC5	NRSE3
13SC6	NRSE4
13SC7	NR\$W1
13SC8	NRSW3
13SE1	NRSW4
13SE2	OMW1
13551	OSB1
13\$\$2	OSB10
13553	OSB11
13 SS4	OSB2
13SW1	OSB3
16-1	OSB4
16-3	OSB5
16-4	OSB6
17ASS1	OSB7
17ASS2	OSB8
17ASW1	O\$ 89
17BSE1	OSE1
17CSS1	OSE2
17CSS2	OSP1
17D\$\$1	P-1
17DSS2	P-2
17ESE1	P-3
17ESW1	P-4
28MW1 1	S4W-1
28MW2	S4W-4
51MW1	WC1-2
51MW2	WC1-A
	WC2-A

						Analytical	Analyte			Internal
Site ID	<u>Field IQ</u>		Date	<u>Depth</u>	<u>Units</u>	Method	Abbry,	Value	flag	Std. Code
13MW1	RDWA-13	CGW	08-oct-1991	23.0	UGL	UNZO	111TCE	0.500	LT	
13HW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UH20	112TCE	1.200	LT	
13MU1	RDMA=13	CGM	08-oct-1991	23.0	UGL	UM20	11DCE	0.500	ĻŤ	
13MV1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM20	11DCLE	0.680	LT	
13MW1 13MW1	RDWA*13 RDWA*13	CCA	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UH20	120CE	0.500	LT	
13MW1	RDWA-13	CGA	08-oct-1991	23.0	UGL.	UM20	12DCLE 12DCLP	0.874		
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UH20 UH20	2CLEVE	0.73 5 0.710	LT	
13MW1	RDWA*13	CGA	08-oct-1991	23.0	UGL	UM20	ACET	13.000	LT	
13MW1	RDUA*13	CCA	08-oct-1991	23.0	UGL	UH20	ACROLN	100.000	ND	R
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM20	ACRYLO	100.000	NO	Ř
13HW1	ROWA*13	CGW	08-oct-1991	23.0	UGL	UM20	BRDCLM	0.590	ĹŤ	•
13MV1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UH20	C13DCP	0.580	LŤ	
13MV1	RDMA*13	CGW	08-oct-1991	23.0	UGL	UN20	CZAVE	8.300	LT	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM20	C2H3CL	2,600	LT	
13MH1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM20	C2H5CL	1.900	ĹŤ	
13MW1	RDWAP13	CCM	08-oct-1991	23.0	UGL	UH20	C6N6	0.500	LT	
1399/1	RDWA+13	CGM	08-oct-1991	23.0	LIGT	UHZ0	CCL3F	1,400	ĻΤ	
13HW1	RDWA+13	CGW	08-oct-1991	23.0	UGL	UM20	CCL4	0.580	LT	
13M⊌1	RDWA*13	CEM	08-oct-1991	23.0	UGL	UN(20	CH2CL2	2.300	ĻT	
13861	RDWA#13	CGW	08-oct-1991	23.0	UGL	UH20	CH3BR	5.800	LT	
13HW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UH20	CH3CL	3.200	L,T	
13NV1	RDUA*13	CGM	08-oct-1991	23.0	UGL	UH20	CHBR3	2.600	LT	
13NW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM20	CHCL3	0.500	ĻŤ	_
13MW1	RDWA#13	CGA	08-oct-1991	23.0	UGL	UM20	CL2BZ	10.000	ND	R
13MW1 13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM20	CLC6H5	0.500	LT	
-13MW1	RDWA*13 RDWA*13	CGM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UM20	CS2	1.250		
13MW1	RDWA+13	CGM	08-oct-1991	23.0	UGL	UM20 -	DBRCLM	0.670	ĻŤ	
13MW1	RDWA-13	CCM	08-oct-1991	23.0	UGL	UH20 UH20	ETC6N5	0.500	LT	
13MU1	ROWA*13	CGM	08-oct-1991	23.0	UGL	UM20	MEC6H5	0.500	LT	
13MW1	ROWA*13	CGW	08-oct-1991	23.0	UGL	UN20	MIBK	6.400 3.000	LT	
13MW1	RDUA=13	CGW	08-oct-1991	23.0	UGL	UM20	MMBK	3.600	LT LT	
13MW1	RDWA+13	CGW	08-oct-1991	23.0	UGL	UM20	STYR	0.500	LT	
13MH1	RDWA*13	CGH	08-oct-1991	23.0	UGL	UM20	T130CP	0.700	נד	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UN20	TCLEA	0.510	ĻŤ	
13MH1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM20	TCLEE	1.600	LT	
13MJ1	RDUA*13	CGW	08-oct-1991	23.0	UGL	UH20	TRCLE	0.500	LT	
13MV1	RDWA*13	CGH	08-oct-1991	23.0	UGL	UH20	XYLEN	0.840	ĹŤ	
13MW1	RDMA*13	CGW	08-oct-1991	23.0	UGL	SD22	AS	2.540	LT	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	SD 23	AG	0.250	LT	
13HW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	SB01	HG	0.243	LŤ	
13/6/1	RDWA*13	CCL	08-oct-1991	23.0	UGL	00	TOC	5030.000		
13HW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	SD09	TL	6.990	LT	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL,	SD21	SÉ	3.020	LT	
13NW1	RDWA=13	CGW	08-oct-1991	23.0	UGL	\$020	PB	1.260	LT	
13MV1	RDUA*13	CCM	08-oct-1991	23.0	UGL	00	TOX	447_000		
13NU1	RDWA+13	COR	08-oct-1991	23.0	UGL	UN18	124TCB	1.800	LT	
13NW1 13NW1	RDHA=13	CGH	08-oct-1991	23.0	UGL	UN18	120CLB	1.700	LT	_
13MW1	RDWA*13 RDWA*13	CGM	08-oct-1991	23.0	UGL	UM18	12DPN	2.000	MD	R
		CGM	08-oct-1991	23.0	UGL	UN18	13DCLB	1.700	LT	
13MV1 13MV1	RDWA*13 RDWA*13	CGH CGH	08-oct-1991 08-oct-1991	23.0 23.0	UGL UGL	UM18 UM18	14DCLB 245TCP	1.700 5.200	LT LT	
13MW1	RDWA+13	CGM	08-oct-1991	23.0	UGL	UH18	2451CP	4.200	LT	
13Hu1	RDWA*13	CGM	08-oct-1991	23.0	UCL	UM18	24DCLP	2.900	LY	
13MJ1	RDWA=13	CGW	08-oct-1991	23.0	UCL	UM18	24DMPN	5.800	LT	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UN18	24DNP	21.000	LT	
13MW1	RDUA*13	CGW	08-oct-1991	23.0	UGL	UN18	240NT	4.500	ĹŤ	
13MH1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UN18	26DNT	0.790	ĹŤ	
13MU1	ROMA*13	CCM	08-oct-1991	23.0	UGL	UH18	2CLP	0.990	ίŤ	
13M/1	RDWA#13	CCM	08-oct-1991	23.0	UGL	UN18	2CNAP	0.500	ĹŢ	
13MU1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UNIS	ZIONAP	1.700	ĹŤ	
13MU1	RDUA+13	CGW	08-oct-1991	23.0	UGL	UN18	2MP	3.900	LT	
13MW1	RDWA*13	CCT	08-oct-1991	23.0	UGL	UM18	2NANTL	4.300	ĻŤ	
13MW1	RDVA*13	CCM	08-oct-1991	23.0	UGL	UN18	2NP	3.700	LT	
13MW1	RDUA*13	CGW	08-oct-1991	23.0	UGL	UH18	330¢80	12.000	LT	
13MV1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM18	3NANIL	4.900	LT	
13MH1	RDWA+13	COL	08-oct-1991	23.0	UGL	UN18	460N2C	17.000	LT	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UH18	4BRPPE	4.200	LT	
13MW1	RDWA*13	CCM	08-oct-1991	23.0	UGL	UN18	4CANTL	7.300	LT	
13MW1	RDWA+13	CCM	08-oct-1991	23.0	UGL	UN18	4CL3C	4.000	ĻT	
13MU1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UH18	4CLPPE	5.100	ĻŢ	
13MJ1	RDWA*13	¢g⊌	08-oct-1991	23.0	UGL	UN18	4MP	0.520	LT	
13MJ1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UN18	4MANIL	5.200	LT	
1316/1	RDWA*13	CCM	08-oct-1991	23.0	UGL	UM18	4MP	12.000	LT	

Site 10	<u> Eield ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
1314/1	RDWA#13	CGN	08-oct-1991	23.0	UGL	UN18	ABHC	4.000	ND	
13MW1	RDMA±13	CGW	08-oct-1991	23.0	UGL	UM18	ACLDAN	5.100	ND	Ř
13NU1	RDWA+13	CCM	08-oct-1991	23.0	UCL	UN18	AENSLF	9.200	ND	R
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	ALDRN	4.700	ND	Ř
13MU1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	ANAPNE	1.700	LT	
13MV1	RDWA*13	CGH	08-oct-1991	23.0	UGL	UN18	ANAPYL	0.500	LT	
13MV1 13MV1	RDUA*13 RDUA*13	CEM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UM18 UM18	ANTRC B2CEXM	0.500	LT	
13MW1	RDWA*13	CGH	08-oct-1991	23.0	UGL	UH18	B2CIPE	1.500 5.300	LT LT	
13MU1	RDWA*13	CCH	08-oct-1991	23.0	UGL	UM18	BZCLEE	1.900	LT	
13MV1	RDWA*13	COM	08-oct-1991	23.0	UGL	UM18	BZEHP	4.800	LT	
13MW1	RDWA+13	CGH	08-oct-1991	23.0	UGL	UM18	BAANTR	1-600	LT	
13M/1	RDWA#13	CCH	08-oct-1991	23.0	UGL	LIM18	BAPYR	4.700	LT	
13MW1 13MW1	RDWA*13 RDWA*13	CCM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UM18 UM18	B8FANT B8HC	5.400	LT	_
13HW1	RDUA*13	CGW	08-oct-1991	23.0	UGL	UM18	88ZP	4.000 3.400	ND LT	R
13MW1	RDUA*13	CCM	08-oct-1991	23.0	UGL	UM18	BENSLF	9.200	NO	R
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM18	BENZID	10.000	ND	Ř
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	BENZÇA	13.000	LT	
13MV1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UH18	BCHIPY	6.100	LŤ	
13MV1 13MV1	RDWA*13 RDWA*13	CCM	08-oct-1991 08-oct-1991	23.0 23.0	UGL UGL	UM18 UM18	SKFANT	0.870	LŢ	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM18	BZALC CHRY	0.720 2.400	LT LT	•
13MU1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UN18	CL68Z	1-600	LT	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	CL6CP	8-600	ĹŤ	
13MH1	RDUA*13	CCM	08-oct-1991	23.0	UGL	UM18	CL6ET	1.500	LT	
13/0/1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UN18"	DBAHA	6.500	LT	_
13M¥1 13M¥1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	D8HC	4-000	ND	R
13MW1	RDWA*13 RDWA*13	COM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UH18 UH18	D82FUR DEP	1.700 2.000	LT LT	
13/1/1	RDUA*13	CGY	08-oct-1991	23.0	UGL	UM18	DLDRM	4.700	ND	R
13MUT	RDHA*13	CGW	05-oct-1991	23.0	UGL	UH18	DHP	1.500	LT	•
13HW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UN18	DNBP	3.700	LT	
13841	RDWA+13	CCM	08-oct-1991	23.0	UGL	UH18	DHOP	15.000	LT	
13M/1	RDUA*13	CGW	08-oct-1991	23.0	UGL	UM18	EHDRN	7-600	ND ND	R
13MW1 13MW1	RDWA=13 RDWA=13	CCM	08-oct-1991 08-oct-1991	23.0 23.0	UGL UGL	UM18 UM18	ENDRNA ENDRNK	8.000 8.000	KD KD	R R
13Hw1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	ESFS04	9.200	ND	R R
13MW1	RDWA*13	CCM	08-oct-1991	23.0	UGL	UN18	FANT	3.300	ĹŤ	•
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UM18	FLRENE	3.700	ĻT	
13MV1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	GCLDAM	5.100	NO	R
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UN18	HCBD	3.400	LT	_
13MW1 13MW1	RDWA*13 RDWA*13	CCM	08-oct-1991 08-oct-1991	23.0 23.0	UGL UGL	UH18 UH18	HPCL HPCLE	2.000 5.000	KD	R
13MJ1	RDWA+13	CGW	08-oct-1991	23.0	UGŁ	UM18	ICOPYR	8.600	XID LT	R
13MW1	RDUA*13	CCH	08-oct-1991	•-	UGL	UN18	ISOPHR	4.800	ĻŤ	
13MJ1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UN18	LIM	4.000	ND	Ř
13HU1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	MEXCLR	5.100	ND	R
13M/1	RDWA+13	CGW	08-oct-1991	23.0	UGL	UM18	NAP	0.500	LT	
13MV1	ROUA+13	CCH	08-oct-1991 08-oct-1991	23.0	UGL	UN18	NB	0.500	LT	_
13MW1 13MW1	ROMA*13 ROMA*13	CGM	08-001-1991 08-001-1991	23.0 23.0	UGL UGL	UM18 UM18	NNOMEA NNONPA	2.000 4.400	HĐ LT	R
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGŁ	UM18	WADPA	3.000	ĹŤ	
13MV1	RDUA*13	CGM	08-oct-1991	23.0	UGL	UN18	PCB016	21.000	ND	R
13HU1	RDWA*13	CCF	08-oct-1991	23.0	UGL	UM18	PCB221	21.000	ND	R
1386/1	RDWA*13	CGW	08-oct-1991	23.0	UGL.	UM18	PC8232	21.000	MD	R
13MJ1 13MJ1	RDWA*13 RDWA*13	CGM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UN18	PC8242	30.000	MD	R
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18 UM18	PCB248 PCB254	30.000 36.000	ND ND	R R
13MU1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UM18	PCB260	36.000	MO	Ř
13MH1	RDWA+13	CGW	08-oct-1991	23.0	UGL	UN18	PCP	18.000	ĹŤ	•
13MV1	RDWA*13	CCM	08-oct-1991	23.0	UGL	UN18	PHAKTR	0.500	LT	
13/6/1	RDUA*13	CGW	08-oct-1991	23.0	UGL	UH18	PHENOL	9.200	LT	
1396/1	RDUA#13	CGW	08-oct-1991	23.0	UGL	UH18	PPODO	4.000	MD	R
13MH1	RDUA*13	CCM	08-oct-1991	23.0	UGL	UM18	PPODE	4.700	ND ND	Ŕ
13MH1 13MH1	RDWA*13 RDWA*13	CGW	08-oct-1991 08-oct-1991	23.0 23.0	UGL	UM18 UM18	PPDOT PYR	9.200 2.800	ND LT	R
13MH1 13MH1	ROWA*13	CGW	08-oct-1991	23.0	UGL	UN18	TXPHEN	36.000	MD Fi	2
13MW1	RDWA*13	CGA	08-oct-1991	23.0	UGL	TF22	NIT	850.000		•
13MW1	RDWA+13	CGW	08-oct-1991	23.0	UGL	UU32	135TNB	0.449	LT	
13MU1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UW32	130NB	0.611	LT	
13MW1	RDWA*13	COM	08-oct-1991	23.0	UGL	UN32	246TNT	0.635	LT	
13HW1	RDWA#13	CGW	08-oct-1991	23.0	UGL	UW32	24DNT	0.064	LT	
13HW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	UN32	260NT	0.074	LT	

<u>Site ID</u>	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry	Value	Flag	Internal Std. Code
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	UN32	них	1.210	LT	
13MV1	RDWA*13	CGF	08-oct-1991	23.0	UGL	N-35	NB	0.645	LT	
13MV1	RDWA*13	CGW	08-oct-1991	23.0	UGL	U-32	RDX	1.170	LT	
13MW1 13MW1	RDWA*13 RDWA*13	CGM	08-oct-1991 08-oct-1991	23.0 23.0	UGL UGL	UM32 SS10	TETRYL	2.490	LT	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	SS10	AL BA	141.000 104.000	LT	
13HW1	RDWA*13	CGR	08-oct-1991	23.0	UGL	SS10	BÉ	5.000	LT	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	2510	ÇĀ	97400.000	F.I	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	5510	6	4_010	LŤ	
13HW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	\$\$10	ä	25.000	LT	
13MW1	RDWA*13	CGW	08-oct-1991	23.0	UGL	SS10	CR	6.020	LT	
13MW1	RDUA=13	CGM	08-oct-1991	23.0	UGL	\$\$10	au	8.090	LT	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	SS10	FE	38.800	LT	
13MW1	RDWA*13	CGM	08-oct-1991	23.0	UGL	S \$10	K	1770.000		
13MH1	RDWA#13	CGW	08-oct-1991	23.0	UGL	\$\$10	MG	30600,000		
13MN1 13MN1	RDWA*13 RDWA*13	CGM	08-oct-1991	23.0	UGL	SS10	MN	26.100		
13MW1	RDWA*13	CGM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	SS10 SS10	XA UT	4440.000		
13MW1	RDWA+13	CON	08-oct-1991	23.0	UGL	\$\$10	NI SB	34.300 38.000	LT LT	
13MV1	RDWA*13	CGW	08-oct-1991	23.0	UGL	SS10	Y	11.000	LT	
13MV1	RDWA#13	CGM	08-oct-1991	23.0	UGL	\$\$10	ZN	21.100	ĹŤ	
13MU1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	\$022	AS	2.540	LT	
13Mu1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	\$023	AG	0.250	ĹŤ	
13MW1	RDWAU*13	CCM	08-oct-1991	23.0	UGL	SB01	HG	0.243	ĻŤ	
13MV1	RDWAU*13	CGM	08-oct-1991	23.0	UGL	SD09	TL	6.990	LT	
13Mg/1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	SD21	SE	3.020	LT	
13MW1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	SD20	PB	2.710		
13/6/1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	\$510	AL	4540.000		
13MV1 13MV1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	SS10	BA	154.000		
13MW1	RDWAU*13 RDWAU*13	CCF	08-oct-1991 08-oct-1991	23.0 23.0	UGL	\$\$10	SE	5.000	LT	
13MV1	RDHAU*13	CCM	08-oct-1991	23.0	NGT	S\$10 S\$10	G)	110000.000		
13461	RDWAU*13	CGW	08-oct-1991	23.0	UGL	SS10	8	4.010 25.000	LT LT	
13MU1	RDWAU*13	CGW	08-act-1991	23.0	UGL	\$\$10	œ	9,570	٠.	
13HV1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	\$\$10	a	8.090	LT	
13Mv1	RDWAU*13	CGW	08-oct-1991	23.0	UGL,	\$\$10	FE	6560.000		
13MU1	RDWAU*13	CGW	08-oct-1991	23.0	UG1.	\$\$10	K	2330.000		
13MW1	RDWAU*13	CGM	08-oct-1991	23.0	UGL	5510	MG	34500.000		
13HW1	RDWAU*13	CCF	08-oct-1991	23.0	UGL	\$\$10	MN	114.000		
13MU1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	\$\$10	NA	5170.000		
13MV1 13MV1	RDWAU*13	CGW	08-oct-1991	23.0	UGL	SS10	MI	34.300	LT	
13MV1	RDWAU*13 RDWAU*13	CGW	08-oct-1991	23.0	UG1.	SS10	SB	38.000	LT	
13MW1	RDWAU*13	CGM	08-oct-1991 08-oct-1991	23.0 23.0	UGL	\$\$10 \$\$10	V ZN	16.200		
13MJZ	RDUA=14	CCH	11-oct-1991	24.0	UGL	UN20	111TCE	32.500 0.500	LT	
13MJ2	RDWA=14	CGW	11-oct-1991	24.0	UGL	UH20	112TCE	1,200	LT	
131642	RDWA*14	CGW	11-oct-1991	24.0	UGL	UH20	11DCE	0.500	LŦ	
13MJ2	RDMA*14	CCM	11-oct-1991	24.0	UGL	UH20	11DCLE	0.680	LT	
13MV2	RDWA=14	CGM	11-oct-1991	24.0	UGL	UM20	12DCE	0.500	LT	
13M/2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN20	120CLE	0.500	LT	
131442	RDWA±14	CCM	11-oct-1991	24.0	UGL	UH20	12DCLP	0.500	LT	
13MJ2	RDWA#14	CGW	11-oct-1991	24.0	UGL	UM20	2CLEVE	0.710	LT	
1314/2	RDWA#14	CGW	11-oct-1991	24.0	UGL	UM20	ACET	13.000	LT	
13MV2	RDWA*14	CGW	11-oct-1991	24.0	UGL,	UH20	ACROLM	100,000	IID	R
13MV2	RDVA*14	CGW	11-oct-1991	24.0	UGL	UN20	ACRYLO	100.000	NO.	R
13Mv2 13Mv2	RDWA=14	CGW	11-oct-1991	24.0	UGL	UN20	BRDCLM	0.590	ĻŢ	
13MV2	RDWA*14 RDWA*14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UM20 UM20	C130CP	0.580	LŢ	
13MV2	RDWA+14	CGW	11-oct-1991	24.0	UGL	UN(20	CZAVE CZK3CL	8.300 2.600	LT	
13MJ2	RDWA*14	CCA	11-oct-1991	24.0	UGL	UM20	C2H5CL	1.900	LT LT	
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UN20	CSH6	0.500	LT	
13MJ2	RDWA*14	CCH	11-oct-1991	24.0	UGL	UN20	CCL3F	1.400	ĹŤ	
13Mu2	RDWA*14	COM	11-oct-1991	24.0	UGL	UH20	CCL4	0.580	ĻŤ	
13MJ2	RDWA+14	CCL	11-oct-1991	24.0	UGL	UH20	CK2CL2	2.300	ĹŤ	
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UH20	CH38R	5.800	LŤ	
13MH2	RDWA*14	CCH	11-oct-1991	24.0	UGL	UH20	CH3CL	3.200	LT	
13Mv2	RDWA*14	CCA	11-oct-1991	24.0	UGL.	UN20	CHBR3	2.600	LT	
13MV2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UH20	CHCL3	0.500	ĻŢ	
13MW2	RDWA+14	CGM	11-oct-1991	24.0	UGL	UH20	CL2BZ	10.000	NO	R
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM20	CLC6H5	0.500	LT	
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	LM20	CS2	2.040		
13MJ2	RDUA*14	CGM	11-oct-1991	24.0	UGL	UM20	DBRCLM	0.670	LT	
13MW2 13MW2	RDMA*14	CGM	11-oct-1991	24.0	UGL	UM20	ETC6H5	0.500	LT	
1 JANUE	RDUA#14	CCM	11-oct-1991	24.0	UGL	UM20	MEC6H5	0.500	LT	

Site ID	Field ID	<u>Media</u>	<u>Date</u>	Depth	<u>Units</u>	Analytical Method		Value	Flag	Internal Std. Code
13HU2	RDVA*14	CGM	11-oct-1991	24.0	UGL	UN20	MEK	6.400	LŢ	
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UM20	MIBK	3.000	LT	
13MW2	RDUA+14	CCF	11-oct-1991	24.0	UGL	UM20	MNBK	3.600	LT	
13MW2 13MW2	RDWA+14 RDWA+14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL	UM20	STYR	0.500	LT	
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM20 UM20	T130CP TCLEA	0.700 0.510	LT LT	
3MH2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM20	TCLEE	1.600	LT	
SMME	RDWA*14	CGW	11-oct-1991	24.0	UĞL	UN20	TRCLE	0.500	ĹΤ	
13MU2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM20	XYLEN	0.840	LŤ	
13MW2	RDUA*14	CGM	11-oct-1991	24.0	UGL	\$022	AS	2.540	LT	
13MW2 13MW2	RDWA+14 RDWA+14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	\$023 UM18	AG 124TCB	0.250	LĪ	
13NW2	RDWA*14	CGR	11-oct-1991	24.0	UGL	UM18	120CLB	1.800	LT LT	
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UN18	120PH	2.000	NO	R
13MN2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM18	13DCLB	1.700	LT	~
13HH2	RDWA*14	CGM	11-oct-1991	24.0	VG1,	UM18	14DCLB	1.700	LT	
13MV2	ROMA*14	CGM	11-oct-1991	24.0	UGL	UN18	245TCP	5.200	LT	
13MW2 13MW2	RDWA±14 RDWA±14	CCA	11-oct-1991 11-oct-1991	24.0 24.0	UGL	UM18	246TCP	4.200	LT	-
13MW2	RDWA=14	CGW	11-oct-1991	24.0	UGL	UM18 UM18	24DCLP 24DMPN	2.900 5.800	LT	
13MH2	RDWA+14	CGM	11-oct-1991	24.0	UGL	UM18	24DNP	21.000	LT	
I3MM2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM18	24DNT	4.500	ĹŤ	
13MWZ	RDWA+14	CGM	11-oct-1991	24.0	UGL	UM18	26DNT	0.790	ĹŤ	
13MW2	RDUA*14	CGM	11-oct-1991	24.0	UGL	UN18	SCLP	0.990	LT	
13MWZ	RDUA=14	CGW	11-oct-1991	24.0	UGL	UM18	2CXAP	0.500	LT	
13MW2. 13MW2	RDWA#14 RDWA#14	CCH	11-oct-1991 11-oct-1991	24.0 24.0	ngr ngr	UK18.	ZHNAP ZHP	1.700 3.900	LT	
13MU2	RDWA*14	CGH	11-oct-1991	24.0	UGL	UM18 UM18	ZNANIL	4.300	LT LT	
13MW2	RDWA+14	CGM	11-oct-1991	24.0	UGL	UH18	2NP	3.700	LT	
13MU2	RDWA*14	CCA	11-oct-1991	24.0	UGL	UM18	33DC80	12.000	ĻT	
13MH2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	3NANIL	4.900	LT	
13MV2	RDWA+14	CCM	11-oct-1991	24.0	UGL	UN18	460N2C	17.000	LT	
13MV2 13MV2	RDWA+14 RDWA+14	CGM	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UN 18 UM 18	48RPPE 4CAN1L	4.200 7.300	LT LT	
13MU2	ROMA-14	CGW	11-oct-1991	24.0	UGT.	UM18	4CL3C	4.000	LT	
13M⊌2	RDWA*14	CG	11-oct-1991	24.0	UGL	UM18	4CLPPE	5.100	ĹŤ	
13M⊌2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM18	4MP	0.520	ĻŤ	
13MV2	RDWA+14	CGM	11-oct-1991	24.0	UGL	UN18	4NANIL	5.200	LT	
316/2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN 18	4NP	12.000	LT	_
13MW2 13MW2	RDWA#14 RDWA#14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UM18 UM18	ASHC ACLDAN	4-000 F 100	MD	R
13M12	RDWA+14	CGM	11-oct-1991	24.0	UGL	UN18	AENSLF	5.100 9.200	MD MD	R R
13MW2	RDMA*14	CGW	11-oct-1991	24.0	UGL	UM18	ALDRIE	4.700	NO	Ř
13MW2	RDWA+14	CGM	11-oct-1991	24.0	UGL	UN18	ANAPNE	1.700	LT	~
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UN18	ANAPYL	0.500	LT	
13MV2	RDWA*14	CGW	11-oct-1991	24.0		UN18	ANTRC	0.500	LT	
13MV2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	B2CEXM	1.500	LŤ	
13MW2 13MW2	RDWA±14 RDWA±14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL	UM18 UH18	B2CIPE B2CLEE	5.300 1.900	LT LT	
13MW2	RDHA*14	CGW	11-oct-1991	24.0	UGL	UM18	BZEHP	4.800	LT	
13442	RDUA+14	CGM	11-oct-1991	24.0	UGL	UH18	BAANTR	1.600	ĹŤ	
13MJ2	RDWA=14	CGM	11-oct-1991	24.0	UGL	UN18	SAPYR	4.700	LT	
13MW2	RDWA+14	CGW	11-oct-1991	24.0	UGL	UK18	BBFANT	5.400	LT	_
13MH2	RDWA*14	CGH	11-oct-1991	24.0	UGL	UM18	BSHC	4.000	MD	R
13MW2 13MW2	RDWA+14 RDWA+14	CCA	11-oct-1991 11-oct-1991	24.0 24.0	UGL	UM18 UM18	88ZP 8ENSLF	3.400 9.200	LT NED	R
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UM18	BENZIO	10.000	NO NO	R
13NW2	ROUA*14	CCM	11-oct-1991	24.0	UGL	UN18	BENZOA	13.000	LŦ	•
13MV2	RDUA*14	CGM	11-oct-1991	24.0	UGL	UN18	BGHIPY	6.100	LŤ	
13MW2	RDWA*14	CCM	11-oct-1991		UGL	UN18	BKFANT	0.870	LT	
13MW2	RDWA+14	CCF	11-oct-1991	24.0	UGL	UH18	BZALC	0.720	LT	
13MW2	RDWA=14	CGW	11-oct-1991		UGL	UN18	CHRY	2.400	LT	
13M/2 13M/2	RDWA+14 RDWA+14	CGM	11-oct-1991 11-oct-1991	24.0 24.0	UGL	LIN18 LIN18	CL68Z CL6CP	1.600 8.600	LT LT	
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN18	CLSET	1.500	LT	
13MW2	RDVA*14	CCA	11-oct-1991	24.0		UM18	DBAHA	6.500	LT	
13MW2	RDWA+14	CGM	11-oct-1991	24.0	UGL	UN18	DBHC	4.000	ND	R
13MW2	RDUA*14	CCM	11-oct-1991	24.0	UGL	UN18	DBZFUR	1.700	LT	
13MM2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM18	DEP	2.000	LT	
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	DLDRN	4.700	MD	R
13MW2	RDWA+14	CGW	11-oct-1991	24.0	UGL	UN18	DMP	1.500	LT	
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UN18	DNBP	3.700	LT	
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	DNOP	15.000	LT	

Site ID	Field ID	<u>Hedi a</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	Flag	Internal Std. Code
13MJ2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UK18	ENDRNA	9 000	NO	
13MW2	RDUA*14	CCM	11-oct-1991	24.0	UGL	UM18	ENDRNK	8,000 8,000	ND ND	R R
13HW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN18	ESFS04	9.200	ND	Ř
13M¥2	RDWA*14	CCH	11-oct-1991	24.0	UGL	UN18	FANT	3.300	LT	
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM18	FLRENE	3.700	LT	
13MJ2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UN18	GCLDAN	5.100	ND	R
13MW2 13MW2	RDWA*14 RDWA*14	CGW	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UM18 UM18	HCBD HPCL	3.400 2.000	LT ND	_
13MW2	ROWA*14	CGW	11-oct-1991	24.0	UGL	UM18	HPCLE	5.000	ND	R R
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	HXADOE	9.000		ŝ
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UN18	ICDPYR	8,600	ĻŢ	_
13MHZ	RDWA*14	CGM	11-oct-1991	24.0	UGL	UH18	ISOPHR	4.800	LT	
13MV2 13MV2	RDUA*14	CGH	11-oct-1991	24.0	UGL.	UM18	LIN	4-000	ND	R
13MW2	RDWA*14 RDWA*14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UM18 UM18	MEXCLR NAP	5.100 0.500	ND LT	Ŕ
13Mv2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UN18	NB	0.500	LT	
13MW2	RDWA=14	ÇGW	11-oct-1991	24.0	UGL	UM18	NNDMEA	2.000	NEO	R
13MW2	RDWA*14	CGH	11-oct-1991	24.0	UGL	UN18	NNDNPA	4.400	LT	
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	UM18	NNDPA	3.000	LT	
13MV2	RDWA*14	CGM	11-oct-1991	24.0	UCL	UM18	PCB016	21.000	MD	R
13MW2 13MW2	RDWA*14 RDWA*14	CGM	11-oct-1991 11-oct-1991	24.0 24.0	UGL	UM18 UM18	PCB221 PCB232	21.000 21.000	ND ND	R R
13MH2	RDWA*14	CCA	11-oct-1991	24.0	UGL	UN18	PCB242	30.000	ND ND	R
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	LM18	PCB248	30.000	MD	Ř
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN18	PCB254	36.000	ND	R
_13M/2	RDWA*14	ÇG₩	11-oct-1991	24.0	UGL	UN18	PCB260	36.000	ND	R
13MU2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN18	PCP	18.000	LŤ	
13MV2 13MV2	RDWA*14 RDWA*14	CGW	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UM18 UM18	PHANTR PHENOL	0.500 9.200	LT LT	
13MV2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	PPDDD	4.000	NO	R
131142	RDWA*14	CGM	11-oct-1991	24.0	UGL	UM18	PPDDE	4.700	ND	Ř
13MW2	RDHA*14	CGM	11-oct-1991	24.0	UGL	UM18	PPDDT	9.200	ND	R
13MV2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UM18	PYR	2.800	LT	
13MW2	RDWA*14	CGW	11-oct-1991	24.0	UGL	UN18	TXPHEN	36.000	ND	R
13MW2 13MW2	RDWA*14 RDWA*14	CGM	11-oct-1991 11-oct-1991	24.0 24.0	UGŁ	UM18 UM18	UNK645 UNK647	20.000 4.000		\$ \$
13MW2	RDUA*14	CGW	11-oct-1991	24.0	UGL	UNIS	UNK665	20.000		S
13MW2	RDNA*14	CCM	11-oct-1991	24.0	UGL	UN18	UNK689	4.000		š
13MV2	RDWA*14	CCU	11-oct-1991	24.0	UGL	SBC1	HG	0.243	LT	_
13MHZ	RDWA*14	CCM	11-oct-1991	24.0	UGL	00	TOC	3360.000		
13MV2 13MV2	RDWA*14 RDWA*14	CGW	11-oct-1991 11-oct-1991	24.0 24.0	UGL	SD09	TL	6.990	LT	
13MJ2	RDWA*14	CGW	11-oct-1991	24.0	UGL	SD21 SD20	SE PB	3.020 1.260	LT LT	
13MV2	RDWA=14	CCM	11-oct-1991	24.0	UGL	00	TOX	1.000	LŦ	
13MV2	RDWA*14	CGM	11-oct-1991	24.0	UGL	TF22	TIM	650.000		
13/142	RDWA*14	CGM	11-oct-1991	24.0	UGL	บน32	135TNB	0.449	LT	
13Mw2	RDWA*14	CGW	11-oct-1991	24.0	UGL	U\32	130NB	0.611	LT	
13MV2 13MV2	RDWA*14 RDWA*14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL UGL	UN32 UN32	246TNT 24DNT	0.635 0.064	LT LT	
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	UN32	260NT	0.074	LT	
1346/2	RDHA*14	CGW	11-oct-1991	24.0	UGL	UW32	HMX	1.210	ĻŤ	
13Mu2	RDUA*14	CGW	11-oct-1991	24.0	UGL.	UN32	KB	0.645	LT	
13MH2	RDUA*14	CCM	11-oct-1991	24.0	UGL	UN32	RDX	1.170	LT	
13/6/2	RDUA*14	CGT	11-oct-1991	24.0	UGL	UW32	TETRYL	2.490	LT	
13MJ2 13MJ2	RDUA*14 RDUA*14	CCM	11-oct-1991 11-oct-1991	24.0 24.0	UGL	\$\$10 \$\$10	AL BA	141.000 86.300	LT	
13MV2	RDWA*14	CGM	11-oct-1991	24.0	UGL	SS10	BE	5.000	ĻT	
13N/2	RDWA*14	¢g⊌	11-oct-1991	24.0	UGL	\$\$10	CA .	75100.000	٠.	
13MV2	RDWA*14	¢G⊌	11-oct-1991	24.0	UGL,	SS10	CD	4.010	ĻT	
13MW2	RDUA*14	CGW	11-oct-1991	24.0	ner	5510	œ	25.000	LT	
13MV2	RDWA*14	CGM	11-oct-1991	24.0	UGL	\$\$10	CR	6.020	LT	
13MW2 13MW2	RDWA*14 RDWA*14	CGM	11-oct-1991 11-oct-1991	24.0	UGL	\$\$10 ee10	ฒ	8.090 78 800	LT	
13MW2	RDWA-14 RDWA*14	CGW	11-oct-1991	24.0 24.0	UGL	S\$10 S\$10	FE K	38.800 2250,000	LT	
13MV2	RDWA=14	CGM	11-oct-1991	24.0	ngr	SS10	MG	30900.000		
13MW2	RDWA*14	CGM	11-oct-1991	24.0	UGL	SS10	MN	3.550		
13MW2	RDVA*14	COM	11-oct-1991	24.0	UGĻ	\$\$10	NA	2310.000		
13MJ2	ROWA*14	CGV	11-oct-1991	24.0	UGL	SS10	MI	34.300	LT	
13MW2	RDWA*14	CCM	11-oct-1991	24.0	UGL	SS10	S8	38.000	LT	
13MW2 13MW2	RDWA*14 RDWA*14	CGW	11-oct-1991 11-oct-1991	24.0 24.0	UGL	SS10	Y 711	11.000	LT	
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL UGL	SS10 SD22	ZN AS	21.100 2.540	LT LT	
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	SD 23	AG	0.250	ĻĬ	
13M/2	RDHAU*14	CGW	11-oct-1991	24.0	UGL	S801	HG	0.243	ĹŤ	
								-	-	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	SD 09	7L	6.990	LT	
13MWZ	RDWAU*14	CGM	11-oct-1991	24.0	UGL	\$021	SE	3.020	LT	
13MW2 13MW2	RDUAU*14	CCFA	11-oct-1991 11-oct-1991	24.0 24.0	UGL	SD20	PS	1.260	LT	
13MV2	RDWAU*14 RDWAU*14	CGW	11-oct-1991	24.0	UGL UGL	\$\$10 \$\$10	AL BA	2580.000 155.000		
13MW2	RDWAU*14	CGM	11-oct-1991	24.0	UGL	SS10	BE	5.000	LT	
13MW2	RDWAU*14	CGM	11-oct-1991	24.0	UGL	\$\$10	ČĀ	92200.000	٠.	
13MW2	RDUAU#14	CGW	11-oct-1991	24.0	UGL	SS10	CD	4.010	ĻŤ	
13MH2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	\$\$10	CO	25.000	LT	
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	SS10	CR	17.400		
13MW2 13MW2	RDWAU*14 RDWAU*14	CGM	11-oct-1991 11-oct-1991	24.0 24.0	UGL	\$\$10 \$\$10	CU FE	8.090 2550.000	LT	
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	SS10	K	3410.000		
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	\$\$10	MG	40600.000		
13MW2	RDWAU*14	CCM	11-oct-1991	24.0	UGL	SS10	MN	44.500		
13MW2	ROHAU*14	CGM	11-oct-1991	24.0	UGL	\$\$10	NA	2450.000		
13MW2 13MW2	RDUAU*14 RDUAU*14	CGW	11-oct-1991 11-oct-1991	24.0 24.0	UGL	\$\$10 \$\$10	X I SB	34.300	ĻŤ	
13MW2	RDWAU*14	CGW	11-oct-1991	24.0	UGL	\$\$10 \$\$10	A 20	38.000 11.000	LT LT	
13MU2	RDHAU*14	CEM	11-oct-1991	24.0	UGL	\$\$10	ŽN	21.100	ĹŤ	
13MW3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UH20	111TCE	0.500	LT	
13MV3	ROUA*15	CGM	10-oct-1991	14.0	UGL	UN20	112TCE	1.200	LT	
13M43	RDWA*15	CGW	10-oct-1991	14.0	UGL	UN20	11DCE	0.500	LŢ	
13MW3 13MW3	RDWA*15 RDWA*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGT UGT	UH20 UH20	11DCLE 12DCE	0.680	LT	
13kt/3	ROWA*15	CGW	10-oct-1991	14.0	UGL	13420	12DCLE	0.500 0.500	LT LT	
13MW3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UNZO	12DCLP	0.500	LT	
13MN3	RDWA=15	COM	10-oct-1991	14.0	UGL	UN(20	2CLEVE	0.710	LT	
13MU3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UM20	ACET	13,000	LT	
13ML3	RDUA*15	CGM	10-oct-1991	14.0	UGL	UM20	ACROLN	100.000	ЖD	R
13Mv3 13Mv3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM20 UM20	ACRYLO BRDCLM	100.000	ND	R
13MW3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UH20	C13DCP	0.590 0.580	LT LT	
13MJ3	ROHA*15	CGM	10-oct-1991	14.0	UGL	UH20	C2AVE	8.300	ĻŢ	
13MH3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM20	C2H3CL	2.600	LT	
13MV3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UH20	CZH5CL	1.900	LT	
13/4/3	ROVA*15	CGM	10-oct-1991	14.0	UGL	UN20	C6H6	0.500	LT	
13M/3 13M/3	RDUA*15 RDUA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	NH50 NH50	CCL3F CCL4	1.400 10.500	LŤ	
131443	RDWA=15	CGW	10-oct-1991	14.0	UGL	UN20	CHZCL2	2.300	LT	
13MV3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM20	CH3BR	5,800	ĹŤ	
13MU3	RDWA+15	CCW	10-oct-1991	14.0	UGL	UN20	CH3CL	3.200	ĻŤ	
13/6/3	RDWA-15	CGW	10-oct-1991	14.0	UGĻ	UM20	CHBR3	2_600	LT	
13MJ3 13MJ3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.D 14.D	UGL	UH20 UH20	CHCL3	1.330		_
13MU3	RDWA-15	CGM	10-oct-1991	14.0	UGL	UN20	CL2BZ CLC6H5	10.000 0.500	ND LT	R
13443	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM20	C\$2	0.500	ĻT	
13/4/3	RDWA*15	CGY	10-oct-1991	14.0	UGL	LM20	DBRCLM	0.670	ĹŤ	
13Ms/3	RDWA#15	CGM	10-oct-1991	14.0	UGL	UM20	ETC6H5	0.500	t.T	
13/6/3	RDWA-15	CGM	10-oct-1991	14.0	UGL	UN20	MEC6H5	0.500	LT	
13MW3 13MW3	RDWA*15 RDWA*15	CGH	10-oct-1991 10-oct-1991	14.0 14.0	ngt	UH20 UH20	MEK MIBK	6.400	LT	
13Mk3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UH20	WNBK	3.000 3.600	LT LT	
13MW3	ROWA*15	CGM	10-oct-1991	14.0	UGL	UH20	STYR	0.500	LT	
13M43	RDWA*15	CGM	10-oct-1991	14.0	UGL	UH20	T13DCP	0.700	LT.	
13M43	RDUA#15	CGM	10-oct-1991	14.0	UGL	UN20	TCLEA	0.510	LT	
13MV3	RDUA*15	CCM	10-oct-1991	14.0	UGL	UN20	TCLEE	1.600	LT	
13Mv3 13Mv3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	UH20 UH20	TRCLE XYLEN	2.000 0.840	LT	
13MW3	ROMA*15	CGW	10-oct-1991	14.0	UGL	SD22	AS	2.540	LT	
13MW3	RDWA*15	CGW	10-oct-1991	14.0	UGL	SD23	AG	0.250	LT	
13MV3	RDWA=15	CGW	10-oct-1991	14.0	UGL	UM18	124TCB	1.800	ĻŤ	
13M43	ROWA*15	CGW	10-oct-1991	14.0	UGL	UN18	12DCLB	1.700	LT	
13Hu3	RDVA=15	CGW	10-oct-1991	14.0	UGL	UM18	12DPH	2.000	Ю	R
13MJ3 13MJ3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	ugl ugl	UK18 UK18	13DCLB 14DCLB	1.700 1.700	LÎ	
13MV3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM18	140CLB 245TCP	1.700 5.200	LT LT	
13/4/3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UH18	2461CP	4.200	ĻŢ	
13Mv3	RDHA*15	CGM	10-oct-1991	14.0	UGL	UM18	24DCLP	2.900	ĹŤ	
13MW3	RDWA*15	CCH	10-oct-1991	14.0	UGL	LM18	24DMPN	5.800	LT	
13M/3	RDWA*15	CCM	10-oct-1991	14.0	UGL	LM18	24DNP	21.000	LT	
13MJ3	RDWA*15	CGM	10-oct-1991	14_0	UGL	UN18	24DNT	4.500	LĪ	
13M/3 13M/3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UN18	26DNT	0.790 0.990	LT	
CHINE	KPMV 13	COM	10-001-1441	14.0	Out	UM18	2CLP	0.990	LT	

Site ID	<u> Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte _Abbrv.	Value	<u>Flag</u>	Internal Std. Code
13MW3	RDUA*15	CGW	10-oct-1991	14.0	UGL	UN18	2CNAP	0.500	LT	
13MW3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UH18	2MMAP	1.700	LT	
13/6/3	ROWA*15	CGW	10-oct-1991	14.0	UGL	UM18	ZMP	3.900	LT	
13M/3 13M/3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM18 UM18	2NANIL	4.300 3.700	LT LT	
13Mk3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UM18	2NP 330C80	12.000	LT	
13M/3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UN18	3KANIL	4.900	ĹŤ	
13MW3	RDWA*15	CEM	10-oct-1991	14.0	UGL	UN18	46DN2C	17.000	LT	
13/6/3	RDWA*15	CGM	10-oct-1991	14.0	ugt.	UN18	48RPPE	4.200	LT	
13MW3 13MW3	RDUA*15 RDUA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	ner ner	UM18 UM18	4CANIL 4CL3C	7.300 4.000	LT LT	
13NW3	RDWA=15	CGN	10-oct-1991	14.0	UGL	UN18	4CLPPE	5.100	ĹŤ	
13NW3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UN18	4HP	0.520	LŤ	
13MW3	RDWA*15	COM	10-oct-1991	14.0	UGL	UN18	ANAMIL	5.200	LT	
13MW3 13MW3	RDWA*15 RDWA*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	UM18	4NP ABHC	12.000 4.000	LT	_
13/4/3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UM18 UM18	ACLDAN	5.100	ND ND	R R
13MV3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UN18	AENSLF	9.200	ND	Ř
13MV3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UN18	ALDRN	4.700	ND	R
13MV3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UN18	AKAPNE	1.700	LT	
13MW3 13MW3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM18 UM18	ANAPYL ANTRO	0.500 0.500	LT LT	
13MJ3	ROMA*15	COM	10-oct-1991	14.0	UGL	UK18	B2CEXM	1.500	LT	
13MJ3	RDUA*15	CGM	10-oct-1991	14.0	UGL	UN18	82CIPE	5.300	LT	
131443	RDWA*15	CGH	10-oct-1991	14.0	UGL	UH18	B2CLEE	1.900	LT	
13M43 13M43	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	UN18	B2EXP	4.800 1.600	LT	
13MJS	RDWA*15	CGW	10-oct-1991	14.0	UGL	um18 um18	BAANTR BAPYR	4.700	LT LT	
13M/3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM18	BBFANT	5.400	ĹŤ	
13MV3	RDWA*15	CCM	10-oct-1991	14.8	UGL	UH18	BBHC	4.000	ND	R
13Mu3 13Mu3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM18	BBZP	3.400 9.200	LT	_
13MJ3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UM18 UM18	BENSLF BENZID	10,000	ND ND	R R
13MW3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UH18	BENZOA	13.000	LT	•
13/4//3	RDHA*15	CGM	10-oct-1991	14.0	UGL	UN18	BGXIPY	6.100	LŢ	
13MV3 13MV3	ROWA*15	CGM	10-oct-1991	14.0	UGL	UN18	BKFANT	0.870	LT	
13MW3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	ngr ngr	UN18 UN18	BZALC CHRY	0.720 2.400	LT LT	
13MJ3	RDHA*15	COM	10-oct-1991	14.0	UGL	UM18	CL68Z	1.600	ĹŦ	
13M/3	RDUA*15	CEM	10-oct-1991	14.0	UGL	UN18	CL6CP	8.600	LT	
13Mv3 13Mv3	RDWA*15	CCA	10-oct-1991	14.0	UGL	UM18	CLAET	1.500	LT	
13ML/3	RDWA*15 RDWA*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM18 UM18	DBAHA DBHC	6.500 4.000	LT ND	R
13M/3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UN18	DBZFUR	1.700	LT	•
13MV3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UM18	DEP	2.000	LŤ	
13843	RDWA+15	CGW	10-oct-1991	14.0		UN18	DLDRM	4.700	ND	R
13M/3 13M/3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	UN 18 UN 18	DMP DNBP	1.500 3.700	LT LT	
13MW3	ROWA*15	CGW	10-oct-1991	14.0	UGL	UN18	DNOP	15.000	LT	
13M/3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UM18	ENDRN	7.600	ND	R
13MV3	RDVA*15	CCH	10-oct-1991	14.0	UGL	UN18	ENDRNA	8.000	ND	R
13M/3 13M/3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0	UGL	UN18 UN18	ENDRNK ESFSO4	8.000 9.200	ND ND	R R
13M/3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UK18	FANT	3.300	ĻT	•
13M/3	RDWA+15	CGM	10-oct-1991	14.0	UGL	UH18	FLRENE	3,700	ĻT	
1314.63	ROWA*15	CCM	10-oct-1991	14.0	UGL	UM18	GCLDAN	5.100	ND	R
13Mv3 13Mv3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UN18 UN18	HCBD HPCL	3.400 2.000	LT ND	R
13M-25	RDWA+15	CCM	10-oct-1991	14.0	UGL	UN18	HPCLE	5.000	ND	R
13MW3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UM18	HXADOE	20.000		ŝ
13MJ3	RDYA*15	CGM	10-oct-1991	14.0	UGL	UM18	ICOPYR	8.600	LT	
13MJ3 13MJ3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UN18	I SOPHR	4.800 4.000	LT	P
13MV3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UN18 UN18	LIN MEXCLR	5.100	ND ND	R R
13MW3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UM18	NAP	0.500	LT	*
13MW3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UM18	NB	0.500	LT	
13MV3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UN18	NNDMEA	2.000	ND	R
13MV3 13MV3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM18 UM18	NNDNPA NNDPA	4.400 3.000	LT LT	
13MV3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM18	PCB016	21,000	ND	R
13M¥3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UN18	PC8221	21.000	ND	Ř
13/4/3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM18	PC8232	21.000	ND	R
13M/3 13M/3	RDWA*15 RDWA*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UM18	PCB242	30.000	MD	Ŕ
CHINE	WHW-13	-um	10-001-1991	14.0	UGL	UM18	PC8248	30.000	ND	R

site [p_	<u>Field ID</u>	<u>Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>flag</u>	Internal Std. Code
13MW3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UN18	PC8254	36,000	ND	R
13MW3	RDWA*15	CGW	10-oct-1991	14.0	UGL	UM18	PC8260	36.000	ND	Ř
1366/3	RDUA+15	CGW	10-oct-1991	14.0	UGL	UH18	PCP	18.000	LT	
13MJ3 13MJ3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UH18 UH18	PHANTR PHENOL	0.500	LT	
13HW3	RDWA*15	CCH	10-oct-1991	14.0	UGL	UM18	PPODD	9.200 4.000	LT ND	Ŕ
13MW3	RDWA*15	CGM	10-oct-1991	14.0	UGL.	UM18	PPODE	4.700	ΝD	R
13Mu3 13Mu3	RDWA+15 RDWA+15	CCM	10-oct-1991 10-oct-1991	14.0	UGL	UN18	PPOOT	9.200	ND	R
13MU3	RDWA*15	CCH	10-oct-1991	14.8 14.0	UGL UGL	UM18 UM18	PYR TXPHEN	2.800 36.000	LT ND	R
13HM3	RDWA*15	CCH	10-oct-1991	14.0	UGL	UM18	UNK610	5.000		Š
13M/3 13M/3	RDWA=15 RDWA=15	CGF	10-oct-1991 10-oct-1991	14.0	UGL	UN18	UNK666	5.000		S
13MH3	RDWA=15	CGM	10-oct-1991	14.0 14.8	UGL	บม18 5801	UNK667 HG	20.000 0.243	LT	\$
13MJ3	RDWA±15	CGW	10-oct-1991	14.0	UGL	00	TOC	3530.000	-	
13ML3	RDWA=15	CCM	10-oct-1991	14.0	UGL	SD09	TL	6.990	LT	
13MW3 13MW3	RDWA*15 RDWA*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	SD21 SD20	SE PB	3.020 1.260	LT LT	
13MV3	RDUA=15	CGM	10-oct-1991	14.0	UGL	00	TOX	1.000	LT	
13/443	RDWA=15	CCM	10-oct-1991	14.0	UGL	TF22	NIT	7000.000		
13Mu3 13Mu3	RDWA+15 RDWA+15	CCM	10-oct-1991 10-oct-1991	14.8	UGL	UW32	135TNB	0.449	LT	
13MW3	RDWA*15	CGW	10-oct-1991	14.0	UGL	₩32 ₩32	130NB 246TNT	0.611 0.635	LT LT	
131443	RDWA*15	CGM	10-oct-1991	14.0	UGL	UW32	24DNT	0.064	LT	
13Hu3	RDWA*15	CCM	10-oct-1991	14.0	UGL	UU32	26DNT	0.074	LT	
_ 13M/3 13M/3	RDWA+15 RDWA+15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	UW32 UW32	MB	1.410 0.645	LT	C
13MU3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UW32	RDX	2.830		c
13ML/3	RDWA*15	CGM	10-oct-1991	14.0	UGL	UW32	TETRYL	2.490	LT	•
13MV3 13MV3	RDUA*15	CGW	10-oct-1991 10-oct-1991	14.0	UGL	\$\$10 \$\$10	AL	141.000	LT	
13M43	RDWA+15 RDWA+15	CCM	10-oct-1991	14.0	UGL UGL	\$\$10 \$\$10	BA BE	82.200 5.000	LT	
13MJ3	RDWA*15	CCA	10-oct-1991	14.0	UGL	SS10	CA	79100.000	.,	
13ML3	RDVA*15	CGW	10-oct-1991	14.0	UGL	\$\$10	00	4.010	LT	
13M/3 13M/3	RDWA*15 RDWA*15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL	\$\$10 \$\$10	CC CR	25.000 6.020	LT LT	
13MJ\$	RDWA*15	CCM	10-oct-1991	14.0	UGL	SS10	cn Cx	8.090	LT	
138443	RDWA*15	CGM	10-oct-1991	14.0	UGL	S\$10	FE	38.800	LT	
13M/3 13M/3	RDWA*15 RDWA*15	CGH	10-oct-1991 10-oct-1991	14.0	UGL	SS10	K	2930.006		
131643	RDWA*15	CGW	10-oct-1991	14.0 14.0	UGL UGL	SS10 SS10	NG MN	29500,000 4,370		
13M/3	RDWA+15	CGN	10-oct-1991	14.0	UGL	SS10	NA.	7740.000		
13M/3	ROWA-15	CCM	10-oct-1991	14.0	UGL	SS10	MI	34.300	ĻŢ	
13M/3 13M/3	RDUA+15 RDUA+15	CGW	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	\$\$10 \$\$10	\$8 Y	38.000 11.000	LT LT	
13MJ3	RDWA*15	CGM	10-oct-1991	14.0		\$\$10 \$\$10	ZM	21.100	ĻŢ	
13M ./3	RDWAU*15	CGY	10-oct-1991	14.0	UGL	SD22	AS	2.540	ĻT	
13MW3 13MW3	RDWAU*15 RDWAU*15	CCM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	SD 23	AG	0.250	LT	
13M43	RDUAU*15	CGW	10-oct-1991	14.0	UGL UGL	SB01 S009	HG Tl	0.243 6.990	LT	
13M43	RDWAU*15	CGW	10-oct-1991	14.0	UGL	SD21	SE	3.020	LT	
131443	RDWAU*15	CGW	10-oct-1991	14.0	UGL	SD20	PB	45.300		
13ML3 13ML3	RDWAU*15 RDWAU*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL	\$\$10 \$\$10	8A AL	8540.000 185.000		
13MV3	RDWAU*15	CGW	10-oct-1991	14.0	UGL	SS10	BE	5.000	LT	
13M/3	RDWAU*15	CCM	10-oct-1991	14.0	UGL	\$\$10	CA	110000.000		
13MJ3 13MJ3	RDUAU*15 RDUAU*15	CCM	10-oct-1991 10-oct-1991	14.8 14.0	UGL UGL	SS10 SS10	⊞ ⇔	4.010	LŤ	
13MJ3	RDWAU*15	CCM	10-oct-1991	14.0	UGL	\$\$10 \$\$10	æ	25.000 24.700	LŤ	
1314.3	RDWAU*15	CGM	10-oct-1991	14.0	UGL	SS10	CU	14.900		
13M-/3	RDWAU*15	CGW	10-oct-1991	14.0	UGL	SS10	FE	11000.000		
13MJ3 13MJ3	RDUAU*15 RDUAU*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	SS10 S\$10	K Mg	5950.000 50100.000		
131443	ROWAU*15	CCA	10-oct-1991	14.0	UGL	\$\$10	MIL	207.000		
13MJ3	ROWAU*15	CEM	18-oct-1991	14.0	UGL	S S10	NA	7850,000		
13M/3	RDWAU*15	CGY	10-oct-1991	14.0	UGL	S\$10	NI CB	34.300	LT	
13MW3 13MW3	RDWAU*15 RDWAU*15	CGM	10-oct-1991 10-oct-1991	14.0 14.0	UGL UGL	\$\$10 \$\$10	SB V	38.000 26.200	ĻŢ	
13M43	RDWAU*15	CGW	10-oct-1991	14.0	UGL	SS10	ZN	62.200		
13/44	RDWA=16	CGW	11-oct-1991	19.0	UGŁ	UH20	1117CE	0.500	LT	
13M6 13M6	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UMZO UMZO	112TCE	1.200	LT	
13MM	RDWA*16	COM	11-0ct-1991	19.0	UGL UGL	UM20 UM20	11DCE 11DCLE	0.500 0.680	LT LT	
13/14	RDWA=16	CCF	11-oct-1991	19.0	UGL	UM20	12DCE	0.500	ĹŤ	

Site ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13HiJ4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM20	12DCLE	0.500	ĻŢ	
13M4	RDWA+16	CGM	11-oct-1991	19.0	UGL	UN20	120CLP	0.500	LT	-
13/44	RDWA+16	CGM	11-oct-1991	19.0	UGL	UN20	2CLEVE	0.710	LT	_
13MW4 13MW4	RDWA*16 RDWA*16	CCA	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM20 UM20	2E1HXL ACET	7.000 13.000	1 🔻	S
1344	RDHA*16	CGW	11-oct-1991	19.0	UGL	UM20	ACROLN	100.000	LT ND	R
13944	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM20	ACRYLO	100.000	ND	Ř
13/6/4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM20	BRDCLM	0.590	LT	
13M4 13M4	RDWA*16 RDWA*16	CGW	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	C13DCP C2AVE	0.580 8.300	LT LT	
13MJ4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UMZO	CZH3CL	2.600	LT	
13MJ4	RDUA*16	CGW	11-oct-1991	19.0	UGL	UH20	C2H5CL	1.900	LT	
13M4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UM20	C6H6	0.500	LT	
13M4 13M4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UH20 UH20	CCL3F CCL4	1.400 0.580	LT LT	
13HW4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UN20	CH2CL2	2.300	LT	
13M4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UN20	CH3BR	5.800	LT	
13M4	RDWA+16	CGW	11-oct-1991	19.0	UGL	UM20	CH3CL	3.200	LT	
13MH4 13MH4	RDWA*16 RDWA*16	CGW	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	CHBR3 CHCL3	2.600 0.605	LT	
13MJ4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UM20	CL28Z	10.000	ND	R
13MH4	RDUA*16	CGW	11-oct-1991	19.0	UGL	UN20	CLC6H5	0.500	LT	.**
13/6/4	RDWA+16	CGW	11-oct-1991	19.0	UGL	UHZO	CSZ	0.500	LT	
13MH4 13MH4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	ugl ugl	UH20 UH20	DBRCLM ETC6H5	0.670 0.500	LT	
_13My4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM20	MECGH5	0.500	LT LT	
13MH4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UH20	MEK	6.400	LT	
13M4	RDWA*16	CGW	11-oct-1991	19.0	UGL,	UH20	HIBK	3.000	LT	
13M/4 13M/4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	LM20 LM20	MNBK STYR	3.600 0.500	LT	
13/64	RDUA*16	CGM	11-oct-1991	19.0	UGL	UM20	T13DCP	0.700	LT LT	
13MH4	RDWA#16	CGM	11-oct-1991	19.0	UGL	UM20	TCLEA	0.510	ĹŤ	
13M/4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UH20	TCLEE	1.600	LT	
13M⊌4 13M⊌4	RDWA*16 RDWA*16	CGW	11-oct-1991	19.0 19.0	UGL	UM20	TRCLE	4.950		
13M4 13M4	RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0	UGL	UM20 \$022	XYLEN AS	0.840 2.540	LT LT	
13144	RDWA*16	CGM	11-oct-1991	19.0	UGL	\$023	AG	0.250	LT	
13MH4	RDWA*16	CCM	11-oct-1991	19.0	UGL	UH18	124TCB	1.800	LT	
13M4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UN18	12DCL8	1.700	LT	_
13MW4 13MW4	RDWA*16 RDWA*16	CCF	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UN18 UN15	12DPH 13DCLB	2.000 1.700	ND LT	R
13MH4	RDWA*16	CCM	11-oct-1991	19.0	UGL	UN18	14DCLB	1.700	ĹŤ	
13/11/4	RDWA*16	COM	11-oct-1991	19.0	UGL	UN18	245TCP	5.200	ĻŢ	
13MH 13MH	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	246TCP 240CLP	4.200 2.900	LT LT	
13/64	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM18	24DHPN	5.800	LT	
13MH	RDUA*16	CGW	11-oct-1991	19.0	UGL	UH18	24DNP	21.000	LT	
13164	RDWA*16	CGW	11-oct-1991	19.0	UGL	UK18	24DNT	4.500	LT	
13M4 13M4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UH18	26DNT	0.790	LT	
13M4	RDWA*16	CGW	11-oct-1991	19.0	ugl.	UM18 UM18	2CLP 2CNAP	0.990 0.500	LT LT	
13MH4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UH18	ZNNAP	1.700	LT	
13/6/4	RDUA*16	CGW	11-oct-1991	19.0	UGL	UN18	2NP	3.900	LT	
13MW4 13MW4	RDWA=16 RDWA=16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UN18	ZNANIL	4.300	LT	
13MU4	RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0	UGL UGL	UM18 UM18	2NP 33DCBD	3.700 12.000	LT LT	
13MJ4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UM18	3MANIL	4.900	LT	
13/14	RDUA*16	CGW	11-oct-1991	19.0	UGL	UN18	46DNZC	17.000	LT	
13MM 13MM	RDWA*16 RDWA#16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM18 UM18	4BRPPE	4.200 7.300	LT	
13/6/4	RDWA+16	CGW	11-oct-1991	19.0	UGL	UN18	4CANIL 4CL3C	4.000	LT LT	
13M4	RDMA*16	CGM	11-oct-1991	19.0	UGL	UM18	4CLPPE	5.106	LT	
13MH4	RDUA*16	CGW	11-oct-1991	19.0	UGL	UN18	4MP	0.520	LT	
13M/4 13M/4	RDWA*16	CCA	11-oct-1991	19.0	UGL	UN18	4NANIL	5.200	LT	
13M4 13M4	RDWA*16 RDWA*16	CGW	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UN18 UN18	4NP ABHC	12.000 4.000	LT MD	R
13HJ4	RDWA*16	CGW	11-oct-1991	19.0	UGL.	UM18	ACLDAN	5_100	ND NO	Ř
13144	RDUA*16	CGM	11-oct-1991	19.0	UGL	UM18	AENSLF	9.200	ND	R
13M4 13M4	RDVA*16	CGW	11-oct-1991	19.0	UGL	UN18	ALDRN	4.700	ND	R
13MW4 13MW4	RDWA+16 RDWA+16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UN18 UN18	ANAPNE ANAPYL	1.700 0.500	LT LT	
13M4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM18	ANTRO	0.500	LT	
13/6/4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM18	B2CEXM	1.500	LŤ	
1344	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM18	BZCIPE	5.300	LT	

Site ID	Field ID	<u>Media</u>	<u>Date</u>	Depth	<u>Uņīts</u>	Analytical Method	Analyte Abbry.	<u>Val</u> ue	<u>Flag</u>	Internal Std. Code
13M44	RDWA*16	CGW	11-oct-1991	19.0	UGL	LM18	92CLEE	1.900	LT	
13MW	RDWA#16	CGM	11-oct-1991	19.0	UGL	UM18	BZEHP	4.800	ĹŤ	
13HH4	RDWA*16	CGM	11-oct-1991	19.0	UCL	UN18	BAANTR	1,600	LT	
13444	RDWA*16	CCM	11-oct-1991	19.0	UGL	UM18	BAPYR	4.700	LT	
13M44 13M44	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UN18 UN18	BBFANT BBHC	5.400 4.000	LT	•
13M4	RDWA-16	CGH	11-oct-1991	19.0	UGL	UM18	BBZP	3,400	MD LT	R
13HU4	RDWA#16	CGM	11-oct-1991	19.0	UGĽ	UN18	BENSLF	9.200	ND	R
13444	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM18	BENZID	10.000	ND	R
13MH4 13MH4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM18 UM18	BENZCA BGHIPY	13.000 6.100	LT LT	
13M4	RDWA*16	CCM	11-oct-1991	19.0	UGL	UM18	BKFANT	0.870	LT	
1344	RDWA*16	CGM	11-oct-1991	19.0	UGL	UN18	8ZALC	0.720	LT	
13/4	RDWA*16	CGM	11-oct-1991	19.8	UGL	UN18	CHRY	2.400	LT	
13MJ4 13MJ4	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM18 UM18	CL68Z CL6CP	1.600 8.600	LT LT	
13144	RDWA=16	CGW	11-oct-1991	19.0	UGL	UM18	CLSET	1.500	LT	
1314	RDWA*16	CGW	11-oct-1991	19.0	UGL	UN18	DBAKA	6.500	LT	
13M4 13M4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	ugl	UN18 UN18	DBHC DBZFUR	4.000 1.700	MD	R
13MU4	RDWA*16	CCM	11-oct-1991	19.0	UGL	LM18	DEP	2.000	LT LT	
13444	RDWA*16	CGW	11-oct-1991	19.0	UGL	UH18	DLDRM	4.700	ND	R
1314	ROWA*16	CGW	11-oct-1991	19.0	UGL	UN18	DMP	1.500	LT	
13MW4 13MW4	RDWA*16 RDWA*16	CCA	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UM18 UM18	DNBP DNOP	3.700 15.000	LT	
_ 1316.44	RDWA*16	CCM	11-oct-1991	19.0	UGL	UM18	ENDRN	7.600	LT ND	Ŕ
13/14	RDWA*16	CGW	11-oct-1991	19.0	UGL	UM18	ENDRNA	8.000	ND	Ř
13844	RDWA*16	CGW	11-oct-1991	19.0	UGL	UN18	ENDRNK	8.000	ND	R
13M4 13M4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	um:8 um:8	ESFSO4 FANT	9.200 3.300	NO LT	R
13/11/4	RDUA*16	COT	11-oct-1991	19.0	UGL	UN18	FLRENE	3,700	LT	
13MH4	RDWA*16	CGL	11-oct-1991	19.0	UGL	UM18	GCLDAN	5.100	MÓ	R
13/4	RDUA*16	CGH	11-oct-1991	19.0	UGL	UM18	HCB0	3.400	LT	_
13MJ4 13MJ4	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UN18 UN18	HPCL HPCLÉ	2.000 5.000	MD MD	R
13M4	RDUA*16	CGW	11-oct-1991	19.0	UGL	UN18	HXADOE	5.000	N.	R S
13MJ4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UM18	1 COPYR	8.600	LT	•
13M/4 13M/4	RDWA*16	CGH	11-oct-1991	19.0	UGL	UM18	ISOPHR	4.800	LT	_
13M44	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	UM18 UM18	LIN MEXCLR	4.000 5.100	ND ND	R R
13M44	RDWA*16	CGF	11-oct-1991	19.0	UGL	UH18	NAP	0.500	LT	•
1344	RDWA*16	CCM	11-oct-1991	19.0	UGL	UN18	NB	0.500	LT	
13MJ4 13MJ4	RDWA#16 RDWA#16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UN 18 UN 18	NNOMEA NNONPA	2.000 4.400	ND LT	R
13/14	RDWA*16	CGR	11-oct-1991	19.0	UGL	UM18	KNDPA	3,000	LT	
13164	RDWA*16	CCM	11-oct-1991	19.0		UN18	PCB016	21.000	MD	R
13M4	RDWA*16	CGH	11-oct-1991	19.0	UGL	UN18	PC8221	21.000	ND	R
13M4 13M4	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM18 UM18	PC8232 PC8242	21.000 30.000	ND ND	R
13/14	RDWA*16	CGH	11-oct-1991	19.0	UGL	UM18	PC8248	30.000	ND ND	R R
13M4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UN18	PCB254	36.000	HD	Ř
13/6/4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UN18	PCB260	36.000	ND	R
13MJ4 13MJ4	RDWA*16 RDWA*16	CGW	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM18 UM18	PCP PHANTR	18.000 0.500	LT LT	
13/14	RDWA*16	CCA	11-oct-1991	19.0	UGL	UM18	PHENOL	9.200	LT	
13M4	RDWA#16	CGM	11-oct-1991	19.0	UGL	UM18	PPOOD	4.000	NO.	R
1364	RDWA*16	CGW	11-oct-1991	19.0	UGL	UH18	PPDDE	4.700	MD	R
13M4 13M4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UM18 UM18	PPDÓT PYR	9,200 2,800	ND LT	R
13444	RDWA*16	CGL	11-oct-1991	19.0	UGL	UM18	TXPHEN	36,000	ND	R
13844	RDWA*16	CCM	11-oct-1991	19.0	UGL,	\$801	HG	0.243	LT	
13M4	RDWA*16	CGM	11-oct-1991	19.0	UGL	00	TOC	4480.000		
13MH4 13MH4	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	SD09 SD21	TL SE	6.990 3.020	LT LT	
13M4	RDWA+16	CCM	11-oct-1991	19.0	UGL	\$020	P8	1.260	ĻŤ	
13M4	RDWA#16	CGM	11-oct-1991	19.0	UGL	00	TOX	184.000	-	
13MJ4	RDWA*16	CGW	11-oct-1991	19.0	UGL	TF22	NIT	5500.000		
13MW4 13MW4	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UN/32 UN/32	135TNB 13DNB	0.449 0.611	LT LT	
13MW4	RDWA*16	CCM	11-oct-1991	19.0	UGL	UN32	246TNT	0.635	LT	
13MJ4	ROWA*16	CGW	11-oct-1991	19.0	UGL	UW32	240NT	0.064	LT	
13M4	RDWA*16	COM	11-oct-1991	19.0	UGL	UN32	26DNT	0.074	LT	_
13M44 13M4	RDWA*16 RDWA*16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	UN32 UN32	HMX NB	3.070 0.645	LT	C
		~~~	,,,,					0.043		

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Va(ue	<u>Flag</u>	Internal Std. Code
13M4	RDWA*16	CGW	11-oct-1991	19.0	UGL	UN32	RDX	1.170	LT	
13HH4	RDWA*16	CGM	11-oct-1991	19.0	UGL	UM32	TETRYL	2.490	ĹĬ	
13/4	RDWA*16	CGH	11-oct-1991	19.0	UGL	S\$10	AL	141.000	LT	
13M4 13M4	RDWA*16 RDWA*16	CGR	11-oct-1991 11-oct-1991	19.0	UGL	SS10	BA	63,900		
13MW4	RDWA*16	COM	11-oct-1991	19.0 19.0	ugl ugl	S\$10 S\$10	BE CA	5.000 85900.000	LŤ	
13/14	RDWA*16	CGW	11-oct-1991	19.0	UGL	S\$10	9	4.010	LT	
13M4	RDWA*16	CGW	11-oct-1991	19.0	UGL	\$\$10	ä	25.000	ĻŤ	
13/444	RDWA*16	CGW	11-oct-1991	19.0	UGL	\$\$10	CR	6.020	LT	
13m4 13m4	RDWA*16 RDWA*16	CGM	11-oct-1991	19.0	UGL	SS10	сп	8.090	LT	
13MW	RDWA*16	CGW	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$\$10	FE K	38,800 2340,000	LT	
1344	RDWA*16	CGW	11-oct-1991	19.0	UGL	SS10	MG	28200.000		
13/6/4	RDWA*16	CGW	11-oct-1991	19.0	UGL	\$\$10	MN	105.000		
13144	RDWA*16	CGW	11-oct-1991	19.0	UGL	\$\$10	NA.	25200.000		
13M4 13M4	RDWA*16 RDWA*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	\$\$10 \$\$10	jk 88	34.300 38.000	LT	
13HW4	RDWA=16	CGW	11-oct-1991	19.0	UGL	3310 3310	V	11.000	LT LT	
13m4	RDWA*16	CGW	11-oct-1991	19.0	UGL	0122	ZN	21.100	ĹŤ	
13144	RDWAU*16	CGM	11-oct-1991	19.0	UGL	SD22	AS	2.990		
13MW 13MW	RDWAU*16	CGA	11-oct-1991	19.0	UGL	SD23	AG	0.250	LŢ	
13/4	RDWAU*16 RDWAU*16	CGR	11-oct-1991 11-oct-1991	19.0 19.0	UGL	1082 2009	NG Ti	0.243 6.990	LT LT	
13H4	RDWAU*16	CSW	11-oct-1991	19.0	UGL	SD21	SÉ	3.020	ĻŤ	
13MH4	RDWAU*16	CGW	11-oct-1991	19.0	UGL	SD20	PB	4.560		
13M44 -	RDWAU*16	CGW	11-oct-1991	19.0	UGL	SS10 _	AL	8760.000		
13MW4 13MW4	RDWAU+16 RDWAU+16	CCM	11-oct-1991 11-oct-1991	19.0 19.0	UGL	0122 2510	BA SE	141.000 5.000	LT	
13MW4	RDWAU*16	CGM	11-oct-1991	19.0	UGL	\$\$10 \$\$10	CA	113000.000	C:	
13/44	RDWAU*16	CCM	11-oct-1991	19.0	UGL	5510	8	4.010	LT	
13MH4	RDWAU*16	CGM	11-oct-1991	19.0	UGL	SS10	œ	25.000	LT	
13M4	RDWAU*16	CGM	11-oct-1991	19.0	UGI,	\$10	CR	19.000		
13MJ4 13MJ4	RDWAU*16	CCF	11-oct-1991 11-oct-1991	19.0 19.0	UGL	SS10 SS10	CU FE	17.700 9740.000		
1344	ROWAU*16	CGM	11-oct-1991	19.0	UGL	\$\$10	ĸ	5450,000		
13/6/4	RDWAU*16	CGM	11-oct-1991	19.0	UGL	SS10	MG	44100.000		
13164	RDWAU*16	CGW	11-oct-1991	19.0	UGL	\$\$10	XX	221.000		
13MJ4 13MJ4	RDWAU*16	CGM	11-oct-1991 11-oct-1991	19.0 19.0	UGL UGL	SS10 SS10	NA NI	24400.000 34.300		
13/11/4	RDHAU*16	COM	11-oct-1991	19.0	UGL	SS10	SB	38.000	LT LT	
13MH4	RDWAU*16	CGM	11-oct-1991	19.0	UGL	SS10	V	23.000	•	
13164	RDUAU*16	CGM	11-oct-1991	19.0	UGL	\$\$10	ZN	36.400		
13MWS 13MW5	RDWA+17 RDWA+17	COM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UM20	111TCE	0.500	LT	
13MM5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM20 UM20	112TCE 11DCE	1.200 0.500	LT LT	
13MM5	RDWA=17	CGW	09-oct-1991	19.0	UGL	UM20	11DCLE	0.680	ĹŤ	
13MV5	RDWA*17	CCM	09-oct-1991	19.0	UCL	UH20	120CE	0.500	ĻŤ	
13Mu5 13Mu5	RDWA*17	CGW	09-oct-1991	19.0	UC1,	UH20	12DCLE	0.500	LT	
13MW5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	ngt ngt	FM50	120CLP 2CLEVE	0.500 0.710	LT LT	
13MN5	ROWA*17	CGM	09-oct-1991	19.0	UGL	UH20	ACET	13.000	LT	
13/6/5	ROMA*17	CGM	09-oct-1991	19.0	UGL	UH20	ACROLM	100,000	НĐ	R
13M/5	ROWA*17	CGM	09-oct-1991	19.0	UGL	UH20	ACRYLO	100.000	MD	R
13MJ5 13MJ5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL, UGL	UN20 UN20	SRDCLM C130CB	0.590	LT	
13MN5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM20	C130CP C2AVE	0.580 8.300	LT LT	
13MW5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM20	C2H3CL	2.600	ĹŤ	
13/465	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM20	CZH5CL	1.900	LT	
13MWS 13MW5	RDWA*17 RDWA*17	CGW	09-oct-1991 09-oct-1991	19.0	UGL	UMZĎ	C6H6	0.500	ĻŢ	
13M45	RDWA*17	CGM	09-oct-1991	19.0 19.0	UGL	UM20 UM20	CCL3F CCL4	1.400 0.580	LT LT	
13/6/5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM20	CH2CL2	2.300	LT	
13/6/5	RDWA=17	CCH	09-oct-1991	19.0	UGL	UH20	CH3BR	5.800	LT	
13HU5	RDUA*17	CGW	09-oct-1991	19.0	UGL	UH20	CH3CL	3.200	LT	
13ku5 13ku5	RDWA+17 RDWA+17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UĞL UĞL	UK20	CHBR3	2.600 0.500	LT LT	
13M/5	RDWA*17	CGM	09-oct-1991	19.0	UGL UGL	UH20 UH20	CHCL3 CL2BZ	10.000	MD	R
13HW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM20	CLC6H5	0.500	ĹĬ	~
13MV5	RDWA*17	COM	09-oct-1991	19.0	UGL	UM20	ÇS2	1.590		
13MV5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM20	DBRCLM	0.670	LT	
13MW5 13MW5	RDWA*17 RDWA*17	COM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	ETC6H5 MEC6H5	0.500 0.500	ĻT LT	
13MV5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM20	MEK	6.400	LT	
131145	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN20	MIBK	3.000	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method		Value	Flag	Internal Std. Code
13MW5	ROWA*17	CGM	09-oct-1991	19.0	UGL	UH20	KNBK	3.600	LŤ	
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UH20	STYR	0.500	LT	
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM20	1130CP	0.700	LT	
13/4/5	RDUA=17	CGH	09-oct-1991	19.0	UGL	LM20	TCLEA	0.510	LT	
13MV5 13MV5	RDWA*17 RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	TOLEE	1.600	LT	
13MV5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM20	TRCLE XYLEN	0.781 0.840	LT	
13MN5	RDWA*17	CCM	09-oct-1991	19.0	UGL	SD22	AS	2.540	LT	
13MW5	RDWA*17	CGM	09-oct-1991	19.0	UGL	SD 23	AG	0.250	ĹŤ	
13MU5	RDWA*17	CGW	09-oct-1991	19.0	UGL.	SB01	HG	0.243	LT	
13MU5	RDWA*17	CGW	09-oct-1991	19.0	UGL	00	TOC	4030.000		
13HW5	RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	SD09	TL.	6.990	LT	
13MVS 13MV5	RDWA*17 RDWA*17	CGW	09-oct-1991	19.0	UGL	SD21 SD20	SE PB	3.020 1.260	LT LT	
13/14/5	RDWA*17	CGU	09-oct-1991	19.0	UGL	00	TOX	12,000	F.1	
13MU5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM18	124TCB	1.800	LT	
13Mu5	RDUA*17	CCM	09-oct-1991	19.0	UGL	UN18	120CLB	1.700	LT	
13H45	RDUA*17	CGM	09-oct-1991	19.0	UGL	UM18	120PH	2.000	ND	R
1314.5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	13DCLB	1.700	LT	
13MN5 13MN5	RDWA*17 RDWA*17	CGM CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UN18 UN18	14DCLB 245TCP	1.700	LŤ	
13MW5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM18	2451CP	5.200 4.200	LT LT	
13MUS	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM18	24DCLP	2,900	ĹŤ	
13MJ5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM18	24DMPN	5.800	ĻŤ	
13MW5	RDVA*17	CGW	09-oct-1991	19.0	UGL	UM18	24DNP	21.000	LT	
13MM5 ·	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM18 .	24DNT	4.500	LT	
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL.	UM18	260NT	0.790	LT	
13MW5 13MW5	RDWA*17 RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UM18 UM18	2CLP 2CNAP	0.990 0.500	LT LT	
13MU5	RDUA*17	CGM	09-oct-1991	19.0	UGL	UM18	ZHNAP	1.700	LT	
13Mu5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UH18	2NP	3.900	ĹŤ	
131465	RDUA*17	CGW	09-oct-1991	19.0	UGL	UM18	2NANIL	4.300	LT	
13MM5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	2NP	3,700	LT	
13/6/5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	330CB0	12.000	LT	
13MH5 13MH5	RDWA*17 RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL	UM18 UM18	3NANTL 46DN2C	4.900 17.000	LT LT	
13/45	RDWA*17	CGW	09-oct-1991	19.0	UGL	LM18	4BRPP€	4,200	LT	
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	4CANIL	7.300	LT	
13MW5	RDWA=17	CCH	09-oct-1991	19.0	UGL	UM18	4CL3C	4.000	LT	
13XW5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UN18	4CLPPE	5,100	LT	
13/4/5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UNIS	4MP	0.520	LT	
13MU5	RDWA*17	CGW	09-oct-1991 09-oct-1991	19.0 19.0	UGL	UM18	4NANIL	5.200	LT	
13MV5 13MV5	RDWA*17 RDWA*17	CGM	09-oct-1991	19.0	UGL UGL	UM18 UM18	ANP ABHC	12.000 4.000	LT ND	R
13NW5	ROWA*17	CGH	09-oct-1991	19.0	UGL	UM18	ACLDAN	5.100	ND	R
13MU5	RDWA*17	CGW	09-oct-1991	19.0		UM18	AEXSLF	9.200	NO	Ř
13MV5	RDWA*17	CGW	09-oct-1991	19.0	UGL.	UN18	ALDRN	4.700	Ю	R
13MW5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UN18	ANAPNÉ	1.700	ĻT	
13M/5	RDWA*17	CCM	09-oct-1991	19.0	UGL	LM18	ANAPYL	0.500	ĻŢ	
13MV5 13MV5	RDUA*17 RDUA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	ANTRO B2CEXM	0.500 1.500	LT	
13M/5	RDUA*17	CCH	09-oct-1991	19.0	UGL.	UN18	B2CIPE	5.300	LT LT	
13MW5	RDHA*17	CGW	09-oct-1991	19.0	UGL	UM18	B2CLEE	1.900	ĹŤ	
13MJ5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	BZEHP	4.800	LT	
13/4/5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	BAANTR	1.600	LT	
131445	RDWA*17	CGħ	09-oct-1991	19.0	UGL	UN18	BAPYR	4.700	ĻŢ	
13M/5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	BBFANT	5.400	LT.	_
13MV5 13MV5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	BBHC BBZP	4.000 3.400	NAD L.T	R
13MJ5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM18	BENSLF	9,200	MD.	R
13MUS	ROUA*17	CGW	09-oct-1991	19.0	UGL	UM18	BENZID	10.000	ND.	Ŕ
13/4/5	RDWA*17	CCW	09-oct-1991	19.0	UGL	UM18	BENZOA	13.000	LT	
13M/5	RDWA*17	CEM	09-oct-1991	19.0	UGL	UH18	BCHIPY	6.100	LT	
1314/5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM18	BKFANT	0.870	LT	
13MJ5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	8ZALC	0.720	LT	
13MJ5	RDWA*17	CGW	09-oct-1991 09-oct-1991	19.0 19.0	UGL	UN18	CHRY	2.400	LŢ	
13MV5 13MV5	RDWA*17 RDWA*17	CCM	09-0ct-1991 09-oct-1991	19.0 19.0	ugi. Ugi.	UM18 UM18	CL68Z CL6CP	1,600 8,600	LT LT	
13MW5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM 18	CLSCF	1.500	LT	
13MV5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	DBAHA	6.500	ĹŤ	
13MV5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	DBHC	4,000	ND	R
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	DBZFUR	1.700	LT	
13MU5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UMTB	DEP	2.000	LT	

Site ID	Field 10	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Fleg	Internal Std. Code
13M45	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	DLDRN	4.700	ND	R
13MJ5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18	DNP	1.500	LT	•
13Mv5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	DNBP	3.700	LT	
13MV5 13MV5	RDWA*17 RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL	UM18 UM18	DNOP ENDRN	15.000 7.600	LT	
13MJ5	RDWA*17	CGH	09-oct-1991	19.0	UGL	UM18	ENDRNA	8,000	ND ND	R R
13MJS	RDWA*17	CGH	09-oct-1991	19.0	UGL	UH18	ENDRNK	8.000	ND	Ŕ
13Nu5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	ESFS04	9.200	MD	R
13MU5 13MU5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL	UM18 UM18	FANT	3.300	LŢ	
13MW5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UM18	FLRENE GCLDAN	3.700 5.100	į, T NID	R
13MU5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	HC8D	3,400	LT	•
13MW5	RDWA-17	CGW	09-oct-1991	19.0	UGL	UM18	HPCL	2.000	ND	R
13HV5 13HV5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UM18 UM18	HPCLE ICDPYR	5.000 8.600	ND	R
13/4/5	RDUA*17	CGM	09-oct-1991	19.0	UGL	UM18	ISOPHR	4.800	LT LT	
13/6/5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UN18	LIN	4.000	ND	R
13M45	RDWA+17	CCM	09-oct-1991	19.0	UGL	UM18	MEXCLR	5.100	MD	R
13M/5 13M/5	RDWA*17 RDWA*17	CGW	09-oct-1991 09-oct-1991	19.0 19.0	UGL	UN18 UN18	NAP NB	0.500	LT LT	
13145	RDWA*17	CCM	09-oct-1991	19.0	UGL	UM18	NNDMEA	2.000	ND	R
13MM5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN18	NNDNPA	4.400	LT	. •
13M45	RDWA+17	CGF	09-oct-1991	19.0	UGL	UK18	NNDPA	3.000	LT	
13M/5 13M/5	RDWA+17 RDWA+17	CGA	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UN18	PC8016 PC8221	21.000 21.000	ND ND	R
- 13M/5	RDWA*17	CCM	09-oct-1991	19.0	UGL	UN18 UN18.	PC8232	21.000	ND ND	R R
13/4/5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UN18	PC8242	30.000	IÆD	Ř
13MW5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UN18	PC8Z48	30.000	KD	R
13MV5 13MV5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	UM18	PCB254 PCB260	36,000	KD	R
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	UM18 UM18	PCP	36,000 18,000	MD LT	R
13MJ5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UN18	PHANTR	0.500	ĹŤ	
13Mu5	RDWA±17	CGW	09-oct-1991	19.0	UGL	UK18	PRENOL	9.200	LT	
13Mu5 13Mu5	RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0	UGL	UK18	PPDDD	4.000	MD	Ŗ
13MH5	RDWA*17 RDWA*17	CGM	09-oct-1991	19.0 19.0	UGL UGL	UM18 UM18	PPDDE PPDDT	4.700 9.200	ND ND	R R
13M45	RDWA*17	CEM	09-oct-1991	19.0	UGL	UN18	PYR	2.800	ĹŤ	•
13MU5	ROWA*17	CCH	09-oct-1991	19.0	UGL	UN18	TXPHEN	36.000	MD	R
13MJ5 13MJ5	RDWA*17	CGW	09-oct-1991 09-oct-1991	19.0	UGL	UN18	UNK639	3.000		S
13M/5	RDWA*17 RDWA*17	CCM	09-oct-1991	19.0 19.0	UGL UGL	TF22 UL32	NIT 135TNB	5500,000 0,449	LT	
13M45	RDWA*17	CCM	09-oct-1991	19.0	UGL	UW32	13DNB	0.611	ĹŤ	
13MV5	RDWA*17	CGW	09-act-1991	19.0	UGL	UW32	246TNT	0.635	LT	
13MV5 13MV5	RDWA#17 RDWA#17	CGM	09-oct-1991 09-oct-1991	19.0	UGL	UN32	24DNT	0.064	LT	
13MW5	RDWA=17	CCM	09-oct-1991	19.0 19.0	UGL UGL	UN32 UN32	Z6DNT HMX	0.074 2.810	LT	С
13445	RDWA*17	CGW	09-oct-1991	19.0	UGL	UN32	NB.	0.645	ĻŢ	•
13MJ5	RDWA*17	CGM	09-oct-1991	19.0	UGL	UK32	ROX	1.170	LŦ	
13MW5	ROWA*17	CGW	09-oct-1991	19.0	UGL	UM32	TETRYL	2.490	LT	
13MJ5 13MJ5	ROWA*17 ROWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	ugl	SS10 SS10	시 8A	141.000 77.600	LT	
13MJ5	RDWA*17	CGM	09-oct-1991	19.0	UGL	SS10	BE	5.000	LT	
13MJ5	RDWA*17	CCM	09-oct-1991	19.0	UGL	S\$10	CA	96000.000		
13M/5	RDWA+17	CCM	09-oct-1991	19.0	UGL	\$510	00	4.010	LT	
13M/5 13M/5	RDWA*17 RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$\$10	CC CR	25.000 6.020	LT LT	
13MW5	RDWA*17	CGW	09-oct-1991	19.0	UGL	\$\$10 \$\$10	<u>.</u>	8.090	LT	
13MJ5	ROWA*17	CGM	09-oct-1991	19.0	UGL	SS10	FE	38.800	ĻŤ	
13MWS	RDVA+17	CGM	09-oct-1991	19.0	UGL	\$\$10	K	1530.000		
13Mu5 13Mu5	RDWA*17 RDWA*17	CCM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$\$10	MG	28500.000 3.550		
13865	RDWA*17	CCM	09-oct-1991	19.0	UGL	SS10	MN NA	11600.000		
13Mu5	RDWA*17	CGW	09-oct-1991	19.0	UGL	SS10	NI	34.300	LT	
13MJ5	RDWA*17	CCA	09-oct-1991	19.0	UGL	SS10	S8	38.000	LT	
13M/5 13M/5	RDWA*17 RDWA*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL	SS10	<b>V</b>	11.000	LŤ	
13M65	RDWAU*17	CGW	09-oct-1991	19.0	UGL	\$\$10 \$D22	ZN AS	21.100 2.540	LT LT	-
13MU5	RDWAU*17	CGW	09-oct-1991	19.0	UGL	SD 23	AG	0.250	LT	
13/4/5	RDUAU*17	CGW	09-oct-1991	19.0	UGL	S801	HG	0.243	ĻT	
13M/5 13M/5	RDWAU*17	CGW	09-oct-1991	19.0	UGL	SD09	TL	6.990	LT	
13M/5	RDWAU*17	CGM	09-oct-1991 09-oct-1991	19.0 19.0	UGL UGL	SD21 SD20	SE PB	3.020 5.210	LT	
13MW5	RDWAU*17	CCH	09-oct-1991	19.0	UGL	SS10	AL	2140.000		
13MW5	RDWAU*17	CCA	09-oct-1991	19.0	UGL	\$\$10	BA	106.000		•

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13MW5	RDWAU*17	CGW	09-oct-1991	19.0	UGL	SS10	BE	5.000	LT	
13MW5	RDWAU*17	CGW	09-oct-1991	19.0	UGL	\$\$10	CA	114000.000		
13MNS	RDWAU*17	CGW	09-oct-1991	19.0	UGL	SS10	CD	4.010	LT	
13MU5	RDUAU*17	COM	09-oct-1991	19.0	UGL,	SS10	<u>co</u>	25.000	ĻT	
13mas 13mas	RDWAU=17 RDWAU=17	CGW	09-oct-1991 09-oct-1991	19.0 19.0	UGL	\$\$10 \$\$10	CR CU	16.700		
13MM5	RDWAU*17	CGM	09-oct-1991	19.0	UGL	\$\$10 \$\$10	FE	8.090 3030.000	LT	
13MJ5	RDUAU*17	CGW	09-oct-1991	19.0	UGL	SS10	K	2660.000		
13MU5	RDUAU*17	CGW	09-oct-1991	19.0	UGL	SS10	MG	36700.000		
13Mu5	RDWAU*17	CCM	09-oct-1991	19.0	UGL	\$\$10	MN	55.800		
13MW5 13MW5	RDWAU*17 RDWAU*17	CGW	09-oct-1991 09-oct-1991	19.0 19.0	UGL	SS10	AA	11000.000		
13MW5	RDWAU*17	CGW	09-oct-1991	19.0	UGL UGL	\$\$10 \$\$10	n I SB	34.300 38.000	LT LT	
13Mu5	RDWAU*17	CGM	09-oct-1991	19.0	UGL	\$\$10	v	11.900	<b>L</b> 1	
13MW5	RDMAU*17	CGM	09-oct-1991	19.0	UGL	\$\$10	ZN	27.300		
13M46	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM20	111TCE	0.500	LT	
13M46 13M46	RDWA*18 RDWA*18	CGM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UN20	112TCE	1.200	LT	
13 <b>Mii</b> 6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UM20 UM20	11DCE 11DCLE	0.500 0.680	LT .	
13446	RDWA*18	CCH	09-oct-1991	18.0	UGL	UH20	120CE	0.500	ĹŤ	
13MW6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM20	12DCLE	0.500	LT	
13/446	RDWA±18	CGW	09-oct-1991	18.0	UGL	UM20	12DCLP	0.500	LŤ	•
13M6	RDWA=18	CGH	09-oct-1991	18.0	UGL	LH20	2CLEVE	0.710	ĻŢ	
13M46 13M46	RDWA*18 RDWA*18	CGW	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UM20 UM20	ACET ACROLN	13_000 100.000	LT ND	
- 13MJ6 -	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM20.	ACRYLO	100.000	ЖD	R R
13M46	RDWA+18	CCM	09-oct-1991	18.0	UGL	UH20	BRDCLN	0.590	ĹŤ	•
13046	RDWA*18	CCM	09-oct-1991	18.0	UGL	UM20	C13DCP	0.580	LT	
13MJ6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM20	C2AVE	8.300	LT	
13M46 13M46	RDUA*18 RDUA*18	CGA	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UN20	C2H3CL C2H5CL	2.600	LT	
13 <b>MU6</b>	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM20 UM20	CSH6	1.900 0.500	LT LT	
13/46	RDHA*18	CGW	09-oct-1991	18.0	UGL	UH20	CCL3F	1.400	LT	
13M46	RDWA±18	CGM	09-oct-1991	18.0	UGL	UN20	CCL4	0.580	LT	
13MM6	RDWA*18	CCM	09-oct-1991	18.0	UG1,	UNI20	CH2CL2	2.300	LT	
13MU6 13MU6	rdwa*18 Rdwa*18	COM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM20	CH38R	5.800	LT	
13/46	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM20 UM20	CH3CL CHBR3	3.200 2.600	LT LT	
13/146	RDUA*18	CGM	09-oct-1991	18.0	UGL	UH20	CHCL3	0.500	LT	
13MJ6	RDUA*18	CCM	09-oct-1991	18.0	UGL	UM20	CL2BZ	10.000	ND	R
13NU6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UN20	CLC6H5	0.500	LT	
13mm6 13mm6	RDWA*18 RDWA*18	CCM	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UM20	CS2 Derclm	0.500	LT	
13MW6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UM20 UM20	ETC6H5	0.670 0.500	LT LT	
13MU6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM20	MEC6H5	0.300	LŤ	
13 <b>M46</b>	RDWA*18	CCM	09-oct-1991	18.0	UGL	UNI20	MEK	6.400	LT	
13/4/6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UM20	HISK	3.000	LT	
13M46 13M46	RDWA*18 RDWA*18	CCM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM20	MNBK STYR	3.600	LŢ	
13MH6	RDWA=18	CCM	09-oct-1991	18.0	UGL	UM20 UM20	T130CP	0.500 0.700	LT LT	
13MH6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UH20	TCLEA	0.510	LT	
13NU6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UN20	TCLEE	1.600	ĻT	
13M6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM20	TRCLE	0.500	LT	
13/4/6	RDUA*18	CCH	09-oct-1991	18.0 18.0	UGL	UH20	XYLEN	9.840	LT	
13M46 13M46	RDWA+18 RDWA+18	CGM	09-oct-1991 09-oct-1991	18.0	UGL	\$022 \$023	AS AG	2.540 0.250	LT LT	
13Mi6	RDWA*18	CGW	09-oct-1991	18.0	UGL	S801	HG	0.243	LT	
13MH6	RDMA*15	CGM	09-oct-1991	18.0	UGL	00	TOC	3790.000		
13MU6	RDWA*18	CGW	09-oct-1991	18.0	UCL	\$009	TL	6.990	LT	
13846	RDWA*18	CGM	09-oct-1991	18.0	UGL	SD21	SE	3.020	LT	
13M6 13M6	RDWA*18 RDWA*18	CGM	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	SD20 00	PB TOX	1.260 1.000	LT LT	
13/146	RDUA*18	CGW	09-oct-1991	18.0	UGL	UN18	124TCB	1.800	LŤ	
13MJ6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UN18	1ZDCL8	1.700	ĹŤ	
13M46	RDWA*18	CCM	09-oct-1991	18.0	UGL	UN18	120PH	2,000	MD	R
13M46	RDVA*18	CCW	09-oct-1991	18.0	UGL	UM18	130CLB	1.700	LT	
13MN6 13MN6	RDWA*18 RDWA*18	CGW	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM18 UM18	14DCLB 245TCP	1.700 5.200	1.T	
13MU6	RDWA*18	CGN	09-oct-1991	18.0	UGL	UK18	2451CP	4,200	LT LT	
13HH6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UN18	24DCLP	2,900	ĹŤ	
13MV6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UN18	24DMPN	5.800	LT	
13M46	RDWA*18	CCA	09-oct-1991	18.0	UGL	UM18	24DNP	21.000	LT	
13 <b>%46</b> 13 <b>%</b> 46	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM18	24DNT	4.500	LT	
13 <b>MU</b> 6	RDWA*18	LUM	09-oct-1991	18.0	UGL	UM18	260NT	0.790	LT	

Site ID	<u>Field ID</u>	<u>Hedia</u>	Date	Depth	Units	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13Hu6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UN18	2CLP	0.990	LT	
13446	RDWA*18	CGH	09-oct-1991	18.0	UGL	UH18	ZCXAP	0.500	LT	
13/146	RDWA*18	CGM	09-oct-1991	18.0	UGL	UN18	2MNAP	1.700	LT	
13M46	RDWA*18	CGW	09-oct-1991	18.0	UGL	UN18	2MP	3.900	ĻŤ	
13M46 13M46	RDUA*18 RDUA*18	CGM	09-oct-1991 09-oct-1991	18.0 18.9	UGL	UM18 UM18	2NANIL 2NP	4.300 3.700	LT LT	
13MW6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UN18	33DCBD	12.000	LT	
13M46	RDWA*18	CCH	09-oct-1991	18.0	UGL	UN18	3NAN I L	4.900	LT	
13M46	ROWA*18	CGF	09-oct-1991	18.0	UGL	UM18	46DN2C	17.000	LT	
13MN6 13MN6	RDWA*18 RDWA*18	COM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM18 UM18	48RPPE	4.200	LT	
13MU6	RDUA+18	CGM	09-oct-1991	18.0	UGL	LM18	4CANIL 4CL3C	7.300 4.000	LT LT	
13MJ6	RDNA*18	CGM	09-oct-1991	18.0	UGL	UN18	4CLPPE	5.100	LT	
13/146	RDWA*18	CGW	09-oct-1991	18.0	UGL	UH18	4MP	0.520	ĻŢ	
13M46 13M46	RDWA*18 RDWA*18	CGM	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UM 18 UM 18	4NANIL 4NP	5.200 12.000	ĻŢ	
13MW6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM18	ABHC	4,000	LT ND	2
13MU6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UN18	ACLDAN	5.100	ND	ž.
13446	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM18	AENSLF	9.200	HD	R
13MW6 13MW6	RDWA*18 RDWA*18	CCM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM18 UM18	ALDRN ANAPNE	4.700 1.700	MD LT	R
13/4/6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM18	ANAPYL	0.500	LT	
13HM6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM18	ANTRO	0.500	LT	
134946	RDWA=18	CCH	09-oct-1991	18.0	UGL	UM18	B2CEXM	1.500	LT	
13Hu6 13Hu6	RDWA*18 RDWA*18	CCH	09-oct-1991 09-oct-1991	18.0 18.0	ugl ugl	UM18 UM18	B2CIPE B2CLEE	5.30¢ 1.900	LŤ LT	
13MJ6	RDUA*18	CGW	09-oct-1991	18.0	UGL	UM18	BZEHP	4.800	ĻT	
13/6/6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UH18	BAANTR	1.600	LT	
13446	RDWA*18	CGW	09-oct-1991	18.0	UGL	UN18	BAPYR	4.700	LT	
13)446 13)446	RDWA*18 RDWA*18	CGM	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UM18 UM18	BBFANT	5.400 4.000	LT	_
13MH6	RDWA-18	CGM	09-oct-1991	18.0	UGL	UN18	8BHC BBZP	3.400	ND LT	R
13 <b>MU</b> 6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UN18	BENSLF	9.200	MD	R
13/146	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM18	BENZID	10.000	ND	R
13MH6 13MH6	RDWA*18 RDWA*18	CGW	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UM18	BENZOA	13.000	LT	
13/6/6	RDWA*18	CGM	09-oct-1991	18.0	UGL	um18 Um18	BGHIPY BKFANT	6.100 0.870	LT LT	
13M46	RDWA*18	CCM	09-oct-1991	18.0	UGL	UH18	BZALC	0.720	ĹŤ	
13MJ6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM18	CHRY	2.400	LŤ	
13MU6 13MU6	RDWA*18 RDWA*18	CGW	09-oct-1991 09-oct-1991	18.0 18.0	ugl, ugl	UM18 UM18	CL6BZ CL6CP	1.600 8.600	LT	
13/5/6	RDWA*18	COM	09-oct-1991	18.0	UGL	UM18	CLEET	1.500	LT LT	
13HM6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UNIS	DBAHA	4.500	LT	
13MU6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM18	DBXC	4.000	MD	R
13M46 13046	RDWA*18 RDWA*18	CGM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM18 UM18	DBZFUR DEP	1.700 2.000	LT	
13M46	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM18	DLDRN	4.700	LT NED	R
13146	RDWA*18	CCM	09-oct-1991	18.0	UGL	ยม18	DMP	1.500	ĹŤ	-
13MH6	RDVA*18	CCA	09-oct-1991	18.0	UGL	UH18	DNBP	3.700	LT	
13MU6 13MU6	RDWA*18 RDWA*18	CGW	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UN18 UN18	DNOP ENDRN	15.000 7.600	LT	
13446	RDWA*18	CCA	09-oct-1991	18.0	UGL	UM18	ENDRNA	8.000	NC NC	R R
13846	RDUA*18	CSW	09-oct-1991	18.0	UGL	UM18	ENDRNK	8.000	MD	Ř
13M46	RDMA*18	CGW	09-oct-1991	18.0	UGL	UN18	ESFS04	9.200	ND	R
13MH6 13MH6	RDWA*18 RDWA*18	CCM	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM18	FANT FLRENE	3.300 3.700	LT	
13MJ6	RDWA*18	CCH	09-oct-1991	18.0	UGL	UM18 UM18	GCLDAN	5.100	LT ND	R
13M46	RDWA*18	CGM	09-oct-1991	18.0	UGL	UH18	HCBD	3.400	ĹŤ	*
13Mu6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UH18	HPCL	2.000	MD	R
13M6 13M6	RDWA*18 RDWA*18	CGM	09-oct-1991 09-oct-1991	18.0	UGL	UM18	HPCLE	5.000	ΝĎ	R
13/46	RDWA*18	CCA	09-oct-1991	18.0 18.0	UGL UGL	UM18 UM18	ICOPYR ISOPHR	8.600 4.800	LT LT	
13MJ6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UK18	LIN	4.000	KD	R
13KU6	RDUA*18	CCM	09-oct-1991	18.0	UGL	UM18	HEXCLR	5.100	ND	Ř
13MH6 13MH6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UN18	HAP	0.500	LŢ	
13MW6	RDWA*18 RDWA*18	CCA	09-oct-1991 09-oct-1991	18.0 18.0	UGL UGL	UM18 UM18	NB NNDMEA	0.500 2.000	LŤ	
13446	RDWA*18	CGN	09-oct-1991	18.0	UGL	UM18	NNDNPA	4.400	ND LT	Ř
13MH6	RDWA*18	CGM	09-oct-1991	18.0	UGL	UM18	NNDPA	3.000	LT	
13M46	RDWA*18	CGW	09-oct-1991	18.0	UGL	UM18	PCB016	21.000	KO	R
13MW6 13MW6	RDWA*18 RDWA*18	CGW	09-oct-1991 09-oct-1991	18.0 18.0	UGL	UM18	PCB221	21.000	ND	R
13MH6	RDWA*18	CCM	09-oct-1991	18.0	UGL UGL	UN18 UN18	PC8232 PC8242	21.000 30.000	ND ND	R R
13MW6	RDWA*18	CGW	09-oct-1991	18.0	UGL	UN18	PCB248	30.000	ND	Ř
			-	-					-	

13846   2004*18   CGJ   00-ect-1991   18.0   UGL   UR18   PS2550   34.000   MB   R   13846   2004*18   CGJ   00-ect-1991   18.0   UGL   UR18   PS2500   34.000   MB   R   13846   2004*18   CGJ   00-ect-1991   18.0   UGL   UR18   PS2500   34.000   MB   R   13846   2004*18   CGJ   00-ect-1991   18.0   UGL   UR18   PREMATR   0.500   LT   13846   2004*18   CGJ   00-ect-1991   18.0   UGL   UR18   PREMATR   0.500   LT   13846   2004*18   CGJ   00-ect-1991   18.0   UGL   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   UR18   PREMATR   0.500   U	<u>Site ID</u>	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>		Value	<u>Flag</u>	Internal Std. Code
13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   13946   1394	13MW6	RDWA*18	CCM	09-oct-1991	18.0	UGL	UN18	PCB254	36,000	MD	P
13946   804-15   CM   09-oct-1991   18.0   USL   URIS   PCP   18.000   LT	13MU6	RDUA*18	CGW		18.0	UGL	UN18		_		
139446   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   PREDIC   9.200   LT   139446   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   PPDDE   4.700   MO   R   139446   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   PPDDE   4.700   MO   R   139446   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   PTR   2.800   LT   139446   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   PTR   2.800   UT   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   PTR   2.800   UT   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   WIT   800.000   S   EDMA*18   CDM   09-ect-1997   18.0   UGL   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   URIS   U											
139HA6   EDMA*18   CDM   09-oct-1991   18.0   UGL   UH18   PPDDE   4.000   MD   R											
139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   139Mid   1											_
139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM18   PP0R   2.00   UR   139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM18   TAPHEN   36.000   MD   R   139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM18   TAPHEN   36.000   MD   R   139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM18   UM18   DOMA*18   COM   09-oct-1991   18.0   UGL   UM22   T357MN   0.449   LT   139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM22   T357MN   0.449   LT   139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM22   T357MN   0.449   LT   139M.6   DOMA*18   COM   09-oct-1991   18.0   UGL   UM22   CAST   CAST   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24   LT   UM24											
139846   ROMA*18   CGM   OP-oct-1991   18.0   UGL   UM18   TYPE   2.000   LT   139846   ROMA*18   CGM   OP-oct-1991   18.0   UGL   UM18   UM15560   4.000   S   139846   ROMA*18   CGM   OP-oct-1991   18.0   UGL   UM18   UM15560   4.000   S   139846   ROMA*18   CGM   OP-oct-1991   18.0   UGL   UM18   UM15560   4.000   S   139846   ROMA*18   CGM   OP-oct-1991   18.0   UGL   UM18   UM15560   4.000   S   139846   ROMA*18   CGM   OP-oct-1991   18.0   UGL   UM18   UM15560   4.001   LT   UM18   UM15560   4.001   LT   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM18   UM1						_					
139M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   135TMB   0.469   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   135TMB   0.469   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   246TMT   0.355   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   BDM   T.770   LT   138M.6   BDM.478   CGM   OP-oct-1991   18.0   UGL   USC2   BDM   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.770   LT   T.									2.800		,-
139M.6   BDM.478   CGM   09-oct-1991   18.0   UGL   UGS2   135TMB   0.449   LT	-									ND	
139M46   80M4*18   CGM											S
13946   RDUA*18   COL   09-0ct-1991   18.0   USL   UASZ   266781   0.645   17   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846   1846										LT	
13946   SDMA*18   CDM   OP-cet-1991   18.0   UGL   LASZ   220NT   0.064   LT	13446		CGM	09-oct-1991	18.0		UM32				
13946   ROMA*18   CGM   OP-cet-1991   18.0   UGL   LAS2   220NT   0.072   LT											
13946   RDMA*18   CGW   09-cet-1991   18.0   UGL   LAG2   MBX   1.210   LT						_					
13Mu6   RDMA*18   CGM   09-oct-1991   18.0   UGL   UGS2   RRX   1.770   LT				·							_
13HM6   RDMA*18   CGM   09-oct-1991   18.0   UGL   USC2   TETYL   2.690   LT											
13Mid										LT	
13M46   ROLA-18   COM   09-oct-1991   18.0   UGL   SS10   RA   51.700   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Co											
138446   ROLA-18   CDV   09-oct-1991   18.0   UGL   SS10   RE   5.000   LT										ĻТ	
13946   RDM4*18   CDM   09*-ect-1991   18.0   UGL   SS10   CD   4.010   LT										LT	
13946   RDMA*18   CGW   09-oct-1991   18.0   UGL   SS10   C2   6.020   LT	13M46		CGW			UGL	\$\$10	_			
139446   RDMA*18   CGM   09-ect-1991   18.0   UGL   SS10   CU   8.090   LT											
13MAG   RDMA*18   CGM   09-oct-1991   18.0   UGL   SS10   FE   38.800   LT											
138MA6   RDIAM*18   COM   OP-oct-1991   18.0   UGL   SST0   K   1564.000						-					
138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   K   1560.000     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   NM   15.300     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   NM   15.300     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   NM   4770.000     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   NM   4770.000     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   SS   38.000   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   SS   38.000   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   ZM   21.100   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS10   ZM   21.100   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS22   AS   2.540   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS23   AG   0.250   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS23   AG   0.250   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   FS   1.050     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS21   SS   3.020   LT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   1.950     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   PS   3.500   UT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS20   COM   SS200   UT     138HA6   RDMA#18   COM   OP-oct-1991   18.0   UGL   SS2											
138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   MA   4770.000     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   MI   34.300   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   SB   38.000   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   V   11.000   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   ZN   21.100   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   ZN   21.100   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS22   AS   2.544   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS22   AG   0.250   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS22   AG   0.250   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS21   SE   3.020   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS21   SE   3.020   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS22   SE   3.020   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS20   PB   1.950     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS20   PB   1.950     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   RA   86.400     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   RA   86.400     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   RA   86.400     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.000   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.000   LT     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991   18.0   UGL   SS10   CG   15.700     138M6   RDIAM*18   CGM   OP-oct-1991	-					-	\$\$10		1560_000		
13HM6											
13MA6   RDIAA*18   CGA   O9-oct-1991   18.0   UGL   SS10   NI   34.300   LT						-					
13MM6										LT	
138M6		RDWA*18	CGM			UGL	SS10				
13846   RDMAN*18   CGM   O9-oct-1991   18.0   UGL   SD22   AS   2.540   LT								-			
13846   RDIALIP*18   CGM   09-oct-1991   18.0   UGL   SD23   AG   0.250   LT											
13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S801   Hig   0.243   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S009   TL   6.990   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S020   PS   1.950     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   AL   2610.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   AL   2610.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   BA   86.400     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   BE   5.000   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   CA   101000.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   CD   4.010   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   CD   4.010   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   CD   25.000   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   CD   3.3700     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   K   2850.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   K   2850.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   K   2850.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   MG   35000.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   MG   35000.000     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   MI   34.300   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   MI   34.300   LT     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   X   38.100     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   X   38.100     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   X   38.100     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   S310   X   38.100     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   UGL   S310   X   38.100     13886   RDMAU**18   CGM   O9-oct-1991   18.0   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL   UGL										-	
13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SD21   SE   3.020   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SD20   PB   1.950     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   RA   RA6.400     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   RA   RA6.400     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CA   101000.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CA   101000.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   4.010   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   4.010   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   4.010   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   13.700     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   CU   16.600     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   K   2850.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   K   2850.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   K   2850.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   RM   35000.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   RM   36.700     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   RM   4660.000     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   RM   34.300   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   SS   36.000   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   SS   36.000   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   SS   36.000   LT     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   V   13.700     13ML6   RDMALP*18   CGW   09-oct-1991   18.0   UGL   SS10   V   13.700     13ML7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   11DCLE   0.500   LT     13ML7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13ML7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND											
13MM6											
13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   AL   2610.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   BA   86.400     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CA   101000.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CA   101000.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   4.010   LT     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   25.000   LT     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CR   13.700     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CR   13.700     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   CR   3530.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   K   2650.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   K   2650.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MA   35000.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MA   4660.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MA   4660.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MA   4660.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MA   4660.000     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   SB   38.000   LT     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   SB   38.000   LT     13MJ6   RDMAU*18   CGW   09-oct-1991   18.0   UGL   SS10   V   13.700     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   11DCE   0.500   LT     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   11DCE   0.500   LT     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   2DCLE   0.500   LT     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACRUN   0.590   LT     13MJ7   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACRUN   0.590   LT     13MJ7										LT	
13MM6											
13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 CA 101000.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 CD 4.010 LT 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 CD 25.000 LT 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 CR 13.700 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 CR 13.700 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 CU 16.600 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 K 2850.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 K 2850.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 MG 35000.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 MG 35000.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 MM 82.700 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 NA 4660.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 MA 4660.000 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 MI 34.300 LT 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 MI 34.500 LT 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 W 13.700 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 W 13.700 13MM6 RDMAU*18 CGW 09-oct-1991 18.0 UGL SS10 W 13.700 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 11TCE 0.500 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCE 0.500 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCE 0.500 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.500 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.500 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.500 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MM7 RDMA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT				•							
13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   CD   4.010   LT     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   CR   13.700     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   CR   13.700     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   CU   16.600     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   FE   3530.000     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   K   2850.000     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   MG   35000.000     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   MM   82.700     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   MM   82.700     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   MM   82.700     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   MI   34.300   LT     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   MI   34.300   LT     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   WI   33.000     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   WI   33.000     13Mid   RDMAN*18   CGW   09-oct-1991   18.0   UGL   SS10   WI   33.100     13Mid   RDMAN*19   CGW   08-oct-1991   19.0   UGL   UM20   111CCE   0.500   LT     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   112CCE   0.600   LT     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.680   LT     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.699     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   2CLEVE   0.710   LT     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACRUN   100.000   ND   R     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACRUN   100.000   ND   R     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACRUN   100.000   ND   R     13Mid   RDMA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACRUN   10								BE		LT	
13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   CD   25.000   LT     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   CR   13.700     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   CU   16.600     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   FE   3530.000     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   K   2850.000     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MR   82.700     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MR   82.700     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MR   82.700     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MI   34.300   LT     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MI   34.300   LT     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   SE   38.000   LT     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   SE   38.000   LT     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   V   13.700     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   V   13.700     13MM6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   V   13.700     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   11TCE   0.500   LT     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   11DCE   0.680   LT     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCE   0.699     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCE   0.500   LT     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCE   0.500   LT     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCE   0.500   LT     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND   R     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND   R     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND   R     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACROLM   0.590   LT     13MM7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACROLM				· · ·							
13M/M6				-							
13Mid											
13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   K   2850.000     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MG   35000.000     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MN   82.700     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MA   4660.000     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   MI   34.300   LT     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   SB   38.000   LT     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   V   13.700     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   V   13.700     13Mid6   RDMAU*18   CGM   O9-oct-1991   18.0   UGL   SS10   ZM   38.100     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   11TCE   0.500   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   11DCE   0.500   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   11DCE   0.680   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCE   0.699     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCE   0.699     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   2DCLE   0.710   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13Mid7   RDMA*19   CGM   O8-oct-1991   19.			CCM	•• •		UGL	SS10	cu cu	16,600		
13Mid6											
13M46   RDWAU*18   CGW   09-oct-1991   18.0   UGL   SS10   NN   82.700		-									
13M46   RDWAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MA   4660.000     13M46   RDWAU*18   CGW   09-oct-1991   18.0   UGL   SS10   MI   34.300   LT     13M46   RDWAU*18   CGW   09-oct-1991   18.0   UGL   SS10   SB   38.000   LT     13M46   RDWAU*18   CGW   09-oct-1991   18.0   UGL   SS10   V   13.700     13M46   RDWAU*18   CGW   09-oct-1991   18.0   UGL   SS10   ZM   38.100     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   111TCE   0.500   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   11DCE   0.500   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   11DCE   0.680   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCE   0.699     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCE   0.500   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLP   0.500   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   2CLEVE   0.710   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND   R     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND   R     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   100.000   ND   R     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT     13M47   RDWA*19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLM   00.590   LT			-								
13HW6   RDWAUP18   CGW   09-oct-1991   18.0   UGL   SS10   SB   38.000   LT     13MW6   RDWAUP18   CGW   09-oct-1991   18.0   UGL   SS10   V   13.700     13MW6   RDWAUP18   CGW   09-oct-1991   18.0   UGL   SS10   ZH   38.100     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   111TCE   0.500   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   11DCE   0.500   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   11DCE   0.680   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   12DCE   0.699     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   12DCE   0.500   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   12DCLE   0.500   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   2CLEVE   0.710   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACET   13.000   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   100.000   ND   R     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   100.000   ND   R     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   0.590   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   0.590   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   0.590   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   0.590   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   0.590   LT     13MW7   RDWAP19   CGW   08-oct-1991   19.0   UGL   UM20   ACROLN   0.590   LT											
13Mid											
13MM6										LT	
13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 111TCE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 112TCE 1.200 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCLE 0.680 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLP 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACCT 13.000 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACCT 13.000 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT											
13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCE 1.200 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCLE 0.680 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLP 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACCT 13.000 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACCT 13.000 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 0.590 LT										LT	
13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 11DCLE 0.680 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLP 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT									1.200		
13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCE 0.699 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLP 0.500 LT 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100.000 ND R 13MV7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT											
13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLE 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLP 0.500 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT				-						LT	
13MY7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 12DCLP 0.500 LT 13MY7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MY7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MY7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MY7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100.000 ND R 13MY7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT										LT	
13MY? RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 2CLEVE 0.710 LT 13MY? RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACET 13.000 LT 13MY? RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MY? RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100.000 ND R 13MY? RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT	13MW7										
13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACROLN 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100.000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT							UH20	2CLEVE	0.710	LT	
13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 ACRYLO 100,000 ND R 13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT											_
13MW7 RDWA*19 CGW 08-oct-1991 19.0 UGL UM20 BRDCLM 0.590 LT											
				•							*
	13MW7			08-oct-1991							

Site ID	Field (D	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	internal Std. Code
13MV7	RDWA+19	CGW	08-oct-1991	19.0	UGL	UM20	C2AVE	8.300	LT	
13MW7	RDWA*19	ÇGH	08-oct-1991	19.0	UGL	UM20	CZH3CL	2.600	LT	
13MW7	RDUA*19	CGM	08-oct-1991	19.0	UGL	UM20	C2H5CL	1.900	LT	
13MW7 13MW7	RDWA*19 RDWA*19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	C6H6 CCL3F	0.500 1.400	LT	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM20	CCL3F	0.580	LT LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UH20	CH2CL2	2.300	ĹŤ	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM20	CH3BR	5.800	ĹŤ	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UH20	CH3CL	3.200	ĻT	
13MW7	RDWA+19	CGW	08-oct-1991	19.0	UGL	UM20	CHBR3	2.600	LT	
13MU7 13MU7	RDWA⇒19 RDWA÷19	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM20	CHCL3	0.500	LT	_
13MW7	RDUA*19	CGM	08-oct-1991	19.0	UGL	UH20 UH20	CL2BZ CLC6H5	10.800 0.300	ND Lt	R
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UH20	CSZ	0.500	LT	
13447	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM20	DBRCLM	0,670	LT	
13MU7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UH20	ETC6H5	0.500	ĻŦ	
13MU7	RDWA+19	CGW	08-oct-1991	19.0	UGL	UM20	MEC6H5	0.500	LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM20	MEK	6.400	LT	
13MV7 13MV7	RDWA*19 RDWA*19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	MIBK MNBK	3.000 3.600	LT	
13MJ7	RDWA*19	CCW	08-oct-1991	19.0	UGL	UM20	STYR	0.500	LT LT	
13Mu7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM20	T13DCP	0.700	LT	
13M¥7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM20	TCLEA	0.510	LT	
13MW7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UM20	TCLEE	1.600	LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM20	TRCLE	10.500	_	
_ 13M/7	ROWA*19	CGW	08-oct-1991	19.0	UGL.	UM20	XYLEN	0.840	LT	
13MV7 13MV7	RDWA+19 RDWA+19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	\$022 \$023	AS AG	2.540 0.250	LT LT	
13MW7	RDWA=19	CGH	08-oct-1991	19.0	UGL	SB01	HG	0.243	LT	
13667	RDWA*19	COM	08-oct-1991	19.0	UGL	00	TOC	2970.000		
13MJ7	RDUA*19	CCM	08-oct-1991	19.0	UGL	\$209	TL	6.990	ŁŦ	
13HW7	RDUA*19	CGM	08-oct-1991	19.0	UGL	SD21	SE	3.020	LT	
13MU7	RDUA*19	CGM	08-oct-1991	19.0	UGL	\$020	P8	1.260	LT	
13MV7 13MV7	RDWA*19 RDWA*19	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL	00 UN18	TCX	366.000		
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM18	124TCB 12DCLB	1.800 1.700	LT LT	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM18	12DPH	2.000	ND	R
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UK18	13DCLB	1.700	LT	•
13MW7	RDUA*19	CGW	08-oct-1991	19.0	UGŁ	UN18	140CLB	1.700	LŤ	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	245TCP	5.200	LT	
13MW7 13MW7	RDWA*19 RDWA*19	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18	246TCP	4.200 2.900	LŤ	
13MJ7	ROWA*19	CGM	08-oct-1991	19.0	UGL	UM18 UM18	24DCLP 24DMPN	5.800	LT LT	
13MJ7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM18	24DNP	21.000	ĹŤ	
13MJ7	RDUA*19	CGM	08-oct-1991	19.0	UGL	UN18	24DNT	4,500	LT	
13MJ7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	26DNT	0.790	ĻT	
13MU7	RDUA-19	CGW	08-oct-1991	19.0	UGL	UM18	2CLP	0.990	LT	
13MW7 13MW7	RDWA*19 RDWA*19	CGW	08-oct-1991 08-oct-1991	19.0	UGL	UM18	2CNAP	0.500	LT	
13MV7	RDWA*19	CGW	08-oct-1991	19.0 19.0	UGL UGL	UM18 UM18	2MNAP 2MP	1.700 3.900	LT LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	2NANIL	4.300	1,7	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UNTS	2NP	3.700	LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	330CB0	12.000	LT	
13MW7	RDWA+19	CGM	08-oct-1991	19.0	UGL	UN18	3MAN1L	4.900	ĻT	
13ML/7 13ML/7	RDWA*19 RDWA*19	CGW	08-oct-1991 08-oct-1991	19.0	UGL	LM18	46DN2C	17.000	ĻŢ	
13MW7	RDWA*19	CGW	08-oct-1991	19.0 19.0	UGL	UM18 UM18	48RPPE 4CANIL	4.200 7.300	LT LT	
13MW7	RDUA*19	CGW	08-oct-1991	19.8	UGL	UH18	4CL3C	4.000	ĹŤ	
13MV7	RDWA+19	CGM	08-oct-1991	19.0	UGL	UN18	4CLPPE	5,100	ĹŤ	
13 <b>₩⊌7</b>	RDWA*19	CGM	08-oct-1991	19.0	UGL	UN18	4HP	0.520	LT	
13MV7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UH18	4NANIL	5.200	LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UĞL	UH18	4NP	12.000	LT	_
13MV7 13MV7	ROWA*19	CCH	08-oct-1991	19.0	UGL	UM18	ABHC	4.000	MD	R
13MV7 13MV7	RDWA*19 RDWA*19	CCF	08-oct-1991 08-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	ACLDAN AENSLF	5.100 9.200	ND CN	R
13MW7	RDWA-19	CCM	08-oct-1991	19.0	UGL	UM18	ALDRN	4.700	ND	R R
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	ANAPHE	1.700	LT	^
13M47	RDWA=19	CCM	08-oct-1991	19.0	UGL	UN18	ANAPYL	0.500	ĻŤ	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UN18	ANTRC	0.500	LT	
13MH7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	B2CEXM	1.500	LT	
13MV7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UM18	B2CIPE	5.300	LT	
13MW7 13MW7	RDWA*19 RDWA*19	CGM	08-oct-1991 08-oct-1991	19.0	UGL	UK18	BSCLEE	1.900	LŤ	
13MV7	ROMA*19	CGW	08-oct-1991	19.0 19.0	UGL UGL	UH18 UH18	BZĘHP BAANTR	4.800 1.600	LT LT	
			177			W11 1 W	mroun ( A	14000	• 1	

Site ID	Field 10	<u>Media</u>	<u>Date</u>	Depth	<u>Units</u>	Analytical <u>Method</u>		Value	Flag	Internal Std. Code
13MV7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	BAPYR	4.700	LT	
13MW7	RDWA*19	CCW	08-oct-1991	19.0	UGL	LIM18	BBFANT	5.400	ĹŤ	
13MH7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	BBHC	4.000	ND	R
13MJ7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UN18	BBZP	3.400	LT	
13MW7 13MW7	RDWA*19 RDWA*19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	BENSLF BENZID	9.200	XD	R
13MW7	RDWA*19	CCH	08-oct-1991	19.0	UGL	UM18	BENZOA	10,000 13,000	ND LT	R
13MH7	RDWA*19	CCW	08-oct-1991	19.0	UGL	LH18	BGHIPY	6.100	LT	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	LN18	BKFANT	0.870	Ľ۲	
13MW7	RDWA*19	COM	08-oct-1991	19.0	UGL	UH18	BZALC	0.720	LT	
13MV7	RDWA+19	CGM	08-oct-1991	19.0	UGL	UM18	CHRY	2.400	LT	
13MJ7 13MJ7	RDWA#19 RDWA#19	CGW	08-oct-1991 08-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	CL6BZ CL6CP	1.600	LT	
13MV7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	CLEET	8.600 1.500	LT LT	
13MW7	RDNA*19	CGW	08-oct-1991	19.0	UGL	UN18	DBAHA	6.500	LT	
13MW7	RDUA=19	CGM	08-oct-1991	19.0	UGL	UM18	DBHC	4,000	ND	R
13MV7	RDWA*19	CCM	08-oct-1991	19.0	UG1.	UN18	DBZFUR	1.700	LT	
13HH7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	DEP	2.000	ĻŤ	
13MJ7 13MJ7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UM18	DLDRN	4.700	ND	R
13MW7	RDWA*19 RDWA*19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	DMP DNBP	1.500 3.700	LŢ	
13MW7	RDUA*19	CGW	08-oct-1991	19.0	UGL	UN18	DNOP	15.000	LT LT	
13MW7	ROWA*19	CGM	08-oct-1991	19.0	UGL	UN18	ENDRN	7.600	KD	R
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	ENDRNA	8.000	ND	Ř
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	ENDRNK	8.000	ND	R
13MW7 - 13MW7	RDWA*19 RDWA*19	CCH	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 -	ESFS04	9.200	MD	R
13MW7	RDUA*19	CGM	08-oct-1991	19.0	UGL UGL	UN18 UN18	FANT FLRENE	3.300 3.700	LT LT	
13MH7	RDWA*19	CCH	08-oct-1991	19.0	UGL	UM18	GCLDAN	5.100	NO.	R
13MW7	RDWA+19	CCM	08-oct-1991	19.0	UGL	UN18	HCBD	3.400	LT	•
13MW7	RDWA*19	CGH	08-oct-1991	19.0	UGL	UNIS	HPCL	2.000	NO	R
13MV7	RDWA*19	CGM	08-oct-1991	19.0	UGL	LM18	HPCLE	5.000	ND	R
13MV7 13MV7	RDWA*19 RDWA*19	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18	ICOPYR	8.600	LŢ	
13MV7	RDWA*19	CGM	08-oct-1991	19.0	UGL UGL	UN18 UN18	ISOPHR Lim	4.800 4.000	LT MD	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UM18	MEXCLR	5.100	7E)	R R
13MH7	RDUA*19	COM	08-oct-1991	19.0	UGL	UN18	NAP	0.500	LT	-
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	MB	0.500	LT	
13MU7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM18	NNDMEA	2.000	MD	R
13NW7 13MW7	RDWA*19	CGM	08-oct-1991	19.0 19.0	UGL	UN18	NNONPA	4.400	LT	
13MW7	RDWA*19 RDWA*19	CGM	08-oct-1991 08-oct-1991	19.0	UGL UGL	UM18 UM18	NNOPA PCB016	3.000 21.000	LT NO	
13MN7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	PCB221	21.000	NO.	R R
13MU7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	PCB232	21.000	WD	Ř
13MV7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UM18	PCB242	30.000	ND	R
13HW7	RDWA=19	CGM	08-oct-1991	19.0	UGL	UN18	PCB248	30.000	MD	R
13M/7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UM18	PCB254	36.000	MD	R
13MH7 13MH7	RDWA*19 RDWA*19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UCL	UN18	PCB260	36.000	NO.	R
13MJ7	RDWA=19	CGM	08-oct-1991	19.0	UGL	UN18 UN18	PCP PHANTR	18.000 0.500	LT LT	
13MW7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UM18	PHENOL	9.200	LT	
13MW7	RDWA*19	CCM	08-oct-1991	19.0	UGL	UN18	PPODD	4.000	ND	R
13/9/7	RDWA=19	CGW	08-oct-1991	19.0	UGĻ	UM18	PPODE	4.700	ND	R
13MJ7	RDWA*19	CGW	08-oct-1991	19.0	UGL	UN18	PPDDT	9.200	MD	R
13MJ7 13MJ7	RDWA*19 RDWA*19	CCH	08-oct-1991 08-oct-1991	19.0 19.0	UGL	LM18	PYR TXPHEN	2.800	LT	_
13MU7	RDUA*19	CGW	08-oct-1991	19.0	UGL	UM18 UM18	UNK538	36.000 4.000	ND.	R S
13MW7	RDUA=19	CGW	08-oct-1991	19.0	UGL	UH15	UNK539	4.000		Š
13MW7	RDMA=19	CGW	08-oct-1991	19.0	UGL	UN18	UNK557	4.000		Š
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UN18	UNK564	7,000		s
13MU7	RDWA*19	CGN	08-oct-1991	19.0	UGL	TF22	NIT	2400.000		
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UW32	135TKB	0.449	LT	
13MV7 13MV7	RDWA*19 RDWA*19	CCF	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UN32 UN32	13DNB 246TNT	0.611	LT	
13MW7	RDWA-19	CGW	08-oct-1991	19.0	UGL	UN32	2401N1	0.635 0.064	LT LT	
13MW7	RDUA*19	CGW	08-oct-1991	19.0	UGL	UM32	260NT	0.074	LT	
13MV7	RDWA#19	CGM	08-oct-1991	19.0	UGL	UW32	HMX	7.070		С
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	UW32	NB	0.645	LT	-
13ML/7	RDWA=19	CCM	08-oct-1991	19.0	UGL	UW32	RDX	1.178	LT	
13MW7	RDWA+19	CGW	08-oct-1991	19.0	UGL	UL/32	TETRYL	2.490	LT	
13MW7 13MW7	RDWA*19 RDWA*19	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$510	AL	141.000	LT	
13MW7	RDWA*19	CGM	08-oct-1991	19.0	UGL	\$510 \$510	BA BE	153.000 5.000	LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	\$510	CA	88800,000	LI	
			1551							

Site ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	internal Std. Code
13MW7	RDWA±19	CGH	08-oct-1991	19.0	UGL	SS10	_	/ 010		
13Mw7	RDHA*19	COM	08-oct-1991	19.0	UGL	\$\$10 \$\$10	<del>(1)</del>	4.010 25.000	LT LT	
13MW7	RDWA*19	CGW	08-oct-1991	19.0	UGL	\$\$10	CR	6.020	LT	
13M⊌7	RDWA*19	CGW	08-oct-1991	19.0	UGL	\$\$10	വ	8.090	ĻŤ	
13647	RDWA*19	CGM	08-oct-1991	19.0	UGL	\$\$10	FE	38.800	ŁT	
13MV7 13MV7	RDWA*19	CGW	08-oct-1991	19.0	UGL	SS10	K	2380.000		
13MW7	RDWA+19 RDWA+19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	SS10 SS10	MG MM	29700.000 652,000		
13NW7	ROWA*19	CGW	08-oct-1991	19.0	UGL	SS10	NA AK	6470.000		
13xu7	RDWA*19	CGM	08-oct-1991	19.0	UGL	\$\$10	NI.	34.300	LT	
13₩⊌7	RDWA+19	CGM	08-oct-1991	19.0	UGL	SS10	SB	38.000	ĻT	
13MV7	RDWA*19	CGM	08-oct-1991	19.0	UGL	S\$10	A	11.000	LT	
13MH7 13MH7	RDWA*19 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0	UGL	SS10	ZN	21.100	LT	
13MU7	RDWA*20	CGM	08-oct-1991	19.0 19.0	ugl	UM20 UM20	111TCE 112TCE	0.300 1.200	LT LT	
13MV7	RDWA*20	CGH	08-oct-1991	19.0	UGL	UH20	11DCE	0.500	LT	
13HU7	ROWA*20	CCW	08-oct-1991	19.0	UGL	UH20	11DCLE	0.680	LŤ	
13MH7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM20	12DCE	0.786		
13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UH20	12DCLE	0.500	LŢ	
13HW7 13MW7	RDWA*20	COM	08-oct-1991 08-oct-1991	19.0	UGL	UM20	12DCLP	0.500	LT	
13MW7	RDWA*20 RDWA*20	CCM	08-oct-1991	19.0 19.0	UGL	UM20 UM20	2CLEVE ACET	0.710 13.000	LT LT	
13MW7	RDWA-20	CGW	08-oct-1991	19.0	UGL.	UM20	ACROLN	100.000	ND	R
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UH20	ACRYLO	100.000	ЖĎ	Ř
13MW7	ROWA*20	CCM	08-oct-1991	19.0	UGL	UH20	BRDCLM	0.590	LT	-
-13M/7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN20	C13DCP	0.580	LT	
13MW7 13MW7	RDWA*20 RDWA*20	COM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UH20	CZAVE CZH3CL	8.300 2.600	LT	
13MW7	RDWA*20	CCM	08-oct-1991	19.0	ugl ugl	UN20 UN20	CZHSCL	1.900	LT LT	
13HJ7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UK20	CÓHÓ	0.500	ĹŤ	
13MV7	ROWA*20	CGM	08-oct-1991	19.0	UGL	UK20	CCL3F	1.400	LT	
13MW7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UH20	CCL4	0.580	LT	
13HW7	RDWA+20	CCM	08-oct-1991	19.0	UGL	UH20	CH2CL2	2.300	LT	
13MV7 13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UNI20	CH3BR	5.800	LT	
13M47	RDWA*20 RDWA*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	CH3CL CH8R3	3.200 2.600	LT LT	
13MJ7	RDWA*20	CCW	08-oct-1991	19.0	UGL	UM20	CHCL3	0.500	LT	
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN20	CL2BZ	10.000	ND	R
13MJ7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN20	CLC6H5	0.500	LT	
13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UH20	CSZ	0.500	LT	
13MV7 13MV7	RDWA*20 RDWA*20	CCA	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM20 UM20	DBRCLM ETC6H5	0.670 0.500	LT LT	
13NW7	RDWA*20	CGF	08-oct-1991	19.0	UGL	UM20	MEC6H5	0.500	LT	
13HW7	RDMA*20	CCM	08-oct-1991	19.0	UGL	UM20	HEK	6.400	ĹŦ	
131447	RDWA*20	CCM	08-oct-1991	19.0	UGL	UM20	MIBK	3.000	ĻT	
13M/7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UH20	KNEK	3.600	LT	
13MV7	RDWA+20	CGM	08-oct-1991	19.0	UCL	UM20	STYR	0.500	LT	
13MV7 13MV7	RDWA*20 RDWA*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UM20 UM20	T13DCP TCLEA	0.700 0.510	LT LT	
13MJ7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UH20	TCLEE	1.600	LT	
13HW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UM20	TRCLE	10.500		
13MW7	RDWA+20	CGW	08-oct-1991	19,0	UGL	UN20	XYLEN	0.840	LT	
13MW7	RDWA*20	CCM	08-oct-1991	19.0	UGL	SD 22	AS	2.540	LT	
13MJ7	RDWA*20	CGH	08-oct-1991	19.0	UGŁ	SD 23	AG	0.250	ĻŢ	
13MJ7 13MJ7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	1161	00	PH	7.030 0.243		K
13/4/7	RDWA*28	CCF	08-oct-1991	19.0	ugl	5801 00	HG TOC	1000.000	LT LT	
1314/7	RDUA*20	CGW	08-oct-1991	19.0	UGL	SD09	TL	6.990	ĹŤ	
13M47	RDWA*ZD	CGW	08-oct-1991	19.0	UGL	SD21	SE	3.020	LT	
13HW7	RDWA+20	CCM	08-oct-1991	19.0	UGL	SD20	PS	22.500		
13MJ7	RDWA*20	CGW	08-oct-1991	19.0	UGL	00	TOX	88.300		
13MJ7 13MJ7	RDWA*20 RDWA*20	CGW	08-oct-1991	19.0	UGL	UM18	124TC8	1_800	LT	
13MV7	RDWA*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	12DCLB 12DPN	1.700 2.000	LT MD	R
13MV7	RDWA+20	COM	08-oct-1991	19.0	UGL	UN18	130CLS	1.700	LT	*
13M47	RDWA*20	CGM	08-oct-1991	19.0	UGL	UH18	140CLB	1.700	ĻŤ	
13MJ7	RDWA*20	CCH	08-oct-1991	19.0	UGL	UN18	245TCP	5.200	ĹŤ	
13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18	246TCP	4.200	LT	
13NW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UM18	24DCLP	2.900	LT	
13MV7 13MV7	RDWA*20 RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	24DMPN	5.800	LT	
13MW7	RDWA*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	24DNP 24DNT	21.000 4.500	LT LT	
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18	26DNT	0.790	LT	
13MW7	RDWA*20	CCA	08-oct-1991	19.0	UGL	UM18	ZCLP	0.990	ĽΫ	
•	·- • ••		1551	.,,,,,				******		

<u> \$ite ID</u>	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method		<u>Value</u>	<u>Flag</u>	Internal Std. Code
13MJ7	RDWA*20	CGW	08-oct-1991	19.0	UGL	LM18	2CNAP	0.500	LT	
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18	ZHNAP	1.700	LT	
13MW7	RDWA*20	CCH	08-oct-1991	19.0	UGL	UN18	2MP	3.900	ĻŤ	
13MW7	RDWA*20	CGF	08-oct-1991	19.0	UGL	UK18	2MANIL	4.300	LT	
13MW7	RDWA*20	CCH	08-oct-1991	19.0 19.0	UGL	UM18	2NP	3.700	LT	
13MW7 13MW7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0	UGL	UM18 UM18	33DCBD 3NANIL	12.000	LŤ	
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	46DN2C	4.900 17.000	LT LT	
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	48RPPE	4.200	LT	
13MU7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	4CANIL	7.300	LŤ	
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UK18	4CL3C	4.000	LT	
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	4CLPPE	5.100	LT	
13MW7 13MW7	RDWA*20 RDWA*20	COM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UM18	4MP	0.520	LT	
13MW7	RDWA-20	CGA	08-oct-1991	19.0	UGL	UN18 UN18	4NAN I L 4NP	5.200 12.000	LT LT	
13ML7	ROMA*ZO	CCM	08-oct-1991	19.0	UGL	UM18	ABHC	4.000	ND	R
13HW7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UK18	ACLDAN	5.100	ND	Ř
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UH18	AENSLF	9.200	MD	R
13Mu7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	ALDRN	4.700	ND	Ř
13MU7	RDWA*20	CGL	08-oct-1991	19.0	UGL	UN18	ANAPNE	1.700	LT	
13MW7 13MW7	RDWA*20 RDWA*20	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	UN 18	ANAPYL ANTRO	0.500 0.500	LT LT	
13MW7	RDWA*20	CGH	08-oct-1991	19.0	UGL	UN18	B2CEXM	1.500	LT	
13MW7	RDWA*20	CCH	08-oct-1991	19.0	UGL	UH18	BZCIPE	5.300	ĹŤ	
13MW7	RDWA#20	CGW	08-oct-1991	19.0	UGL	UN18	<b>B2CLEE</b>	1.900	LT	
- 13MV7 -	RDWA*20	CGF	08-oct-1991	19.0	UGL	UN18	B2EHP	4.800	LT	
13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UK18	BAANTR	1.600	LT	
13MW7 13MW7	RDWA*20 RDWA*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	BAPYR BBFANT	4.700 5.400	LT	
13MW7	RDWA*20	CCA	08-oct-1991	19.0	UGL	UN18	BBKC	4.000	LT ND	R
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UM18	BBZP	3.400	LT	•
13 <b>₩</b> ¥7	RDUA*ZO	CCM	08-oct-1991	19.0	UGL	UM18	BENSLF	9.200	ND	R
13MV7	ROWA*20	CGM	08-oct-1991	19.0	UGL	UN18	BENZID	10.000	ND	R
13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	BENZOA	13.000	LT	
13MW7 13MW7	RDWA*20 RDWA*20	CCH	08-oct-1991 08-oct-1991	19.0 19.0	ner ner	UN18	BCHIPY	6, 100	LT	
13MW7	RDWA*20	CCM	08-oct-1991	19.0	UGL	LM18 LM18	BKFANT BZALC	0.870 0.720	LT LT	
13HW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	CHRY	2.400	ĹŤ	
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	CL68Z	1.600	LT	
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	CL6CP	8.600	LT	
13MU7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UN18	CL6ET	1.500	LT	
13MH7	RDWA*20	CCM	08-oct-1991	19.0	UGL UGL	UN 18	DBAHA	6.500	LT	_
13M⊌7 13M⊌7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	DBHC DBZFUR	4.000 1.700	ND LT	R
13MW7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UN18	DEP	2.000	LT	
13MW7	RDWA*20	ÇGW	08-oct-1991	19.0		UN18	DLDRN	4.700	ND	R
13MJ7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UN18	DHP	1.500	LT	
13MW7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UM18	DNBP	3.700	LT	
13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	DHOP	15.000	LT	_
13MV7 13MV7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	ENDRN ENDRNA	7.600 8.000	NO	R
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18	ENDRNK	8.000	NO OK	R R
13MU7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	ESFS04	9.200	ND	Ř
13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18	FANT	3.300	LT	**
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL,	UK18	FLRENE	3.700	LT	
13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	GCLDAN	5.100	ND	. R
13MJ7 13MJ7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	ugi. Ugi.	UN18	HCBO	3.400 2.000	LT	
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18 UM18	HPCLE	5.000	ND ND	R R
13MW7	RDWA+20	CCW	08-oct-1991	19.0	UGL	UH18	ICOPYR	\$.600	ίŤ	•
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	LSOPHR	4.800	LT	
13MJ7	RDWA*20	CCM	08-oct-1991	19.0	UGL	UN18	LIN	4.000	ND	R
13M/7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	MEXCLR	5.100	ND	R
13MJ7	RDWA+20	CGW	08-oct-1991	19.0	UG1,	UN18	NAP	0.500	LT	
13MV7 13MV7	RDWA*20 RDWA*20	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18	NB	0.500	LT	
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	LN18 UN18	NNDMEA NNDNPA	2.000 4.400	ND LT	R
13MW7	RDWA+20	CGM	08-oct-1991	19.0	UGL	UN18	NNDNPA	3.000	LT	
13MW7	RDWA #20	CGM	08-oct-1991	19.0	UGL	UM18	PCB016	27.000	ND	R
13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UM18	PCB221	21.000	ND	Ř
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGŁ	UNTS	PC8232	21.000	ND	Ř
13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UH18	PCBZ4Z	30.000	MD	R
13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UM18	PCB248	30.000	ND	R
13MU7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	PCB254	36.000	ND	R

							Analytical	Analyte			Internal
	Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Method	Abbry.	Value	<u>Flag</u>	Std. Code
	13MU7	RDWA+20	CCM	08-oct-1991	19.0	UGL	UH18	PCB260	36.000	ND	R
	13MJ7	RDHA*20	CCM	08-oct-1991	19.0	UGL	UN18	PCP	18.000	LT	
	13MJ7 13MJ7	RDUA*20 RDUA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	ugl ugl	UM18 UM18	PHANTR PHENOL	0.500 9.200	LT LT	
	13MV7	ROMA*20	CGW	08-oct-1991	19.0	UGL	UN18	PPDDD	4,000	ND	R
	13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL,	UM18	PPODE	4.700	ND	R
	13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UN18	PPDDT	9.200	ЖD	R
	13MW7 13MW7	RDWA*20 RDWA*20	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UM18 UM18	PYR TXPHEN	2.800 36.000	LT ND	
	13MJ7	RDWA*ZO	CGM	08-oct-1991	19.0	UGL	UM18	UNK557	4.000	NO.	8 \$
	13MJ7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UN18	UNKS64	5.000		Š
	13MW7 13MW7	RDWA*20 RDWA*20	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	TF22	NIT	2600.000		
	13MV7	RDWA*20	CGW	08-oct-1991	19.0	UGL	UW32 UW32	135TNB 13DNB	0.449 0.611	LT LT	
	13MW7	RDWA+20	CGM	08-oct-1991	19.0	UGL	UU32	246TNT	0.635	LT	
	13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UW32	24DNT	0.064	LT	
	13MV7 13MV7	RDWA*20 RDWA*20	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	UW32 UW32	26DNT HMX	0.874 6.620	LT	•
	13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	UW32	NB	0.645	LT	C
	13447	RDWA+20	CCM	08-oct-1991	19.0	UGL	UN32	RDX	1.170	LT	
	13M/7	RDWA*20	CCM	08-oct-1991	19.0	UGL	U <b>⊫</b> 32	TETRYL	2.490	LT	
	13MJ7 13MJ7	RDWA*20 RDWA*20	COM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$\$10	AL BA	141.000 53.100		-
	13MJ7	RDWA*20	CCM	08-oct-1991	19.0	UGL	SS10	SE	5.000	ĻT	
	13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	SS10	CA	31400.000		
_	13MJ7. 13MJ7	RDWA*20 RDWA*20	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	\$\$10	Φ.	4.010	LT	
	13MW7	RDWA*20	CGL	08-oct-1991	19.0	UGL	SS10 SS10	CC CR	25.000 6.020	LT LT	
	13MW7	RDWA*20	CGR	08-oct-1991	19.0	UGL	SS10	<u>a</u>	8.090	ĹŤ	
	13MW7	RDWA*20	CSW	08-oct-1991	19.0	UGL	\$\$10	FÉ	214.000		
	13MW7 13MW7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	SS10 SS10	K MG	1440.000 10100.000		
	13MW7	RDWA*20	CGW	08-oct-1991	19.0	UGL	\$\$10 \$\$10	MN	202,000		
	13MW7	RDWA*20	CGM	08-oct-1991	19.0	UGL	SS10	XA	2560.000		
	13MJ7 13MJ7	RDUA*20	CGA	08-oct-1991	19.0	UGL	SS10	NI	34.300	LT	
	13MJ7	RDWA*20 RDWA*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$\$10	SB V	38.000 11.000	LT LT	
	13MV7	RDWA*20	CGM	08-oct-1991	19.0	UGL	SS10	ZX	102.000		
	13MV7	RDWAU*19	CGM	08-oct-1991	19.0	UGL	SD22	AS	2.540	LT	
	13MJ7 13MJ7	RDWAU*19	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	\$023 \$801	AG.	0.250	LT	
	13MJ7	RDWAU*19	CCM	08-oct-1991	19.0	UGL	SD09	KG TL	0.243 6.990	LT LT	
	13MJ7	RDWAU*19	CGW	08-oct-1991	19.0	UGL	SD21	SE	3.020	LT	
	13MW7 13MW7	RDWAU*19	CGM	08-oct-1991	19.0	UGL	SD20	PS.	42.400		
	13MW7	RDWAU*19	CCM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	SS10 SS10	AL BA	7090.000 203.000		
	13MW7	RDWAU*19	CGW	08-oct-1991	19.0	UGL	SS10	BÉ	5.000	ĻŢ	
	13MW7	RDWAU*19	CGW	08-oct-1991	19.0	UGL	SS10	CA	96400.000		
	13MW7 13MW7	RDWAU*19	CCFI	08-oct-1991 08-oct-1991	19.0 19.0	UGL	SS10	<u>α</u>	4.010	LT	
	13MW7	ROWAU*19	CCM	08-oct-1991	19.0	UGL	SS10 SS10	CX	25.000 16.300	LT	
	13MU7	RDWAU*19	CGM	08-oct-1991	19.0	UGL	\$\$10	CU CU	13.200		
	13MV7	RDWAU*19	CGM	08-oct-1991	19.0	UGL.	9510	FE	14200-000		
	13Mu7 13Mu7	RDWAU=19	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	\$\$10 \$\$10	K Mg	5070.000 37200.000		
	13MU7	RDWAU*19	CGM	08-oct-1991	19.0	UGL	SS10	XX	1080.000		
	13MU7	RDWAU*19	CCM	08-oct-1991	19.0	UGL	SS10	NA	6240.000		
	13MV7 13MV7	RDWAU*19 RDWAU*19	CGM	08-oct-1991	19.0	UGL	SS10	NI	34.300	LT	
	13MJ7	RDWAU*19	CCM	08-oct-1991 08-oct-1991	19.8 19.0	UGL	SS10 SS10	SB V	38.000 27.200	LT	
	13MW7	RDWAU*19	CGW	08-oct-1991	19.0	UGL	\$\$10	ZN	170,000		
	13MW7	RDWAU*20	CGW	08-oct-1991	19.0	UGL	\$022	<b>AS</b>	2.540	LT	
	13MW7 13MW7	RDMAU*20 RDMAU*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL	SD23 SB01	AĞ	0.250	LT	
	13MW7	RDWAU*20	CGW	08-oct-1991	19.0	UGL	S009	HG TL	0.243 6.990	LT LT	
	13MW7	RDWAU*20	CGW	08-oct-1991	19.0	UGL	SD21	SE	3.020	LT	
	13MW7	ROWAU*20	CCM	08-oct-1991	19.0	UGL	SD20	PB	32.500		
	13MV7 13MV7	RDWAU*20 RDWAU*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	\$\$10 \$\$10	AL R4	5600.000 192.000		
	13MW7	RDWAU*20	CGM	08-oct-1991	19.0	UGL	\$\$10 \$\$10	BA Be	5.000	LT	
	13MV7	RDWAU*20	CGW	08-oct-1991	19.0	UGL	\$\$10	ä	96400.000		
	13MV7	RDWAU*20	COV	08-oct-1991	19.0	UGL	SS10	CD	4.010	LT	
	13Mu7 13Mu7	RDWAU*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	SS10 SS10	CC CR	25.000 17.400	LT	
				JO - WG E - 177 I	17.0		3310	un.	13.600		

Site ID	Field 1D	<u> Medía</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flog</u>	Internal Std. Code
13MV7	RDWAU*20	CGM	08-oct-1991	19.0	UGL	SS10	a	10.500		
13MW7	RDWAU*20	CCH	08-oct-1991	19.0	UGL	S\$10	FE	11600.000		
13HW7	RDWAU*20	CGM	08-oct-1991	19.0	UGL	\$\$10	K	4480.000		
13M47	ROWAU*20	CGW	08-oct-1991	19.0	UGL	SS10	MG	35800.000		
13MJ7 13MJ7	RDWAU*20 RDWAU*20	CGW	08-oct-1991 08-oct-1991	19.0 19.0	UGL UGL	SS10 SS10	MN NA	957.000 6190.000		
13MJ7	RDWAU*20	CGM	08-oct-1991	19.0	UGL	SS10	NI	34.300	LT	
13MJ7	ROWAU*20	CCM	08-oct-1991	19.0	UGL	SS10	SB	38.000	ĻŤ	
13MW7 13MW7	RDHAU*20 RDHAU*20	CGM	08-oct-1991 08-oct-1991	19.0 19.0	UGL	SS10	Λ.	25.800		
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGL	\$\$10 J801	ZN HG	141.000 0.050	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN19	111TCE	0.004	ĻŤ	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	112TCE	0.005	ĻŢ	
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ŲGĞ UGĞ	LM19 LM19	11DCE 11DCLE	0.004 0.002	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	12DCE	0.003	ĹŤ	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN19	12DCLE	0.002	LT	
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	12DCLP 2CLEVE	0.003 0.010	LT ND	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN19	ACET	0.017	LT	R
13881	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	ACROLM	0.100	ND	R
13581	RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LN19	ACRYLO	0.100	ND	R
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991	0.5	UGG UGG	LM19 LM19	BRDCLM C13DCP	0.003 0.003	LT LT	
13581	RFIS*1	cso	20-aug-1991	0.5	UGG	LH19	C2AVE	0.003	ĻŤ	
- 13ss1	RFIS*1	CZO	20-aug-1991	0.5	UGG	LH19-	C2H3CL	0.006	LT	
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LM19 LM19	C2H5CL C6H6	0.012 0.002	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN19	CCL3F	0.006	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	CCL4	0.007	LT	
138B1 138B1	RFIS#1 RFIS#1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	CH2CL2	0.012 0.006	LT	
13561	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN19	CH3BR CH3CL	0.009	LT LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	CHBR3	0.007	ĹŤ	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN19	CHCL3	0.001	ĻŢ	_
13SB1 13SB1	RFIS#1 RFIS#1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LH19 LH19	CL2BZ CLC6H5	0.100 0.001	ND LT	R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	CS2	0.004	ĻŢ	
13581	RFIS*1	C20	20-aug-1991	0.5	UGG	LN19	DBRCLM	0.003	LT	
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LH19	ETCAH5 MECAH5	0.002 0.001	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	UH19	WEK	0.070	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH19	MISK	0.027	LT	
13881 13881	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LM19 LM19	HNBK STYR	0.032	LT	
13\$B1	RFIS*1	CSO	20-aug-1991	0.5		LN19	T13DCP	0.003 0.003	LT LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LK19	TCLEA	0.002	ŁT	
13SB1	RFIS*1	CSC	20-aug-1991	0.5	UGG	LK19	TCLEE	0.001	LT	
13\$B <b>1</b> 13 <b>\$</b> B1	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LN19 LN19	TRCLE XYLEN	0.003 0.002	LT LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	124TCB	0.040	LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	120CLB	0.110	LT	_
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	UK18 UK18	12DPH 13DCLB	0.140 0.130	MD LT	R
13SB1	RFIS*1	CSO	20-aug-1991	Q.5	UGG	UK18	14DCLB	0.098	ĹΤ	
13981	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	245TCP	0.100	LT	
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	ln18 Ln18	246TCP 24DCLP	0.170 0.180	LŤ	
13581 13581	RFIS*1	CSO	20-aug-1991	0.5	ŲGG	LN18	24DCLP 24DMPN	0.180	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	24DNP	1.200	LT	
13\$81	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	24DNT	0.140	LT	
13581 13581	RFIS*1 RFIS*1	CZO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	L#18 L#18	26DNT 2CLP	0.085 0.060	LT LT	
13\$81	RFIS*1	CSO	20-eug-1991	0.5		LX18	2CHAP	0.036	ĹŤ	
13SB1	RF15*1	CSO	20-aug-1991	0.5	UGG	LM18	2MNAP	0.049	LT	
13\$81 13\$81	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LM18	2NP 2NANTI	0.029 0.062	LT LT	
13881	RFIS*1	CSO	20-aug-1991	0.5	ugg ugg	LM18 LM18	2NAN I L 2NP	0.140	LT	
13881	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	330 CB0	6.300	LŤ	
13981	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	3HANTE	0.450	LT	
135B1 135B1	RFIS#1 RFIS#1	C2O C2O	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LH18 LH18	46DN2C 4BRPPE	0.550 0.033	LT LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	4CANIL	0.810	LT	
13581	RFIS#1	CSC	20-aug-1991	0.5	UGG	LH18	4CL3C	0.095	LT	

Site_ID	Field ID	<u>Media</u>	Date	Depth	<u> Units</u>	Analytical <u>Method</u>	Analyte _Abbrv.	Value	Flag	Internal Std. Code
12001	051004	000	20							
13SB1 13SB1	RFIS*1 RFIS*1	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	4CLPPE 4MP	0.033 0.240	LT LT	
13SB1	RF1S*1	CSO	20-aug-1991	0.5	UGG	LN18	4MANIL	0.410	LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	4NP	1.400	LT	
13SB1	RF15*1	CSO	20-aug-1991	0.5	UGG	LH18	2K8A	0.270	ND	R
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	ACLDAN	0.330	ЖD	R
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LN18	AENSLF	0.620	ЖD	R
135B1	RFIS*1	CSO	20-aug-1991	0.5	ugg	LM18 LM18	ALDRN ANAPNE	0.330 0.036	ND LT	R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	UK18	ANAPYL	0.033	LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	ANTRO	0.033	LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	B2CEXM	0.059	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	B2CIPE	0.200	ĻŢ	
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LM18	BZCLEE BZEHP	0.033 0.620	LT	
13881	RFIS*1	CSO	20-aug-1991	0.5	UGG	lm18 lm18	BAANTR	0.170	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	BAPYR	0.250	ĹŤ	
13 <b>5B1</b>	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	BBFANT	0.210	LT	
13581	RFIS#1	CZO	20-aug-1991	0.5	UGG	LN18	BBHC	0.270	KD	R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	BBZP	0.170	LT	_
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	BENSLF BENZID	0.420 0.850	HD HD	R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LX18	BENZOA	6.100	ND CM	R R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	BGHIPY	0.250	ίť	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	BKFANT	0.066	LT	
_13\$81	RFIS*1	CSO	20-aug-1991	0.5	UGG	⊔K18 <u>.</u>	BZALC	0.190	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	CHRY	0.120	LT	
13\$81 13\$81	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	CL68Z CL6CP	0.033 6.200	ĻŢ	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	UK18	CLOCP	0.150	LT LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	DBANA	0.210	LŦ	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	DBHC	0.270	ND	R
13SB1	RFIS#1	CSO	20-aug-1991	0.5	UGG	LN18	OBZFUR	0.035	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	DEP	0.240	LT	_
13581 13581	RFIS*1 RFIS*1	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	DLDRN DNP	0.310 0.170	ND I.T	R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	DNBP	0.061	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	DNOP	0,190	ĹĬ	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	ENDRN	0.450	ND	R
13581	RFIS*1	cso	20-aug-1991	0.5	UGG	LH18	ENDRNA	0.530	ND	R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	ENDRNK	0.530	ЖD	R
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	ESFSO4 FANT	0.620 0.068	MD LT	R
13SB1	RFIS*1	cso	20-aug-1991	0.5	UGG	LH18	FLRENE	0.033	LT	
13581	RF1S*1	CSO	20-aug-1991	0.5	UGG	LH18	GCLDAN	0.330	HD	R
13SB1	RFIS*1	CSO	20-aug-1991	0.5		LM18	HCBD	0.230	LT	
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	HPCL	0.130	ND	R
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	HPCLE	0.330	ND	R
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	ICDPYR ISOPHR	0.290 0.033	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LX18	LIN	0.270	KD	R
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	MEXCLR	0.330	ND	Ř
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	NAP	0.037	LŤ	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	MB	0.045	LT	
13581 13581	RFIS*1 RFIS*1	CSO CSO	20-aug-1991	0.5 0.5	UGG	LN18	HADMEA	0.140	KID	R
13581	RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5	UGG UGG	in18 in18	NNDNPA NNDPA	0.200 0.190	LT LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	PCB016	1,400	ND	R
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LH18	PCB221	1,400	MD	Ř
13SB1	RFIS*1	C20	20-aug-1991	0.5	UGG	LN18	PCB232	1.400	MD	Ř
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LK18	PCB242	1.400	MD	R
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991	0.5	UGG	LN18	PCB248 PCB254	2.000	KD	R
13581	RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	lm18 lm18	PC8254 PC8260	2.300 2.600	NO ND	R R
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	PCP	1.300	LT	K
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	PHANTR	0.033	LT	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	PHÉNOL	0.110	ĻŤ	
13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LK18	PPDDD	0.270	KD	R
135B1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LX18	PPODE	0.310	ND	R
13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LM18	PPDDT	0.310	МĎ	Ř
13581	RFIS*1	CSO	20-aug-1991	0.5	ugg ugg	LM18 LM18	PYR TXPHEN	0.033 2.600	LT ND	R
13\$81	RFIS*1	cso	20-aug-1991	0.5	UGG	LN18	UNX651	0.459	-	Š
13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LM18	UNK660	884.0		Š

	Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	Flag	Internal Std. Code
	13SB1	RFIS*1	cso	20-aug-1991	0.5	UGG	JD 19		4 200		
	13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	JD 15	as Se	1.200 0.250	LT	
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	JS16	AG	0.968	•	
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16	AL	14000.000		
	13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16	BA	228.000		
	13\$81	RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16	BE	3.020		
	13581 13581	RFIS*1 RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	CA .	2530.000		
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16 J\$16	<b>8</b>	0.700 14.100	ĻŢ	
	13581	RF15*1	CSC	20-aug-1991	0.5	UGG	J\$16	ČŘ.	28.400		
	13SB1	RFIS*1	CSO	20-sug-1991	0.5	UGG	JS16	ជា	12.700		
	13\$B1	RFIS*1	CZO	20-aug-1991	0.5	UGG	<b>J\$16</b>	FE	23400.000		
	13581	RFIS*1	czo	20-aug-1991	0.5	UGG	JS16	K	1460.000		
	13581 13581	RFIS*1 RFIS*1	C20	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	MG MN	4310.000 922.000		
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16	NA	302.000		
	13SB1	RF15*1	CSO	20-aug-1991	0.5	UGG	JS16	NI	19.000		
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16	PB	33.600		
	13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	1816 1816	SB	7.140	LT	
	13\$81 13\$B1	RFIS*1	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	JS16 JS16	TL	6.620 37.900	LT	
	13SB1	RFIS*1 RFIS*1	CSO	20-aug-1991	0.5	UGG	J\$16	V 2)(	129.000		
	13SB1	RFIS*1	cso	20-eug-1991	0.5	UGG	LW12	135TNB	0.488	LT	
	13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LW12	130NB	0.496	ĻŤ	
		RFIS#1	CSO	20-aug-1991	0.5	UGG	LW12	246TNT	0.456	LT	
-	13\$81 .	RFIS*1	CSO	20-aug-1991	0.5	UGG	LW12	240NT	0.424	ĻT	
	135B1 135B1	RFIS*1 RFIS*1	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LW12 LW12	26DNT	0.524 0.666	LŢ	
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LW12	HMX NB	2.410	LT LT	
	13SB1	RFIS*1	CSO	20-aug-1991	0.5	UGG	LU12	RDX	0.587	ĽŤ	
	13581	RFIS*1	CSO	20-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	JB01	HG	0.050	LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	111TCE	0.004	LT	
	135B1 135B1	RFIS*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LN19 LN19	112TCE 11DCE	0.005 0.004	LT LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	11DCLE	0.002	LT	
	13SB1	RFIS*2	cso	20-wug-1991	5.0	UGG	LM19	12DCE	0.003	LT	
	13\$81	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN19	12DCLE	0.002	LT	
	13SB1	RFIS*2	czo	20-aug-1991	5.0	UGG	LH19	12DCLP	0.003	LT	
	13581 13581	RF1\$*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN19	2CLEVE	0.010	МĐ	R
	13581	RFIS*2 RFIS*2	CSO	20-aug-1991	5.0	ugg ugg	LH19 LH19	ACET ACROLM	0.017 0.100	LT ND	R
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	ACRYLO	0.100	ND	Ř
	13581	RFIS*2	CSO	20-aug-1991	5.0	UCG	LH19	BRDCLM	0.303	LT	-
	13SB1	RFIS*2	C\$0	20-aug-1991	5.0	UCG	LH19	C13DCP	0.003	LŤ	
	13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM19	CZAVE	0.003	LT	
	13\$81 13\$81	RFIS*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LN19 LN19	C2H3CL C2H5CL	0.006 0.012	LT LT	
	13\$81	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CÓHÓ	0,002	LT	
	13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CCL3F	0.006	ĹŤ	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CCL4	0.007	LT	
	13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CH2CL2	0.012	LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CH38R	0.006	LT	
	13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN19 LN19	CH3CL CHBR3	0.009 0.007	LT LT	
	13581	RFIS*2	cso	20-aug-1991	5.0	UGG	LH19	CHCL3	0.001	ĻŢ	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CL2BZ	0.100	ND	R
	13SB1	RFIS*2	CSO	20-sug-1991	5.0	UGG	LH19	CLC6H5	0.001	LT	
	13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	CSZ	0.004	LT	
	135B1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN19	DBRCLM	0.003	LT	
	13881 13881	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LN19 LN19	ETC6H5 HEC6H5	0.002 0.001	LT LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH19	HEK	0.070	LT	
	13581	RF1S*2	CSO	20-aug-1991	5.0	UGG	LN19	HIBK	0.027	LT	
	13SB1	RF1S*2	CSO	20-aug-1991	5.0	UGG	LH19	NNBK	0.032	LŤ	
	13581	RF1S*2	CZO	20-aug-1991	5.0	UGG	LM19	STYR	0.003	LT	
	13\$81	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN19	T130CP	0.003	LŤ	
	13\$81 13\$81	RFIS*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	TCLEA TCLEE	0.002 0.001	LT LT	
	13SB1	RFIS*Z	CSO	20-aug-1991	5.0	UGG	LK19	TRCLE	0.003	LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM19	XYLEN	0.003	LŤ	
	13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	124TCB	0.040	LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	120CLB	0.110	LT	
	13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	12DPR	0.140	ND	R

Site 10	<u>Field ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry.	<u>Value</u>	Flee	Internal Std. Code
13581	RFIS*Z	CSO	20-aug-1991	5.0	UGG	LN18	130CLB	0,130	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	14DCLB	0.098	ίŤ	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	245TCP	0.100	LT	
13581	RFIS*2	CSC	20-aug-1991	5.0	UGG	LN18	246TCP	0,170	LT	
13881 13881	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	24DCLP	0.180	LŢ	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	24DMPN 24DMP	0.690 1.200	LT LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	24DHT	0.140	LT	
13\$B1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	26DNT	0.085	ĻŢ	
13SB1 13SB1	RFIS*2	CSO	20- aug- 1991	5.0	UGG	LH18	2CLP	0.060	LT	
13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18 LM18	2CHAP 2MHAP	0.036 0.049	LT LT	
13\$81	RF15*2	CSO	20-aug-1991	5.0	UGG	LH18	2)10	0.029	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	ŽHANTL.	0.062	LT	
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	2NP	0.140	LT	
13581 13581	RFIS*2 RFIS*2	CSO	20-sug-1991 20-sug-1991	5.0 5.0	UGG	LN18 LN18	33DCBD 3NANIL	6.300	LT	
13581	RFIS*Z	CSO	20-aug-1991	5.0	UGG	LN18	46DK2C	0.450 0.550	LT LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	4BRPPE	0.033	ĹŤ	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	4CANIL	0.810	LŤ	
13581 13581	RFIS*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18	4CL3C	0.095	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG UGG	LM18 LM18	4CLPPE	0.033 0.240	LT LT	•
13\$81	RFIS*2	ÇSO	20-aug-1991	5.0	UGG	LM18	4NAHIL	0.410	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	4NP	1.400	LT	
_13581 13581	RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0	UGG	LM18	ABHC	0.270	MD	R
13581	RFIS*2 RFIS*2	CSO	20-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	ACLDAN AENSLF	0.330 0.620	XD XD	R R
13581	RFIS*2	cso	20-aug-1991	5.0	UGG	LM18	ALDRN	0.330	100	Ř
13581	RFIS*2	CSO	20-sug-1991	5.0	UCG	LN18	AKAPNE	0.036	ŁŤ	-
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	ANAPYL	0.033	LT	
13581 13581	RF1S*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	ANTRC B2CEXM	0.033 0.059	LT LT	
13581	RF15*2	CSO	20-eug-1991	5.0	UGG	LM18	B2CIPE	0.200	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	BZCLEE	0.033	LŤ	
13SB1	RFIS*2	CSO	20-eug-1991	5.0	UGG	LH18	B2EHP	0.620	LT	
13\$81 13\$81	RFIS*2 RFIS*2	CSC	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LK18 LK18	BAANTR BAPYR	0.170 0.250	LT LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	BBFANT	0.210	LT	
135B1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	BBHC	0.270	ND	R
135B1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LX18	BBZP	0.170	LT	_
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18 LM18	BENSLF BENZID	0.620 0.850	KD KD	R R
13581	RFIS*2	CSO	20-eug-1991	5.0	UGG	LN18	BENZOA	6.100	NED	Ř
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	BGHIPY	0.250	LT	
13581	RFIS*2	ÇSO	20-aug-1991	5.0	UGG	LN18	BKFANT	0.066	LT	
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	BZALC	0.190 0.120	LT	
13581	RFIS*Z	CSO	20-aug-1991	5.0	UGG	LK16	CHRY CL6BZ	0.033	LT LT	
13881	RF15*2	CSC	20-aug-1991	5.0	UGG	LH18	CL6CP	6.200	LT	
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	CL6ET	0.150	LT	
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LH18 LH18	DBAKA	0.210 0.270	LT.	
13581	RFIS*Z	CSC	20-aug-1991	5.0	UGG	LK18	DBHC DBZFUR	0.270	XD LT	R
13581	RFIS*2	cso	20-aug-1991	5.0	UGG	LM18	DEP	0.240	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UÇG	LN18	DLDRN	0.310	MD	R
13581 13581	RFIS*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN18	DMP	0.170	ŁT	
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18 LN18	DNSP DNOP	0.061 0.190	LT LT	
13\$81	RFIS*2	cso	20-aug-1991	5.0	UGG	LM18	ENDRN	0.450	XD.	R
13581	RFIS*Z	CSC	20-aug-1991	5.0	UGG	LM18	ENDRNA	0.530	MD	R
13581 13581	RFIS*2	CSO	20-eug-1991	5.0	UGG	LM18	ENDRNK	0.530	<b>XD</b>	R
13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN18 LN18	ESFSO4 FANT	0.620 0.068	NO LT	R
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	FLRENE	0.033	LT	
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	GCLDAN	0.330	ND	R
13\$81	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	HCSD	0.230	LT	
13581 13581	RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18	HPCL F	0.130	HD HD	R
135B1	RFIS*2 RFIS*2	CSO	20-aug-1991	5.0	ugg ugg	LM18 LM18	HPCLE ICOPYR	0.330 0.290	ND LT	R
13581	RFIS*2	cso	20-aug-1991	5.0	UGG	LH18	ISOPHR	0.033	LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	LIN	0.270	ND	R
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	MEXCLR	0.330	HO	R
13581	RF1S*2	CSO	20-aug-1991	5.0	UGG	LH18	XAP	0.037	LT	

Site ID	Field ID	Hadia.	Data	<u>Depth</u>	<u>Units</u>	Analytical		Malasa	P1	Internal
311E 1D		HEQIO				Method_	Abbry.	<u>Value</u>	<u>Flag</u>	<u>Std. Code</u>
135B1	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LM18	NB NNOMEA	0.045	LT	_
13SB1 13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18 LM18	NNONPA	0.140 0.200	ND LT	R
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	NNDPA	0.190	ĹŤ	
13S81 13SB1	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18 LM18	PCB016 PCB221	1.400 1.400	ND	R
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LN18	PC8232	1,400	ND ND	R R
13581	RFIS*Z	cso	20-aug-1991	5.0	UGG	LH18	PCB242	1.400	ND	R
13\$81 13\$81	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	PCB248 PCB254	2.000 2.300	ND ND	Ř R
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	PC8260	2.600	ND	Ř
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LH18 LH18	PCP PHANTR	1.300	LT	
135B1	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	PHENOL	0.033 0.110	LT LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LH18	PPODD	0.270	ND	R
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	PPODE PPODT	0.310 0.310	ND ND	R R
13881	RFIS*2	CSO	20-aug-1991	5.0	UGG	LM18	PYR	0.033	ĹŤ	т,
13SB1	RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LH18	TXPHEN	2.600	NO	R
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991	5.0	UGG	JD19 JD15	AS SE	0.720 0.250	LT	
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	<b>312</b> L	AG	0.940		
13581 13581	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	1216 1216	AL BA	12000.000 195.000		
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	J\$16	BE	2,600		
_13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	JS16	CA	1970.000		
13581 13581	RFIS*2 RFIS*2	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	7219 7219	83	0,700 14,500	LT	
13\$81	RFIS*2	CSO	20-aug-1991	5.0	UGG	J\$16	æ	25.400		
13581	RFIS*2	CSO	20-eug-1991	5.0	UGG	JS16	a	12.400		
13\$ <b>81</b> 13\$81	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	412L 412L	FE K	22900.000 1300.000		
13SB1	RFIS*2	CSG	20-aug-1991	5.0	UGG	J\$16	MG	4330.000		
13981	RFIS*2	CSO	20-aug-1991	5.0	UGG	JS16	MN	795.000		
13\$81 13\$81	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	7219 7219	NA NI	302.000 17.200		
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	J\$16	PS.	16.800		
13581	RFIS*2	CSO	20-aug-1991	5.0 5.0	UGG	J\$16	SB	7.140	LT	
13SB1 13SB1	RF1S*2 RF1S*2	CSO CSO	20-aug-1991 20-aug-1991	5.0	UGG	412L 412L	TL V	6.620 36.700	LT	
13\$81	RFIS*2	ÇŞO	20-aug-1991	5.0	UGG	J\$16	ZN	95.800		
13\$81 13\$81	RFIS*2 RFIS*2	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LW12 LW12	135TNB 13DNB	0.488 0.496	LT LT	
13SB1	RF15*2	CSO	20-aug-1991	5.0	UGG	LW12	246TNT	0.456	LT	
13SB1	RFIS*2	CSO	20-aug-1991	5.0	UGG	1812	24DNT	0.424	LT	
13881 13881	RFIS*Z RFIS*Z	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	Z6DNT HNCX	0.524 0.666	LT LT	
13581	RFIS*2	CSO	20-aug-1991	5.0	UGG	LW12	MB	2.410	LT	
13\$81	RFIS*2	CSO	20-aug-1991	5.0	UGG	LW12	ROX	0.587	LT	
13581 13581	RFIS*2 RFIS*3	CSO	20-aug-1991 20-aug-1991	5.0 10.0	ugg ugg	LW12 JB01	TETRYL HG	0.731 0.050	LT LT	
13SB1	RF15*3	CSO	20-aug-1991	10.0	UGG	LN19	111TCE	0.004	LT	
135B1	RFIS*3 RFIS*3	C2O	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	112YCE 11DCE	0.005 0.004	LŢ	
13581 13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM19	11DCLE	0.002	LT LT	
13881	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN19	12DCE	0.003	LT	
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	LH19 LH19	12DCLE 12DCLP	0.002 0.003	LT LT	
13581	RFIS*3	cso	20-aug-1991	10.0	UGG	LM19	2CLEVE	0.010	ND	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM19	ACET	0.017	LT	
13581 13581	RFIS*3 RFIS*3	C2O	20-sug-1991 20-sug-1991	10.0 10.0	ugg ugg	LH19 LH19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
13SB1	RFIS*3	CSC	20-aug-1991	10.0	UGG	LX19	BRDCLM	0.903	LT	•
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN19	C13DCP	0.003	LT	
13581 13581	RFIS*3 RFIS*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	LM19 LM19	C2AVE C2H3CL	0.003 0.006	LT LT	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM19	C2H5CL	0.012	LT	
13581	RFIS*3	CZO	20-aug-1991	10.0	UGG	LM19	C6H6	0.002	LT	
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	LM19 LM19	CCL3F CCL4	0.006 0.007	LŤ LŤ	
13581	RF15*3	CSO	20-aug-1991	10.0	UGG	LM19	CHSCLS	0.012	LT	
13881	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	CH3BR	0.006	LT	
13881 13881	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	CH3CL CHBR3	0.009 0.007	LT LT	
1355 (	A1 19 3		FA 688 (12)	,,,,		₩n 17		0.007	<b>L</b> 1	

### IB	##-(- <b>#</b> 78		<b>B</b> -4-			Analytical				Internal	
Site ID	<u>Field ID</u>	<u>Megi a</u>	Date	Depth	<u>Units</u>	Method	Abbrv.	Value	<u>f(ag</u>	Std. Code	
13581	RF15*3	ÇŞO	20-aug-1991	10.0	UGG	LH19	CHCL3	0.001	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGĞ	LH19	CL2BZ	0.100	ND	R	,
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	CLC6H5	0.001	ĻŤ		
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG	LN19	CS2	0.004	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN19 LN19	DBRCLM ETC6N5	0.003 0.002	LT LT		
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	MEC6X5	0.001	LT		
13SB1	RF1S*3	CSO	20-aug-1991	10.0	UGG	LH19	MEK	0.070	LŦ		
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	MIBK	0.027	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	MNSK	0.032	LT		
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG	LH19	STYR	0.003	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG UGG	LM19 LM19	T13DCP TCLEA	0.003 0.002	LT LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	TCLEE	0.001	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH19	XYLEN	0.002	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LK18	124TCB	0.040	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	120CLB	0.110	LT	_	
138B1 138B1	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	LK18 LK18	120PH 130CLB	0.140	ND	R	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18	14DCLB	0.130 0.098	LT LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	245TCP	0.100	LT		
13881	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	246TCP	0.170	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	24DCLP	0.150	LT		
13\$B1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	24DMPN	0.690	LT		
- 13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0	UGG	LN18,	24DNP	1.200	LT		
13881	RF15*3	CSO	20-aug-1991	10.0 10.0	UGG	1M18 1M18	24DNT 26DNT	0.140 0.085	LT LT		
13581	RFIS*3	ÇSO	20-aug-1991	10.0	UGG	UN18	2CLP	0.060	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	2CNAP	0.036	ĻŤ		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	2NNAP	0.049	LT		
13581	RFIS*3	CSO	20-eug-1991	10.0	UGG	LH18	2MP	0.029	LT		
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG	LH18	ZNANIL	0.062	LT		
13581	RFIS*3	C20	20-aug-1991	10.0	UGG UGG	LM18 LM18	ZNP 330CBD	0.140 6.300	LT LT		
13SB1	RFIS*3	CSC	20-aug-1991	10.0	UGG	LN18	3NAHIL	0.450	ίť		
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	46DN2C	0.550	ĹŤ		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18	48RPPE	0.033	LT		
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	4CANIL	0.810	LT		
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0	UGG	LH18	4CL3C	0.095	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0 10.0	UGG UGG	LM18 LK18	4CLPPE 4XP	0.033 0.240	LT LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	4NANIL	0.410	ĻŢ		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	4NP	1.400	ĹŤ		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	ABHC	0.270	ND	Ŕ	
13SB1	RFIS*3	CSO	20-aug-1991	10.0		LH18	ACLDAN	0.330	ND	R	
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG	LH18	AENSLF	0.620	ND:	R	
13581 13581	RF15*3	CSO	20-aug-1991	10.0	UGG	LN18 LN18	ALDRN ANAPNE	0.330 0.036	ND LT	Ř	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	ANAPYL	0.033	LT		
13SB1	RF1S*3	CSC	20-aug-1991	10.0	UGG	LN18	ANTRC	0.033	LT		
13581	RF1S*3	CSO	20-aug-1991	10.0	UGG	LH18	B2CEXM	0.059	LT		
13581	RFIS*3	CSC	20-aug-1991	10.0	UGG	LM18	BZCIPE	0.200	LT		
13\$81 13\$81	RF15*3 RFIS*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LH18	BZCLEE BZEHP	0.033	LT		
13881	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18 LN18	BAANTR	0.620 0.170	LT LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18	BAPYR	0.250	LT		
13581	RFIS*3	CZC	20-aug-1991	10.0	UGG	LM18	BBFANT	0.210	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	<b>BBHC</b>	0.270	ND	Ŕ	
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	BBZP	0.170	LT		
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	BENSLF	0.620	ND	R	
13SB1 13SB1	RFIS*3 RF1S*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg	LN18 LN18	BENZID BENZOA	0.850 6.100	ND ND	R	
13581	RF15-3	CSC	20-sug-1991	10.0	UGG	LHIS LHIS	BERZUA	0.250	ND LT	R	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	BKFANT	0.066	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	BZALC	0.190	ĹŤ		
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	CHRY	0.120	LŤ		
13581	RFIS*3	CSO	20-aug-1991		UGG	LH18	CL68Z	0.033	LT		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	CL6CP	6.200	LT		
13881 13881	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LM18	CLÓET DBAHA	0.150	LT		
13581	RF15*3	CSO	20-aug-1991	10.0	UGG	LM18 LM18	DBHC	0.210 0.270	LT ND	R	
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	DBZFUR	0.035	LT	~	
13581	RFIS*3	ÇSQ	20-aug-1991	10.0	UGG	LH18	DEP	0.240	LT		

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value .	Flag	Internal Std. Code
13581	RFIS#3	cso	20-aug-1991	10.0	UGG	LN18	DLDRN	0.310	ND	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	DMP	0.170	ĹŤ	ĸ
13SB1	RFIS*3	ÇSO	20-aug-1991	10.0	UGG	LH18	DNBP	0.061	ĻT	
13SB1	RF1S*3	CSO	20-aug-1991	10.0	UGG	LX18	DNOP	0.190	LT	_
13\$81 13\$81	RFIS*3 RFIS*3	C2O C2O	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	LN18 LN18	ENDRN ENDRNA	0.450 0.530	ND ND	R R
13SB1	RFIS*3	CSO	20-aug-1991	10.0	NGC	LH18	ENDRNK	0.530	ND	Ř
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	ESFSO4	0.620	ND	R
13581 13581	RFIS*3 RFIS*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LX18 LX18	FANT FLRENE	0.068 0.033	LT LT	
13sB1	RFIS*3	cso	20-aug-1991	10.0	UGG	LN18	GCLDAN	0.330	ND	R
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	HCBD	0.230	LT	
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	l#18 l#18	HPCLE HPCLE	0.130	ND:	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	1CDPYR	0.330 0.290	MD LT	R
13sB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18	1SOPHR	0.033	ĹŤ	
13SB1	RFIS*3	CSO	20-sug-1991	10.0	UGG	LN18	LIN	0.270	ND	R
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	MEXCLR NAP	0.330 0.037	ND LT	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	NB	0.045	LT	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	NNDMEA	0.140	ND	R
135B1 135B1	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	NNONPA NNOPA	0.200 0.190	LT LT	
13SB1	RFIS*3	ÇSO	20-aug-1991	10.0	UGG	LM18	PCB016	1.400	KD	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	PC8221	1.400	KD	R
- 13\$81 13\$81	RFIS*3 RFIS*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LM18	PCB232 PCB242	1.400	ND:	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18 LN18	PCB248	1.400 2.000	ND ND	R R
13581	RF1S*3	CSO	20-aug-1991	10.0	UGG	LN18	PCB254	2.300	NED	Ř
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LH18	PCB260	2.600	NO	R
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	PCP PHANTR	1.300 0.033	LT LT	
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	LN18	PHENOL	0.110	LT	
13\$81	RFIS*3	CSC	20-aug-1991	10.0	UGG	LH18	PPODD	0.270	KD	R
13581 13581	RFIS*3 RFIS*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	PPODE PPODT	0.310	NO.	R
13SB1	RF15*3	CSO	20-aug-1991	10.0	UGG	LM18	PYR	0.310 0.033	MD LT	R
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LM18	TXPHEN	2.600	KD	R
13SB1	RFIS*3	CSO	20-aug-1991	10.0	UGG	JD19	AS	1.100		
135 <b>81</b> 135 <b>81</b>	RFIS*3 RFIS*3	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	JD15 JS16	SE Ag	0.250 1.210	LT	
13281	RFIS*3	CSO	20-aug-1991	10.0	UGG	JS16	AL	19100.000		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	JS16	84	246.000		
13581 13581	RFIS*3 RFIS*3	C20	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	J\$16 J\$16	BE CA	3.770 2700.000		
13SB1	RF1\$*3	CSO	20-aug-1991	10.0		JS16	8	0.700	LT	
13981	RFIS*3	C20	20-aug-1991	10.0	UGG	J\$16	$\boldsymbol{\omega}$	18.600		
13\$81 13\$81	RFIS*3	C\$0	20-aug-1991 20-aug-1991	10.0 10.0	UGG	j\$16 j\$16	ᅉ	34.500 17.700		
13SB1	RFIS#3 RFIS#3	CSO	20-aug-1991	10.0	UGG	JS16	FE	30300.000		
13SB1	RF15*3	CSO	20-aug-1991	10.0	UGG	J <b>S</b> 16	K	1690.000		
13\$81 13681	RFIS*3	CSO	20-aug-1991	10.0		J\$16	MG	5470.000		
13\$B1 13\$B1	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	312L 312L	MM AX	939.000 305.000		
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	J\$16	IK	23.400		
13SB1	RF15*3	CSO	20-aug-1991	10.0	UGG	J\$16	PB	20.400		
13561 13581	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	SB TL	7.140 6.620	LT LT	
13581	RFIS*3	cso	20-aug-1991	10.0	UGG	JS16	Ÿ	51.300	• 1	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	JS16	ZM	108.000		
135B1 135B1	RFIS#3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	L¥12 L¥12	135TNB	0.488 0.496	LT LT	
13581 13581	RFIS*3 RFIS*3	CSO	20-aug-1991	10.0	UGG	LW12	130NB 246TNT	0.456	LT	
13881	RF1S*3	CSO	20-aug-1991	10.0	UGG	LW12	24DKT	0.424	LŤ	
13581	RFIS*3	CSO	20-sug-1991	10.0	UGG	LW12	26DNT	0.524	LT	
13881 13881	RFIS*3 RFIS*3	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg Ugg	LW12 LW12	HPCX NB	0.666 2.410	LT LT	
13SB1	RFIS*3	CSQ	20-aug-1991	10.0	UGG	LW12	ROX	0.587	LT	
13581	RFIS*3	CSO	20-aug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	
13582	RF15*19	CSO	26-aug-1991	0.5 0.5	UGG	JB01	HG 1357UD	0.050	LT	
13S82 13SB2	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5	UGG UGG	LW12 LW12	135TNB 130NB	0.488 0.496	LT LT	
135B2	RFIS-19	CSO	26-aug-1991	0.5	UGG	LW12	246TNT	0.456	ĹŤ	
13882	RFIS*19	CSO	26-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13582	RFIS*19	czo	26-aug-1991	0.5	UGG	LW12	260NT	0.524	LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LW12	HMX	0.666	ĹŤ	
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LW12	MB	2.410	LT	
13882	RFIS*19	CSO	26-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LW12 LW19	TETRYL 111TCE	0.731 0.004	LT LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH19	112TCE	0.005	LT	
13SB2	RF15*19	CSO	26-aug-1991	0.5	UGG	LX19	11DCE	0.004	ĹŤ	
13\$82	RFI5*19	ÇSO	26-aug-1991	0.5	UGG	LN19	11DCLE	0.002	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LN19	12DCE 12DCLE	0.003 0.002	LT	
13882	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM19 LM19	120CLP	0.003	LT LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH19	SCLEVE	0.010	ND	R
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19	ACET	0.017	LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19	ACROLN	0.100	ND	R
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM19 LM19	ACRYLO BROCLM	0.100 0.003	NID LT	R
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19	C13DCP	0.003	LT	
13582	RFIS*19	CZO	26-aug-1991	0.5	UGG	LN19	C2AVE	0.003	LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19	C2H3CL	0.006	LT	
135B2 135B2	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LH19 LH19	CZH5CL C6H6	0.012 0.002	LT LT	
13SB2	RFIS*19	cso	26-aug-1991	0.5	UGG	LM19	CCL3F	0.002	LT	
13\$B2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM19	CCL4	0.007	LT	
13\$82	RFIS*19	CSO	26-aug-1991	0.5	LIGG	LM19	CH2CL2	0_012	LT	
_13SB2 13SB2	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LN19. LN19	CH3BR CH3CL	0.006	LT LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19	CHBR3	0.007	LT	
13SB2	RF15*19	CSO	26-aug-1991	0.5	UGG	LH19	CHCL3	0.001	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH19	CL2BZ	0.100	ND	R
13582 13\$82	RFIS*19 RFIS*19	CSC	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN19	CLC6H5 CS2	0.001	LŢ	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19 LN19	DBRCLM	0.004 0.003	LT LT	
13582	RFIS*19	CSC	26-aug-1991	0.5	UGG	LH19	ETC6H5	0.002	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH19	MEC6H5	0.001	LT	
13582 13582	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	MEK MIBK	0.070 0.027	LT	
13882	RF15-19	CSO	26-aug-1991	0.5	UGG	UN19	WIRK	0.032	LT	
13582	RF15*19	CSO	26-aug-1991	0.5	UGG	LH19	STYR	0.003	LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH19	T130CP	0.003	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	TCLEA TCLEE	0.002 0.001	LT LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH19	TCLTFE	0.008	F-1	s
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN19	TRCLE	0.003	LT	•
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM19	XYLEN	0.002	LT	
13\$82 13\$82	RFIS*19 RFIS*19	CSO CSO	26-eug-1991 26-eug-1991	0.5 0.5	ugg Ugg	JD19 JD15	AS SE	1.900 0.250	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	UN18	124TCB	0.040	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LX18	12DCLB	0.110	LT	
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	120PH	0.140	ND	R
13582 13582	RFIS*19 RFIS*19	CSO CSO	26-eug-1991 26-eug-1991	0.5 0.5	UGG	LX18	13DCLB	0.130 0.098	LT	
13\$82	RFIS*19	CSO	26-eug-1991	0.5	UGG UGG	LN18 LN18	14DCLB 245TCP	0.100	LT LT	
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	246TCP	0.170	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN18	24DCLP	0.180	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	24DMPM	0.690	ĻŢ	
13\$82 13\$82	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	24DNP 24DNT	1.200 0.140	LŤ LT	
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN18	26DNT	0.085	ĻŤ	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	2CLP	0.060	LT	
13582	RF15*19	CSO	26-aug-1991	0.5	UGG	LN18	2CHAP	0.036	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	ZHHAP ZHP	0.049 0.029	LT LT	
13582	RFIS*19	CZO	26-aug-1991	0.5	UGG	LH18	2KANIL	0.062	ĻT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	2NP	0.140	LT	
13\$BZ	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	330CB0	6.300	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	3NANIL 46DN2C	0.450 0.550	LT LT	
13582	RF15*19	CSO	26-aug-1991	0.5	UGG	LM18	48RPPE	0.033	LT	
13582	RFIS*19	ÇSO	26-aug-1991	0.5	UCG	LH18	4CANIL	0.810	ĻŤ	
13\$82	RFIS*19	cso	26-aug-1991	0.5	UGG	LH18	4CL3C	0.095	LT	
13882 13882	RFI5*19	CSO	26-aug-1991	0.5	UGG	LM18	4CLPPE	0.033	LT	
13582	RFIS*19 RFIS*19	CSC	26-aug-1991 26-aug-1991	0.5 0.5	ugg	LX18 LX18	4MP 4NANTL	0.240 0.410	LT LT	
	15			7.7			1100 100 0 0	44418		

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13882	RFIS*19	CSO	Z6-aug-1991	0.5	UGG	LM18	4NP	1,400	LŤ	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	ABHÇ	0.270	ND	R
13582	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18	ACLDAN	0.330	ND	R
13582 13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18 LM18	AENSLF ALDRN	0.620 0.330	ND ND	R R
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN18	ANAPHE	0.036	LT	^
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	ANAPYL	0.033	LT	
13\$82 13\$82	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	ANTRC 82CEXM	0.033 0.059	LT LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	B2CIPE	0.200	LT	
13882	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	82CLEE	0.033	LT	
13882 13882	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	BZEKP BAANTR	0.620 0.170	LT LT	
13SB2	RF15*19	CSO	26-aug-1991	0.5	UGG	LM18	BAPYR	0.250	LT	
13\$82	RF15*19	CSO	26-aug-1991	0.5	UGG	LN18	BBFANT	0.210	LT	
13SB2 13SB2	RFIS*19 RFIS*19	CZO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	BBHC BBZP	0.270 0.170	ND Lt	Ř
13582	RFIS*19	ÇSO	26-aug-1991	0.5	UGG	LN18	BENSLF	0.620	ND	R
13\$82	RFIS*19	cso	26-aug-1991	0.5	UGG	LN18	BENZID	0.850	ND	R
13582 13582	RFIS*19 RFIS*19	CSO	26-sug-1991 26-sug-1991	0.5 0.5	UGG UGG	LN18 LN18	BENZCA BGHIPY	6.100 0.250	ND LT	R
13\$82	RF1\$*19	CSO	26-aug-1991	0.5	UGG	LM18	BKFANT	0.066	LT	
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	BZALC	0.190	ĹT	
13SB2 13SB2	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	CHRY	0.120 0.033	LT	
13\$B2	RF15*19	CSO	26-aug-1991	0.5	UGG	LM18	CL6BZ CL6CP	6.200	LT LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	CL6ET	0.150	LT	
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN18	DBAHA	0.210	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DBHC DBZFUR	0.270 0.035	ND LT	R
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	DEP	0.240	LT	
13SB2	RF1S*19	CSO	26-aug-1991	0.5	UGG	LH18	DLDRN	0.310	NO	R
13\$82 13\$82	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	DMP DMBP	0.170 0.061	LT LT	
13582	RF15*19	CSO	26-aug-1991	0.5	UGG	LM18	DNOP	0.190	LT	
13SB2	RF15*19	CSO	26-aug-1991	0.5	UGG	LM18	ENDRN	0.450	ND:	R
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R R
13\$82	RFIS*19	cso	26-aug-1991	0.5	UGG	LN18	ESFS04	0.620	KD	Ř
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	FANT	0.068	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	lm18 lm18	FLRENE GCLDAN	0.033 0.330	LT ND	R
13882	RF15*19	CSO	26-aug-1991	0.5	UGG	U418	HCBD	0.230	LT	N.
13582	RFIS*19	CSO	26-sug-1991	0.5	UGG	LH18	HPCL	0.130	ND	R
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	HPCLE ICDPYR	0.330 0.290	HD LT	R
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LK18	ISOPHR	0.033	ĹŤ	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LK18	LIN	0.270	ND	R
13582 13582	RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	MEXCLR NAP	0.330 0.037	ND LT	R
13882	RFIS*19	ÇSO	26-aug-1991	0.5	UGG	LM18	BN	0.045	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	NNDMEA	0.140	ND	R
13582 13 <b>5</b> 82	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	NNONPA NNOPA	0.200 0.190	LT LT	
13\$82	RFIS*19	cso	26-aug-1991	0.5	UGG	LM18	PC8016	1.400	ND.	R
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	PC8221	1.400	ND	R
13582 13582	RFIS*19 RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM18 LM18	PC8232 PC8242	1.400 1.400	NO NO	R R
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	PCB248	2.000	ND	Ř
13\$82	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	PCB254	2.300	ND	R
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	PCB260 PCP	2.600 1.300	ND LT	R
13582 13582	RF15*19	CSC	26-aug-1991	0.5	UGG	LM18	PHANTR	0.033	LT	
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LN18	PHENOL	0.110	ĻŤ	_
13\$82 13\$82	RFIS*19	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	NGC	LN18 LN18	PPDDO PPDDE	0.270	ND:	R
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	PPODE PPODT	0.310 0.310	ND ND	R R
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	PYR	0.033	LT	**
13SB2	RFIS*19	CSO	26-sug-1991	0.5	UGG	LH18	TXPHEN	2.600	MO	R
13SB2 13SB2	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	UNK635 UNK647	0.460 0.345		S S
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	UNK649	3.450		Š
13\$82	RF15*19	CSO	26-aug-1991	0.5	UGG	LM18	UNK652	2.300		S
13882	RFIS*19	CSO	26-aug-1991	0.5	UGG	LM18	unk658	2.300		\$

Site ID	stald in	Madia	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	El	Internal
									<u>Flag</u>	Std. Code
13882 13882	RFIS*19 RFIS*19	CSO	26-eug-1991 26-aug-1991	0.5 0.5	UGG	1318 1318	UNK660 UNK662	2.300 0.345		\$ \$
13582	RFIS*19	CSG	26-aug-1991	0.5	UGG	LM18	UNK669	2.300		Š
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	LH18	UNK672	2,300		S
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	unk675 unk684	0.460 0.690		\$ \$
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	JS16	AG	0.860		a
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	J\$16	AL	12900.000		
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	612L 612L	8A BE	185.000 2.010		
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	JS16	CA CA	Z850.000		
13882	RFIS*19	CSO	26-aug-1991	0.5	UGG	J\$16	œ	0.700	LT	
13582 13582	RFIS*19 RFIS*19	CSC	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	CC CCR	11.900 25.900		
13SB2	RFIS*19	cso	26-aug-1991	0.5	UGG	J\$16	ದ	15.400		
13SB2	RFIS*19	CSO	26-aug-1991	0.5	UGG	JS16	fE	23000.000		
138BZ 138BZ	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	1216 1216	K MG	1880.000 4030.000		
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	JS16	MN	897.000		
13582 13582	RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	J\$16	NA UT	268.000		
13582	RFIS*19 RFIS*19	CSO CSO	26-aug-1991	0.5	ugg Ugg	J\$16 J\$16	NI PB	15.900 98.600		
13582	RFIS*19	CSO	26-aug-1991	0.5	UGG	J\$16	SB	7.140	LT	
13582 13582	RFIS*19 RFIS*19	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	J\$16 J\$16	TL V	6.620 34.200	LT	
_ 13\$82	RFIS*19	cso	26-aug-1991	0.5	UGG	J\$16.	ZN	297.000		
13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	1B01	HG	0.050	LT	
13882 13882	RFIS#4 RFIS#4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LN18 LN18	1247C8 120CL8	0.040 0.110	LT LT	
13SB2	RFIS#4	CSO	26-aug-1991	0.5	UGG	LM18	120PH	0.140	ND	Ŕ
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	13DCLS	0.130	LT	
13\$82 13\$82	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	14DCLB 245TCP	0.098 0.100	LT LT	
13582	RF15*4	CSO	26-aug-1991	0.5	UGG	LH18	246TCP	0_170	ĹŤ	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	24DCLP	0.180	LT	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18 LH18	240MPN 240MP	0.690 1.200	LT LT	
13\$B2	RFIS#4	CSO	26-aug-1991	0.5	UGG	LN18	24DNT	0.140	ĹŤ	
13882 13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	26DNT	0.085	LŢ	
13\$82	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	2CLP 2CKAP	0.060 0.036	LT LT	
13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	2MKAP	0.049	LT	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN18 U118	2MP 2NANIL	0.029 0.062	LT LT	
13582	RFIS=4	CSO	26-aug-1991	0.5	UGG	LH18	2NP	0.140	LT	
13982	RF1S*4	CSO	26-aug-1991	0.5		LM18	330 CBD	6.300	LT	
13\$82 13\$82	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	VGG UGG	13118 13118	3NANIL 46DN2C	0.450 0.550	LT LT	
13882	RFIS=4	CZO	26-aug-1991	0.5	UGG	LH18	48RPPE	0.033	ĹŤ	
13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	4CANIL	0.810	LT	
13582 13582	RFIS*4 RFIS*4	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18 LH18	4CL3C 4CLPPE	0.0 <b>5</b> 5	LT LT	
13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	4MP	0.240	LT	
13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	4NANIL	0.410	LT	
13982 13982	RFIS*4 RFIS*4	C20	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18 LH18	ANP ABHC	1.400 0.270	LT ND	R
13982	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	ACLDAN	0.330	KD	Ř
13582 13582	RFIS=4	CSO	26-aug-1991	0.5	UGG	UH18	AENSLF	0.620	ND	R
13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18 LH18	ALDRN ANAPNE	0.330 0.036	ND LT	R
13882	RFIS#4	CSO	26-aug-1991	0.5	UGG	LN18	AKAPYL	0.033	LT	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	ANTRO	0.033	LT	
13582	RF15=4 RF15*4	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18 LH18	82CEXM 82CIPE	0.059 0.200	LT LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	BSCLEE	0.033	ĻŢ	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18	82EHP	0.620 0.170	LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18 LN18	SAANTR SAPYR	0.170	LT LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	<b>BBFANT</b>	0.210	L?	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	BBXC POZD	0.270	ND	R
13\$82	RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	BBZP BEXSLF	0.170 0.620	LT NØ	R
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	BENZID	0.850	MD	R
13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	BENZOA	6.100	KD	R

Site ID	<u>Field ID</u>	<u>Media</u>	Date _	Depth	<u> Units</u>	Analytical Method	Analyte Abbry.	Value	FLag	Internal Std. Code
13582	RF15*4	CSO	26-aug-1991	0.5	UGG	LM18	BGHIPY	0.250	LT	
13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	BKFANT	0.066	LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LK18	BZALC	0. 190	LT	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LX18	CHRY	0.120	LŢ	
13582 13582	RFIS=4	CSO	26-aug-1991	0.5	UGG	LM18 LM18	CL6GZ CL6CP	0.033 6.200	LT LT	
13\$82	RFIS#4	CSO	26-aug-1991	0.5	UGG	LM18	CLÓET	0.150	LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	DBAHA	0.210	LT	
13582	RFIS=4	CSO	26-aug-1991	0.5	UGG	LM18	D8HC	0.270	ND	R
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	DBZFUR DEP	0.035 0.240	LT LT	
13SB2	RFIS*4	CSO	26-sug-1991	0.5	UGG	LH18	DLDRN	0.310	ND L:	R
13582	RFIS#4	CSO	26-aug-1991	0.5	UGG	LN18	DMP	0.170	LT	-
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	DNBP	0,061	LT	
13\$82 13\$82	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18	DNOP ENDRN	0.190	LT	_
13582 13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18 LM18	ENDRNA	0.450 0.530	ND ND	R R
13582	RFIS*4	cso	26-aug-1991	0.5	UGG	LM18	ENDRNK	0.530	ND	Ř
13582	RFIS*4	CSO	26-aug-1991	0.5	uga	LM18	ESFSO4	0.620	ND	R
13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	FANT	0.068	LT	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	FLRENE GCLDAN	0.033 0.330	LT ND	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	HCBD	0.230	ĻŢ	R
13582	RFIS#4	CSC	26-aug-1991	0.5	UGG	LH18	HPCL	0.130	КD	R
13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	HPCLE	0.330	KD	R
13582	RFIS#4	CSO	26-aug-1991	0.5 0.5	UGG	LM18-	ICDPYR	0.290	Lī	
13\$82 13\$82	RFIS*4 RFIS*4	CZO	26-aug-1991 26-aug-1991	0.5	ugg Ugg	LN18 LN18	ISOPHR LIM	0.033 0.270	L,T MD	R
13SB2	RFIS#4	CSO	26-aug-1991	0.5	UGG	LH18	MEXCLR	0.330	ND	Ê
13SB2	RFIS*4	CSO	26-eug-1991	0.5	UGG	LN18	KAP	0.037	LT	•
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	NB	0.045	LT	
13 <b>582</b> 13 <b>582</b>	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg	LN18	NNDMEA NNDMPA	0.140	MD	R
13582 13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18 LM18	HADALA	0.200 0.190	LT LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	PCB016	1.400	ND	R
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	PC8221	1.400	MD	R
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	PC8232	1.400	ЖD	R
13\$82 13\$82	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	PCB242 PCB248	1.400 2.000	ND ND	R R
13582	RF15*4	cso	26-aug-1991	0.5	UGG	LN18	PCB254	2.300	ND OK	Ŕ
13582	RFIS#4	CSO	26-aug-1991	0.5	UGG	LN18	PCB260	2.600	ND	Ř
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH18	PCP	1.300	LT	
13582 13582	RFIS#4 RFIS#4	C20	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	lm18 lm18	PHANTR PHENOL	0.033 0.110	LT LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LM18	PPDDD	0.270	ND	R
13582	RF15*4	CSO	26-aug-1991	0.5	UGG	LM18	PPODE	0.310	ND	Ř
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18	PPODT	0.310	MD	R
13SB2 13SB2	RFIS*4 RFIS*4	CZO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18	PYR TXPHEN	0.033 2.600	LT	•
135B2 135B2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN18 LW12	135THB	0.488	F1.	R
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LU12	13DNB	0.496	LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LW12	246TNT	0.456	LT	
13S82	RF1S*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LW1Z	24DNT 26DNT	0.424 0.524	LT	
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991	0.5	UGG UGG	LW12 LW12	HMX	0.566	LT LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LW12	NB	2.410	LŤ	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LW12	RDX	0.587	LŤ	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13582 13582	RFIS=4 RFIS=4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH19 LH19	111TCE 112TCE	0.004	LT LT	
13\$82	RF15*4	CSO	26-aug-1991	0.5	UGG	LN19	110CE	0.004	LT	
13582	RFIS*4	cso	26-aug-1991	0.5	UGG	LX19	11DCLE	0.002	LT	
13\$82	RFIS*4	ÇZO	26-aug-1991	0.5	UGG	LH19	12DCE	0.003	LT	
13SB2	RFIS#4	CSO	26-aug-1991	0.5 0.5	UGG	LN19	120CLE	0.002	LT 17	
13882 13882	RF1S*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5	ugg ugg	LN19 LN19	12DCLP 2CLEVE	0.003	LT MD	R
138B2	RFIS*4	ÇSO	26-aug-1991	0.5	UGG	LN19	ACET	0.017	LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN19	ACROLN	0.100	ND	R
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH19	ACRYLO	0.100	KD	R
13\$B2	RFIS#4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN19	BRDCLM C13DCP	0.003 0.003	LT LT	
13582 13582	RF15*4 RF15*4	CSO	26-aug-1991	0.5	UGG	LM19 LM19	CZAVE	0.003	LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN19	CZK3CL	0.006	ĹŦ	
13sB2	RFIS#4	CSO	26-aug-1991	0.5	UGG	LH19	C2H5CL	0.012	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal <u>\$td. Code</u>
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH19	C6H6	0.000		
13sB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH19	CCL3F	0.002 0.006	LT LT	
13\$82	RF15*4	CSO	26-eug-1991	0.5	UGG	LH19	CCL4	0.007	ŁT	
13582	RF15*4	CSO	26-aug-1991	0.5	UGG	LH19	CH2CL2	0.012	LT	
13SB2 13SB2	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM19 LM19	CH3BR CH3CL	0.006 0.009	LT LT	
13SB2	RFIS#4	CSO	26-aug-1991	0.5	UGG	LH19	CHBR3	0.007	LT	
13582	RFIS=4	CSO	26-aug-1991	0.5	UGG	LH19	CHCL3	0.001	LT	
13\$B2	RFIS*4	CSO	26-aug-1991	0.5	UGG	UI19	CL2BZ	0.100	ЖD	R
13882 13882	RF1S*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	CLC6H5 CS2	0.001 0.004	LT LT	
13582	RFIS*4	CSO	26-sug-1991	0.5	UGG	LN19	DBRCUM	0.003	LT	
13\$82	RFIS*4	CSQ	26-aug-1991	0.5	UGG	LM19	ETC6H5	0.002	LT	
13882 13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	LN19	MEC6H5	0.001	LT	
13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM19 LM19	MEK MIBK	0.070 0.027	LT LT	
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH19	MNBK	0.032	LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	LH19	STYR	0.003	ĻT	
138B2 138B2	RFIS*4 RFIS*4	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LN19 LN19	T13DCP TCLEA	0.003 0.002	LT LT	
13582	RF1S*4	CSO	26-aug-1991	0.5	UGG	LN19	TCLEE	0.001	LT	
13SB2	RF15*4	CSO	26-aug-1991	0.5	UGG	LH19	TCLTFE	0.007		\$
13\$B2 13\$B2	RFIS*4	CSO	26-aug-1991	0.5	UGG	UN19	TRCLE	0.003	LT	
13582 13582	RFIS#4 RFIS#4	CZO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM19 JD19	XYLEN AS	0.002 1.400	ĻT	
13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	JD15	SE	0.250	LT	
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	J\$16	AG	0,704		
13582 13582	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	J\$16	AL	12500.000		
13SB2	RFIS#4	CZO	26-aug-1991	0.5	UGG UGG	J\$16 J\$16	BA BE	177.000 1.750		
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	JS16	CA	2730.000		
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	JS16	œ	1.150		
13SB2 13SB2	RFIS*4 RFIS*4	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	7219 7219	CDC CDC	11.600 25.900		
13882	RFIS*4	CSO	26-aug-1991	0.5	UGG	JS16	cn Cx	11,300		
13582	RFIS*4	CSO	26-aug-1991	0.5	UGG	J\$16	FE	20300.000		
13582 13\$82	RFIS*4	CSO	26-aug-1991	0.5	UGG	JS16	K	1670.000		
13\$B2 13\$B2	RFIS*4 RFIS*4	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	MG MN	3900.000 749.000		
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	JS16	KA	297.000		
13SB2	RFIS*4	CSO	26-aug-1991	0.5	UGG	JS16	KI	15.900		
13582 13582	RFIS*4 RFIS*4	czo	26-aug-1991 26-aug-1991	0.5 0.5	UGG	721 <del>0</del> 7210	PB SB	65.700 7.140	LT	
13SB2	RFIS*4	cso	26-aug-1991	0.5	UGG	JS16	TL.	6.620	LT	
13SB2	RFIS#4	CSO	26-aug-1991	0.5	UGG	JS16	V	32.300		
13582 13582	RFIS*4 RFIS*5	CSO	26-eug-1991	0.5	UGG	JS16	ZN	223.000		
13882 13882	RF15*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	JB01 LM18	HG 124TCB	0.050 0.040	LT LT	
13SB2	RFIS*5	CZO	26-eug-1991	5.0	UGG	LH18	120CL8	0.110	ĹŤ	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	12DPH	0.140	ND	R
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18	130CLB	0.130	LŦ	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	UH18 UH18	14DCLB 245TCP	0.098 0.100	LT LT	
13882	RF1S*5	CSO	26-aug-1991	5.0	UGG	LM18	246TCP	0.170	ĹŤ	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	24DCLP	0.180	LT	
13\$82 13\$82	RFIS*5 RF1S*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	24DMPN 24DNP	0.690 1.200	LT LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	24DNT	0.140	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	26DNT	0.085	LT	
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991	5.0	UGG	LX18	2CLP	0.060	LT	
13SB2	RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	2CHAP 2MHAP	0.036 0.049	LT LT	
13882	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	249	0.029	ĻŢ	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	2NANIL	0.062	LT	
13582 13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	2NP	0.140	LT	
135B2	RFIS*5 RFIS*5	CSO	26-eug-1991 26-eug-1991	5.0 5.0	UGG	LM18 LM18	33DCBD 3NANIL	6.300 0.450	LT LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	46DN2C	0.550	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	48RPPE	0.033	LT	
135B2 13\$B2	RFIS*5 RFIS*5	CSO	26-aug-1991	5.0	UGG	LX18	4CANIL	0.810	LT	
13582	RFIS*5	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LX18 LX18	4CL3C 4CLPPE	0.095 0.033	LT LT	
13\$82	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	4HP	0.240	LT	
13882	RFIS*5	CZQ	26-aug-1991	5.0	UGG	UI18	4MANIL	0.410	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13582	RFIS*5	CSC	26-aug-1991	5.0	UGG	LM18	4NP	1.400	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	ABHC	0.270	NO	R
13582	RF1S*S	CSO	26-aug-1991	5.0	UGG	LM18	ACLDAN	0.330	NO.	R
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	AENSLF	0.620	ND	R
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LN18	ALDRN	0.330	ND	R
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18 LM18	ANAPNE ANAPYL	0.036 0.033	LT LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	ANTRO	0.033	LT	
13\$82	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	B2CEXH	0.059	LT	
13882	RF15*5	C\$O	26-aug-1991	5.0	UGG	LH18	BZCIPE	0.200	LŤ	
13882	RF1\$*5	CSO	26-aug-1991	5.0	UGG	LM18	82CLEE	0.033	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	BZEHP	0.620	LT	
13SB2 13SB2	RFIS*5 RFIS*5	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18	BAANTR	0.170	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18 LH18	BAPYR BBFANT	0.250 0.210	LT LT	
135B2	RF15*5	CSO	26-aug-1991	5.0	UGG	L#18	SBHC	0.270	MD C1	R
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	BBZP	0.170	ίŤ	•
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	BENSLF	0.620	ND	R
13882	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	BENZID	0.850	MD	R
13sB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	BENZOA	6.100	MD	R
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN18	BCHIPY	0.250	LT	•
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18 LN18	BKFANT BZALC	0.066 0.190	LT LT	
13582	RFIS*5	cso	26-aug-1991	5.0	UGG	LH18	CHRY	0.120	LT	
13582	RF15*5	CSO	26-eug-1991	5.0	UGG	LH18	CL68Z	0.033	LT	
13882	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	CL6CP	6.200	LT	
13SB2	RF1S*5	CSO	26-aug-1991	5.0	UGG	LM18	CL6ET	0.150	LT	
13582	RF15*5	CZO	26-aug-1991	5.0	UGG	LM18	DBAHA	0.210	LT	
13882 13882	RFIS*5 RFIS*5	CSO	26-aug-1991	5.0 5.0	UGG	U118	DBHC	0.270	ND	R
135B2	RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0	ugg ugg	LM18 LM18	DB2 FUR DEP	0.035 0.240	LT LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	DLDRN	0.310	MD	2
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	DHP	0.170	Ĺ?	•
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	DNBP	0.061	ĹŤ	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	DNOP	0.190	LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	ENDRN	0.450	ND	R
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991	5.0 5.0	UGG	LN18	ENDRNA	0.530	ND	Ř
13SB2	RF15*5	CSO	26-aug-1991 26-aug-1991	5.0	ugg ugg	LM18 LM18	ENDRNK ESFSO4	0.530 0.620	ND ND	R R
13582	RFIS*5	520	26-aug-1991	5.0	UGG	LM18	FANT	0.068	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	FLRENE	0.033	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	U118	GCLDAN	0.330	NO	R
13\$B2	RF1S*5	CSO	26-aug-1991	5.0	UGG	LH18	HCBD	0.230	ĻŢ	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LK18	HPCL.	0.130	陋	R
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	HPCLE ICDPYR	0.330 0.290	ND LT	R
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	ISOPHR	0.033	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	LIN	0.270	ND	R
13882	RFIS#5	CSO	26-aug-1991	5.0	UGG	LH18	MEXCLR	0.330	ND	R
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	XAP ·	0.037	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	NB	0.045	LT	
13SB2 13SB2	RF15*5	CSO	26-aug-1991 26-aug-1991	5.0	UGG	LH18	KNOMEA	0.140	NO	R
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991	5.0 5.0	ugg Ugg	LN18 LN18	NNDKPA KNOPA	0.200 0.190	LT LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	PC8016	1.400	ND	R
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	PCB221	1,400	ND	Ř
13582	RFIS*5	CSO	26-sug-1991	5.0	UGG	LM18	PCB232	1.400	ND	R
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	PCB242	1,400	ND	R
13582	RF1S*5	CSO	26-aug-1991	5.0	UGG	LM18	PCB248	2.000	ND	Ŗ
13582	RFIS*S	CSO	26-aug-1991	5.0	UGG	LX18	PC8254	2.300	ND	R
13SB2 13SB2	RF1S*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	1.1118 1.1118	PCB260 PCP	2,600 1,300	MD LT	R
13582 13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	PHANTR	0.033	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	PHENOL	0.110	LŤ	
13882	RF1S*5	CSO	26-aug-1991	5.0	UGG	LH18	PPDDD	0.270	ND	R
13\$82	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	PPODE	0.310	MD	R
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN18	PPODT	0.310	MD	R
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH18	PYR	0.033	LT	_
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM18	TXPHEN	2.600	ЖD	R
13\$B2 13\$B2	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	135TNB 13DNB	0.488 0.496	LT LT	
13582 13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LW12	246TNT	0.456	LT	
135B2	RFIS*5	cso	26-aug-1991	5.0	UGG	LW12	24DNT	0.424	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LW12	26DNT	0.524	LT	
	-	_	-					··		

Site ID	<u> Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13582	RF1S*5	CSO	26-eug-1991	5.0	UGG	<b>L</b> ≌12	HMX	0.666	LŤ	
13882	RFIS*5	CSO	26-aug-1991	5.0	LIGG	LW12	XB	2.410	LT	
13582	RFIS#5	CSO	26-aug-1991	5.0	UGG	LW12	RDX	0.587	LT	
13582 13582	RFIS*5 RFIS*5	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LW12 LW19	TETRYL	0.731	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	UN19	111TCE 112TCE	0.004 0.005	LT LT	
13582	RF15*5	CSO	26-aug-1991	5.0	UGG	LN19	TIDCE	0.004	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	11DCLE	0.002	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	12DCE	0.003	LT	
13SB2	RF1S*5	CSO	26-aug-1991	5.0	UGG	LM19	12DCLE	0.002	ĻT	
135B2 13 <b>5</b> B2	RFIS*S	CSO	26-aug-1991	5.0	UGG	LN19	12DCLP	0.003	LT	_
13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LH19 LH19	2CLEVE ACET	0.010 0.017	ND LT	R
13582	RFIS*5	CSO	26-aug-1991	5.0	UGĞ	UN19	ACROLM	0.100	MD Fr:	R
13\$82	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	ACRYLO	0.100	ND	Ř
13SB2	RFIS*5	CSO	26-aug-1991	5.0	ugg	LN19	BRDCLM	0.003	LŤ	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LM19	C13DCP	0.003	LT	
13582 13582	RFIS*S	CSO	26-aug-1991	5.0	UGG	LH19	CZAVE	0.003	LT	
13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LH19 LH19	C2H3CL C2H5CL	0.006 0.012	LT LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN19	CóHó	0.002	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	CCL3F	0.006		
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN19	CCL4	0.007	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	CH2CL2	0.012	LT	
13\$B2 13\$B2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	CH3BR	0.006	LT	
13\$82	RFIS*S RFIS*S	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LN19" LN19	CH3CL CHBR3	0.009 0.007	LT LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	CHCL3	0.007	LT	
13582	RF1S+5	CSO	26-aug-1991	5.0	UGG	LH19	CL2BZ	0.100	ND	R
13SB2	RF1S*5	CSO	26-aug-1991	5.0	UGG	LH19	CLC6R5	0.001	LT	•
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LH19	CS2	0,004	LT	
13582	RFIS*5	CZO	26-aug-1991	5.0	UGG	LH19	DBRCLM	0.003	LT	
13\$82 13\$82	RFIS*5 RFIS*5	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH19 LH19	ETC6H5 MEC6H5	0.002 0.001	LT LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LX19	WEX	0.070	LT	
13582	RFIS*5	CSC	26-aug-1991	5.0	UGG	LN19	MIBK	0.027	ĹŦ	
13582	RFIS*5	C\$O	26-aug-1991	5.0	ŲGĞ	LH19	MNBK	0.032	LT	
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN19	STYR	0.003	LT	
13582	RFIS*5	CSO	26-aug-1991	5.0	UGG	LN19	T130CP	0.003	LT	
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT LT	
13582	RFIS*5	cso	26-aug-1991	5.0	UGG	LX19	TCLTFE	0.007		S
13582	RFIS*5	CSC	26-aug-1991	5.0	UGG	LH19	TRCLE	0.003	LT	•
13SB2	RFIS*5	CSC	26-aug-1991	5.0	UGG	LX19	XYLEN	0.002	LT	
13\$82	RFIS*5	C2O	26-aug-1991	5.0	UGG	JD19	AS	0.966		
13\$82	RFIS*5	CSO	26-aug-1991	5.0	UGG	J015	SE	0.250	LT	
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	JS16 JS16	AG AL	0.825 11400.000		
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	JS16	BA	125.000		
13SB2	RF15*5	CSO	26-aug-1991	5.0	UGG	J\$16	BE	1.680		
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	JS16	CA	2040.000		
13\$82	RFIS*5	CSO	26-aug-1991	5.D	UGG	JS16	CD	0.700	LT	
13582 13582	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0	UGG	JS16	8	11.200		
13582	RFIS*5	C2O	26-aug-1991	5.0 5.0	ugg Ugg	J\$16 J\$16	CR CU	22.600 8.170		
13SB2	RF1S*5	cso	26-aug-1991	5.0	UGG	JS16	FE	17900.000		
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	JS16	ĸ	1210,000		
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	1816	NG	3630.000		
13\$82	RFIS*5	CSO	26-aug-1991	5.0	UGG	J\$16	MN	517.000		
13\$82	RF15*5	CZO	26-aug-1991	5.0	UGG	J\$16	HA	290.000		
13\$82 13\$82	RFIS*5 RFIS*5	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	J\$16	MI	14.300		
13582	RF15*5	CSO	26-aug-1991	5.0	UGG	J\$16 J\$16	P8 S8	10.500 7.140	LT LT	
13582	RF15*5	cso	26-sug-1991	5.0	UGG	312L	30 TL	6.620	LT	
13882	RFIS*5	CSO	26-aug-1991	5.0	UGG	J\$16	v	31.000		
13SB2	RFIS*5	CSO	26-aug-1991	5.0	UGG	JS16	ZN	70.100		
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	JB01	HG	0.050	LT	
13\$B2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	124TCB	0.040	LT	
13582 13582	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LM18	120CL8	0.110	LT	_
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18 LH18	12DPH 13DCLB	0.140 0.130	ND LT	R
13582	RFIS*6	cso	26-aug-1991	10.0	UGG	LM18	14DCLB	0.098	LT	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	245TCP	0.100	ĹŤ	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	246TCP	0.170	LT	

	eies IN	etalat th	Marii -	Data .	Conth	11-1	Analytical		Mat.		Internal
	Site ID	Field to	FEGIS	Date	Depth	<u>Units</u>	<u>Method</u>	Abbry.	<u>Value</u>	Flag	Std. Code
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	24DCLP	0.180	LT	
	13882	RFIS*6	C20	26-aug-1991	10.0	UGG	LM18	24DHPN	0.690	ĹŤ	
	13SB2	RFIS=6	CSO	26-aug-1991	10.0	UGG	LM18	24DNP	1.200	LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UCG	LM18	24DNT	0.140	LŤ	
	13582 13582	RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	26DNT	0.085	LT	
	135B2 135B2	RFIS*6 RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	2CLP 2CNAP	0.060 0.036	LT LT	
	13582	RF15*6	CSO	26-aug-1991	10.0	UGG	LM18	ZMNAP	0.049	LT	
	13582	RFIST6	CSO	26-aug-1991	10.0	UGG	LN18	2MP	0.029	LT	
	13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	2NANIL	0.062	LT	
	13SB2	RFIS*6	C20	26-aug-1991	10.0	UGG	LM18	2NP	0.140	LT	
	135B2 135B2	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	33DCBD 3NANIL	6.300 0.450	LT LT	
	13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	UM18	46DN2C	0.550	LT	
	13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	48RPPE	0.033	ĹŤ	
	13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LK18	4CAN1L	0.810	LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	4CL3C	0.095	LT	
	13\$82 13\$82	RFIS*6 RFIS*6	C20	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	4CLPPE 4MP	0.033	LT	
	13582	RFIS*6	CSO	26-eug-1991	10.0	UGG	LM18	4NANIL	0.240 0.410	LT LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	4NP	1.400	ĹŤ	
	13882	RFIS*6	CSO	26-eug-1991	10.0	UGG	LM18	ABHC	0.270	ND	R
	13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	ACLDAN	0.330	ND:	R
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	AENSL F	0.620	ND	R
_	13\$82 - 13\$82	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LN18 LN18	ALDRN ANAPNÉ	0.330 0.036	MD LT	R
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	ANAPYL	0.033	LT	
	13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	ANTRO	0.033	LT	
	13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	B2CEXM	0.059	LT	
	13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	UN18	82CIPE	0.200	ĻT	
	13882 13882	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LM18 LM18	82CLEE 82EHP	0.033 0.620	LT LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN18	BAANTR	0.170	LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	BAPYR	0.250	ĹŤ	
	13982	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	B8FANT	0.210	LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN18	BBHC	0.270	ND	R
	13\$82 13\$82	RFIS*6 RFIS*6	CSC	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LM18 LM18	BBZP BENSLF	0.170 0.620	LT ND	_
	13582	RF15*6	CSO	26-aug-1991	10.0	UGG	LM18	BENZID	0.850	NO	R R
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	BENZOA	6.100	ND	Ř
	13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	BGHIPY	0.250	LT	
	13SB2	RFIS*6	CSO	26-eug-1991	10.0	UGG	LH18	<b>BKFANT</b>	0.066	LT	
	13882 13882	RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LH18	BZALC	0.190	LŢ	
	13582	RFIS*6 RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18 LM18	CHRY CL68Z	0.120 0.033	LT LT	
	13582	RF15*6	CSO	26-aug-1991	10.0		LM18	CLSCP	6.200	ĹŤ	
	13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	CL6ET	0.150	LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	DBAHA	0.210	LT	
	13\$62 13\$62	RFIS*6 RFIS*6	C20	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LM18 LM18	DANC	0.270	ИĎ	Ř
	135B2 13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG UGG	LM18	DBZFUR DEP	0.035 0.240	LT LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	DLDRN	0.310	MO	R
	13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	DKP	0.170	LT	•
	13SB2	RF1S*6	CSO	26-aug-1991	10.0	UGG	LH18	DNBP	0.061	LT	
	13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	DNOP	0.190	LT	_
	13582 13582	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ENDRN ENDRNA	0.450 0.530	ND:	R R
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN18	ENDRNK	0.530	ND	R
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	ESF\$04	0.620	ND	Ř
	13982	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	FART	0.068	LŤ	
	13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	LK18	FLRENE	0.033	LT	_
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	GCLDAN	0.330	ND	R
	138 <b>82</b> 13882	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	HCSD HPCL	0.230 0.130	LT ND	R
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	KPCLE	0.330	ND	Ř
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN18	ICOPYR	0.290	ĻŤ	
	13582	RFIS#6	CSO	26-aug-1991	10.0	UGG	LH18	ISOPHR	0.033	LT	
	13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN18	LIN	0.270	ЖD	R
	13582 13582	RF15*6 RF15*6	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	MEXCLR	0.330 0.037	NO 1 T	R
	13582	RF15*6	CSO	26-aug-1991 26-aug-1991	10.0	UGG	LM18	NAP NB	0.045	LT LT	
	13582	RFIS*6	CSO	26-eug-1991	10.0	UGG	LM18	NNDMEA	0.140	ND	R
	13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	NNDNPA	0.200	LT	
	13582	RFIS*6	CSO	26-eug-1991	10.0	UGG	LN18	NNDPA	0.190	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte _Abbrv.	<u>Value</u>	Flag	Internal Std. Code
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	PCB016	1.400	ND	R
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH18	PCB221	1.400	ND	R
13582 13582	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0	UGG	LH18	PCB232	1.400	ND	R
13582	RFIS*6	CSO	26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	PCB242 PCB248	1.400 2.000	ND ND	R
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	PCB254	2.300	NO	R R
13SB2	RFIST6	CSO	26-aug-1991	10.0	UGG	LN18	PCB260	2.600	ND	Ř
13582	RFIS*6	CSO	26-aug-1991	10.0	UGE	LM18	PCP	1.300	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	PHANTR	0.033	LT	
13582 13582	RFIS*6 RFIS*6	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LH18 LH18	PHENOL PPOOD	0.110 0.270	LT	
13582	RFIS*6	CSC	26-aug-1991	10.0	UGG	LM18	PPDDE	0.310	NO ND	R R
13582	RF15*6	CSO	26-aug-1991	10.0	ŲGG	LM18	PPDDT	0.310	ND	Ř
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	PYR	0.033	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LM18	TXPHEN	2.600	KD	R
13882 13882	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LW12 LW12	1351mb 130mb	0.488 0.496	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LW12	246TNT	0.456	LT LT	
13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LW12	26DNT	0.524	LT	
13882 13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LW12	HWX	0.666	LT	
13582	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LW12 LW12	NB RDX	2.410 0.587	LT LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	
_13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	1,419	111TCE	0.005		
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	112TCE	0.005	LT	
13582 13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	11DCE	0.004	LT	
13582 13582	RFIS*6 RFIS*6	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	ln19 ln19	11DCLE 12DCE	0.002 0.003	LT LT	
13sB2	RF15*6	CSO	26-aug-1991	10.0	UGG	LH19	12DCLE	0.002	LT	
13\$BZ	RF1S*6	CSO	26-aug-1991	10.0	UGG	LK19	12DCLP	0.003	ŁŤ	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	SCLEVE	0.010	ND	R
13882 13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	ACET	0.017	LT	_
13 <b>582</b>	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LH19 LH19	ACROLN ACRYLO	0.100 0.100	MD MD	R R
13\$82	RF15*6	CSO	26-aug-1991	10.0	UGG	LH19	BROCLM	0.003	LT	K
13SB2	RF15*6	CSO	26-aug-1991	10.0	UGG	1119	C13DCP	0.003	LŤ	
13\$B2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	C2AVE	0.003	ĻT	
13SB2	RF1S*6	CSO	26-aug-1991	10.0	UGG	LN19	C2H3CL	0.006	LT	
13SB2 13SB2	RF1S*6 RF1S*6	CSO	26-aug-1991 26-aug-1991	10.0 10.6	UGG UGG	LH19 LH19	CZH5CL C6H6	0.012 0.002	LT LT	
13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	LK19	CCL3F	0.002	LT	
13582	RFIS*6	C2O	26-aug-1991	10.0	UGG	LK19	CCL4	0.007	ĻT	
13\$82	RFIS*6	CSO	26-eug-1991	10.0	UGG	LM19	CH2CL2	0.012	LT	
13\$82 13\$82	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LK19	CH3BR	0.006 0.009	ĻŢ	
13582	RFIS*6	CSO	26-sug-1991	10.0	UGG	LM19 LM19	CH3CL CHBR3	0.007	LT LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	CHCL3	0.001	ĹŤ	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	CL28Z	0.100	NO	R
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	CLC6H5	0.001	LT	
13582 13582	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	CS2	0.004 0.003	LT LT	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	D8RCLN ETC6H5	0.002	ĻŤ	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	MEC6H5	0.001	ĹŤ	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	MEK	0.070	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LN19	MIBK	0.027	LT	
13SB2 13\$82	RFIS*6 RFIS*6	C2O C2O	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LN19 LN19	MNBK	0.032 0.003	LT	
13582	RFIS*6	cso	26-aug-1991	10.0	UGG	LM19	STYR T13DCP	0.003	LT LT	
13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	TCLEA	0.002	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	TCLEE	0.001	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	LH19	TCLTFE	0.006		S
13\$82 13\$82	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LH19 LH19	TRCLE	0.003 0.002	LT LT	
13582	RF15*6	CSO	26-aug-1991	10.0	UGG	JD19	XYLEN AS	1.260	F1	
13582	RFIS=6	CSO	26-aug-1991	10.0	UGG	JD15	SE	0.250	LT	
13SB2	RF15*6	CSO	26-aug-1991	10.0	UGG	JS16	AG	1.050	_•	
13SB2	RFIS*6	CSO	26-aug-1991	10.0	UGG	JS16	AL	16600.000		
13\$62 13\$82	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0	UGG	3516 452L	BA	151.000		
13SB2	RF15-6	CSO	26-aug-1991	10.0 10.0	UGG UGG	7219 7219	BE CA	1,810 2150,000		
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	J\$16	8	0.700	LT	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	J\$16	CO	16.500		
13882	RFIS*6	CSO	26-aug-1991	10.0	UGG	<b>312L</b>	CR	29.700		

Site ID	<u>Field ID</u>	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
47007	22244		26-aug-1991	40.0	Lina	1000		** ***		
13SB2 13SB2	RFIS*6 RFIS*6	CSO CSO	26-aug-1991	10.0 10.0	UGG	1216 1216	CU FE	12.400 25000.000		
13\$82	RFIS*6	CSO	26-aug-1991	10.0	UGG	J\$16	K	1580,000		
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	JS16	MG	4840.000		
13 <b>582</b> 13582	RFIS*6 RFIS*6	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	J\$16 J\$16	MN NA	692.000 289.000		
13SB2	RFIS*6	cso	26-aug-1991	10.0	UGG	312L	NI	19.300		
13\$82	RFIS*6	CSO	26-aug-1991	10.8	UGG	J\$16	PS .	17.800		
13\$82 13\$82	RFIS*6 RFIS*6	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	1216 1216	SS TL	7.140 6.620	LT LT	
13882	RF15*6	cso	26-aug-1991	10.0	UGG	JS16	٧	43,200	E1	
13582	RFIS*6	CSO	26-aug-1991	10.0	UGG	J\$16	ZN	86.900		
13\$83 13\$83	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	JB01 L#18	NG 124TCB	0.050 0.200	LT LT	
13583	RFIS*7	cso	26-aug-1991	0.5	UGG	LH18	12DCLB	0.550	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	120PH	0.500	ND	R
13883 138 <b>83</b>	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM18 LM18	130CLB 140CLB	0.650 0.490	LT LT	
13\$83	RFIS*7	ÇSO	26-aug-1991	0.5	UGG	LHIS	245TCP	0.500	LŤ	
13SB3	RF1\$*7	CSO	26-aug-1991	0.5	UGG	LH18	246TCP	0.850	LT	
13SB3 13SB3	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	24DCLP 24DMPN	0.900 3.450	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH18	24DNP	6.000	ĹŤ	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH18	24DNT	0.700	LT	
13583 13583	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	26DNT 2CLP	0.425 0.300	LT	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	2CNAP	0.180	LT	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN18	ZMNAP	0.245	LT	
13\$83 13\$83	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LH18 LH18	2NP 2NANTE	0.145 0.310	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH18	2NP	0.700	ĹŤ	
13583	RFIS*7	CSO	26-eug-1991	0.5	UGG	LX18	33DCBD	31.500	LT	
13\$B3 13\$B3	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg	L#18 L#18	3NANIL 46DN2C	2.250 2.750	LT LT	
13583	RFIS*7	CSC	26-aug-1991	0.5	UGG	LH18	48RPPE	0. 165	LT	
13SB3	RFIS*7	CSO	26-eug-1991	0.5	UGG	LN18	4CAN1L	4.050	LT	
13\$83 13\$83	RFIS*7 RFIS*7	cso	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LN18 LN18	4CL3C 4CLPPE	0.475 0.165	LT LT	
13S83	RFIS*7	cso	26-aug-1991	0.5	UGG	LM18	4HP	1.200	LT	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN18	4NANIL	2.050	LT	
13883 13883	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	ANP ABHC	7.000 1.500	LT ND	R
13\$ <b>83</b>	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN18	ACLDAN	1.500	ND	R
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH18	AENSLF	3.000	ND ND	R
13583 13583	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	ALDRN ANAPNE	1.500 0.180	ND LT	R
13883	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	ANAPYL	0.165	LT	
13\$83	RFIS*7	CSO	26-nug-1991	0.5	UGG	LM18	ANTRO	0.165	LT	
13583 13 <b>583</b>	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM18 LM18	B2CEXM B2CIPE	0.295 1.000	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	B2CLEE	0.165	LT	
13SB3	RFIS*7	CSO	26-eug-1991	0.5	UGG	LN18	B2EHP	3.100	ĻŢ	
13883 13883	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	BAANTR BAPYR	0. <b>850</b> 1.250	LT LT	
13 <b>583</b>	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	SBFANT	1.050	LT	
13SB3	RF1S*7	CSO	26-aug-1991	0.5	UGG	LM18	BBHC	1.500	MD	R
13883 13883	RF15*7 RF15*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	882P Benslf	0.850 3.000	LT ND	R
13SB3	RFIS*7	cso	26-aug-1991	0.5	UGG	LM18	<b>SENZID</b>	4.500	ND	R
13\$83 13\$83	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	BENZOA	30.000	NO	R
13\$B3	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 8.5	ugg ugg	LM18 LM18	BGHIPY BKFANT	1.250 0.330	LT LT	
13\$83	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	BZALC	0.950	ĻŦ	
13583 13583	RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5	UGG	LM18	CHRY	0.600	LT	
13583 13583	RFIS*7 RFIS*7	CSO CSO	26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	CL6BZ CL6CP	0.165 31.000	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	CL6ET	0.750	ĻŤ	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	DBAHA	1.050	LT	_
13\$83 13\$83	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg	LM18 LM18	DBNC DBZFUR	1.500 0.175	ND LT	R
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	DEP	1.200	ĻŢ	
13SB3	RFIS*7	CSO	26-eug-1991	0.5	UGG	LM18	DLDRN	1.500	NO	R
13883 13883	RFIS*7 RFIS*7	CZO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DMP DNBP	0.850 0.305	LT LT	
	11 PA 1			3.3				0.303		

### <b>**</b>	er. 1 d 1 h					Analytical				Internal
<u>Site ID</u>	Field ID	<u> Media</u>	Date	Depth	<u>Units</u>	Method	Abbry,	Value	Flag	Std. Code
13983	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	DHOP	0.950	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LX18	ENDRM	2.500	MD	R
13883 13883	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18	ENDRNA	2.500	ND	R
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	l#18 l#18	ENDRNK ESFSO4	2.500 3.000	ND ND	R R
13883	RF1S*7	CSO	26-aug-1991	0.5	UGG	LH18	FANT	0.340	LT	*
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	<b>₩18</b>	FLRENE	0.165	ĻT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH18	GCLDAN	1,500	ND	R
1388 <b>3</b> 13883	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	HCBD HPCL	1.150	LT	_
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN18	HPCLE	0.500 1.500	NED NED	R R
13SB3	RF15*7	CSO	26-aug-1991	0.5	UGG	LX18	ICDPYR	1,450	LT	•
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LX18	ISOPHR	0.165	LT	
13\$83 13\$83	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18	LIN MEXCLR	1.500	ND	R
13883	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18 LM18	NAP	1.500 0.185	ND LT	R
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	NB	0.225	LT	
13SB3	RFIS*7	CZO	26-aug-1991	0.5	UGG	LH18	NNOMEA	0.500	ND	R
13883 13883	RFIS*7 RFIS*7	ÇSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LH18	NNONPA	1.000	LT	
13\$B3	RFIS*7	CSO	26-aug-1991	0.5	ugg	LX18 LX18	NNDPA PCB016	0.950 5.000	LT ND	· R
13883	RFIS*7	cso	26-aug-1991	0.5	UGG	UX18	PC8221	5.000	ND	R
13883	RFIS*7	CSO	26-aug-1991	0.5	UGG	LX18	PC8232	5.000	ND	R
13583 13583	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5	UGG	LX18	PC8242	5.000	ЖD	R
-13SB3	RFIS*7	CSC	26-aug-1991	0.5 0.5	UGG	LX18 LX18	PC8248 PC8254	10.000 10.000	ND ND	R R
13883	RFIS*7	ÇSO	26-aug-1991	0.5	UGG	LK18	PC8260	15,000	NO.	Ř
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	PCP	6.500	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM18	PHANTR	0.165	LT	
1388 <b>3</b> 13883	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18 LH18	PHENOL PPDDO	0.550 1.500	LT ND	R
13SB3	RFIS*7	CSC	26-aug-1991	0.5	UGG	LH18	PPDDE	1.500	MD.	R
13883	RFIS*7	CSO	26- eug- 1991	0.5	UGG	LX18	PPDDT	1.500	MD	R
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	UX18	PYR	0.165	LT	_
13883 13883	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	1,118 1,112	TXPHEN 135TNB	15.000 0.488	KD LT	R
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGĠ	L¥12	13DNB	0.496	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LW12	246TNT	0.456	LT	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	
13\$83 13\$83	RFIS*7 RFIS*7	CSO	26-sug-1991 26-sug-1991	0.5 0.5	ugg ugg	L¥12 L¥12	26DN T HMX	0.524 0.666	LT LT	
13583	RFIS*7	ÇŞO	26-aug-1991	0.5	UGG	LW12	NB	2.410	ίŤ	
13\$B3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13883 13883	RFIS*7 RFIS*7	CSO	26-aug-1991	0.5	UGG	L¥12	TETRYL	0.731	LT	
13583	RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM19 LM19	111TCE 112TCE	0.004 0.005	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN19	11DCE	0.004	LT	
13\$83	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH19	11DCLE	0.002	LT	
13983	RFIS*7 RFIS*7	ÇSO	26-aug-1991	0.5	UGG	LN19	12DCE	0.003	LT	
13583 13583	RFIS*7	C\$O	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LR19 LH19	120CLE 120CLP	0.002 0.003	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM19	2CLEVE	0.010	MD	R
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	UN19	ACET	0.017	LT	
13583 13583	RF1S*7 RF1S*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH19	ACROLN ACRYLO	0.100	KD	Ŕ
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN19 LN19	BROCLN	0.100 0.003	MD Lt	R
13SB3	RF15*7	CSO	26-sug-1991	0.5	UGG	LH19	C13DCP	0.003	LT	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN19	CZAVE	0.003	LT	
13883 13883	RFIS*7 RFIS*7	CSO	26-aug-1991	0.5	UGG	LN19	C2H3CL	0.006	LT	
13SB3	RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH19 LH19	C2H5CL C6H6	0.012 0.002	LT LT	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LX19	CCL3F	0.002	LT	
13SB3	RFIS*7	CSC	26-aug-1991	0.5	UGG	LN19	CCL4	0.007	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LK19	CH2CL2	0.012	LT	
13583 13583	RFIS*7 RFIS*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN19	CH3BR CH3CL	0.006	LT	
13583	RFIS*7	CZO	26-aug-1991	0.5	UGG	LM19 LM19	CHSCL CHBR3	0.009 0.007	LT LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH19	CHCL3	0.007	LT	
13283	RF1S*7	CSO	26-aug-1991	0.5	UGG	LH19	CL28Z	0.100	ND	R
13883 13883	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN19	CLC6H5	0.001	LT	
13\$83	RF1S*7 RF1S*7	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM19 LM19	CS2 DBRCLM	0.004 0.003	LT LT	
13583	RFIS*7	CSC	26-aug-1991	0.5	UGG	LN19	ETCSH5	0.003	ĻŢ	
13\$83	RFIS*7	CSO	26-aug-1991	0.5	UGG	LM19	NECSH5	0.001	ĻŤ	

Site ID	Field 10	<u>Media</u>	<u>Date</u>	Depth_	<u> Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13\$83	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH19	NEK	0.070	LT	
13883	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH19	MIBK	0.027	ĻŢ	
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	LN19	MNBK	0.032	LT	
13883 13883	RFIS*7 RFIS*7	C20	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	STYR T130CP	0.003 0.003	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LK19	TCLEA	0.002	LT LT	
13\$83	RF1S*7	CSO	26-eug-1991	0.5	UGG	LN19	TCLEE	0.001	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	LH19	TRCLE	0.003	LT	
13SB3	RFIS*7	CZO	26-aug-1991 26-aug-1991	0.5	UGG	LH19	XYLEN	0.002	LT	
13583 13583	RFIS*7 RFIS*7	CSO	26-aug-1991	0.5 0.5	ugg ugg	JD19 JD15	AS SE	3.080 0.250	LT	
13583	RFIS#7	C20	26-aug-1991	0.5	UGG	JS16	AG	0.971	٠.	
135B3	RFIS*7	C\$O	26-aug-1991	0.5	UGG	JS16	AL	14200.000		
13\$83 13\$83	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	JS16 JS16	SA	199.000		
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	JS16	BE CA	2.420 2240.000		
13583	RFIS*7	CSO	26-aug-1991	0.5	UGG	J\$16	8	0.958		
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	JS16	CO	13.900		
13883	RF15*7	CSO	26-aug-1991	0.5	UGG	J\$16	CR	24.000		
13583 13583	RFIS*7 RFIS*7	C\$O C\$O	26-sug-1991 26-sug-1991	0.5 0.5	UGG	312 312	CU FE	16.700 38500,000		
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	J\$16	K	1610.000		
13883	RF1S*7	C\$O	26-aug-1991	0.5	UGG	J\$16	MG	3100.000		
13\$83	RF1S*7	CSO	26-eug-1991	0.5	UGG	JS16	MK	1650.000		
_ 13\$83 13\$83	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	JS16 JS16	NA KÎ	272.000 16.700		
13SB3	RFIS*7	CSC	26-aug-1991	0.5	UGG	JS16	PB	258.000		
13\$B3	RFIS*7	CSO	26-aug-1991	0.5	UGG	JS16	SB	7.140	LT	
13SB3	RFIS*7	CSO	26-aug-1991	0.5	UGG	1216	TL	6.620	LT	
13\$B3 13\$B3	RFIS*7 RFIS*7	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	J\$16 J\$16	V ZN	38.500 821.000		
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	, LN19	111TCE	0.004	LT	
13983	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM19	112TCE	0.005	LT	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	11DCE	0.004	LT	
13SB3	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM19	11DCLE 12DCE	9.002	LT	
13883 13883	RFIS*8	CSO CSO	26-eug-1991	5.0	UGG	LN19 LN19	12DCLE	0.003 0.002	lt Lt	
13883	RF1S*8	CSO	26-aug-1991	5.0	UGG	LN19	12DCLP	0.003	ĻŤ	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM19	2CLEVE	0.010	MD	R
13SB3	RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0	UGG	LN19	ACET	0.017	LT	_
1388 <b>3</b> 1388 <b>3</b>	RFIS*8 RFIS*8	CSO	26-aug-1991	5.0 5.0	ugg ugg	£H19 ≟H19	ACROLM ACRYLO	0.100 0.100	ND ND	R R
13\$B3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	BRDCLM	0.003	LT	
13SB3	RF1S*8	CSO	26-aug-1991	5.0	UGG	LH19	C13DCP	0.003	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN19	CZAVE	0.003	LT	
13883 13883	RF15*8 RF15*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LM19 LM19	CZH3CL CZH5CL	0.006 0.012	LT LT	
13883	RFIS*8	ÇSO	26-aug-1991	5.0	UGG	UN19	COHO	0.002	ĹŤ	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	CCL3F	0.006	LT	
13583	RFIS*6	CSO	26-aug-1991	5.0	UGG	LN19	CCL4	0.007	LT	
1388 <b>3</b> 13883	RFIS*8 RFIS*8	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	CH2CL2 CH3BR	0.012 0.006	LT LT	
13SB3	RFIS*8	cso	26-aug-1991	5.0	UGG	LH19	CH3CL	0.009	ĹŤ	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN19	CHBR3	0.007	ĻT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LK19	CHCL3	0.001	LT	_
13883 13883	RFIS*8 RFIS*8	C20	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH19 LH19	CL2BZ CLC6H5	0.100 0.001	ND LT	R
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	CZZ	0.004	LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	DBRCLM	0.003	LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN19	ETC6H5	0.002	LT	
13883 13883	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	MEC6HS MEK	0.001 0.070	LT LT	
13983	RFIS*8	CSO	26-aug-1991	5.0	UGG	LK19	MIBK	0.027	LT	
13SB3	RFIS*8	CSC	26-aug-1991	5.0	UGG	LK19	MNBK	0.032	LT	
13SB3	RF15*8	CSO	26-aug-1991	5.0	UGG	U19	STYR	0.003	ĻŤ	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	U19	T130CP	0.003	ĻT	
13583 13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	TRCLE	0.003	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH19	UNKO73	0.009		S
13SB3	RF1S*8	CSO	26-aug-1991	5.0	UGG	UN19	XYLEN	0.002	LT	
13883	RFIS*8 RFIS*8	CSO	26-aug-1991	5.0 5.0	UGG	JB01	HG 124TCB	0.050	LT	
13883 13883	RF15*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	120CLB	0.040 0.110	LT LT	
,,,,,,,	··· · · · ·		To one (1/1)	2.0		G. 10		0,110		

Site ID	Field 10	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte _Abbrv.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	120PH	0.140	NO	R
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	13DCLB	0.130	LT	•
13983	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	14DCLB	0.098	LŦ	
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	2451CP	0.100	LT	
13\$83 13\$83	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	246TCP 24DCLP	0.170 0.180	LT LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	24DMPN	0.180	LT	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	24DNP	1.200	LŤ	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	24DNT	0.140	LT	
13883 13883	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	26DNT 2CLP	0.085 0.060	LT LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	2CXAP	0.036	ĹĬ	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	2MNAP	0.049	LT	
13\$83 13\$83	RF1\$*8	CSO	26-eug-1991	5.0	UGG	LM18	2MP	0.029	LT	
13SB3	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	lm18 lm18	2NANIL 2NP	0.062 0.148	LT LT	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	33DCBD	6.300	ĹŤ	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	3NANTL	0.450	LŤ	
13583 13583	RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH18	46DN2C	0.550	LT	
13583	RFIS*B RFIS*8	CSO CSO	26-aug-1991	5:0	UGG UGG	LM18 LM18	4BRPPE 4CANIL	0.033 0.810	LT LT	
13SB3	RFIS*8	cso	26-aug-1991	5.0	UGG	LH18	4CL3C	0.095	LŦ	
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	UH18	4CLPPE	0.033	LT	
13\$83 13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	440	0.240	LT	
13583	RFIS*B RFIS*B	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LN18 LN18	4NANIL 4NP	0.410 1.400	LT LT	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	ABHC	0.270	MD	R
13583	RFIS*6	CSO	26-aug-1991	5.0	UGG	LN18	ACLDAN	0.330	ND	R
13583 13583	RFIS*8	ÇSO	26-eug-1991 26-eug-1991	5.0	UGG	LN18	AENSLF	0.620	ND	R
13SB3	RFIS*8 RFIS*8	C20	26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ALDRN ANAPNE	0.330 0.036	MD LT	R
13SB3	RFIS*8	cso	26-aug-1991	5.0	UGG	LM18	ANAPYL	0.033	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	ANTRC	0.033	LT	
13583 13583	RF15*8	CSD	26-aug-1991	5.0	UGG	LM18	B2CEXM	0.059	LT	
13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	B2CLEE	0.200 0.033	LT LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	B2EHP	0.620	ĹŤ	
13\$B3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	BAANTR	0.170	LT	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	BAPYR	0.250	ĻŤ	
13583 13583	RFIS*8 RFIS*8	C\$0	26-sug-1991 26-sug-1991	5.0 5.0	UGG UGG	LM18 LM18	BBHC	0.210 0.270	LT ND	Ř
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	BBZP	0.170	LT	•
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	BENSLF	0.620	ND	R
13583 13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	BENZOA	0.850 6.100	MO	R
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	BCHIPY	0.250	NÓ LT	R
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	BKFANT	0.066	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	BZALC	0.190	LT	
13\$83 13\$83	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	1,M18 1,M18	CHRY CL6BZ	0.120 0.033	LT LT	
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	CLOCP	6.200	LT	
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	CL6ET	0.150	ĽΤ	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	DBAHA	0.210	LT	_
13 <b>583</b> 13 <b>583</b>	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	DBHC DBZFUR	0.270 0.035	ND LT	R
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	UH18	DEP	0.240	LT	
13583	RF15*8	CSO	26-sug-1991	5.0	UGG	LH18	DLDRN	0.310	ND	R
13583	RF1S*8	CSO	26-aug-1991	5.0	UGG	LH18	DMP	0.170	LT	
13583 13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	DNSP DNOP	0.061 0.190	LT LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	ENDRN	0.450	KD	R
13\$83	RFIS*8	CSO	26-aug-1991	5.0	ŲGG	LH18	ENDRMA	0.530	MD	Ř
13883	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	ENDRNK	0.530	ЩĐ	R
13\$83 13\$83	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LM18	ESFSO4	0.620 0.068	KID L T	R
13883	RFIS*8	CZO	26-aug-1991	5.0	UGG	LM18 LM18	FANT FLRENE	0.033	LT LT	
13\$83	RFIS*8	cso	26-aug-1991	5.0	UGG	LM18	GCLDAN	0.330	ND	R
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	HCBD	0.230	LT	
13583 13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN18	HPCL	0.130	ND NO	R
13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LM18 LM18	HPCLE ICOPYR	0.330 0.290	ND LT	R ·
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	ISOPHR	0.033	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	LIN	0.270	MD	R
13¢B3	RFIS*B	CSO	26-aug-1991	5.0	UGG	LX18	HEXCLR	0.330	ND	R

Site ID	Field ID	Madia	Date	<u>Deoth</u>	llaita	Analytical Method		Malana	F1	Internal
31.44 10	*** (Q_10	HEGIT	-		<u>Units</u>	Method	Abbev.	<u>Value</u>	Flag	Std. Code
13\$83 13\$83	RFIS*8 RFIS*8	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LM18	NAP	0.037	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18 LH18	N'B NNDMEA	0.045 0.140	LT ND	R
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	LM18	NADAPA	0.200	LT	ĸ
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	NNOPA	0. 190	LT	
135 <u>83</u> 135 <u>83</u>	RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LM18	PCB016	1.400	ND	R
13SB3	RFIS*8 RFIS*8	CSO	26-aug-1991	5.0	ugg Ugg	LM18 LM18	PCB221 PCB232	1.400	ND ND	R R
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN18	PC8242	1.400	ND	Ř
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LX18	PCB248	2.000	ND	2
13\$83 13\$83	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PCB254 PCB260	2.300 2.600	ND ND	R
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LH18	PCP	1.300	LT	R
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN18	PHANTR	0.033	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LN18	PHENOL	0.110	LT	_
13883 13883	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	PPDDD PPDDE	0.270 0.310	ND ND	R
13SB3	RF15*8	cso	Z6-aug-1991	5.0	UGG	LM18	PPODT	0.310	NO.	R R
13SB3	RF15*8	CSO	26-aug-1991	5.0	UGG	LM18	PYR	0.033	LT	
13S83	RFIS*8	CZO	26-aug-1991	5.0	UGG	LM18	TXPHEN	2.600	ND	R
13883 13883	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	135TNB 13DNB	0.488 0.496	LT LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LW12	246TNT	0.456	LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	LW12	24DNT	0.424	LT	
13SB3 	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	26DNT	0.524	LT	
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	LW12	HNX NB	0.666 2.410	LT LT	
13SB3	RFIS*8	CSO	26-sug-1991	5.0	UGG	LW12	RDX	0.587	LT	
13SB3	RFIS*6	CSO	26-aug-1991	5.0	UGG	LW12	TETRYL	0.731	LŦ	
13\$83 13\$83	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	JD19	AS SE	0.436 0.250	LT	
13S83	RFIS*8	CSO	26-aug-1991	5.0	UGG	3015 312L	AG	0.740	r,	
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	J\$16	AL	8900.000		
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	J516	BA.	96.500		
1358 <b>3</b> 13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	JS16 JS16	BE CA	1.570 1920.000		
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	JS16	<b>G</b>	0.700	LT	
13\$B3	RF1S*8	CSG	26-aug-1991	5.0	UGG	J <b>5</b> 16	co	8.630	-	
13SB3	RFIS*8	C20	26-aug~1991	5.0	UGG	JS16	CR.	19.000		
13583 13583	RFIS*8 RFIS*8	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	1216 1216	ස Æ	6.620 13600,000		
13583	RFIS*8	CSO	26-aug-1991	5.0	UGG	J\$16	ĸ	1110,000		
13\$B3	RFIS*8	CSO	26-aug-1991	5.0	UGG	J\$16	MG	2910,000		
13583 13583	RFIS*8 RFIS*8	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	J\$16	MM MA	369.000		
13583	RFIS*8	CSO	26-aug-1991		UGG	1216 1216	KA NI	307.000 12.400		
13SB3	RF15*6	CSO	26-aug-1991	5.0	UGG	J\$16	PB	10.500	LT	
13\$83	RFIS*8	CSO	26-aug-1991	5.0	UGG	JS16	58	7.140	LT	
13583 13583	RFIS*8 RFIS*8	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	7216 7216	TL V	6.620 23.200	LT	
13SB3	RFIS*8	CSO	26-aug-1991	5.0	UGG	J\$16	ZN	59.200		
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	JB01	HG	0.050	LT	
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LW12	135TNB	0.488	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LW12 LW12	130NB 246TNT	0.496 0.456	LT LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LW12	24DNT	0.424	ĻŢ	
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	LW12	26DNT	0.524	LT	
13 <b>583</b> 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LW12 LW12	NB HMX	0.666 2.410	LT LT	
13\$83	RF15*9	CSO	26-aug-1991	10.0	UGG	LW12	RDX	0.587	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LW12	TETRYL,	0.731	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN19	111TCE	0.004	LT	
13583 13583	RF1S*9 RF1S*9	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LM19 LM19	112TCE 11DCE	0.005 0.004	LT LT	
13883	RFIS*9	cso	26-aug-1991	10.0	UGG	LH19	11DCLE	0.002	LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH19	120CE	0.003	LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH19	12DCLE	0.002	LT	
13\$83 13\$83	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LM19 LM19	12DCLP 2CLEVE	0.003 0.010	LT ND	P
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LM19	ACET	0.017	LT	R
13SB3	RFIS*9	CZO	26-aug-1991	10.0	UGG	UX19	ACROLN	0.108	ND	R
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	LX19	ACRYLO	0.100	ND.	R
13\$83 13\$83	RFIS*9 RFIS*9	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	BRDCLM C130CP	0.003 0.003	LT LT	
,-462	Nr 14 7	444	448 1771		~~	₩P 17	- 100 CF	0.003	LI	

Site ID	<u> Field ID</u>	<u>Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH19	C2AVE	0.003	LT	
13883	RFIS*9	CSO	26- aug- 1991	10.0	UGG	LH19	C2H3CL	0.006	LT	
13883 13883	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0	UGG	UH19	C2K5CL	0.012	LT	
13883	RFIS*9	CSO	26-aug-1991	10.0 10.0	UGG	LH19 LH19	CCL3F	0.002 0.006	LT LT	
13583	RFIS*9	cso	26-aug-1991	10.0	UGG	LN19	CCL4	0.007	ĹŤ	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN19	CH2CL2	0.012	LT	
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN19	CH3BR	0.006	LT	
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LM19 LM19	CH3CL CHBR3	0.009 0.007	LT LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH19	CHCL3	0.001	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN19	CL.2BZ	0.100	ND	R
13\$B3 13\$B3	RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0	UGG	LH19	CLC6H5	0.001	LT	
135B3	RFIS*9 RFIS*9	CSO	26-aug-1991	10.0 10.0	UGG UGG	1,H19 1,H19	DBRCLM	0.004 0.003	LT LT	
13\$83	RF15*9	CSO	26-aug-1991	10.0	UGG	U119	ETC6H5	0.002	LT	
13\$B3	RFIS#9	CSO	26-sug-1991	10.0	UGG	LN19	MECÁH5	0.001	LT	
13\$83 13\$83	RFIS*9 RFIS*9	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LH19	MEK	0.070	LT	
13SB3	RFIS*9	CSO	26-sug-1991	10.0	UGG UGG	LN19 LN19	MIBK	0.027 0.032	LT LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH19	STYR	0.003	ĹŤ	-
13SB3	RFIS*9	cso	26-aug-1991	10.0	UGG	LH19	T13DCP	0-003	LT	
13\$B3 13\$B3	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LH19	TCLEA	0.002	LŤ	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	ugg ugg	LH19 LH19	TCLEE	0.001 0.003	LT LT	
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH19	XYLEN	0.002	ĹŤ	
13583	RFIS*9	CSO	26-eug-1991	10.0	UGG	JD19	AS	0.391		
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	JD15	SE	0.250	LT	
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	1247CB 120CLB	0.040 0.110	LT LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN18	120PH	0.140	MD	R
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	13DCLB	0.130	ĻŢ	•
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	140CLB	0.098	LT	
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LM18 LM18	245TCP 246TCP	0.100 0.170	LT LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	UN18	240CLP	0.180	LT	
13\$83	RFIS#9	CSO	26-aug-1991	10.0	UGG	LX18	24DMPK	0.690	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LM18	240MP	1.200	LT	
135B3 135B3	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	240MT 260MT	0.140 0.085	LT LT	
13SB3	RFIS*9	CSO	25-aug-1991	10.0	UGG	LH18	2CLP	0.060	LT	
13\$B3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	2CNAP	0.036	LT	
13SB3	RFIS*9	CSO	26-eug-1991	10.0	UGG	LH18	2MNAP	0.049	LT	
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	ZHP ZNANIL	0.029 0.062	LT LT	
13\$83	RF15*9	CSO	26-aug-1991	10.0	UGG	LN18	2NP	0.140	LT	
13583	RF15*9	CSO	26-aug-1991	10.0	UGG	LM18	330CBD	6.300	LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	3NANTL	0.450	LT	
13 <b>583</b> 13 <b>583</b>	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	46DN2C 4BRPPE	0.550 0.033	LT LT	
13\$83	RFIS*9	cso	26-aug-1991	10.0	UGG	LN18	4CANIL	0,510	LT	
13983	RFIS*9	CZO	26-aug-1991	10.0	UCG	LN18	4CL3C	0.095	LT	
13\$B3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	4CLPPE	0.033	LT	
1388 <b>3</b> 13883	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	4MP 4MANIL	0.240 0.410	LT LT	
13583	RFIS#9	CSO	26-aug-1991	10.0	UGG	LM18	4NP	1.400	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LM18	ABHC	0.270	KD	R
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	LM18	ACLDAN	0.330	ND	R
138 <b>93</b> 138 <b>83</b>	RFIS#9 RFIS#9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	AENSLF ALDRN	0.620 0.330	ND ND	R
13\$83	RFIS=9	cso	26-aug-1991	10.0	UGG	LN18	ANAPKE	0.036	ίŤ	R
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN18	ANAPYL	0.033	LT	
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	ANTRO	0.033	LT	
13SB3 13SB3	RF15*9 RF15*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LN18 LN18	B2CEXM B2CIPE	0.059 0.200	LT LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN18	B2CTEE	0.033	LT	
13883	RF1S*9	CSQ	26-aug-1991	10.0	UGG	LM18	в2ЕНР	8.670		
13SB3	RFIS*9	cso	26-aug-1991	10.0	UGG	LN18	BAANTR	0.170	LT	
13883 13 <b>2</b> 83	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LN18	BAPYR	0.250	LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	ugg ugg	LM18 LM18	BBFANT BBHC	0.210 0.270	LT ND	R
13\$83	RF15*9	CSO	26-aug-1991	10.0	UGG	LM18	88ZP	0.170	LT	•
13583	RF15*9	CSO	26-aug-1991	10.0	UGG	LM18	BENSLF	0.620	ND	R
13SB3	RFIS*9	Ċ\$O	26-aug-1991	10.0	UGG	LH18	BENZID	0.850	MD	R

Site ID	Field ID	<u>Media</u>	<u>Date</u>	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.		<u>Flag</u>	Internal <u>\$td. Code</u>
13883	RFIS*9	CSO	26-aug-1991	10.0	UCG	LM18	BENZCA	6.100	ND	R
13\$83	RF15#9	CSO	26-aug-1991	10.0	UGG	LM18	BCHIPY	0.250	LT	K
13\$83	RF1S*9	CSC	26-aug-1991	10.0	UGG	LN18	BKFANT	0.066	LT	
13883 13883	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	BZALC	0.190	LT	
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	UK18	CHRY CL68Z	0.120 0.033	LT LT	
135 <b>83</b>	RFIS*9	ÇS0	26-aug-1991	10.0	UGG	LN18	CLACP	6,200	LT	
13883 13883	RFIS*9 RFIS*9	CSO	26-aug-1991	10.0	UGG	LM18	CLSET	0.150	LT	
13583 13583	RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG ·	LM18 LM18	DBAHA DBHC	0.210 0.270	LT MD	R
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	U18	DBZFUR	0.035	LT	•
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	DEP	0.240	LT	
135B3 135B3	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LH18 LH18	DLDRN DMP	0.310 0.170	ND LT	Ř
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	DNBP	0.061	ίŤ	
13583	RF1S*9	cso	26-aug-1991	10.0	UGG	LH18	DNOP	0.190	LT	
13883 13883	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	EM18 EM18	ENDRN ENDRNA	0.450 0.530	ND ND	R
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	ENDRNK	0.530	NO.	R R
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	ESFS04	0.620	ND	Ř
138 <b>83</b> 138 <b>83</b>	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg	LM18 LM18	FANT FLRENE	0.068	LŢ	•
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LM18	GCLDAN	0.033 0.330	LT ND	R
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	HCBD	0.230	LT	•
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LX18	HPCL	0.130	ND	Ř
13583 13583	RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	HPCLE HXADOE	0.330 0.563	MD	R S
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	DI18	ICDPYR	0.290	LT	3
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN18	ISOPHR	0.033	LT	
13883 13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN18	LIN	0.270	MD	R
13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	MEXCLR NAP	0.330 0.037	ND LT	R
13SB3	RFIS#9	CSO	26-aug-1991	10.0	UGG	LH18	NB.	0.045	LT	
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	UI18	NNDMEA	0.140	MD	R
13\$ <b>83</b> 13\$83	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg DDU	LM18 LM18	NNDN PA NNDPA	0.200 0.190	LT LT	
13SB3	RFIS*9	cso	26-aug-1991	10.0	UGG	LN18	PCB016	1.400	ND	2
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LM18	PCBZ21	1.400	MD	Ř
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	PCB232 PCB242	1.400	ND	R
13SB3	RFIS*9	CZO	26-aug-1991	10.0	UGG	LN18	PCB248	1.400 2.000	NIO NIO	R R
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	LN18	PC8254	2.300	ND	Ř
13583	RF15*9	CSO	26-aug-1991	10.0	UGG	LH18	PC8260	2.600	MD	R,
1358 <b>3</b> 1358 <b>3</b>	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	PCP PHANTR	1.300 0.033	LT LT	
13SB3	RFIS*9	cso	26-aug-1991	10.0	UGG	LH18	PHENOL	0.110	LT	
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	PPDDD	0.270	ND	R
13883 13883	RFIS*9 RFIS*9	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LH18 LH18	PPDDE PPDDT	0.310	ND.	R
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	UH18	PYR	0.310 0.033	ND LT	R
13883	RFIS*9	CSO	26-aug-1991	10.0	UGG	LH18	TXPHEN	2.600	ND	R
13583 13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	JS16	AG	0.719		
135B3	RFIS*9	CSO	26-aug-1991	10.0	VGG	JS16 JS16	AL Ba	7910.000 74.800		
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	JS16	BE.	1.110		
13SB3	RFIS*9	CSO	26-aug-1991	10.0	UGG	JS16	CA	1540.000		
13583 13583	RFIS*9 RFIS*9	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	1516 1516	CC CC	0.700 7.010	LŤ	
13883	RFIS*9	cso	26-aug-1991	10.0	UGG	J\$16	CR	16,200		
13\$83	RFIS*9	CSO	26-aug-1991	10.0	UGG	JS16	a	4.980		
1388 <b>3</b> 1388 <b>3</b>	RFIS*9	CSO	26-aug-1991	10.0	UGG	J\$16	FE	11500.000		
13583	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	J\$16 J\$16	K NG	1020.000 2470.000		
13SB3	RFIS*9	CSO	26-eug-1991	10.0	UGG	JS16	MN	282.000		
13583	RFIS*9	CSO	26-aug-1991	10.0	UGG	JS16	NA	322.000		
1358 <b>3</b> 1358 <b>3</b>	RFIS*9 RFIS*9	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	JS16 JS16	NI PB	9.580 10.500		
13883	RFIS*9	¢so	26-aug-1991	10.0	UGG	J\$16	SB	7.140	LT LT	
13883	RFIS*9	CSO	26-eug-1991	10.0	UGG	JS16	TL.	6.620	LT	
135B3 135B3	RF15*9	CSO	26-aug-1991	10.0	UGG	JS16	V 24	21.000		
13584	RFIS*9 RFIS*10	CSO	26-aug-1991 28-aug-1991	10.0 0.5	ugg Ugg	JS16 J801	ZN HG	46.200 0.050	LT	
13\$84	RFIS*10	C20	28-aug-1991	0.5	UGG	LW12	135TNB	0.488	LT	
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LW12	13DN8	0.496	ĻŤ	

	مودانو					Analytical	-			Internal
Site ID	Field [D	Media	Date	Depth	<u>Units</u>	Method	Abbry,	<u>Value</u>	<u>Flag</u>	Std. Code
13584	RF15*10	CSO	28-aug-1991	0.5	DOU	LW12	246TNT	0.456	LT	
13\$84 13\$84	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg agu	LW12 LW12	24DNT 26DNT	0.424 0.524	LT LT	
13584	RF15*10	cso	28-aug-1991	0.5	UGG	LW12	HMX	0.566	LT	
13\$84	RFIS*10	CZO	28-aug-1991	0.5	UGG	LW12	NB	2.410	LT	
13\$84 13\$84	RF15*10	CSO	28-aug-1991	0.5	UGG	L¥12	RDX	0.587	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LW12 LM19	TETRYL 111TCE	0.731 0.004	LT LT	
13SB4	RFIS*10	CSO	28-eug-1991	0.5	UGG	LN19	112TCE	0.005	ĹŤ	
13\$84	RFIS*10	CSO	28-sug-1991	0.5	UGG	LX19	11DCE	0.004	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	11DCLE 12DCE	0.002 0.003	LT	
13584	RFIS*10	CSO	28-eug-1991	0.5	UGG	LH19	12DCLE	0.002	LT LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	UI19	12DCLP	0.003	ĻŤ	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LN19	<b>ACET</b>	0.010	MD	R
13584	RF15*10	CSO	28-aug-1991	0.5	UGG	LM19 LM19	ACROLN	0.017 0.100	LT ND	R
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH19	ACRYLO	0,100	ND	Ř
13584	RF1S*10	CSO	28-aug-1991	0.5	UGG	LM19	BRDCLM	0.003	LT	
13884 13884	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	LN19 LX19	C13DCP CZAVE	0.003 0.003	LT LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN19	C2H3CL	0.006	LT	
13SB4	RFIS*10	CSO	28-eug-1991	0.5	UGG	LH19	C2H5CL	0.012	LT	
13584 13 <u>5</u> 84	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LX19	C6H6	0.002	LT	
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN19 LN19	CCL3F CCL4	0.006 0.007	LT LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH19	CH2CL2	0.012	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH19	CH38R	0.006	LT	
13584 13 <b>5</b> 84	RFIS*10 RFIS*10	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LN19 LN19	CH3CL CHBR3	0.009 0.007	LT LT	
13584	RFIS=10	CSO	28-aug-1991	0.5	UGG	LH19	CHCTZ	0.001	LT	
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH19	CL2BZ	0.100	MD	R
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LX19	CLC6H5 CS2	0.001	LT	
13884	RF15*10	CSO	28-aug-1991	0.5	UGG	LN19 LN19	DBRCLM	0.004 0.003	LT LT	
13SB4	RFIS*10	cso	28-aug-1991	0.5	UGG		ETC6HS	0.002	LT	
13584 13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM19	MEC6H5	0.001	LT	
13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LH19 LH19	MISK NEK	0.070 0.027	LT LT	
13584	RFIS*10	cso	28-aug-1991	0.5	UGG	LK19	HNBK	0.032	LT	
13984	RFIS*10	CSC	28-aug-1991	0.5	UGG	LH19	STYR	0.003	ĻŢ	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LN19 LN19	T13DCP TCLEA	0.003 0.002	LT LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN19	TCLEE	0.001	ĻŢ	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM19	TRCLE	0.003	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5	UGG	LH19	XYLÉN	0.002	LT	
13SB4	RFIS*10	CSO	28-aug-1991	0.5 0.5	UGG	JD19 JD15	AS Se	0.961 0.250	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	124TCB	0.200	LT	
13SB4	RFIS*10	CSC	28-aug-1991	0.5	UGG	LH18	12DCLB	0.550	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	120PH 130CLB	0.500 0.650	ND LT	R
13584	RFIS*10	cso	28-sug-1991	0.5	UGG	LM18	140CL8	0.490	LT	
13584	RF15*10	CSO	28-aug-1991	0.5	UGG	LM18	245TCP	0.500	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	246TCP 24DCLP	0.850 0.900	LT	
13584	RF15*10	CSO	28-aug-1991	0.5	UGG	LM18	24DCLP 24DMPN	3.450	LT LT	
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	24DNP	6.000	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	Z4DNT	1.760		
13584	RF15*10	C2O	28-aug-1991 28-aug-1991	0.5 0.5	UGG	lm18 lm18	26DNT 2CLP	0.425 0.300	LT LT	
13SB4	RFIS*10	cso	28-aug-1991	0.5	UGG	LM18	2CXAP	0.180	LT	
13SB4	RFIS*10	cso	28-aug-1991	0.5	UGG	LM18	2MNAP	0.245	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18	2MP ZNANTL	0.145	LT	
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18 LX18	ZNAM I L	0.310 0.700	LT LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	330 CBD	31.500	ĹŤ	
13884 13884	RFIS*10 RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	3MANIL	2.250	LT	
13584	RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	46DN2C 48RPPE	2.750 0.165	LT LT	
13584	RFIS*10	CSO	28-eug-1991	0.5	UGG	LH18	4CANIL	4.050	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	4CL3C	0.475	LT	
13584 13 <b>5</b> 84	RFIS*10 RFIS*10	CSO CSO	28-aug-1991	0.5	UGG	LX18	4CLPPE	0.165	LT	
1,3864	#L19_10	تي	28-aug-1991	0.5	UGG	LN18	4MP	1.200	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13584	RFIS*10	cso	28-aug-1991	0.5	UGG	LX18	4NANTL	2.050	LT	
13884	RFIS*10	cso	28-aug-1991	0.5	UGG	LM18	4NP	7.000	LT	
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	LX18	ABHC	1.500	ND	R
13SB4	RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5	UGG	LN18	ACLDAN	1.500	MD	R
13\$84 13\$84	RFIS*10 RFIS*10	CSO	28-aug-1991	0.5 0.5	UGG UGG	lm18 lm18	AENSLF ALDRN	3.000 1.500	ND ND	R R
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	UN18	ANAPHE	0.180	LT	*
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	ANAPYL	0.165	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LN18	ANTRO	0.165	LT	
13584 13584	RFIS*10	CSO	28-aug-1991	0.5	UGG UGG	LM18 LM18	B2CEXM B2CIPÉ	0.295 1.000	L? LT	
13\$84	RFIS*10	CSO	28-eug-1991	0.5	UGG	LH18	BSCLEE	0.165	LT	
13584	RF15*10	CSO	28-aug-1991	0.5	UGG	LM18	B2EHP	3.100	LT	
13\$84 13\$84	RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LH18	BAANTR	0.850	LT	
13SB4	RFIS*10 RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18 LM18	BAPYR BBFANT	1.250 1.050	LT LT	
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	BBHC	1.500	ND	R
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	BBZP	0.850	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LN18	BENSLF	3.000	NO	R
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18 LM18	BENZID BENZOA	4.500 30.000	ND ND	R R
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	BGHIPY	1.250	ĹΤ	•
13594	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	BKFANT	0.330	LT	
13864	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	BZALC	0.950	LT	
13\$B4 13\$B4	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	CHRY CL68Z	0.600 0.165	LT LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	LICC	LM18	CL6CP	31.000	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	CLSET	0.750	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	DBAHA	1.050	ĻŢ	_
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DBKC DBZFUR	1.500 0.175	ND LT	R
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	DEP	4.730		
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	DLDRN	1.500	MD	R
13584	RF1S*10	CSO	28-aug-1991	0.5	UGG	LN18	DMP	0.850	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	DNBP DNOP	11.700 0.950	LT	
13SB4	RFIS*10	CSQ	28-aug-1991	0.5	UGG	LN18	ENDRN	2.500	ND	R
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	ENDRNA	2.500	ND	Ř
13SB4	RFIS*10	CSO	28-eug-1991	0.5	UGG	LN18	ENDRNK	2.500	ND	R
13SB4 13SB4	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	UH18 UH18	ESFSO4 FANT	3.000 0.340	ND LT	R
13SB4	RFIS*10	cso	28-aug-1991	0.5	UGG	LM18	FLRENE	0.165	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	GCLDAN	1.500	MD	R
135B4	RFIS*10	CSO	28-aug-1991	0.5	UGG	U118	HCBD	1.150	LT	_
13\$84 13\$84	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LM18 LM18	HPCLE HPCLE	0.500 1.500	ND ND	R
13SB4	RF1S*10	CZO	28-aug-1991	0.5	UGG	LM18	!CDPYR	1.450	LT	^
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	ISOPHR	0.165	ĻT	
13\$B4	RFIS*10	CZO	25-aug-1991	0.5	UGG	U118	LIN	1.500	MD	R
13SB4 13SB4	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LH18 LH18	MEXCLR NAP	1.500 0.185	ND LT	R
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	UI18	NB	0.225	ĹŤ	
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	NNOMEA	0.500	ND.	R
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	NNDKPA	1.000	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	NNOPA PCB016	1.290 5.000	ND	R
13584	RF1S*10	CZO	28-aug-1991	0.5	UGG	LM18	PCB221	5.000	NO	Ř
13SB4	RF1S*10	CSO	28-aug-1991	0.5	UGG	LH18	PCB232	5.000	ND	R
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LN18	PCB242	5.000	HD	R
13584 13584	RFIS*10 RFIS*10	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LM18 LH18	PCB248 PCB254	10.000 10.000	ND ND	R R
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	PCB260	15.000	ND	Ř
13584	RFI\$*10	CSO	28-aug-1991	0.5	UGG	LH18	PCP	6.500	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	PHANTR	0.165	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg	LM18 LM18	PHENOL PPOOD	0.550 1.500	LT	R
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LM18	PPODE	1.500	ND ND	R R
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	LH18	PPOOT	1.500	NO	Ř
13584	RFIS*10	cso	28-aug-1991	0.5	UGG	LH18	PYR	0.165	LT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18	TXPKEN	15.000	MD	R
13584 13584	RFIS*10	CSC	28-aug-1991	0.5	UGG	LM18 LM18	unks69 Unk606	3.290 2.190		S S
13SB4	RF15*10	cso	28-aug-1991	0.5	UGG	LN18	UNK611	2.190		S
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	J\$16	AG	0.589	LT	-

Site ID	Field ID	<u> Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Nethod	Analyte Abbry.	Value	Flag	Internal <u>Std. Code</u>
13584	RFIS*10	cso	28-aug-1991	0.5	UGG	J\$16	AL	3280,000		
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	JS16	BA	43.700		
13SB4	RFIS=10	CSO	28-aug-1991	0.5	UGG	<b>312</b> L	BE	0.500	LT	
13584	RFIS*10	ÇSO	28-aug-1991	0.5	UGG	J\$16	CA.	16200.000	- <b>-</b>	
13584 13584	RF1S*10 RF1S*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	412L 412L	8	0.700 2.640	LT	
13984	RFIS*10	CSO	28-aug-1991	0.5	UGG	316 612L	CR	8.510		
13584	RFIS#10	CSO	28-aug-1991	0.5	UGG	JS16	ä	99,500		
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	J\$16	FE	6570.000		
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	J\$16	K	707.000		
13\$84 13\$84	RF15*10	CSO	28-aug-1991 28-aug-1991	0.5	UGG	J\$16	MG	3670.000		
13\$84	RFIS*10 RFIS*10	CSO	28-aug-1991	0.5 0.5	ugg ugg	7219 7219	MM MA	161,000 272,000		
13584	RFIS=10	cso	28-aug-1991	0.5	UGG	JS16	NI IN	3.980		
13\$84	RFIS*10	CSO	28-aug-1991	0.5	UGG	J\$16	PB	367.000		
13SB4	RFIS*10	CSO	28-aug-1991	0.5	UCG	J\$16	SB	7.140	ĻT	
13584 13584	RFIS*10 RFIS*10	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	JS16	TL.	6.620 11.300	LT	
13584	RFIS*10	CSO	28-aug-1991	0.5	UGG	J\$16 J\$16	V ZN	72.500		
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J801	ЯG	0.050	LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	L¥12	135TNB	0.488	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LW1Z	13DNB	0.496	LT	
13584 13584	RF1S*11 RF1S*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	L¥12 L¥12	246TNT 24DNT	0.456 0.424	LT LT	
_13SB4	RF15*11	CSO	28-aug-1991	5.0	UGG	LW12	26DNT	0.524	LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LW12	HMX	0.666	ĹŤ	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LW1Z	NB	2.410	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LW12	RDX	0.587	LT	
13\$84 13\$84	RFIS*11	C20	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LW12	TETRYL	0.731	LT	
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	111TCE 112TCE	0.004 0.005	LT LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH19	11DCE	0.004	LT	
13884	RFIS*11	CSO	28-eug-1991	5.0	UGG	LH19	11DCLE	0.002	LT	
13584	RFIS=11	CSO	28-aug-1991	5.0	UGG	LH19	120CE	0.003	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM19	120 CLE	0.002	LT	
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg Ugg	LM19 LM19	12DCLP 2CLEVE	0.003 0.010	LT MD	R
13\$84	RFIS*11	cso	28-aug-1991	5.0	UCG	LH19	ACET	0.017	ĻŢ	ĸ
13584	RFIS*11	CSG	28-aug-1991	5.0	UGG	LH19	ACROLN	0.100	ND	R
13SB4	RFIS*11	CSO	28-aug-1991	5.0	nce	LH19	ACRYLO	0.100	ND	R
13584 13584	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	U19	BRDCLM C13DCP	0.003	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN19 LN19	CZAVE	0.003	LT LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LK19	C2H3CL	0.006	LT	
13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LX19	C2H5CL	0.012	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM19	COH6	0.002	LT	
13884 13884	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	CCL3F CCL4	0.006 0.007	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM19	CH2CL2	0.012	LT	
13584	RFIS*11	cso	28-aug-1991	5.0	UGG	LM19	CH38R	0.006	ET	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH19	CH3CL	0.009	LT	
13\$84	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM19	CHBR3	0.007	LT	
13584 13584	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	CHCL3 CL282	0.001 0.100	LT ND	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LK19	CLC6H5	0.001	LT	Ř
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	Ui19	CS2	0.004	LT	
13\$B4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM19	DBRCLM	0.003	LT	
13584 13587	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN19	ETC6H5	0.002	LT	
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	MECSH5 MEX	0.001 0.070	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH19	MIBK	0.027	LT	
13884	RFIS#11	CSO	28-aug-1991	5.0	UGG	LM19	MNBK	0.032	LT	
13584	RFIS*11	CZO	28-aug-1991	5.0	UGG	LM19	STYR	0.003	LT	
13584 13584	RF15*11	CSC	28-aug-1991	5.0	UGG	LN19	T130CP	0.003	LT	
13\$84	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LM19 LM19	TCLEA TCLEE	0.002 0.001	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH19	TRCLE	0.003	LT	
13\$84	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN19	UNK072	0.008	••	\$
13\$84	RFIS*11	C\$Q	28-aug-1991	5.0	UGG	LN19	XYLEN	0.002	LT	-
13\$84	RFIS*11	CSO	28-aug-1991	5.0	UGG	JD 19	AS	0.535		
13584 13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	JD15	SE 13/TCB	0.250	LT	
13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	124TC8 12DCL8	0.040 0.110	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	12DPH	0.140	ND	R
			1					-1170	~	•

Site ID	<u>field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13584	RF1S*11	CSO	28-aug-1991	5.0	UGG	LN18	13DCLB	0.130	LT	
13584	RF1S*11	CSO	28-aug-1991	5.0	UGG	LN18	14DCLB	0.098	ĹŤ	
13584	RF15*11	CSO	28-aug-1991	5.0	UGG	LH18	245TCP	0_100	ĻŤ	
13SB4	RF15*11	CSO	28-aug-1991	5.0	UGG	LM18	246TCP	0.170	LŤ	
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	24DCLP 24DMPN	0.180	LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	24DNP	0.690 1.200	LT LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	24DHT	0.140	LT	
13SB4	RFIS*11	CSC	28-aug-1991	5.0	UGG	LH18	ZEDNT	0.085	LT	
13884 13884	RFIS#11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LN18	2CLP	0.060	LT	
13SB4	RFIS*11 RFIS*11	CSO	28-aug-1991	5.0	ugg ugg	LM18 LM18	ZCNAP ZNNAP	0.036 0.049	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	214P	0.029	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	2NANIL	0.062	LŤ	
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LM18	ZXP	0.140	LT	
13SB4	RFIS*11	C20	28-aug-1991	5.0	UGG	LN18 LN18	33DCBD 3NANIL	6.300 0.450	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	46DN2C	0.550	LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	48RPPE	0.033	LT	
13\$84	RFIS*11	CSO	28-eug-1991	5.0	UGG	LM18	4CANIL	0.810	LT	
13\$84 13\$84	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg Ugg	LM18	4CL3C	0.095	LT	•
135B4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18 LM18	4CLPPE	0.033 0.240	LT LT	
13SB4	RFIS*11	CSO	25-aug-1991	5.0	UGG	LN18	4NANIL	0.410	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	4NP	1.400	L,T	
13594	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	ABHC	0.270	ND	R
13SB4 13SB4	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	ACLDAN AENSLF	0.330 0.620	ND ND	R
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	ALDRN	0.330	ND ND	R R
13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	ANAPNE	0.036	LT	<b>K</b>
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	ANAPYL	0.033	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LX18	ANTRO	0.033	ŁT	
13984 13984	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	B2CEXM B2CIPE	0.059 0.200	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	82CLEE	0.033	LT	
13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	BZEHP	0.620	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	BAANTR	0.170	LT	
13 <b>584</b> 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LN18	SAPYR	0.250	LT	
13SB4	RFIS*11	CSO	28-aug-1991	5.0	ugg Ugg	LM18 LM18	BBFANT BBHC	0.210 0.270	LT MD	R
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	BBZP	0.170	ĹŤ	•
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LHIS	BENSLF	0.620	ND	R
13884 13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	BENZID	0.850	MD	R
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	BENZOA BGHIPY	6.100 0.250	KD Lt	R
13s84	RFIS*11	CSO	28-aug-1991	5.0		LN18	BKFANT	0.266	ĻŢ	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGĢ	LM18	BZALC	0.190	LT	
13\$84	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	CHRY	0.120	LŤ	
13\$84 13\$84	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LM18	CL68Z	0.033	LT	
13584	RFIS*11	CSC	28-aug-1991	5.0	UGG	LN18 LN18	CL6CP CL6ET	6.200 0.150	LT LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	DBAHA	0.210	LT	
13SB4	RFIS*11	CSO	Z8-aug-1991	5.0	UGG	LM18	DBHC	0.270	MD	R
13SB4	RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0	UGG	LH18	DBZFUR	0.035	LT	
13884 13884	RFIS*11 RFIS*11	CSO	28-aug-1991	5.0 5.0	ugg Ugg	LH18 LH18	DEP DLDRN	0.240 0.310	LT ND	•
13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	DMP	0.170	LT	R
13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	DNBP	0.061	LT	
13884	RFIS*11	CSO	28-aug-1991	5-0	UCG	LH18	DNOP	0.190	LT	_
13\$84 13\$84	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LN18	ENDRN	0.450 0.530	ND ND	R
13584	RFIS*11	CZO	25-aug-1991	5.0	UGG	LK18 LK18	ENDRNA ENDRNK	0.530	ND ND	R R
13584	RF1S*11	CSO	28-aug-1991	5.0	UGG	LH18	ESFS04	0.620	NO	Ř
13\$84	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	FANT	0.068	ĻT	-
13584	RF15*11	CSO	28-aug-1991	5.0	UGG	LN18	FLRENE	0.033	LT	_
13\$84 13\$84	RFIS*11 RFIS*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LN18	GCLDAN	0.330	ND L T	R
13584 13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18 LM18	HCBD	0.230 0.130	LT ND	R
13\$84	RF15*11	CSO	28-aug-1991	5.0	UGG	LM18	HPCLE	0.330	ND	Ř
13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	COPYR	0.290	LT	
13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	ISOPHR	0.033	LT	_
13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LN18	LIN MEYER B	0.270 0.330	ND.	R
13884 13884	RFIS*11	CSO	28-aug-1991	5.0 5.0	UGG	LM18 LM18	MEXCLR NAP	0.330	ND LT	R
	••						· • •			

	Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry	Value	<u>Flag</u>	Internal Std. Code
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	XB	0.045	LT	
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	NNDMEA	0.140	ND	R
	13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LHIS	NNDNPA	0.200	LT	
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18 LM18	NNDPA PCB016	0,190 1,400	LT ND	R
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	PCB221	1,400	NED DEA	R
	13884	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	PCB232	1,400	ND	Ř
	13584 13584	RF15*11	CSO	28-aug-1991	5.0	UGG	LM18	PCB242	1.400	ND	R
	13\$84	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	PC8248 PC8254	2.000 2.300	MD	R
	13SB4	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	PC8260	2.600	ND ND	R R
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LH18	PCP	1.300	ĹŤ	•
	13584 13584	RFIS*11	CSC	28-aug-1991	5.0	UGG	LH18	PHANTR	0.033	ĻT	
	13584	RF1S*11 RF1S*11	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	PHENOL PPODD	0.110 0.270	LT	
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LN18	PPDDE	0.310	ND ND	R R
	13SB4	RF15*11	CSO	28-aug-1991	5.0	UGG	LM18	PPDDT	0.310	ND	Ř
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	LM18	PYR	0.033	LT	
	13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM18 JS16	TXPHEN AG	2.600 0.686	ND	R
	13584	RFIS*11	CSG	28-aug-1991	5.0	UGG	JS16	AL	8120.000		
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J\$16	BA	98.700		
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J\$16	8E	1.310		
	13584 13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	J\$16	CA CA	1830.000		
_	13SB4	RFIS#11	CSO	28-aug-1991	5.0	UGG	JS16 JS16	8	0.700 8.010	LT	
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J\$16	CR	18.100		
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J\$16	CTI	7.990		
	13\$84 13\$84	RFIS*11 RFIS*11	CSO	28-aug-1991	5.0	UGG	JS16	FE	13100,000		
	13SB4	RF15*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	316 312L	K Mg	978.000 2730.000		
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	JS16	MN	360.000		
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J\$16	KA	333.000		
	13\$84 13\$84	RFIS*11	ÇSQ	28-aug-1991	5.0	UGG	J\$16	NI	11.100		
	13584	RFIS*11 RFIS*11	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	1216 1216	PB \$8	13.700 7.140	ŁT	
	13584	RFIS*11	CSO	28-aug-1991	5.0	UGG	J\$16	TL	6.620	LT	
	13584	RFIS*11	CSO	26-aug-1991	5.0	ŲĢG	JS16	V	21.400		
	13584 13584	RFIS*11 RFIS*12	CSO	28-aug-1991	5.0	UGG	JS16	ZX	59.500		
	13584	RF15-12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	JB01 LW12	HG 135TNB	0.050 0.488	LT LT	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGĞ	Lu12	130NB	0.496	LT	
	13SB4	RFIS*12	CSO	26-aug-1991	10.0	UGG	LW12	246TNT	0.456	LT	
	13584 13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
	13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LW12 LW12	26DNT HMX	0.524	LT LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LW12	NB	0.666 2.410	LT	
	13884	RFIS*12	CSO	28-aug-1991	10.0	UGG	LW12	RDX	0.587	LT	
	13584	RFIS*12	¢\$0	28-sug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	
	13584 13584	RFIS*12 RFIS*12	C20	28-aug-1991 28-aug-1991	10.0 10.0	ugg	LN19 LN19	111TCE 112TCE	0.004 0.005	LT LT	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	11DCE	0.004	Lī	
	13SB4	RF15*12	CSO	28-aug-1991	10.0	UGG	LN19	11DCLE	0.002	LT	
	13584 13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	120CE	0.003	LT	
	13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	12DCLE 12DCLP	0.002 0.003	LT LT	
	13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LN19	2CLEVE	0.010	ND	R
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN19	ACET	0.017	ĹŤ	-
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	ACROLN	0.100	ND	R
	13\$84 13\$84	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	ACRYLO BRDCLM	0.100	NO	R
	13584	RFIS*12	cso	28-aug-1991	10.0	UGG	LM19	C130CP	0.003 0.003	LT LT	
	13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LN19	C2AVE	0.003	LT	
	13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM19	C2H3CL	0.006	ĻT	
	13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991	10.0	UGG	LK19	C2H5CL	0.012	LŢ	
	13584	RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	C6H6 CCL3F	0.002 0.006	LT LT	
	13sB4	RF15*12	CSO	28-aug-1991	10.0	UGG	LM19	CCL4	0.007	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	CH2CL2	0.012	LT	
	13584 1366/	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN19	CK3BR	0.006	LT	
	13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LK19 LM10	CH3CL	0.009	LT	
	13584	RF15=12	CSO	28-aug-1991	10.0	UGG	LM19 LM19	CHBR3 CHCL3	0.007 0.001	LT LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	CL28Z	0.100	ND	Ř
		•							40.44		-

	Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,	Value	Flag	Internal Std. Code
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	CLC6H5	0.001	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	CS2	0.004	LT	
	13884	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	DBRCLM	0.003	LŦ	
	13\$84 13\$84	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LX19	ETC6H5	0.002	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	ugg Ugg	LM19 LM19	MEC6H5 MEK	0.001 0.070	LT LT	
	13584	RF1S*12	CSO	28-aug-1991	10.0	UGG	LH19	MIBK	0.027	LT	
	13SB4	RFIS*12	CSO	26-aug-1991	10.0	UGG	LH19	MNBK	0.032	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LX19	STYR	0.003	LT	
	13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	T13DCP TCLEA	0.003	LT	
	13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LH19	TCLEE	0.002 0.001	LT LT	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LŤ	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN19	XYLEN	0.002	LT	
	13SB4	RFIS*12	CSC	28-aug-1991	10.0	UGG	JD 19	AS	0.920		
	13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	JD15 UM18	SE 124TCB	0.250	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18	120CLB	0.040 0.110	LT LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	120PH	0.140	ND	R
	13584	RFIS*12	ÇSO	28-aug-1991	10.0	UGG	LM18	13DCLB	0.130	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	14DCLB	0.098	LT	
	13584 13584	RF1S*12 RF1S*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	L)X18 L)X18	2451CP 2461CP	0.100	LT	
	13\$84	RFIS*12	CSC	28-aug-1991	10.0	UGG	LX18	24DCLP	0.170 0.180	LT LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	24DMPH	0.690	LŤ	
-	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LX18	24DNP	1.200	LT	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	24DNT	0.140	LT	
	13\$84 13\$84	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LR18	26DNT 2CLP	0.085	LT	
	13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LM18 LM18	2CHAP	0.060 0.036	L? LT	
	13584	RF1\$*12	CSO	28-aug-1991	10.0	UGG	LN18	ZMNAP	0.049	ŁĪ	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	2MP	0.029	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	2NANIL	0.062	LT	
	13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LM18	2MP 33DCBD	0.148	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18 LN18	SNANIL	6.300 0.450	LT LT	
	13584	RFIS*12	CSC	28-aug-1991	10.0	UGG	LH18	46DN2C	0.550	LT	
	13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	48RPPE	0.033	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LX18	4CANIL	0.810	LT	
	13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	4CL3C 4CLPPE	0.095	LT	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	4MP	0.033 0.240	LT LT	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LX18	4NANIL	0.410	LT	
	13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18	4NP	1.400	LT	
	13\$84	RFIS*1Z	CSO	28-aug-1991	10.0	UGG	LM18	ABHC	0.270	ND	Ř
	13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	ACLDAN AENSLF	0.330 0.620	ND ND	R
	13SB4	RFIS*12	cso	28-aug-1991	10.0	UGG	LM18	ALDRN	0.330	NO NO	R R
	13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LM18	ANAPNE	0.036	LT	•
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	ANAPYL	0.033	ĻŢ	
	13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991	10.0	UGG	LM18	ANTRO	0.033	LT	
	13S84	RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LM18 LM18	82CEXH 82CIPE	0.059 0.200	LT LT	
	13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	B2CLEE	0.033	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UCG	LN18	B2EHP	0.620	ĹŤ	
	13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	BAANTR	0.170	LŤ	
	13\$84 13\$84	RFIS*12	CSO	28-aug-1991	10.0 10.0	UGG	UN18	BAPYR	0.250	LT	
	13884	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0	ugg ugg	lm18 lm18	BSFANT BSHC	0.210 0.270	LT ND	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	UN18	BRZP	0.170	LT	R
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	UI18	BENSLF	0.620	MD	R
	13\$84	RFIS#12	CSO	28-aug-1991	10.0	UCG	LH18	BENZID	0.850	NO	R
	13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18	BENZOA	6.100	ND	R
	13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	BCHIPY	0.250	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18	BKFANT BZALC	0.066 0.190	LT LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	CHRY	0.120	LT	
	13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	CL68Z	0.033	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UCG	LH18	CL6CP	6.200	LT	
	13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	CL6ET	0.150	LT	
	13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	DBAHA DBHC	0.210 0.270	LT ND	R
	13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LN18	DBZFUR	0.035	LT	
	13584	RF15*12	CSO	28-aug-1991	10.0		LH18	DEP	0.240	ĻŢ	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	DLDRN	0,310	ND	R
13584	RFIS*12	cso	28-aug-1991	10.0	UGG	LH18	DMP	0.170	LT	**
13584 13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LX18	DNBP	0.061	LT	
13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	DNOP ENDRN	0.190 0.450	LT ND	
13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	UM18	ENDRNA	0.530	ND	R R
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	ENDRNK	0.530	ND	Ř
13SB4	RF15*12	CSO	28-aug-1991	10.0	UGG	LH18	ESF\$Q4	0.620	ND	R
13584 13584	RF15*12 RF15*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LN18	FANT	0.068	LT	
13884	RFIS*1Z	cso	28-aug-1991	10.0	UGG	LM18 LM18	FLRENE GCLDAN	0.033 0.330	LT ND	R
13584	RFIS*12	ÇSO	28-aug-1991	10.0	UGG	LN18	HCSD	0.230	LT	•
13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	HPCL	0.130	ND	R
13SB4	RF1S*12	CSC	28-aug-1991	10.0	UCG	LM18	HPCLE	0.330	ND	R
13SB4 13SB4	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ICDPYR ISOPHR	0.290 0.033	LT	
13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LX18	LIN	0.270	LT ND	R
13884	RFIS*1Z	CSO	28-aug-1991	10.0	UGG	LM18	MEXCLR	0.330	ND	Ř
13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	NAP	0.037	LT	
13\$84 13\$84	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LM18	KB	0.045	LT	_
13984	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18 LM18	NNDMEA NNDNPA	0.140 0.200	MD LT	·R
13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LH18	NNDPA	0.190	LT	
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UCG	LN18	PCB016	1.400	ND	R
13SB4 13SB4	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	PCB221 PCB232	1.400	ND	R
13584	RFIS*1Z	cso	28-aug-1991	10.0	UGG	LN 18	PC8232 PC8242	1.400	ND CN	R R
13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18	PCB248	2.000	ND	Ř
13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	LH18	PCB2S4	2.300	MD	R
13584 13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	LN18	PC8260	2.600	ND	R
13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LN18 LN18	PCP PHANTR	1.300 0.033	LT LT	
13584	RF15*12	CSO	28-aug-1991	10.0	UGG	LH18	PHENOL	0.110	LT	
13\$84	RFIS*12	CSO	28-sug-1991	10.0	UGG	LM18	PPODD	0.270	HD	R
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	LM18	PPDDE	0.310	ND	R
13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	PPDDT PYR	0.310 0.033	HĎ LŤ	R
13S84	RF15*12	CSO	28-aug-1991	10.0	UGG	LN18	TXPHEN	2,600	ND	R
13\$84	RFIS*12	CSO	28-eug-1991	10.0	UGG	J\$16	AG	0.957		~
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	J\$16	AL	14100.000		
13584 13584	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	JS16 JS16	BA Be	175,000 2,110		
13SB4	RFIS*12	CSO	28-sug-1991	10.0	UGG	JS16	CA	2930,000		
13584	RF15*12	CSO	28-eug-1991	10.0	UGG	J\$16	20	0.700	LT	
13\$84	RF15*12	CSO	28-aug-1991	10.0	UGG	JS16	œ	13.100		
13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	1\$16 1816	CR CJ	30.000 12.200		
13584	RFIS*12	ÇSO	28-aug-1991	10.0	UGG	JS16	FE	20300.000		
13584	RFIS*12	CSO	28-aug-1991	10.0	UGG	JS16	K	1150.000		
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	J\$16	MG	3950.000		
13\$84 13\$84	RFIS*12 RFIS*12	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	1516 1516	MN NÁ	690.000 322.000		
13584	RF15*12	ÇSQ	28-aug-1991	10.0	UGG	JS16	NI NO	18.300		
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	J\$16	PB	17,900		
13\$84	RFIS*12	CSO	28-aug-1991	10.0	UGG	J\$16	SB	7.140	LT	
13584 13584	RFIS*12 RFIS*12	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	JS16	TL	6.620	LŤ	
13SB4	RFIS*12	CSO	28-aug-1991	10.0	UGG	JS16 JS16	V ZN	34.400 91.300		
13SB5	RF1S*13	CSO	22-aug-1991	0.5	UGG	LM19	111105	0.004	LT	
13\$B5	RF15*13	CSO	22-aug-1991	0.5	UGG	LH19	112TCE	0.005	LT	
13585 13585	RFIS*13	CSO	22-eug-1991	0.5	UGG	LH19	110CE	0.004	LT	
13585	RFIS*13 RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LH19 LH19	11DCLE 12DCE	0.002 0.003	lt Lt	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN19	12DCLE	0.002	ĽŢ	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM19	12DCLP	0.003	LT	
13585	RF15*13	CSO	22-aug-1991	0.5	UGG	LN19	2CLEVE	0.010	ND	R
13585 13585	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LM19	ACET	0.017	LT	
13\$85	RFIS*13	CZO	22-aug-1991	0.5	UGG	LH19 LH19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM19	BRDCLM	0.003	LT	•
13SB5	RF1S*13	CSO	22-aug-1991	0.5	UGG	LN19	C13DCP	0.003	LT	
13585 13585	RF1S*13	CSO	22-aug-1991	0.5	UGG	LN19	C2AVE	0.003	LT	
13585	RFIS*13 RFIS*13	cso CSB	22-aug-1991 22-aug-1991	0.5 0.5	ugg Ugg	1,N19 1 H10	C2H3CL	0.006	LŤ	
دودي	KL19 []	-3U	CT-908-133	U.3	044	LN19	C2H5CL	0.012	LT	

Site ID	Field ID	<u>Xedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry	Value	Flag	Internal Std. Code
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN19	C6H6	0.002	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH19	CCL3F	0.006	LT	
13585	RFIS*13	ÇSO	22-aug-1991	0.5	UGG	LH19	CCL4	0.007	LŤ	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM19	CH2CL2	0.012	LT	
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM19	CH3BR	0.006	LT	
13585	RFIS*13	CSD	22-aug-1991	0.5	UGG	LX19	CH3CL	0.009	LT	
13585 13685	RFIS*13 RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg Ugg	LM19 LM19	CHBR3 CHCL3	0.007 0.001	LT	
13885	RF15*13	CSO	22-aug-1991	0.5	UGG	LN19	CL2BZ	0.100	LT ND	R
13985	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH19	CLC6H5	0.001	LT	•
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN19	CS2	0.004	LT	
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH19	DBRCLM	0.003	LT	
13585	RFIS*13	CSO	22-eug-1991	0.3	UGG	LH19	ETCSH5	0.002	LT	
13885 13885	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	MECSH5	0.001	LŢ	
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM19	MIBK MEK	0.070 0.027	LT LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN19	MNBK	0.032	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH19	STYR	0.003	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH19	T13DCP	0.003	ĹŢ	
13585	RF15*13	ÇSO	22-aug-1991	0.5	UGG	LM19	TCLEA	0.002	LT	
13585	RFIS*13	CSO	22-sug-1991	0.5	UGG	U119	TCLEE	0.001	LT	•
13585 13585	RFIS*13 RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LX19 LX19	TRCLE	0.003 0.002	LŤ	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	J801	HG	0.050	LT LT	
13585	RF15*13	CSO	22-aug-1991	0.5	UGG	LW1Z	135TNB	0.488	ĹŤ	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LW12	13DNB	0.496	LT	
13985	RF15*13	CSO	22-aug-1991	0.5	UGG	LW12	246TNT	0.456	LT	
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LW12	24DRT	0.424	LT	
13585 13 <b>585</b>	RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LU12	26DHT	0.524	LŢ	
13885	RFIS*13 RFIS*13	CSO	22-aug-1991	0.5	UGG	LW12 LW12	HAX NB	0.666 2.410	LT LT	
13985	RFIS*13	CSO	22-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LW12	TETRYL	0.731	ĹŤ	
13\$85	RF15*13	CSO	22-aug-1991	0.5	UGG	LN18	124TCB	0.040	ĻŤ	
13885	RFIS*13	cso	22-aug-1991	0.5	UGG	LN18	12DCLB	0.110	L1	
13\$85	RF15*13	CSO	22-aug-1991	0.5	UGG	LM18	120PH	0.140	HD	R
13\$85 13\$85	RFIS*13 RFIS*13	CZO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	130CL8 140CL8	0.130 0.098	LT LT	
13585	RF15*13	C20	22-aug-1991	0.5	UGG	LN18	245TCP	0.100	LT	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	246TCP	0.170	LT	
13\$B5	RF1S*13	CSO	22-aug-1991	0.5	UGG	LM18	24DCLP	0.180	LT	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	24DMPN	0.690	LT	
13885 13885	RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LN18	240MP	1.200	LT	
13\$85	RFIS*13 RFIS*13	CSO	22-aug-1991	0.5	UGG	1418 1418	24DNT 26DNT	0.140 0.085	LT LT	
13SB5	RFIS*13	cso	22-aug-1991	0.5	UGG	UM18	2CLP	0.060	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	UH18	2CNAP	0.036	LT	
13\$85	RF15*13	CSO	22-aug-1991	0.5	UGG	LM18	ZKNAP	0.049	LT	
13\$85	RFIS*13	CSO	22-eug-1991	0.5	UGG	LH18	2HP	0.029	LT	
13SB5	RF1S*13	CSC	22-aug-1991	0.5	UGG	UH18	ZHANIL	0.062	LT	
13\$85 13\$85	RF1S*13 RF1S*13	CSO	22-sug-1991 22-sug-1991	0.5 0.5	UGG UGG	LN18 LN18	2NP 33DCBD	0.140 6.300	LT LT	
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	SHANIL	0.450	LT	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	46DNZC	0.550	ĹŤ	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	48RPPE	0.033	ĻŢ	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	UI18	4CANIL	0.810	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	4CL3C	0.095	LT	
13585 13585	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	4CLPPE 4MP	0.033 0.240	LT LT	
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LK18	ANANIL	0.410	LT	
13585	RF1S*13	CSO	22-aug-1991	0.5	UGG	LN18	4NP	1.400	LT	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LK18	ABHC	0.270	XD	R
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	ACLDAN	0.330	MD	R
13\$85	RFIS*13	CSC	22-aug-1991	0.5	UGG	LN18	AENSLF	0.620	NO.	R
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	ALDRN	0.330	XO.	R
13585	RFIS*13	CSO	22-aug-1991	0.5 0.5	UGG	LM18	ANAPNE	0.036	LT	
13585 13585	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5	ugg ugg	LM18 LM18	ANAPYL ANTRO	0.033 0.033	LT LT	
138B5	RFIS*13	CSQ	22-aug-1991	0.5	UGG	LM18	B2CEXM	0.059	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LX18	B2CIPE	0.200	LT	
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	B2CLEE	0.033	ĹŤ	
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	BZEHP	0.620	ĻT	
13585	RFIS*13	CSO	22-sug-1991	0.5	UGG	LM18	BAANTR	0.170	LT	
13SB5	RFIS*13	CSO	22-sug-1991	0.5	UGG	LH18	BAPYR	0.250	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	Units	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	BBFANT	0.210	LŤ	
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	BBHC	0.270	NO	R
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	BBZP	0.170	LT	
13\$85 13\$85	RF15*13 RF15*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LM18 LM18	BENSLF BENZID	0.620	ND	R
13SB5	RFIS*13	cso	22-aug-1991	0.5	UGG	LH18	BENZOA	0.850 6.100	ND ND	R R
13985	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	BGHIPY	0.250	LT	•
13985	RFIS*13	cso	22-aug-1991	0.5	UGG	UN18	BKFANT	0.066	LT	
13885 13885	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LM18	BZALC	0.190	LŢ	
13585	RFIS*13	cso	22-aug-1991	0.5	ugg ugg	LN18 LN18	CHRY CL68Z	0.120 0.033	LT LT	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	CL6CP	6.200	ĹΪ	
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGĞ	LH18	CL6ET	0.150	LŢ	
13885 13885	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	DBAHA DBHC	0.210	LŤ	_
13885	RF15*13	ÇSO	22-aug-1991	0.5	220	LN18	DBZFUR	0.270 0.035	ND LT	R
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	DEP	0.240	LŤ	
13585 13585	RF1S*13	C\$O	22-aug-1991	0.5	UGG	LN18	DLDRN	0.310	ND	R
13\$85	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	DMP DNBP	0.170 0.337	LT	
13SB5	RF1S*13	CSO	22-mug-1991	0.5	UGG	LM18	DNOP	0.190	LT	
13\$B5	RF15*13	CSO	22-aug-1991	0.5	UGG	LH18	EHDRN	0.450	ND	R
13585 13585	RFIS*13 RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18	ENDRNA	0.530	ND	R
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18 LM18	ENDRNK ESF\$04	0.530 0.620	ND ND	R R
135B5	RFIS*13	CSO	22-eug-1991	0.5	UGG	LH18	FANT	0.068	LT	•
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	FLRENE	0.033	LT	
13\$8 <b>5</b> 13\$85	RFIS*13 RFIS*13	CSO CSO	22-sug-1991	0.5	ugg ugg	LM18	GCLDAN	0.330	ND	R
13885	RF15*13	CSC	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LM18 LM18	HC8D HPCL	0.230 0.130	LT ND	R
13\$85	RF15*13	CSO	22-aug-1991	0,5	UGG	U118	HPCLE	0.330	ND	Ř
13985	RFIS*13	CSO	22-sug-1991	0.5	UGG	LM18	ICOPYR	0.290	LT	
13585 13585	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg	LH18	ISOPHR	0.033	LT ND	
13\$85	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18 LH18	LIN MEXCLR	0.270 0.330	ND	R R
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	NAP	0.037	LT	•
13585	RFIS*13	CSO	22-eug-1991	0.5	UGG	LN18	NB	0.045	LT	_
13885 13885	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	NNDNPA	0.140 0.200	ND LT	R
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	NNDPA	0.190	LT	
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	PC8016	1.400	ND	R
13 <b>585</b> 13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LN18	PCB221	1.400	ND	R
13SB5	RFIS*13 RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	uge	LM18 LM18	PCB232 PCB242	1.400 1.400	ND ND	R R
13SB5	RF1S*13	CSO	22-aug-1991	0.5	UGG	LM18	PCB248	2.000	ND	Ř
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	PCB254	2.300	ND	R
13885 13885	RFIS*13 RFIS*13	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	UN18	PC8260	2.600	ND	R
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18 LM18	PCP PHANTR	1.300 0.033	LT LT	
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	LM18	PHENOL	0_110	LT	
13585	RFIS*13	ÇSO	22-aug-1991	0.5	UGG	LN18	PPODD	0.270	ND	R
13585 13585	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	UN18 UN18	PPODE PPODT	0.310 0.310	ND ND	R R
13585	RFIS*13	cso	22-aug-1991	0.5	UGG	LN18	PYR	0.033	LT	ĸ
13585	RFIS*13	CSO	22-aug-1991	0.5	UGG	LH18	TXPHEN	2.600	ND	R
13 <b>585</b> 13 <b>585</b>	RFIS*13 RFIS*13	CSO	22-aug-1991	0.5 0.5	UGG	LM18	UNK595	0.225		S
13885	RF15-13	CSO	22-aug-1991 22-aug-1991	0.5	UGG UGG	LM18 LM18	UNK607 UNK610	0.787 1.120		S S
13585	RFIS*13	CSO	22-aug-1991	0,5	UGG	JD19	AS	1.090		•
13SB5	RFIS*13	CSO	22-aug-1991	0.5	UGG	JD15	SE	0.250	LT	
13885 13885	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	J\$16	AG	0.811		
13985	RF15*13	CSO	22-aug-1991	0.5	UGG	1216 1216	AL BA	8840.000 104.000		
13SB5	RFI S*13	cso	22-aug-1991	0.5	UGG	JS16	BE	1.540		
13585	RFIS*13	CS0	22-aug-1991	0.5	UGG	<b>6</b> 12L	CA	3810.000	. –	
13\$85 13\$85	RF1S*13 RF1S*13	CSC	22-aug-1991	0.5	UGG	JS16	8	0.700	LT	
13885	RF15*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	JS16 JS16	CO CR	8.020 20.000		
13885	RF1S*13	CSO	22-aug-1991	0.5	UGG	JS16	ä	11.500		
13SB5	RF1\$*13	CSO	22-aug-1991	0.5	UGG	JS16	FE	13900.000		
13585 13585	RFIS*13 RFIS*13	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg	JS16	K	1420.000		
13885	RFIS*13	CSO	22-sug-1991	0.5	UGG	JS16 JS16	MG MN	3100.000 437.000		
13885	RFIS*13	CSO	22-aug-1991	0.5	UGG	J\$16	HA	300.000		

13685   RF18*13   CS0   Z2-mg-1991   0.5   UGG   J516   N1	Site ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13865	17coE	DE10#13	ren	77	0.5	Hee	1614	u+	** ***		
13885											
13885					0.5					LT	
13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   111TCE   O.004   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   111TCE   O.005   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   112TCE   O.005   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   112TCE   O.005   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   110TCE   O.005   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   120TLE   O.002   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   120TLE   O.002   L17   13885   RF18*14   CSO   22-way-1991   S.O   UGG   L919   120TLE   O.003   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17   L17		_							6.620		
13885											
13885			-							17	
13885					_						
13885											
13885											
13885											
13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   ACRUL   0.100   MD   R   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   ACRUL   0.100   MD   R   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   ACRUL   0.100   MD   R   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   BRDCLA   0.003   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CP   0.003   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.006   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.006   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.006   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C219CL   0.007   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C129C   0.001   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C129C   0.001   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C129C   0.001   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C129C   0.001   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   C129C   0.001   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   DRCUM   0.003   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   DRCUM   0.003   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   RECOM   0.003   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   RECOM   0.003   LT   13885   RF18*14   CSO   22-aug-1991   5.0   UGG   LM19   RECOM   0.00	13SB5			•	5.0						
13885				· ·					·		R
13885								-			
13585   RF18*14   CSO   22-aug-1991   5.0   UGG											
13885   RFIS**14   CSO   22-mag**-1991   S.O   UGG				22-sug-1991						LT	
13885   RF18*14   CSO   22-aug-1991   5.0   UGG											
13885											
13585											
13885						-			0.002	LT	
13585				-							
13885											
	13585				5.0	_		CH38R			
13585				₹ .						LT	
13585											
13585											P
13885	13\$85	RFIS*14			5.0	UGG					•
13585   RFIS*14   CSC   22-aug-1991   5.0   UGG											
13885   RFIS*14   CSO   22-aug-1991   5.0   UGG				<del>-</del>							
13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   MEK   0.070   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   MIBK   0.032   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   MIBK   0.032   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   T13DCP   0.003   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   T13DCP   0.003   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   T13DCP   0.003   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   TCLEA   0.002   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   TCLEA   0.001   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   TRCLE   0.001   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   TRCLE   0.002   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   TRCLE   0.002   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM19   TRCLE   0.002   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   T35TMB   0.488   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   T35TMB   0.486   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   245TMT   0.456   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   245TMT   0.456   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   245TMT   0.456   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   245TMT   0.456   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   245TMT   0.456   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   245TMT   0.456   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM12   TETRY   0.731   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM18   124TCB   0.040   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM18   124TCB   0.040   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM18   124TCB   0.100   LT     13885   RF15*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13885   RF15*14   CSO   22-aug-19											
13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   STYR   0.032   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   STYR   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TISDCP   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM19   TICLEA   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   TICLEA   0.005   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   TICLEA   0.456   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   2467NT   0.456   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   2467NT   0.456   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   2467NT   0.456   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   RDX   0.666   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   RDX   0.666   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM12   TETRYL   0.731   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   TETRYL   0.731   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   TETRYL   0.731   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   TETRYL   0.731   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   TETRYL   0.731   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   TETRYL   0.731   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13885   RFIS*14   CSC   22-au											
13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   T13DCP   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   T13DCP   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   TCLEA   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   TCLEE   0.001   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   TCLEE   0.001   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   TCLEE   0.003   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   XYLEN   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN19   XYLEN   0.002   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   135TNB   0.488   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   135TNB   0.488   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   240TT   0.456   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   240TT   0.456   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   240TT   0.424   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   240TT   0.566   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   240TT   0.566   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   RDX   0.587   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   RDX   0.587   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN12   RDX   0.587   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   124TCB   0.060   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   124TCB   0.060   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   120TCB   0.060   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   120TCB   0.060   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   240TP   0.160   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   240TP   0.160   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LN18   240TP   0.160   LT     13885   RFIS*14   CSC   22-aug-1991   5.0											
13885							-		–		
13885   RFIS*14   CSO   22-aug-1991   5.0   UGG	13885		CSO	-	5.0	UGG					
13885									_		
13585											
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   J801   HG   0.050   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   135788   0.488   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   135788   0.488   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   246787   0.456   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   246787   0.454   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   246787   0.454   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   MRX   0.666   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   RX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   RX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   RX   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   TETRYL   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY12   TETRYL   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   120CLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   120CLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   120CLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   120CLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   140CLB   0.098   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.0080   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LY18   240MPN   0.0090   LT     13585   RFIS*14   CSO   22-aug-1991				-							
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   13DNE   0.496   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   246TNT   0.456   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   240NT   0.424   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   240NT   0.524   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   240NT   0.524   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   RDX   0.666   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   RDX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   RDX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   TETRYL   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   126TCB   0.040   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   120DLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   130DLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   130DLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   130DLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   246TCP   0.170   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240NPM   0.690   LT     13585   RFIS*14   CSO   22-aug-1									0.050		
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   246NT   0.426   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   246NT   0.426   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   266NT   0.524   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   HRX   0.666   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   RBX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   RBX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH12   TETRYL   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   124TCB   0.040   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   120PH   0.140   MD   R     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   13DCLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   13DCLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   140CLB   0.098   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   245TCP   0.170   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.180   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.200   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.200   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LH18   240NP   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5											
13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW12   240NT   0.424   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW12   260NT   0.524   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW12   MNX   0.666   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW12   NB   2.410   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW12   RDX   0.587   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW12   TETRYL   0.731   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   124TCB   0.040   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   120CLB   0.110   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   120CLB   0.110   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   120CLB   0.140   ND   R     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   130CLB   0.130   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   245TCP   0.100   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   245TCP   0.100   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.170   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.160   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.160   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.160   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.160   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LW18   240TCP   0.000   LT     13885   RFIS*14   CSO   22-									•		
13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   NB   2.410   LT											
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   NB   2.410   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   RDX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   TETYL   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   1247CB   0.040   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   120CLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   120CLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   130CLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   130CLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DP   1.200   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DT   0.140   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DT   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DT   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DT   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DT   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240DT   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DAP   0.036   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DAP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DAP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DAP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DAP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DAP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.	13585										
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   RDX   0.587   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   124TCB   0.040   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   124TCB   0.040   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   12DPH   0.140   MD   R     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   13DCLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   13DCLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   14DCLB   0.098   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   246TCP   0.170   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   1.200   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.140   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.005   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   24DMP   0.006   LT     13585   RFIS*14   CSO   22-aug-1991											
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM12   TETRYL   0.731   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   124TCB   0.040   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   120CLB   0.110   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   120CLB   0.140   ND   R     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   130CLB   0.130   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   140CLB   0.098   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   246TCP   0.170   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.140   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.065   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.065   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.0060   LT     13585   RFIS*14											
13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 12DCLB 0.110 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 12DPH 0.140 MD R 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 13DCLB 0.130 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 14DCLB 0.098 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24STCP 0.100 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24GTCP 0.170 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24DMPM 0.690 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24DMPM 0.690 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24DMPM 0.690 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24DMP 1.200 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24DMP 0.140 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 24DMT 0.140 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 26DMT 0.085 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2CDMP 0.060 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2CDMP 0.060 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2CMP 0.060 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2CMP 0.064 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2CMP 0.064 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2MMAP 0.064 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2MMAP 0.062 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2MMAP 0.062 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2MMAP 0.062 LT 13S85 RFIS*14 CS0 22-aug-1991 5.0 UGG LM18 2MMAP 0.062 LT	13SB5	RF15*14	CSO	22-sug-1991	5.0	UGG	LW12	TETRYL			
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   12DPH   0.140   MD   R   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   13DCLB   0.130   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   14DCLB   0.098   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   246TCP   0.170   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.690   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.690   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.140   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.085   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.085   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.085   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.040   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT   13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT											
13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   13DCLB   0.130   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   14DCLB   0.098   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   246TCP   0.170   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.690   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.140   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.140   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.085   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.060   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.036   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.049   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.049   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.029   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-aug-1991   5.0 UGG   LM18   240MIL   0.062   LT     13885   RFIS*14   CSO   22-a											
13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   140CLB   0.098   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   245TCP   0.100   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   246TCP   0.170   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   0.690   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MPN   1.200   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.140   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.085   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MT   0.060   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.036   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.049   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.049   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MP   0.029   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0   UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-aug-1991   5.0 UGG   LM18   240MIL   0.062   LT     13585   RFIS*14   CSO   22-a	13885										
13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 246TCP 0.170 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DCLP 0.180 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DMPM 0.690 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DMP 1.200 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DMT 0.140 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 26DMT 0.085 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 26DMT 0.085 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CLP 0.060 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CMP 0.036 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MAP 0.049 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MAP 0.049 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MAP 0.029 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT 13585 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT				_	_		LH18				
13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   240CLP   0.180   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   240MPM   0.690   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   240MP   1.200   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   240MT   0.140   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   260MT   0.085   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   260MT   0.060   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2CMAP   0.036   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAP   0.049   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MP   0.029   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-aug-1991   5.0   UGG   LM18   2MAMIL   0.062   LT     13885   RFIS*14   CSC   22-au											
13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DMPW 0.690 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DMP 1.200 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DMT 0.140 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 26DMT 0.085 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CLP 0.060 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CMAP 0.036 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MAAP 0.049 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.062 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.140 LT				•							
13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DNP 1.200 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 24DNT 0.140 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 26DNT 0.085 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CLP 0.060 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CNAP 0.036 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MNAP 0.049 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.140 LT											
13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 26ONT 0.085 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CLP 0.060 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CNAP 0.036 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MNAP 0.049 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT 13S85 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.140 LT		- :::					LH18	24DNP	1.200	LT	
13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CLP 0.060 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CNAP 0.036 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MNAP 0.049 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2NANIL 0.062 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2NP 0.140 LT				-							
13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2CNAP 0.036 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MNAP 0.049 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.140 LT											
13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MNAP 0.049 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.029 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MANIL 0.062 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2MP 0.140 LT	13885	RFIS*14				UGG					
13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2NANIL 0.062 LT 13SB5 RFIS*14 CSO 22-aug-1991 5.0 UGG LM18 2NP 0.140 LT									2.7	LT	
13SB5 RFIS#14 CSO 22-aug-1991 5.0 UGG LM18 2NP 0.140 LT					_						
				-							

Site ID	<u> Field_10</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte _Abbrv.	Value	<u>Flag</u>	Internal Std. Code
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LM18	3NANIL	0.450	LT	
13\$85	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	46DNZC	0.550	ĻŢ	
13885	RF15*14	CSO	22-sug-1991	5.0	UGG	LM18	48RPPE	0.033	LT	
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	4CANIL	0.810	ĻŢ	
13885 13885	RFIS#14 RFIS#14	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LN18	4CL3C	0.095	LT	
13585	RFIS*14	CSC	22-aug-1991	5.0	UGG	LM18 LM18	4CLPPE 4MP	0.033 0.240	LT LT	
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	4NAN1L	0.410	LT	
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	4NP	1.400	LT	
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	ABHC	0.270	MD	R
13\$85 13\$85	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	ACLDAN AENSLF	0.330 0.620	ND ND	R R
13SB5	RF15=14	CZO	22-aug-1991	5.0	UGG	LM18	ALDRN	0.330	ND	Ř
13885	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	ANAPNE	0.036	LT	
13885	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	ANAPYL	0-033	LT	
13\$85 13\$85	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	ANTRO B2CEXXI	0.033 0.059	ĻŤ	
13\$85	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	BZCIPE	0.200	LT	
13885	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	B2CLEE	0.033	ĹŤ	
13585	RFIS*14	cso	2Z-aug-1991	5.0	UGG	LN18	B2EHP	0.620	LT	
13585 1358 <b>5</b>	RFIS*14 RFIS*14	CSO CSD	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LX18	BAANTR BAPYR	0.170	LT	
13585	RF15*14	CSC	22-aug-1991	5.0	UGG	LN18	BEFANT	0.250 0.210	LT LT	
13885	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	BBHC	0.270	MD	R
13\$85	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	BBZP	0. 170	LT	
135B5 135B5	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18" LM18	BENSLF	0.620	ND	R
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	BENZID BENZCA	0.850 6.100	ND ND	R R
13\$85	RF15*14	CSO	22-aug-1991	5.0	UGG	LH18	BGHIPY	0.250	ίŤ	•
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	BKFANT	0.066	LŤ	
13885 13885	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG	LN18	BZALC CKRY	0.190	LT	
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	UN18 UN18	CL6BZ	0.120 0.033	LT LT	
13585	RFIS=14	CSO	22-aug-1991	5.0	UGG	LN18	CLACP	6.200	LT	
13585	RFIS*14	CSO	22-eug-1991	5.0	UGG	LH18	CL6ET	0.150	LT	
13585 13 <b>585</b>	RFIS*14 RFIS*14	CSO	22-aug-1991	5.0	UGĞ	LM18	DBAHA	0.210	LŤ	_
13585	RFIS=14	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	DBHC DBZFUR	0.270 0.035	ND LT	R
13585	RF15*14	CSO	22-aug-1991	5.0	UGG	LN18	DEP	0.240	ĹŤ	
13SB5	RF15*14	CSO	22-aug-1991	5.0	UGG	LH18	DLDRN	0.310	HD	R
13585 13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LH18	DMP	0.170	LT	
13585	RF15*14	CSO	22-aug-1991	5.0	UGG	LM18 LM18	DNOP	0.861 0.190	LT LT	
13\$B5	RF15*14	CSO	22-aug-1991	5.0	UGG	LN18	ENDRN	0-450	ND	R
13\$85	RF15*14	CSO	22-aug-1991	5.0	UGG	LK18	EHDRNA	0.530	KD	R
13585 13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LX18 LX18	ENDRNK ESFS04	0.530 0.620	ND ND	R
13585	RF15*14	CSO	22-aug-1991	5.0	UGG	LN18	FANT	0.068	ĻŢ	R
13\$85	RF15*14	CSO	22-aug-1991	5.0	UGG	LM18	FLRENE	0.033	LT	
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	GÇLDAN	0.330	KD	R
13585 13585	RFIS*14 RFIS*14	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	HCBD HPCL	0.230 0.130	LT	
13585	RFIS=14	CSO	22-aug-1991	5.0	UGG	LM18	HPCLE	0.330	NO NO	R R
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	ICDPYR	0-290	LT	-
13585	RFIS*14	CSO	22-eug-1991	5.0	UGG	LM18	ISOPHR	0.033	LT	
13585 13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	LIN MEXCLR	0.270	ЖĎ	R
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18	NAP	0.330 0.037	MED LT	R
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LM18	NB	0.045	LT	
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LM18	KNONEA	0. 140	ND	R
13585 13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LN18	NNDNPA	0.200	LT	
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LN18 LN18	NNDPA PCB016	0.190 1.400	LT ND	R
13SB5	RFIS*14	¢\$0	22-aug-1991	5.0	UGG	LM18	PC8221	1.400	NO	Ř
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	PCB232	1.400	MD	R
13585 13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LM18	PCB242	1.400	ND	R
13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PCB248 PCB254	2.000 2.300	NED NED	R
13SB5	RFIS*14	cso	22-aug-1991	5.0	UGG	LM18	PCB260	2.600	NO NO	R R
13SB5	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	PCP	1.300	ίŤ	
1358 <b>5</b> 13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	PHANTR	0.033	LT	
13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	PHENOL PPODD	0.110	LŢ	9
13585	RF15*14	CSO	22-aug-1991	5.0	UGG	LM18	PPODE	0.270 0.310	ND ND	R R
								41210		

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13585	RFIS*14	cso	22-aug-1991	5.0	UGG	LM18	PPODT	0.310	ND	Ř
13885	RFIS*14	CSO	22-aug-1991	5.0	UGG	LH18	PYR	0.033	LT	*
13585	RFI\$*14	CSO	22-aug-1991	5.0	UGG	LM18	TXPHEN	2.600	ND	R
13585 13585	RFIS*14 RFIS*14	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	JD19 JD15	AS SE	0.250 0.250	LŢ	
13SB5	RF15*14	cso	22-aug-1991	5.0	UGG	JS16	AG	0.685	LŤ	
13885	RFIS*14	CSO	22-aug-1991	5.0	UCG	JS16	AL	8270.000		
13\$85 13\$85	RFIS*14 RFIS*14	C\$0	22-aug-1991 22-aug-1991	5.0 5.0	UGG	JS16 JS16	BA BE	94.500 1.350		
13\$85	RFIS*14	CSO	22-aug-1991	5.0	UGG	J\$16	CA	1480.000		
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	J\$16	CD	0.700	LT	
13\$85 13\$85	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG	1216 1216	CD CR	8.110 17.600		
13985	RFIS*14	CSO	22-aug-1991	5.0	LICC	J\$16	<u>m</u>	5.890		
13\$85	RFIS*14	CSO	22-aug-1991	5.0	UGG	J\$16	FE	12200.000		
13585 13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	312L 312L	K Mg	1390.000 2660.000		
13585	RFIS=14	CSO	22-aug-1991	5.0	UGG	JS16	MN	332.000		
13585	RFIS*14	CSO	22-aug-1991	5.0	UGG	J\$16	NA	273.000		
13\$85 13\$85	RFIS*14 RFIS*14	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	312L 312L	NI PB	11.200 10.500	LT	
13SB5	RF15*14	CSO	22-aug-1991	5.0	UGG	JS16	SB	7.140	ĹŤ	
13\$85 17685	RFIS#14	CSO	22-aug-1991	5.0 5.0	UGG	J\$16	TL.	6.620	ĻT	
13585 13585	RFIS*14 RFIS*14	CSO	22-aug-1991 22-aug-1991	5.0	UGG UGG	412L 412L	V 2N	21.000 60.200		
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19-	111TCE	0.004	LT	
13SB5 13SB5	RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0	UGG	LM19	112TCE	0.005	LT	
13885	RFIS*15 RFIS*15	CSC	22-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	11DCE 11DCLE	0.004 0.002	LT LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	12DCE	0.003	ĹŤ	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	12DCLE	0.002	LT	
13\$85 13\$85	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	12DCLP 2CLEVE	0.003 0.010	LT ND	R
13885	RFIS*15	CSO	22-aug-1991	10.0	LIGG	LX19	ACET	0.017	LT	^
13 \$85 13 \$85	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG	LM19	ACROLN	0.100	ND	R
13SB5	RF15*15	C20	22-aug-1991	10.0	UGG UGG	LH19 LH19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	C13DCP	0.003	ĹŤ	
13\$85 13\$85	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	CZAVE CZH3CL	0.003 0.006	LT LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	C2X5CL	9.012	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	C6H6	0.002	LT	
13\$85 13\$85	RF1S*15 RFIS*15	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	LM19 LM19	CCL3F CCL4	0.006 0.007	LT LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	CHZCLZ	0.012	LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0		LN19	CH3BR	0.006	LT	
13585 13585	RFIS*15 RFIS*15	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	CH3CL CHBR3	0.009 0.007	LT LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN19	CHCL3	0.001	ĹŤ	
13SB5	RF1\$*15	CSO	22-aug-1991	10.0	UGG	LN19	CL2BZ	0.100	ND	R
13585 13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	CLC6H5 CSZ	0.001 0.004	LT LT	
13585	RF1\$*15	CSO	22-aug-1991	10.0	UGG	LH19	DBRCLM	0.003	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN19	ETC6H5	0.002	LT	
13885 13885	RFIS*15 RFIS*15	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	LN19 LN19	MEC6HS MEK	0.070 0.070	LT LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	HIBK	0.027	ĻT	
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	MNBK	0.032	LT	
13\$85 13\$85	RFIS*15 RFIS*15	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	uce uce	LN19 LN19	STYR T130cp	0.003 0.003	LT LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM19	TCLEA	0.002	LT	
13S85	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH19	TCLEE	0.001	LT	
13 <b>585</b> 13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	TRCLE XYLEN	0. <b>003</b> 0.002	LT LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	JBO1	KG	0.050	LT	
13\$85 13\$85	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	LW12 LW12	135 TNB 13DNB	0.488 0.496	LT	
13\$85	RFIS*15	CSO	22-aug-1991	10.0	UGG	LW12	246TNT	0.456	LT LT	
13\$85	RF15*15	CSO	22-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	L¥12	26DNT	0.524	LT	_
13585 13585	RFIS*15 RFIS*15	C20	22-aug-1991 22-aug-1991	10.0 10.0	ugg ugg	LW12 LW12	HPCC NB	0.945 2.410	LT	C
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LW12	RDX	0.587	LT	
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	

						Analytical	Analyte			Internal
Site 10	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Method	Abbry.	Value	Flag	Std. Code
13\$85	RFIS*15	cso	22-aug-1991	10.0	UGG	LN18	124TCB	0.040	LT	
13SB5	RFIS*15	CZO	22-aug-1991	10.0	UGG	LM18	120CL8	0.110	ίŤ	
13985	RF1S*15	CSO	22-aug-1991	10.0	UGG	UM18	120PH	0.140	ND	R
13885	RF15*15	CSO	22-aug-1991	10.0	UGG	LM18	13DCLB	0.130	LT	
13885	RF15*15	CSO	22-aug-1991	10.0	UGG	LM18	14DCLB	0.098	LT	
13585 13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	LN18	245TCP	0.100	LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18 LM18	246TCP 24DCLP	0.170 0.180	LT LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LHIS	24DMPN	0.690	LŤ	
13SB5	RFIS#15	CSO	22-eug-1991	10.0	UGG	LH18	24DNP	1.200	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	24DHT	0,140	LŢ	
13585	RFIS#15	CSO	22-aug-1991	10.0	UGG	LN18	26DNT	0.085	LT	
13585 13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	UN18	2CLP	0.060	LT	
13585	RFIS#15 RFIS#15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	2CNAP 2MNAP	0.036 0.049	LT LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	SHID.	0.029	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	ZNAHIL	0.062	LT	
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	2NP	0.140	LT	
13SB5	RF15*15	CSO	22-aug-1991	10.0	UGG	LM18	330C8D	6.300	LT	
13SB5	RFIS*15	CSO	22-eug-1991	10.0	UGG	LM18	3NAN I L	0.450	LŤ	
13585 13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	460NZC	0.550	LT	
13585	RF1S*15 RF1S*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg	1,M18 1,M18	4BRPPE 4CANIL	0.033	LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	4CL3C	0.810 0.095	LT LT	
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	4CLPPE	0.033	LŤ	
13SB5	RFIS#15	CSO	22-aug-1991	10.0	UGG	LN18	4149	0.240	LT	
13SB5	RF1S*15	CSO	22-aug-1991	10.0	UGG	LM18	4NAN!L	0.410	LT	
13585	RFIS*15	CSO	22-eug-1991	10.0	UGG	LM18	4NP	1.400	ĻT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN18	ABHC	0.270	ND	R
13585 13585	RF15*15	CSO	22-aug-1991	10.0	UGG	LN18	ACLDAM	0.330	ND:	R
13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	AENSLF ALDRN	0.620 0.330	ND	R R
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	ANAPNE	0.036	NÓ LT	ĸ
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	ANAPYL	0.033	ĹŤ	
13885	RF1S*15	ÇSO	22-aug-1991	10.0	LIGG	LM18	ANTRO	0.033	LT	
13\$85	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	82CEXM	0.059	LŤ	
13\$85	RFIS*15	CZC	22-aug-1991	10.0	UGG	LM18	82CIPE	0.200	LT	
13\$85	RF1S*15	CSO	22-aug-1991	10.0	UGG	LM18	BZCLEE	0.033	LT	
13\$85 13\$85	RFIS*15 RFIS*15	CSO CSO	22-sug-1991 22-sug-1991	10.0 10.0	ugg Ugg	LM18 LM18	B2EHP BAANTR	0.620 0.170	LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	BAPYR	0.250	LT LT	
13585	RF1S*15	CSO	22-aug-1991	10.0	UGG	LM18	BBFANT	0.210	LT	
13585	RFI S*15	CSO	22-aug-1991	10.0	UGG	LN18	BBHC	0.270	ND	R
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	B8ZP	0.170	ĻT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0.		LM18	Benslf	0.620	MD:	Ř
1358 <b>5</b> 1358 <b>5</b>	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN18	BENZID	0.850	ND	R
13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	BENZOA BGHIPY	6.100 0.250	ND LT	R
13585	RFIS*15	CZO	22-aug-1991	10.0	UGG	LM18	BKFANT	0.066	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN18	BZALC	0.190	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	ŲGG	LN18	CHRY	0,120	ĹŤ	
13885	RF15*15	CSO	22-aug-1991	10.0	UGG	LH18	CL68Z	0.033	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	CL6CP	6.200	LŤ	
13\$85 13\$85	RFIS*15 RFIS*15	CSC	22-aug-1991	10.0	UGG	LM18	CL6ET	0.150	LT	
13885	RF15-15	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	DBAKA DBKC	0.210	LT	
13585	RF15*15	CSO	22-aug-1991	10.0	UGG	LM18	DBZFUR	0.270 0.035	ND LT	R
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	DEP	0.240	LT	
13SB5	RFIS*15	CSO	22-eug-1991	10.0	UGG	LH18	DLDRN	0.310	MD	R
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN18	DMP	0.170	LT	-
13585	RFIS*15	CSO	22-aug-1991	10.0	UCG	LH18	DNBP	0.061	LT	
13585	RF15*15	ÇSO	22-aug-1991	10.0	UGG	LM18	DNOP	0.190	LŤ	
13585 13585	RF1S*15	CSO	22-aug-1991	10.0	UGG	LM18	ENDRIN	0.450	KD VS	R
13585	RFIS*15 RFIS*15	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG	LM18	ENDRNA	0.530	ND:	R
13585	RFIS*15	CSO	22-aug-1991	10.0	ugg ugg	LM18 LM18	ENDRNK ESFSO4	0.530 0.620	ND ND	R R
13SB5	RF15*15	CSO	22-aug-1991	10.0	UGG	LN18	FANT	0.020	MD LT	K
13585	RFIS*15	cso	22-aug-1991	10.0	UGG	LM18	FLRENE	0.033	LT	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	GCLDAN	0.330	ND	R
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	HC8D	0.230	LT	
13885	RF1S*15	CSO	22-aug-1991	10.0	UGG	LH18	HPCL	0.130	ND	R
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LH18	HPCLE	0.330	MD	R
13585 13686	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	ICOPYR	0.290	LT	
13585	RFIS#15	CSO	22-aug-1991	10.0	UGG	LN18	ISOPHR	0.033	LT	

.. .....

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte _Abbrv.	<u>Velue</u>	<u>Flag</u>	Internal Std. Code
13885	RFIS*15	CSO	ZZ-aug-1991	10.0	UGG	LM18	LIN	0.270	NO	R
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LN18	MEXCLR	0.330	ND	Ř
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	NAP	0.037	LT	
13585 13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	NB NNDMEA	0.045	ĻŢ	
13585	RFIS*15	ÇSO	22-aug-1991	10.0	UGG	LX18	NNDNPA	0.140 0.200	ND LT	R
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	NMOPA	0.190	LT	
13585 13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg ugg	LN18	PCB016	1.400	ND	R
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LK18 LK18	PCB221 PCB232	1.400 1.400	ND NO	R R
13SB5	RFIS*15	CSO	22-aug-1991	10.0	LICC	LH18	PCB242	1.400	ND	Ř
13585	RFIS*15	CSO	22-aug-1991	10.0 10.0	UGG	LM18	PCB248	2.000	ND	R
13885 13885	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0	UGG	LM18 LM18	PCB254 PCB260	2.300 2.600	ND ND	R R
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	PCP	1.300	LT	7
13585 13585	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG	LM18	PHANTR	0.633	LT	
13585	RF15-15	CSO	22-aug-1991	10.0	UGG	LN18 LN18	PHENOL PPODD	0.110 0.270	LT ND	R
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	LM18	PPDDE	0.310	ND	Ř
13\$85	RFIS*15	CSO	22-aug-1991	10.0	UGG	LX18	PPODT	0.310	ND	R
13885 13885	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	PYR TXPHEN	0.033 2.600	LT ND	R
13\$85	RFIS*15	CSO	22-aug-1991	10.0	UGG	JD19	AS	0.500	LT	•
13885	RFIS*15	CZO	22-aug-1991	10.0	UGG	JD15	SE	0.250	LT	
13\$85 13\$85	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	JS16 JS16	AG AL	1.200		
13585	RF15*15	CSO	22-aug-1991	10.0	UGG	JS16	BA	188.000		
13885	RFIS*15	CSO	22-aug-1991	10.0	UGG	JS16	BE	2.460		
13885 13885	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	C.	3330.000 0.700	LT	
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	J\$16	89	14.700	Li	
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	J\$16	CR	32.800		
13885 13885	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	7219 7219	CU FE	12.200 21900.000		
13585	RFIS*15	CSO	22-aug-1991	10.0	UGG	JS16	ĸ	1450.000		
13SB5	RF15*15	CSO	22-aug-1991	10.0	UGG	J\$16	MG	4370.000		
13885 13885	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg ugg	3516 3516	MN NA	586.00 <b>0</b> 381.00 <b>0</b>		
13SB5	RFIS*15	CSO	22-aug-1991	10.0	UGG	JS16	IK	21.200		
13SB5	RFIS*15	C20	22-aug-1991	10.0	UGG	JS16	P <b>B</b>	17.300		
13885 13885	RFIS*15 RFIS*15	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	SB TL	7.140 6.620	LT LT	
13285	RFIS*15	CSO	22-aug-1991	10.0	UGG	JS16	Ϋ́	38.900	LI	
13\$85	RFIS*15	CSO	22-aug-1991	10.0	UGG	1S16	ZN	97.800		
13586 13586	VFSL*101 VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UH14 UH14	245TP 24D	0.170 0.802	LŢ	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	UH13	CLDAN	0.265	LT LT	
13SB6	VFSL*101	CSO	09-mer-1992	0.5	UGL	UK13	ENDRM	0.024	LT	
13586 13586	VFSL*101 VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UH13 UH13	HPCL LIN	0.042 0.051	LT LT	
13SB6	VFSL*101	CSO	09-mar-1992	0.5	ŲGL	UH13	MEXCLR	0.057	LT	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	UH13	TXPHEN	1.350	LT	
13886 13886	VFSL*101 VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	SD21 SD22	SE AS	3.020 2.540	LT LT	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	SB01	HG	0.243	LT	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	SS10	AG	4.600	LT	
13886 13886	VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	2210 2210	BA CD	613.0 <b>00</b> 4.010		
13SB6	VFSL*101	CSO	09-mar-1992	0.5	UGL	SS10	CR CR	6.020	LT LT	
13886	VFSL*101	CSO	09-mar-1992	0.5	UGL	SS10	PB	94.000		
13586 13586	VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UN20	11DCE 12DCLE	0.500	ĻŢ	
13SB6	VFSL*101 VFSL*101	CSO	09-mar-1992	0.5	UGL	UH20 UH20	C2H3CL	0.500 2.600	LT LT	
13SB6	VFSL*101	CZO	09-mar-1992	0.5	UGL	UH20	C6H6	0.500	LT	
135B6	VFSL*101	CSO	09-mar-1992	0.5	UGL	UM20	CCL4	0.580	LT	
13586 13586	VFSL*101 VFSL*101	C\$0	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UM20 UM20	CHCL3 CLC6H5	0.523 0.500	LT	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	UH20	HEK	6.400	ĹŤ	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	UNI20	TCLEE	1.600	LT	
13586 13586	VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	UM20 UM18	TRCLE 14DCLB	0.500 1.700	LT LT	
13\$86	VFSL*101	CSO	09-mar-1992	0.5	UGL	UN18	2457CP	5.200	LT	
13SB6	VF\$L*101	CSO	09-mar-1992	0.5	UGL	UN18	246TCP	4.200	LT	
13 <b>586</b>	VFSL#101	CSO	09-mar-1992	0.5	UGL	UM18	24DNT	4.500	LT	

\$ite ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method		<u>Value</u>	Flag	Internal Std. Code
13\$86	VFSL*101	CSO	09-mar-1992	0.5	UGL	UM18	2MP	3.900	LT	
13SB6	VF\$L*101	CSO	09-mar-1992	0.5	UGL.	UM18	3MP	3.900	ND	R
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	UM18	4MP	0.520	LT	
13586 13586	VFSL*101 VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	UM18 UM18	CL68Z CL6ET	1.600	ĻŢ	
13586	VFSL*101	CSO	09-mar-1992	0.5	UGL	UH18	HCBD	1.500 3.400	LT LT	
13586	VFSL*101	ÇSO	09-mar-1992	0.5	UGL	UH18	NB	0.500	LŤ	
13586	VFSL*101	CSO	09-mar-1992	0.5	uct.	UM18	PCP	18.000	LT	
13886 13886	VFSL*101	CSO	09-mar-1992 09-mar-1992	0.5 0.5	ugi. Ugl	UM18 UM18	PYRDIN	5.200 100.000	ND	R
13586	VFSL*101	cso	09-mar-1992	0.5	UGL	UN18	TNT LSO LINK 606	20.000		S S
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	JB01	HĢ	0.050	LT	•
13586	RF15*16	CSO	21-sug-1991	0.5	UGG	LW1Z	135TNB	0.488	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LW12 LW12	130NB 246TNT	0.496 29.000	LT	c
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LW12	240NT	0.761		C
13586	RFIS#16	CSO	21-aug-1991	0.5	UGG	LW12	SEDNT	0.524	LT	•
13886 13886	RF15*16	CSO	21-aug-1991	0.5 0.5	UGG	LW12	HMX	0.666	LT	
135B6	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5	UGG UGG	LW12 LW12	NB RDX	2.410 0.587	LT LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	L¥12	TETRYL	0.731	LT	
135B6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LN19	1117CE	0.004	LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM19	112TCE	0.005	LT	
13586 13586	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LH19 LH19	11DCE 11DCLE	0.004	LT LT	
13SB6	RFIS*16	CZC	21-aug-1991	0.5	UGG	LH19	120CE	0.002	LT	
13\$86	RF15*16	CSO	21-aug-1991	0.5	UGG	LH19	120CLE	0.002	LT	
13\$86	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH19	12DCLP	0.003	LT	_
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LH19 LH19	2CLEVE ACET	0.010 0.017	ND LT	R
13986	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH19	ACROLN	0.100	NO	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LN19	ACRYLO	0.100	ND	Ř
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH19	BRDCLM	0.003	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LN19 LN19	C130CP C2AVE	0.003 0.003	LT LT	
13586	RFIS*16	cso	21-aug-1991	0.5	UGG	LH19	CZH3CL	0.005	LT	
13586	RFIS#16	CSO	21-aug-1991	0.5	UGG	LN19	C2H5CL	0.012	LT	
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH19	C6H6	0.002	LT	
13586 13586	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LN19	CCL3F CCL4	0.006	LŢ	
13\$86	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM19 LM19	CH2CL2	0.007 0.012	LT LT	
135B6	RF15=16	CSO	21-aug-1991	0.5	UGG	LN19	CH3BR	0.006	ĹŤ	
13SB6	RF15*16	CSO	21-aug-1991	0.5	UGG	LH19	CH3CL	0.009	LT	
13586 13586	RFIS*16 RFIS*16	C20	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LH19	CHBR3 CHCL3	0.007	LŢ	
13586	RF15"16	CSC	21-aug-1991	0.5	ugg ugg	LM19 LM19	CL2BZ	0.001 0.100	LT MED	
13886	RF15*16	CSO	21-aug-1991	0.5	UGG	LM19	CLC6H5	0.001	ĹŤ	•
13586	RFIS*16	CZO	21-aug-1991	0.5	ACC	LM19	CS2	0.004	LT	
13\$86 13\$86	RFIS*16 RFIS*16	C20	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LH19	DBRCLM	0.003	LT	
13SB6	RF15*16	CSO	21-aug-1991	0.5	UGG UGG	LM19 LM19	ETCAHS MECAHS	0.002 0.001	LT LT	
13586	RF15#16	CSO	21-aug-1991	0.5	UGG	LM19	MEK	0.070	LT	
13586	RF15*16	CSO	21-aug-1991	0.5	UGG	LN19	MIBK	0.027	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-sug-1991	0.5	UGG	LM19	MNBK	0.032	LT	
13886	RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	STYR T130CP	0.003 0.003	LT LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LN19	TCLEA	0.002	LŤ	
13\$86	RFIS*16	czo	21-aug-1991	0.5	UGG	LH19	TCLEE	0.001	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LN19	TRCLE	0.003	LT	_
13\$86	RFIS*16	CSO CSO	21-aug-1991	0.5	UGG UGG	LM19 LM19	UNK074 UNK121	0.010 0.011		S S
13\$86	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH19	XYLEN	0.002	LT	•
13586	RFIS*16	CSC	21-aug-1991	0.5	UGG	LN18	124TCB	0.040	LT	
13586 13584	RF15*16	CSO	21-aug-1991	0.5	UGG	LM18	120CLB	0-110	LT	_
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	12DPH 13DCLB	0.140 0.130	HID LT	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	14DCLB	0.098	LT	
13886	RFIS*16	CSQ	21-aug-1991	0.5	UGG	LH18	245TCP	0.100	LŤ	
13586 13586	RFIS*16	CSC	21-aug-1991	0.5	UGG	LM18	246TCP	0.170	LT	
135B6 135B6	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LN18	24DCLP 24DMPN	0.180 0.690	LT LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18 LM18	240MPM 240MP	1.200	LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	24DNT	0.943		
13886	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	260NT	0.747		

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>flag</u>	Internet Std. Code
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	ZCLP	0.060	LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LN18	2CNAP	0.036	ĹΪ	
13\$86	RFIS*16	CSQ	21-aug-1991	0.5	UGG	LH18	ZMNAP	0.049	LŤ	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	ZNP	0.029	LT	
13586 13586	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	ZNANIL ZNP	0.062 0.140	LT LT	
13586	RF15*16	CSO	21-aug-1991	0.5	UGG	LH18	330CBD	6,300	LT	
13586	RF15*16	CSO	21-aug-1991	0.5	UGG	LM18	SMANIL.	0.450	LT	
13SB6	RFIS*16	CSO	21-sug-1991 21-sug-1991	0.5	UGG	LM18	46DN2C	0.550	LT	
13586 13586	RFIS*16 RFIS*16	CS0	21-aug-1991	0.5 0.5	ugg ugg	ln18 ln18	48RPPE 4CANIL	0.033 0.810	LT LT	
13586	RF15*16	cso	21-aug-1991	0.5	UGG	LH18	4CL3C	0.095	LŤ	
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	4CLPPE	0.033	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LM18 LM18	4MP 4NANIL	0.240 0.410	LT	
13586	RFIS*16	cso	21-aug-1991	0.5	UGG	LM18	4NP	1.400	LT LT	
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	ABHC	0.270	NO	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	ACLDAN	0.330	ND .	R
13\$86 13\$86	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	AENSLF ALDRN	0.620 0.330	ND ND	R R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LX18	ANAPNE	0.036	LT	. *
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	AKAPYL	0.033	LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LX18	ANTRO	0.033	LT	
13\$86 13\$86	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	B2CEXM B2CIPE	0.059 0.200	LT LT	
- 13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	BZCLEE	0.033	LT	
13586	RF1S*16	CSO	21-aug-1991	0.5	UGG	LM18	B2EHP	0.620	LT	
13586 13584	RFIS*16	czo	21-aug-1991	0.5	UGG	LN18	BAANTR	0.170	LŤ	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	BAPYR BBFANT	0.250 0.210	LT LT	
13586	RFIS#16	CSC	21-aug-1991	0.5	UGG	LN18	BBHC	0.270	NO	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	BEZP	0.170	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18	BENSLF	0.620	HD	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18 LM18	BENZID BENZOA	0.850 6.100	ND ND	R R
13\$86	RF15*16	CSO	21-aug-1991	0.5	UGG	LH18	BCHIPY	0.250	ĹŤ	•
13SB6	RFIS*16	cso	21-aug-1991	0.5	UGG	LN18	BKFANT	0.066	LT	
13886 13886	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	BZALC CHRY	0.190 0.120	LT LT	
13586	RF15*16	CSO	21-aug-1991	0.5	UGG	LM18	CL682	0.033	LT	
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	CL6CP	6.200	LT	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	CLÓET	0.150	LT	
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DBAKA DBAC	0.210 0.270	LT MD	R
135B6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	DEZFUR	0.035	ĹĬ	•
13586	RFIS*16	cso	21-sug-1991		UGG	LX18	DEP	0.240	LT	
13886 13886	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LN18 LN18	DLDRX DNP	0.310 0.170	ND LT	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	DNBP	0.194	LI	
13886	RFIS*16	CSO	21-aug-1991	0.5	UGG	LN18	DHOP	0.190	LŦ	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LN18	ENDRN	0.450	MD	R
13886 13886	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	ESFSO4	0.620	ND	R R
13586	RFIS*16	cso	21-aug-1991	0.5	UGG	LH18	FANT	0.068	i,T	"
13\$86	RFIS*16	CSO	21-aug-1991	0.5	UGG	LK18	FLRENE	0.033	LT	_
13586 13586	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	GCLDAN HCBD	0.330 0.230	ND LT	R
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	KPCL	0.130	ND	R
13SB6	RFIS*16	CS0	21-aug-1991	0.5	UGG	LH18	HPCLE	0,330	ND	R
13586 13686	RFIS*16	CSO	21-aug-1991	0.5	UGG	LX18	ICOPYR	0.290	LT	
13586 13586	RF15*16 RF15*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	ISOPHR LIN	0.033 0.270	LT MD	R
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	MEXCLR	0.330	ND	Ř
13586	RFIS=16	CSO	21-aug-1991	0.5	UGG	LN18	MAP	0.037	LT	
13586 13586	RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	UN18	NB	0.045	LT	_
13586	RFIS*16 RFIS*16	CSO CSO	21-aug-1991	0.5	ugg Ugg	LM18 LM18	NHOMEA NNONPA	0.140 0.200	MD Lt	R
13SB6	RFIS*16	CSO	21-sug-1991	0.5	UGG	LM18	MNDPA	0.640		
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	PCB016	1.400	ND	R
13886 13886	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18	PC8221 PC8232	1.400 1.400	ND ND	R
13586	RF15-10	CZO	21-aug-1991	0.5	UGG	LM18 LM18	PCB242	1.400	ND ND	R R
13586	RFIS*16	CZO	21-aug-1991	0.5	UGG	LH18	PC8248	2.000	ЖD	Ř

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13566	RFIS*16	cso	21-aust-1991	0.5	UGG	LH18	PC8254	2.300	ND	R
13\$86	RFIS*16	CSO	21-sug-1991	0.5	UGG	LM18	PCB260	2.600	ND	Ř
13\$B6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	PCP	1.300	ĻT	
13586	RFIS*16 RFIS*16	CSO	21-eug-1991	0.5	UGG	LH18	PHANTR	0.033	LT	
1358 <del>6</del> 13586	RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LM18 LM18	PHENOL PPODO	0.110 0.2 <b>7</b> 0	LT ND	
13286	RFIS*16	CSO	21-aug-1991	0.5	UGG	LH18	PPODE	0.310	ND DK	R R
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	PPODT	0.310	ND	Ř
13886 13886	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	PYR	0.033	LT	_
13586	RFIS*16 RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	TXPHEN UNK595	2.600 6.790	MD	R S
13SB6	RFIS*16	cso	21-aug-1991	0.5	UGG	LH18	UNK605	0.452		S
13SB6	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18	UNK607	2.260		\$
13886 13886	RFIS*16 RFIS*16	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18	UNK609	0.226		\$
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	LM18 JD19	unk610 As	2.260 1.110		\$
13886	RFIS=16	CSO	21-aug-1991	0.5	UGG	JD15	SE	0.250	LŤ	
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	JS16	AG	0.764		
138 <del>8</del> 6 13886	RF1S*16 RF1S*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	1516 1516	AL BA	10100.000		
13\$86	RF15*16	CSO	21-aug-1991	0.5	UGG	J\$16	BE 38	128,000 1,400		
13SB6	RFIS*16	¢\$0	21-aug-1991	0.5	UGG	JS16	CA	2520.000		
13586	RF15*16	CSO	21-aug-1991	0.5	UGG	JS16	<b>CD</b>	0.700	LT	
13586 13586	RF1S*16 RF1S*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg	JS16 JS16	CO CR	9.110 21.700		
13\$86	RF15*16	CSO	21-aug-1991	0.5	UGG	J\$16	ä	11.100		
13\$86	RFIS*16	CSO	21-eug-1991	0.5	UGG	J\$16	FE	17800.000		
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	J\$16	K	1480.000		
13586 13586	RFIS*16 RFIS*16	C20	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	JS16 JS16	MG MN	2800.000 643.000		
13886	RFIS*16	cso	21-aug-1991	0.5	UGG	J\$16	XA	261.000		
13586	RFIS*16	CSO	21-aug-1991	0.5	UGG	J\$16	NI	12,200		
13586 13586	RFIS*16 RFIS*16	CSO	21-aug-1991	0.5	UGG	JS16	PB	108.000		
13SB6	RFIS*16	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	JS16 JS16	SB TL	7.140 6.620	LT LT	
13\$86	RFIS*16	CSO	21-aug-1991	0.5	UGG	JS16	Ÿ	27.100	Ψ.	
135 <b>86</b>	RFIS*16	C2O	21-aug-1991	0.5	UGG	JS16	ZN	213.000		
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LK19	111TCE	0.004	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	ug <b>g</b> Ug <b>g</b>	LM19 LM19	112TCE 11DCE	0.005 0.004	LT LT	
13586	RF15*17	CSO	21-aug-1991	5.0	UGG	LH19	11DCLE	0.002	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH19	120CE	0.003	LT	
13586 13586	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LN19 LN19	12DCLE 12DCLP	0.002 0.003	LT LT	•
13SB6	RFIS*17	cso	21-aug-1991	5.0	UGG	LN19	2CLÉVE	0.010	KO	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN19	ACET	0.017	LT	-
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LH19	ACROLN	0.100	MD	R
13886	RFIS*17	CSO	21-aug-1991	5.0	ugg ugg	LN19 LN19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
13886	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH19	C13DCP	0.003	ĻŤ	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM19	C2AVE	0.003	LT	
13586 13586	RF1\$*17 RF1\$*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LH19	C2H3CL	0.006	LT	
135B6	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM19 LM19	CZXSCL C6X6	0.012 0.002	LT LT	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	UH19	CCL3F	0.006	ĹŤ	
13986	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM19	CCL4	0.007	LT	
13586 13 <b>58</b> 6	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LM19 LM19	CHZCL2 CH3BR	0.012 0.006	LT LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH19	CH3CL	0.009	LT	
13S8 <del>6</del>	RF1\$*17	CSO	21-aug-1991	5.0	UGG	LH19	CHBR3	0.007	LT	
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0	UGG	LH19	CHCL3	0.001	LT	_
13586	RFIS*17	CSO CSO	21-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	CL28Z CLC6H5	0.100 0.001	ND LT	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LK19	CS2	0.004	LT.	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN19	DBRCLM	0.003	LT	
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0	UGG	LN19	ETC6H5	0.002	LT	
13586	RFIS*17	CSO CSO	21-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	MEC6HS MEK	0.001 0.070	LT LT	
13586	RFIS*17	cso	21-aug-1991	5.0	UGG	LN19	MISK	0.027	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN19	MNBK	0.032	ĻŤ	
13586 13594	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM19	STYR	0.003	LT	
13\$86 13\$86	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LN19 LN19	T13DCP TCLEA	0.003 0.002	LT	
13586	RF15*17	CSO	21-aug-1991	5.0	UGG	LN19	TCLEE	0.001	LT LT	
•	·						·	-1441		

						Analytical	Analysia			T
Site ID	Field 1D	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>		Analyte Abbry,	Value	Flag	Internal Std. Code
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN19	TROLE	0.007		
13886	RFIS*17	CSD	21-aug-1991	5.0	UGG	LN19	TRCLE XYLEN	0.003 0.002	LT LT	
13\$86	RF15*17	CSO	21-aug-1991	5.0	UGG	JB01	HG	0.050	ĹŤ	
13886	RFIS=17	CSO	21-aug-1991	5.0	UGG	LW12	13STNB	0.488	LT	
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	13DNB 246TNT	0.496 0.456	LT LT	
13SB6	RFIS*17	cso	21-aug-1991	5.0	UGG	LU12	240NT	0.424	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LW12	260NT	0.524	LT	
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	HMX NB	0.666 2.410	LT LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LW12	RDX	0.587	LT	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	1,912	TETRYL	0.731	LT	
13886 13886	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg Ugg	LN18 LN18	124TCB 120CLB	0.040	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH18	120PH	0.110 0.140	LT NED	R
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	13DCLB	0.130	LT	•
13586	RF15*17	CSO	21-aug-1991	5.0	UGG	UN18	14DCLB	0.098	LT	
13886 13886	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	245TCP 246TCP	0.100 0.170	LT LT	
13586	RF15*17	cso	21-aug-1991	5.0	UGG	LH18	24DCLP	0.180	LT	
13\$B6	RF15*17	CSO	21-aug-1991	5.0	UGG	LH18	24DMPN	0.690	LT	
135B6	RFIS#17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18	240NP	1.200	LT	
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18 LN18	24DNT 26DNT	0.140 0.085	LT LT	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	LX18	2CLP	0.060	LT	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	2CXAP	0.036	LT	
13586 13586	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	L¥18 L¥18	ZNXAP ZNP	0.049 0.029	LT LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	2NANIL	0.062	LT	
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH18	2NP	0.140	LT	
13586 13686	RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LN18	330CB0	6.300	LT	
13586 13586	RFIS*17 RFIS*17	cso	21-aug-1991	5.0	ugg ugg	LM18 LM18	3NANIL 46DN2C	0.450 0.550	LT LT	
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	48RPPE	0.033	LT	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	UI18	4CANIL	0.810	LT	
13586 13586	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	4CL3C 4CLPPE	0.095 0.033	LT LT	
13\$86	RF15*17	CSO	21-aug-1991	5.0	UGG	LX18	4MP	0.240	LT	
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	4NANTL	0.410	LT	
13886	RFIS*17	C\$O	21-aug-1991	5.0	UGG	LM18	4NP	1.400	LT	_
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	ABHC ACLDAN	0.270 0.330	NED NED	R R
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH18	AENSLF	0.620	KD	Ř
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	ALDRN	0.330	MD	R
13\$86 13\$86	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	ANAPNE ANAPYL	0.036 0.033	ŁT LT	
13586	RFIS*17	cso	21-aug-1991	5.0	UGG	LN18	ANTRO	0.033	LT	
13886	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	B2CEXM	0.059	LT	
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	B2CLEE B2CLEE	0.200 0.033	LT LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LK18	92EHP	0.620	LT	
13886	RF15*17	CSO	21-aug-1991	5.0	UGG	LN18	BAANTR	0.170	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	BAPYR	0.250	LT	
13586 13586	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	1915 1918	B8FANT B8HC	0.210 0.270	LT ND	R
13SB6	RFIS*17	cso	21-aug-1991	5.0	UGG	LH18	BBZP	0.170	LT	•
13886	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH18	BENSLF	0.620	ND	R
13586 13586	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LN18 LN18	SENZID SENZOA	0.850 6.100	ND ND	R R
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	UN18	BGHIPY	0.250	ĻŢ	ж.
13\$B6	RFIS*17	CZO	21-aug-1991	5.0	UGG	LM18	BKFANT	0.066	LT	
13586	RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0	UGG	U18	BZALC	0.190	LT	
13586 13586	RFIS*17 RFIS*17	C20	21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	CHRY CL68Z	0.120 0.033	LT LT	
13586	RFIS*17	CSC	21-aug-1991	5.0	UGG	LH18	CLSCP	6.200	LT	
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	CI,6ET	0.150	LT	
13586 13586	RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LM18	DBAKA	0.210	LT	_
13886	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0	UGG	LN18 LN18	DBHC DBZFUR	0.270 0.035	ND LT	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LK18	DEP	0.240	LT	
13886	RFIS*17	CSO	21-aug-1991	5.0	UGG	UH18	DLDRM	0.310	ND	R
13586 13586	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	DMP DMBP	0.170 0.061	LT LT	
13586	RFIS*17	C20	21-aug-1991	5.0	UGG	LH18	DNOP	0.190	LT	
		_								

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Hethod	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	ENDRN	0.450	ND	R
13886	RF15*17	CSO	21-aug-1991	5.0	UGG	LN18	ENDRNA	0.530	ND	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	ENDRNK	0.530	ND	R
13\$86 13\$86	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	ESFS04	0.620	KD	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	FANT FLRENE	0.068 0.033	LT LT	
13SB6	RF15*17	CSO	21-aug-1991	5.0	UGG	LH18	GCLDAN	0.330	ND	R
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH18	HCBD	0.230	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	HPCL	0.130	ND	R
13586 13586	RFIS*17 RFIS*17	C2O	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	HPCLE ICDPYR	0.330 0.290	ND LT	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LX18	ISOPHR	0.033	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LH18	LIN	0.270	ND	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	MEXCLR	0.330	ND	R
13586 13 <b>58</b> 6	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg Ugg	UH18 UH18	NAP NB	0.037 0.045	LT	
13886	RFIS*17	CSO	21-aug-1991	5.0	UGG	UK18	NNDMEA	0.140	LT ND	R
13SB6	RFIS*17	cso	21-aug-1991	5.0	UGG	LK18	NNDNPA	0.200	LT	•
13\$86	RF1\$*17	CSO	21-aug-1991	5.0	UGG	LN18	NNDPA	0.190	LT	
13586 13586	RFIS*17 RFIS*17	C20	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LM18 LM18	PC8016 PC8221	1.400	ND	R
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG UGG	LM18	PC8232	1.400	ND ND	, R R
13SB6	RFIS*17	CZO	21-aug-1991	5.0	UGG	LM18	PC8242	1.400	ND	Ř
13SB6	RFIS*17	CSC	21-aug-1991	5.0	UGG	LN18	PC8248	2.000	ND	R
13 <b>586</b> -13 <b>58</b> 6	RFIS*17 RFIS*17	CSO	21-aug-1991	5.0	UGG	LM18	PC8254	2.300	ND	R
13SB6	RF15-17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	PC8260 PCP	2.600 1.300	ND LT	R
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	PHANTR	0.033	ĹĬ	
13SB6	RFIS*17	CSO	21-sug-1991	5.0	UGG	LH18	PHENOL	0.110	LT	
13\$B6	RFIS*17	C20	21-aug-1991	5.0	UGG	LH18	PPDDO	0.270	ND	R
13986 13986	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PPODE PPODT	0.310 0.310	ND ND	R R
13886	RFIS*17	CSO	21-aug-1991	5.0	UGG	LX18	PYR	0.033	LT	ĸ
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	LN18	TXPHEN	2.600	ND	R
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	JD 19	AS	0.562		
13\$86 13\$86	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	JS16 JS16	SE AG	0.250 0.589	LT LT	
13SB6	RFIS*17	cso	21-aug-1991	5.0	UGG	JS16	AL	8080.000	F.1	
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	JS16	BA	108.000		
13SB6	RFIS*17	CSO	21-aug-1991	5.0	UGG	JS16	BE	1.430		
13886 13886	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	JS16 JS16	CA CB	2200.000 0.700	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	JS16	80	7.880	•	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	JS16	CR	17.200		
13\$86	RFIS*17	CSO	21-aug-1991	5.0	UGG	JS16	au	15.000		
13586 13586	RFIS*17 RFIS*17	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg Ugg	7219 7219	FE K	12600.000 1060.000		
13586	RF15*17	CSO	21-aug-1991	5.0	UGG	J\$16	MG	2680.000		
13SB6	RF15*17	CSO	21-aug-1991	5.0	UGG	J\$16	MN	363.000		
13SB6	RF15*17	CSO	21-aug-1991	5.0	UGG	JS16	KA	313.000		
13886 13886	RFIS*17 RFIS*17	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	7219 7219	XI PB	11.100 10.500	LT	
13586	RFIS*17	CSO	21-aug-1991	5.0	UGG	JS16	SB	7.140	LT	
13SB6	RFIS*17	CS0	21-sug-1991	5.0	UGG	JS16	TL	6.620	LT	
13586	RFIS*17	cso	21-aug-1991	5.0	UGG	J\$16	٧	20.700		
13586 13586	RFIS*17 RFIS*18	CSO	21-aug-1991 21-aug-1991	5.0 10.0	ugg ugg	7801 7219	ZN HG	62.800 0.050	LT	
13586	RFIS*18	CSC	21-aug-1991	10.0	UGG	LW12	135TNB	0.488	LT	
13586	RF1S*18	CSO	21-aug-1991	10.0	UGG	LW12	130NB	0.496	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LW12	246TNT	0.456	LT	
13886 13886	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
13586	RFIS*18	C20	21-aug-1991	10.0 10.0	UGG	LW12 LW12	260NT HMX	0.524 0.666	LŤ LT	
13\$B6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LW12	NS	2.410	LŤ	
135B6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LW12	RDX	0.587	LT	
13\$B6	RFIS*18	CSO	21-aug-1991	10.0	UCG	LW12	TETRYL	0.731	LŤ	
13886 13886	RFIS*18 RFIS*18	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LH19 LH19	111TCE 112TCE	0.005 0.005	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	11DCE	0.004	LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	11DCLE	0.002	LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM19	12DCE	0.003	LT	
13586 13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	120CLE 120CLP	0.002 0.003	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM19	2CLEVE	0.010	ND	R
•					<b>-</b>		·	<del>-</del>		***

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>F(ag</u>	Internal Std. Code
13586	RFIS*18	cso	21-aug-1991	10.0	UGG	LH19	ACET	0.017	LT	
13\$86	RFIS*18	cso	21-aug-1991	10.0	UGG	LM19	ACROLN	0.100	KD	R
13886	RFIS*18	C20	21-aug-1991	10.0	UGG	LK19	ACRYLO	0.100	ND	Ř
13886 13886	RFIS*18 RFIS*18	CSO CSO	21-aug-1991 21-aug-1991	10.0	UGG	LN19	SRDCLM	0.003	LT	
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LN19 LN19	C13DCP C2AVE	0.00 <b>3</b> 0.003	LT LT	
13\$86	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN19	C2H3CL	0.006	ĹΤ	
13SB6	RFIS*18	CSO	21-eug-1991	10.0	UGG	LN19	C2H5CL	0.012	LT	
13886 13886	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LH19 LH19	C6H6 CCL3F	0.002 0.006	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	CCL4	0.007	LT	
13586	RFIS*18	CZO	21-aug-1991	10.0	UGG	LN19	CH2CL2	0.012	LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM19	CH3BR	0.006	LT	
13886 13886	RFIS*18 RFIS*18	C20	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LM19 LM19	CH3CL CHBR3	0.009	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	CHCL3	0.001	LT	
13586	RFI\$*18	CSO	21-aug-1991	10.0	UGG	LH19	CL2BZ	0.100	ND	R
13886 13886	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	CLC6X5 CS2	0.001	LT	-
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM19	DBRCLM	0.004 0.003	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	UH19	ET C6H5	0.002	ĻŢ	
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LX19	MEC6H5	0.001	LT	
13586 13586	RF15*18 RF15*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	MEK MEK	0.070 0.027	LT	
_ 13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LH19	MNBK	0.032	LT LT	
135B6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	STYR	0.003	LT	
13\$86	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN19	T130CP	0.003	LT	
13886 13886	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LM19 LM19	TCLEA TCLEE	0.002 0.001	LT LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LT	
13\$86	RFIS*18	CSC	21-aug-1991	10.0	UGG	LM19	UNK119	0.010		s
13886	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH19	UNK126	0.024		S
13586 13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN19 LN18	XYLEN 1247CB	0.002 0.040	LT LT	
13886	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	120CLB	0.110	ĹŤ	
13\$86	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	12DPH	0.140	ND	R
13\$86 13\$86	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	130CLB 140CLB	0.130 0.098	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	245TCP	0.100	LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	246TCP	0.170	LT	
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LH18	24DCLP	0.180	LT	
13586 13586	RFIS*18 RFIS*18	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	24DMPN 24DMP	0.690 1.200	LT LT	
13586	RFIS*18	ÇSO	21-aug-1991	10.0	UGG	LM18	24DNT	0.140	ĹŤ	
13886	RFIS*18	cso	21-aug-1991	10.0	UGG	LN18	26DNT	0.085	LT	
13886 13886	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	2CLP 2CNAP	0.060 0.036	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN18	2CHAP 2MNAP	0.049	LT	
13SB6	RF15*18	CSO	21-aug-1991	10.0	UGG	U118	2MP	0.029	LT	
13986	RFIS*18	C20	21-aug-1991	10.0	UGG	LM18	2NANIL	0.062	LT	
13886 13886	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	2NP 33DCBD	0.140 6.300	LT LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	U118	3NANIL	0.450	ĻŢ	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN18	46DN2C	0.550	LT	
13SB6	RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0	UGG	LH18	4BRPPE	0.033	LT	
13586 13586	RFIS*18 RFIS*18	CSO	21-aug-1991	10.0 10.0	ugg ugg	LH18 LH18	4CANIL 4CL3C	0.810 0.095	LT LT	
13586	RFIS*18	ÇSO	21-aug-1991	10.0	UGG	LH18	4CLPPE	0.033	ĹŤ	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN18	4HP	0.240	LT	
13586 13586	RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18	4NANIL	0.410	LT	
13\$86	RFIS*18 RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18 LM18	ABHC	1.400 0.270	LT ND	R
13586	RFIS*18	¢\$0	21-aug-1991	10.8	UGG	LH18	ACLDAN	0.330	HD	Ř
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	AENSLF	0.620	KD	Ř
13586 13586	RFIS*18 RFIS*18	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LH18 LH18	ALDRN ANAPNE	0.330 0.036	NED L.T	R
13\$86	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	ANAPNE	0.033	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	ANTRO	0.033	LT	
13586	RFIS*18	CSO	21-eug-1991	10.0	UGG	LM18	B2CEXM	0.059	LT	
13886 13886	RFIS*18 RFIS*18	CSC	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	B2C1PE B2CLEE	0.200 0.033	LT LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	B2EHP	7.450	Li	
13\$86	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	BAANTR	0_170	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	BAPYR	0.250	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13586	RFIS*18	cso	21-aug-1991	10.0	UGG	LN18	BBFANT	0.210	LT	
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LM18	BBHC	0.270	ND	R
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LM18	BBZP	0.170	ĹŦ	-
13SB6	RFIS*18	CS0	21-aug-1991	10.0	UGG	LN18	BENSLF	0.620	ND	R
13SB6	RFIS*18	CSC	21-aug-1991	10.0	UGG	LH18	BENZID	0.850	ND	R
13586 13586	RF1S*18 RF1S*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18	SENZOA SCULDY	6.100	ND	R
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN18 LN18	BGHTPY BKFANT	0.250 0.066	LT LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	ugg	LH18	BZALC	0.190	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	CHRY	0.120	ĹŤ	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	CL68Z	0.033	LT	
135B6	RFIS*18	cso	21-aug-1991	10.0	UGG	LM18	CL6CP	6.200	LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	CLSET	0.150	LT	
13 <b>586</b> 13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	DBAHA DBHC	0.210 0.270	LT	R
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	DSZFUR	0.035	MĐ LT	ĸ
13586	RFIS*18	cso	21-aug-1991	10.0	UGG	LM18	DEP	0.240	LŤ	
13\$86	RF1\$*18	CSO	21-aug-1991	10.0	UGG	LH18	DLDRN	0.310	ND	R
13 <b>5</b> 86	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	DMP	0.170	LT	
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	DNSP	0.061	ĻT	
13586 13586	RF15*18	CSO	21-aug-1991	10.0 10.0	UGG UGG	LM18	DNOP	0.190	LT	
13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0	UGG	L)118 L)118	ENDRN ENDRNA	0.450 0.530	ND ND	R R
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	ENDRNK	0.530	NO.	Ř
_ 13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	ESFS04	0.620	ND	Ř
13586	RF1S*18	CSO	21-aug-1991	10.0	UGG	LM18	FANT	0.068	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	FLRENE	0.033	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	GCLDAN	0.330	ND	R
13586 13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	HCBD HPCL	0.230 0.130	LT ND	R
13SB6	RF15*18	CSO	21-aug-1991	10.0	UGG	LM18	HPCLE	0.330	NO	R
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	ICDPYR	0.290	ĹŤ	•
13586	RFIS*18	CSO	Z1-aug-1991	10.0	UGG	LM18	ISOPHR	0.033	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	ugg	LH18	LIN	0.270	MD	R
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	ND	R
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LH18	NAP	0_037	LT	
13586 13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LH18 LH18	NB NNDMEA	0.045 0.140	LT ND	Ŕ
13SB6	RF15*18	CSO	21-aug-1991	10.0	UGG	LH18	XNDNPA	0.200	LT	
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	LH18	NNDPA	0.190	LT	
13586	RF1S*18	CSO	21-aug-1991	10.0	UGG	LN18	PC8016	1.400	ND	R
13586	RFIS*18	CSO	21-sug-1991	10.0	UGG	LH18	PC8221	1.400	KD	R
13 <b>586</b> 13586	RFIS*18	CSO	21-sug-1991	10.0	UGG	LH18	PC8232	1.400	MD	R
13SB6	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	PCB242 PCB248	1.400 2.000	ND ND	R R
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	PC8254	2.300	NO	Ř
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	PCBZ60	2.600	MD	Ř
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LN18	PCP	1.300	LT	
13586	RF1S*18	CSO	21-aug-1991	10.0	UGG	LM18	PHANTR	0.033	LŤ	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LH18	PHENOL	0.110	LT	_
13586 13586	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LN18	PPDDD PPDDE	0.270 0.310	MD.	R
13886	RFIS*18	cso	21-aug-1991	10.0	UGG	LN18 LN18	PPODT	0.310	MD MD	R R
13586	RFIS*18	cso	21-aug-1991	10.0	UGG	LN18	PYR	0.033	ĻŤ	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	LM18	TXPHEM	2.600	ND	R
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	JD19	AS	0.507		
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	JD15	\$E	0.250	LT	
13886 13886	RFIS*18	CSO	21-aug-1991	10.0	UGG	JS16	AG	0.890		
13\$86	RFIS*18 RFIS*18	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	AL BA	10800.000 133.000		
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	JS16	BE	1.510		
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	J\$16	ČĀ.	2370.000		
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	J\$16	œ	0.700	LT	
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	JS16	CO	10.600		
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	JS16	CR	22.200		
13886 13886	RF15*18	CSO	21-aug-1991	10.0	UGG	J\$16	ជា	8.410		
13886 13886	RFIS*18 RFIS*18	C20	21-aug-1991 21-aug-1991	10.0 10.0	ugg	1216 1216	FE K	16200.000 1290.000		
13SB6	RFIS*18	CSO	21-aug-1991	10.0	UGG	1219 1210	NG	3320.000		
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	J\$16	MM	468.000		
13586	RF15*18	CSO	21-aug-1991	10.0	UGG	JS16	NA	300.000		
13\$86	RFIS*18	cso	21-aug-1991	10.0	UGG	J\$16	N E	14.500		
13586	RFIS*18	CSO	21-aug-1991	10.0	UGG	J\$16	P9	10.500	ĻŢ	
13586	RF1S*18	CSO	21-aug-1991	10.0	ugg	JS16	28	7.140	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Qepth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>F1 89</u>	Internal Std. Code
13586	RFIS*18	CSC	21-aug-1991	10.0	UGG	J\$16	TL	6.620	LT	
13586	RFIST18	CSO	21-aug-1991	10.0	UGG	JS16	v.	27.500	Ę.I	
13\$86	RFIS*18	CSO	21-aug-1991	10.0	UGG	J\$16	ZN	72.000		
13\$C1 13\$C1	RFIS*21 RFIS*21	020	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LH19	111TCE	0.004	LT	
13SC1	RF15-21	CSO	20-aug-1991	0.5	UGG	LM19 LM19	112TCE 11DCE	0.005 0.004	LT LT	
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	11DCLE	0.002	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN19	12DCE	0.003	LT	
13sc1 13sc1	RFIS*21 RFIS*21	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LH19 LH19	12DCLE 12DCLP	0.002	LT	
13801	RF15-21	CSC	20-aug-1991	0.5	UGG	LH19	2CLEVE	0.003 0.010	LT MD	R
13901	RFIS*Z1	CSO	20-aug-1991	0.5	UGG	LH19	ACET	0.017	ĻŢ	•
13801	RF15*21	CSO	20-aug-1991	0.5	VGG	LH19	ACROLN	0.100	ND	R
13sc1 13sc1	RFIS*21 RFIS*21	020 020	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	ACRYLO BRDCLM	0.100	MO	R
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	C130CP	0.003 0.003	LT LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	CZAVÉ	0.003	LT	
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	C2H3CL	0.006	LT	
138C1 138C1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LN19 LX19	CZH5CL C6H6	0.01Z 0.00Z	LT LT	
13sc1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN19	CCL3F	0.002	LT	•
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	CCL4	0.007	LT	
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	CH2CL2	0.012	LT	
13sc1 _13sc1	RFIS*21 RFIS*21	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LH19 LH19 .	CH3BR CH3CL	0.006 0.009	LT LT	
13SC1	RFIS*21	cso	20-aug-1991	0.5	UGG	LH19	CHBR3	0.007	LŤ	
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	CXCT2	0.001	LT	
13SC1	RFIS*21	CSO	20-sug-1991	0.5	UGG	LN19	CLZBZ	0.100	ND	R
13SC1 13SC1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LN19 LN19	CLC6H5 CS2	0.001 0.004	LT LT	
13SC1	RF15*21	cso	20-aug-1991	0.5	UGG	LH19	DERCLM	0.003	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	ETC6H5	0.002	ĹŤ	
138C1 138C1	RFIS*21	CSO	20-aug-1991	0.5 0.5	UGG	LN19	MEC6N5	0.001	LT	
138C1	RF1S*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5	UGG	LN19 LN19	MEK	0.070 0.027	LT LT	
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	MHSK	0.032	LT	
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	STYR	0.003	LT	
13sc1 13sc1	RF1S*21	CSO	20-aug-1991	0.5 0.5	UGG	LH19	T13DCP	0.003	LT	
13SC1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5	UGG	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH19	TRCLE	0.003	ĹŤ	
13901	RFIS*21	cso	20-aug-1991	0.5	UGG	LH19	XYLEN	0.002	LT	
13sc1 13sc1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	JB01 LN18	NG 124TCB	0.050 0.040	LT LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	12DCLB	0.110	LT	
13\$C1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LX18	120PH	0.140	ND	R
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LX18	13DCLB	0.130	LT	
13 <b>5C1</b> 13 <b>SC1</b>	RFIS*21 RFIS*21	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LM18 LM18	14DCLB 245TCP	0.09 <b>8</b> 0.100	LT LT	
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	246TCP	0.170	ĻŢ	
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	24DCLP	0.180	LT	
13sc1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	24DMPN	0.690	ĻŢ	
13sc1 13sc1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	240NP 240NT	1.200 0.140	LT LT	
13SC1	RF15*21	csc	20-aug-1991	0.5	UGG	LH18	26DNT	0.085	LT	
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	SCTS	0.060	ĻТ	
13sc1	RF1S*21	023	20-aug-1991	0.5	UGG	LN18	2CNAP	0.036	LT	
135¢1 135¢1	RF1S*21 RF1S*21	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	ZMNAP ZMP	0.049 0.029	LT LT	
13501	RF15*21	CSO	20-aug-1991	0.5	UGG	LN18	ZNANIL	0.062	ĹŤ	
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	2NP	0.140	LT	
13sC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	330C80	6.300	LT	
13sc1 13sc1	RFIS*21 RFIS*21	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	3NANTL 46DN2C	0.450 0.550	LT LT	
13sc1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	4BRPPE	0.033	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LX18	4CANIL	0.810	LT	
138C1	RFIS*21	022	20-aug-1991	0.5	UGG	LX18	4CL3C	0.095	LT	
138C1 138C1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LX18 LX18	4CLPPE 4MP	0.033 0.240	LT LT	
13sc1	RF15*21	CSO	20-aug-1991	0.5	UGG	LN18	4NANIL	0.410	LT	
13sc1	RF1\$*21	CSC	20-aug-1991	0.5	UGG	LM18	4NP	1.400	LT	
13sc1	RF1S*21	CS0	20-aug-1991	0.5	UGG	LM18	ABHC	0.270	ND	R
138C1 138C1	RF1\$*21 RF1\$*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LM18 LM18	ACLDAN AENSLF	0.330 0.620	ND ND	R R
				-13		-114			AL.	~

Site ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	ALDRN	0.330	MD	R
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGG	LN18	ANAPRE	0,036	LT	•
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	ANAPYL	0.033	LT	
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGG	LN18	ANTRC	0.033	LT	
13SC1 13SC1	RFIS*21 RFIS*21	CSO CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	B2CEXM B2CIPE	0.059 0.200	LT LT	
13sc1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	B2CLEE	0.033	LT	
13sc1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	BZEHP	0.620	ĹŤ	
13801	RFIS*21	czo	20-aug-1991	0.5	UGG	LH18	BAANTR	0.170	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	BAPYR	0.250	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	BBFANT	0.210	LT	_
13\$C1 13\$C1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	BBNC BBZP	0.270 0.170	MD LT	R
13sc1	RF15*21	CZO	20-aug-1991	0.5	UGG	LH18	BENSLF	0.620	ND	R
13\$C1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	BENZID	0.850	KD	Ř
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	BENZCA	6.100	ND	R
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	BGHIPY	0.250	ĻŢ	
135¢1 138¢1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	BKFANT Bzalc	0.066 0.190	LT LT	
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGĞ	LM18	CHRY	0.120	LT	
13SC1	RFIS*21	CZO	20-aug-1991	0.5	UGG	LH18	CL68Z	0.033	ĹŤ	
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGG	LN18	CLSCP	6.200	LŤ	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	CL6ET	0.150	LT	
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	DBAHA	0.210	LT	_
_ 13\$C1 13\$C1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	DBHC DBZ <b>fur</b>	0.270 0.035	ND LT	- R
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	DEP	0.240	נז נז	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LX18	DLDRN	0.310	ND	R
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	DMP	0.170	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	DNBP	0.061	LT	
13SC1	RFIS*Z1	CZO	20-aug-1991	0.5	UGG	LM18	DNOP	0.190	LT	_
135C1 135C1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LM18	ENDRN	0.450	ND CK	R
13SC1	RF15"21	CSO	20-aug-1991	0.5	UGG	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R R
13801	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	ESFS04	0.620	ND	Ř
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	FANT	0.068	LT	-
13sc1	RF1\$*21	CSO	20-aug-1991	0.5	UGG	LN18	FLRENE	0.033	ĻŢ	
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGG	LH18	GCLDAN	0.330	ND	R
13SC1 13SC1	RF15*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LH18	HCBD	0.230	LT	_
13SC1	RFIS*21 RFIS*21	CSO CSO	20-aug-1991	0.5	ugg Ugg	LM18 LM18	HPCL HPCLE	0.130 0.330	ND ND	R R
13SC1	RF15*21	cso	20-aug-1991	0.5	UGG	UH18	ICDPYR	0.290	LT	•
13501	RFIS*21	CSO	20-sug-1991	0.5	UGG	LN18	ISOPHR	0.033	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	LIN	0.270	MD	R
13\$C1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	MEXCLR	0.330	ND	R
13sc1 13sc1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	NAP NB	0.037 0.045	LT LT	
13 <b>5</b> C1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LK18	NNDMEA	0.140	ND	R
13501	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	NNDNPA	0.200	ĹΤ	•
13\$C <b>1</b>	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	HNDPA	0.190	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	PC8016	1.400	ND	R
139C1 13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LM18	PCB221	1.400	NED:	R
13\$01	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	PCB232 PCB242	1.400 1.400	ND ND	R R
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	PC8248	2.000	NO.	Ŕ
13501	RFIS*21	ÇSO	20-aug-1991	0.5	UGG	LH18	PC8254	2.300	ND	Ř
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGG	LM18	PCB260	2.600	ND	R
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	PCP	1.300	LT	
135C1 135C1	RF15*21	CSC	20-aug-1991 20-aug-1991	0.5 0.5	UGG	LH18	PHANTR	0.033	LT	
13sc1	RFIS*21 RF1S*21	CSO	20-sug-1991	0.5	UGG UGG	LM18 LM18	PHENOL PPODD	0.11 <b>0</b> 0.27 <b>0</b>	LT KD	R
13SC1	RF15*21	CSO	20-aug-1991	0.5	UGG	LM18	PPODE	0.310	NO	R
13 <b>\$</b> C1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LN18	PPDDT	0.310	ND	Ř
13sc1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	PYR	0.033	LT	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	LH18	TXPHEN	2.600	MD	R
13901	RF15*21	CSO	20-aug-1991	0.5	UGG	LK18	UNK660	0.347		S
13SC1 13SC1	RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	JD19	AS	0.509	17	
13901	RF15-21	CSO	20-aug-1991	0.5	UGG	JD15 JS16	SE AG	0.250 0.670	ĻŢ	
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	J\$16 412L	AL.	8420.000		
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	JS16	BA	118.000		
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	JS16	BE	1.350		
13SC1	RFIS*21	CSO	20-aug-1991	0.5	UGG	J\$16	CA	1750.000		
13\$C1	RFIS*21	cso	20-aug-1991	0.5	UGG	J\$16	<b>D</b>	0.700	LT	

<u>Sîte</u>	ID	<u>Field ID</u>	<u>Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13801	1	RF15*21	cso	20-aug-1991	0.5	UGĞ	JS16	co	8.920		
13801		RF1S*21	CSO	20-aug-1991	0.5	UGG	1516	CR	19.000		
13501		RFIS*21	CSO	20-aug-1991	0.5	UGG	JS16	ai	6.830		
13sc1		RFIS*21	CSO	20-aug-1991	0.5	UGG	JS16	FE	14200.000		
13SC1		RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	1516 1516	K	1080.000 2820.000		
13SC1		RFIS*21	CSO	20-aug-1991	0.5	LIGG	J\$16	MG MN	\$14,000		
13sc1		RF15*21	CSO	20-aug-1991	0.5	UGG	JS16	AK	629.000		
13501		RFIS*21	CSO	20-aug-1991	0.5	UGG	J\$16	MI	11.900		
13sc1 13sc1		RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ngg	JS16 JS16	P8 \$8	10.500 7.148	LŢ	
13501		RF15*21	cso	20-aug-1991	0.5	UGG	JS16	TL.	6.620	LT LT	
13801		RF1\$*21	CSO	20-aug-1991	0.5	UGG	JS16	٧	22.700	•-	
13sc1		RFIS*21	cso	20-aug-1991	0.5	UGG	J\$16	ZN	67.600		
13SC1 13SC1		RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugg Ugg	LW12 LW12	1357NB 13DNB	0.48 <b>8</b> 0.496	LT LT	
13sc1		RFIS*21	CSO	20-aug-1991	0.5	UGG	LW12	246TNT	0.456	LT	
13sc1		RF15*21	CSO	20-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	
13801		RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGG UGG	LW12	26DNT	0.524	LT	_
13SC1 13SC1		RFIS*21 RFIS*21	C20	20-aug-1991	0.5	UGG	LW12 LW12	NB NB	0.744 2.410	LT	C
13sc1		RFIS*21	CSO	20-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13sc1		RFIS*21	CSO	20-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13sc1		RFIS*21	CSO	20-aug-1991	0.5	UGL	SS10	AG	4.600	LT	
135C1		RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	UGL UGL	SS10 SS10	BA CD	623.000 27.500		
13SC1		RF15*21	cso	20-aug-1991	0.5	UGL	SS10	CR	13.200		
13sc1		RFIS*21	cso	20-aug-1991	0.5	UGL	\$\$10	PB	18.600	LT	
13sc1		RFIS*21	cso	20-aug-1991	0.5	UGL	SB01	KG	0.243	LT	
13sc1 13sc1		RFIS*21 RFIS*21	CSO	20-aug-1991 20-aug-1991	0.5 0.5	ugl	\$022 \$021	AS SE	2.540 3.020	ĻŢ	
13SC1		RF15*22	CSO	20-aug-1991	5.0	UGG	LN19	111TCE	0.004	LT LT	
13501	l	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH19	112TCE	0.005	ĹŤ	
13801		RFIS*22	cso	20-aug-1991	5.0	UGG	LN19	11DCE	0.004	LT	
13SC1 13SC1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	11DCLE 12DCE	0.002	LT	
13501		RFIS*22	CSO	20-aug-1991	5.0	UGG	LM19	12DCLE	0.003 0.002	LT LT	
13SC1		RF15*22	CSO	20-aug-1991	5.0	UGG	LH19	12DCLP	0.003	LT	
13sc1		RF15*22	CSO	20-aug-1991	5.0	UCG	LH19	2CLEVE	0.010	ND	R
13SC1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN19	ACET	0_017	LT	_
139C1 13SC1		RF15*22	CSO CSO	20-aug-1991	5.0	UGG	LM19 LM19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
13801		RFIS*22	ÇSO	20-aug-1991	5.0	UGG	LH19	BRDCLM	0.003	LT	•
13SC1		RF15*22	CSO	20-aug-1991	5.0	UGG	LH19	C13DCP	0.003	LT	
13\$C1 13\$C1		RFIS*ZZ RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM19	CZAVE CZH3CL	0.003	LT	
13\$01		RFIS*22	CSO	20-aug-1991	5.0	UGG	LH19 LH19	C2H5CL	0.006 0.012	LT LT	
13sc1		RFIS*22	CSO	20-aug-1991	5.0	UGG	LH19	C6H6	0.002	ĹŤ	
13501		RFIS*22	CSO	20-aug-1991	5.0	UGG	LK19	CCL3F	0.006	ĻT	
139C1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN19	CCL4	0.007	LŢ	
13sc1 13sc1		RF15*22	CSO	20-aug-1991	5.0	UGG	LM19 LM19	CH2CL2 CH3BR	0.012 0.006	LT LT	
13501		RFIS*22	CSO	20-aug-1991	5.0	UGG	LH19	CH3CL	0.009	LT	
13SC1		RFIS*22	CSO	20-aug-1991	5.0	UGG	LN19	CHBR3	0.007	LT	
13sc1 13sc1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN19	CHCL3 CL2BZ	0.001	ĻŢ	_
13501		RF15*22	CSO	20-aug-1991	5.0	UGG	LH19 LH19	CLC6H5	0.100 0.001	ND LT	R
13SC1		RFIS*22	CSO	20-aug-1991	5.0	UGG	LH19	CS2	0.004	ĹŤ	
13sc1		RFIS*22	CSO	20-aug-1991	5.0	UGG	LH19	DBRCLM	0.003	LT	
13501		RF1S*22	CSO	20-aug-1991	5.0	UGG	LN19	ETC6H5	0.002	LT	
13SC1 13SC1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	MEC6H5 MEK	0.001 0.070	LT LT	
13SC1		RF15*22	CSO	20-aug-1991	5.0	UGG	LM19	MIBK	0.027	LT	
13501		RF15*22	CSO	20-aug-1991	5.0	UGG	LN19	MNBK	0.032	LT	
13SC1		RFIS*22	CSO	20-aug-1991	5.0	UGG	LM19	STYR	0.003	LT	
13SC1 13SC1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LN19	T130CP	0.003	LT	
13SC1		RF15-22	CSO	20-aug-1991	5.0	UGG	LN19 LN19	TCLEE TCLEE	0.002 0.001	LT LT	
13801		RFIS*ZZ	ÇSO	20-aug-1991	5.0	UGG	LH19	TRCLE	0.003	LT	
13801		RFIS*22	CSO	20-aug-1991	5.0	UGG	LK19	UNK120	0.004		s
13501		RF1S*22	CSO	20-aug-1991	5.0	UGG	LM19	UNK126	0.005		S
13SC1		RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN19 LW12	XYLEN 135THB	0.002 0.48 <b>8</b>	LT LT	
13SC1		RF15*22	CSO	20-aug-1991	5.0	UGG	LW12	130MB	0.496	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	<u>Date</u>	<u>Qepth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,		Flag	Internal Std. Code
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LU12	246TNT	0.456	LT	
13SC1	RF15*22	CSO	20-aug-1991	5.0	UGG	LW12	24DNT	0.424	ĹŤ	
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LW1Z	26DNT	0.524	LT	
138C1 138C1	RFIS*2Z RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LW12	HMX	0-666	LT	
13801	RF15*22	CSO	20-aug-1991	5.0	UGG	FR45 FR45	NB RDX	2.410 0.587	LT LT	
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LW12	TETRYL	0.731	ĹŤ	
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	JB01	HG	0.050	LT.	
13SC1 13SC1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	124TCB 12DCLB	0.040	LT	
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LM18	120PH	0.110 0.140	LT ND	R
13sc1	RF15*22	CSC	20-aug-1991	5.0	UGG	LN18	130CLB	0.130	ĻT	•
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	14DCLB	0.098	LT	
138C1 138C1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	245TCP 246TCP	0.100 0.170	LT LT	
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	24DCLP	0.180	ĻŢ	
13\$C1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LM18	24DHPN	0.690	LT	
138C1 138C1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18	24DNP	1.200	LT	
13801	RF15*22	CSO	20-aug-1991	5.0	ugg Ugg	LM18 LM18	24DNT 26DNT	0.140 0.085	LT LT	
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	2CLP	0.060	ĹŤ	
13901	RFIS*22	CSD	20-aug-1991	5.0	UGG	LM18	2CHAP	0.036	LT	
138C1 138C1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	2MNAP 2MP	0.049	LT	
13861	RF15*22	CSC	20-aug-1991	5.0	UGG	LK18	2NANIL	0.02 <del>9</del> 0.062	LT LT	
13801	RF15*22	CSO	20-aug-1991	5.0	UGG	LN18	2NP	0.140	LT	
13501	RFIS*22	CSO	20-sug-1991	5.0	UGG	LR18	33DCB0	6.300	LT	
13sc1 13sc1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	3MANIL 46DN2C	0.450 0.550	LT LT	
13501	RF15*22	CSO	20-aug-1991	5.0	UGG	LM18	48RPPE	0.033	LT	
13801	RF15*22	CSO	20-aug-1991	5.0	UGG	LM18	4CANIL	0.810	LT	
13SC1 13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	4CL3C	0.095	LŢ	
13sc1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LH18 LH18	4CLPPE 4MP	0.033 0.240	LT LT	
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LM18	4HANIL	0.410	LT	
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LM18	4NP	1.400	LT	
13SC1 13SC1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN18	ABHC	0.270	ND	Ŗ
13501	RF15*22	CSO	20-eug-1991	5.0	UGG UGG	LM18 LM18	ACLDAN AENSLF	0,330 0,620	ND ND	R R
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LM18	ALDRN	0.330	ND	Ř
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	ANAPNE	0.036	LT	
138C1 138C1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	ANAPYL ANTRC	0.033 0.033	LT LT	
13SC1	RFIS*22	cso	20-aug-1991	5.0	UGG	LN18	82CEXM	0.059	LT	
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	82CIPE	0.200	LT	
13SC1 13SC1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18	BECLEE	0.033	LT	
13sc1	RFIS*22	CSO CSO	20-aug-1991 20-aug-1991	5.0	UGG	LM18 LM18	BZEHP BAANTR	0,620 0,170	LT LT	
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH15	BAPYR	0.250	LT	
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	BBFANT	0.210	LT	
135C1 135C1	RF1\$*72 RFIS*22	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	in18 LH18	BBHC BBZP	0.270 0.170	ND LT	R
13SC1	RFIS*22	cso	20-aug-1991	5.0	UGG	LM18	BENSLF	0.620	NO	R
135C1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	BENZID	0.850	NO	Ř
13sc1 13sc1	RFIS*22 RFIS*22	CSO	20-eug-1991	5.0	UGG	LN18	BENZOA	6.100	MD	R
13sc1	RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	BGHIPY SKFANT	0.250 0.066	LT LT	
13501	RFIS*22	cso	20-aug-1991	5.0	UGG	LM18	BZALC	0.190	ĹŤ	
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	CHRY	0.120	ĻŤ	
13SC1 13SC1	RF15*22 RF15*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LN18	CL6BZ	0.033	LT	
13sc1	RF15*22	CSO	20-sug-1991	5.0	UGG	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT LT	
13501	RFIS*22	CSO	20-eug-1991	5.0	UGG	LH18	DBAHA	0.210	LT	
13\$01	RF15*22	CSO	20-aug-1991	5.0	UGG	LN18	DBHC	0.270	ND	R
138C1 138C1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg Ugg	LN18 LN18	DBZFUR DEP	0.035 0.240	LT	
13\$C1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	DLDRN	0.310	LT ND	R
13901	RF15*22	CSO	20-aug-1991	5.0	UGG	LM18	DMP	0.170	ίŤ	••
13sc1	RFIS*2Z	CSO	20-aug-1991	5.0	UGG	UN18	DNBP	0.061	LT	
13sc1 13sc1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	DNOP ENDRN	0.190 0.450	LT MD	Þ
13SC1	RF15*22	CSO	20-aug-1991	5.0	UGG	LN18	ENDRNA	0.530	ND	R R
13SC1	RF1S*22	CSO	20-aug-1991	5.0	UGG	LM18	ENDRNK	0.530	ND	R
13801	RF1S*22	CSO	20-aug-1991	5.0	UGG	LN18	ESFSO4	0.620	ND	R

Site ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	FANT	0.068	LT	
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	FLRENE	0.033	LT	
13501	RF15*22	CSO	20-aug-1991	5.0	UGG	LM18	GCLDAN	0.330	ND	R
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LM18	HCBD	0.230	LT	
138 <b>C1</b> 138C1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	NPCL NPCLE	0.130 0.330	ЖD	R
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LX18	ICOPYR	0.290	ND LT	R
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LH18	ISOPHR	0.033	ĹŤ	
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGG	LX18	LIM	0.270	ND	R
13sc1 13sc1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LN18	MEXCLR NAP	0.330	ND	R
13501	RF15*22	CSO	20-aug-1991	5.0	UGG	LN18 LN18	XAP XB	0.037 0.045	LT LT	
13sC1	RFIS*22	CSO	20-aug-1991	5.0	ŲGG	LH18	NNDHEA	0.140	ND	R
13SC1	RF15*22	CSO	20-aug-1991	5.0	UGG	LH18	NNDNPA	0.200	ĻT	
13501	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	LN18	NNDPA	0.190	LT	_
135C1 135C1	RF15*22	CSO	20-aug-1991	5.0	UGG	LM18 LM18	PCB016 PCB221	1.400 1.400	ND ND	R
13sC1	RFIS*ZZ	CSO	20-aug-1991	5.0	UGG	LH18	PCB232	1.400	ND	R R
13\$C1	RF15*22	CSO	20-aug-1991	5.0	UGG	LH18	PC8242	1.400	KD	R
13501	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG	LM18	PCB248 PCB254	2.000	MD	R
13sc1 13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG UGG	LN18 LN18	PC8254 PC8260	2.300 2.600	ND ND	· R R
13901	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	PCP	1.300	LT	K
13SC1	RFIS*22	C20	20-aug-1991	5.0	UGG	UX18	PHANTR	0.033	ĹŤ	
13501	RF15*22	CSO	20-aug-1991	5.0	UGG	LN18	PHENOL	0.110	LT	_
135C1 13SC1	RF1S*22 RF1S*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	PPODE	0.270 0.310	ND ND	R
13901	RFIS*22	CSO	20-aug-1991	5.0	UGĞ	LN18	PPOOT	0.310	ND	R R
13sc1	RF1S*22	CSO	20-aug-1991	5.0	UGG	LN18	PYR	0.033	LT	•
13501	RFIS*22	CSO	20-aug-1991	5.0	UGG	LN18	TXPREN	2.600	ND	R
13SC1 13SC1	RFIS*22 RFIS*22	CSC	20-aug-1991 20-aug-1991	5.0 5.0	UGG	JD19 JD15	AS SE	0.684		
13sc1	RFIS*22	CSO	20-aug-1991	5.0	UGG	JS16	AG	0.250 0.717	LT	
13501	RF15*22	CSO	20-aug-1991	5.0	UGG	JS16	AL	8430.000		
13sc1	RF15*22	CSO	20-aug-1991	5.0	UGG	JS16	BA	157.000		
13sc1 13sc1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	7219 7219	BE CA	1.790 1990.000		
13SC1	RF15*22	CSO	20-aug-1991	5.0	UGG	J\$16	8	0.700	LT	
13SC1	RFIS*2Z	CSO	20-aug-1991	5.0	UGG	J\$16	œ	10.200		
13\$C1	RFIS*22	cso	20-aug-1991	5.0	UGG	J\$16	CR	20.700		
138C1 138C1	RFIS*22 RFIS*22	CSO	20-aug-1991 20-aug-1991	5.0 5.0	ugg ugg	J\$16 J\$16	CU FÉ	8.240 16100.000		
13sc1	RFIS*22	CSC	20-aug-1991	5.0	UGG	J\$16	K	915.000		
13sc1	RFIS*ZZ	CSO	20-aug-1991	5.0	UGG	J\$16	MG	3020.000		
13SC1	RFIS*22	CZO	20-aug-1991	5.0	UGG	JS16	MM	580.000		
13901 13901	RFIS*22 RFIS*22	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	UGG UGG	1216 1216	NA NI	463.000 13.400		
13SC1	RF15*22	CSO	20-aug-1991	5.0	UGG	J\$16	PB	10.500	LT	
13501	RF15*22	CSO	20-aug-1991	5.0	UGG	1516	SB	7.140	LT	
13SC1	RF15*22	CSO	20-aug-1991	5.0	UGG	J\$16	TL	6.620	LT	
13501	RFIS*22	CSO	20-eug-1991 20-eug-1991	5.0	UGG	JS16	٧.	24.400		
135C1 135C1	RFIS*22 RFIS*22	CSO CSO	20-aug-1991	5.0 5.0	UGC	1516 5510	ZN AG	72.400 4.600	LT	
13sc1	RFIS*22	cso	20-aug-1991	5.0	UGL	\$\$10	BA	401.000		
13SC1	RFIS*22	CSO	20-aug-1991	5.0	UGL	\$\$10	<b>CD</b>	4.010	LŤ	
13501	RFIS*22	cso	20-aug-1991	5.0	UGL	SS10	CR	6.020	LT	
13SC1 13SC1	RFIS*22 RFIS*22	CSO CSO	20-aug-1991 20-aug-1991	5.0 5.0	net net	\$\$10 \$B01	PB HG	18.600 0.243	LT LT	
13501	RF15*22	CSO	20-aug-1991	5.0	UGL	SD22	AS	2.540	LT	
13SC1	RFIS*2Z	CSO	20-aug-1991	5.0	UGL	SD21	SE	3.020	LT	
13SC1	RFIS*23	CSO	20-aug-1991	10,0	UGG	JB01	HG	0.050	LT	
13\$C1 13\$C1	RFIS*23 RFIS*23	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LN19	111TCE	0.005 0.005		
138C1	RF15*23	CSO	20-aug-1991	10.0	UGG	LM19 LM19	112TCE 11DCE	0.004	LT LT	
13SC1	RFIS*23	cso	20-aug-1991	10.0	UGG	LH19	11DCLE	0.002	LT	
13SC1	RF1S*23	CSO	20-aug-1991	10.0	UGG	LM19	120CE	0.003	LT	
13501	RF15*23	CSO	20-aug-1991	10.0	UGG	LH19	12DCLE	0.002	LT	
13\$C1 13\$C1	RFIS*23 RFIS*23	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugg ugg	LX19 LX19	12DCLP 2CLEVE	0.003 0.010	LT NO	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	ACET	0.025	M.	R
13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LN19	ACROLN	0.100	KD	R
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	ACRYLO	0.100	ND	R
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	BRDCLM	0.003	LŢ	
13\$C1	RFIS*23	ÇSO	20-aug-1991	10.0	UGG	LH19	C13DCP	0.003	LT	

	Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Fleg	Internal Std. Code
	13sc1	RF1S*23	CSO	20-aug-1991	10.0	UGG	LN19	C2AVE	0.003	LT	
	13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN19	CZH3CL	0.006	LT	
	13SC1	RFIS#23	CSO	20-aug-1991	10.0	UGG	LN19	C2H5CL	0.012	LT	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	ugg	LX19	C6H6	0.002	LT	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	CCL3F	0.006	LT	
	13SC1 13SC1	RFIS*23	CZO	20-aug-1991 20-aug-1991	10.0	UGG	LX19	CCL4	0.007	LT	
	13SC1	RFIS*23 RFIS*23	CSO	20-aug-1991	10.0 10.0	ugg Ugg	LN19 LN19	CH2CL2 CH3BR	0.012 9.006	LT LT	
	13sc1	RF1S*23	CSO	20-aug-1991	10.0	UGG	LN19	CH3CL	0.009	LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM19	CHBR3	0.007	ĹŤ	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	UH19	CHCL3	0.001	LT	
	13501	RF15*23	CSO	20-aug-1991	10.0	UGG	LN19	CL2BZ	0.100	MD	Ŕ
	13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	CLC6H5	0.001	LT	
	13\$C1 13\$C1	RFIS*23 RFIS*23	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG	LN19	CSZ DBRCLM	0.004	LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN19 LN19	ETC6H5	0.003 0.002	LT LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	MEC6H5	0.001	ĻŢ	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	MEK	0.070	ĹŤ	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN19	MIBK	0.027	LT	
	13sct	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH19	MNBK	0.032	ĻT	
	13SC1	RF15*23	CSO	20-aug-1991	10,0	UCG	LN19	STYR	0.003	LT	•
	13SC1 13SC1	RFIS*23 RFIS*23	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	T130CP TCLEA	0.003 0.002	LT LT	
	13sc1	RF15*23	ÇSO	20-eug-1991	10.0	UGG	LH19	TCLEE	0.002	ĹŤ	
	13SC1	RF15*23	ÇSO	20-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LT	
_	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH19	XYLEN	0.002	LT	
	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	1247CB	0.040	LT	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	12DCLB	0.110	LT	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	12DPH	0.140	ND	R
	13sc1 13sc1	RFIS*23 RFIS*23	CSO	20-aug-1991 20-aug-1991	10.0	UGG	LH18	130CLB 14DCLB	0.130	LŤ	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	245TCP	0 <b>.098</b> 0.100	LT LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	246TCP	0.170	LT	
	13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LX18	24DCLP	0.180	LT	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	24DMPM	0.690	LT	
	13sc1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	24DNP	1.200	LT	
	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LM18	24DNT	0.140	LT	
	13SC1 13SC1	RF1S*23 RF1S*23	CSO	20-aug-1991 20-aug-1991	10.0	UGG	LM18	260NT	0.085	ſΪ	
	13sc1	RF15*23	CSO	20-aug-1991	10.0 10.0	UGG	LN18 LN18	2CLP 2CNAP	0.060 0.036	LT LT	
	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LN18	2)PIAP	0.049	LŤ	
	13SC1	RF1S*23	CSO	20-aug-1991	10.0	UGG	LM18	2)4P	0.029	LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	LIKAKS	0.062	LT	
	13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	2NP	0.140	LŤ	
	135¢1 135¢1	RF1\$*23 RF1\$*23	CSO	20-aug-1991 20-aug-1991	10.0	UGG	LM18	330CBD	6.300	LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	3NAN IL 46DN2C	0.450 0.550	LT LT	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	4BRPPE	0.033	ίŤ	
	13 <b>SC1</b>	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	4CANIL	0.810	LT	
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	UI18	4CL3C	0.095	LŤ	
	13 <b>\$C1</b>	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	4CLPPE	0.033	LT	
	13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	4 <b>14</b> P	0.240	LT	
	13901 13901	RF15*23	CSO	20-aug-1991	10.0	UGG	LM18	4MANIL	0.410	Lī	
	13\$C1	RFIS*23 RFIS*23	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ANP ABHC	1.400 0.270	LT	
	13sc1	RFIS*23	ÇŞO	20-aug-1991	10.0	UGG	LM18	ACLDAN	0.330	ND ND	R R
	13901	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	AENSLF	0.620	ЖĎ	Ř
	13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	ALDRN	0.330	NO	Ř
	13801	RF15*23	CSO	20-aug-1991	10.0	UCG	LH18	ANAPKE	0.036	LŦ	
	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LM18	ANAPYL	0.033	LT	
	13\$C1 13\$C1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	ANTRO	0.033	LT	
	13sc1	RF1\$*23 RF1\$*23	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LH18 LH18	B2CEXXI B2CIPE	0.059 0.200	LT LT	
	13SC1	RF1\$*23	CSO	20-aug-1991	10.0	UGG	LX18	B2CLEE	0.033	LŤ	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	BZEKP	0.620	LT	
	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	BAANTR	0.170	ĹŤ	
	13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	BAPYR	0.250	LT	
	13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	BRFANT	0.210	LT	
	13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	U118	BBHC	0.270	ND	R
	135C1 13SC1	RFIS*23	CSO.	20-aug-1991	10.0	UGG	LM18	BBZP	0.170	LT	_
	138C1	RFIS*23 RFIS*23	CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	BENSLF BENZID	0.620 0.850	ND ON	R
	13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	BENZCA	6,100	ND ND	R R
	13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	BGHIPY	0.250	LT	•
		<del>-</del>								4.	

Site ID	<u>Field 1D</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13801	RFIS*Z3	ÇSO	20-sug-1991	10.0	ugg	LM18	8KFANT	0.066	LT	
13501	RF1S*23	CSO	20-aug-1991	10.0	ugg	LN18	BZALC	0_190	LT	
13SC1	RFIS*23	ÇSO	20-aug-1991	10.0	UGG	LM18	CHRY	0.120	LT	
13SC1	RF1S*23	CSO	20-aug-1991	10.0	UGG	LM18	C1.682	0.033	LT	
13\$C1	RF15*23	CSO	20-aug-1991	10.0	UGG	L#18	CL6CP	6.200	LT	
13SC1	RFIS*23	CSC	20-aug-1991	10.0	UGG	LM18	CL6ET	0.150	LT	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	DBAHA	0.210	LT	
13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LN18	DBHC	0.270	NO	R
13SC1	RF15*23	CSO	20-eug-1991	10.0	UGG	LX18	DBZFUR	0.035	LT	
13SC1	Rf15*23	CSO	20-aug-1991	10.0	UGG	LX18	DEP	0.240	LT	
13SC1	RF1S*23	C20	20-aug-1991	10.0	UGG	LH18	DLDRM	0.310	MD	R
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	DMP	0.170	LT	
13801	RF1S*23	CSO	20-aug-1991	10.0	ugg	LM18	DNBP	0.061	LT	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	ugg	LM15	DNOP	0.190	LŤ	
13801	RF1S*23	CSO	20-aug-1991	10.0	UGG	LM18	ENDRN	0.450	ND	R
13sc1	RF15*23	CSO	20-aug-1991	10.0	UGG	LM18	ENDRNA	0.530	ND	R
13801	RF15*23	CSO	20-aug-1991	10.0	UGG	LM18	ENDRNK	0.530	ND	R
13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	ESF\$Q4	0.620	ND	R
13SC1	RF1S*23	CSO	20-aug-1991	10.0	UGG	LM18	FANT	0.068	LŤ	
13sc1	RFIS*23	CSO	20-aug-1991	10.0	ugg	LM18	FLRENE	0.033	LT	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	ŲĠĢ	LM18	GCLDAN	0.330	ND	R
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	HCBD	0.230	LT	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	HPCL	0,130	ND	R
13sc1	RFIS*23	CSO	20-aug-1991	10.0	ugg	LN18	HPCLE	0.330	MD	R
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	1 CDPYR	0.290	LT	
13501	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	ISOPHR	0.033	LŤ	
13 <b>s</b> C1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	LIN	0.270	ND	R
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	MD	R
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	NAP	0.037	LT	
13sc1	RF15*23	CZO	20-aug-1991	10.0	UGG	LM18	NB	0.045	LT	
13sc1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	NNDMEA	0.140	ND	R
13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	NNDNPA	0.200	LŢ	
13sC1	RF1\$*23	cso	20-aug-1991	10.0	UGG	LH18	NNDPA	0.190	LŤ	
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	PC8016	1.400	ND	R
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	PCBZZ1	1.400	ND	R
13SC1	RFIS*23	cso	20-aug-1991	10.0	UGG	LH18	PCB232	1.400	ND	R
13sc1	RFIS*23	CZO	20-aug-1991	10.0	UGG	LH18	PCB242	1.400	ND	R
13sc1	RF1S*23	csc	20-aug-1991	10.0	UGG	1.418	PCBZ48	2.000	ND	R
13501	RF15*23	CSO	29-aug-1991	10.0	UGG	LH18	PCBZ54	2.300	ND	R
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	PCB260	2.600	NO	R
13\$01	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	PCP	1.300	LT	
13801	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	PHANTR	0.033	LT	
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	PHENOL,	0.110	ĻŤ	_
13sc1	RF15*23	CSO	20-aug-1991	10.0	UGG	LM18	PPDDD	0.270	MD	R
13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	LM18	PPDDE	0.310	ND	R
13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	LN18	PPODT	0.310	ND	R
13sc1	RF15*23	CSO	20-aug-1991	10.0	UGG	LH18	PYR	0.033	LT	_
13 <b>5</b> C1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LH18	TXPHEN	2.600	ND	R
13501	RFIS*23	CZO	20-eug-1991	10.0	UGG	JD19	AS	0.403		
13SC1	RFIS*23	CSO	20-sug-1991	10.0	UGG	JD15	SE	0.250	LT	
13501	RF1S*23	CSO	20-aug-1991	10.0	UGG	J\$16	AG	0.829		
13501	RFIS*23	CSO	20-sug-1991	10.0	UGG	J\$16	AL.	10400.000		
13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	J\$16	BA	128.000		
13501	RF1S*23	CSO	20-aug-1991	10.0	UGG	JS16	BE	1.610		
13901	RFIS*23	CSO	20-aug-1991	10.0	UGG	J\$16	Ċ	2050.000		
13SC1	RF1S*23	CSO	20-aug-1991	10.0	UGG	J\$16	8	0.700	LT	
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	J\$16	<b>co</b>	10.400		
13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	1216	CR	23.700		
13sc1	RF15*23	CSO	20-aug-1991	10.0	UGG	JS16	CU CU	8.280		
13sC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	JS16	FE	16200.000		
13501	RF15*23	CSO	20-mug-1991	10.0	UGG	J\$16	K	1070.000		
13901	RF15*23	CSO	20-aug-1991	10.0	UGG	1216	MĞ	3290.000		
13501	RFIS*Z3	cso	20-aug-1991	10.0	UGG	J\$16	KN	511.000		
13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	JS16	NA	470.000		
13\$01	RFIS*23	CSO	20-aug-1991	10.0	UGG	JS16	NI	14.100		
13sc1	RFIS*23	CSO	20-aug-1991	10.0	LIGG	JS16	PB	10.500	ĻŢ	
13SC1	RFIS*23	CSO	20-eug-1991	10.0	UGG	J\$16	\$B	7.140	LT	
13501	RF15*23	CSO	20-sug-1991	10.0	UGG	JS16	TL	6.620	ĻT	
13501	RF1S*23	CSO	20-aug-1991	10.0	UGG	J\$16	V	27.000		
1 <u>3</u> 5C1	RFIS*23	CZO	20-aug-1991	10.0	UGG	JS16	ZN	73.500		
13SC1	RF15*23	CSO	20-aug-1991	10.0	UGG	LW12	135TNB	0.488	LT	
13sc1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LW12	130NB	0.496	LŤ	
13sc1	RF15*23	CSO	20-aug-1991	10.0	ugg	LW12	246THT	0.456	ŁŤ	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LW12	240NT	0.424	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	<u>Value</u>	Flag	Internal Std. Code
13801	RFIS*23	CSO	20-aug-1991	10.0	UGG	LW12	260NT	0.524	LŤ	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGG	LW12	HMX	0.666	LT	
13501	RFIS*23	CSO	20-aug-1991	10.0	UGG	LW12	NB.	2.410	LT	
135C1 135C1	RFIS*23 RFIS*23	CSO CSO	20-aug-1991 20-aug-1991	10.0 10.0	UGG UGG	L¥12	RDX	0.587	LĨ	
13501	RFIS*23	CSO	20-aug-1991	10.0	UGL	L¥12 SS10	TETRYL AG	9.731 4,600	LT LT	
13SC1	RFIS*23	CSO	20-aug-1991	10.0	UGL	SS10	BA	485.000		
13 <b>SC1</b>	RFIS*23	CSO	20-aug-1991	10.0	UGL	\$\$10	ස	4.010	LT	
13SC1	RF1S*23	CSO	20-aug-1991	10.0	UGL,	\$\$10	CR	6.020	LT	
13SC1 13SC1	RF1\$*23 RF1\$*23	CSO	20-aug-1991 20-aug-1991	10.0 10.0	ugi. Ugi.	\$\$10 \$801	PB HG	18.600 0.243	LT LT	
13501	RFIS*23	CSO	20-aug-1991	10.0	UGL	\$022	AS	2.540	LT	
13SC1	RF1 <b>S*23</b>	CSO	20-aug-1991	10.0	UGL	\$021	SE	3.020	ĻŤ	
13sc2	RFIS*24	cso	21-aug-1991	0.5	UGG	JB01	HG	0.050	LT	
135C2 135C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	L¥12 L¥12	135THB 13DHB	0.488 0.496	LŢ	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LU12	246TNT	0.456	LT LT	
138C2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LW12	24DNT	0.424	ĹŤ	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LW12	26DNT	0.524	LT	
13\$C2	RFIS*24	CZO	21-aug-1991	0.5	UGG	LW1Z	HIMOX	0.666	LT	
13\$C2 13\$C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LW12 LW12	NB RDX	2.410 0.587	LT LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13SC2	RF15*24	CSO	21-aug-1991	. 0.5	UGG	LM19	111TCE	0.004	ĹŤ	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	112TCE	0.005	LT	
135C2 - 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5	UGG	UI19	11DCE	0.004	LT	
135C2	RF15*24	CSO	21-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	11DCLE 12DCE	0.002 0.003	LT LT	
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	120CLE	0.002	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	U(19	12DCLP	0.003	LT	
13SC2	RFIS*Z4	cso	21-aug-1991	0.5	UGG	LN19	SCLEVE	0.010	ND	R
135CZ 135C2	RFIS*24 RFIS*24	CSO	21-aug-1991	0.5 0.5	UGG	LN19	ACET	0.017	LT	_
13sc2	RF15*24	CSO	21-aug-1991 21-aug-1991	0.5	UGG UGG	1,M19 LM19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
13502	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	BROCLM	0.003	LT	•
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	C13DCP	0.003	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	UK19	C2AVE	0.003	LŤ	
13\$C2 13\$C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg	LM19 LM19	C2H3CL C2H5CL	0.006 0.012	LT LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	C6H6	0.002	LT	
13sc2	RF15*24	CSO	21-aug-1991	0.5	UGG	LH19	CCL3F	0.006	LT	
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	CCL4	0.007	LT	
138C2 138C2	RF1S*24 RF1S*24	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LK19	CH2CL2	0.012	LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	LM19 LM19	CH3BR CH3CL	0.006 0.009	LT LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	LN19	CHBR3	0.007	ĹŤ	
13SC2	RFIS*24	C20	21-aug-1991	0.5	UGG	LM19	CHCL3	0.001	ĻŦ	
13sc2	RF15*24	CSO	21-aug-1991	0.5	UGG	LM19	CL2BZ	0.100	MD	R
13\$C2 13\$C2	RF1\$*24 RF1\$*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	CEC6H5	0.001 0.004	LT LT	
13SC2	RFIS*24	csc	21-aug-1991	0.5	UGG	LN19	DBRCLM	0.003	LT	
13sc2	RF15*24	CSO	21-aug-1991	0.5	UGG	LM19	ETC6H5	0.002	LT	
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	MEC6H5	0.001	LT	
139C2 139C2	RFIS*24 RFIS*24	C2O	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LN19	MEX	0.070	LT	
13SC2	RF15-24	CSO	21-aug-1991	0.5	UGG	LM19 LM19	MKBK MIBK	0.027 0.032	LT LT	
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH19	STYR	0.003	LT	
13SC2	RFIS*24	CZO	21-aug-1991	0.5	UGG	LH19	T13DCP	0.003	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LN19	TCLEA	0.002	LT	
13SC2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LN19	TCLEE TRCLE	0.001	LT	
13\$C2	RF15*24	CSO	21-aug-1991	0.5	LIGG	LN19 LN19	UNKO74	0.003 0.024	ĻŢ	s
13SC2	RF15*24	CSO	21-sug-1991	0.5	UGG	LN19	XYLEN	0.002	ĻŢ	₩
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LN18	124TCB	0.040	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LM18	120CLB	0.110	LT	_
13SC2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	120PH 130CLB	0.148 0.130	NO	R
13SC2	RFIS*24	CSC	21-aug-1991	0.5	UGG	LM18	140CLB	0.130	LT LT	
13sc2	RFIS*24	ÇSQ	21-aug-1991	0.5	UGG	LM18	245TCP	0.100	ίŤ	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	LH18	246TCP	0.170	LT	
135C2 13SC2	RF15*24 RF15*24	CSO	21-aug-1991	0.5	UGG	LN18	24DCLP	0.180	LT	
135C2	RF15-24 RF1S*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	24DMPN 24DNP	0.6 <del>9</del> 0 1.200	LT LT	
13SC2	RF15*24	C20	21-aug-1991	0.5	UGG	LN18	24DNT	9.140	ĹĬ	
						-		• • • •		

Site ID	<u>Field_ID</u>	<u> Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13sc2	RFIS*24	cso	21-aug-1991	0.5	UGG	LM18	26DNT	0.085	LT	
13sc2	RFIS*24	cso	21-aug-1991	0.5	UGG	LN18	2CLP	0.060	LT	
13SC2	RF15*24	C20	21-aug-1991	0.5	UGG	LM18	2CHAP	0.036	ĻŢ	
13SC2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	81KJ 1,318	ZHHAP ZHP	0.049 0.029	LT LT	
13sc2	RF15*24	CSO	21-aug-1991	0.5	UGG	LK18	2NAN I L	0.062	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	2NP	0.140	LT	
13502 13502	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	33DCBD 3NAN I L	6.300 0.450	LT LT	
135C2	RF15*24	CSO	21-aug-1991	0.5	UGG	D118	46DN2C	0.550	LT	
13SC2	RF1S*24	CSO	21-aug-1991	0.5	UGG	LN18	4BRPPE	0.033	LT	
13SC2 13SC2	RF15*24 RF15*24	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LM18 LM18	4CANTL 4CL3C	0.810 0.095	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LM18	4CLPPE	0.033	LT LT	
13802	RFIS*24	CSO	21-aug-1991	0.5	UGG	LM18	4MP	0.240	LŤ	
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	4NANIL	0.410	LT	
138C2 138C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg	1.H18 1.H18	ANP ABHC	1.400 0.270	LT ND	R
13SC2	RF1S*24	CSO	21-aug-1991	0.5	UGG	LH18	ACLDAN	0.330	ЖD	Ř
13502	RF15*24	CSO	21-aug-1991	0.5	UGG	LH18	AENSLF	0.620	ND	R
13\$C2 13\$C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	ALDRN ANAPNE	0.330 0.036	ND LT	. R
13sc2	RF15*24	ÇSO	21-aug-1991	0.5	UGG	LH18	ANAPYL	0.033	ĹŤ	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LM18	ANTRC	0.033	LT	
13SC2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	82CEXM 82CIPE	0.059 0.200	LT LT	
13SC2	RF1S*24	cso	21-aug-1991	0.5	UGG	UN18	82CLEE	0.033	ĹŤ	
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	BZEHP	0.620	LT	
138C2 138C2	RFIS*24 RFIS*24	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	BAANTR BAPYR	0.170 0.250	LT LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	LN18	BBFANT	0.210	LT	
13862	RF1S*24	CSO	21-aug-1991	0.5	UGG	LM18	BBHC	0.270	ND	R
138C2 138C2	RFIS*24 RFIS*24	C20 C20	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	BBZP Benslf	0.170 0.620	LT ND	•
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LN18	BENZID	0.850	ND	R R
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	LH18	BENZOA	6.100	ND	R
138C2 138C2	RF1S*24 RF1S*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	BCH L PY BK FANT	0.250 0.066	LT	
138C2	RF15*24	CSO	21-aug-1991	0.5	UGG	LM18	BZALC	0.190	LT LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	CHRY	0.120	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LK18	CL68Z	0.033	LŢ	
138C2 138C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	LX18	DBAHA	0.210	LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5 0.5	UGG	LK18	DBHC	0.270	ND	R
13SC2 13SC2	RF1S*24 RF1S*24	CSO	21-aug-1991 21-aug-1991	0.5	ugg Ugg	LX18 LM18	DBZFUR DEP	0.035 0.240	LT LT	
13SC2	RFIS*24	ÇSO	21-aug-1991	0.5	UGG	LM18	DLDRN	0.310	ND	R
13502	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	DMP	0.170	LT	
13SC2 13SC2	RF1S*24 RF1S*24	C20	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	DNBP DNOP	0.061 0.190	LT LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LN18	ENDRN	0.450	ND	R
13502	RFIS*24	CSO	21-aug-1991	0.5	UGG	LX18	ENDRNA	0.530	KD	R
13902 13902	RF1S*24 RF1S*24	CS0	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	ENDRNK ESFS04	0.530 0.620	ND ND	R R
13\$C2	RF1S*24	cso	21-aug-1991	0.5	UGG	LM18	FANT	0.068	ίŤ	•
13SC2	RFIS*Z4	CSO	21-aug-1991	0.5	UGG	LN18	FLRENE	0.033	LŢ	
13\$C2 13\$C2	RFIS*24 RFIS*24	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg	LH18 LH18	GCLDAN HCBD	0.330 0.230	MD LT	R
13SC2	RF15*24	CSO	21-aug-1991	0.5	UCG	LN18	HPCL	0.130	KD	R
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LK18	MPCLE	0.330	MD	R
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LX18	ICOPYR	0.290	LĬ	
138C2 138C2	RFIS*24 RFIS*24	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg	LM18 LM18	ISOPHR LIN	0.033 0.270	LT ND	· R
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LM18	MEXCLR	0.330	ND	Ř
13502	RFIS*24	CSO	21-sug-1991	0.5	UGG	LH18	NAP	0.037	LT	
135C2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	lm18 lm18	NB NNDMEA	0.045 0.140	LT ND	R
13SC2	RF1S*24	CSO	21-aug-1991	0.5	UGG	LH18	NNDNPA	0.200	LT	
13502	RF1S*24	CSO	21-aug-1991	0.5	UGG	LM18	NNDPA	0.190	LT	_
138C2 138C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	lm18 lm18	PCB016 PCB221	1.400 1.400	ND ND	R R
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LM18	PCB221	1.400	NO	R
13sc2	RF15*24	CSO	21-aug-1991	0.5	UGG	LH18	PCBZ4Z	1.400	ND	R

•										
Site ID	field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry	Value	Flag	Internal Std. Code
			·							
13SC2	RF1S*24	CSO	21-aug-1991	0.5	UGG	LH18	PCB248	2.000	ND	R
13SC2 13SC2	RF1S*24 RF1S*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	PCB254 PCB260	2.300	ND	R
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	PCP	2.600 1.300	ND Lt	R
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	PHANTR	0.033	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	LH18	PHENOL	0.110	LT	
13SC2	RFIS*24	C20	21-aug-1991	0.5	UGG	LH18	PPODD	0.270	ND	R
138C2 138C2	RF1S*24	CSO	21-aug-1991	0.5	UGG	LN18	PPDDE	0.310	ND	R
138C2	RF1S*24 RF1S*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LM18 LM18	PPODT PYR	0.310	ND	Ř
13SC2	RF1S*24	CSO	21-aug-1991	0.5	UGG	LN18	TXPHEN	0.033 2.600	LT MD	R
13SC2	RF1S*24	CSC	21-aug-1991	0.5	UGG	LM18	UNK609	0.357		ŝ
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JD19	AS	0.623		_
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGG	JD15	SE	0.250	LT	
138C2 138C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	JS16 JS16	AG AL	0.858		
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	BA	8960.000 132.000		
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	BE	1.490		
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	CA	1900.000		
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	CO	0.700	LT	
135C2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	JS16	œ	9,270		•
138C2	RF15*24	CSO	21-aug-1991	0.5	UGG	J\$16 J\$16	CR CU	20.500 9.220		
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	FE	15400.000		
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	K	1610.000		
13\$t2	RFIS*24	czo	21-aug-1991	0.5	UGG	J\$16 ⁻	MG	3000.000		
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	J516	NA	518.000		
138C2 138C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	1516 1516	NA NI	287.000 12.700		
13sc2	RFIS*24	CSO	21-aug-1991	0.5	UGG	1516 1516	PB PB	55.600		
13\$CZ	RFIS*24	CSO	21-aug-1991	0.5	UGG	JS16	SB	7.140	LT	
13SC2	RF1S*24	CSO	21-aug-1991	0.5	UGG	JS16	TL	6.620	LT	
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGG	J\$16	<b>V</b>	24.700		
13SC2 13SC2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGL	316 223	ZX	94.700		
13SC2	RFIS*24	CSO	21-aug-1991	0.5	UGL	SS10 SS10	AG BA	4.600 785.000	ĻŢ	
13SC2	RFIS=24	CSO	21-aug-1991	0.5	UGL	SS10	<b>6</b>	4.010	LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGL	SS10	CR	6.020	LT	
13SC2	RF15*24	CSO	21-aug-1991	0.5	UGL	SS10	PE	18.600	LT	
138 <b>C2</b> 138C2	RFIS*24 RFIS*24	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugl ugl	SB01 SD22	HG	0.243	LT	
13sc2	RF15*24	CSO	21-aug-1991	0.5	UGL	SD22 SD21	AS SE	2.540 3.020	LT LT	
13SC2	RFIS*25	cso	21-aug-1991	5.0	UGG	J801	HG	0.050	ĹŤ	
13902	RFIS*25	CSO	21-aug-1991	5.0	UGG	LW12	135TNB	0.488	LT	
13sc2	RFIS*25	CSO	21-eug-1991	5.0	UGG	LM15	13DNB	0.496	LT	
13SC2 13SC2	RF1S*25 RF1S*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	L¥12	246TNT 24DNT	0.456	LT	
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LW12 LW12	26DNT	0.424 0.524	LT LT	
13SC2	RFIS*25	ÇSO	21-aug-1991	5.0	UGG	L¥12	HIMOX	0.666	LT	
13SC2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	LW12	NB	2.410	ĻT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LW12	RDX	0.587	ĻT	
13SC2 13SC2	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0	UGG	£¥12	TETRYL	0.731	LT	
135C2	RF15*25	CSO	21-aug-1991	5.0 5.0	UGG UGG	1319 1319	111TCE 112TCE	0.004 0.005	LT LT	
13\$C2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN19	11DCE	0.004	LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	11DCLE	0.002	ĻŤ	
13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN19	12DCE	0.003	ĻT	
13\$C2 13\$C2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN19	120CLE	0.002	LT	
13502 13502	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	12DCLP 2CLEVE	0.003 0.010	LT	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM19	ACET	0.017	ND LT	
13SC2	RFIS*25	CSO	21-eug-1991	5.0	UGG	13119	ACROLN	0.100	ND	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN19	ACRYLO	0.100	KD	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	BRDCLM	0.003	LT	
139C2 139C2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN19	C13DCP	0.003	LT	
13sc2	RF1\$*25 RF1\$*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LN19 LN19	CZAVE CZH3CL	0.003 0.006	LĪ	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	C2H5CL	0.012	LT LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	C6H6	0.002	LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	CCL3F	0.006	LT	
13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	CCL4	0.007	LT	
13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LH19	CH2CL2	0.012	LT	
138C2 138C2	RFIS*25	CSO	21-aug-1991	5.0 F.0	UGG	LH19	CH3BR	0.006	LT	
12362	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN19	CX3CL	0.009	LT	

	Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
	13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	CHBR3	0.007	LT	
	13sc2	RFIS*25	CSD	21-aug-1991	5.0	UGG	LH19	CHCL3	0.001	LT	
	13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	CL2BZ	0.100	ND	R
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	CLC6H5	0.001	LT	
	13SC2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	LM19	CS2	0.004	LT	
	13\$C2 13\$C2	RF15*25 RF15*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg	LH19 LH19	DBRCLM ETC6H5	0.003	ĻŢ	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM19	MEC6H5	0.002 0.001	LT LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	MEK	0.070	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	U419	HIBK	0.027	ĹŤ	
	13\$C2	RF1S*25	C2O	21-aug-1991	5.0	UGG	LK19	MNSK	0.032	LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LH19	STYR	0.003	LT	
	13SC2	RFIS*25 RFIS*25	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LH19 LH19	T130CP	0.003	LT	
	13SC2 13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG UGG	LM19	TCLEA TCLEE	0.002 0.001	LT LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LH19	TRCLE	0.003	LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LH19	UNK125	0,005		\$
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH19	XYLEN	0.002	LT -	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	124TCB	0.040	LT	
	135C2 13SC2	RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LX18	120CLB	0.110	LT	_
	13SC2	RFIS*25 RFIS*25	CSO	21-sug-1991	5.0	ugg ugg	LM18 LM18	12DPH 13DCLB	0.140 0.130	ND LT	· R
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LN18	140CL8	0.098	LT	
	13SC2	RFIS*25	CZO	21-aug-1991	5.0	UGG	LN18	245TCP	0.100	ĹΪ	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	246TCP	0.170	LŤ	
_	13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	24DCLP	0.180	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	Z4DMPN	0.690	LT	
	13\$C2 13\$C2	RF15*25 RF1S*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg U <b>gg</b>	LM18 LM18	24DNP 24DNT	1.200 0.140	LT LT	
	13SC2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	LM18	260NT	0.085	LT	
	13sc2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	LN18	2CLP	0.060	LŤ	
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LH18	2CNAP	0.036	ĹŤ	
	13502	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	2MNAP	0.049	LŤ	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	UH18	ZMP	0.029	LT	
	13SC2 13SC2	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ZNANIL 2NP	0.062	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	330CB0	0.140 6.300	LT LT	
	13SC2	RF15*25	cso	21-aug-1991	5.0	UGG	LH18	3NAN I L	0.450	LŤ	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	46DN2C	0.550	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN18	4BRPPE	0.033	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	4CANIL	0.810	LT	
	13\$C2 13\$C2	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LM18 LM18	4CL3C 4CLPPE	0.095 0.033	LT LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	4MP	0.240	LŤ	
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LM18	4NANIL	0.410	LT	
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	ŲGG	LH18	4NP	1.400	LT	
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LH18	ABHC	0.270	ND	R
	13\$C2	RF15*25	CSO	21-aug-1991	5.0	UGG	LH18	ACLDAN	0.330	ND	R
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LM18	AENSLF	0.620	ND	R
	13SC2 13SC2	RF1S*25 RF1S*25	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LH18 LH18	ALDRN ANAPNE	0.330 0.036	ND LT	R
	13902	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	ANAPYL	0.033	LŤ	
	13sc2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	ANTRC	0.033	ĻT	
	13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LH18	B2CEXM	0.059	LT	
	13502	RFIS*25	ÇŞO	21-aug-1991	5.0	UGG	LM18	BECIPE	0.200	ĻŢ	
	13SC2 13SC2	RF15*25 RF15*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	B2CLEE	0.033	LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	B2EHP BAANTR	0.620 0.170	LT LT	
	13502	RF15*25	CSO	21-aug-1991	5.0	UGG	LH18	BAPYR	0.250	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	BEFANT	0,210	LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	BBHC	0.270	KÜ	R
	13SC2	RFIS*25	cso	21-aug-1991	5.0	UGG	LH18	BBZP	0, 170	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LX18	BENSLF	0.620	NO.	R
	13SC2 13SC2	RF1S*25 RF1S*25	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	1.H18	BENZID BENZCA	0.850 6.100	MD	R
	13502	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	BCHIPY	0.250	MD LT	R
	13sc2	RF15*25	CSO	21-aug-1991	5.0	UGG	UH18	BKFANT	0.066	ĻŢ	
	13SC2	RF15*25	cso	21-aug-1991	5.0	UGG	LN18	BZALC	0.190	LT	
	13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	CHRY	0.120	LT	
	13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	CL68Z	0.033	LT	
	13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	CL6CP	6.200	LT	
	135C2 13SC2	RF1S*25 RF1S*25	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LH18 LH18	CL6ET DBAKA	0.150 0.210	LT LT	
	13\$C2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	DBHC	0.270	NO	R
	·				2.12			<del>-</del>			~

Site_ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	DBZFUR	0.035	LT	
13SC2	RF15*25	C20	21-aug-1991	5.0	UGG	LH18	DEP	0.240	LT	
13sc2	RFI\$*25	CSO	21-aug-1991	5.0	UGG	LN18	DLDRN	0.310	ЖD	R
13SC2	RF15*25	CSO	21 - aug - 1991	5.0	UGG	1,H18	DMP	0.170	LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	QNBP	0.061	LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	DNOP	0.190	LT	
13502	RF1S*25	CSO	21-aug-1991	5.0	UGG	LM18	ENDRN	0.450	ND	Ř
135C2 13SC2	RFIS*25	C\$0	21-aug-1991	5.0	UGG	LX18	ENDRNA	0.530	ND	R
13SC2	RFIS*25 RFIS*25	C20	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LX18 LX18	ENDRNK ESFSO4	0.530	ND	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	FANT	0.620 0.668	ND LT	Ř
135C2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	FLRENE	0.033	LT	
135CZ	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN18	GCLDAN	0.330	ND	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	HCSD	0.230	LT	-
13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LN18	HPCL	0.130	ND	Ř
13SC2	RFIS*25	CSC	21 - aug - 1991	5.0	UGG	LM18	HPCLE	0.330	ND	R
13sc2	RFIS#25	CSO	21-aug-1991	5.0	UGG	LN18	ICDPYR	0.290	LŢ	
138C2 138C2	RFIS*25	CZO	21 - aug - 1991	5.0 5.0	UGG	LM18	ISOPHR	0.033	LT	_
13502	RF15*25 RF15*25	CSO	21-aug-1991 21-aug-1991	5.0	UGG UGG	LM18 LM18	LIN	0.270	MD	R
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	MEXCLR NAP	0.330 0.037	ND LT	Ř
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	NB	0.045	ĻŢ	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	NNDMEA	0.140	ЖD	R
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	HNDRPA	0.200	LT	•
13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LH18	HNDPA	0.190	LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LN18	PCB016	1.400	ND	R
13\$C2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	LN18	PC8221	1,400	ND	R
13SC2	RFIS*25	CSO	21-aug-1991	5,0	UGG	LM18	PC8232	1.400	ND	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LH18	PC8242	1.400	ND	R
13SCZ	RF15*25	CSD	21-aug-1991	5.0	UGG	LM18	PCB248	2.000	ND	R
138C2 138C2	RFIS*25	CSO	21-aug-1991	5.0	UGG	LM18	PCB254	2.300	MD	R
135C2	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LN18	PCB260	2.600	ЖD	R
13\$C2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18 LN18	PCP PHANTR	1.300 0.033	LT LT	
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	PHENOL	0.110	LT	
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LN18	PPODD	0.270	ND.	R
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	PPODE	0.310	ND	Ř
13SC2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	LN18	PPOOT	0.310	ND	Ř
13sc2	RF1S*25	CSO	21-aug-1991	5.0	UGG	LM18	PYR	0_033	LT	
13scz	RF15*25	CSO	21-aug-1991	5.0	UGG	LM18	TXPHEN	2.600	ЖĐ	R
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	JD19	AS	0.569		
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	JD15	SE	0.250	LT	
13SC2 13SC2	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	JS16	AG	0.842		
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	1219 1219	AL BA	10300.000 135.000		
13sc2	RF15*25	CSO	21-aug-1991	5.0	UGG	J\$16	BE	1.340		
13sc2	RF15*25	cso	21-aug-1991	5.0	UGG	JS16	CA	2040.000		
13SC2	RF1S*25	CSO	21-aug-1991	5.0	UGG	JS16	æ	0.700	LT	
13502	RF1\$*25	CSO	21-aug-1991	5.0	UGG	JS16	CO	10.200		
13SC2	RF1S*25	CSQ	21-aug-1991	5.0	UGG	J\$16	CR	22.000		
13802	RFIS*25	CSO	21-aug-1991	5.0	UGG	JS16	cu	12.700		
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	JS16	FE	16300.000		
13SC2 13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGG	JS16	K	1170.000		
13\$C2	RFIS*25 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	NCC NCC	J\$16	MG	3420.000		
13SC2	RF1\$*25	CSO	21-aug-1991	5.0	UGG	1216 1216	MN NA	513.000 374.000		
13SC2	RF15*25	CSO	21-aug-1991	5.0	UGG	JS16	NI	14.900		
13sc2	RFIS*25	cso	21-aug-1991	5.0	UGG	JS16	PB	10.500	LT	
13SC2	RFIS*25	ÇSO	21-aug-1991	5.0	UGG	JS16	SB	7.140	ĹŤ	
13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGG	JS16	TL	6.620	ĹŤ	
13SC2	RFIS*25	CSO	21-eug-1991	5.0	UGG	JS16	V	27.200		
13sc2	RFI S*25	CSO	21-aug-1991	5.0	UGG	J\$16	ZN	73.500		
13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGL	\$\$10	AG	4.600	LT	
13sc2	RFIS*25	CSO	21-aug-1991	5.0	UGL	SS10	BA	565.000		
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGL	SS10	æ	4.010	LT	
13SC2	RFIS*25	CSO	21-aug-1991	5.0	UGL	5510	CR	6.020	L7	
13SC2	RF1\$*25	CSO	21-aug-1991	5.0	UGL	SS10	PB	18.600	ĻŢ	
13\$C2 13\$CZ	RFIS*25 RFIS*25	CSO	21-aug-1991	5.0	UGL	SB01	HG	0.243	LT	
13SC2	RF15*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGL	SD22 SD21	AS SE	2.540 3.020	LT LT	
13sc2	RFIS*25	CSO	21-aug-1991	10.0	UGG	LM19	SE 111TCE	0.004	LT	
13sc2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM19	112TCE	0.005	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM19	11DCE	0.004	ĹŤ	
13802	RFIS*26	CSG	21-aug-1991	10.0	UGG	LN19	11DCLE	0.002	ĹŤ	
<del>-</del>										

Site ID	Field ID	<u> Media</u>	Date	Deoth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flog</u>	Internal Std. Code
13502	RF15*26	CSO	21-aug-1991	10.0	UGG	LH19	120CE	0.003	LT	
13502	RF15*26	CSO	21-aug-1991	10.0	UGG	LN19	12DCLE	0.002	ĻĪ	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH19	120CLP	0.003	LT	
13502 13502	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.D 10.0	UGG	LH19 LH19	2CLEVE ACET	0.010	NO	R
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LN19	ACROLM	0.017 0.100	LT ND	R
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH19	ACRYLO	0.100	ND	Ř
13sc2	RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0	UGG	LH19	SRDCLM	0.003	LT	
135C2 135C2	RFIS*26 RFIS*26	CSO	21-aug-1991	10.0 10.0	ugg Ugg	LN19 LN19	C13DCP C2AVE	0.003 0.003	LT LT	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH19	C2H3CL	0.006	LT	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH19	C2X5CL	0.012	LŤ	
138C2 138C2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	C6H6 CCL3F	0.002 0.006	LT LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH19	CCL4	0.007	ĻŢ	
13502	RF15*26	CSO	21-aug-1991	10.0	UGG	LN19	CH2CLZ	0.012	LT	
13\$C2 13\$C2	RFIS*26 RFIS*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LN19 LN19	CH3BR CH3CL	0.006 0.009	LT LT	
13502	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH19	CHBR3	0.007	LT	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	<b>LH19</b>	CHCL3	0.001	LT	
13882	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0	UGG	LN19	CL2BZ	0.100	MD.	R
13\$C2 13\$C2	RF15*25	CSO	21-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	CLC6H5 CS2	0.001 0.004	LT LT	
13\$C2	RF15*26	CSO	21-aug-1991	10.0	UGG	LM19	DBRCLM	0.003	ĻŤ	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM19	ETC6H5	0.002	ĻŢ	
135C2 135C2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LN19" LN19	MEC6H5 MEK	0.001 0.070	LT LT	
13502	RFIS*26	cso	21-aug-1991	10.0	UGG	LH19	MIBK	0.027	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH19	MNBX	0.032	ŁT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH19	STYR	0.003	LŤ	
13\$C2 13\$C2	RF1S*26 RF1S*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	T130CP TCLEA	0. <b>003</b> 0.002	LT LT	
13SC2	RF15*26	cso	21-aug-1991	10.0	UGG	LH19	TCLEE	0.001	LT	
13sc2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LT	
13\$C2 13\$C2	RFIS*26 RFIS*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LN19 J801	XYLEN	0.002 0.050	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LW12	HG 135TNB	0.488	LT LT	
13sc2	RF15*26	CSO	21-aug-1991	10.0	UGG	LW12	130NB	0.496	LT	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LW12	246TNT	0.456	LT	
13SC2 13SC2	RFIS*26 RFIS*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LW12 LW12	24DNT 26DNT	0.424 0.524	LT LT	
13SC2	RFIS*26	CSC	21-aug-1991	10.0	UGG	LW12	HIXX	0.666	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.8	ucc	LW12	MB	2.410	LT	
13SC2 13SC2	RFIS*26 RF1S*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LW12 LW12	RDX TETRYL	0.587 0. <i>7</i> 31	LT LT	
13SC2	RF1S*26	CSO	21-aug-1991	10.0		JD15	SE	0.250	LT	
13\$C2	RF15*26	CSO	21-aug-1991	10.0	UGG	LM18	124TCB	0.040	LT	
13SC2	RF1\$*26 RF1\$*26	CSO	21-aug-1991 21-aug-1991	10.0		LH18	12DCLB	0.110	LT	_
13SC2 13SC2	RF15*26	CSO	21-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	12DPH 13DCLB	0.140 0.130	ND LT	R
13sc2	RF1\$*26	CSO	21-aug-1991	10.0	UGG	LH18	14DCLB	0.098	ĻT	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH18	245TCP	0.100	LT	
135C2 135C2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LH18 LH18	246TCP Z4DCLP	0.170 0.180	LT LT	
13sc2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	24DMPN	0.490	ĹΪ	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LK18	240MP	1.200	LŤ	
138C2 138C <b>2</b>	RF15*26 RF15*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	24DNT 26DNT	0.140 0.085	LT LT	
13sc2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	2CLP	0.060	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0		LH18	2CHAP	0.036	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0		LN18	2MAP	0.049	LT	
138C2 138C2	RFIS*26 RFIS*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ZHP ZHANTL	0.029 0.062	LT LT	
13SC2	RF15*26	CSO	21-aug-1991	10.0		LH18	2NP	0.140	LT	
13SC2	RFIS*Z6	CSC	21-aug-1991	10.0	UGE	LH18	33DCB0	6.300	LT	
13\$C2	RFIS*26	CSO	21-aug-1991	10.0		LM18	3MANIL	0.450	L7	
13\$C2 13\$C2	RF1S*26 RF1S*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0		LN18 LN18	460N2C 48RPPE	0.550 0.033	LT LT	
13sc2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH18	4CANIL	0.810	LT	
13sc2	RF15*26	CSO	21-aug-1991	10.0		LM18	4CL3C	0.095	LT	
135C2 13SC2	RF1S*26 RF1S*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0		LM18 LM18	4CLPPE 4MP	0.033 0.240	LT LT	
135C2	RF15-26	CSO	21-aug-1991	10.0		LM18	4NANIL	0.410	LT	
13SC2	RF1S*26	CSO	21-aug-1991	10.0		LX18	4NP	1.400	LŤ	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Qepth</u>	<u>Units</u>	Analytical Method	Analyte Abbry	Value	ftag	Internal St <u>d. Code</u>
13SC2			34 1004							
13862	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	ABHC ACLDAN	0.270 0.330	ND ND	R R
13SC2	RFIS*26	ÇSO	21-aug-1991	10.0	UGG	UN18	AENSLF	0.620	ND	R
13\$C2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	ALDRN	0.330	ND	Ř
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH18	ANAPNE	0.036	LT	
13SC2 13SC2	RFIS*26 RFIS*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	L#18 L#18	ANAPYL ANTRC	0.033 0.033	LT LT	
13sc2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	BZCEXM	0.059	LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	82CIPE	0.200	LT	
13SC2 13SC2	RF1S*26	CSO	21-aug-1991	10.0	UGG	LH18	B2CLEE	0.033	LŤ	
13SC2	RFIS*26 RF1S*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LM18 LM18	BZEHP BAANTR	0.620 0.170	LT LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	BAPYR	0.250	ĹŤ	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	<b>BBFANT</b>	0.210	L,T	
13sc2 13sc2	RF1S*26 RF1S*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LM18	BBHC	0.270	ND	R
13\$C2	RFIS*26	CSO	21-aug-1991	10.0	UGG UGG	LM18 LM18	BBZP Benslf	0.170 0.620	LT ND	R
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LX18	BENZ10	0.850	ND .	Ř
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	BENZCA	6.100	ND	R
13SC2 13SC2	RF15*26 RF15*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN18	BGHIPY	0.250	LT	
13SC2	RFIS*26	CSC	21-aug-1991	10.0	UGG	LM18 LM18	BK FANT BZALC	0.066 0.190	LT LT	
13SC2	RFIS*26	cso	21-aug-1991	10.0	UGG	LH18	CHRY	0.120	ĻŤ	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	CL68Z	0.033	LT	
135C2 135C2	RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0	UGG	LM18	CL6CP	6.200	LT	
13SC2	RFIS*26 RFIS*26	CSO	21-aug-1991	10.0 10.0	UGG UGG	LH18" LH18	CL6ET DBAHA	0.150 0.210	LT LT	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	DBHC	0.270	ND	R
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	DBZFUR	0.035	LT	
13\$02	RFIS*26	CSO	21-aug-1991	10.0	UGG	UN18	DEP	0.240	LT	_
138C2 138C2	RFIS*26 RFIS*26	CSO	21-eug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LH18 LN18	DLDRN DNP	0.310 0.170	ND LT	R
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	UN18	DNBP	0.061	LŤ	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LX18	DNOP	0.190	ĹŤ	
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LN18	ENDRN	0.450	ND	Ŗ
135C2 135C2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R R
13SC2	RFIS*26	cso	21-aug-1991	10.0	UGG	LM18	ESFS04	0.620	NO	Ř
13SC2	RF15*26	CSC	21-aug-1991	10.0	UGG	LM18	FANT	0.068	LT	
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH18	FLRENE	0-033	LT	_
138 <b>C2</b> 138 <b>C2</b>	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	GCLDAN HCBD	0.330 0.230	ND LT	R
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LN18	HPCL	0.130	KD	R
13sc2	RFIS*26	CSC	21-aug-1991	10.0	ŲGĢ	LM18	HPCLE	0.330	ND	R
138C2 138C2	RF15*26 RF15*26	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LM18 LM18	ICDPYR ISOPHR	0.290 0.033	LT	
13SC2	RF15*26	ÇSO	21-aug-1991	10.0	UGG	LM18	LIN	0.270	LT ND	R
13SC2	RF15*26	CSO	21-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	ND	Ř
13SC2	RF15*26	CSO	21-aug-1991	10.0		LH18	NAP	0.037	LT	
13\$C2 13\$C2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LK18	NB NNOMEA	0.045	ĻŤ	_
13502	RFIS*26	CSO	21-sug-1991	10.0	UGG	LX18 LX18	NNONPA	0.140 0.200	ND LT	R
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	NNDPA	0.190	LT	
13802	RFIS*26	CSO	21-aug-1991	10.0	UGG	LH18	PCB016	1.400	ND	R
13SC2 13SC2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	PC8221 PC8232	1.400 1.400	ND ND	R
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	PCB242	1.400	ND	R R
13SC2	RFIS*26	¢so	21-aug-1991	10.0	UGG	LN18	PC8248	2.000	ND	Ř
13SC2	RFIS*26	cso	21-aug-1991	10.0	UGG	LM18	PC8254	2.300	MD	R
138 <b>c2</b> 138c2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	U418 U418	PCB260 PCP	2.600 1.300	ND LT	R
13sc2	RFIS*Z6	CSO	21-aug-1991	10.0	UGG	LN18	PHANTR	0.033	LT	
13SC2	RFIS#26	CSO	21-aug-1991	10.0	UGG	LN18	PHENOL	0.110	LT	
135C2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	PPODD	0.270	ND:	R
13SC2 13SC2	RFIS*26 RFIS*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	PPDDE PPDDT	0.310 0.310	ND	R
135C2	RFIS*26	CSO	21-aug-1991	10.0	UGG	UN18	PYR	0.033	ND LT	R
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	LM18	TXPHEN	2.600	NO.	R
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	J\$16	AG	0.589	LT	
135C2 135C2	RF15*26 RF15*26	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	JS16	AL DA	11000.000		
13\$C2	RFIS*26	CSO	21-aug-1991	10.0	UGG UGG	J\$16 J\$16	BA BE	175.000 1.880		
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	J\$16	CA	2180,000		
13SC2	RFIS*26	CSO	21-aug-1991	10.0	UGG	1516	<b>CD</b>	0.700	LŤ	

135C2	Site ID	<u>Field ID</u> M	ledia	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
135C2	13802	RFIS*26	cso	21-aug-1991	10.0	UGG	JS16	co	12,400		
135C2											
136C2								-			
135C2									-		
135C2											
135C2				•				_			
135C2		RF1S*26			10.0						
135C2											
138C2								. –			
138C2											
138C2				-				Y			
138C2											
138C2					1 2 7 7						
138C2				- · · · · · · · · · · · · · · · · · · ·							
135C2								co		LT .	
135C2						-					
135C2			-	<del>-</del>				. –			
135C2											
138C3						. –			3.020		
135C3		. —									
								_	_		
138C3											
135C3	13\$C3	VFSL*103	CSO						_	-	
135C3											
13SC3											
138CS											
135C3											
135C3				•							
138C3		_									
138C3										ĻŤ	
158C3										LT	
138C3					0.5				-		
138C3											
135C3											
13SC3											
13SC3											
13SC3										-	
13SC3											•
13SC3	13SC3										
13SC3									•		
13SC3											
135C3										-	
13SC3 VFSL*103 CSO 09-mmr-1992 0.5 UGL UM18 TNTISO 7.000 g 13SC3 VFSL*103 CSO 09-mmr-1992 0.5 UGL UM18 UNK526 9.000 g 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 111TCE 0.004 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 112TCE 0.005 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCE 0.004 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 CAROLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 CAROLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.006 LT											
13SC3 VFSL*103 CSO 09-mar-1992 0.5 UGL UM18 UNK526 9.000 \$ 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 111TCE 0.004 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 112TCE 0.005 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 11DCE 0.004 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 11DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 2CDCLP 0.010 MD R 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 ACET 0.100 MD R 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 ACEOLM 0.100 MD R 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 ACEOLM 0.100 MD R 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT 13SC3 RFIS*27 CSO 21-mug-1991 0.5 UGG LM19 CCAVE 0.003 LT										MD	
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 111TCE 0.004 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 112TCE 0.005 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCE 0.004 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT											
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 112TCE 0.005 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCE 0.004 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRT 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLM 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLM 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.002 LT						_				1.7	\$
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCE 0.004 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 11DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLM 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2ASCL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2ASCL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2ASCL 0.002 LT											
13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 12DCE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2ASCL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2H5CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2H5CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2H5CL 0.012 LT	13sc3	RFIS*27	CSO		0.5	UGG		11DCE			
13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 12DCLE 0.002 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2M3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2M3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2M3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2M3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 O.5 UGG LM19 C2M3CL 0.002 LT											
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 12DCLP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 2CLEVE 0.010 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2ASCL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.012 LT				-							
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 2CLEVE 0.010 ND R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLN 0.100 ND R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 ND R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLN 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.005 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2NSC 0.012 LT		_									
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACET 0.017 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACROLM 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.012 LT	13SC3				0.5						R
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 ACRYLO 0.100 MD R 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C6H6 0.002 LT		RF15*27				UGG	LH19	ACET	0.017	LT	
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 BRDCLM 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H5CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C6H6 0.002 LT											
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C13DCP 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H5CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C6H6 0.002 LT											R
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2AVE 0.003 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.006 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2H3CL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C6H6 0.002 LT											
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C2HSCL 0.012 LT 13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C6H6 0.002 LT	13\$03	RF1\$*27		21-aug-1991	0.5	UGG		CZAVE			
13SC3 RFIS*27 CSO 21-aug-1991 0.5 UGG LM19 C6H6 0.002 LT											
			-	· _ ·							

	Site ID	<u>Field ID</u>	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH19	CCL4	0.007	LT	
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LX19	CH2CL2	0.012	LT	
	13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LN19	CH3BR	0.006	LT	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	1319	CH3CL	0,009	LT	
	13SC3 13SC3	RFIS*27 RFIS*27	CSO	21-aug-1991	0.5	UGG	LH19	CHBR3	0.007	LT	
	13SC3	RF15*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LN19 LN19	CHCL3 CL2BZ	0.001 0.100	LT ND	R
	13sc3	RF15*27	CSO	21-aug-1991	0.5	UGG	LH19	CL C6H5	0.100	LT	ж.
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH19	CS2	0.004	LT	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LN19	DBRCLM	0.003	LT	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LN19	ETC6H5	0.002	LT	
	13\$C3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LN19	MEC6H5	0.001	LT	
	13903 13903	RFIS*27 RFIS*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LN19 LN19	MEK MIBK	0.070 0.027	LT LT	
	13sc3	RFIS*27	CSC	21-aug-1991	0.5	UGG	LH19	MNBK	0.032	LT	
	135 <b>C3</b>	RF1S*27	CSO	21-aug-1991	0.5	UGG	LH19	STYR	0.003	ĹŤ	
	13sc3	RFIS*27	¢20	21-aug-1991	0.5	UGG	LH19	T13DCP	0.003	LT	
	13503	RFIS*27	CSO	21-aug-1991	0.5	UGG	LX19	TCLEA	0.002	LT	
	138C3 138C <b>3</b>	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	TCLEE	0.001	LŤ	
	13sc3	RF15-27	CSO	21-802-1991	0.5	UGG	LN19	XYLEN	0.003 0.002	LT LT	
	13sc3	RFIS*27	ÇSO	21-aug-1991	0.5	UGG	JB01	HG	0.050	LT	
	13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LW12	135TNB	2,900	•	ε
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LW1Z	13DN8	0.496	LT	
_	13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LW12	246TNT	0.515		C
	13863 13863	RFIS*27	CSO	21-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	_
	135C3	RFIS*27 RFIS*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LU12 LU12	26DNT HMX	1.330 0.666	LT	С
	13sc3	RFIS*27	C\$0	21-aug-1991	0.5	UGG	LW12	NB	2,410	LT	
	13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	L¥12	ROX	0.587	LŤ	
	13 <b>\$C3</b>	RF15*27	CSO	21-aug-1991	0.5	UGG	LU12	TETRYL	0.731	LT	
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	JD15	SE	0.250	LT	
	139C3 139C3	RF1S*27	CSC	21-aug-1991	0.5	UGG	LM18	124108	0.040	ĻŢ	
	13SC3	RFIS*27 RFIS*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	120CLB 120PH	0.110 0.140	LT MD	R
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LH18	130CL8	0.130	LT	n.
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	14DCLB	0.098	LT	
	13SC3	RFIS*27	C20	21-aug-1991	0.5	UGG	LM18	245TCP	0.100	LT	
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LK18	246TCP	0,170	LT	
	139 <b>C3</b> 138 <b>C3</b>	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	24DCLP 24DMPN	0.180	LT	
	13sc3	RF15*27	CSO	21-aug-1991	0.5	UGG	LH18	24DNP	0.690 1.200	LT LT	
	135C3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	24DNT	1.760		
	13SC3	RFIS*27	CSG	21-aug-1991	0.5	UGG	LH18	26DNT	2.420		
	13sc3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	SCLP	0.060	LT	
	13803 13803	RFIS*27	CSO	21-aug-1991	0.5	UGG	LN18	ZCNAP	0.036	ĻŢ	
	13\$C3	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	2MNAP 2MP	0.049 0.029	LT LT	
	13\$C3	RF15*27	CSO	21-aug-1991	0.5	UGG	LH18	2MANIL	0.062	LT	
	13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LM18	ZNP	0.140	LT	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	330C8D	6.300	LT	
	13503	RF15*27	CSO	21-eug-1991	0.5	UGG	LM18	3NAN I L	0.450	LT	
	13903 13903	RF1S*27	CZO	21-aug-1991	0.5	UGG	LH18	46DN2C	0.550	LT	
	13SC3	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	ln18 ln18	48RPPE 4CANIL	0.033 0.810	LT LT	
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LX18	4CL3C	0.095	LT	
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LN18	4CLPPE	0.033	LT	
	13SC3	RF1S*27	CZO	21-aug-1991	0.5	UGG	LN18	4MP	0.240	LT	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LN18	4NANIL	0.410	LT	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	4NP	1,400	LT	
	13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LX18	ABHC	0.270	ND	R
	138C3 138C3	RFIS*27 RFIS*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LM18 LM18	ACLDAN AENSLF	0.330 0.620	ND ND	R
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	ALDRN	0.330	NO	R R
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LX18	ANAPHE	0.036	เร	•
	13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LN18	AHAPYL	0.033	ĹŤ	
	13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	ANTRO	0.033	LT	
	13\$C3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	B2CEXM	0.059	LT	
	13sc3 13sc3	RF1S*27 RF1S*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LX18	BECIPE	0.200	ĻŢ	
	138C3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18 LM18	B2CLEE 82EHP	0.033 0.620	LT LT	
	13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LN18	BAANTR	0.170	LT	
	13sc3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	BAPYR	0.250	LT	
	13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	UK18	BBFANT	0.210	LT	

Site ID	Field ID	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry.	Value	Flag	Internal Std. Code
13503	RF15*27	cso	21-aug-1991	0.5	UGG	LN18	BBHC	0.270	NO.	
13sc3	RF15*27	C20	21-aug-1991	0.5	UGĞ	LN18	BBZP	0.270	ND LT	R
13503	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	BENSLF	0.620	ND	R
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	BENZID	0.850	ND	Ř
13903	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	BENZOA	6.100	ND	R
13sc3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	BGHIPY	0.250	LT	
138C3 138C <b>3</b>	RF1S*27 RF1S*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LN18	BKFANT	0.066	LT	
138C3	RF15"27	ÇSO	21-aug-1991	0.5	UGG	LM18 LM18	BZALĆ CHRY	0.190 0.120	LT LT	
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	UH18	CLABZ	0.033	LT	
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	CL6CP	6.200	LŤ	
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	Lk18	CL6ET	0.150	LT	
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	DBAHA	0.210	LT	_
13\$C3 13\$C3	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DBHC DBZFUR	0.270 0.035	ND LT	R
13sc3	RF15*27	ÇŞO	21-aug-1991	0.5	UGG	LH18	DEP	0.240	LT	
13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	DLDRN	0.310	ND	Ŕ
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	DHP	0.170	ĻT	
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	QNBP	0.329		
13SC3	RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LH18	DNOP	0.190	LT	_
138C3 138C3	RFIS*27 RFIS*27	CSO	21-aug-1991	0.5	UGG UGG	LM18 LM18	ENDRN ENDRNA	0.450 0.530	ND ND	R R
13SC3	RF15*27	cso	21-aug-1991	0.5	UGG	LM18	ENDRNK	0.530	ND	Ř
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	ESFSO4	0.620	ND	Ř
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	FANT	0.068	LT	
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	FLRENE	0.033	LT	
135C3	RF15*27	CSO	21-aug-1991	0.5	UGG	1418	GCLDAN	0.330	ND	Ř
139C3 139C3	RFIS*27 RFIS*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LN18 LN18	HCBD HPCL	0.230 0.130	LT ND	
13sc3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LN18	HPCLE	0.330	ND	R R
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	ICDPYR	0.290	LT	•
13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	LM18	I SOPHR	0.033	LT	
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	LIN	0.270	ND	R
138 <b>C3</b> 138 <b>C3</b>	RF15*27	CSO	21-aug-1991	0.5 0.5	UGG	LN18	MEXCLR	0.330	ND	R
138C3	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5	ugg Ugg	LH18 LH18	NAP NB	0.037 0.045	LT LT	
13503	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	NNDMEA	0.148	HD	R
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	NHDNPA	0.200	ĻT	-
13\$C3	RF15*27	CSO	21-aug-1991	0.5	UGG	LH18	NNDPA	0.190	ĻT	
13903	RFIS*27	CSO	21-aug-1991	0.5	UGG	LH18	PC8016	1.400	ND	R
138C3 138C3	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	PCB221 PCB232	1.400 1.400	ND ND	R
13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	PCB242	1.400	ND ND	R R
13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LN18	PCB248	2.000	ND	Ř
13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	PCB254	2.300	ND	R
13SC3	RF1S*27	CSO	21-aug-1991	0.5		LH18	PCB260	2.600	ND	R
13SC3	RF15*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LX18	PCP PHANTR	1.300	LŢ	
138C3 138C3	RF1S*27 RF1S*27	CSO	21-aug-1991	0.5	ugg Ugg	LN18 LN18	PHENOL	0.033 0.110	LT LT	
13sc3	RF15*27	CSO	21-aug-1991	0.5	UGG	LM18	PPODD	0.270	ND	R
13503	RF1S*27	CSO	21-aug-1991	0.5	UGG	LM18	PPDDE	0.310	ND	R
13963	RFIS*27	CSO	21-aug-1991	0.5	UCG	LH18	PPDDT	0.310	ND	R
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	PYR	0.033	LT	_
138C3 138C3	RF1S*27 RF1S*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGG	LH18 LH18	TXPHEN UNK584	2.600 0.329	NO	R
13 <b>5C3</b>	RF15"27	CSO	21-aug-1991	0.5	UGG	LM18	UNK595	0.659		\$ \$
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	UNK596	1.100		Š
13s <b>c3</b>	RFIS*27	CSO	21-aug-1991	0.5	UGG	LN18	UNK605	0.659		S
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	LM18	UNK609	0.220		\$
13SC3	RF1S*27	CSO	21-aug-1991	0.5	UGG	J\$16	AG	0.589	ĻT	
139 <b>C3</b> 139 <b>C3</b>	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg ugg	JS16 JS16	AL BA	4110.000 76.000		
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	J\$16	BE	0.945		
13sc3	RF1S*27	CSO	21-aug-1991	0.5	UGG	JS16	CA	4580.000		
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	JS16	æ	0.700	LT	
13\$C3	RFIS*27	CSO	21-aug-1991	0.5	UGG	1216	CO	4.850		
13\$03	RF1S*27	CSO	21-aug-1991	0.5	UGG	JS16	CR	12.200		
13SC3	RFIS*27	CSO	21-aug-1991	0.5 0.5	UGG	JS16	CI)	23.700		
13SC3 13SC3	RF1S*27 RF1S*27	CSO CSO	21-aug-1991 21-aug-1991	0.5	UGG	1516 1516	FE K	9720.000 897.000		
13sc3	RFIS*27	CSO	21-aug-1991	0.5	UGG	J\$16	MG	2970.000		
13sc3	RFIS*27	cso	21-aug-1991	0.5	UGG	J\$16	MN	319.000		
13SC3	RF15*27	CSO	21-aug-1991	0.5	UGG	J\$16	NA	245.000		
13503	RF15*27	CSQ	21-aug-1991	0.5	UGG	J\$16	NI	6.460		

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13803	RFIS*27	CSO	21-aug-1991	0.5	UGG	JS16	PB	320.000		
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	JS16	SB	7,140	LT	
138C3 138C3	RFIS*27 RFIS*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugg Ugg	JS16	TL "	6.620	LT	
13\$C3	RF15*27	C30	21-aug-1991	0.5	UGG	1516 1516	V ZN	14.000 156.000		
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGG	JD19	AS	0.612		
13SC3	RFIS*27	CSO	21-aug-1991	0.5	UGL.	SS10	AG	4.600	LT	
13\$C3 13\$C3	RF1S*27 RF1S*27	CSO CSO	21-aug-1991 21-aug-1991	0.5 0.5	ugi. Ugl	\$\$10 \$\$10	SA CD	858.000 4.010	LT	
13sc3	RF15*27	CSO	21-aug-1991	0.5	UGL	SS10	CR	6.020	LŤ	
138 <b>C3</b> 138 <b>C3</b>	RF15*27	CSO	21-aug-1991	0.5	UGL	SS10	PB	51.100		
13sc3	RF15*27 RF15*27	CSO	21-aug-1991 21-aug-1991	0.5 0.5	UGL	SB01 SD22	HG AS	0.243 2.540	LT LT	
13sc3	RF1\$*27	CSO	21-aug-1991	0.5	UGL	SD21	SE	3.020	LT	
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH19	111TCE	0.004	LT	
13sc3 13sc3	RF1S*28 RF1S*28	CZO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LH19	112TCE	0.005	LT	
13803	RF15*28	CSO	21-aug-1991	5.0	UGG	LN19 LN19	11DCE 11DCLE	0.004 0.002	LT LT	
13\$¢3	RF15*28	C\$Q	21-aug-1991	5.0	UGG	LX19	12DCE	0.003	LT	
13863	RFIS*28	CSO	21-aug-1991	5.0	UGG	LN19	12DCLE	0.002	ĻŤ	
13\$C3 13\$C3	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	12DCLP 2CLEVE	0.00 <b>3</b> 0.010	MD 71	
13SC3	RFIS*28	cso	21-eug-1991	5.0	UGG	LH19	2PROL	0.007	-	R S
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH19	ACET	0.017	LŤ	•
135¢3 135¢3	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LH19	ACROLH	0.100	加	R
13863	RF15*28	CSO	21-aug-1991	5.0	ugg Ugg	LH19 LH19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LN19	C13DCP	0.003	ĹŤ	
13803	RF15*28	CSO	21-aug-1991	5.0	UGG	LH19	C2AVE	0.003	LT	
138 <b>c3</b> 138 <b>c</b> 3	RFIS*28 RFIS*28	CSO	21-aug-1991	5.0 5.0	UGG	LN19	C2H3CL	0.006	LT	
13sc3	RF15-28	CSO	21-aug-1991 21-aug-1991	5.0	ugg ugg	LM19 LM19	C2H5CL C6H6	0.012 0.002	LT LT	
13\$ <b>c3</b>	RFIS*28	CSO	21-eug-1991	5.0	UGG	LH19	CCL3F	0.006	LT	
13803	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH19	CCL4	0.007	LT	
138C3 138C3	RF15*28 RF15*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LN19 LN19	CH2CL2 CH3BR	0.012	LT LT	
13sc3	RFIS*28	C20	21-aug-1991	5.0	UGG	LM19	CH3CF	0.006 0.009	LT	
13sc3	RFIS*28	C20	21-aug-1991	5.0	UGG	LN19	CHBR3	0.007	LŤ	
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH19	CHCL3	0.001	LT	_
138 <u>c3</u> 138 <del>c3</del>	RF15*28 RF15*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	CL2BZ CLC6H5	0.100 0.001	MD LT	2
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH19	CSZ	0.004	LT	
13sc3	RF1S*28	CZO	21-eug-1991	5.0	UGG	LH19	DBRCLM	0.003	LT	
138C3 138C3	RF1\$*28 RF1\$*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	13419 13419	ETC6H5 MEC6H5	0.002 0.001	LT	
13803	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH19	MEK	0.070	LT	
13\$ <b>C3</b>	RF1S*28	CSO	21-aug-1991	5.0	UGG	LR19	MIBK	0.027	LT	
138 <u>c3</u> 13 <b>sc3</b>	RF15*25	CSO	21-aug-1991	5.0	UGG	LH19	WARK	0.032	LT	
13sc3	RF15*28 RF15*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LN19 LN19	STYR T13DCP	0.003 0.003	LT LT	
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	<b>LN19</b>	TCLEA	0.002	ĹΤ	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LN19	TCLEE	0.001	LT	
13sc3 13sc <b>3</b>	RF1\$*28 RF1\$*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LN19	TROLE XYLEN	0.003 0.002	LT LT	
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM19 JBO1	HG	0.050	LT	
13SC3	RFIS*28	CSO	21-sug-1991	5.0	UGG	LW12	135TNB	0.488	LT	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LW12	13DNB	0.496	LT	
13sc3 13sc3	RF15*28 RF15*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LW12 LW12	246TNT 240NT	0.456 0.424	LT LT	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LW12	26DNT	0.524	LT	
13\$C3	RF15*28	CSO	21-aug-1991	5.0	UGG	LW12	HPOC	0,666	LŦ	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LW12	NB	2.410	LT	
13 <b>5C3</b> 13 <b>SC3</b>	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	RDX TETRYL	0.587 0.731	LT LT	
13SC3	RF15*28	cso	21-aug-1991	5.0	UGG	JD15	SE	0.250	LT	
13sc3	RF1S*28	CSG	21-aug-1991	5.0	UGG	LX18	124TCB	0.040	LT	
13 <u>5C3</u> 135C3	RFIS*28	CSC	21-aug-1991	5.0	UGG	U18	120CLB	0.110	LŤ	_
13SC3	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	120PH 13DCLB	0.140 0.130	ND LT	R
13\$ <b>C3</b>	RF15*28	CSO	21-aug-1991	5.0	ŲGG	LN18	140CLB	0.098	ĹŤ	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LN18	245TCP	0.100	LT	
13803 13803	RFIS*28	C20	21-aug-1991	5.0	UGG	LN18	246TCP	0.170	LT	
13803	RF1S*28 RF1S*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg	LM18 LM18	24DCLP 24DMPN	0.180 0.690	LT LT	
	4.12.50	400	21-00%-1331	2.0	~~~	TV 10	PANCK H	0.070	41	

Site 10	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Hethod		Value	<u>Flag</u>	Internal Std. Code
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	24DNP	1.200	LT	
13803	RFIS*28	CSO	21-aug-1991	5.0	UGG	LN18	24DNT	0.140	LT	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	26DNT	0.085	LT	
135C3	RF15*28	CZO	21-aug-1991	5.0	UGG	LH18	2CLP	0.060	LT	
138C3 138C3	RFIS*28 RFIS*28	C20 C20	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ZCNAP ZMNAP	0.036	LT	
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	ZMP	0.049 0.029	LT LT	
13\$C3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	ZNANIL	0.062	LT	
13\$C <b>3</b>	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	2NP	0.140	LT	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	330 CBO	6.300	LT	
138C3 138C3	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	3NANIL 46DK2C	0.450	LT	
13503	RF15-28	CSO	21-aug-1991	5.0	UGG	LM18	48RPPE	0.550 0.033	LT LT	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	4CANIL	0.810	LT	
138C3	RF15*28	CSO	21-aug-1991	5.0	UGG	LN18	4CL3C	0.095	LT	
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LN18	4CLPPE	0.033	LT	
13SC3	RF1S*28	CSO	21-aug-1991	5.0 5.0	UGG UGG	LN18	440	0.240	LT	
1390 <b>3</b> 13903	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0	UGG	LM18 LM18	4NANIL 4NP	0.410 1.400	LT LT	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	ABHC	0.270	MD	R
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	ACLDAN	0.330	ND	R
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	AENSLF	0.620	ND	R
13SC3	RFIS*28	Ċ20	21-aug-1991	5.0	UGG	LN18	ALDRN	0.330	ND	R
13803 13803	RFIS=28 RFIS=28	C\$0	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ANAPNE ANAPYL	0.036 0.033	LT LT	
- 13sc3 ·	RF15*28	CSO	21-aug-1991	5.0	UGG	UH18	ANTRO	0.033	LT	
13SC3	RF15*28	CSC	21-aug-1991	5.0	UGG	LK18	BZCEXM	0.059	ĹŤ	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	BSCIDE	0.200	LT	
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	BECLEE	0.033	LT	
138C3 138C3	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LM18 LM18	82EHP	0.620	LT	
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LN18	BAANTR BAPYR	0.170 0.250	LT LT	
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LN18	BBFANT	0,210	LT	
13SC3	RF1S*28	CSO	21-aug-1991	5.0	UGG	LM18	BBHC	0.270	ND	R
13\$C3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	8BZP	0.170	LT	
13SC3 13SC3	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG	LM18	BENSLF	0.620	ND.	R
138C3	RF15-28	CSO	21-aug-1991	5.0	VGG	LM18 LM18	BENZID BENZOA	0.850 6.100	ND ND	R R
13863	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	BGHIPY	0.250	LT	*
13\$ <b>C3</b>	RFIS*28	CSO	21-aug-1991	5.0	UGB	LH18	BKFANT	0.066	LT	
13503	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	8ZALC	0.190	LT	
13SC3 13SC3	RF1S*28 RF1S*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg	LM18	CHRY	0.120	LT	
13\$C3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18 LM18	CL6BZ CL6CP	0.03 <b>3</b> 6.200	LT LT	
135C3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	CL6E?	0.150	ĹŤ	
13803	RFIS*28	CSO	21-aug-1991	5.0		LM18	AHABO	0.210	LT	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	DBKC	0.270	ND	R
138C3 138C3	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LN18	DBZFUR DEP	0.035	LT	
13863	RFIS*28	CSO	21-aug-1991	5.0	VGG	LM18 LM18	DLDRN	0.240 0.310	LT ND	R
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	DHP	0.170	LT	-7
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UCG	LH18	DNBP	0.061	LT	
13503	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	DNOP	0.190	LT	_
13 <b>5C3</b> 13 <b>5C3</b>	RFIS*28 RFIS*28	CSC	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ENDRN	0.450	ND	R
13863	RF15*28	CSO	21-aug-1991	5.0	UGG	LN18	ENDRNA ENDRNK	0.530 0.530	MD CM	R R
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	ESFS04	0.620	ND	Ř
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LN18	FART	0.068	LT	
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	FLRENE	0.033	LT	_
138C3 138C3	RF1S*28 RF1S*28	CSO	21-aug-1991	5.0 5.0	ugg Ugg	LH18	GCLDAN	0.330	MO	R
13sc3	RF15-26	C20	21-aug-1991 21-aug-1991	5.0	UGG	LM18 LX18	HCBD HPCL	0.230 0.130	LT ND	R
13sc3	RFIS*28	cso	21-aug-1991	5.0	UGG	LM18	HPCLE	0.330	ND	Ř
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	ICDPYR	0.290	LT	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	I SOPHR	0.033	LT	_
13503	RFIS*28	CSQ	21-aug-1991	5.0	UGG	LN18	LIM	0.270	ND	R
138C3 138C3	RFIS*28 RFIS*25	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LX18 LX18	MEXCLR	0.330	ND LT	R
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LM18	NAP NB	0.037 0.045	LT LT	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	NNDMEA	0.140	MD	R
13\$C3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	HNDHPA	0.200	LT	= <del>-</del>
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	NNOPA	0.190	LŤ	
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	PC8016	1.400	ND	R
13SC3	RFIS*28	C\$O	21-aug-1991	5.0	UGG	LM18	PCB221	1.400	MĎ	R

Site ID	Field ID	<u>Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry.	<u>Value</u>	<u> F1.89</u>	internal Std. Code
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	PC8232	1,400	ND	R
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	LH18	PC8242	1.400	ND	Ř
13sc3	RFIS*28	CSO	21-aug-1991	5.0	ugg	LH18	PC8248	2.000	ND	R
138 <b>c3</b> 138 <b>c3</b>	RF1S*28 RF1S*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	LX18	PCB254	2.300	ND	R
13\$C3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18 LH18	PCB260 PCP	2.600 1.300	ND LT	R
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	LX18	PHANTR	0.033	LT	
13\$C3	RF1S*28	CSO	21-aug-1991	5.0	UGG	UK18	PHENOL	0.110	LT	
13863	RFIS*28	CSO	21-aug-1991	5.0	UGG	LM18	PPDDD	0.270	ND	R
13 <b>503</b> 13 <b>503</b>	RF1S*28 RF1S*28	C\$0	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	PPODE PPODT	0.310 0.310	MD MD	R R
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	LH18	PYR	0.033	ĹŤ	•
13SC3	RF1S*28	CSO	21-aug-1991	5.0	UGG	LH18	TXPHEN	2.600	MD	R
138 <b>03</b> 138 <b>03</b>	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	7219 7219	AG	0.810		
135C3	RF15*28	CZO	21-aug-1991	5.0	UGG	JS16	AL Ba	9610,000 143,000		
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	JS16	BE	1.370		
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	<b>J\$16</b>	CA	1860_000		
135 <b>C3</b> 135 <b>C3</b>	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGG UGG	JS16	<b>6</b>	0.700	ĻŢ	
135C3	RF15*28	CSO	21-aug-1991	5.0	UGG	J\$16 J\$16	CC CR	18,300 21,406		-
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	JS16	ã	10.100		
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	JS16	FE	16000.000		
13SC3	RF15*28	CSO	21-aug-1991	5.0	UGG	J\$16	K	1970.000		
_135C3 135C3	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	JS16 JS16	MG Min	3180,000 306,000		
13sc3	RFIS*28	CSO	21-aug-1991	5.0	UGG	1216	NA NA	306,000		
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	JS16	NI	13,700		
13sc3	RF15*28	CSO	21-aug-1991	5.0	UGG	JS16	<b>PB</b>	10.500	LT	
13SC3 13SC3	RFIS*28 RFIS*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	ugg ugg	1216 1216	S& Tl	7.140 12.000	LT	
138C3	RFIS*28	cso	21-aug-1991	5.0	UGG	J\$16	V	26,000		
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGG	JS16	ZN	77.200		
13sc3	RF1\$*28	CSO	21-aug-1991	5.0	UGG	JD19	AS	0.736		
13903 13803	RF15*28 RF15*28	CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGL UGL	\$\$10 \$\$10	AG Ba	4,600 706,000	ĹŢ	
13SC3	RFIS*28	CSO	21-aug-1991	5.0	UGL	\$\$10	<b>CD</b>	4.010	LT	
13503	RFIS*28	CSO	21-eug-1991	5.0	UGL	\$\$10	CR	6,020	ĹŤ	
13sc3	RFIS*28	C\$O	21-eug-1991	5.0	UGL	\$\$10	P8	18.600	LT	
138 <b>C3</b> 138 <b>C3</b>	RFIS*28 RFIS*28	CSO CSO	21-aug-1991 21-aug-1991	5.0 5.0	UGL UGL	SB01 SD22	KG	0.243 2.540	LT	
13\$C3	RF15*25	CSO	21-aug-1991	5.0	UGL	SD21	AS SE	3.020	LT LT	
13803	RF1S*29	CSO	21-eug-1991	10.0	UGG	LX19	111TCE	0.004	LT	
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM19	112TCE	0.005	LT	
138C3 138C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	11DCE 11DCLE	0.004 0.002	LT LT	
13sc3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH19	120CE	0.003	LT	
13SC3	RFIS*29	CSO	21-eug-1991	10.0	UGG	LH19	12DCLE	0.002	LŤ	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LH19	12DCLP	0.003	LT	
138C3 138C3	RFIS*29 RFIS*29	C20	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	2CLEVE ACET	0.010 0.017	ND.	R
13\$63	RF15*29	CSO	21-aug-1991	10.0	UGG	LH19	ACROLN	0.100	LT ND	R
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LX19	ACRYLO	0,100	ND	Ř
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH19	BRDCLM	0.003	LT	
138 <b>c3</b> 138 <b>c3</b>	RF15*29 RF1\$*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	1M19 1M19	C13DCP C2AVE	0.003 0.003	LT	
13SC3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LN19	C2H3CL	0.005	LT LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LH19	C2H5CL	0.012	LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LN19	COHO	0,002	LT	
13803 13803	RFIS*29 RFIS*29	CSO	21-sug-1991	10.0 10.0	UGG	1819	CCL3F	0.006	LT	
13503	RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0	ugg ugg	UK19 UN19	CCL4 CH2CL2	0.007 0.012	LT LT	
13SC3	RFIS*29	CSO	21-eug-1991	10.0	UGG	LN19	CH38R	0.006	LT	
13sc3	RFIS*29	cso	21-aug-1991	10.0	UGG	LH19	CH3CL	0.009	LT	
135 <b>C3</b> 138C3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH19	CHBR3	0.007	LT	
138C3	RF15*29 RF15*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LH19 LH19	CHCL3 CL28Z	0,001 0,100	LT ND	R
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM19	CLC6H5	0.001	LT	ъ.
13\$ <b>C3</b>	RFIS*29	ÇSO	21-aug-1991	10.0	UGG	LH19	CS2	0.004	LT	
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	UK19	DBRCLM	0.003	LT	
13\$C3 13\$C3	RF15*29 RF15*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM19	ETCAHS	0.002	ĻŤ	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM19 LM19	MEC6H5 MEK	0.001 0.070	LT LT	
13903	RFIS*29	CSO	21-aug-1991	10.0	UGG	LN19	MIBK	0.027	ĹΪ	
			•	_						

----

-- - -

Site ID	Field in	<u>Media</u>	Cate	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	internal Std. Code
13SC3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LH19	MNBK	0.032	ĻŢ	
13\$23	RF1S*29	CSO	21-aug-1991	10.0	ugg	LN19	STYR	0.003	LT	
13sc3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LH19	T13DCP	0.003	LT	
138 <b>c3</b> 138 <b>c3</b>	RFIS*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg	LN19	TCLEA	0.002	LT	
138C3	RFIS*29 RFIS*29	CSO	21-aug-1991	10.0	UGG	LM19 LM19	TCLEE	0.001 0.003	LT LT	
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH19	XYLEN	0.002	LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	JB01	HG	0.050	ĹΤ	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LW12	135TNB	0.488	LŢ	
13\$C3 13\$C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LW12 LW12	130NB 246TNT	0.496 0.456	LT LT	
13503	RF1S*29	CSO	21-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
13sc3	RFIS*29	CSO	21-aug-1991	10.0	LIGG	LV12	260NT	0.524	LT	
13sc3	RFIS*29	CSO	21-eug-1991	10.0	UGG	LW12	RINCK	0.666	ĻT	
138C3 138C3	RF1S*29 RF15*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LW12 LW12	nb RDX	2.410 0.587	LT	
13SC3	RF19*29	cso	21-aug-1991	10.0	UGG	LW12	TETRYL	0.737	LT LT	
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	JD15	SE	0.250	LT -	
13803	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	124TCB	0.040	LT	
138C3 138C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.9 10.0	ugg ugg	LM18 LM18	120CL8 120PH	0.110	ĻŢ	_
13803	RF15-29	CSO	21-aug-1991	10.0	UGG	LM18	130CLB	0.140 0.130	ND LT	· R
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM18	14DCLB	0.098	LT	
13SC3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LH18	245TCP	0.100	LT	
13SC3 13SC3	RF15*29	CSO	21-aug-1991	10.0 10.0	UGG	LN18	246TCP	0.170	LT	
13sc3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0	ugg Ugg	LM18 LM18	24DCLP 24DMPN	0.180 0.690	LT LT	
13sc3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	24DNP	1.200	ĹŤ	
13sc3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	240NT	0.140	LT	
13SC3	RF1S*29	CSC	21-aug-1991	10.0	UGG	LH18	26DNT	0.085	LT	
138C3 138C3	RF1S*29 RF1S*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	2CLP 2CNAP	0.060 0.036	LT LT	
13sc3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LN18	2MNAP	0.049	LT	
13sc3	RFIS*29	CZO	21-aug-1991	10.0		UH18	200	0.029	LT	
13\$C3 138C3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	ŽNAN I L	0.062	LT	
13SC3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	ZNP 33DCBD	0.140 6.300	LT LT	
13sc3	RF1\$*29	CSO	21-aug-1991	10.0	UGG	LH18	3NANIL	0.450	ĹŤ	
13sc3	RF1S*29	CSO	21-aug-1991	10.0	UGS	LH18	460NZC	0.550	LT	
138 <b>C3</b> 138 <b>C3</b>	RFIS*29	CSO	21-aug-1991	10.0 10.0	UGG	LM18	48RPPE	0.033	LT	
13SC3	RFIS*29 RFIS*29	C2O	21-aug-1991 21-aug-1991	10.0	UGG UGG	LM18 LK18	4CANIL 4CL3C	0.810 0.095	LT LT	
13sc3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LH18	4CLPPE	0.033	LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LN18	4MP	0.240	LT	
138C3 138C3	RF1S*29 RF1S*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LK18	4NANIL	0.410	LT	
13\$C3	RF15*29	czo	21-aug-1991	10.0		LH18 LH18	ABHC	1.400 0.270	LT MD	R
13SC3	RF15*29	CSO	21-aug-1991	10.0		LH18	ACLDAN	0.330	ND	Ř
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	AENSLF	0.620	ND	R
139C3 139C3	RF15*29	CSO	21-aug-1991	10.0	UGE	LH18	ALDRN	0.330	MD	R
13SC <b>3</b>	RF15*29 RF15*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	ANAPNE ANAPYL	0.036 0.033	LT LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LH18	ANTRO	0.033	ĹŤ	
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	B2CEXM	0.059	LT	
138C3 138C3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	B2CIPE	0.200	LT	
138C3	RFIS*29 RFIS*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ucc ucc	LM18 LM18	B2CLEE B2EHP	0.033 0.620	LT LT	
13863	RF15*29	cso	21-aug-1991	10.0		LN18	BAANTR	0.170	ĹŤ	
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	LH18	BAPYR	0.250	LT	
13503	RFIS*29	CSO	21-aug-1991	10.0	UGG	LX18	BBFANT	0.210	LT	_
138C3 138C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	lm18 lm18	8BHC BBZP	0.270 0.170	ND LT	R
135C3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM18	BENSLF	0.620	MD	R
13SC3	RFI\$*29	CSO	21-aug-1991	10.0	UGG	LN18	BENZID	0.850	MD	Ř
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	BENZOA	6.100	MD	R
13\$C3 13\$C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	BGH1PY BKFANT	0.250 0.066	LT	
138C3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	BZALC	0.190	LT LT	
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	CHRY	0.120	ĹŤ	
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	LX18	CL682	0.033	LT	
138C3 138C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT	
13803	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	DBAHA	0.150	LT LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LN18	DBHC	0.270	MD	R

Site ID	<u>Field_ID</u>	<u>Media</u>	Qate	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry	Value	Flag	Internal Std. Code
13sc3	RFIS*29	cso	21-aug-1991	10.0	UGG	LM18	D075110	0.075		
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM18	D8ZFUR DEP	0.035 0.240	LT LT	
13sc3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM18	DLDRM	0.310	ND	R
13SC3 13SC3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LX18	OMP	0.170	LĪ	
13SC3	RFIS*29	CSC	21-aug-1991	10.5	UGG	LX18 LX18	ONBP ONOP	0.061 0.190	LT LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM18	ENDRN	0.450	ND	R
13SC3 13SC <b>3</b>	RF1S*29	CSO	21-aug-1991	10.0	UGG	LH18	ENDRNA	0.530	ND	R
138C3	RF1S*29 RF1S*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG	LH18 LH18	Endrik Esfso4	0.530 0.620	ND CIK	R R
13 <b>5C3</b>	RF15*29	CSO	21-aug-1991	10.0	UGG	UH18	FANT	0.068	LT	•
13SC3 13SC3	RFIS*29	CSO	21-eug-1991	10.0	UGG	LH18	FLRENE	0.033	LT	_
138C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg	LH18 LH18	GCLDAN HCBD	0.330 0.230	ND LT	R
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LM18	HPCL	0.130	ND	R
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	MPCLE	0.330	KD	R
13SC3 13SC3	RF1S*29 RF1S*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LH18 LH18	I CDPYR I SOPHR	0.290 0.033	LT LT	
13sc3	RF1\$*29	CSO	21-eug-1991	10.0	UGG	LM18	LIN	0.270	ND	R
13SC3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	ND	R
138 <b>C3</b> 138 <b>C3</b>	RF15*29 RF15*29	CSC	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	MAP NB	0.037 0.045	LT LT	•
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	NNDMEA	0.140	HD	R
13SC3	RF1S*29	CSO	21-aug-1991	10.0	UGG	LX18	NHDNPA	0.200	LT	
13SC3 13SC3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	NNDPA PC8016	0.190 1.400	ĻŤ	
13sc3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	PC8221	1.400	ND ND:	Ř R
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	PC8232	1.400	ND	Ř
13\$03	RFIS*29	CSO	21-aug-1991	10.0	UGG	LH18	PC8242	1.400	ND	R
13\$C3 13\$C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ucg	LM18 LM18	PC8248 PC8254	2.000 2.300	ND ND	R R
13503	RFIS*29	CSO	21-aug-1991	10.0	UGG	LN18	PC8260	2.600	NO	R
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LN18	PCP	1.300	LT	
138C3 138C3	RFIS*29	CSO	21-aug-1991	10.0	UGG	LM18	PHANTR	0.033	LT	
13sc3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	PHENOL PPODD	0.110 0.270	LT ND	R
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	LH18	PPODE	0.310	ND	Ř
13\$03	RF15*29	CSO	21-aug-1991	10.0	UGG	LH18	PPDDT	0.310	ND	R
138 <b>C3</b> 138 <b>C3</b>	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0	UGG	lm18 lm18	PYR Txphen	0.033 2.600	LT ND	R
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	JS16	AG	0.755		K
13SC3	RF15*29	CZO	21-aug-1991	10.0	UGG	JS16	AL	8750.000		
138 <b>c3</b> 138 <b>c3</b>	RFIS*29 RFIS*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	JS16 JS16	BA BE	131,000 1,280		
13803	RFIS*29	CSO	21-aug-1991	10.0	UGG	JS16	CA	1610.000		
13SC3	RF1S*29	CSO	21-aug-1991	10.0		JS16	<b>6</b>	0.700	LT	
138 <b>C3</b> 13 <b>8C3</b>	RFIS*29	CSO	21-aug-1991		UGG	JS16	<b>co</b>	10,500		
138C3	RF15*29 RF15*29	CSO CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	CR CJ	20.000 9.380		
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	JS16	FE ·	15900.000		
13sc3	RFIS*29	CSO	21-aug-1991	10.0	UGG	JS16	K	1090.000		
13\$C3 13\$C3	RF1S*29 RF1S*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGG	7219 9151	MG MN	3110.000 500.000		
13SC3	RFIS*29	cso	21-aug-1991	10.0	UGG	JS16	NA NA	457.000		
13sc3	RFIS*29	CSO	21-eug-1991	10.0	UGG	JS16	KI	12.300		
13\$C3 13\$C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	ugg ugg	JS16 JS16	PB	10.500 7.140	ĻŢ	
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGG	JS16	SB TL	6.620	LT LT	
13SC3	RF15*29	CSO	21-aug-1991	10.0	UGG	J\$16	Ÿ	26.500		
138 <b>C3</b> 138 <b>C3</b>	RFIS*29	CSO	21-aug-1991	10.0	UGG	JS16	ZN	70.800		
13sc3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGG UGL	JD19 SS10	AS AG	0.534 4.600	LT	
13SC3	RF1S*29	CSO	21-aug-1991	10.0	UGL	SS10	BA	550.000		
13\$C3	RFIS*29	CSO	21-aug-1991	10.0	UGL	\$\$10	<b>CD</b>	4.010	LT	
13\$C3 13\$C3	RFIS*29 RFIS*29	CSO	21-aug-1991 21-aug-1991	10.0 10.0	UGL	\$\$10 \$\$10	CR	6.020	LT	
13SC3	RF15-29	CSO	21-aug-1991	10.0	UGL	SB01	PB KG	25.600 0.243	LT	
13\$C3	RF1S*29	CSO	21-aug-1991	10.0	UGL	SD22	AS	2.540	LT	
13SC3	RFIS*29	CSO	21-aug-1991	10.0	UGL	SD21	\$E	3.020	LT	
13SC4 13SC4	RFIS*30 RFIS*30	C\$O	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	111TCE	0.004 0.005	LT	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LN19	112TCE 11DCE	0.004	LT LT	
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LX19	11DCLE	0.002	LT	
13504	RFIS*30	CSO	22-aug-1991	0.5	ugg	LM19	120CE	0.003	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>F(ag</u>	Internal Std. Code
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN19	12DCLE	0.002	LT	
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH19	12DCLP	0.003	LT	
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LH19	SCLEAE	0.010	MD	R
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	UI19	ACET	0.017	LT	_
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LH19 LH19	ACROLN ACRYLO	0.100 0.100	HD	R R
13SC4	RF15*30	cso	22-aug-1991	0.5	UGG	UN19	BRDCLM	0.003	HID LT	•
13504	RF1S*30	CSO	22-aug-1991	0.5	UGG	LH19	C13DCP	0.003	LT	
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LH19	C2AVÉ	0.003	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-sug-1991 22-sug-1991	0.5 0.5	UGG	LN19 LN19	CZH3CL CZH5CL	0.006 0.012	LT LT	
13504	RFIS*30	CSC	22-aug-1991	0.5	UGG	UN19	COHO	0.002	LT	
13SC4	RFIS*30	CSG	22-aug-1991	0.5	UGG	LM19	CCL3F	0.006	LT	
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LH19	CCL4	0.007	LT	
13\$C4 13\$C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LN19 LN19	CH2CL2 CH3BR	0.012 0.006	LT LT	
13sc4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH19	CH3CL	0.009	LT	
13sc4	RF15*30	CSO	22-aug-1991	0.5	UGG	LN19	CHBR3	0.007	LT	
13504	RF15*30	czo	22-aug-1991	0.5	UGG	LM19	CHCL3	0.001	LT	_
13\$C4 13\$C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LN19 LN19	CL2BZ CLC6H5	0.100 0.001	MD LT	R
13SC4	RF1S*30	CSO	22-aug-1991	0.5	UGG	LN19	CS2	0.004	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN19	DBRCLM	0.003	LT.	
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH19	ETC4H5	0.002	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	UH19	MECSH5	0.001	LT	
13\$C4 13\$C4	RF1\$*30 RF1\$*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LN19" LN19	MEK	0.070 0.027	LT LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	UN19	MNBK	0.032	ĹŤ	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LM19	STYR	0.003	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LM19	T130CP	0.003	LT	
135C4 135C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT LT	
13504	RFIS*30	cso	22-aug-1991	0.5	UGG	LN19	TRCLE	0.003	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN19	XYLEN	0.002	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	JB01	KG	0.050	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg Ugg	LW12 LW12	135TNB 13DNB	0.488 0.496	ĻŢ	
13864	RF15*30	cso	22-aug-1991	0.5	UGG	LUTZ	246TNT	0.456	LT LT	
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LW12	24DHT	0.424	LT	
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	LW12	26DNT	0.524	LT	
138C4 138C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LW12 LW12	HMX	0.666 2.410	LT LT	
13804	RF15-30	CSO	22-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LW12	TETRYL	0.731	ĹŤ	
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	JD15	SE .	0.250	LT	
138C4 138C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	124TCB 12DCLB	0.040 0.110	LT LT	
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LM18	12DPH	0.140	MD	R
13sc4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	13DCLB	0.130	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	140CLB	0.098	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LM18 LM18	245TCP 246TCP	0.100 0.170	LT LT	
13504	RF15*30	CSC	22-aug-1991	0.5	UGG	LM18	240CLP	0.180	LT	
13504	RF15*30	C20	22-aug-1991	0.5	UGG	LH18	24DMPN	0.690	LT	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LH18	24DNP	1.200	LŦ	
13904	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	24DNT	0.385		
135C4 135C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	26DNT 2CLP	3.300 0.060	LT	
13864	RF15*30	cso	22-aug-1991	0.5	UGG	LH18	2CHAP	0.036	ĹŤ	
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LM18	ZHNAP	0.049	L1	
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	LK18	21P	0.029	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LX18 LX18	ZNAN I L ZNP	0.062 0.140	LT LT	
13864	RF15*30	C20	22-aug-1991	0.5	UGG	LN18	330CB0	6.300	LT	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LM18	3NANTL	0.450	LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	46DN2C	0.550	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	48RPPE 4CANTL	0.033 0.810	LT LT	
135C4 135C4	RF15*30	CSC	22-aug-1991	0.5	UGG	LH18	4CL3C	0.095	ĻŤ	
13SC4	RF15*30	cso	22-aug-1991	0.5	UGG	LM18	4CLPPE	0.033	LT	
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	4)49	0.240	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	4NANIL 4NP	0.410 1.400	LT	
13SC4 13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LM18	ABHC	0.270	LT MD	R
	<del></del>						·· <del>-</del>	-12.0	-	•

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal <u>Std. Code</u>
13504	RF1S*30	ÇŞO	22-aug-1991	0.5	UGG	LM18	ACLDAN	0.330	ND	R
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LH18	AENSLF	0.620	ND	Ř
13SC4	RFIS*30	CZO	22-aug-1991	0.5	UCG	LH18	ALDRN	0.330	ND	R
138C4 138C4	RFIS*30 RFIS*30	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LN18	ANAPNE	0.036	LT	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LM18 LM18	ANAPYL ANTRO	0.033 0.033	LT LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	B2CEXX	0.059	LT	
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	BZCIPE	0.200	LT	
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LM18	BZCLEE	0.033	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	B2EHP BAANTR	0.620 0.170	LT LT	
13SC4	RF1S*30	CSO	22-aug-1991	0.5	UGG	LM18	BAPYR	0.250	LT	
13504	RF1\$*30	CSO	22-aug-1991	0.5	UGG	LX18	BBFANT	0.210	LT	
13sc4	RFIS*30	C2O	22-aug-1991	0.5	UGG	LH18	BBHC	0.270	ND	R
138C4 138C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	BBZP BENSLF	0.170 0.620	LT ND	_
13sc4	RFIS*30	cso	22-aug-1991	0.5	UGG	LN18	BENZID	0.850	ND	R R
13SC4	RF1S*30	CSO	22-aug-1991	0.5	UGG	LH18	BENZOA	6.100	ND	Ř
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	BGHIPY	0.250	LT	
13504	RF1S*30	CSO	22-aug-1991	0.5	UGG	LN18	BKFANT	0.066	LT	
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	BZALC CHRY	0.190 0.120	LT LT	
13sc4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	CL6BZ	0.033	LT	
13564	RFIS=30	CSC	22-aug-1991	0.5	UGE	LM18	CL6CP	6.200	ĻŤ	
13904	RF15*30	CSO	22-aug-1991	0.5	UGG	LH18	CL6ET	0.150	ĻΤ	
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	LM18*	DBAHA	0.210	LT	_
138C4 138C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	OBHC OBZFUR	0.270 0.035	ND LT	R
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LN18	DEP	1.940	LI	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGĞ	LH18	DLDRN	0.310	ЖĎ	R
13904	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	DMP	0.170	LT	
13sc4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LM18	DNBP	0.974		
135C4 135C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DNOP ENDRN	0.190 0.450	LT	•
13SC4	RF1S*30	cso	22-aug-1991	0.5	UGG	LN18	ENDRNA	0.530	ND ND	R R
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	ENDRNK	0.530	ND	Ř
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	ESFSO4	0.620	ND	R
13\$04	RFIS*30	cso	22-aug-1991	0.5	UGG	LH18	FANT	0.068	ĻŢ	
135 <b>C4</b> 135 <b>C4</b>	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	FLRENE GCLDAN	0.033 0.330	LT MD	R
13sc4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LX18	HCBD	0.230	LT	K.
13SC4	RF1S*30	CSO	22-aug-1991	0.5	UGG	LN18	HPCL	0.130	MD	R
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	HPCLE	0.330	ND	R
13SC4 13SC4	RF1S*30 RF1S*30	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	ICDPYR ISOPHR	0.290 0.033	LT LT	
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	LIN	0.270	ND	R
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	MEXCLR	0.330	ND	Ř
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	LN18	NAP	0.037	LT	
13sc4	RFIS*30	CZO	22-aug-1991	0.5	UGG	LN18	ЖВ	0.045	LT	_
138C4 138C4	RFIS*30 RFIS*30	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	NNDMEA NNDNPA	0.140 0.200	ND LT	R
13sc4	RF1S*30	CSO	22-aug-1991	0.5	UGG	LN18	HNOPA	0.190	ĻŢ	
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LN18	PATPE	0.225		S
13SC4	RFIS*30	CSC	22-aug-1991	0.5	UGG	LM18	PCB016	1.400	ND	R
135C4 135C4	RFIS*30 RFIS*30	CSO	22-aug-1991	0.5	UGG	LM18	PCB221	1.400	ND	R
13504	RF15*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	PCB232 PCB242	1.400 1.400	NO ND	R R
13504	RF15*30	cso	22-aug-1991	0.5	UGG	LH18	PCB248	2,000	ND	Ř
13504	RF1S*30	CSO	22-aug-1991	0.5	UGG	LH18	PCB254	2.300	ND	R
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	PC8260	2.600	ND	R
135C4 13SC4	RF15*30 RF15*30	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	PCP PHANTR	1.300 0.033	LT LT	
13804	RF1S*30	CSO	22-aug-1991	0.5	UGG	LN18	PHENOL	0.110	LT	
13804	RFIS*30	cso	22-aug-1991	0.5	UGG	LH18	PPODD	0.270	ND.	R
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	ĻX18	PPDDE	0.316	ND	Ř
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	PPODT	0.310	KD	R
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	lm18 lm18	PYR Txphen	0.033 2.600	LT	•
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LM18	UNK515	1.120	KD	R S
13SC4	RFIS*30	cso	22-aug-1991	0.5	UGG	LN18	UNK572	1.120		\$
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	LX18	UNK583	0.112		\$
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LX18	UNK584	0.787		S
135C4 13 <b>5C</b> 4	RF1S*30 RF1S*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG	LM18	UNKS95	0.112		S
13304	K112_30	CSO	64-aug-1771	U.3	UGG	LM18	UNK596	1.120		S

Site ID	Field ID	<u>Medía</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	LX18	UNK605	0.562		s
13SC4	RF1S*30	CSO	22-aug-1991	0.5	UGĞ	LH18	UNK609	1.010		Š
13\$04	RF15*30	CSO	22-aug-1991	0.5	UGG	JS16	AG	0.589	LT	-
13SC4 13SC4	RFIS*30 RFIS*30	C20	22-aug-1991 22-aug-1991	0.5 Q.5	UGG	J\$16	AL	4600.000		
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG UGG	1216 1216	RA 8E	77.100 0.886		
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	JS16	ČÁ.	23300.000		
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	JS16	<b>C</b>	0.700	LŤ	
13SC4	RF1S*30	CSO	22-aug-1991	0.5	UGG	JS16	<b>co</b>	4.920		
135C4 135C4	RFIS*30 RFIS*30	CSO CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	JS16 JS16	CR CU	12.000 66.900		
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	JS16	FE	9980.000		
13SC4	RF15*30	CSO	22-aug-1991	0.5	UGG	J\$16	K	1150.000		
13504	RFIS*30	CSO	22-aug-1991	0.5	UGG	J\$16	MG	11600.000		
13SC4 13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGG UGG	1\$16 31\$L	MN NA	352.000 293.000		
13sc4	RFIS*30	CSO	22-sug-1991	0.5	UGG	J\$16	NI	5.790		
13804	RFIS*30	CSO	22-aug-1991	0.5	UGG	JS16	PB	406.000		
13504	RF15*30	CSO	22-aug-1991	0.5	UGG	J\$16	SB	7.140	LT	
135C4 135C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	ugg ugg	JS16 JS16	TL	12.800		
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	JS16	V ZN	16.400 153.000		-
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGG	LH18	2EC6A	0.337		s
13SC4	RFIS*30	CSO	22-aug-1991	0.5	UGE	JD19	AS	1_590		_
13SC4	RFIS*30	CZO	22-aug-1991 22-aug-1991	0.5	UGL,	\$\$10	AG	4.600	LT	
13SC4	RFIS*30 RFIS*30	CSO	22-aug-1991	0.5 0.5	UGL UGL	\$\$10 \$\$10	BA CD	954.000 4.010	LT	
13SC4	RF15*30	cso	22-aug-1991	0.5	UGL.	\$\$10	CR.	6.020	LT	
13504	RF1S*30	CSO	22-eug-1991	0.5	UGL	SS10	PB	1240.000		
13504	RFIS*30	CSO	22-aug-1991	0.5	UGL	SB01	KG	0.251		
135C4 135C4	RFIS*30 RFIS*30	CSO	22-aug-1991 22-aug-1991	0.5 0.5	UGL UGL	SD22 SD21	AS SE	2.540 3.620	LT LT	
13904	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	111TCE	0.004	LT	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	112TCE	0.005	LT	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX19	11DCE	0.004	LT	
138C4 138C4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LN19 LN19	11DCLE 12DCE	0.002 0.003	LT LT	
13SC4	RFIS*31	CSO	22-sug-1991	5.0	UGG	UH19	120CLE	0.002	LT	
13SC4	RFIS*31	CSO	22-sug-1991	5.0	UGG	LH19	12DCLP	0.003	ĹŤ	
13\$C4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	SCLEVE	0.010	ND	2
135C4 135C4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LH19 LH19	ACET	0.017	LT	_
13SC4	RF15*31	ÇSO	22-aug-1991	5.0	UGG	LN19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	BRDCLM	0.003	ĹŤ	•
13904	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	C130CP	0.003	LT	
13SC4 13SC4	RF1S*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG	LH19	C2AVE	0.003	LT	
13504	RFIS*31 RFIS*31	CSO	22-aug-1991	5.0	UGG UGG	LM19 LM19	C2H3CL C2H5CL	0.006 0.012	LT LT	
13SC4	RFIS*31	ÇSO	22-aug-1991	5.0	UGG	LH19	C6H6	0.002	LT	
13SC4	RF15*31	CSC	22-aug-1991	5.0	UGG	LH19	CCL3F	0.006	LT	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	CCL4	0.007	LT	
13904 13904	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	LN19 LN19	CH2CL2 CH3BR	0.012 0.006	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM19	CH3CL	0.009	LT	
13SC4	RFIS*31	CSO	22-sug-1991	5.0	UGG	LM19	CHBR3	0.007	LŤ	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM19	CHCL3	0.001	LT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	CL28Z CLC6N5	0.100 0.001	NO	R
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	UH19	CS2	0.004	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN19	DBRCLM	0.003	ĹŤ	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	ETC6H5	0.002	LT.	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN19	MEC6H5	0.001	LT	
13\$C4 13\$C4	RFIS*31 RFIS*31	C20	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	MEK	0.070 0.027	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN19	MARK	0.032	LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	STYR	0.003	LT	
13804	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN19	T130CP	0.003	LŤ	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN19	TCLEA	0.002	LT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LM19 LM19	TCLEE TRCLE	0.001 0.003	LT LT	
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LM19	UNK038	0.007	LI	\$
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH19	XYLEN	0.002	LT	-
13504	RF1S*31	CSO	22-aug-1991	5.0	UGG	J801	HG	0.050	LT	
13 <b>5C</b> 4	Rf1\$*31	¢\$0	22-aug-1991	5.0	UGG	LW12	135THB	0.488	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13sc4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LW12	13DNB	0.496	LT	
13504	RF15*31	CSO	22-aug-1991	5.0	UGG	LW12	246TNT	0.456	ĹŤ	
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LW12	24DNT	0.424	ĽΤ	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LW12	26DNT	0.524	LT	
13504	RF15*31	CSO	22-aug-1991	5.0	UGG	LW12	HMX	0.666	LT	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LW1Z	NB	2.410	LT	
138C4 138C4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0	UGG	LW12	RDX	0.587	LT	
13SC4	RF15*31	CSO	22-aug-1991	5.0 5.0	ugg ugg	LW12 JD15	TETRYL Se	0.731 0.250	LT	
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LM18	1247CB	0.040	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LHIS	120CLB	0.110	ĹŤ	
13504	RFIS*31	ÇSO	22-aug-1991	5.0	UGG	LM18	120PH	0.140	ND	R
13564	RFIS*31	CSO	22-sug-1991	5.0	UGĞ	LH18	13DCLB	0.130	LT	
13SC4	RF15*31	C\$O	22-aug-1991	5.0	UGG	LM18	140CLB	0.098	LT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	245TCP 246TCP	0.100	LŢ	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN18	24DCLP	0.170 0.180	LT LT	
13864	RF15*31	CSO	22-aug-1991	5.0	UGG	LN18	24DMPN	0.690	ίŤ	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	ugg	LH18	24DNP	1.200	ŁT	
13SC4	RFIS*31	CZO	22-aug-1991	5.0	UGG	LH18	24DNT	0.140	LŤ	
13504	RF15*31	CSO	22-aug-1991	5.0	UGG	LH18	260NT	0.085	LT	
135C4 135C4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	2CLP 2CXAP	0.060 0.036	LT	
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LM18	ZMKAP	0.049	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH18	ZMP	0.029	ĹŤ	
13SC4	RF1\$*31	CSO	22-aug-1991	5.0	UGG	LM18	2NANTL	0.062	LT	
13sc4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN18	ZNP	0.140	LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN18	33DCBD	6.300	LT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	lm18 lm18	3NANIL 46DNZC	0.450 0.550	LT LT	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	488PPE	0.033	LT	
13504	RF15#31	CSO	22-aug-1991	5.0	UGG	LN18	4CANIL	0.810	LT	
13504	RFIS*31	ÇSQ	22-aug-1991	5.0	UGG	LM18	4CL3C	0.095	LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN18	4CLPPE	0.033	LT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO CSO	22-aug-1991 22-aug-1991	5.0	UGG	LN18	4MP	0.240	LŢ	
13SC4	RF15*31	CSO	22-aug-1991	5.0 5.0	UGG	LM18 LM18	4nan II. 4np	0.410 1.400	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	ABHC	0.270	NED.	R
13804	RFIS*31	CSO	22-aug-1991	5.0	UGG	LK18	ACLDAN	0.330	ND	R
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN18	AENSLF	0.620	ND	Ř
13864 13864	RF1S*31	CSC	22-aug-1991	5.0	UGG	LM18	ALDRN	0.330	ND	R
13SC4	RFIS*31 RFIS*31	C20	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ANAPHE ANAPYL	0.036 0.033	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LN18	ANTRO	0.033	LT	
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LN18	82CEXM	0.059	ĹŤ	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX18	82CIPE	0.200	ĻŢ	
13504	RFIS*31	CSO	22-aug-1991		UGG	LN18	BECLEE	0.033	LT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg	LN18	BZEHP BAANTR	0.620 0.170	LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	ln18 ln18	BAPYR	0.250	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	BSFANT	0.210	LT	
13SC4	RFIS#31	CS0	22-aug-1991	5.0	UGG	LH15	BBHC	0.270	ND	R
13504	RFIS*31	CZO	ZZ-aug-1991	5.0	UGG	LN18	BBZP	0.170	LT	
138 <b>C</b> 4 138 <b>C</b> 4	RF1S*31 RF1S*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LN18	BENSLF	0.620	NO.	R
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	UK18 UK18	BENZOA BENZOA	0.850 6.100	ND ND	R R
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LN18	BGHIPY	0.250	LT	^
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH18	BKFANT	0.066	ĻŤ	
13sc4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH18	BZALC	0.190	LT.	
13504	RF1S*31	CSO	22-aug-1991	5.0	UGG	LH18	CHRY	0.120	LT	
13904 13804	RFIS*31 RFIS*31	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	CL68Z	0.033 6.200	LT	
13\$C4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	CL6CP CL6ET	0.150	LT LT	
13804	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	DBAHA	0.210	LT	
13804	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH18	DBHC	0.270	ND	R
13504	RF1S*31	CSO	22-aug-1991	5.0	UGG	LX18	DBZFUR	0.035	LT	
13904 13904	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX18	DEP	0.240	LT	_
138C4 138C4	RFIS*31 RFIS*31	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	LH18 LH18	DLDRN DMP	0.310 0.170	ND LT	R
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	LX18	DNBP	0.061	LT	
13SC4	RFIS*31	cso	22-aug-1991	5.0	UGG	LH18	DNOP	0.190	ĹŢ	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX18	ENDRM	0.450	ND	R
13SC4	RF1S*31	CSO	22-aug-1991	5.0	UGG	LM18	ENDRNA	0.530	ND	R
13sc4	RF1S*31	CSO	22-aug-1991	5.0	UGG	LM18	ENDRNK	0.530	ND	R

<u> Site ID</u>	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Vatue	Flag	Internal Std. Code
1700/			22-aug-1991	5.0		1.740				
13SC4 13SC4	RFIS*31 RFIS*31	CSO CSO	22-aug-1991	5.0	ugg Ugg	LM18 LM18	ESFSO4 FANT	0.620 0.068	ND LT	R
13SC4	RF1S*31	CSO	22-aug-1991	5.0	UGG	LN18	FLRENE	0.033	LT	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	GCLDAN	0.330	ND	R
13864 13864	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	HCSD HPCL	0.230 0.130	LT ND	R
13504	RF15*31	CSO	22-aug-1991	5.0	UGG	LM18	NPCLE	0.330	ND	R
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH18	I COPYR	0.290	ĻT	
13SC4 13SC4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ISOPHR Lin	0.033 0.270	LT	
13504	RF15*31	ÇSO	22-aug-1991	5.0	UGG	LH18	MEXCLR	0.330	ND ND	R R
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	NAP	0.037	LT	
13864 13864	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG	LH18 LH18	NB NNDMEA	0.045 0.148	LT	_
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX18	NNDNPA	0.200	ND LT	R
135C4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX18	NNDPA	0.190	LT	
13864 13864	RF1S*31 RF1S*31	C\$0	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PC8016 PC8221	1.400 1.400	ND ND	R
13504	RFIS*31	cso	22-aug-1991	5.0	UGG	1,418	PCB232	1.400	ND	R R
13564	RFIS*31	CSO	22-aug-1991	5.0	UGG	LM18	PCB24Z	1,400	KD	Ř
13864	RF15*31 RF15*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG	LM18	PC8248 PCB254	2.000	MD	· R
13864 13864	RFIS*31	CSO CSO	22-aug-1991	5.0	UGG	LM18 LM18	PC8254	2.300 2.600	ND ND	R R
13sc4	RFIS*31	CSO	22-aug-1991	5.0	UGG	LH18	PCP	1.300	LT	•
13SC4	RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0	UGG	LM18	PHANTR	0.033	LT	
13sc4 13sc4	RFIS*31 RFIS*31	CSO CSO	22-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PHENOL PPODD	0.110 0.270	LT MD	R
13sc4	RFIS*31	ÇSO	22-aug-1991	5.0	UGG	LH18	PPODE	0.310	NO	Ř
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	LX18	PPODT	0.310	MD	R
13\$C4 13\$C4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG	LM18 LM18	PYR TXPHEN	0.033 2.600	LT NED	R
13SC4	RF15*31	CSO	22-aug-1991	5.0	UGG	JS16	AG	0.589	ίŤ	•
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	JS16	AL.	6890.000		
135C4 13SC4	RFIS*31 RFIS*31	CS0	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	JS16 JS16	BA BE	117,000 1,400		
13564	RFIS*31	CSO	22-aug-1991	5.0	UGG	JS16	CA	1530.000		
13sc4	RFIS*31	CSO	22-aug-1991	5.0	UGG	JS16	œ	0.700	LT	
13864 13864	RFIS*31 RFIS*31	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	3516 312L	<b>8</b>	8.940 17.300		
13864	RF15*31	CSO	22-aug-1991	5.0	UGG	JS16	ä	8,430		
13sc4	RF1\$*31	CSO	22-aug-1991	5.0	UGG	J\$16	FE	14000.000		
13sc4 13sc4	RFIS*31 RFIS*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	JS16 JS16	K Mg	931.000 2770.000		
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGG	J\$16	MN	423.000		
13804	RFIS*31	cso	22-aug-1991	5.0	UGG	J\$16	NA	388.000		
13SC4 13SC4	RFIS*31 RFIS*31	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGG UGG	7219 7219	NI PB	11.100 10.500	ĻŢ	
13504	RFIS*31	CSO	22-aug-1991	5.0	UGG	J\$16	SB	7.140	ĹŤ	
13sc4	RF15*31	CSO	22-aug-1991	5.0	UGG	J\$16	TL	9.820		
13\$C4 13\$C4	RFIS*31 RFIS*31	CSO CSO	22-aug-1991 22-aug-1991	5.0 5.0	ugg ugg	J\$16 J\$16	V ZN	22,400 63,200		
13564	RF15*31	CSO	22-aug-1991	5.0	UGG	JD19	AS	0.392		
13504	RFIS*31	CSO	22-aug-1991	5.0	UGL	SS10	AG	4.600	LT	
13504	RF15*31	CSO	22-aug-1991 22-aug-1991	5.0	UGL	SS10	BA	533.000		
138C4 138C4	RF1S*31 RF1S*31	CSO	22-aug-1991	5.0 5.0	UGL	SS10 SS10	CD CR	4.010 6.020	LT LT	
13SC4	RFIS*31	CSO	22-aug-1991	5.0	UGL	\$\$10	PB	18.600	LT	
13504	RFIS*31	CSC	22-aug-1991	5.0	UGL	SBOT	HG	0.243	ĻŤ	
135C4 135C4	RF15*31 RF15*31	CSO	22-aug-1991 22-aug-1991	5.0 5.0	UGL UGL	\$022 \$021	AS SE	2.540 3.020	LT LT	
13SC4	RFIS*32	CZO	22-aug-1991	10.0	UGG	J801	HG	0.050	ĹŤ	
13564	RFIS*32	CSO	22-aug-1991	10.0	UGG	LU12	135THB	0.488	LŢ	
138 <b>C</b> 4 138 <b>C</b> 4	RFIS*32 RFIS*32	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	L¥12 L¥12	13DNB 246TNT	0.496 0.456	LT LT	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LW12	240NT	0.424	ĻŢ	
13564	RF15*32	CSO	22-sug-1991	10.0	UCG	LW12	260NT	0.524	LT	
13904 13904	RFIS*32 RFIS*32	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LW12	HPC	0.666	LT	
135C4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LW12 LW12	NB RDX	2.410 0.587	LT LT	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	
13SC4 13SC4	RF15*32	CSO	22-aug-1991 22-aug-1991	10.0	UGG	JD15	SE 111Tes	0.250	LT	
135C4 135C4	RFIS*32 RFIS*32	CSO	22-sug-1991	10.0 10.0	ugg ugg	LM19 LM19	111TCE 112TCE	0.004 0.005	LT LT	
13SC4	RFIS=32	CSO	22-aug-1991	10.0	UGG	LN19	11DCE	0.004	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal <u>Std. Code</u>
13504	RF1S*32	CSO	22-aug-1991	10.0	UGG	LN19	11DCLE	0.002	ŁŢ	
13564	RF15*32	CSO	22-eug-1991	10.0	UGG	LN19	120CE	0.003	LT	
13504	RFIS*32	CSO	22-sug-1991	10.0	UGG	LH19	12DCLE	0.002	LŤ	
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LM19	12DCLP	0.003	LT	
13SC4	RF1S*32	CSO	22-aug-1991	10.0	UGG	LM19	2CLEVE	0.010	ND	R
138C4 138C4	RF1S*32 RF1S*32	CSO	22-aug-1991 22-aug-1991	10.0 10.0	99U 99U	UN19	ACET	0.017	LT	_
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LM19 LM19	ACROLM ACRYLO	0.100 0.100	ND CJK	R R
13sc4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	BRDCLM	0.003	LT	*
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LH19	C13DCP	0.003	LT	
13sc4	RF1S*32	CSO	22-aug-1991	10.0	UGG	UH19	CZAVE	0.003	LT	
13504	RF15*32	CSO	22-aug-1991	10.0	UGG	LH19	CZH3CL	0.006	ĻT	
13864 13864	RFIS*32 RFIS*32	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LN19	C2H5CL	0.012	LT	
13804	RFIS*32	ÇSO	22-aug-1991	10.0	UGG	LN19 LN19	CCL3F	0.002 0.006	LT	
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	CCL4	0.007	LT LT	
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LH19	CH2CL2	0.012	LT	
13504	RF1\$*32	CSO	22-aug-1991	10.0	UGG	LH19	CH3BR	0.006	LT	
13804	RF15*32	CZO	22-aug-1991	10.0	UGG	LH19	CH3CL	0.009	LT	
13864	RF15*32	CSO	22-aug-1991	10.0	UGG	LM19	CH8R3	0.007	LT	
138 <b>C</b> 4 138C4	RF15*32 RF15*32	CSO	Z2-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	CHCL3 CL2BZ	0.001 0.100	LT	
13sc4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LH19	CLC6H5	0.001	MD LT	R
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	CS2	0.004	LT	
13sc4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	DBRCLM	0.003	LŤ	
13804	RF1S*32	CSO	22-aug-1991	10.0	UGG	LH19	ETC6H5	0.002	LT	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	MEC6H5	0.001	LT	
13SC4 13SC4	RF1S*32 RF1S*32	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	MEK	0.070	LT	
13sc4	RF15*32	CSO	22-aug-1991	10.0	UGG	LN19	MNBK MIBK	0.027 0.032	LT LT	
13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	LM19	STYR	0.003	LT	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	T13DCP	0.003	ĹŤ	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LH19	TCLEA	0.002	LT	
13sc4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN19	TCLEE	0.001	LŦ	
13SC4 13SC4	RFIS*32	CSO	22-aug-1991	10.0 10.0	UGG	LN19	TCLTFE	0.009		\$
13864	RF1S*32 RF1S*32	CSO CSO	22-aug-1991 22-aug-1991	10.0	ugg ugg	LM19 LM19	TRCLE XYLEN	0.003 0.002	LT	
13sc4	RF15*32	CSO	22-aug-1991	10.0	UGG	LM18	124TCB	0.040	LT LT	
13SC4	RF15#32	CSO	22-aug-1991	10.0	UGG	LH18	12DCLB	0.110	ĹŤ	
13SC4	RF1\$*32	C2O	22-aug-1991	10.0	UGG	LM18	12DPH	0.140	ND	R
13SC4	RF1\$*32	CSO	22-aug-1991	10.0	UGG	LM18	13DCLB	0.130	ŁT	
135C4 135C4	RF1S*32	CSO	22-aug-1991	10.0 10.0	UGG	LH18	14DCLB	0.098	LT	
13SC4	RFIS*32 RFIS*32	CSO	22-aug-1991 22-aug-1991	10.0	UGG	LH18 LH18	245TCP 246TCP	0.100 0.170	LT LT	
13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	LM18	24DCLP	0.180	LT	
13504	RF15*3Z	CSO	22-aug-1991	10.0	UGG	LH18	24DMPN	0.690	ĹŤ	
13504	RFIS*32	CSQ	22-aug-1991	10.0	UGĞ	LM18	24DNP	1.200	LT	
13sc4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN18	24DNT	0.140	LT	
13SC4	RF1S*32	CSO	22-aug-1991	10.0	UGG	LM18	26DNT	0.085	LT	
13904 13904	RF1S*32 RF1S*32	CSO CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	2CLP 2CNAP	0.060	LT	
13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	UN18	ZMNAP	0.036 0.049	LT LT	
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN18	2MP	0.029	LT	
13SC4	RF1S*32	CSO	22-aug-1991	10.0	UGG	LH18	LIKAKS	0.062	ĹŤ	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	LN18	2NP	0.140	LT	
13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	LH18	33DCB0	6,300	LT	
13SC4 13SC4	RF1S*32	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG	LM18	SHANIL	0_450	LT	
13SC4	RF1S*32 RF1S*32	CSO	22-aug-1991	10.0	UGG UGG	lm18 Lm18	46DN2C 48RPPE	0.550 0.033	LT	
13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	UN18	4CANIL	0.810	LT LT	
13504	RF15*32	CSO	22-aug-1991	10.0	UGG	LN18	4CL3C	0.095	ĻŢ	
13SC4	RF1S*32	CSO	22-aug-1991	10.0	UGG	LN18	4CLPPE	0.033	LT	
13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	LM18	4MP	0.240	LT	
13504	RFIS*32	CZO	22-aug-1991	10.0	UGG	LN18	4MANIL	0.410	ĻŢ	
13SC4 13SC4	RF15*32	CSO	22-aug-1991	10.0	UGG	LN18	4XP	1.400	LT	_
138C4 138C4	RF1\$*32 RF1\$*32	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ABHC ACLDAN	0.270	ND NC	R
13SC4	RF15-32	CSO	22-aug-1991	10.0	UGG	LN18	ACLDAN AENSLF	0.330 0.620	ND ND	R R
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LH18	ALDRN	0.330	ND	Ř
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGG	LH18	ANAPNE	0.036	LT	
13sc4	RF1\$*32	CSO	22-aug-1991	10.0	UGG	LH18	ANAPYL	0.033	LT	
13504	RFIS*32	CZO	22-aug-1991	10.0	UGG	LH18	ANTRC	0.033	LT	
13504	RFIS*32	C2O	22-aug-1991	10.0	UGG	LN18	82CEXM	0.059	LT	
13\$64	RF15=32	CSO	22-aug-1991	10.0	UGG	LN18	SZCIPE	0.200	LT	

1350.4	Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
135C4	13864	PETS*32	cso	22-mm-1991	10.0	hee	1 M12	93C1 EE	0.077	1.7	
135C4											
135C4											
135C4										LT	
135C4											
135C4											R
135C4										_	•
135C4											
135C4										_	
135C4					10.0	UGG		BGHIPY		LT	
135C4				•						-	
13564   RF15*732   CSO   22-mag-1991   10.0   UGG											
135C4	13sc4								_		
135C4					-						
135C4											R
135CC										-	
135CA											. в
135C4								-			*
35C/4	13504	RFIS*32		22-aug-1991							
135CL										ĻT	
135C4											
135C4											
135C/A											
155CA										-	K
135C4											
135C4	13864			22-aug-1991	10.0						R
135C4						-		-			
135C4											
135C4											R
135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 HEXCLR 0.330 ND R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 HEXCLR 0.330 ND R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 HEXCLR 0.330 ND R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 NB 0.045 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 NB 0.045 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 NBOMPA 0.140 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 NBOMPA 0.200 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 NBOMPA 0.190 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 NBOMPA 0.190 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB211 1.400 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB221 1.400 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB232 1.400 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB232 1.400 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB248 2.000 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB248 2.000 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB246 2.000 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB248 2.000 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB254 2.300 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCB260 2.600 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCP 1.300 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCP 0.300 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCP 0.300 LT 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PCP 0.310 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.270 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.270 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PPDDD 0.370 MD R 135C4 RFIS*32 CS0 22-aug-1991 10.0 UGG LM18 PD								-	_		
135C4										-	2
135C4	13SC4		CSG	22-aug-1991							
135C4								XAP			
135C4											_
135C4											R
135C4											
135C4				•						-	R
135C4		RF15*32					LM18		1_400	NO	
135C4											Ř
13SC4											
13SC4										_	
13SC4											
13SC4	13SC4										
13SC4	13sc4		CSO								
13SC4	13\$C4							PHENOL		LŤ	
13SC4											
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG LM18 PYR 0.033 LT 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG LM18 TXPHEN 2.600 MD R 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 AG 0.731 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 AL 7670.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 BA 127.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 BE 1.500 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CA 1490.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 0.700 LT 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 9.350 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 8.660 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 335.000											
13SC4											R
13SC4 RFIS*32 CSO '22-aug-1991 10.0 UGG JS16 AG 0.731 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 AL 7670.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 BA 127.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 BE 1.500 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CA 1490.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 0.700 LT 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 9.350 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CL 8.660 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CL 8.660 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 FE 14500.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000											R
13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 AL 7670.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 BA 127.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 BE 1.500 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 CA 1490.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 CD 0.700 LT 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 CD 9.350 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 CR 18.200 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 CU 8.660 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 FE 14500.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000 13sc4 RF1s*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000											
13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 BE 1.500 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CA 1490.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CD 0.700 LT 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CC 9.350 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CU 8.660 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CU 8.660 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 FE 14500.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 MA 335.000							JS16	AL.			
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CA 1490.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 0.700 LT 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CD 9.350 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CU 8.660 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CU 8.660 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 FE 14500.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MM 424.000											
13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 CD 0.700 LT 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 CO 9.350 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 CR 18.200 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 CU 8.660 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 FE 14500.000 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 K 1000.000 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 MG 2890.000 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 MM 424.000 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 MM 424.000 13sc4 RFIs*32 CSO 22-mug-1991 10.0 UGG JS16 MM 424.000											
13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CD 9.350 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 CU 8.660 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 FE 14500.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 MN 424.000 13SC4 RFIS*32 CSO 22-mug-1991 10.0 UGG JS16 MA 335.000										t T	
13SC4 RFIS*32 CSO ZZ-aug-1991 10.0 UGG JS16 CR 18.200 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CU 8.660 13SC4 RFIS*32 CSO ZZ-aug-1991 10.0 UGG JS16 FE 14500.000 13SC4 RFIS*32 CSO ZZ-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO ZZ-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO ZZ-aug-1991 10.0 UGG JS16 MN 424.000 13SC4 RFIS*32 CSO ZZ-aug-1991 10.0 UGG JS16 MN 335.000										~ ·	
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 CJ 8.660 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 FE 14500.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MN 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MN 335.000	13SC4										
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 K 1000.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MN 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 NA 335.000	13804		CSO	22-aug-1991	10.0	UGG	J\$16	വ	8.660		
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MG 2890.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MN 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 NA 335.000											
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 MN 424.000 13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG JS16 NA 335.000											
13SC4 RFIS*32 CSO 22-aug-1991 10.0 UGG J\$16 NA 335.000	13864 13864										

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13504	RFIS*32	CSO	22-aug-1991	10.0	UGG	JS16	P8	10.500	LT	
13804	RF1\$*32	CSO	22-aug-1991	10.0	UGG	J\$16	SB	7.140	LT	
13504	RFIS*32	CSO	22-aug-1991	10.0	UCC	J216	TL	6.620	LT	
135C4 135C4	RFIS*32 RFIS*32	CSO	22-aug-1991 22-aug-1991	10.0 10.0	ugg ugg	J\$16 J\$16	V 74	24.100		
13864	RFIS*32	CSO	22-aug-1991	10.0	UGG	JD19	ZN AS	61.000 0.463		
13SC4	RFIS*32	CSO	22-aug-1991	10.0	UGL	\$\$10	AG	4.600	LT	
13504	RFIS*32	CSO	22-aug-1991	10.0	UGL	SS10	BA	508.000		
13864	RFIS*32 RFIS*32	CSO	22-aug-1991 22-aug-1991	10.0 10.0	UGL	\$\$10	CD	4.010	LT	
13\$C4 13\$C4	RFIS*32	CSO CSO	22-aug-1991	10.0	UGL UGL	\$\$10 \$\$10	CR PB	6.020 18.600	LT LT	
13504	RFIS*32	cso	22-aug-1991	10.0	UGL	SB01	HG	0.243	LT	
13SC4	RFIS#32	CSO	22-aug-1991	10.0	UGL,	<b>\$</b> 022	AS	2.540	LT	
13SC4 13SC5	RFIS*32	CSO	22-eug-1991 26-aug-1991	10.0 0.5	UCL	SD21	SE	3.020	LŤ	
13SC5	RF1S*33 RF1S*33	CSO	26-aug-1991	0.5	UGG	JB01 LW12	HG 135THB	0.050 0.488	LT LT	
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LW12	13DN8	0.496	LT	
13SC5	RF15*33	CSC	26-aug-1991	0.5	UGG	LH1Z	246TNT	0.456	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LW12	24DNT	0.424	ĻŦ	
138C5 138C5	RFIS*33 RFIS*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LW12 LW12	26DNT HNX	0.524 0.666	LT LT	
13SC5	RF15*33	CSO	26-aug-1991	0.5	UGG	LW12	ЯВ	2.410	LT	
13SC5	RF1S*33	CZO	26-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13sc5	RF1\$*33	CSO	26-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13sc5 13sc5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	JD15 LM19	SE 111TCE	0.250 0.004	LT	
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH19"	1127CE	0.005	LT LT	
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN19	11DCE	0.004	ĹŤ	
13505	RF15*33	CSO	26-aug-1991	0.5	UGG	LH19	11DCLE	0.002	ĻT	
13\$C5 13\$C5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LN19	12DCE	0.003	LT	
13SC5	RF1\$*33 RF1\$*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LH19 LH19	120CLE 120CLP	0.002 0.003	LT LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN19	2CLEVE	0.010	ND.	2
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LH19	ACET	0.017	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH19	ACROLN	0.100	ND	R
138C5 138C5	RF1S*33 RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LN19 LN19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
13sc5	RF15*33	CSO	26-aug-1991	0.5	UGG	LH19	C13DCP	0.003	ĹŤ	
13505	RF1S*33	CSO	26-aug-1991	0.5	UGG	LH19	C2AVE	0.003	ĹŤ	
13SC5	RFIS*33	C20	26-aug-1991	0.5	UGG	LN19	C2H3CL	0.006	LT	
138C5 138C5	RF1S*33 RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	C2X5CL C6X6	0.012 0.002	LT LT	
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN19	CCL3F	0.006	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH19	CCL4	0.007	LT	
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH19	CH2CL2	0.012	LT	
138C5 138C5	RFIS*33 RFIS*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LN19 LN19	CH38R CH3Cl	0.006 0.009	LT LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN19	CHBR3	0.007	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH19	CHCL3	0.001	LT	
13505	RF1S*33	CSO	26-aug-1991	0.5	UGG	LH19	CL2BZ	0.100	MD	R
138C5 138C5	RF1S*33 RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LK19 LK19	CLC6H5 CS2	0.001 0.004	LŢ	
13SC5	RF15*33	CSO	26-aug-1991	0.5	UGG	LN19	DBRCLN	0.003	LT LT	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LH19	ETC6H5	0.002	ĹŤ	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH19	MEC6K5	0.001	LT	
13505 13505	RF1S*33 RF1S*33	CSO	26-aug-1991	0.5 0.5	UGG UGG	LH19	HEK	0.070	LT	
13SC5	RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5	UGG	LN19 LN19	MIBK	0.027 0.032	LT LT	
13805	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM19	STYR	0.003	ĹŤ	
13\$C5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LN19	T13DCP	0.003	LŤ	
13505	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM19	TCLEA	0.002	LT	
138 <b>C5</b> 138 <b>C5</b>	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LH19 LH19	TCLEE	0.001	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM19	TRCLE XYLEN	0.003 0.002	LT LT	
13805	RFIS*33	CZO	26-aug-1991	0.5	UGG	LN18	124TCB	0.040	LT	
13805	RF15*33	CSO	26-aug-1991	0.5	UGG	LM18	120CLB	0.110	LT	
135C5	RF15*33	CSO	26-aug-1991	0.5 0.5	UGG	LN18	120PH	0.140	NO	R
13SC5 13SC5	RF1S*33 RF1S*33	CSO CSO	26-aug-1991 26-aug-1991	0.5	ugg Ugg	LH18 LH18	13DCLB 14DCLB	0.130 0.098	LT LT	
13505	RF15*33	CSO	26-aug-1991	0.5	UGG	LM18	245TCP	0.100	LT	
13505	RFIS*33	C\$O	26-aug-1991	0.5	UGG	LH18	246TCP	0.170	LT	
13SC5	RF15*33	CSO	26-aug-1991	0.5	UGG	LM18	24DCLP	0.180	LT	
13905 13905	RFIS*33 RFIS*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	24DNPN 24DNP	0.690 1.200	LT LT	
	W: T 4 44	~~~	On and 1224	٠.,	244	Un 14	FAR ML	1.200		

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
13SC5	RF15*33	CSO	26-aug-1991	0.5	UGG	LM18	24DNT	0.140	LT	
13SC5	RFIS*33	ÇSO	26-aug-1991	0.5	UGG	LH18	26DNT	0.085	LT	
13SC5	RF15*33	ÇSO	26-aug-1991	0.5	UGG	LM18	2CLP	0.060	LŤ	
13805	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM18	2CXAP	0.036	ĻŢ	
138C5 138C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	2MKAP 2MP	0.049 0.029	LT LT	
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH18	2NANIL	0.062	LT	
13sc5	RF15*33	CSO	26-aug-1991	0.5	UGG	LH18	2NP	0.140	ĻŤ	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN18	330 CBD	6.300	LT	
138C5 138C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	3NANIL 46DNZC	0.450 0.550	LT	
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	LX18	4BRPPE	0.033	LT LT	
13 <b>5C</b> 5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH18	4CANIL	0.810	LT	
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LX18	4CL3C	0.095	LT	
138C5 138C5	RF1\$*33 RF1\$*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	4CLPPE 4MP	0.03 <b>3</b> 0.240	LT LT	
13\$C5	RF1S*33	cso	26-aug-1991	0.5	UGG	LK18	4NANIL	0.410	ĻŢ	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM18	4NP	1.400	ĹŤ	
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	ABHC	0.270	MD	R
13\$C5 13\$C5	RFIS*33 RFIS*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LH18	ACLDAN AENSLF	0.330	ЖD	R
13sc5	RF15*33	CSO	26-aug-1991	0.5	UGG	LM18 LM18	ALDRN	0.620 0.330	ND ND	Ř R
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	UH18	ANAPKE	0.036	ĹŤ	•
13\$C5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH18	ANAPYL	0.033	LT	
13865 13865	RFIS*33 RFIS*33	cso	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LH18	ANTRO	0.033	LT	
13505	RF15*33	CSO	26-aug-1991	0.5	UGG UGG	LH18 LH18	B2CEXM B2CIPE	0.05 <del>9</del> 0.200	LT LT	
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	UK18	BECLEE	0.033	ĹŤ	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH18	B2EHP	0.620	LT	
138C5 138C5	RFIS*33 RFIS*33	CSO	26-aug-1991	0.5	UGG	LH18	BAANTR	0.170	LT	
138C5	RF15*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG	LM18 LM18	BAPYR BBFANT	0.250 0.210	LT LT	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM18	BBHC	0.270	ND	R
13SC5	RFIS*33	¢s0	26-aug-1991	0.5	UGG	LM18	BBZP	0.170	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	BENSLF	0.620	ND	R
13\$C5 13\$C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	BENZID BENZOA	0_850 6_100	ND ND	R R
13505	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	BCHIPY	0.250	LT	*
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN18	BKFANT	0.066	LT	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LN18	BZALC	0.190	LT	
135C5 135C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	CHRY CL6BZ	0.120 0.033	LT LT	
13SC5	RFIS*33	cso	26-aug-1991	0.5	UGG	LH18	CLGCP	6.200	LT	
13505	RF1S*33	CSO	26-aug-1991	0.5	UGG	LN18	CL6ET	0.150	LT	
13SC5	RFIS*33	czo	26-aug-1991	0.5	UGG	LN18	DBAHA	0.210	LT	_
138C5 138C5	RF1S*33 RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	DBHC DBZFUR	0.270 0.035	ND LT	R
13sc5	RF1S*33	cso	26-eug-1991	0.5	UGG	LM18	DEP	0.240	LT	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM18	DLORN	0.310	ND	R
13905	RF1S*33	CSO	26-aug-1991	0.5	UGG	LN18	DMP	0.170	LT	
13805 13805	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DHOP	0.061 0.190	LT LT	
13sc5	R#15*33	cso	26-aug-1991	0.5	UGG	LH18	ENDRN	0.450	MD	R
13SC5	RF15*33	CSO	26-aug-1991	0.5	UGG	LN18	ENDRNA	0.530	ND	R
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	ENDRNK	0.530	MD	R
138C5 138C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	lm18 lm18	ESFSO4 FANT	0.620 0.068	NO.	R
13sc5	RF15*33	CSO	26-aug-1991	0.5	UGG	LN18	FLRENE	0.033	LT LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LH18	GCLDAN	0.330	ND	R
13sc5	RFIS*33	CZO	26-aug-1991	0.5	UGG	LN18	HCBD	0.230	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	HPCL	0.130	ND	R
138C5 138C5	RF1S*33 RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	HPCLE HXADOE	0.330 0.468	MD	R S
13\$C5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM18	ICDPYR	0.290	LT	-
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	SOPHR	0.033	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	LIN	0.270	KD	R
138C5 138C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	MEXCLR NAP	0.330 0.037	ND LT	R
13\$C5	RF1S*33	ÇSO	26-aug-1991	0.5	UGG	LM18	KB	0.045	LT	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	LM18	NNDMEA	0.140	KD	R
13sc5	RF15*33	ÇŞO	26-aug-1991	0.5	UGG	LM18	HNDNPA	0.200	LT	
138C5 138C5	RF1\$*33 RF1\$*33	C20	26-sug-1991	0.5	UGG	LN18	NNDPA	0.190	LT	
13sc5	RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	PC8016 PC8221	1.400 1.400	NO ND	R R
	++		Jog 1//1					700		*

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13sc5	RF1S*33	cso	26-aug-1991	0.5	UGG	LN18	PCB232	1,400	ND	R
13865	RF1S*33	CSO	26-aug-1991	0.5	UGG	LH18	PC8242	1.400	ND	Ř
13505	RFIS*33	CSO	26-aug-1991	0.5	UCG	LM18	PCB248	2.000	ND	R
135C5 135C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	LN18 LX18	PCB254 PCB260	2.300 2.600	ND CN	R R
13SC5	RF15*33	CSO	26-aug-1991	0.5	UGG	LM18	PCP	1.300	LT	^
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	LN18	PHANTR	0.033	LT	
13SC5 13SC5	RFIS#33 RFIS#33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	PHENOL PPDDD	0.110 0.270	LT ND	R
13sc5	RFIS*33	ÇSO	26-aug-1991	0.5	UGG	LM18	PPDDE	0.310	ХD	Ŕ
13505	RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5	UGG	LM18	PPDDT	0.310	ND	R
13865 13865	RFIS*33 RFIS*33	CSO CSO	26-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	PYR TXPHEN	0.033 2.600	LT ND	R
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	LM18	UNK610	0.585		Š
13SC5 13SC5	RFIS*33 RFIS*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	ugg Ugg	316 312	AG AL	0.770 9030.000		
13505	RF15*33	CSO	26-aug-1991	0.5	UGG	JS16	BA	136.000		
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	1516	BE .	1.160		
138C5 138C5	RFIS*33 RFIS*33	CSO CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	1516 1516	8	1730,000 0,700	LT	
13SC5	RF1S*33	CSO	26-aug-1991	0.5	UGG	J\$16	ä	9.710	LI	
13805	RFIS*33	CSO	26-aug-1991	0.5	UGG	JS16	CR	22.300		
138C5 138C5	RF1S*33 RF1S*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	CU FE	12.900 15890.000		
13SC5	RF1S*33	cso	26-aug-1991	0.5	ŲGG	1\$16	ĸ	1380.000		
_13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGG	JS16	NG	2970.000		
	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGG UGG	JS16 ⁻ JS16	MM AN	535.000 237.000		
13SC5	RF1S*33	ÇSO	26-aug-1991	0.5	UGG	J\$16	NI.	13.300		
13505	RFIS*33	CSO	26-aug-1991	0.5	UGG	J\$16	PS	76.700		
13\$C5 138C5	RF1S*33 RFIS*33	CSO	26-eug-1991 26-eug-1991	0.5 0.5	ugg Ugg	JS16 JS16	SB TL	7.140 9.700	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGG	J\$16	٧	26.800		
13505	RFIS*33	CSO	26-aug-1991	0.5	UGG	JS16	ZN	167.000		
139C5 139C5	RFIS*33 RFIS*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGE UGL	J019 \$\$10	AS AG	0.568 4.600	LT	
13SC5	RFIS*33	CSO	26-aug-1991	0.5	UGL	SS10	BA	800,000		
13\$C5	RFIS*33	CSO	26-sug-1991	0.5	UGL	\$\$10	<b>D</b>	4.010	LT	
13\$C5 13\$C5	RF1\$*33 RF1\$*33	CSO	26-aug-1991 26-aug-1991	0.5 0.5	UGL	\$\$10 \$\$10	CR PS	6.020 18.600	LT LT	
13sc5	RFIS*33	CSO	26-aug-1991	0.5	UGL	\$801	HG	0.243	L,T	
138C5 138C5	RF1S*33 RF1S*33	C20	26-aug-1991 26-aug-1991	0.5 0.5	UGL UGL	SD22 SD21	AS SE	2.540 3.020	LT LT	
13\$C\$	RF15=34	ÇSO	26-aug-1991	5.0	UGG	JB01	HG	0.050	LT	
13\$C5	RFIS*34	cso	26-aug-1991	5.0	UGG	L¥12	135TNB	0.488	LT	
13805 13805	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LW12 LW12	13DNB 246TNT	0.496 0.456	LT LT	
13SCS	RFIS*34	cso	26-aug-1991	5.0	UGG	LW12	24DNT	0.424	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LW1Z	26DNT	0.524	LT	
13\$C5 13\$C5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	HPCX BK	0.666 2_410	ĻT LT	
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LWIZ	RDX	0.587	LT	
135C5	RF1S*34	CSO	26-eug-1991	5.0	UCG	LW12	TETRYL	0.731	LT	
139C5 138C5	RF1S*34 RF1S*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	JD15 LM19	SE 111TCE	0.250 0.004	LT LT	
13805	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	112TCE	0.005	LT	
13505	RFIS*34	CSO	26-eug-1991	5.0	UGG	LH19	11DCE	0.004	ĻŢ	
13\$C\$ 13\$C\$	RF15*34 RF15*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	110CLE 120CE	0.002 0.003	LT LT	
13SC5	RFIS*34	ÇŞO	26-aug-1991	5.0	UGG	LH19	120CLE	0.002	LT	
138 <b>C</b> 5 138C5	RFIS*34	CSO	26-aug-1991	5.0 5.0	UGG	LN19	12DCLP	0.003	LT	
13\$C5	RF15*34 RF15*34	CSO	26-aug-1991 26-aug-1991	5.0	UGG UGG	LH19 LH19	ACET	0.010 0.017	ND LT	R
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	ACROLN	0.100	ND	R
13805 13805	RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LM19	ACRYLO BRDCLM	0.100 0.003	ND	R
138C5	RFIS*34 RFIS*34	C20	26-aug-1991	5.0	UGG	LH19 LH19	C13DCP	0.003	LT LT	
13SCS	RFIS*34	CSO	26-sug-1991	5.0	UGG	LH19	CZAVE	0.003	LT	
13865 13865	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH19 LH19	C2H3CL C2H5CL	0.00 <del>6</del> 0.012	LT LT	
13SC5	RF15*34	CSO	26-aug-1991	5.0	UGG	LX19	CóHó	0.002	LT	
13865	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	CCL3F	0.007		
138C5 138C5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	CCL4 CH2CL2	0.007 0.012	LT LT	
تاددا	WL19_34	<b>-20</b>	20-849-177	3.0	000	CH 13	CHECCE	4.012	F1	

-----

<u>Site ID</u>	<u>Field ID</u>	<u>Media</u>	Date	Deoth	<u>Unîts</u>	Analytical <u>Method</u>	Analyte Abbry,	Vaiue	<u>Flag</u>	Internal Std. Code
13sc5	RFIS*34	cso	26-aug-1991	5.0	UGG	LN19	CH3BR	0.006	LT	
13505	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	CH3CL	0.009	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	CHBR3	0.007	L,T	
13sc5 13sc5	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH19	CHCL3	0.001	LT	_
13sc5	RF15*34	CSO	26-aug-1991	5.0	UGG	LN19 LH19	CL28Z CLC6N5	0.100 0.001	ND LT	R
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	CSS	0.004	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN19	DBRCLM	0.003	LT	
13sc5 13sc5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG	LH19	ETC6H5	0.002	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	ugg ugg	LN19 LN19	MECAN5 MEK	0.001 0.070	LT LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	MISK	0.027	ĹŤ	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	MNBK	0.032	LT	
13sc5 13sc5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LH19 LH19	STYR	0.003	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN19	T13DCP TCLEA	0.003 0.002	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	TCLEE	0.001	ĹΤ	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	TCLTFE	0.011		s
13sc5 13sc5	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	TRCLE UNKO73	0.003 0.036	LT	S
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH19	XYLEN	0.002	LT	3
13805	RF15*34	CSO	26-aug-1991	5.0	UGG	LH18	124TCB	0.040	ĻT	
13sc5	RFIS*34	CSC	26-aug-1991	5.0	UGG	LM18	12DCLB	0.110	LT	_
13sc5 13sc5	RF1S*34 RF1S*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	12DPH 13DCLB	0.140 0.130	MO LT	R
13sc5	RFIS*34	CSC	26-aug-1991	5.0	UGG	UN18	14DCLB	0.098	LT	
- 139CS	RFIS*34	C\$0	26-aug-1991	5.0	UGG	LN18-	245TCP	0.100	LT	
13505	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	246TCP	0.170	ĻŢ	
13sc5 13sc5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LN18 LN18	24DCLP 24DMPN	0.180 0.690	LT LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	240NP	1.200	LT	
13sc5	RF1S*34	CSO	26-aug-1991	5.0	UGG	UH18	24DNT	0.140	LT	
13505	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN18	26DNT	0.085	LT	
13sc5 13sc5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	2CLP 2CNAP	0.060 0.036	LT LT	
13sc5	RFIS*34	ÇSO	26-aug-1991	5.0	UGG	LN 18	2MNAP	0.049	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN18	2MP	0.029	LT	
13sc5 13sc5	RFIS*34 RFIS*34	CSO	26-aug-1991	5.0	UGG	-LN18	TI KYKS	0.062	LT	
13505	RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	2NP 33DC80	0.140 6.300	LT LT	
13\$05	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN18	3NANIL	0.450	ĹŤ	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	46DN2C	0.550	LT	
13sc5 13sc5	RF15*34 RF15*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	48RPPE 4CAN1L	0.033 0.810	LT LT	
13SC5	RF1S*34	CSO	26-aug-1991	5.0	UGG	LX18	4CL3C	0.095	LT	
13sc5	RF1S*34	CSO	26-aug-1991	5.0	UGG	LM18	4CLPPE	0.033	ĹŤ	
13805	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	4MP	0.240	LT	
13sc5 13sc5	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	4NAN IL 4NP	0.410 1.400	LT LT	
13sc5	RF15=34	CSO	26-aug-1991	5.0	UGG	LM18	ABHC	0.270	ND	R
13sc5	RFIS*34	cso	26-aug-1991	5.0	UGG	LH18	ACLDAN	0.330	ND	R
13\$C5 13\$C5	RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0	UGG	LN18	AENSLF	0.620	ND	R
13sc5	RF15*34 RF15*34	CSO	26-aug-1991	5.0 5.0	ugg ugg	1,418 1,418	ALDRN ANAPNE	0.330 0.036	ND LT	R
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	ANAPYL	0.033	ĻŤ	
13\$C5	RFIS*34	ÇSO	26-aug-1991	5.0	UGG	UH18	ANTRO	0.033	ŁT	
13sc5 13sc5	RFIS*34 RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	B2CEXM	0.059	ĻŢ	
13sc5	RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	62C1PE B2CLEE	0.200 0.033	LT LT	
13805	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	BZEHP	0.620	LT	
13sc5	RFIS*34	CSG	26-aug-1991	5.0	UGG	LH18	BAANTR	0.170	LT	
138C5 138C5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	BAPYR	0.250	LT	
13sc5	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	BRFANT BBHC	0.210 0.270	LT ND	2
13505	RF15*34	CSO	26-aug-1991	5.0	UGG	LX18	BBZP	0.170	ĹŤ	
13\$05	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	BENSLF	0.620	NO	R
138C5 138C5	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	BENZID BENZOA	0.850 6.100	ND ND	R R
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	BGHIPY	0.250	LT	π.
13505	RF15*34	CSC	26-aug-1991	5.0	UGG	LM18	BKFANT	0.066	LT	
13865	RF1S*34	CSO	26-aug-1991	5.0	UGG	LM18	SZALC	0.190	LT	
13805 13805	RF1\$*34 RF1\$*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	CHRY CL6BZ	0.120 0.033	LT LT	
13sc5	RF15*34	CSO	26-aug-1991	5.0	UGG	LM18	CLSCP	6.200	LT	
			-							

Site ID	Field ID	<u>Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method		Value	<u>Flag</u>	Internal Std. Code
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	CLAET	0.150	LT	
13SC5 13SC5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg	LM18	DBAKA	0.210	LT	_
138C5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18 LH18	DBHC DBZFUR	0.270 0.035	ND LT	R
13SC5	RF15*34	CSO	26-aug-1991	5.0	UGG	UH18	DEP	0.240	LŤ	
13\$C5	RFIS*34	CSO	26-eug-1991	5.0	UGG	LM18	DLDRN	0.310	HD	R
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	DHP	0.170	LT	
13SC5	RF15*34	CSO	26-aug-1991	5.0	UGG	LM18	DNBP	0.061	LT	
138C5 138C5	RF1S*34 RF1S*34	CSO	26-sug-1991 26-sug-1991	5.0 5.0	UGG UGG	LM18 LM18	DNOP ENDRN	0.190 0.450	LT	
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	ENDRNA	0.530	ND ND	R R
13505	RF15*34	CSO	26-aug-1991	5.0	UGG	UH18	ENDRNK	0.530	ND	Ř
13sc5	RF15*34	CSO	26-aug-1991	5.0	UGG	LN18	ESF\$04	0.620	ND	R
13905	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	FANT	0.068	ĻŢ	
138C5 138C5	RFIS*34 RFIS*34	CSO CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg	LN18 LN18	FLRENE GCLDAN	0.033	LT	
13\$C5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	HCBD	0.330 0.230	ND LT	R
3SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN18	HPCL	0.130	ND	R
3sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN18	HPCLE	0.330	ND	R
3505	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	ICDPYR	0.290	LT	
3505	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	ISOPHR	0.033	LT	_
38C5  38C5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg	LM18	LIN NEXCLR	0.270	ND	R
3SC5	RF15*34	CSO	26-aug-1991	5.0	UGG	LM18 LM18	NAP	0.330 0.037	ND LT	R
3505	RFIS*34	CSO	26-aug-1991	5.0	UGG	1418	NB	0.045	LT	
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	NNDMEA	0.140	NO	Ŕ
3SC5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LX18	NNONPA	0.200	LT	
13\$C5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LH18	NNDPA	0.190	LT	
39C\$	RF1S*34	CSO	26-aug-1991	5.0	UGG	LN18	PC8016	1.400	MD	R
39C5 39C5	RFIS*34 RFIS*34	C20	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PC8221 PC8232	1.400 1.400	ND	Ŕ
3sc5	RF15*34	CSO	26-aug-1991	5.0	UGG	LN18	PCB242	1.400	ND ND	R R
3sc5	RF15*34	CSO	26-aug-1991	5.0	UGG	LM18	PCBZ48	2.000	ND	Ř
3sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	LN18	PCB254	2.300	MD	R
3sc5	RF1S*34	CSO	26-aug-1991	5.0	UGG	LN18	PCB260	2.600	ЖD	R
13SC5	RFIS*34	CSC	26-aug-1991	5.0	UGG	LH18	PCP	1.300	LT	
38C5 38C5	RFIS*34 RFIS*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	PHANTR PHENOL	0.033	LT	
38C5	RF1S*34	CSC	26-aug-1991	5.0	UGG	LH18	PPODD	0.110 0.270	LT NED	R
3505	RFIS*34	CSO	26-aug-1991	5.0	UGG	LM18	PPODE	0.310	NO	Ř
3805	RFIS*34	CSO	26-sug-1991	5.0	UGG	LN18	PPDOT	0.310	NO	Ř
3sc5	RF15*34	CSO	26-sug-1991	5.0	ugg	U418	PYR	0.033	LT	
3scs	RF15*34	CSO	26-aug-1991	5.0	UGG	LH18	TXPHEN	2.600	ND	R
138C5 138C5	RF1S*34 RF1S*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	JS16	AG AL	0.871		
38C5	RFIS*34	eso	26-aug-1991	5.0	UGĞ	312L 312L	BA	12800.000 187.000		
3sc5	RF15*34	CSO	26-aug-1991	5.0	UGG	JS16	BE	1.950		
3\$C5	RFIS*34	CSQ	26-aug-1991	5.0	UGG	J\$16	CA	2920.000		
3\$C5	RFIS*34	CSO	26-aug-1991	5.0	UGG	J\$16	CD CD	0.700	LT	
3805	RFIS*34	CSO	26-aug-1991	5.0	UGG	JS16	CO	12.300		
138C5 138C5	RF15*34	CSO	26-aug-1991		UGG	JS16	CR	28.200		
38C5	RF1S*34 RF1S*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGG UGG	412L 412L	CU FE	12.500 21400.000		
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	JS16	K	1110.000		
13SC5	RF15*34	CSO	26-sug-1991	5.0	UGG	JS16	MG	4060,000		
13SC5	RFIS*34	CSO	26-aug-1991		UGG	JS16	MN	571.000		
13805	RF15*34	CSO	26-aug-1991	5.0	UGG	JS16	KA	263.000		
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGG	JS16	10	18.300		
138C5 138C5	RFIS*34 RFIS*34	CSO	26-aug-1991	5.0 5.0	ugg ugg	JS16	PB SB	17.400		
13SC5	RF15*34	CSO	26-aug-1991 26-aug-1991	5.0	UGG	1216 1216	TL	7.140 13.900	LT	
13SC5	RFIS*34	cso	26-aug-1991	5.0	UGG	J\$16	v	35.800		
13sc5	RFIS*34	CSO	26-aug-1991		UGG	JS16	ZN	93,100		
13sc5	RFIS*34	CSO	26-aug-1991		UGG	JD19	AS	0.979		
13sc5	RFIS*34	CSO	26-aug-1991		UGL	\$\$10	AG	4.600	LT	
13SC5	RFIS*34	CSO	26-aug-1991	5.0	UGL	\$\$10	BA	606.000		
13805 13805	RF1\$*34 RF1\$*34	CSO	26-aug-1991 26-aug-1991	5.0 5.0	UGL	\$\$10 \$\$10	CD CR	4.010	LT	
13sc5	RFIS*34	CSO	26-aug-1991	5.0	UGL	\$\$10 \$\$10	CK PB	6.020 18.600	LT LT	
13\$C5	RF1S*34	cso	26-eug-1991	5.0	UGL.	SB01	HG	0.243	ĻT	
13\$C5	RFIS*34	CSO	26-aug-1991	5.0	UGL	\$022	AS	2.540	LT	
13805	RFIS*34	C2O	26-aug-1991	5.0	UGL	<b>\$</b> 021	SE	3.020	LT	
13SC5	RF1S*35 RF1S*35	CSO	26-aug-1991	10.0	UGG	J801	HG	0.098		
13SC5		CSO	26-aug-1991	10.0	1100	LW12	135TNB	0.488	ĻΤ	

----

----

	Site ID	Field ID	Media	Date	Depth	Units	Analytical Method	Analyte Abbry	Value	Flac	Internal Std. Code
											3141 1000
	13505	RF1S*35	CSO	26-sug-1991	10.0	UGG	LB12	13DNB	0.496	LT	
	13505	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	L¥12	246TNT	0.456	LT	
	13SC5 13SC5	RF15-35	CSO	26-aug-1991	10.0	UGG UGG	L112	24DXT	0.424	LT	
	13805	RF1S*35	CSO	26-aug-1991	10.0	UGG	LW12 LW12	260NT HMX	0.524 0.666	LT LT	
	135C5	RFIS*35	CSO	26-aug-1991	10.0	UGG	L¥12	NB	2.410	LT	
	13505	RF15*35	CSO	26-aug-1991	10.0	UGG	LU12	RDX	0.587	ĽΤ	
	13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LW12	TETRYL	0.731	ĹŤ	
	13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	JD15	SE	0.250	LT	
	13sc5	RF15*35	CSO	26-aug-1991	10.6	UGG	LH19	111TCE	0.004	ĹŤ	
	13SC5	RF15*35	CSO	26-aug-1991	10.8	UGG	LH19	112TCE	0.005	LT	
	13805	RF15*35	CSC	26-sug-1991	10.0	UGG	LH19	11DCE	0.004	LT	
	13SC5	RF15*35	CSG	26-aug-1991	10.0	UCG	LH19	11DCLE	0.002	LT	
	13805	RF IS*35	CSO	26-aug-1991	10.0	UGG	LN19	120CE	0.003	LŤ	
	13\$05	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH19	12DCLE	0.00Z	LT	
	13505	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg ugg	UN19	120CLP 2CLEVE	0.003	LT	_
	13805 1380 <b>5</b>	RF15-35	C20	26-aug-1991	10.0	UGG	LM19 LM19	ACET	0.010 0.017	ND Lt	R
	135C5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM19	ACROLN	0.100	ND	R
	13505	RF15*35	cso	26-aug-1991	10.0	UGG	LN19	ACRYLO	0.100	MD	Ř
	13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LN19	BRDCLM	0.003	LT	•
	13905	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH19	C130CP	0.003	ίŤ	
	13sc5	RF15*35	CSO	26-sug-1991	10.0	UGG	LN19	C2AVE	0.003	LT	
	13505	RFIS*35	CSO	26-aug-1991	10.0	LIGG	LH19	C2H3CL	0.006	LT	
	13805	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM19	C2H5CL	0.012	LT	
_	13905	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH19	C6H6	0.002	LŤ	
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH19	CCL3F	0.006	LT	
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH19	CCL4	0.007	LT	
	13SC5	RF15*35	¢s0	26-aug-1991	10.0	UGG	LN19	CH2CL2	0.012	LT	
	13SC5	RF1S*35 RF1S*35	CSO	26-aug-1991	10.0	UGG	LH19	CH3BR	0.006	LT	
	13sc5 13sc5	RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LN19 LN19	CH3CL CHBR3	0.009 0.007	LT LT	
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM19	CHCL3	0.001	LT	
	13505	RF15*35	CSO	26-aug-1991	10.0	UGG	LN19	CL2BZ	0,100	NO	R
	13SC5	RF15*35	cso	26-aug-1991	10.0	UGG	LN19	CLC6H5	0.001	LT	
	13SC5	RF15*35	CSO	26-aug-1991	10.0	UGG	LH19	CS2	0.004	LŤ	
	13sc5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LN19	DBRCLM	0.003	LT	
	13SC5	RF15*35	CSO	26-aug-1991	10.0	UGG	UH19	ETC6H5	0.002	LT	
	13SC5	RFIS#35	CSO	26-aug-1991	10.0	UGG	LN19	MEC6H5	0.001	LT	
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN19	MEK	0.070	LT	
	13SCS	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN19	MIBK	0.027	LT	
	13sc5	RF1S*35	CSO	26-sug-1991	10.0	UGG	LN19	MMBK	0.032	LT	
	138C5 138C5	RFIS*35 RFIS*35	CSO	26-eug-1991	10.0 10.0	ugg ugg	LN19	STYR	0.003	LT	
	13SC5	RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0	UGG	LH19 LH19	T13DCP TCLEA	0.003	LT LT	
	13SC5	RF15*35	CSO	26-aug-1991	10.0	UGG	LH19	TCLEE	0.001	LT	
	13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN19	TCLTFE	0.009		s
	13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LT	•
	13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM19	XYLEN	0.002	ĹŤ	
	13SC5	RF1S*35	CSO	26-aug-1991	10.0	UCG	LN18	124TC8	0.040	LT	
	13SC5	RFIS*35	C20	26-aug-1991	10.0	UGG	LM18	120CL8	0.110	LT	
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	12DPH	0.140	ND	R
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	13DCLB	0.130	LT	
	13sc5	RFIS*35	CSO	26-aug-1991	10.0	ugg	LN18	14DCLB	0.098	LT	
	13\$C5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH18	245TCP	0.100	LT	
	13sc5	RF1S*35	C20	26-aug-1991	10.0	UGG	LN18	246TCP	0.170	LT	
	13sc5 13sc5	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LN18	24DCLP 24DMPN	0.180	LT	
	13\$C5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN18 LN18	240MPM 240MP	0.690 1.200	LT LT	
	13sc5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LX18	24DNY	0.140	LT	
	13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN18	26DNT	0.085	LT	
	13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	2CLP	0.060	LŤ	
	13905	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	2CXAP	0.036	ĻŤ	
	13SC5	RF15*35	CSO	26-aug-1991	10.0	UGG	LN18	ZHKAP	0.049	ίŤ	
	13sc5	RFIS*35	ÇSO	26-aug-1991	10.0	UGG	LM18	2MP	0.029	LT	
	13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	ZNANIL	0.062	LŤ	
	13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH18	2NP	0.140	LT	
	13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LM18	330C80	6.300	LT	
	13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LH18	3MANIL	0.450	LT	
	13sc5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH18	460N2C	0.550	LT	
	13805	RF1S*35	CSO	26-aug-1991	10.0	UGG	LM18	4BRPPE	0.033	ĻŢ	
	13SC5	RFIS*35	CSO	26-eug-1991	10.0	UGG	LX18	4CANIL	0.810	LT	
	13sc5 13sc5	RF15*35 RF15*35	CSO	26-aug-1991 26-aug-1991	10.0	UGG	LM18	4CL3C 4CLPPE	0.095	LT	
	تبادد،	¥L 19_33	LOC	20-808-133]	10.0	UGG	LN18	+LLPPE	0.033	LT	

Site ID	Field ID	<u>Media</u>	Date	Deoth	<u>Units</u>	Analytical Method	Analyte Abbry		Flag	Internal Std. Code
								سماد کارکست	-134	2341 3334
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	440	0.240	LT	
13805	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	4NANIL	0.410	LŤ	
13SC5 13SC5	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	ANP ABHC	1.400	LT	
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LA18	ACLDAN	0.270 0.330	ND ND	R R
13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	AENSLF	0.620	NO	R
13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN18	ALDRN	0.330	ND	Ř
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LM18	ANAPNE	0.036	LT	
13\$¢\$	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH18	ANAPYL	0.033	LT	
13sc5 13sc5	RF1S*35 RF1S*35	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LH18 LH18	ANTRC B2CEXM	0.033 0.059	LT LT	
13SC5	RF1S*35	CZO	26-aug-1991	10.0	UGG	LHIS	BZCIPE	0.200	LT	
13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	82CLEE	0.033	LT	
138C5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LN18	BZEHP	0.620	LT	
13805	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	BAANTR	0.170	LT	
138C5 138C5	RFIS*35 RFIS*35	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LM18 LM18	BAPYR	0.250	LT	
13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LX18	BBFANT BBHC	0.210 0.270	LT ND	R
13\$05	RF1S*35	CSO	26-eug-1991	10.0	UGG	LM18	BBZP	0.270	LT	ĸ
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	BENSLF	0.620	ND	R
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LM18	BENZID	0.850	ND	R
13SCS	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH18	BENZOA	6.100	ND	R
13SCS	RFIS*35	CSO	26-aug-1991	10.0 10.0	UGG	UN18	BGHIPY	0.250	LŤ	
138C5 138C5	RFIS*35 RFIS*35	CSO CSO	26-aug-1991 26-aug-1991	10.0	UGG	LM18 LM18	BKFANT BZALC	0.066 0.190	LT LT	
_13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LM18	CHRY	0.120	LT	
13505	RF15*35	ÇSO	26-aug-1991	10.0	UGG	LM18	CL68Z	0.033	LT	
13865	RF1S*35	C\$0	Z6-aug-1991	10.0	UGG	LH18	CL6CP	6.200	LT	
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LH18	CL6ET	0.150	LT	
13805	RF1S*35	CSO	26-aug-1991	10.0	UGG	LX18	DBAHA	0.210	LT	_
138C5 138C5	RF1S*35 RF1S*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LN18 LN18	DBHC DBZFUR	0.270 0.035	ND LT	R
13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	DEP	0.240	LT	
13sc5	RFIS*35	CSO	26-eug-1991	10.0	UGG	LM18	DLDRN	0.310	MD	R
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN18	DMP	0.170	ĻT	-
13SC5	RFIS*35	cso	26-aug-1991	10.0	UGG	LN18	DNBP	0.061	LT	
13505	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	DNOP	0.190	LT	_
13865 13865	RF1S*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	ENDRN ENDRNA	0.450 0.530	ND ND	R
13\$C5	RF15*35	CSO	26-aug-1991	10.0	UGG	LM18	ENDRIK	0.530	ND:	R R
13\$C5	RFIS*35	cso	26-aug-1991	10.0	UGG	LM18	ESFS04	0.620	NO	R
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	FANT	0.068	LT	••
13SC5	RF15*35	czo	26-aug-1991	10.0	UGG	LM18	FLRENE	0.033	LT	
13\$C5 13\$C5	RFIS*35 RFIS*35	CSO	26-sug-1991 26-sug-1991	10.0 10.0	UGG	LHIB	GCLDAN HCBD	0.330	ND	R
13sc5	RFIS*35	CSO	26-aug-1991	10.0	ugg Ugg	LH18 LH18	HPCL	0.230 0.130	L? ND	R
13505	RF1\$*35	ÇSO	26-aug-1991	10.0	UGG	LM18	HPCLE	0.330	ND ND	R
13SC5	RFIS#35	CSO	26-aug-1991	10.0	UGG	LH18	I COPYR	0.290	ĹŤ	•
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	ISOPHR	0.033	LT	
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	LM18	LIM	0.270	ND	R
13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	MD	R
13505 13505	RF1S*35 RF1S*35	CSO CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LH18 LH18	nr Nr	0.037 0.045	LT LT	
13SC5	RF15*35	CSO	26-aug-1991	10.0	UGG	LX18	NADMEA	0.140	MO	R
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	NNDHPA	0.200	LT	•
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	NNDPA	0.190	LT	
13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	PCB016	1.400	ND	R
138c5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN18	PC8221	1.400	MD	R
13805 13805	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG	LH18 LH18	PCB232 PCB242	1.400 1.400	NED NED	R R
13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LM18	PC8248	2.000	ND	Ř
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LH18	PCB254	2.300	MD	Ř
13SCS	RF1\$*35	CSO	26-aug-1991	10.0	UGG	LH18	PCB260	2.600	ND	R
13805	RFIS*35	CSO	26-aug-1991	10.0	UGG	LN18	PCP	1.300	LT	
13905	RF1S*35	CSO	26-aug-1991	10.0	UGG	LM18	PHANTR	0.033	ĻŢ	
13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	PHENOL	0.110	LŤ	_
13SC5 13SC5	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg Ugg	LH18 LH18	PPDDD PPDDE	0.270 0.310	ND ND	R R
139C5	RFIS*35	CSO	26-aug-1991	10.0	UGG	LM18	PPODT	0.310	ND	K R
13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LHIS	PYR	0.033	LT	R
13sc5	RF15*35	CSO	26-aug-1991	10.0	UGG	LH18	TXPHEN	2.600	MD	R
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	JS16	AG	0.885		
13805	RFIS*35	CSO	26-aug-1991	10.0	UGG	J\$16	AL	11500.000		
13865	RFIS*35	ÇSO	26-aug-1991	10.0	UGG	J\$16	BA	172.000		

Site 10	Field ID	<u> Hedia</u>	<u>Date</u>	Depth_	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	Flag	Internal Std. Code
13sc5	RF15=35	cso	26-aug-1991	10.0	UGG	J\$16	8E	1,900		
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	JS16	CA	2290.000		
13SC5	RF1S*35	CSO	26-aug-1991	10.0	UGG	J\$16	CO	0.700	LT	
13505	RF15*35	cso	26-aug-1991	10.0	UGG	JS16	<b>co</b>	12.600		
13905 13905	RF1S*35 RF1S*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	ugg	7216 7216	CR CU	25.500		
13805	RF15*35	CZO	26-aug-1991	10.0	UGG	JS16	FE	10.900 18700.000		
13SC5	RF1S*35	C\$O	26-aug-1991	10.0	UGG	JS16	K	1080.000		
13\$C5	RF1S*35	cso	26-aug-1991	10.0	UGG	JS16	MG	3580.000		
13SCS	RFIS*35	CSO	26-aug-1991	10.0	UGG	J\$16	MN	477.000		
138C5 138C5	RF1S*35 RF1S*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	NA NI	313.000 15.800		
13SC5	RFIS*35	CSO	26-aug-1991	10.0	UGG	JS16	PB	14.900		
13905	RF1S*35	C\$0	26-aug-1991	10.0	UCG	J\$16	28	7-140	LŤ	
13805	RF15*35	CSO	26-aug-1991	10.0	UGG	J\$16	TL	15.800		
135C5 135C5	RFIS*35 RFIS*35	C20	26-aug-1991 26-aug-1991	10.0 10.0	UGG UGG	J\$16 1514	V ZN	31.300		
13\$C5	RFIS*35	CSO	26-aug-1991	10.0	UGG	1516 1019	AS	82.300 0.669		
13SC5	RFIS*35	cso	26-aug-1991	10.0	UGL	\$\$10	AG	4.600	LT	
13SC5	RF15*35	cso	26-aug-1991	10.0	UGL	\$\$10	BA	673.000		
13\$C\$	RFIS*35	CSO	26-aug-1991	10.0	UGL	SS10	CD .	4-010	LT	
138C5 138C <b>5</b>	RFIS*35 RFIS*35	CSO	26-aug-1991 26-aug-1991	10.0 10.0	UGL	\$\$10 \$\$10	CR PB	6.029 18.600	LT LT	
13SC5	RF15*35	CSO	26-aug-1991	10.0	UGL	\$801	HC	0.243	LT	
13SC5	RFIS*35	Ċ20	26-aug-1991	10.0	UGL	SD22	AS	2.540	ĹΫ	
13sc5	RFIS*35	CSO	26-aug-1991	10.0	UGL	SD21	SE	3.020	ĻT	
135C6	VFSL*104	CSO	09-mar-1992	0.5	UGL	UH14	245TP	0.170	LT	
135C6 135C6	VFSL*104 VFSL*104	CSO CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UH14 UH13	24D CLDAN	0.802 0.265	ĻT LT	
13SC6	VFSL *104	CSO	09-mar-1992	0.5	UGL	UH13	ENDRN	0.024	ĻŢ	
13506	VFSL*104	CSO	09-mar-1992	0.5	UGL	UH13	HPCL	0.042	LT	
13sc6	VFSL*104	cso	09-mar-1992	0.5	UGL	UK13	LIN	0.051	LT	
135C6 135C6	VFSL*104 VFSL*104	CSO	09-mar-1992	0.5	UGL	UH13	MEXCLR	0.057	LT	
13\$C6	VFSL*104	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	UH13 UH20	TXPHEN 11DCE	1.350 0.500	LT LT	
13506	VFSL*104	cso	09-mar-1992	0.5	UGL	UM20	12DCLE	0.500	ĻŢ	
13866	VFSL*104	CSO	09-mar-1992	0.5	UGL	UH20	C2H3CL	2.600	ĹŤ	
13506	VFSL*104	CSO	09-mar-1992	0.5	UGL.	UNZO	C6H6	0.500	LT	
13\$C6 13\$C6	VFSL*104 VFSL*104	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UM20 UM20	CCL4 CHCL3	0.580 0.564	LT	
13806	VFSL*104	CSO	09-mar-1992	0.5	UGL	UH20	CLC6H5	0.500	LT	
13566	VFSL*104	CSO	09-mar-1992	0.5	UGL	UM20	KEK	6,400	LT	
13866	VFSL*104	cso	09-mar-1992	0.5	UGL	UMŽ0	TCLEE	1.600	LT	
138C6 138C <del>6</del>	VFSL*104 VFSL*104	CSO	09-mar-1992 09-mar-1992	0.5 0.5	ugl ugl	U9120	TRCLE 14DCLB	0.500	LT	
13SC6	VFSL*104	CSO	09-mar-1992	0.5	UGL	UN18 UN18	245TCP	1.700 5.200	LT LT	
13866	VFSL*104	CSO	09-mar-1992	0.5	UGL	UM18	246TCP	4.200	LT	
13506	VFSL*104	CSO	09-mar-1992	0.5	UGL	UN18	24DHT	4.500	LT	
135C6 135C6	VFSL*104 VFSL*104	CSO	09-mar-1992	0.5	UGL	UM18	2NP	3.900	LT	_
13sc6	VFSL*104	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	UN18 UN18	314P 414P	3.900 0.520	ND LT	R
13806	VFSL*104	cso	09-mar-1992	0.5	UGL	UN18	CL6BZ	1.600	ĹŤ	
13506	VFSL*104	CSO	09-mar-1992	0,5	UGL	UM18	CLSET	1.500	LT	
13806	VFSL*104	CSO	09-mar-1992	0,5	UGL	UM18	HCBD	3.400	LT	
135C6 135C6	VFSL*104 VFSL*104	CSO CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UM18	NB PCP	0.500	LŢ	
13\$C6	VFSL*104	CSO	09-mar-1992	0.5	UGL	UN18 UN18	PYRDIN	18.000 5.200	LT ND	R
13SC6	VFSL*104	ÇSO	09-mar-1992	0.5	UGL	UH18	UNK526	9.000		ŝ
13SC6	RFIS*36	¢\$0	27-aug-1991	0.5	UGG	JB01	HG	0.050	LT	
138C6 138C6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LW12	135TNB	0.488	LŤ	
13506	RF1S*36 RF1S*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LW12 LW12	13DNB 246TNT	0.496 0.918	ĻŤ	С
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	•
13SC6	RF1\$*36	CSO	27-aug-1991	0.5	UGG	LW12	26DNT	0.524	LT	
13906	RF1\$*36	CSO	27-aug-1991	0.5	UGG	LW12	HMX	0.666	ĻΤ	
135C6 135C6	RFIS*36	CSO	27-aug-1991	0.5	UGG	L¥12	MB	2.410	LT	
138C6	RF15*36 RF15*36	CSO CSO	27-aug-1991 27-aug-1991	0,5 0.5	UGG UGG	LW12 LW12	RDX TETRYL	0.587 0.731	LT LT	
13506	RF15*36	CSO	27-aug-1991	0.5	UGG	J015	SE	0.250	LT	
13506	RFIS#36	CS0	27-aug-1991	0.5	UGG	1M19	111TCE	0.004	LT	
135C6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN19	112TCE	0.005	LT	
138C6 138C6	RF1S*36 RF1S*36	CSO	27-aug-1991	0.5	UGG	LN19	11DCE	0.004	LT	
13SC6	RFIS*36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LM19 LM19	110 CLE 120 CE	0.002	LT LT	
		~~~	~: Jug (77)	4.3		<b>₩717</b>		0.003	6 I	

Site ID	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13906	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH19	12DCLE	0.002	LŤ	
13866	RF1\$*36	CSO	27-aug-1991	0.5	UGG	LH19	120CLP	0.003	LŤ	
13\$C6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	SCLEAE	0.010	ND	R
13866	RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LH19	ACET	0.017	LT	_
13SC6 13SC6	RFIS*36 RFIS*36	CSO	27-sug-1991	0.5	UGG	LH19 LH19	ACROLN ACRYLO	0.100 0.100	ND DN	R R
13SC6	RFIS*36	cso	27-sug-1991	0.5	UGG	LK19	BRDCLM	0.003	LT	K
13506	RF15*36	CSO	27-aug-1991	0.5	UGG	LH19	C13DCP	0.003	ĻŤ	
13SC6	RFIS*36	CSO	27-sug-1991	0.5 0.5	UCG	LN19	CZAVE	0.003	LT	
13866 13866	RF15*36 RF15*36	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LM19 LM19	C2H3CL C2H5CL	0.006 0.012	LT LT	
13SC6	RFIS*36	cso	27-aug-1991	0.5	UGG	LH19	C6H6	0.002	LT	
13506	RFI\$*36	CSO	27-aug-1991	0.5	UGG	LH19	CCL3F	0.006	LT	
13906	RF1S*36	CSO	27-aug-1991	0.5	UGG	LN19	CCL4	0.007	LT	
138C6 138C6	RFIS*36 RFIS*36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	CH2CL2 CH3BR	0.012 0.006	LT LT	
13866	RFIS*36	cso	27-aug-1991	0.5	UGG	LN19	CH3CL	0.009	ĻŢ	
13\$C6	RF15*36	CSO	27-aug-1991	0.5	UGG	LH19	CHBR3	0.007	LT	
13866	RF1S*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LH19	CHCL3 CL2BZ	0.001	LT	_
13866 13866	RFIS*36 RFIS*36	CSO	27-aug-1991	0.5	UGG	LN19 LN19	CLC6H5	0.100 0.001	ND LT	R
13866	RF15*36	cso	27-aug-1991	0.5	UGG	LH19	CS2	0.004	LT	
13566	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	DBRCLM	0.003	LŤ	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	ETC6H5	0.002	LT	
13SC6 13SC6	RFIS*36 RFIS*36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LH19 LH19	MEC6H5	0.001 0.070	LŤ LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	HIBK	0.027	LT	
13866	RF1\$*36	CSO	27-aug-1991	0.5	UGG	LX19	MNBK	0.032	LT	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN19	STYR	0.003	LT	
135C6 135C6	RF1S*36 RF1S*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LH19 LH19	T13DCP TCLEA	0.003 0.002	LT	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	TCLEE	9.001	LT LT	
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	TRCLE	0.003	ĹŤ	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH19	XYLEN	0.002	ĻT	
13SC6 13SC6	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	124TCB	0.200	LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LK18	120CLB 120PH	0.550 0.500	LT CN	R
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	13DCLB	0.650	ĻT	•
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN18	14DCLB	0.490	LT	
13SC6 13SC6	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	245TCP 246TCP	0.500 0.850	LT LT	
13SC6	RF15*36	CZO	27-aug-1991	0.5	UGG	LH18	24DCLP	0.900	LT	
13566	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	24DMPM	3.450	LT	
13566	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	24DNP	6.000	LT	
138C6 138C6	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LH18 LH18	24DNT 26DNT	4,600 0,425	LT	
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	2CLP	0.300	נז	
13566	RFIS*36	CSO	27-sug-1991	0.5	UGG	LH18	2CNAP	0.180	ĹŤ	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	2MNAP	0.245	LT	
13866 13866	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	2MP 2NANTL	0.145 0.310	LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	ZNP	0.700	ĻT LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN18	330CBD	31.500	LT	
13SC6	RF15*36	CSO	27-aug-1991	0.5	UGG	LH18	3MANIL	2.250	LT	
138C6 138C6	RFIS*36 RFIS*36	CSO	27-sug-1991 27-sug-1991	0.5 0.5	UGG	LN18 LN18	46DNZC 48RPPE	2.750 0.165	LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	4CANIL	4.050	LT LT	
13966	RF15*36	CSO	27-aug-1991	0.5	UGG	LH18	4CL3C	0.475	LT	
13SC6	RFIS=36	CSO	27-aug-1991	0.5	UGG	LH18	4CLPPE	0.165	LŢ	
135C6 135C6	RFIS*36 RFIS*36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	ln18 ln18	4MP 4MANIL	1.200 2.050	LŤ	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LM18	4NP	7.000	LT LT	
13SC6	RF15*36	CSO	27-aug-1991	0.5	UGG	LH18	ABHC	1.500	ND	R
13\$C6	RF15*36	CSO	27-aug-1991	0.5	UGG	LH18	ACLDAN	1.500	MD.	R
13806 13806	RF15*36	CSO	27-aug-1991	0.5 0.5	UGG UGG	LK18	AENSLF	3.000	MD	Ŕ
13SC6	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LH18 LH18	ALDRN ANAPNE	1.500 0.180	ND LT	R
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	ANAPYL	0.165	ĹŤ	
13506	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH18	ANTRO	0_165	LT	
13806 13806	RF1S*36	CSO	27-aug-1991	0.5	UGG	LM18	BZCEXXI	0.295	LT	
13866	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	B2CIPE B2CLEE	1.000 0.165	LT LT	
13866	RF15*36	C2O	27-aug-1991	0.5	UGG	LH18	BZEHP	3.100	LT	
13 5C 6	RFIS*36	CSQ	27-aug-1991	0.5	nce	LH18	BAANTR	0.850	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	internal <u>Std. Code</u>
13SC6	RFIS*36	cso	27-aug-1991	0.5	UGG	LM18	BAPYR	1.250	LT	
13866	RF I \$*36	CSO	27-aug-1991	0.5	UGG	LH18	BBFANT	1.050	LT	
13sc6	RF15*36	CSO	27-aug-1991	0.5	UGG	LH18	BBKC	1.500	ND	R
13506	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH18	8BZP	0.850	LT	
138C6 138C6	RF15*36	CSO	27-aug-1991	0.5	UGG	LM18	8ENSLF	3.000	ND	R
138C6	RFIS*36 RFIS*36	CSO CSO	27-aug-1991 27-aug-1991	0.5	UGG	LN18	BENZID	4.500	ND	R
13SC6	RF15*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LN18	BENZCA	30.000	ND	R
13SC6	RF15*36	CSO	27-aug-1991	0.5	UGG	LM18 LM18	BGHIPY BKFANT	1.250 0.330	LT LT	
13866	RFIS*36	CZO	27-aug-1991	0.5	UGG	LH18	BZALC	0.950	LT	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	CHRY	0.600	LT	
13SC6	RFIS*36	CSC	27-aug-1991	0.5	UGG	LN18	CL6BZ	0.165	ĹŤ	
13sc6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LM18	CL6CP	31.000	LŤ	
13566	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH18	CL6ET	0.750	LT	
13sc6	RFIS*36	C20	27-aug-1991	0.5	UGG	LH18	DBAHA	1.050	ĻΤ	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LM18	DBHC	1.500	ND	R
13sc6	RF1S*36	CSO	27-aug-1991	0.5	UGG	LM18	DBZFUR	0.175	LT	
135C6 135C6	RF1S*36 RF1S*36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LN18	DEP	2.900	***	_
13SC6	RFIS*36	CSO	27-sug-1991	0.5	UGG	LM18 LM18	DLDRN DMP	1.500 0.850	ND	R
13806	RF1S*36	CSO	27-aug-1991	0.5	UGG	LNIS	DNBP	5.180	LT	
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	LM18	DNOP	0.950	LT	
13866	RF15*36	CSO	27-aug-1991	0.5	UGG	LN18	ENDRN	2.500	ND	R
13866	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH18	ENDRNA	2.500	MD	Ř
13866	RF1S*36	CSO	27-aug-1991	0.5	UGG	LN18	ENDRNK	2.500	ND	R
_13sc6	Rf15*36	CSO	27-aug-1991	0.5	UGG	LH18	ESFSO4	3,000	ND	R
13806	RFIS*36	C20	27-aug-1991	0.5	UGG	LH18	FANT	0.340	LT	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN18	FLRENE	0.165	LT	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LX18	GCLDAN	1.500	MD	R
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN18	HC8D	1.150	LT	
138C6 138C6	RF1S*36	CSO	27-aug-1991	0.5	UGG	LN18	HPCL	0.500	ND	R
13506	RF1S*36 RF1S*36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LH18	HPCLE	1.500	KD	R
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LM18 LM18	ICDPYR ISOPHR	1.450 0.165	LT LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN18	LIM	1.500	ND	R
13SC6	RFIS*36	csc	27-aug-1991	0.5	UGG	LM18	MEXCLR	1.500	ND	R
13806	RFIS*36	CSO	27-aug-1991	0.5	UGG	LN18	NAP	0.185	LT	•
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	NB	0.225	LŤ	
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	NKDMEA	0.500	KD	R
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	ANDNPA	1.000	LT	
13\$06	RFIS*36	cso	27-eug-1991	0.5	UGG	LM18	NNDPA	0.950	LT	
13506	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH18	PCB016	5.000	ND	R
13806 13806	RFIS*36 RFIS*36	CSO	27-sug-1991	0.5	UGG	LK18	PC8221	5.000	ND	R
13806	RF15-36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	PCB232 PCB242	5.000 5.000	ND .	R
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	LM18	PCB248	10.000	KD KD	R R
13866	RF15*36	CSO	27-aug-1991	0.5	UGG	LM18	PCB254	18.000	ND	R R
13906	RF15*36	cso	27-aug-1991	0.5	UGG	LM18	PCB260	15.000	ND ND	Ř
13906	RF15*36	CSO	27-aug-1991	0.5	UGG	LM18	PCP	6.500	LT	•
13506	RF15*36	CSO	27-aug-1991	0.5	UGG	LM18	PHANTR	0.165	ĹŤ	
13866	RF1S*36	CSO	27-aug-1991	0.5	UGG	LM18	PHENOL	0.550	LT	
13806	RF1S*36	CSO	27-aug-1991	0.5	UGG	LH18	PPDDD	1.500	MD	R
13\$06	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	PPODE	1.500	MD	R
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	LH18	PPDDT	1.500	ND	R
13866	RFIS*36	CSC	27-sug-1991	0.5	UGG	LH18	PYR	0.165	LT	_
138 C6 138 C6	RF1\$*36 RF1\$*36	CSO	27-aug-1991	0.5	UGG	LH18	TXPHEN	15.000	ND	R
13\$C6	RF15-36	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	7219 7219	AG AL	0.5 89 2870.000	LŤ	
13SC6	RF15*36	ÇSO	27-aug-1991	0.5	UGG	JS16	BA	36.800		
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	JS16	BE	0.500	LT	
13906	RFIS*36	CSO	27-aug-1991	0.5	UGG	JS16	CÃ	5280.000		
13506	RFIS*36	CSO	27-eug-1991	0.5	UGG	JS16	CD CD	0.700	LT	
13\$C6	RFI\$*36	CSO	27-aug-1991	0.5	UGG	JS16	œ	2.640		
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	J\$16	CR	8.680		
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UĞG	J\$16	CU .	71,300		
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	J\$16	FE	6080.000		
13866	RFIS*36	CSO	27-aug-1991	0.5	UGG	J\$16	K	693.000		
13506	RF15*36	CSO	27-aug-1991	0.5	UGG	J216	MG	2750.000		
138C6 138C6	RFIS*36	CSO	27-aug-1991	0.5	UGG	J\$16	MN	126.000		
13SC6	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	1516 1514	NA BT	228.000 3.500		
138C6	RF15*36	CSO	27-aug-1991	0.5	UGG	1219 1219	NI PB	293.000		
13SC6	RFIS*36	CSO	27-aug-1991	0.5	UGG	J\$16	SB	7.140	LT	
13SC6	RFIS*36	CSO	27-aug-1991	0.5		J\$16	TL	6.620	LT	
				~ ~ ~ ~						

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u> Value</u>	<u>Flag</u>	Internal Std. Code
13506	RF1S*36	CSO	27-aug-1991	0.5	UGG	JS16	٧	11.600		
13506	RFIS*36	CSO	27-aug-1991	0.5	UGG	JS16	ZN	61.900		
13506	RFIS*36	CSO	27-eug-1991	0.5	UGG	JD19	AS	0,423		
13506	RFIS*36	C\$0	27-aug-1991	0.5	UGL	\$\$10	AG	4.600	LT	
138C6 138C6	RFIS*36 RFIS*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGL UGL	\$\$10 \$\$10	BA	601.000		
13SC6	RF15-36	CSO	27-aug-1991	0.5	UGL	\$\$10 \$\$10	CD CR	4.010 6.020	LT LT	
13SC6	RF15*36	CSO	27-aug-1991	0.5	UGL	\$\$10	PB	2690.000		
13866	RF15*36	CSO	27-aug-1991	0.5	UGL	SB01	HG	0.243	LT	
13SC6 13SC6	RF15*36 RF15*36	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGL	SD22 SD21	AS SE	2.540 3.020	LT LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	J801	ae HG	0.050	LT	
13806	RFIS*37	CSO	27-aug-1991	5.0	UGG	LW1Z	135TNB	0.488	ĻŢ	
13sc6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LW12	13DN8	0.496	LT	
138C6 138C6	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	246TNT 24DNT	0.456 0.424	LT LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LW12	26DNT	0.524	LŤ	
13sc6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LW12	HMX	0.666	LT	
13806	RFIS*37	CSO	27-aug-1991	5.0	UGG	LW1Z	N9	2.410	LT	
13906 13906	RFIS*37 RFIS*37	C20	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LW12 LW12	RDX TETRYL	0.587 0.731	LT LT	
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	JD 15	SE	0.250	LT	
13866	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH19	1117CE	0.004	ĻT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH19	112TCE	0.005	LT	
13906 13906 -	RFIS*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LM19 LM19	11DCE 11DCLE	0.004 0.002	LT LT	
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LM19	12DCE	0.003	LT	
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LN19	1ZDCLE	0.002	LT	
13906	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH19	120 CLP	0.003	LT	
135C6 135C6	RFIS*37	CSC	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LH19 LH19	SCLEVE ACET	0.010	ND 1.T	R
13SC6	RFIS*37 RFIS*37	CSO	27-aug-1991	5.0	UGG	LN19	ACROLN	0.017 0.100	LT ND	R
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LH19	ACRYLO	0.100	KD	Ř
13SC6	RFIS*37	CSO	27-aug-1991	5.0	LIGG	LH19	BRDCLM	0.003	LT	
13SC6 13SC6	RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg Ugg	LN19 LN19	C13DCP	0.003	LT	
13SC6	RFIS*37 RFIS*37	CSO	27-aug-1991	5.0	UGG	LN19	CZAVE CZH3CL	0.003 0.006	LT LT	
13SC6	RFIS*37	CSC	27-aug-1991	5.0	UGG	UN19	C2H5CL	0.012	ĹŤ	
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LH19	C6H6	0.002	LT	
13806	RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LN19	CCL3F	0.006	ĻŢ	
138C6 138C6	RF1S*37 RF1S*37	CSO	27-aug-1991	5.0	ugg ugg	LH19 LH19	CCL4 CH2CL2	0.007 0.012	LT LT	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH19	CH3BR	0.006	ĹŤ	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH19	CH3CL	0.009	LŢ	
138C6 138C6	RFIS*37 RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LN19 LN19	CHCL3	0.007 0.001	LT LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN19	CL2BZ	0.100	MD	R
13SC6	RF15*37	CSO	27-aug-1991	5.0		LN19	CLC6H5	0.001	LT	^
13SC6	RF1S*37	CSO	27-aug-1991	5.0	UGG	LK19	C25	0.004	LT	
13\$C6 13\$C6	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	DBRCLM ETC6N5	0.003 0.002	LT	
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LH19	MECSH5	0.002	LT LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH19	MEK	0.070	LT	
13506	RFIS*37	cso	27-aug-1991	5.0	UGG	LN19	MIBK	0.027	LT	
138C6 138C6	RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	MNBK STYR	0.032 0.003	LT	
138C6	RFIS*37 RFIS*37	CSO	27-aug-1991	5.0	UGG	LN19	T13DCP	0.003	LT LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0		LH19	TCLEA	0.002	LT	
13SC6	RF1S*37	CSO	27-aug-1991	5.0	UGG	LN19	TCLEE	0.001	LT	
138C6 138C6	RFIS*37 RFIS*37	C\$0	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LM19 LM19	TRCLE XYLEN	0.003 0.002	LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0		LM18	124TCB	0.040	LT LT	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	12DCLB	0.110	ĹŤ	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	120PH	0.140	MD	R
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	130CLB	0.130	LT	
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	14DCL\$ 245TCP	0.098 0.100	ĻT LT	
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LN18	2451CP	0.170	LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	24DCLP	0.180	LT	
13SC6	RFIS*37	CSO	27-aug-1991		UGG	LM18	240MPN	0.690	LT	
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	24DNP 24DNT	1.200 0.140	LT LT	
13sc6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	260NT	0.085	LT	
13506	RFIST37	CSO	27-sug-1991	5.0	UGG	UH18	2CLP	0.060	ĹŤ	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	ZCNAP	0.036	LT	
13506	RFIS*37	cso	27-aug-1991	5.0	UGG	LM18	2MNAP	0.049	LT	
13506	RFIS*37	C\$O	27-aug-1991	5.0	UGG	LM18	2NP	0.029	LT	
13\$C6 13\$C6	RFIS*37 RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LX18	ZNANIL	0.062	LT	
13866	RF15*37	CSO	27-aug-1991	5.0	ugg	LM18 LM18	ZXP 33DCBD	0.140 6.300	LT LT	
13506	RF15*37	CSO	27-aug-1991	5.0	UGG	LH18	3MANIL	0.450	ĹŤ	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LX18	46DN2C	0.550	LT	
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	1M18 1M18	48RPPE 4ÇANIL	0.033 0.810	LT LT	
13506	RF15*37	CSO	27-aug-1991	5.0	UGG	LM18	4CL3C	0,095	LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	4CLPPE	0.033	LT	
13 5C6 13 5C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	4MP 4MANIL	0.240 0.410	LT	
13SC6	RF15*37	CZO	27-aug-1991	5.0	UGG	U418	4NP	1,400	LT LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	ABHC	0.270	ND	R
13\$06	RF15*37	CSO	27-aug-1991	5.0	UGG	LN18	ACLDAN	0.330	MD	R
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	1814.j 14.j	AENSLF ALDRN	0.620 0.330	ND ND	R R
13866	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	ANAPNE	0.036	LT	^
13sc6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN18	ANAPYL	0.033	LT	
13866 13866	RFIS*37 RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	ANTRC BZCEXM	0.033 0.059	LT LT	•
13866	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN18	B2CIPE	0.200	LT	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	82CLEE	0.033	LT	
_ 13\$C6 13\$C6	RF1S*37	CSO	27-aug-1991	5.0	UGG	LH18	B2EHP	0.620	LT	
13506	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	\$.0 5.0	UGG	LM18 LM18	BAANTR BAPYR	0.170 0.250	LT LT	
135C6	RF1S*37	CSO	27-aug-1991	5.0	UGG	LH18	BBFANT	0.210	LT	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	88HC	0.270	ND	R
13\$C6 13\$C6	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	B8ZP Benslf	0, 170 0,620	LT ND	R
13SC6	RFIS=37	CSO	27-aug-1991	5.0	UGG	LN18	BENZID	0.850	ND	R
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN18	BENZOA	6,100	ND	R
13906 13906	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LM18	BGHIPY	0.250	LT	
13SC6	RFIS*37	CSO	27-aug-1991	5.0	ugg ugg	LM18 LM18	BKFANT BZALC	0.066 0.190	LT LT	
13506	RF15*37	CSO	27-aug-1991	5.0	UGG	LN18	CHRY	0.120	LT	
13866	RF1\$*37	CSO	27-aug-1991	5.0	UGG	LH18	CL68Z	0.033	LT	
13SC6 13SC6	RFIS*37 RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	CL6CP CL6ET	6.200 0.158	LT.	
13SC6	RF15*37	cso	27-aug-1991	5.0	UGG	LN18	DBAHA	0.210	ĻŢ	
13806	RFIS*37	CSO	27-sug-1991	5.0	UGG	LH18	DBHC	0.270	ND	R
138C6 138C6	RFIS*37 RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	D8ZFUR OEP	0.035 0.240	LT LT	
13SC6	RF15*37	CSO	27-aug-1991	5.0		LN18	DLDRN	0.310	ND	R
13sc6	RF15*37	CSO	27-aug-1991	5.0	UGG	LM18	DMP	0.170	LŢ	
13906 13906	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	DNBP DNOP	0.061 0.190	LĪ	
13sc6	RFIS*37	CSO	27-sug-1991	5.0	UGG	LK18	ENDRN	0.450	LT ND	R
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN18	ENDRNA	0_530	NO	R
135C6 135C6	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0	UGG	LM18	ENDRNK	0.530	ND	R
13SC6	RFIS*37	CSO	27-aug-1991	5.0 5.0	ugg ugg	1M18 1M18	ESFSO4 FANT	0.620 0.068	MD LT	R
13\$C6	RFIS*37	ÇSO	27-aug-1991	5.0	UGG	LH18	FLRENE	0.033	LT	
13866	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	GCLDAN	0.330	HD	R
13sc6 13sc6	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	HCBO HPCL	0.230 0.130	LT ND	R
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	MPCLE	0.330	ND	Ř
13sc6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	[CDPYR	0.290	LT	
135C6 135C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LM18 LM18	ISOPHR LIN	0.033 0,270	LT MD	R
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	LK18	MEXCLR	0.330	KD	Ř
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN18	KAP	0.037	LT	
135C6 135C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LN18	KB MARKET	0.045	LT	
13SC6	RF15*37	CSO CSO	27-aug-1991	5.0	UGG	LH18 LH18	NNOMEA NNONPA	0.140 0.200	ND LT	R
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	NADPA	0.190	LT	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LM18	PCB016	1.400	ND	Ŗ
135C6 135C6	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	LM18 LH18	PCB221 PCB232	1,400 1,400	ND ND	R
13SC6	RF15-37	CSO	27-aug-1991	5.0	UGG	LM18	PCB232 PCB242	1,400	ND ND	Ř R
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	LN18	PC8248	2,000	ND	R
13506	RFIS*37	ÇSO	27-aug-1991	5.0	UGG	LH18	PCB254	2,300	MD	R

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
135C6	RFIS*37	ÇSO	27-aug-1991	5.0	UGG	LM18	PC8250	2.600	ND	R
13866	RF1S*37	CSD	27-aug-1991	5.0	UGG	LH18	PCP	1.300	ĻT	
139 C 6 139C6	RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg ugg	LH18	PHANTR	0.033	LŤ	
13506	RFIS*37 RFIS*37	CSO CSO	27-aug-1991	5.0	UGG	LM18 LM18	PHENOL PPOOD	0.110 0.270	LT ND	R
13sc6	RFIS*37	CSO	27-aug-1991	5.0	UGG	LH18	PPODE	0.310	ND	Ř
13SC6	RF1\$*37	CSO	27-aug-1991	5.0	UGG	LM18	PPDDT	0.310	NO	R
13SC6 13SC6	RF1S*37 RF1S*37	CS0	27-aug-1991 27-aug-1991	5.0 5.0	UGG	LM18 LM18	PYR Txphen	0.033 2.600	LT ND	R
13506	RF15*37	CSO	27-aug-1991	5.0	UGG	J\$16	AG	0.680	~	•
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	J\$16	AL	8440.000		
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	312L 312L	BA BE	127.000 1.290		
13506	RF15*37	CSO	27-aug-1991	5.0	UGG	JS16	CA .	1670.000		
13SC6	RFIS*37	CSO	27-aug-1991	5.0	UGG	J\$16	CD	0.700	LT	
13\$C6 13\$C6	RFIS*37 RFIS*37	CSO CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg	7219 7219	CC CR	8.780 23.200		
13SC6	RF15*37	CSO	27-aug-1991	5.0	UGG	J\$16	en ~	11.100		
13866	RF1S*37	CSO	27-aug-1991	5.0	UGG	J\$16	FE	14300.000		
13sc6 13sc6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	1516 1516	K Mg	1180.000 2980.000		
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	JS 16	MK	423.000		
13866	RFIS*37	CSO	27-aug-1991	5.0	UGG	JS16	KA	266.000		
138C6 138C6	RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	ugg Ugg	4 \$16	M.J.	15.100		
_13506	RF1S*37 RF1S*37	CSO	27-aug-1991	5.0	UGG	312L 312L	PB \$8	10.500 7.140	LT LT	
13506	RFIS*37	CSO	27-aug-1991	5.0	UGG	JS16	TL	11.700		
13906 13906	RF1\$*37	CSO	27-aug-1991	5.0	UGG	J\$16	Α	24.500		
13506	RF1S*37 RF1S*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGG UGG	4121 1019	ZN AS	62.500 0.579		
13506	RFIS*37	CSO	27-aug-1991	5.0	UGL	SS10	AG	4.600	LT	
13506	RF1S*37	CSO	27-aug-1991	5.0	UGL	\$510	BA	511.000		
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGL UGL	\$\$10 \$\$10	CD CR	4.010 6.020	LT LT	
13SC6	RF1S*37	CSO	27-aug-1991	5.0	UGL	SS10	PB	18.600	LT	
13866	RFIS*37	CSO	27-aug-1991	5.0	UGL	\$801	HG	0.243	LŤ	
138C6 138C6	RFIS*37 RFIS*37	CSO	27-aug-1991 27-aug-1991	5.0 5.0	UGL UGL	SD21	AS SE	2.540 3.020	LT LT	
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	JB01	HG	0.050	LT	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LW12	135THB	0.488	LT	
139 C 6 139C6	RFIS*38 RFIS*38	CSO CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LW12 LW12	130NB 246TNT	0.496 0.456	LT LT	
13sc6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
13sc6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LW12	26DNT	0.524	LT	
138C6 138C6	RFIS*38 RFIS*38	CSO CSO	27-aug-1991 27-aug-1991	10.0 10.0	1166 201	LW12 LW12	NB HMX	0.666 2.410	LT LT	
13506	RF1S*38	CSO	27-aug-1991	10.0		LW12	RDX	0.587	LT	
13506	RF1S*38	CSO	27-aug-1991		UGG	LW12	TETRYL	0.731	LT	
132C6 138C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg Ugg	JD15 LH19	SE 111TCE	0.250 0.004	LT LT	•
13sc6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN19	1127CE	0.005	LT	
13866	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH19	11DCE	0.004	LT	
13906 13906	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH19	11DCLE	0.002	LT	
13SC6	RFIS*38 RFIS*38	CSO CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LN19 LN19	120CE 120CLE	0.003 0.002	LT LT	
13866	RF15*38	CSO	27-aug-1991	10.0	UGG	LN19	120CLP	0.003	LT	
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LH19	2CLEVE	0.010	MD	R
13866 13866	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LH19 LH19	ACET ACROLN	0.017 0.100	LT ND	R
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH19	ACRYLO	0.100	ND	Ř
13506	RFIS*38	C20	27-aug-1991	10.0	UGG	LH19	BRDCLM	0.003	LT	
138C6 138C6	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	C13DCP C2AVE	0.003 0.003	LT	
13506	RF15-36	CSC	27-aug-1991	10.0	UGG	LN19	CZH3CL	0.006	LT LT	
13506	RFIS*38	CSD	27-aug-1991	10.0	UGG	LM19	C2H5CL	0.012	LT	
13866 13866	RFIS*38	CSO	27-aug-1991 27-aug-1991		UGG	LN19	C6H6	0.002	LT	
13866	RFIS*38 RFIS*38	CSO CSO	27-aug-1991	10.0 10.0	UGG UGG	LN19 LN19	CCL3F CCL4	0.006 0.007	LT LT	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH19	CH2CL2	0.012	LT	
13506	RFIS*38	CSO	27-aug-1991	10.0		LH19	CH3BR	0.006	LT	
135C6 135C6	RF15*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LM19 LM19	CH3CL CHBR3	0.009 0.007	LT	
13506	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN19	CHCL3	0.001	LT LT	
13SC6	RF1S*38	CSQ	27-aug-1991	10,0	UGG	LN19	CLZBZ	0.100	ND	R

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flaq</u>	Internal Std. Code
13866	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN19	CLC6N5	0.001	LT	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH19	CS2	0.004	ĻŤ	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH19	DBRCLM	0.003	LT	
13\$C6	RFIST38	CSO	27-aug-1991	10.0	UGG	LM19	ETC6H5	0.002	LT	
13806 13806	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LM19 LM19	MECAHS MEK	0.001 0.070	LT LT	
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LH19	MIBK	0.027	LT	
13566	RFIS#38	CSO	27-aug-1991	10.0	UGG	LH19	MNBK	0.032	ĹŤ	
13906	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN19	STYR	0.003	LT	
139C6 139C6	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LH19	T13DCP	0.003	LT	
13SC6	RF15*38	CSC	27-aug-1991	10.0	UGG	LN19 LN19	TCLEA TCLEE	0.002	LT LT	
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LH19	TCLTFE	0.007	-	s
13sc6	RFIS*38	cso	27-aug-1991	10.0	UGG	LH19	TRCLE	0.003	LT	
138C6 138C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LH19 LH18	XYLEN	0.002 0.040	LT	
13SC6	RF1S*38	CSO	27-aug-1991	10.0	UGG	UK18	124TC8 12DCLB	0.110	LT LT	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN18	12DPH	0.140	ЖĎ	Ŕ
1356	RF15*38	CSO	27-aug-1991	10.0	UGG	LN18	13DCLB	0.130	LT	
13966 13966	RFIS*38 RFIS*38	CSO CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LM18	140CLB	0.098	LŢ	
13506	RFIS*38	CSO	27-sug-1991	10.0	UGG	LH18 LH18	245TCP 246TCP	0.100 0.170	LT LT	
13506	RF1S*38	cso	27-aug-1991	10.0	UGG	LM18	24DCLP	0.180	ĹŤ	
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LN18	24DMPN	0.690	ĻT	
13SC6 13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LN18	24DNP	1.200	LT	
13SC6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	240NT 260NT	0.140 0.085	LT LT	
13SC6	RF15*38	CSC	27-aug-1991	10.0	UGG	LM18	2CLP	0.060	ĹŤ	
13866	RF1S*38	CSO	27-aug-1991	10.0	UGG	LM18	ZCNAP	0.036	LT	
13sc6	RF15*38	cso	27-aug-1991	10.0	UGG	LM18	2MNAP	0.049	LT	
13866 13866	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LN18 LN18	2MP 2MANIL	0.029 0.062	LT LT	
13\$C6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LM18	ZNANIL	0.140	LT	
13866	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH18	330 CB0	6.300	LŤ	
13sc6	RF1S*38	CSO	27-aug-1991	10.0	UGG	UI18	3RARIL	0.450	LT	
13866 13866	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.8	UGG UGG	LN18 LN18	46DN2C 48RPPE	0.550 0.033	LT	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LM18	4CANIL	0.810	LT LT	
13866	RFIS*38	CSO	27-sug-1991	10.0	UGG	LN18	4CL3C	0.095	LT	
13\$66	RFIS#38	CSO	27-aug-1991	10.0	UGG	LH18	4CLPPE	0.033	LT	
138C6 138C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LN18 LN18	4MP 4MANIL	0.240 0.410	LT LT	
13906	RFIS*38	CSO	27-aug-1991	10.0	UGG	LK18	4KAKIL 4NP	1.400	LT	
13866	RF15*38	CSO	27-aug-1991	10.0	UGG	LN18	ABHC	0.270	ND	R
13506	RFIS*38	CSO	27-aug-1991	10.0	UGG	LM18	ACLDAN	0.330	ND	R
135C6 135C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	AENSLF	0.620 0.330	ND	R
13506	RFIS*38	C2C	27-aug-1991	10.0	UGG	LN18	ALDRN ANAPKE	0.036	ND LT	R
13sc6	RFIS*38	CSO	27-sug-1991	10.0	UGG	LH18	ANAPYL	0.033	LT	
13SC6	RF1\$*38	CSO	27-aug-1991	10.0	UGG	LH18	ANTRO	0.033	LT	
13966 13 96	RF1S*38 RF1S*38	CSO	27-aug-1991	10.0	UGG	LK18	B2CEXM	0.059	LT	
13806	RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LM18 LM18	B2CLEE	0.200 0.033	LT LT	
13866	RF15*38	CSO	27-aug-1991	10.0	UGG	LM18	BZEHP	0.620	ĹŤ	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LM18	BAANTR	0.170	LT	
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH18	BAPYR	0.250	LT	
138C6 138C6	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	BBFANT BBHC	0.210 0.270	LT ND	R
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN18	BBZP	0.170	ĹŤ	^
13506	RF15*38	CSO	27-aug-1991	10.0	UGG	LM18	BENSLF	0.620	ND	R
139C6 139C4	RF15*38	CSO	27-aug-1991	10.0	UGG	LN18	BENZID	0.850	ND	R
138C6 138C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LH18 LH18	BENZOA BGH1PY	6.100 0,250	ND LT	R
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	UK18	BKFANT	0.066	LT	
13SC6	RF1S*38	cso	27-aug-1991	10.0	UGG	LM18	BZALC	0.190	LT	
13506	RF15*38	CSO	27-aug-1991	10.0	UGG	LM18	CHRY	0.120	LT	
138C6 138C6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN18	CL68Z	0.033	ĻŢ	
13SC6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LH18 LH18	CL6CP CL6ET	6.200 0.150	LT LT	
13566	RF15*38	CSO	27-aug-1991	10.0	UGG	LN18	DBAHA	0.210	LT	
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LM18	DBHC	0.270	MC	R
13866	RFIS*38	CSO	27-aug-1991	10.0	UGG	LM18	DBZFUR	0.035	LT	
138C6 138C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	DEP DLDRN	0.240 0.310	LT ND	R
	A	440	mi double raaf	10.0	444	÷1.10		4.5.0	W.	ĸ

Site ID	<u>Field ID</u>	Media	Date	<u>Depth</u>	<u>Units</u>	Analytical _ Method	Analyte "Abbry.	Value	<u>Flag</u>	Internat Std. Code
										2131
138C6 138C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	DMP DNBP	0,170 0.061	LT LT	
13506	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH18	DNOP	0.190	LT	
13866	RFIS*38	cso	27-aug-1991	10.0	UGG	LH18	ENDRM	0.450	ND	R
13906 13906	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg Ugg	LX18	ENDRNA ENDRNK	0.530	ND	R
13SC6	RF15*38	CSO	27-aug-1991	10.0	UGG	LM18 LM18	ESFSO4	0.530 0.620	ND ND	R R
13506	RFIS*38	CSO	27-aug-1991	10.0	UGG	LM18	FANT	0.068	ĻT	*
13SC6 13SC6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	FLRENE GCLDAK	0.033 0.330	ĻŢ	•
13SC6	RF15*38	cso	27-aug-1991	10.0	ŲGĢ	LH18	HCBO	0.230	ND LT	R
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH18	HPCL	0.130	ND	R
13SC6 13SC6	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	HPCLE ICDPYR	0.330 0.290	ND LT	R
1356	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH18	I SOPHR	0.033	LT	
13506	RF15*38	CSO	27-aug-1991	10.0	UGG	LH18	LIN	0.270	ND	R
138C6 138C6	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LH18 LH18	MEXCLR NAP	0.330 0.037	ND LT	R
13SC6	RF15*38	cso	27-sug-1991	10.0	UGG	LH18	NB	0.045	LT	
13506	RF1S*38	CSO	27-sug-1991	10.0	UGG	DH18	NNOMEA	0.140	MD	R
13806 13806	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	NNDNPA NNDPA	0.200 0.190	LT LT	
135C6	RFIS#38	CSO	27-aug-1991	10.0	UGG	UI18	PCB016	1.400	MD	R
135C6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN18	PC8221	1.400	ND NO	R
13SC6 -13SC6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	PC8232 PC8242	1.400	NED NED	R R
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LH18	PCB248	2.000	ND	Ř
13506	RF1S*38	CSO	27-aug-1991	10.0	UGG	LX18	PCB254	2.300	ND	R
13 5C6 13 5C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0	ugg ugg	LN18 LN18	PCB260 PCP	2.600 1.300	MD LT	R
13SC6	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN18	PHANTR	0.033	LT	
13SC6	RF1S*38	cso	27-aug-1991	10.0	UGG	LH18	PHENOL	0.110	LT	_
13866 13866	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	LH18 LH18	PPODD PPODE	0.270 0.310	ND ND	R R
13506	RFIS*38	cso	27-aug-1991	10.0	UGG	LM18	PPODT	0.310	ND	Ř
13506	RFIS*38	CSO	27-aug-1991	10.0	UGG	LN18	PYR	0.033	LT	_
13906 13906	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	LN18 JS16	TXPHEN AG	2.600 0.589	ND LT	R
13SC6	RF1S*38	CSO	27-aug-1991	10.0	UGG	JS16	AL	7480,000		
1356	RF1S*38	CSO	27-aug-1991	10.0	UGG	JS16	BA	107.000		
138C6 138C6	RFIS*38 RFIS*38	CZO	27-aug-1991 27-aug-1991	10.0 10.0	UGG UGG	J\$16 J\$16	8E CA	1.160 1410.000		
13866	RFIS*38	CSO	27-aug-1991	10.0	UGG	J\$16	ထ	0.700	LT	
13\$C6	RFIS*38	CSO	27-aug-1991	10.0	UGG	J\$16	CO	9.770		
13806 13806	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGG	JS16 JS16	CR CU	18,000 7,720		
13866	RFIS*38	CSO	27-aug-1991	10.0	UGG	JS16	FE	14900.000		
13866	RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0	UGG	J\$16	K	863.000		
13866 13866	RF1S*38 RF1S*38	CSO	27-aug-1991	10.0 10.0	ugg ugg	J\$16 J\$16	MG MX	2900.000 428.000		
13sc6	RF15*38	CSO	27-aug-1991	10.0	UGG	JS16	NA	254.000		
138C6 138C6	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	612L 612L	WI PB	11_500	1 7	
135C6	RFIS*38	CSO	27-aug-1991	10.0		J\$16	SB	10.500 7.140	LT LT	
13506	RF15*38	CSO	27-aug-1991	10.0	UGG	J\$16	TL	16.900		
13906 13906	RF1S*38 RF1S*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	ugg ugg	315 316	V 2N	23,900 59,000		
13906	RFIS*38	CSO	27-aug-1991	10.0	UGG	JD 19	A\$	0.643		
13506	RF1S*38	CSO	27-aug-1991	10.0	UGL	\$\$10	AG	4.600	LT	
138 C6 138 C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0		\$\$10 \$\$10	EA CD	528.000 4.010	LT	
13506	RFIS*38	CSO	27-aug-1991	10.0		\$\$10	CR	6.020	LT	
13SC6	RF1S*38	CSO	27-aug-1991	10.0	UGL	\$\$10	PB	18.600	LT	
135C6 135C6	RFIS*38 RFIS*38	CSO	27-aug-1991 27-aug-1991	10.0 10.0	UGL	SB01 SD22	HG AS	0.243 2.540	LT LT	
13\$66	RFIS*38	CSO	27-aug-1991	10.0	UGL	SD21	SE V2	3.020	LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	JB01	HG	0.050	LT	
13SC7 13SC7	RFIS*39 RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LW12 LW12	135TNB 13DNB	0.488 0.496	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LW12	246TNT	0.456	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	
13\$C7 13\$C7	RFIS*39 RFIS*39	CSC	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LW12 LW12	26DNT HMX	0.524 0.666	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LW1Z	NB	2.410	LT	

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13sc7	RF15*39	CSC	28-aug-1991	0.5	UGG	L¥12	RDX	0.587	LT	
13507	RFIS*39	ÇSO	28-aug-1991	0.5	UGG	L¥12	TETRYL	0.731	LT	
13807	RFIS*39	CSO	28-aug-1991	0.5	UGG	JÐ15	SE	0.250	LT	
13\$C7	RF15*39	CSO	28-aug-1991	0.5	UGG	LH19	111TCE	0.004	LŤ	
13867 13867	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	112TCE	0.005	LT	
13SC7	RFIS*39 RFIS*39	C20	28-sug-1991 28-sug-1991	0.5 0.5	ugg ugg	LN19 LN19	11DCE 11DCLE	0.004 0.002	LŢ	
13sc7	RFIS*39	cso	28-aug-1991	0.5	UGG	LX19	120CE	0.002	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LK19	12DCLE	0.002	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LX19	12DCLP	0.003	LT	
13507	RF15*39	CSO	28-aug-1991	0.5	UGG	LH19	2CLEVE	0.010	ND	R
13\$C7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM19	ACET	0.017	LT	
13sc7 13sc7	RF15*39	CSO	28-aug-1991 28-aug-1991	0.5	UGG	LH19	ACROLN	0.100	ND:	R
13sc7	RFIS*39 RFIS*39	CSO	28-eug-1991	0.5 0.5	ugg ugg	LM19 LM19	ACRYLO BRDCLM	0.100 0.003	NED LT	R
13507	RF1S*39	CSO	28-aug-1991	0.5	UGG	UN19	C13DCP	0.003	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	C2AVE	0.003	ĹŤ	
13507	RF1S*39	CSO	28-aug-1991	0.5	UGG	LN19	C2H3CL	0.006	LT	
13SC7	RF15*39	CSC	28-aug-1991	0.5	UGG	LN19	CZHSCL	0.012	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	C6H6	0.002	LT	
13SC7 13SC7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LH19	CCL3F	0.006	LT	•
135C7 13SC7	RFIS*39 RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	LN19 LN19	CCL4 CH2CL2	0.007 0.012	LT LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN19	CHZCCZ CH3BR	0.006	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	CH3CL	0.009	LT	
_ 13\$C7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	CHBR3	0.007	ĹΤ	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN19	CHCL3	0.001	ĻŤ	
13sc7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LX19	CL2BZ	0.100	ND	R
13sc7	RF15*39	ÇSO	28-aug-1991	0.5	UGG	LN19	CLC6H5	0.001	LT	
13SC7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LM19	CS2	0.004	ĻŢ	
13SC7 13SC7	RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5	UGG	UH19	DBRCLM	0.003	LT	
13sc7	RFIS*39 RFIS*39	C20	28-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	ETC6H5 MEC6H5	0.002 0.001	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	MEK	0.070	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN19	HIBK	0.027	ĹŤ	
13807	RF15*39	CSD	28-aug-1991	0.5	UGG	LX19	MMBK	0.032	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGĞ	LN19	STYR	0.003	LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH19	T13DCP	0.003	LT	
13807	RF15*39	CSO	28-aug-1991	0.5	UGG	LH19	TCLEA	0.002	LT	
13SC7 13SC7	RF1S*39	CSO	28-sug-1991	0.5	UGG	LN19	TCLEE	0.001	LT	
13SC7	RF1S*39 RFIS*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LM19 LM19	TRCLE UNKO72	0.003 0.008	LT	s
13SC7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LN19	XYLEN	0.002	LT	•
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LH18	124TC8	0.200	ĹŤ	
13SC7	RF1\$*39	ÇSO	28-aug-1991	0.5	UGG	LN18	12DCLB	0.550	LT	
13SC7	RF1S*39	CS0	28-aug-1991	0.5	UGG	LH18	120PH	0.500	MD	R
13SC7	RFIS*39	C20	28-aug-1991	0.5	UGG	LH18	130CLB	0.650	LT	
13507	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	14DCLB	0.490	LT	
13SC7 13SC7	RF1S*39 RF1S*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg ugg	LM18	245TCP	0.500	LT	
13507	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18 LM18	246TCP 24DCLP	0.850 0.900	LT LT	
13\$07	RF15*39	CSO	28-aug-1991	0.5	UGG	11118	24DCCP 24DMPN	3.450	LT	
13sc7	RF15*39	CSG	25-aug-1991	0.5	UGG	11118	24DNP	6.000	ĹŤ	
13SC7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LM18	24DNT	0.700	LT	
13507	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH18	260NT	0.425	LT	
13sc7	RF15*39	CSO	28-aug-1991	0.5	UGG	LH18	2CLP	0.300	LT	
13SC7 13SC7	RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5	UGG	LM18	2CNAP	0.180	LT	
13SC7	RFIS*39 RFIS*39	CSO CSO	28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	ZMNAP ZMP	0.245 0.145	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	2NAN!L	0.310	ĻŤ	
13SC7	RFIS*39	ÇSO	28-aug-1991	0.5	UGG	LM18	2NP	0.700	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH18	330CB0	31.500	LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	3NANIL	2.250	LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH18	460N2C	2.750	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LN18	4BRPPE	0.165	LT	
13SC7 13SC7	RFIS*39	CSO	28-eug-1991	0.5	UGG	LN18	4CANIL	4.050	LŤ	
138C7	RF1\$*39 RF1\$*39	CSO CSO	28-aug-1991 28-aug-1991	0.5	UGG UGG	LN18	4CL3C	0.475	LT	
13sc7	RF15*39	CSO	28-eug-1991	0.5 0.5	UGG	LM18 LM18	4CLPPE 4MP	0.165 1.200	LT LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	4MANIL	2.050	LT	
13SC7	RF15*39	cso	26-aug-1991	0.5	UGG	LM18	4KP	7.000	LŤ	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	ABHC	1.500	ND	R
13507	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	ACLDAN	1.500	XD	R
13sc7	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	AENSLF	3.000	ND	R

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry	Value	<u>Flag</u>	Internal Std. Code
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	ALDRN	1.500	ND	R
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	ANAPHE	0.180	ίŤ	•
13sc7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LH18	ANAPYL	0.165	LT	
13507	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN18	ANTRC	0.165	LT	
138C7 138C7	RFIS*39 RFIS*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	B2CEXM B2CIPE	0.295 1.000	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	B2CLEE	0.165	LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LX18	82EHP	3.100	LT	
13\$C7 13\$C7	RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	LN18	BAANTR	0.850	LT	
13SC7	RFIS*39 RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18 LM18	BAPYR BBFANT	1.250 1.050	LT LT	
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN18	BBHC	1.500	ND	R
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN18	BBZP	0.850	ĻT	
13SC7 13SC7	RFIS≠39 RFIS*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	BENSLF BENZID	3.000 4.500	KD KD	R
13SC7	RF15*39	CSO	28-eug-1991	0.5	UGG	LM18	BENZOA	30,000	ND ND	R R
13SC7	RF15*39	C\$O	28-aug-1991	0.5	UGG	LH18	BGHIPY	1.250	LT	•
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	BKFANT	0.330	LT	
138C7 138C7	RF15*39 RF15*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	BZALC CKRY	0.950	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LH18	CL68Z	0.600 0.165	LT LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN18	CL6CP	31,000	ĻŤ	•
13sc7	RFIS*39	CSO	25-aug-1991	0.5	UGG	LH18	CLÓET	0.750	LT	
138C7 138C7	RFIS*39 RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DBAHA DBHC	1.050 1.500	LT	_
-13sc7	RF15-39	CSO	28-aug-1991	0.5	UGG	LH18.	D8ZFUR	0.175	ND LT	R
13sc7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH18	DEP	1.230	••	
13807	RFIS*39	cso	28-aug-1991	8.5	UGG	LM18	DLDRM	1.500	KD	R
138C7 138C7	RF15*39 RF15*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	DMP	0.850 0.581	LT	
13sc7	RF15*39	CSO	28-sug-1991	0.5	UGG	LH18	DNSP DNOP	0.950	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LN18	ENDRN	2.500	ND	R
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LN18	ENDRNA	2.500	ND	R
13\$C7 13\$C7	RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5	UGG UGG	LN18	ENDRNK	2.500	ND	R
13SC7	RFIS*39 RFIS*39	CSO	28-aug-1991	0.5 0.5	UGG	LM18 LM18	ESFSO4 FANT	3.000 0.340	MD LT	R
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LN18	FLRENE	0.165	LT	
13507	RFIS*39	CSO	28-aug-1991	0.5	UGG	LH18	GCLDAN	1.500	ND	R
13SC7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LH18	HCBD	1.150	LT	_
13SC7 13SC7	RF15*39 RF15*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	LN18 LN18	HPCLE	0.500 1.500	ND ND	R R
13SC7	RF15*39	CSO	28-eug-1991	0.5	UGG	LH18	ICDPYR	1.450	ίĬ	•
13SC7	RFIS*39	CSO	28-eug-1991	0.5	UGG	LM18	ISOPHR	0.165	LT	
13SC7 13SC7	RFIS*39 RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	LIN MEXCLR	1.500	ND ND	R
13SC7	RF15*39	ÇSO	28-aug-1991	0.5		LM18	MAP	1.500 0.185	ĻŢ	R
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	NB EM	0.225	LT	
13SC7	RF1S*39	CSO	28-aug-1991	0.5	UGG	LN18	XNDKEA	0.500	ND	R
138C7 138C7	RFIS*39 RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	XNDNPA	1.000	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LN18	NNDPA PCB016	0.950 5.000	LT NO	R
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	LX18	PCB221	5.000	ND	Ř
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LX18	PCB232	5.000	MD	R
13807 13807	RFIS*39 RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	PCB242	5.000	ND	R
13807	RFIS*39	CSO	28-aug-1991	0.5 Q.5	UGG	LM18	PCB248 PCB254	10.000 10.000	NO ND	R R
13807	RF15*39	ÇSO	28-aug-1991	0.5	UGG	LN18	PCB260	15.000	ЖĎ	Ř
13SC 7	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	PCP	6.500	LT	
139C7 138C7	RF15*39 RF15*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG	LM18 LM18	PHANTR	0.165	LT	
13807	RFIS*39	CSO	28-aug-1991	0.5	UGG	LM18	PHENOL PPOOD	0.550 1.500	LT KD	R
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LM18	PPDDE	1.500	NO	Ř
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	LH18	PPDDT	1,500	ND	Ř
13907	RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5	UGG	LX18	PYR	0.165	LT	-
13807 13807	RF15*39 RF15*39	CSO CSO	28-aug-1991	0.5 0.5	ugg Ugg	LM18 JS16	TXPHEN AG	15.000 0.589	MD LT	R
13SC7	RF15*39	cso	28-aug-1991	0.5	UGG	JS16	AL.	5630.000		
13sc7	RF15*39	CSO	28-aug-1991	0.5	UGG	J\$16	BA	74.400		
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	JS16	BE	1.260		
135C7 135C7	RFIS*39 RFIS*39	CSO CSO	28-aug-1991 28-aug-1991	0.5 0.5	ugg ugg	J\$16 J\$16	CA CB	11700.000 0.700	LT	
13807	RFIS*39	CSO	28-aug-1991	0.5	UGG	JS16	8	5.420	•	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	JS16	CR	13.800		
13507	RF15*39	CSO	28-aug-1991	0.5	UGG	JS16	a	38.300		

Site ID	Field ID	Madia	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
	110,10 10	175			<u> </u>	Hethod	ADDIT.		rtag	Stu. Code
13507	RF15*39	CSO	28-aug-1991	0.5	UGG	JS16	FE	12300,000		
138C7 138C7	RF15*39	Ċ\$O	28-aug-1991 28-aug-1991	0.5	UGG	J S 16	K	1130.000		
13sc7	RF1S*39 RF1S*39	CSO	28-aug-1991	0.5 0.5	ugg Ugg	J\$16 J\$16	MG	4950.000		
13SC7	RF15*39	CZO	28-aug-1991	0.5	UGG	J\$16	MN NA	339.000 245.000		
13507	RFIS*39	CZO	28-aug-1991	0.5	UGG	1516	IN	8.220		
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGG	J\$16	PB	210.000		
13sc7	RFIS*39	CSG	28-eug-1991	0.5	ugg	J\$16	SB	7.140	LT	
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	JS16	TL	9.630		
138C7 138C7	RF1S*39 RF1S*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGG UGG	1216 1216	V ZN	18.300		
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGG	JD19	AS	88.400 0.695		
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGL	SS10	AG	4.600	LT	
13\$C7	RFIS*39	CSO	28-aug-1991	0.5	UGL.	\$\$10	BA	853.000		
13SC7	RFIS*39	CSO	28-aug-1991	0.5	UGL,	SS10	CD CD	4.010	LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGL	\$\$10	CR	6.020	LT	
135C7 135C7	RFIS*39	CSO	28-aug-1991 28-aug-1991	0.5 0.5	UGL	\$\$10	PB	255.000		
13507	RFIS*39 RFIS*39	CZO	28-aug-1991	0.5	UGL UGL	\$801 \$022	HG AS	0.243 2.540	LT LT	
13SC7	RF15*39	CSO	28-aug-1991	0.5	UGL	SD21	SE	3.020	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	JB01	HG	0.161	•••	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LW12	135TNB	0.488	ĻŢ	
13sc7	RF1\$*40	CSO	28-aug-1991	5.0	UGG	LW12	13DNB	0.496	LΤ	
13507	RFIS*40	CSO	28-aug-1991	5.0	UGG	LW12	246TNT	0.456	LT	
13SC7 13SC7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LU12	24DNT	0.424	LĪ	
13sc7	RF15-40	CSO	28-aug-1991	5.0	UGG	LW12 LW12	26DNT HMX	0.524 0.666	LT LT	
13sc7	RF15*40	CSO	28-aug-1991	5.0	UGG	LU12	NS	2.410	ĹŤ	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LW12	RDX	0.587	ĹŤ	
13 \$ C7	RF1\$*40	CSO	28-aug-1991	5.0	UGG	LW12	TETRYL	0.731	LT	
13\$C7	RF15*40	CSO	28-aug-1991	5.0	UGG	JD15	SE	0.250	LT	
13SC7 13SC7	RFIS*40	CSC	28-aug-1991	5.0	UGG	LR19	111TCE	0.004	LT	
13SC7	RFIS*40 RFIS*40	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM19 LM19	112TCE 11DCE	0.005 0.004	LT LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	11DCLE	0.002	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	120CE	0.003	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	12DCLE	0.002	LT	
13sc7	RFIS=40	CSO	28-aug-1991	5.0	UGG	LH19	12DCLP	0.003	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LH19	2CLEVE	0.010	NO	R
13SC7 13SC7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LN19	ACET	0.017	LT	_
13SC7	RF15*40	CSO CSO	28-aug-1991	5.0	UGG UGG	LN19 LN19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	BRDCLM	0.003	LT	•
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN19	C13DCP	0.003	LT	
13807	RF15*40	CSO	28-aug-1991	5.0	UGG	LH19	C2AVE	0.003	LT	
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	C2H3CL	0.006	LT	
13507	RFIS*40	C20	28-aug-1991	5.0	UGG	LM19	CZH5CL	0.012	LT	
13SC7 13SC7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	C6H6 CCL3F	0.002 0.006	LT LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LM19	CCL4	0.007	LT	
13SC7	RFIS*40	CSO	28-eug-1991	5.0	UGG	LX19	CHZCLZ	0.012	LT	
13SC7	RF1\$*40	CSO	28-aug-1991	5.0	UGG	LH19	CH3BR	0.006	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	CH3CL	0.009	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	CHBR3	0.007	ĻT	
13SC7 13SC7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LN19	CHCL3	0.001	LT	_
13507	RFIS=40	CSO	28-aug-1991	5.0	UGG	LN19 LN19	CL2BZ CLC6H5	0.100 0.001	MD LT	R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	CSS	0.004	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	DBRCLM	0.003	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LM19	ETC6H5	0,002	LT	
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH19	MEC6H5	0.001	LT	
13507	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN19	MEK	0.070	LT	
13SC <i>7</i> 13SC 7	RFIS*40 RFIS*40	C\$0	28-aug-1991 28-aug-1991	5.0	UGG	LX19	MIBK	0.027	LT	
13SC7	RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LH19 LH19	MNBK STYR	0.032 0.003	LT LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LM19	T130CP	0.003	LT	
13507	RF15*40	CSO	28-aug-1991	5.0	UGG	LH19	TCLEA	0.002	LT	
13SC7	RFIS#40	CSO	28-aug-1991	5.0	UGG	LH19	TCLEE	0.001	LT	
13SC7	RFIS#40	CSO	28-aug-1991	5.0	UGG	LN19	TRCLE	0.003	LT	
13907	RFIS=40	CSO	28-aug-1991	5.0	UGG	LH19	UNK072	0.012		\$
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LH19	XYLEN	0.002	LT	
138C7 138C7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	124TC8	0.040	LT LT	
138C7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM18 1 M18	120CLB	0.110 0.140	LT ND	
13341	KF 13-40	COU	50-90Å-124]	3.0		LM18	120PH	Ų. 14 U	WU	R

Site ID	Field ID	<u> Media</u>	<u>Date</u>	Depth	<u>Units</u>	Analytical Method		Value	Flag	Internal Std. Code
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH18	13DCLB	0,130	LT	
13507	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH18	14DCL8	0.098	ii	
13507	RF15*40	CSO	28-aug-1991	5.0	UGG	LM18	245TCP	0.100	LT	
13807	RF15*40	CSO	28-aug-1991	5.0	UGG	LH18	246TCP	0.170	ĹŤ	
13807	RF15*40	CSO	28-aug-1991	5.0	UGG	LH18	24DCLP	0.180	LT	
13\$C7	RFIS*40	ÇSO	28-aug-1991	5.0	UGG	LH18	24DMPN	0.690	LT	
13sc7	RFIS*40	CZO	28-aug-1991	5.0	UGG	LN18	24DNP	1.200	LT	
13sc7	RF15*40	CSO	28-aug-1991	5.0	UGG	LM18	24DNT	0.140	LT	
13SC7	RFIS#40 RFIS#40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	LH18 LH18	26DNT 2CLP	0.085	LT	
13SC7 13SC7	RF15=40	CSO	28-aug-1991	5.0	UGG	LX18	2CHAP	0.060 0.036	LT LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	2MNAP	0.049	LT	
13sc7	RF15*40	CSO	28-aug-1991	5.0	UGG	LN18	2MP	0.029	ĹŢ	
13\$¢7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LX18	2XANIL	0.062	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LX18	2NP	0.140	ĻT	
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LX18	330CB0	6.300	LT	
13SC7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LH18	3NANTL 46DN2C	0.450	ĻŢ	
13\$C7 13\$C7	RFIS*40	CSO	28-aug-1991	5.0	UGG UGG	LH18 LH18	4BRPPE	0.550 0.033	LT	
13SC7	RF15*40	cso	28-aug-1991	5.0	UGG	LM18	4CAN1L	0.810	LT	
13807	RF15*40	CSO	28-aug-1991	5.0	UGĞ	LM18	4CL3C	0.095	LT	
13807	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	4CLPPE	0.033	LŤ	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH18	4MP	0.240	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH18	4NANIL	0.410	LŤ	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	4MP	1.400	ĻŢ	
13507.	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	ABHC	0.270	ND	Ŗ
138C7 138C7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	LX18 LX18	ACLDAN AENSLF	0.330 0.620	ND	R
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	ALDRN	0.330	ND ND	R R
13sc7	RF1S*40	CSC	28-aug-1991	5.0	UGG	LH18	ANAPNE	0.036	LT	ĸ
13807	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	ANAPYL	0.033	LT	
13507	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	ANTRC	0.033	LT	
13SC7	RFIS=40	CSO	28-aug-1991	5.0	UGG	LN18	B2CEXM	0.059	LT	
13SC7	RFIS*40	CSO	28-sug-1991	5.0	UGG	LH18	BECIPE	0.200	LT	
13907	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	BECLEE	0.033	ĻŢ	
13SC7 13SC7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	BZEHP BAANTR	0.620 0.170	LT LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	BAPYR	0.250	LT	
13\$C7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LK18	BBFANT	0.210	ĹŤ	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	BBHC	0.270	HD	R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	BBZP	0.170	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LN18	BENSLF	0.620	MD	R
13sc7 13sc7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg Ugg	LX18 LX18	BENZID	0.850	ND	R
135C7	RF1S=40	CSO	28-aug-1991	5.0	UGG	LX18	BENZGA BGHIPY	6.100 0.250	ND LT	R
13507	RF15*40	CSO	28-aug-1991	5.0	UGG	LX18	BKFANT	0.066	LT	
13507	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	BZALC	0.190	LT	
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	CHRY	0.120	LT	
13807	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	CLABZ	0.033	LT	
13SC7	RF15*40	CS0	28-aug-1991	5.0	UGG	LN18	CL6CP	6.200	LT	
13\$07	RFIS*40 RFIS*40	CSO	28-eug-1991	5.0	UGG	LX18	CL6ET	0.150	LT	
13807 13807	RFIS*40	CSO	25-aug-1991 28-aug-1991	5.0 5.0	ugg Ugg	LN18 LN18	DBAHA DBHC	0.210 0.270	LT ND	
13SC7	RFIS*40	CSO	28-eug-1991	5.0	UGG	LM18	DEZFUR	0.035	LT	R
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LX18	DEP	0.240	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LN18	DLDRN	0.310	ND	R
13sc7	RF15*40	CSO	28-eug-1991	5.0	UGG	LX18	DMP	0.170	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH18	DNBP	0.061	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LH18	DNOP	0.190	LT	
13507	RF15*40	CSO	28-aug-1991	5.0	UGG	LN18	ENDRN	0.450	MD	R
138C7 138C7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R
13SC7	RF15*48	CSO	28-aug-1991	5.0	UGG	LH18	ESFSO4	0.620	ND)	Ř R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	FANT	0.068	ίŤ	•
13sc7	RFIS*40	C\$0	28-aug-1991	5.0	UGG	LN18	FLRENE	0.033	LT	
13SC7	RFIS*40	CSO	25-sug-1991	5.0	UGG	LH18	GCLDAN	0.330	ND	R
13SC7	RF1\$*40	ÇSO	28-aug-1991	5.0	UGG	LH18	HCBD	0.230	LT	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	HPCL	0.130	ND	R
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	HPCLE	0.330	ND	R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	ICDPYR	0.290	LT	
138C7 138C7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	LSOPHR Lin	0.033 0.270	LT ND	
13SC7	RF15*40	CSC	28-aug-1991	5.0	UGG	LH18	MEXCLR	0.330	NO	R R
13807	RF15*40	CSO	28-aug-1991	5.0	UGG	LX18	HEACER	0.037	LŤ	т.

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13507	RFIS*40	CSO	28-aug-1991	5.0	LICC	1 1140		0.015		
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG UGG	LM18 LM18	NB NNDMEA	0.045 0.140	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	220	LM18	NNDNPA	0.200	ND LT	R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	NNOPA	0.190	LT	
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LM18	PCB016	1.400	ND	R
13sc7	RF15*40	CSO	28-aug-1991	5.0	UGG	LM18	PC8221	1.400	ND	Ř
13SC7	RF1S*40	CSO	28-aug-1991	5.0	UGG	LN18	PC8232	1.400	ND	R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LN18	PCB242	1,400	MD	R
138C7 138C7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG	UH18	PCB248	2.000	ND	R
13sc7	RF15*40	CSO	28-aug-1991	5.0	UGG UGG	LH18 LH18	PCB254 PCB260	2.300 2.600	MD	Ŕ
13807	RF15*40	CSO	28-aug-1991	5.0	UGG	LM18	PCP	1.300	NED LT	R
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	LX18	PHANTR	0.033	ĹŤ	
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	PHENOL	0.110	ĻŤ	
13sc7	RFIS*40	CSO	28-eug-1991	5.0	UGG	LM18	PPDDD	0.270	NO	Ř
13sc7	RF15*40	CSO	28-eug-1991	5.0	UGG	LM18	PPODE	0.310	ND	R
13807	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18	PPDDT	0.310	ND	R
13SC7 13SC7	RFIS*40 RFIS*40	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	ugg ugg	UH18	PYR	0.033	LT	_
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGG	LM18 JS16	TXPHEN AG	2.600 0.589	ND LT	R
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	J\$16	AL	6060.000	F1	
13SC7	RF15*40	CSO	28-eug-1991	5.0	UGG	JS16	BA.	103.000		
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	JS16	BE	1.500		
13807	RFIS*40	CSO	28-aug-1991	5.0	UGG	J\$16	CA	1630.000		
13507	RFIS#40	CSD	28-aug-1991	5.0	UGG	JS16	CD	0.700	LT	
- 13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	JS16	œ	8.000		
138C7 138C7	RF15*40	CSO	28-aug-1991	5.0	UGG	JS16	CR	16.200		
138C7	RF1S*40 RF1S*40	CSO CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	J\$16 J\$16	си	16.800 12700.000		
13507	RF15*40	CSO	28-aug-1991	5.0	UGG	1216	FE K	800.000		
13507	RFIS*40	CSO	28-aug-1991	5.0	UGG	J\$16	MG	2490.000		
13SC7	RF15*40	ÇSO	28-aug-1991	5.0	UGG	J\$16	HN	395.000		
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	JS16	NA	253.000		
13507	RFIS*40	CSC	28-aug-1991	5.0	UGG	J\$16	NI	9.660		
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGG	1216	PB	10.500	LT	
135C7 135C7	RFIS*40 RFIS*40	CSO	28-aug-1991	5.0 5.0	UGG	J\$16	SB	7.140	ŁT	
13sc7	RF15*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGG UGG	J\$16 J\$16	TL V	9.470 20.800		
13SC7	RFIS*40	CSO	28-aug-1991	5.0	UGB	JS16	ZX	52.800		
13SC7	RF15*40	CSO	28-aug-1991	5.0	UGG	JD19	AS	0.415		
13507	RF15*40	CSO	28-aug-1991	5.0	UGL	\$\$10	AG	4.600	LT	
13SC7	RF15*40	CSO	28-sug-1991	5.0	UGL	\$\$10	BA	525.000		
13807	RFIS*40	cso	28-aug-1991	5.0	UGL	SS10	a	5.300		
13\$C7 13\$C7	RFIS*40 RFIS*40	CSO	28-aug-1991 28-aug-1991	5.0 5.0	UGL	\$\$10	CR	6.020	ĻŢ	
13sc7	RFIS*40	CSO	28-aug-1991	5.0	ugl	SS10 SB01	PB HG	18.600 0.243	LT LT	
13sc7	RFIS*40	CSO	28-aug-1991	5.0	UGL	\$022	AS	2.540	LT	
13SC7	RFIS*40	cso	28-aug-1991	5.0	UGL	SD21	SE	3.020	LT	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	J801	HG	0.050	LT	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LW12	135TNB	0.488	LŤ	
13\$07	RFIS*41	CSO	28-aug-1991	10.0	UGG	LW12	13DNB	0.496	LT	
13907 13907	RF15*41	CSO	28-aug-1991	10.0	UGG	LW12	246TNT	0.456	LT	
13SC7	RFIS*41 RFIS*41	C20	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LW12 LW12	24DNT 26DNT	0.424 0.524	LT LT	
13SC7	RFIS=41	CSO	28-aug-1991	10.0	UGG	LW12	HINDX	0.566	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LW12	XB	2.410	ĻŤ	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LW12	RDX	0.587	ĹŤ	
13SC7	RFI5*41	CSO	28-aug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	
13sc7	RFIS#41	CSO	28-aug-1991	10.0	UGG	JD15	SE 32	0.250	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	111TCE	0.004	ĻT	
138C7 138C7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LX19	112TCE	0.005	LT	
13SC7	RFIS*41 RFIS*41	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LH19 LH19	11DCE	0.004	LT	
13SC7	RF15*41	CSO	28-sug-1991	10.0	UGG	LN19	1 10 CLE 120 CE	0.002 0.003	LT LT	
13sc7	RFIS*41	cso	28-aug-1991	10.0	UGG	LH19	120CLE	0.002	ŁT	
13SC7	RFIS*41	cso	28-aug-1991	10.0	UGG	LK19	1ZDCLP	0.003	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	2CLEVE	0.010	MD	R
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	ACET	0.017	LT	
13SC7	RF15*41	CSO	28-aug-1991	10.0	UGG	LH19	ACROLN	0.100	MD	R
138C7 138C7	RFIS=41	CSO	28-eug-1991	10.0	UGG	LH19	ACRYLO	0.100	ND	R
13807 13807	RFIS*41 RFIS*41	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LN19	BRDCLM	0.003	LŢ	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN19 LN19	C130CP C2AVE	0.003 0.003	LT LT	
13507	RF15*41	C\$0	28-aug-1991	10.0	UGG	LH19	C2H3CL	0.005	LT	
		444				-F117		7.000		

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	C2H5CL	0.012	LŤ	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	CóHó	0.002	LT	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	CCL3F	0.006	LT	
138C7 138C7	RFIS=41 RFIS=41	CSO	28-aug-1991 28-aug-1991	10.0	UGG UGG	LH19 LH19	CCL4 CH2CL2	0.007	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	CH2CL2 CH3BR	0.012 0.006	LT LT	
13sc7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LH19	CH3CL	0.009	LT	
13SC7	RFIS=41	CSO	28-aug-1991	10.0	UGG	LH19	CHBR3	0.007	LT	
13sc7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LH19	CHCL3	0.001	LT	
13507	RF15*41	CSO	28-aug-1991	10.0	UGG	LX19	CL2BZ	0.100	MD	R
13SC7 13SC7	RFIS*41 RFIS*41	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LH19	CLC6H5	0.001	LT	
13sc7	RF15=41	CSO	28-aug-1991	10.0	UGG	LN19 LH19	CS2 DBRCLM	0.004 0.003	LT LT	
13507	RFIST41	CSO	28-aug-1991	10.0	UGG	LN19	ETC6H5	0.002	LT	
13\$C7	RF15*41	CSO	28-aug-1991	10.0	UGG	LH19	MEC6H5	0.001	LT	
13807	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	MEK	0.070	LŤ	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	MIBK	0.027	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN19	MNBK	0.032	LT	
138C7 138C7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.8 10.8	ugg Ugg	LH19 LH19	STYR T13DCP	0.003	LT	
13907	RFIS*41	CSO	28-aug-1991	10.0	UGG	LK19	TCLEA	0.003	LT LT	
13807	RFIS#41	CSO	28-aug-1991	10.0	UGG	LH19	TCLEE	0.001	LT	
13SC7	RFIS*41	CZO	28-aug-1991	10.0	UGG	LK19	TRCLE	0.003	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH19	UNK072	0.012		S
13sc7	RF1S*41	CSO	28-aug-1991	10.0	UGG	LM19	XYLEN	0.002	LT	
13\$C7 13\$C7	RFIS*41 RFIS*41	CSO CSO	28-aug-1991 28-aug-1991	10.0	UGG UGG	LX18	124TCB	0.040	LŤ	
13807	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18 LH18	120CLB 120PH	0.110 0.140	LT ND	R
13\$C7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	130CL8	0.130	LT	*
13SC7	RFIS#41	CZO.	28-mug-1991	10.0	UGG	LN18	14DCLB	0.098	ĹŤ	
13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LH18	245TCP	0.100	LT	
13sc7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LK18	246TCP	0.170	LT	
13SC7 13SC7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LX18	24DCLP	0.180	LŤ	
138C7	RFIS*41	CSO	28-aug-1991	10.0	ugg Ugg	LM18 LM18	24DMPN 24DMP	0.690 1.200	LT	
13SC7	RF15*41	CSO	28-aug-1991	10.0	UGG	LN18	240NT	0.140	LT LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	Z6DNT	0.085	LT	
13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LH18	2CLP	0.060	ĹŤ	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LK18	SCNAP	0.036	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	2HKAP	0.049	LT	
13\$C7 13\$C7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg	LK18	2NP 2NAN IL	0.029	LŤ	
13\$C7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18 LM18	2NP	0.062 0.140	LT LT	
13507	RF15*41	CSO	28-aug-1991	10.0	UGG	LH18	330CBD	6.300	LT	
13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LM18	3MANIL	0.450	ĹŤ	
13sc7	RFIS*41	CZO	28-aug-1991	10.0	UGG	LN18	46DNZC .	0.550	LT	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	4BRPPE	0.033	LT	
138C7 138C7	RF15*41 RF15*41	C20	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LH18	4CANIL 4CL3C	0.810	LT	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG UGG	LM18 LM18	4CLPPE	0.095 0.033	LT LT	
13507	RF15*41	CSO	28-aug-1991	10.0	UGG	LN18	4MP	0.240	LT	
13807	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	4NANIL	0.410	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	4NP	1.400	LT	
13sc7	RFIS=41	CSO	28-aug-1991	10.0	UGG	LK18	ABHC	0.270	ND	R
135C7 135C7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LX18	ACLDAN	0.330	MD	R
13807	RF15*41	C20	28-aug-1991	10.0	UGG	LN18 LN18	AENSLF ALDRN	0.620 0.330	MO	R
13807	RFI5*41	C20	28-aug-1991	10.0	UGG	LN18	ANAPHE	0.036	ND LT	R
13507	RF15*41	CSO	26-aug-1991	10.0	UGG	LM18	ANAPYL	0.033	ίŤ	
13807	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	ANTRO	0.033	LT	
13807	RF15#41	CZO	28-aug-1991	10.0	UGG	LH18	B2CEXM	0.059	LT	
13807	RFIS#41	CSO	28-aug-1991	10.0	UGG	LX18	82CIPE	0.200	LT	
13SC7 13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LN18	B2CLEE	0.033	LT	
13sc7	RFIS*41 RFIS*41	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	82EHP BAANTR	0.620 0.170	LT	
13\$07	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	BAPYR	0.250	LT LT	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LX18	BBFANT	0.210	LT	
13807	RFIS*41	CSO	28-aug-1991	10.0	UGG	LX18	BBHC	0.270	ND	R
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	BBZP	0.170	LT	•
13SC7	RFIS*41	CSO	26-aug-1991	10.0	UGG	LK18	BENSL F	0.620	ND	R
138C7 138C7	RFIS#41 RFIS#41	CSO CSO	28-aug-1991	10.0	LIGG	LX18	BENZID	0.850	ND	R
13507	RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	BENZOA BGHIPY	6.100 0.250	ND 1 T	R
13507	RF15=41	CSO	28-aug-1991	10.0	UGG	LN18	BKFANT	0.066	LT LT	
	- ••							0.000		

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
13sc7	RF15*41	CSO	28-aug-1991	10.0	UGG	LM18	6741.0	0 100		
13507	RFIS*41	CSO	28-eug-1991	10.0	UGG	LM18	BZALC CHRY	0.190 0.120	LT LT	
13807	RF15*41	CSO	28-aug-1991	10.0	UGG	LH18	CL6BZ	0.033	ĹŤ	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	CL6CP	6.200	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	CL6ET	0.150	LT	
13\$67	RF15*41	CSO	28-aug-1991	10.0	UGG	LH18	DBAHA	0.210	LT	_
138C7 138C7	RF15*41 RF15*41	CSO CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LH18 LH18	DBHC DBZFUR	0.270	NO	R
13SC7	RFIS*41	CZC	28-aug-1991	10.0	UGG	LM18	DEP	0.035 0.240	LT LT	
13807	RFIS#41	CSO	28-aug-1991	10.0	UGG	UH18	DLDRN	0.310	MD	R
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	DMP	0.170	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	DNBP	0.061	LT	
13SC7	RF15*41	CSO	28-aug-1991	10.0	UGG	LX18	DNOP	0.190	LT	_
13SC7 13SC7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	LN18 UN18	ENDRN ENDRNA	0.450	MD	R
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	ENDRNK	0.530 0.530	ND ND	R R
13 \$ C7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	ESFS04	0.550	MD	Ŕ
13SC7	RF15*41	CSO	28-aug-1991	10.0	UGG	LH18	FANT	0.068	LT	
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	FLRENE	0.033	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	GCLDAN	0.330	ND	R
13sc7 13sc7	RFIS*41 RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	HCBD	0.230	LT	
13SC7	RF15*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	LN18 LN18	HPCLE HPCLE	0.130 0.330	ND ND	Ŕ
13SC7	RF1S*41	cso	28-aug-1991	10.0	UGG	LM18	ICOPYR	0.290	LT	*
13507	RFIS#41	CSO	28-aug-1991	10.0	UGG	LM18	ISOPHR	0.033	LT	
_ 13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18.	LIN	0,270	ND	R
13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	ND	R
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LH18	NAP	0.037	LT	
13SC7 13SC7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LN18 LN18	XB	0.045	LT	•
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	NNOMEA NNONPA	0.140 0.200	ND LT	R
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	HNDPA	0.190	ĹŤ	
13SC7	RF15*41	CSO	28-aug-1991	10.0	UGG	LH18	PCB016	1.400	ND	R
13SC7	RFIS#41	CZO	28-aug-1991	10.0	UGG	LH18	PCB221	1.400	HD	R
13507	RFIS*41	CSO	28-aug-1991	10.0	UGG	LN18	PCB232	1.400	ND	R
13\$C7 13\$C7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LX18	PC8242	1.400	ND	R
13SC7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg	LM18 LM18	PC8248 PCB254	2.000 2.300	NO NO	R R
13SC7	RF15*41	cso	26-aug-1991	10.0	UGG	LM18	PCB260	2.500	100	R
13SC7	RF15*41	ÇSO	28-aug-1991	10.0	UGG	UK18	PCP	1.300	ĹŤ	•
13SC7	RFIS=41	CSC	28-aug-1991	10.0	UGG	LH18	PHANTR	0.033	LT	
13SC7	RFIS*41	CSC	28-aug-1991	10.0	UGG	LM18	PHENOL	0.110	LŤ	
13\$C7 13\$C7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	ugg Ugg	LN18	PPDDD	0.270	MD	R
13SC7	RF15*41	CSO	28-aug-1991	10.0	UGG	LM18 LM18	PPODE	0.310 0.310	ND ND	R R
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	PYR	0.033	LT	*
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	LM18	TXPHEN	2.600	ND	R
13507	RF15*41	CSO	28-aug-1991	10.0	UGG	JS16	AG	0.589	LT	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	JS16	AL	5750.000		
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	J\$16	BA	85,600		
13 5 C7 13 5 C7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG UGG	312L 312L	BE	1.260 1160.000		
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	J\$16	CX CD	0.700	LŤ	
13SC7	RFIS*41	cso	28-aug-1991	10.0	UGG	J\$16	æ	7.710	E1	
13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	J\$16	CR	14.900		
13SC7	RFIS#41	CSO	28-aug-1991	10.0	UGG	JS16	ಡ	7.380		
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	J\$16	FÉ	12200.000		
13\$67	RFIS*41	CSO	28-eug-1991	10.0	UGG	JS16	K	761_000		
13 5C7 13 SC7	RFIS*41 RFIS*41	CSO	28-aug-1991 28-aug-1991	10.0 10.0	UGG	JS16	MG	2330.000		
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG ·	312L 312L	MN KA	349.000 239.000		
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	JS16	N1	9.060		
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	JS16	PB	10.500	LT	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGG	J\$16	SB	7.140	LT	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	LIGG	J\$16	TL	10.800		
13\$C7	RF15*41	CSO	28-aug-1991	10.0	UGG	JS16	¥	19.500		
13SC7 13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGG	J\$16	ZN	48.500		
13\$C7	RFIS*41 RFIS*41	CSO	28-sug-1991 28-sug-1991	10.0 10.0	UGG UGL	JD 19 \$\$10	AS AG	0.506 4.600	LT	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGL	\$\$10 \$\$10	BA	497.000	F.I	
13sc7	RFIS*41	CSO	28-aug-1991	10.0	UGL	\$\$10	8	4.010	LT	
13507	RFIS#41	CSO	28-aug-1991	10.0	UGL	SS10	æ	6.020	LT	
13SC7	RFIS*41	CSO	28-aug-1991	10.0	UGL	\$\$10	PB	18.600	LT	
13SC7	RFIS*41	CSO	28-eug-1991	10.0	UGL	\$801	HG	0.243	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Fleg	Internal Std. Code
13807	RFIS*41	CSO	28-aug-1991	10.0	UGL	SD22	AS	2.540	LT	
13807	RFIS*41	CSO	28-aug-1991	10.0	UGL	SD21	SE	3.020	ĻŤ	
13508	RFIS#42	CSO	29-aug-1991	0.5	UGG	JB01	HG	0.106		
13508	RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	LW12	135TNB	0.488	LT	
13SC8 13SC8	RF1S*42 RF1S*42	CSO	29-aug-1991	0.5	ugg ugg	LW12 LW12	130NB 246TNT	0.496 0.456	LT LT	
13sc8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LW12	24DNT	0.424	LŤ	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LW12	26DNT	0.524	LT	
13\$C8	RF15*42	ÇŞO	29-aug-1991	0.5	UGG	LW12	HIKX	0.666	LT	
13SC8 13SC8	RFIS*42 RFIS*42	C20	29-aug-1991 29-aug-1991	0.5 0.5	ugg Ugg	LW12 LW12	NB RDX	2.410 0.587	LT LT	
13SC8	RF1\$*42	CSO	29-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	JD 15	SE	0.250	LT	
135C8 135C8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	124708	0.400	LT	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	120CLB 120PH	1.100 1.000	LT ND	R
13sc8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	13DCLB	1.300	LT	•
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	14DCLB	0.980	LT	
135C8 135C8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	245TCP 246TCP	1.000 1.700	LT LT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	24DCLP	1.800	LT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	24DMPM	6.900	ĻŢ	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	24DMP	12.000	LT	
135C8 135C8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	ugg ugg	LN18	24DNT	1.400	LT	
13\$C8	RF15*42	CSO	29-aug-1991	0.5	UGG	LN18 LN18	26DNT 2CLP	0.850 0.600	LT LT	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	2CHAP	0.360	LT	
13SC8	RF15*42	C\$O	29-aug-1991	0.5	UGG	LN18	200IAP	0.490	LT	
13868 13868	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	LM18	21 P	0.290	LT	
13SC8	RFIS*42	CZO	29-aug-1991	0.5	ugg ugg	LN18 LN18	2NAN I L 2NP	0.620 1.400	LT LT	
13508	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH18	330CBD	63.000	ĹΫ	
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LH18	3NAN IL	4.500	LT	
13908 13908	RFIS*4Z RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	LM18	46DN2C	5.500	LT	
135C8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18 LM18	48RPPE 4CANIL	0.330 8.100	LT LT	
13508	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	4CL3C	0.950	ĹŤ	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	4CLPPE	0.330	LT	
13SC8 13SC8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	4MP 4MANIL	2.400 4.100	LT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LM18	4NP	14.000	LT LT	
13sc8	RF15*42	CSO	29-aug-1991	0.5	UGG	LM18	ABHC	3.000	ND	R
13508	RF1S*42	CSO	29-aug-1991	0.5	UGG	LH18	ACLDAN	3.000	ND	R
139 C8 139 C8	RF1S*42 RF1S*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	AENSLF ALDRN	6.000 3.000	ND ND	R R
13SC8	RFIS*42	CSO	29-aug-1991	0.5		LH18	ANAPNE	0.360	LT	*
13968	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	ANAPYL	0.330	LT	
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LM18	ANTRO	0.330	LT	
139C8 139C8	RFIS*4Z RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LM 18 LM 18	B2CEXM B2C1PE	0.590 2.000	LT LT	
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LM18	BZCLEE	0.330	LT	
13SC8	RFIS*42	CSO	29-eug-1991	0.5	UGG	LH18	B2EKP	6.200	LT	
13SC8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5	UGG	LM18	BAANTR	1,700	LT	
13SC8 13SC8	RF15*42	CSO	29-aug-1991	0.5 0.5	UGG	LM18 LM18	BAPYR BBFANT	2.500 2.100	LT LT	
13SC8	RFIS*42	cso	29-aug-1991	0.5	UGG	LM18	BBHC	3.000	ND	R
13808	RF15*42	CSO	29-aug-1991	0.5	UGG	LM18	6BZP	1.700	LT	~
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	BENSLF	6.000	ND	R
135CB 135CB	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	LN18 LN18	BENZID BENZOA	9.000 60.000	NO NO	R R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	BGHIPY	2.500	ĹŤ	•
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LN18	BKFANT	0.660	LT	
135C8 135C8	RF1S*42	CSO	29-aug-1991	0.5	UGG	LN18	BZALC	1.900	LT	
138C8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	CHRY CL6BZ	1.200 0.330	LT LT	
135C8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH18	CLSCP	62.000	LŤ	
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LM18	CL6ET	1.500	LT	
13\$C8	RF15=42	CSO	29-aug-1991	0.5	UGG		DBAHA	2.100	LT	_
135C8 135C8	RF1S*42 RF1S*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DBHC DBZFUR	3.000 0.350	ND LT	R
13508	RF15*42	CSO	29-aug-1991	0.5	UGG	LM18	DEP	2.400	LT	
13SC8	RF15-42	CSO	29-aug-1991	0.5	UGG	LH18	DLDRM	3.000	NO	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	DMP	1.700	LT	-
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH18	DNBP	0.610	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flaq</u>	Internal Std. Code
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LM18	DNOP	1,900	LT	
13sc8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LH18	ENDRM	5.000	ND	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	ENDRNA	5.000	ND	R
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LM18	ENDRNK	5.000	ND	R
13\$C\$ 13\$C\$	RF15*42 RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	ESFS04	6.000	ND	R
13508	RF15*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	13418 13418	FANT FLRENE	0.680	LT	
13SC8	RFIS*42	CSC	29-aug-1991	0.5	UGG	LH18	GCLDAN	0.330 3.000	LT ND	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	HCBD	2,300	LŤ	•
13sc8	RF1\$*42	CSO	29-sug-1991	0.5	UGG	LM18	HPCL	1.000	ND	R
13sc8	RF1S*42	CSO	29-aug-1991	0.5	UGG	LH18	HPCLE	3.000	ND	R
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	LH18	ICDPYR	2.900	LT	
135C8 135C8	RFIS*42 RFIS*42	CSO CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	LH18	ISOPHR	0.330	LT	_
13\$C8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18 LN18	LIN MEXCLR	3.000 3.000	ND ND	R R
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	KAP	0.370	LT	•
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH18	NB	0.450	LT	
13SC8	RF1S*42	CSO	29-aug-1991	0.5	UGG	LH18	NNDMEA	1.000	ND	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH18	NNDNPA	2.000	LT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LX18	HNDPA	1.900	LT	
135C8 135C8	RF15*42 RF15*42	CSO CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	LN18	PCB016	10.000	ND	R
13SC8	RF15"42	CSO CSO	29-aug-1991	0.5	UGG	LN18 LN18	PC8221 PC8232	10.000	ND ND	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	PC8232 PC8242	10.000 10.000	NO	R R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM18	PC8248	20.000	NĎ	Ř
13sca	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH18	PCB254	20,000	ND	Ř
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	PCB260	30.000	ND	R
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LN18	PCP	13.000	LT	
13SC8	RFIS=42	CSO	29-aug-1991	0.5	UGG	LN18	PHANTR	0.330	LŢ	
13SC8 13SC8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5	UGG	UN18	PHENOL	1.100	LŤ	_
13SC8	RF15*42	CSO	29-aug-1991	0.5 0.5	uge Uge	LN18 LN18	PPDDD PPDDE	3.000 3.000	ND ND	R R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN18	PPODE	3.000	KD KD	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH18	PYR	0.330	LT	•
13SC8	RF15*42	CSO	29-aug-1991	0.5	ŲGG	LN18	TXPHEN	30.000	ND	R
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UCG	LN19	111TCE	0,004	LT	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM19	112TCE	0.005	ĻT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LN19	11DCE	0.004	LT	
135C8 135C8	RF1S*42 RF1S*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	11DCLE 12DCE	0.002	LT	
13SC8	RF15*42	CSO	29-aug-1991	0.5	UGG	LN19	120CLE	0.003 0.002	LT LT	
13sc8	RF15*42	cso	29-aug-1991	0.5	UGG	LX19	12DCLP	0.003	LT	
13SC8	RFIS*42	ÇSO	29-aug-1991	0.5	UGG	LH19	ZCLEVE	0.010	NO	R
13sc8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM19	ACET	0.017	LT	
13908	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH19	ACROLN	0.100	ND	R
13508	RFIS*42	CSO	29-aug-1991	0.5	UGG	LM19	ACRYLO	0.100	ND	R
135C8 135C8	RF1S*42 RF1S*42	CSO CSO	29-aug-1991 29-aug-1991	0.5 0.5	ugg Ugg	LN19 LN19	BRDCLM C13DCP	0.003	LT	
13SCB	RF15*42	CSO	29-aug-1991	0.5	UGG	LH19	C2AVE	0.003 0.003	LT LT	
13SC8	RF15*42	cso	29-BUG-1991	0.5	UGG	LN19	CZH3CL	0.006	ĹŤ	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN19	C2H5CL	0.012	LT	
13508	RF15*42	CSO	29-aug-1991	0.5	UGG	LH19	C6H6	0.002	LT	
13908	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN19	CCL3F	0.006	LT	
13508 13508	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN19	CCL4	0.007	LT	
13SC8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LH19	CH2CL2	0.012	LT	
13sc8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH19 LH19	CH3BR CH3CL	0.006 0.009	ĻT ĻT	
13sc8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN19	CHBR3	0.007	ĻŤ	
13SC8	RFIS*42	CSC	29-aug-1991	0.5	UGG	LH19	CHCL3	0.001	LT	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH19	CL2BZ	0.100	KD	2
13SC8	RFIS*4Z	CSO	29-aug-1991	0.5	UGG	1419	CLC6H5	0.001	LT	
13sc8	RF15*42	CSO	29-aug-1991	0.5	UGG	LH19	CS2	0.004	LT	
13868	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN19	DBRCLN	0.003	LT	
135C8 135C8	RF1S*4Z RF1S*4Z	CSO CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	LM19	ETC6H5	0.002	LT	
13\$CB	RF15*42	CSO	29-aug-1991	0.5	UGG	LM19 LM19	MEC6H5 MEK	0.001 0.070	LT LT	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH19	MIBK	0.027	ĻŢ	
13SC8	RFIS*42	CZO	29-aug-1991	0.5	UGG	LH19	MNBK	0.032	ίŤ	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	LH19	STYR	0.003	LT	
13SC8	RF1S*42	CSO	29-aug-1991	0.5	UGG	LM19	T13DCP	0.003	LT	
13sc8	RF15*42	CSO	29-aug-1991	0.5	UGG	LM19	TCLEA	0.002	LT	
13SCB	RFIS*42	CSO	29-aug-1991	0.5	UGG	LN19	TCLEE	0.001	LT	
139C8	RFIS#42	CSO	29-aug-1991	0.5	UGG	LH19	TRCLE	0.003	LT	
13508	RFIS#42	CSO	29-aug-1991	0.5	UGG	LM19	XALEN	0.002	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal <u>Std. Code</u>
13SC8	RF15*42	ÇŞO	29-aug-1991	0.5	UGG	612L	AG	0.889		
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	JS16	AL	9830,000		
135C8	RFIS*42	CSO	29-aug-1991	0.5 0.5	UGG	JS16	BA	214.000		
13 5C8 13 5C8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5	ugg ugg	7219 7219	BE CA	2.820 18700.000		
13sc8	RFIS*42	CSO	29-aug-1991	0.5	UGG	JS16	œ	0.904		
135C8 135C8	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	ugg	JS16 JS16	CC CR	12.000 22.600		
13sc8	RF15*42	CSO	29-aug-1991	0.5	UGG	JS16	Ci Ci	43,900		
13508	RFIS*42	CSO	29-aug-1991	0.5	UGG	J\$16	FE	34100.000		
135¢8 135¢8	RF1S*42 RF1S*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGG	1216 1216	K Mg	1830.000 8360.000		
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGG	JS16	MN	1490.000		
135C8 135C8	RFIS*42 RFIS*42	CSO CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG	1516 1516	NA NI	301.000 13.000		
13SC8	RFIS*42	cso	29-aug-1991	0.5	UGG	JS16	PB	575.000		
138C8 138C8	RFIS*42 RFIS*42	CSO	29-aug-1991	0.5 0.5	ugg ugg	JS16	SB	7.140	ĻT	
13SC8	RF15*42	CSO CSO	29-aug-1991 29-aug-1991	0.5	UGG	J516 J516	TL V	25.800 37.000		-
13sc8	RFIS*42	CSO	29-eug-1991	0.5	UGG	6f2L	ZN	723.000		
13SC8 13SC8	RF1S*42 RF1S*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGG UGL	JD 19 SS 10	AS AG	2.400 4.600	LT	
13sc8	RF15*42	CSO	29-aug-1991	0.5	UGL	\$\$10 \$\$10	BA	1490.000	41	
13908	RFIS*42	CSO	29-aug-1991	0.5	UGL	\$\$10	CD	4.010	LT	
13908 13908	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	UGL UGL	\$\$10 \$\$10	CR PB	6.020 62.500	LT	
13SC8	RFIS*42	CSO	29-aug-1991	0.5	UGL	SB01	HG	0.243	ĻŢ	
135CB 135CB	RFIS*42 RFIS*42	CSO	29-aug-1991 29-aug-1991	0.5 0.5	ugl ugl	SD22 SD21	AS SE	2.540 3.020	LT	
13sc8	RF15*43	CSO	29-aug-1991	5.0	UGG	JB01	HG	0.081	LT	
13\$C8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LW12	135TNB	0.488	LT	
13SC8 13SC8	RFIS*43 RFIS*43	CZO	29-aug-1991 29-aug-1991	5.0 5.0	ugg ugg	LW12 LW12	13DNB 246TNT	0.496 0.456	LT LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LW12	24DHT	0.424	ĻŤ	
13SC8 13SC8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LW12 LW12	26DNT HMX	0.524	LT	
13sc8	RF15=43	CSO	29-aug-1991	5.0	UGG	LW12	NE	0.666 2.410	LT LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	L¥12	RDX	0.587	LT	
13908 13908	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	LW12 JD15	TETRYL SE	0.731 0.250	LT LT	
13SC8	RFIS=43	CSO	29-aug-1991	5.0	UGG	LH18	124TC8	0.040	LT	
13sc8 13sc8	RF15*43 RF15*43	C2O	29-aug-1991 29-aug-1991	5.0 5.0	ugg ugg	LM18 LM18	120CLB 120PK	0.110 0.140	LT	
13SCB	RF1S*43	CSO	29-aug-1991	5.0	UGG	LM18	130CLB	0.130	ND LT	R
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	140CLB	0.098	LT	
135C8 135C8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	lm18 lm18	245TCP 246TCP	0.100 0.170	LT LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	24DCLP	0.180	ĹŤ	
13\$C8 13\$C8	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	24DMPN 24DNP	0.690	LT	
13508	RF15*43	CSO	29-aug-1991	5.0	UGG	LM18	24DNT	1.200 0.140	LT LT	
139CB	RF15*43	CSO	29-aug-1991	5.0	UGG	LM18	260NT	0.085	ĻT	
135C8 135C8	RF1S*43 RF1S*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	2CLP 2CHAP	0.060 0.036	LT LT	
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LN18	2MMAP	0.049	LT	
139C8 139C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	2MP	0.029	LT	
135C8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	ZNANIL ZNP	0.062 0.140	LT LT	
13SC8	RFIS*43	CSC	29-aug-1991	5.0	UGG	LH18	330CBD	6.300	LT	
13\$C8 13\$C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	3NANIL 460N2C	0.450 0.550	LT LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	48RPPE	0.033	LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	4CANIL	0.810	LT	
135C8 135C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG aau	LM18 LM18	4CLPPE	0.095 0.033	LT LT	
13508	RFIS*43	CSO	29-aug-1991	5.0	ŲCG	LH18	4MP	0.240	LT	
135C8 135C8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	4NANIL 4NP	0,410 1,400	LT LT	
13\$C8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	ABHC	0.270	ND	R
13SC8	RF15*43	CSO	29-aug-1991	5.0	UGG	LH18	ACLDAN	0.330	ND	R
13\$C8 13\$C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	LM18 LM18	AENSLF ALDRN	0.620 0.330	ND ND	R Ř
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	ANAPNE	0.036	LT	•
13568	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	ANAPYL	0.033	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	ANTRC	0.033	LŦ	
13\$C\$	RFIS*43	CSG	29-aug-1991	5.0	UGG	LM18	82CEXM	0.059	LT	
13SC8	RFIS*43	cso	29-aug-1991	5.0	UGG	LX18	82CIPE	0.200	LT	
13808 13808	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LH18	B2EHP	0.033	LT	
13\$C8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18 LM18	BAANTR	0.620 0.170	LT LT	
13sc8	RFIS=43	ÇSQ	29-aug-1991	5.0	UGG	Ļ N18	BAPYR	0.250	LT	
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	BBFANT	0.210	LT	
13sc8 13sc8	RF1S*43 RF1S*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG	LM18	BBHC BBZP	0.270	ND	R
135C8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18 LM18	BENSLF	0.170 0.620	ND LT	R
13\$CB	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	BENZID	0.850	ND	Ŕ
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	BENZOA	6.100	ND	R
138 C8 138 C8	RF1S*43 RF1S*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	LM18	BGHIPY	0.250	LT	
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LM18 LM18	BKFANT BZALC	0.066 0.190	LT LT	
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	CHRY	0.120	LT	
13sc8	RFIS=43	CSO	29-aug-1991	5.0	UGG	LH18	CL6BZ	0.033	LŤ	
139C8 139C8	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg Ugg	UN18	CL6CP CL6ET	6.200 0.150	LT	
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	1.H18 1.H18	DBAHA	0.210	LT LT	
13SC8	RF15*43	cso	29-aug-1991	5.0	UGG	LM18	DBHC	0.270	ND	·R
13SC8	RF15*43	CSO	29-aug-1991	5.0	UGG	LM18	DBZFUR	0.035	LT	
138 C8 138 C8	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0	UGG	LN18	DEP	0.240	LT	_
_13\$C5	RF15*43	CSO	29-aug-1991	5.0 5.0	ugg ugg	LH18 LH18	DLDRN DMP	0.310 0.170	ND LT	R
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	DNBP	0.061	LT	
13sc8	RF15*43	CSO	29-aug-1991	5.0	UGG	LH18	DNOP	0.190	LT	
13sc8	RF15*43	CSO	29-aug-1991	5.0	UGG	LH18	ENDRN	0.450	ND	R
13sc8 13sc8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	ENDRNA ENDRNK	0.530 0.530	ND ND	R R
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	ESFSO4	0.620	ND	R
13sc8	RF15*43	CSO	29-aug-1991	5.0	UGG	LM18	FANT	0.068	LT	
13sc8	RFIS=43	CSO	29-aug-1991	5.0	UCG	LH18	FLRENE	0.033	LŤ	
135C8 135C8	RF1S*43 RF1S*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg	LM18	GCLDAN HCBD	0.330 0.230	ND Lt	Ř
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18 LH18	HPCL	0.130	ND	R
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	HPCLE	0.330	ND	Ř
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	ICDPYR	0.290	LT	
13SC8 13SC8	RFIS*43 RFIS*43	cso	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LN18 LN18	ISOPHR LIN	0.033 0.270	LT ND	R
13SC8	RFIS*43	CSC	29-aug-1991	5.0	UGG	LH18	MEXCLR	0.330	ND	Ř
13sc8	RF15*43	CSO	29-aug-1991	5.0	UGG	LH18	NAP	0.037	LT	
13508	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	NB	0.045	LT	_
13sc8 13sc8	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	NNOMEA NNOMPA	0.140 0.200	ND LT	R
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	UX18	NNDPA	0.190	ĻŢ	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LM18	PC8016	1.400	ND	R
13SC8	RFIS=43	CSO	29-aug-1991	5.0	nec	LM18	PC8221	1.400	ND	Ř
135C8 135C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LM18 LM18	PC8232 PC8242	1.400 1.400	ND ND	R
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN18	PCB248	2.000	ND	R R
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LH18	PCB254	2.300	ND	Ř
13908	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	PCB260	2.600	ND	R
135C8 135C8	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg ugg	LM18	PCP PHANTR	1.300 0.033	LŤ	
13SC8	RF15*43	C20	29-aug-1991	5.0	UGG	LM18 LM18	PHENOL	0.110	LT LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	PPOOD	0.270	NO	R
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH18	PPODE	0.310	ND	R
13SC8 13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LN18	PPDDT	0.310	ND	R
13SC8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LH18 LH18	PYR TXPHEN	0.033 2.600	LT ND	R
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LX19	111TCE	0.004	LT	*
13SC8	RFIS*43	CZO	29-aug-1991	5.0	UGG	LN19	112TCE	0.005	LŤ	
13SC8	RF15*43	C20	29-aug-1991	5.0	UGG	LH19	11DCE	0.004	LT	
135C8 135C8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG	LH19 LH19	11DCLE 12DCE	0.002 0.003	LT LT	
13SC8	RF15*43	CSO	29-aug-1991	5.0	UGG	LH19	12DCLE	0.003	LT	
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	120CLP	0.003	LT	
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	2CLEVE	0.010	ND	R
13\$C8 13\$C8	RFIS*43 RFIS*43	CSO	29-aug-1991	5.0 5.0	UGG	LN19	ACET ACROLN	0.017	LT	-
13\$C8	RF15*43	C20 C20	29-aug-1991 29-aug-1991	5.0	ugg ugg	LM19 LM19	ACRYLO	0.100 0.100	ND ND	R R
13SC8	RF15*43	cso	29-aug-1991	5.0	UGG	LM19	BRDCLM	0.003	LT	••

Site ID	<u>Field ID</u>	<u>Media</u>	Cate	<u>Depth</u>	<u>Units</u>	Analytical Method		Value	<u>Flag</u>	Internal Std. Code
13\$C8	RFIS#43	CSO	29-aug-1991	5.0	UGG	LH19	C130CP	0.003	LT	
13508	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	CZAVE	0.003	ĻŢ	
135C8 135C8	RF15*43 RF1S*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG	LH19 LH19	C2H3CL C2H5CL	0.006 0.012	LT LT	
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	C6H6	0.002	LŤ	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	CCL3F	0.006	LT	
13SC8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	CCL4 CH2CL2	0.007	LT	
13808 13808	RF15*43	CSO	29-aug-1991	5.0	UGG	LH19	CHZULZ CH38R	0.012 0.006	LT LT	
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	LN19	CH3CL	0.009	LT	
135C8 135C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	CHBR3	0.007	LŢ	
13508	RF15*43	CSO CSO	29-aug-1991	5.0	UGG	LM19	CHCL3 CL2BZ	0.001 0.100	LT ND	R
13SC8	RF15*43	CSO	29-aug-1991	5.0	UGG	LX19	CLC6H5	0.001	LT	•
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	LN19	C25	0.004	LT	
135 C8 135 C8	RF1S*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LH19 LH19	DBRCLM ETC6H5	0.003 0.002	LT LT	
13SCB	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	MEC6H5	0.001	LT	
13SC8	RF15*43	CSO	29-aug-1991	5.0	UGG	LM19	MEK	0.070	LT	
135C8 135C8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	LN19 LN19	MIBK	0.027 0.032	LT LT	
13SC8	RF15*43	ÇSO	29-aug-1991	5.0	UGG	LN19	STYR	0.003	ĹŤ	
13908	RFIS*43	CSO	29-aug-1991	5.0	UGG	LH19	T13DCP	0.003	LT	
13sc8 13sc8	RF1S*43 RF1S*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT	
_13SC8	RF15*43	CSO	29-aug-1991	5.0	UGG	LK19	TRCLE	0.003	LT LT	
13SC8	RF1S*43	CZO	29-aug-1991	5.0	UGG	LM19	KATAX	0.002	LŤ	
13808	RFIS*43	CSO	29-aug-1991	5.0	UGG	J\$16	AG	0.589	LT	
138C8 138C8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	ugg ugg	J\$16 J\$16	AL Ba	4860.000 69.100		
13SCB	RF1S*43	CSO	29-aug-1991	5.0	UGG	JS16	BE	1.210		
13SC8	RFIS=43	CSO	29-aug-1991	5.0	UCG	J\$16	CA	905.000		
138C8 138C8	RF15*43 RF15*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	1516 1516	ස ස	0.700 6.620	LT	
13SC8	RF15*43	cso	29-aug-1991	5.0	UGG	JS16	CR	13.200		
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	J\$16	au .	4.620		
13SC8 13SC8	RFIS*43 RFIS*43	CSO CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	1816 J\$16	FE K	10200.000 1310.000		
13sc8	RFIS*43	CSO	29-aug-1991	5.0	UGG	JS16	MG	2050.000		
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	J\$16	MIN	267.000		
13SC8 13SC8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	J216 J216	NA NI	223.000 7.770		
13SC8	RFIS*43	CSO	29-aug-1991	5.0	UGG	J\$16	PB	10,500	LŤ	
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	JS16	SB	7.140	LT	
135C8 135C8	RFIS=43 RFIS=43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGG UGG	1216 1216	TL V	6.620 15.700	ĻŤ	
13508	RF15*43	CSO	29-eug-1991	5.0	UGG	4516 612L	Y ZN	43.100		
13SC8	RF1S*43	CSO	29-aug-1991	5.0	UGG	JD19	AS	0.388		
13508	RFIS*43	CSO	29-aug-1991	5.0	UGL	S\$10	AG	4.600	LT	
13SC8 13SC8	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGL	SS10 SS10	BA CD	401.000 4.010	LT	
13SC8	RF15*43	CSO	29-aug-1991	5.0	UGL	SS10	CR	6.020	LT	
13SC8	RFIS*43	cso	29-aug-1991	5.0	UGL	\$\$10	PB	18.600	LT	
13SCB 13SCB	RFIS*43 RFIS*43	CSO	29-aug-1991 29-aug-1991	5.0 5.0	UGL	\$801 \$022	HG AS	0.243 2.540	LT	
13SC8	RF15*43	ÇSO	29-aug-1991	5.0	UGL	SD21	SE	3.020	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	1801	HG	0.050	LT	
135C8 135C8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	LW12 LW12	135TKB 130HB	0.488 0.496	LT LT	
13sc8	RF15*44	ÇSO	29-aug-1991	10.0	UGG	L¥12	246TNT	0.456	LT	
13SCB	RF15*44	CSO	29-aug-1991	10.0	UGG	LW12	24DNT	0.424	LT	
13868 13868	RF15*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG	L¥12	26DNT	0.524	LT	
13\$C8	RFIS*44 RFIS*44	CSO	29-sug-1991	10.0	UGG	LW12 LW12	HMCC NB	0.666 2.410	LT LT	
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LW12	RDX	0.587	ĻŦ	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LW12	TETRYL	0.731	LT	
13sc8 13sc8	RFIS*44 RFIS*44	CSO CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	JD15 LM18	SE 124TCB	0.250 0.040	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	120CLB	0.110	LŤ	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	120PH	0.140	ND	R
13SC8 13SC8	RF15*44 RF15*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	13DCLB 14DCLB	0.130 0.098	LT	
135C8	RF15=44 RF15=44	CSO	29-aug-1991	10.0	UGG	LM18	245TCP	0.100	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	246TCP	0.170	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18	24DCLP	0.180	LT	
13sc8	RFIS*44	ÇSO	29-aug-1991	10.0	UCG	LH18	24DMPN	0.690	LT	
13508	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	24DNP	1.200	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LX18	24DNT	0.140	ĹŤ	
135 C8	RF15*44	CSO	29-aug-1991	10.0	UGG	LH18	26DNT	0.085	ĻŢ	
13SC8	RF1S*44	CSO	29-aug-1991	10.0	ŲGG	LM18	2CLP	0.060	LT	
13508	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	ZCNAP	0.036	LT.	
13508	RFIS*44	cso	29-aug-1991	10.0	UGG	U18	2MNAP	0.049	LT	
13908	RF15*44	CSO	29-aug-1991	10.0	UGG	LM18	2NP	0.029	LT	
13SC8 13SC8	RFIS*44 RFIS*44	CSO CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	LM18	2NANIL	0.062	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18 LN18	2NP 33DCBD	0.140 6.300	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	3NANIL	0,450	LT	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	460N2C	0.550	ĹŤ	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	4BRPPE	0.033	ĹŤ	
13SC8	RFIS=44	CSO	29-aug-1991	10.0	UGG	LH18	4CANIL	0.810	LT	
13 5C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	4CL3C	0.095	LT	
13sc8	RF15*44	CSO	29-aug-1991	10.0	ŲGG	LN18	4CLPPE	0.033	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	4MP	0.240	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LX18	4NANIL	0.410	LT	
135C8 135C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	4NP	1.400	LT	_
138C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	ABHC	0.270	NĎ	R
135C8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg Ugg	LM18 LM18	ACLDAN AEXSLF	0.330 0.620	ND ND	R R
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	ALDRN	0.330	NO NO	R
_ 13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	ANAPNE	0.036	LT	•
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LM18	ANAPYL	0.033	LT	
13SCB	RFIS*44	ÇŞO	29-aug-1991	10.0	UGG	LN18	ANTRC	0.033	ĹŤ	
13SC8	RFIS#44	CSO	29-aug-1991	10.0	UGG	LH18	B2CEXM	0.059	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18	B2CIPE	0.200	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	BŻCLEE	0.033	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18	B2EHP	0.620	LT	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	BAANTR	0.170	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18	BAPYR	0.250	LT	
13SC8 13SC8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	LN18	BBFANT	0.210	LT	_
13\$C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18 LN18	BBZP	0.270 0.170	MD LT	R
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	BENSLF	0.620	NO	R
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	BENZID	0.850	MD	Ř
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	DI18	BENZOA	6.100	NED	Ř
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	BGHIPY	0.250	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	BKFANT	0.066	LT	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LX18	BZALC	0.190	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LX18	CHRY	0.120	ŁT	
135C8 135C 8	RFIS=44	CSO	29-aug-1991	10.0	UGG	LM18	CL68Z	0.033	LT	
13SC8	RFIS*44 RFIS*44	CSO CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg ugg	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	DBAHA	0.210	LT	
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LN18	DBHC	0.270	ND	R
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18	DBZFUR	0.035	Lī	Α
13508	RFIS*44	cso	29-aug-1991	10.0	UGG	LN18	DEP	0.240	ĹŤ	
13508	RF15*44	CSO	29-aug-1991	10.0	UGG	LN18	DLDRN	0.310	KD	R
13\$C8	RFIS*44	CSO	29-aug-1991	10.0	UGĞ	LM18	DHP	0.170	LT	
13SC8	RFIS*44	CZO	29-aug-1991	10.0	UGG	LM18	DNBP	0.061	LT	
13SC8	RFIS*44	CSO	29-eug-1991	10.0	UGG	LH18	DNOP	0.190	ĻT	
13508	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	ENDRM	0.450	ND	Ř
13508	RF1S*44	CSO	29-aug-1991	10.0	UGG	LN18	EXDRNA	0.530	ND	R
135C8 135C8	RF15*44	CSO	29-aug-1991	10.0	UGG	LN18	ENDRNK	0.530	NO	R
135C8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG	LM18	ESFSO4	0.620	ND	R
13\$68	RFIS*44	CSO	29-aug-1991	10.0	ugg Ugg	LM18 LM18	FANT FLRENË	0.068 0.033	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	GCLDAN	0.330	MD	
13sc8	RFIS*44	CSO	29-aug-1991	18.0	UGG	LH18	HCBO	0.230	ĻŢ	R
13SC8	RFIS*44	CSC	29-aug-1991	10.0	UGG	LM18	HPCL	0.130	MD F1	R
13\$C8	RFIS*44	CSO	29-eug-1991	10.0	UGG	UNIS	MPCLE	0.330	HD	Ř
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LM18	ICOPYR	0.290	ίΤ	-
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LH18	ISOPHR	0.033	LT	
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LN18	LIN	0.270	ND	R
13\$C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	MEXCLR	0.330	ND.	R
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	NAP	0.037	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN18	NB	0.045	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	NNDMEA	0.140	ND	R
13SC8	RFIS*44	C\$0	29-aug-1991	10.0	UGG	LX18	NNDNPA	0.200	ĻŢ	
13908	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	NNDPA	0.190	LŤ	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13sc8	RFIS*44	cso	29-aug-1991	10.0	UGG	1 M4 G	PCB016	4 (00	Lim	_
13808	RF15*44	CSO	29-aug-1991	10.0	UGG	LM18 LM18	PC8221	1.400 1.400	ND ND	R R
13sc8	RF15*44	CSO	29-aug-1991	10.0	UGG	LM18	PCB232	1_400	HD	Ř
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LM18	PCB242	1.400	ND	R
13SC8	RF15*44	CSO	29-aug-1991	10.8	UGG	LH18	PC8248	2.000	ND	Ŕ
139C8 139C8	RFIS*44 RFIS*44	CSO CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	LH18 LH18	PCB254 PCB260	2.300 2.600	ND ND	R
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM18	PCP	1.300	LT	R
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	PHANTR	0.033	LT	
13508	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH18	PHENOL	0.110	LT	_
135C8 135C8	RF15*44 RF15*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	LM18 LM18	PPODD PPODE	0.270 0.310	ND ND	R R
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LH18	PPODT	0.310	ND	Ř
13sc8	RFIS*44	CZO	29-aug-1991	10.0	UGG	LM18	PYR	0.033	LT	
135C8 135C8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0	ugg ugg	LM18 LM19	TXPHEN 111TCE	2.600	ND	R
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM19	112TCE	0.004 0.005	LT LT	
13sc8	RFIS*44	cso	29-aug-1991	10.0	UGG	LM19	11DCE	0.004	ĹŤ	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH19	11DCLE	0.002	LT	
13568	RF15*44	CSO	29-aug-1991	10.0	UGG	LH19	120CE	0.003	LT	
13808 13808	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg	LH19 LH19	12DCLE 12DCLP	0.002 0.003	LT LT	
13808	RFIS#44	CSO	29-aug-1991	10.0	UGG	LN19	2CLEVE	0.010	ND	R
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN19	ACET	0.017	LT	•
13sc8	RF15*44	cso	29-aug-1991	10.0	UGG	LH19	ACROLN	0.100	ND	R
_13sc8 13sc8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg	LX19 . LX19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
135C8	RF15*44	CSO	29-aug-1991	10.0	UGG	LH19	C13DCP	0.003	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH19	C2AVE	0.003	ĹŤ	
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LN19	C2X3CL	0.006	LT	
13\$C8 13\$C8	RFIS*44 RFIS*44	CSO CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg Ugg	LN19 LN19	C2H5CL C6H6	0.012 0.002	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN19	CCL3F	0.002	LT	
13SC8	RFIS*44	cso	29-aug-1991	10.0	UGG	LH19	CCL4	0.007	ĹŤ	
13sc8	RFIS=44	CSO	29-aug-1991	10.0	UGG	LH19	CH2CL2	0.012	LT	
13SC8	RF1S*44	CSO	29-aug-1991	10.0	UGG	LN19	CH3BR	0.006	LT	
135C8 135C8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	CH3CL CHBR3	0.009 0.007	LT LT	
13SC8	RF15*44	CSO	29-aug-1991	10.0	UGG	LH19	CHCL3	0.001	ĹŤ	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH19	CL28Z	0.100	MD	R
13sc8 13sc8	RFIS*44 RFIS*44	CSO CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG	LN19	CLC6H5	0.001	LT	
13SC8	RF15*44	CZO	29-aug-1991	10.0	UGG UGG	LH19 LH19	CS2 DBRCLM	0.004 0.003	LT LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH19	ETC6H5	0.002	LŤ	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH19	MEC6K5	0.001	LT	
135C8 135C8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	MEK	0.070 0.027	LT LT	
13808	RFIS*44	CSO	29-aug-1991	10.0	UGG	LH19	MNBK	0.032	LT	
13sc8	RF15*44	CSO	29-sug-1991	10.0	UGG	LH19	STYR	0.003	ĹŤ	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LM19	T130CP	0.003	LT	
135C8	RF15*44	CSO	29-aug-1991	10.0	UGG	LH19	TCLEA	0.002	LT	
138 08 138 08	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg ugg	LN19 LN19	TCLEE TRCLE	0.001 0.003	LT LT	
135C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	LN19	XYLEN	0.002	ĻŢ	
13508	RFIS=44	CSO	29-aug-1991	10.0	UGG	JS16	AG	0.589	LT	
13508	RFIS*44	CSO	29-aug-1991	10.0	UGG	JS16	AL	5800.000		
13sc8 13sc8	RF1S*44 RF1S*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	BA 8E	79.400 0.878		
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	J\$16	ÇÃ	987.000		
13\$C8	RFIS*44	ÇSO	29-aug-1991	10.0	UGG	1S16	œ	0.700	LT	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGG	JS16	co	7.020		
13sc8 13sc8	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg Ugg	JS16 JS16	CIX	14.400 6.070		
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	JS16	FE '	11600.000		
135C8	RFIS*44	CSO	29-aug-1991	10.0	UGG	JS16	K	1390.000		
13\$C8	RF15*44	CSO	29-eug-1991	10.0	UGG	J\$16	NG	2310.000		
13SC8	RFIS*44 RF15*44	CSO	29-aug-1991	10.0	UGG	J\$16	NN NA	289.000		
138C8 138C8	RF15*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG	1516 1516	NA NI	266.000 8.600		
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGG	J\$16	PS	10.500	ŁT	
13508	RFIS*44	CSO	29-aug-1991	10.0	UGG	JS16	SB	7.140	LT	
13908	RFIS*44	CZO	29-aug-1991	10.0	UGG	JS16	TL,	9.820		
135C8 135CB	RFIS*44 RFIS*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	UGG UGG	JS16 JS16	V ZN	18.800 50.400		
الماجية لند بهده	N. 43 TT		ar dug 1771		-	4910		30.400		

Site ID	Field ID	Media	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	_ Value	Flag	Internal
13508			20							
13SC8	RF15*44 RF15*44	CSO	29-aug-1991 29-aug-1991	10.0 10.0	ugg ugl	JD19 SS10	AS AG	0.549 4.600	LT	
13sc8	RFIS*44	CSO	29-aug-1991	10.0	UGL	S\$10	BA	4\$1,000	Li	
13sc8	RFIS=44	CSO	29-aug-1991	10.0	UGL	SS10	(2)	4.010	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGL	\$\$10	CR CR	6.020	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGL	SS10	PB	18.600	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGL	SB01	HG	0.243	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGL	SD 22	AS	2.540	LT	
13SC8	RFIS*44	CSO	29-aug-1991	10.0	UGL	SD21	SE	3.020	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UH14	245TP	0.170	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UR14	24D	0.802	ĻŤ	
13SE1 13SE1	VFSL*100	CSE	09-mar-1992 09-mar-1992	1.0 1.0	UGL	UK13	CLDAN	0.265	LT	
13SE1	VFSL*100 VFSL*100	CSE CSE	09-mar-1992	1.0	UGL UGL	UH13 UH13	ENDRN LIN	0.024 0.051	LT LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UK13	MEXCLR	0.057	LĪ	
13SE1	VFSL*100	CZE	09-mar-1992	1.0	UGL	UK13	TXPHEM	1.350	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	SD21	SE	3.020	ĹŤ	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	5022	AS	2.540	ĻŤ	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	\$801	HG	0.243	ĻT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	SS10	AG	4.600	LŤ	
13SE1	VF\$L*100	CSE	09-mar-1992	1.0	UGL	SS10	BA	1000.000		
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	\$\$10	89	4.010	LT	
13\$E1	VFSL*100	CSE	09-mar-1992	1.0	UGL	SS10	CR	6.020	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	SS10	PB	144.000		
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UM20	11DCE	0.500	LT	
13SE1 13SE1	VFSL*100 VFSL*100	CSE	09-mar-1992 09-mar-1992	1.0 1.0	UGL	UM20 UM20	120CLE	0.500	LT	
13SE1	VFSL*100	CSE CSE	09-mar-1992	1.0	UGL	UN20	C2H3CL C6H6	2.600 0.500	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UN20	CCL4	0.580	LT LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UM20	CHCL3	0.500	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UH20	CLC6H5	0.500	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UNZ0	MEK	6.400	ĻŤ	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UN20	TCLEE	1.600	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UM20	TRCLE	0.500	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UM18	14DCLB	1.700	LT	
13\$E1	VF5L*100	CSE	09-mar-1992	1.0	UGL	UM18	245TCP	5.200	LT	
13SE1	VF\$L*100	CSE	09-mar-1992	1.0	UGL	UN18	246TCP	4.200	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UH18	24DNT	4.500	LŤ	
13SE1	VFSL*100	CSE	09-mer-1992	1.0	UGL	UN18	2MP	3.900	ĻŢ	_
138E1 138E1	VFSL*100 VFSL*100	CSE	09-mar-1992 09-mar-1992	1.0	UGL	UN18	3HP	3.900	NO	R
13SE1	VFSL*100	CSE	09-mar-1992	1.0 1.0	UGL	UN18 UN18	4MP CL68Z	0.520 1.600	LT LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UN18	CLOSZ	1.500	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UN18	HCBD	3.400	LT	
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UN18	NB	0.500	LŤ	
135E1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UN18	PCP	18.000	LT	
13SE1	VFSL*100	C\$E	09-mar-1992	1.0	UGL	UN18	PYRDIN	5,200	ND	R
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UH18	UNK526	9.000		\$
13SE1	VFSL*100	CSE	09-mar-1992	1.0	UGL	UH13	HPCL	0.042	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	JD15	SE	0.250	LT	
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LK19	111TCE	0.004	LT	
13SE1 13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN19	112TCE	0.005	LT	
135E1	RFIS*52 RFIS*52	CSO CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LM19	11DCE	0.004	LT	
13sE1	RFIS*52	CSO	09-oct-1991	1.0	UGĞ	LM19 LM19	11DCLE	0.002 0.003	LT	
13\$£1	RF15*52	CSO	09-oct-1991	1.0	UGG	LH19	12DCE 12DCLE	0.002	LT LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN19	120CLP	0.002	LT	
13SE1	RFIS*5Z	CSO	09-oct-1991	1.0	UGG	LH19	2CLEVE	0.010	MD	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH19	ACET	0.017	ίĭ	•
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH19	ACROLN	0.100	MD	R
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LR19	ACRYLO	0.100	ND	Ř
13\$E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN19	BRDCLM	0.003	LT	**
13\$E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM19	C13DCP	0.003	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM19	C2AVE	0-003	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LH19	CZH3CL	0.006	LT	
135E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH19	C2H5CL	0.012	LT	
135E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN19	C6H6	0.002	LT	
135£1 135£1	RF15*5Z	CSO	09-oct-1991	1.0	UGG	LH19	CCL3F	0.006	LT	
135E1 13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	U19	CCL4	0.007	LT	
138E1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LN19 LN19	CH2CL2 CH3BR	0.012	LT	
13\$E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN19	CH3CL	0.006 0.009	LT LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM19	CHBR3	0.007	LT	
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LM19	CHCL3	0.001	LT	
· - -							*** ·			

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
450-4										<u> </u>
13SE1 13SE1	RFIS*5Z RFIS*52	CSO CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LN19 LN19	CL2BZ	0.100	ND	R
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	UN19	CLC6H5 CS2	0.001 0.004	LT	
13SE1	RF15*52	cso	09-oct-1991	1.0	UGG	LM19	DBRCLM	0.003	LT LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM19	ETC6H5	0.002	LT	
13SE1	RFIS*52	cso	09-oct-1991	1.0	UGG	LH19	HEC6H5	0.001	LT	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LH19 LH19	MIBX	0.070	LT	
13SE1	RF15*52	CZO	09-oct-1991	1.0	UGG	LH19	MNBK	0.027 0.032	LT LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LH19	STYR	0.003	ĹŤ	
13SE1	RF1S*52	CSO	09-oct-1991	1.0	nee	LH19	T13DCP	0.003	ĻŢ	
13SE1 13SE1	RF1S*52 RF1S*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LH19 LH19	TCLEA TCLEE	0.002	LŢ	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LN19	TRCLE	0.001 0.003	LT LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH19	XYLEN	0.002	ĻŤ	
13\$E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	J801	HG	0.050	ĻŢ	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	JD19 LM18	AS 1247C8	1.910 0.400	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LH18	120CLB	1_100	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LX18	1ZDPH	1.000	ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	130CLB	1.300	LT	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LH18 LH18	14DCLB 245TCP	0.980 1.000	LŢ	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM18	2451CP	1.700	LT LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN18	24DCLP	1.800	LT	
_ 13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LN18	24DMPN	6.900	LT	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LN18	24DNP	12.000	ĻT	
138E1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM18 LM18	24DNT 26DNT	6.140 3.610		
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	2CLP	0.600	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LX18	2CHAP	0.360	LŤ	
13\$E1 13\$E1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0	UGG UGG	LX18 LX18	2MNAP 2MP	0.490	ĻŢ	
13SE1	RF15-52	CSO	09-oct-1991	1.0	UGG	LN18	ZNANIL	0.290 0.620	LT LT	
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LN18	ZNP	1.400	LT	
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LM18	330CBD	63.000	LT	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	UN18 UN18	3RAN IL 46DN2C	4.500 5.500	LT LT	
13SE1	RFIS*52	csc	09-oct-1991	1.0	UGG	LM18	4BRPPE	0.330	LT	
13SE1	RF15*52	C20	09-oct-1991	1.0	UGG	LN18	4CANIL	8.100	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN18	4CL3C	0.950	LT	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	UN18 UN18	4CLPPE 4MP	0.330 2.400	LT LT	
13SE1	RFIS*52	cso	09-oct-1991	1.0	UGG	UH18	4NANTE	4,100	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	UH18	4NP	14.000	LT	
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LM18 LM18	ABHC	3.000	ND ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	ACLDAN AENSLF	3.000 6.000	ND ND	R R
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM18	ALDRN	3.000	100	Ř
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	ANAPNE	0.360	ĻŤ	
13SE1 13SE1	RFI\$*52 RFI\$*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LM18 LM18	ANAPYL ANTRC	0.330 0.330	ĻŢ	
135E1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM18	B2CEXM	0.590	LT LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	BZCIPE	2.000	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	BECLEE	0_330	LT	
13\$E1 13\$E1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0	ugg	LM18 LM18	82EHP	6.200	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	UN18	BAANTR BAPYR	1.700 2.500	LT LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN18	BBFANT	2.100	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	BSHC	3.000	ND	R
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LM18 LM18	B8ZP	1.700	LT	_
13SE 1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	BENSLF BENZID	6.000 9.000	NO NO	R R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	BENZOA	60.000	NO.	Ř
13\$£1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	BGHIPY	2.500	LT	-
13SE1 13SE1	RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	DGG DGU	LM18	BKFANT	0.660	LT	
138E1	RFIS*52 RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18 LM18	BZALC CHRY	1.900 1.200	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	CL68Z	0.330	ĹĬ	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LN18	CL6CP	62.000	LT	
13\$E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LX18	CLEET	1.500	LŢ	
13SE1 13SE1	RF1\$*52 RF1\$*52	CSO CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LM18 LM18	DBAHA DBHC	2.100 3.000	LT ND	R
135E1	RF15*52	CSO	09-oct-1991	1.0	UGG	LN18	DBZFUR	0.350	LT	n.

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	DEP	3,720		
13\$E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	DLDRN	3,000	ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UCG	LH18	DHP	1,700	LT	
135E1 135E1	RF15*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg ugg	LM18	DNBP	6.150		
138E1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM18 LM18	DNOP ENDRN	1.900 5.000	LŤ MD	R
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	U418	ENDRNA	5.000	MD	R
13SE1	RFI5*52	CSO	09-oct-1991	1.0	UGG	LN18	ENDRNK	5.000	ND	Ř
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LH18	ESFSO4	6.000	ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	FANT	0.680	LT	
13\$E1 13\$E1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LH18 LH18	FLRENE GCLDAN	0.330 3.000	ĻŢ	_
135E1	RF15*52	CSO	09-oct-1991	1.0	UGG	LH18	HCBD	2.300	NED LT	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	HPCL	1.000	ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	HPCLE	3.000	ND	R
13SE1	RFIS*52	cso	09-oct-1991	1.0	UGG	LH18	ICOPYR	2.900	LT	
13 5E1 13SE1	RF1\$*52 RF1\$*52	CSO CSO	09-oct-1991 09-oct-1991	1.0	UGG	LH18	ISOPHR	0.330	LT	_
13SE1	RF15-52	CSO	09-oct-1991	1.0	ugg Ugg	UN18 UN18	LIN MEXCLR	3.000 3.000	ND ND	R R
13SE1	RFIS*52	CZO	09-oct-1991	1.0	UGG	LH18	NAP	0.370	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LM18	MB	0.450	LT	
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LM18	NNDMEA	1.000	ND	* R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LM18	NNDHPA	2.000	ĻT	
13SE1 13SE1	RFIS*52 RFIS*52	CZO	09-oct-1991 09-oct-1991	1.0	ugg ugg	LM18 LM18	NNDPA	4.070	Wh	_
_13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	PC8016 PC8221	10.000	ND ND	R R
13SE1	RF15*52	cso	09-oct-1991	1.0	UGG	LH18	PCBZ32	10.000	ND	Ř
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LX18	PCB242	10.000	ND	Ř
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LX18	PC8248	20.000	ND	R
13SE1	RF1S*52	CSO	09-oct-1991	1.0	UGG	LH18	PCB254	20.000	ND	R
13\$£1 13\$£1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LM18 LM18	PCB260 PCP	30.000 13.000	XD LT	R
13SE1	RFIS*52	CSC	09-oct-1991	1.0	UGG	LM18	PHANTR	0.330	LT	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	PHENOL	1.100	ĹŤ	
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LH18	PPDDD	3.000	ND	R
13SE1	RFIS*52	C\$0	09-oct-1991	1.0	ugg	LH18	PPDDE	3.000	ND	R
13\$£1 13\$£1	RFIS*52 RFIS*52	CSO -	09-oct-1991 09-oct-1991	1.0	UGG	LK18	PPDDT	3.000	ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1,0 1.0	UGG UGG	LN18 LN18	PYR TXPHEN	0.330 30.000	1,T ND	R
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	J\$16	AG	0.589	LT	^
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	J\$16	AL	9230.000		
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	JS16	BA	131.000		
138E1 138E1	RFIS*52 RFIS*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	J\$16	38	0.500	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	1216 1216	CA CD	17500.000 0.700	LT	
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	JS16	80	8.360		
13SE1	RF1S*52	C20	09-oct-1991	1.0	UGG	JS16	CR	21.900		
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	1516	au	64.600		
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	J\$16	FE	16200.000		
13SE1 13SE1	RF1S*52 RF1S*52	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg ugg	J\$16 J\$16	K	1850.000 8540.000		
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	JS16	MG MN	531.000		
13SE1	RF1\$*52	ÇSO	09-oct-1991	1.0	UGG	JS16	KA	342.000		
135£1	RFIS*52	CSO	09-oct-1991	1.0	UGG	J516	HI	12.000		
135E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	J\$16	PB	475_000		
13SE1 13SE1	RFIS*52 RFIS*52	CSO	09-oct-1991	1.0	UGG	JS16	S8.	7.140	LT	
13SE1	RF15-52	C20	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	JS16 JS16	TL V	6.620 24.200	LT	
13SE1	RF15*52	cso	09-oct-1991	1.0	UGG	JS16	ZX	390.000		
13SE1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LW12	135THB	1.870		С
135E1	RFIS*52	CSO	09-oct-1991	1.0	UGG	LW12	130MB	0.496	LT	
13SE1	RFIS*52	CZO	09-oct-1991	1.0	UGG	LW12	246THT	2.350		c
13\$E1 13\$E1	RFIS*52 RFIS*5Z	CSO CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LW12	24DNT	1.260		Ç
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	L¥12 L¥12	260NT HMX	1.290 0.666	LT	C
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LW12	NG	2.410	LT	U
13SE1	RF15*52	CSO	09-oct-1991	1.0	UGG	LW12	RDX	0.587	LT	-
13sE1	RFIS*52	CSO	09-oct-1991	1.0	UCG	LW12	TETRYL	0.731	ĻT	
13\$E2	RFIS*53	CSO	09-oct-1991	1.0	UGG	JD15	SE	0.250	LT	
13\$E2 13\$E2	RF1S*53 RF1S*53	CSO CSO	09-oct-1991 09-oct-1991	1.0	UGG	LK19	111TCE	0.004 0.005	LT	
135E2	RF15*53	CZO	09-00t-1991	1.0 1.0	UGG UGG	LN19 LN19	112TCE 11DCE	0.004	LT LT	
13SE2	RFIS*53	CSO	09-oct-1991	1.0	UGG	LH19	11DCLE	0.002	ĻŢ	
13SE2	RFIS*53	CSO	09-oct-1991	1.0	UGG	LH19	12DCE	0.003	ĹŤ	

Site ID	Field ID Med	<u>dia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte _Abbrv,	Value	<u>Flag</u>	Internal Std. Code
13SE2	RF1S*53 C	SO	09-oct-1991	1.0	UGG	LM19	12DCLE	0.002	LT	
13SE2	RFIS*53 C	SO	09-oct-1991	1.0	UGG	LM19	12DCLP	0.003	LT	
13SE2		SO	09-oct-1991	1.0	UGG	LH19	2CLEVE	0.010	ND	R
135E2 135E2		SO SO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LN19 LN19	ACET ACROLN	0.017 0.100	LT ND	R
13SE2		SO	09-oct-1991	1.0	UGG	LN19	ACRYLO	0.100	QK	R R
13SE2		SC	09-oct-1991	1.0	UGG	LX19	BRDCLM	0.003	LT	
13SEZ 13SE2		\$0 \$0	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LH19 LH19	C13DCP C2AVE	0.003 0.003	LT LT	
13SE2		\$0 \$0	09-oct-1991	1.0	UGG	LH19	CZH3CL	0.006	LT	
13SE2		SO	09-oct-1991	1.0	ugg	LH19	C2H5CL	0.012	LT	
13 SE 2 13SE2		SO SO	09-oct-1991 09-oct-1991	1.0	ugg Ugg	LN19 LN19	C6H6 CCL3F	0.002	LT	
13SE2		30 20	09-oct-1991	1.0	UGG	LM19	CCL4	0.007	LT LT	
13SE2	RFIS*53 C	\$0	09-oct-1991	1.0	UGG	LM19	CH2CL2	0.012	LT	
13SEZ		SO	09-oct-1991	1.0	UGG	LH19	CH3BR	0.006	LT	
13SE2 13SE2		SO SO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LN19 LH19	CH3CL CHBR3	0.009 0.007	LT LT	
13SEZ		so	09-oct-1991	1.0	UGG	LN19	CHCL3	0.001	LT	
13SE2	_	so	09-oct-1991	1.0	UGG	LN19	CL2BZ	0.100	ND	R
138£2 138E2	•	SO FO	09-oct-1991 09-oct-1991	1.0	ugg ugg	LM19	CLC6H5 CSZ	0.001	LT	-
138E2 138E2		50 50	09-oct-1991	1.0	UGG	LH19 LH19	DBRCLM	0.004 0.003	LT LT	
13SE2		so	09-oct-1991	1.0	UGG	LH19	ETC6H5	0.002	LT	
13SE2		SO	09-oct-1991	1.0	UGG	LH19	MEC6H5	0.001	LT	
_13SE2 13SE2		SO SO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LH19 LH19	MEK HIBK	0.070	LT	
13SE2		30 S0	09-oct-1991	1.0	UGG	LH19	WNSK	0.027 0.032	LT LT	
13SE2		SO .	09-oct-1991	1.0	UGG	UX19	STYR	0.003	LŤ	
13SE2		SO	09-oct-1991	1.0	UGG	LH19	T13DCP	0.003	LT	
13SE2 13SE2		50 S0	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT LT	
138E2		SO	09-oct-1991	1.0	UGG	LK19	TRCLE	0.003	LT	
13SE2	RFIS*53 C	SO	09-oct-1991	1.0	UGG	UK19	XYLEN	0.002	LT	
13SE2		SO	09-oct-1991	1.0	UGG	JB01	HG	0.124		
13\$E2 13\$E2		50 S0	09-oct-1991 09-oct-1991	1.0	UGG UGG	JD19 LM18	AS 124TCB	4.200 0.400	LT	
13SE2		\$O	09-oct-1991	1.0	UGG	LN18	120CLB	1.100	ĹĪ	
13\$22		SO	09-oct-1991	1.0	UGG	LN18	120PK	1.000	MD	R
13SE2 13SE2		SO SO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LM18 LM18	13DCLB 14DCLB	1.300 0.980	LT LT	
13SE2		so	09-oct-1991	1.0	UGG	LH18	245TCP	1.000	LT	
13\$E2		\$ 0	09-oct-1991	1.0	UGG	LH18	246TCP	1.700	LT	
13SE2 13SE2		SO SO	09-oct-1991 09-oct-1991	1.0 1.0	ugg ugg	LH18 LH18	24DCLP 24DMPN	1.800	LT LT	
138E2 13SE2		50 S0	09-oct-1991	1.0	UGG	LK18	24DNP	6.900 12.000	LT LT	
13SE2		\$0	09-oct-1991	1.0	UGG	LK18	24DNT	1.400	ĹŤ	
13SE2		SO	09-oct-1991	1.0	UGG	LH18	260NT	0.850	LT	
13SE2 13SE2		50 S0	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LN18 LN18	2CLP 2CHAP	0.600 0.360	LT LT	
13522	· · · · · · · · · · · · · · · · · · ·	30 S0	09-oct-1991	1.0	UGG	LH18	2MNAP	0.490	LT	
13SE2	RFIS*53 C	SO	09-oct-1991	1.0	UGG	LH18	2MP	0.290	LT	
13\$E2 13\$E2		SO ~	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LH18	ZNANTL ZNP	0.620	LT	
138E2 138E2		SO SO	09-act-1991	1.0	UGG UGG	LN18 LX18	330CBD	1,400 63,000	LT LT	
13SE2		SO	09-oct-1991	1.0	UGG	UH18	3NANIL	4.500	ĹŤ	
13SE2		SO	09-oct-1991	1.0	UGG	LH18	46DN2C	5.500	LT	
138E2 138E2		S0 S0	09-oct-1991 09-oct-1991	1.0	ugg ugg	LM18 LM18	48RPPE 4CANIL	0.330 8.100	LT LT	
13SE2		SC SC	09-oct-1991	1.0	UGG	LH18	4CL3C	0.950	LT	
13SE2		\$0	09-oct-1991	1.0	UGG	LX18	4CLPPE	0.330	LT	
13SE2	_	\$O	09-oct-1991	1.0	UGG	LH18	4MP	2.400	ĻŢ	
13SEZ 13SEZ		50 50	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LM18 LM18	4NANIL 4NP	4.100 14.000	LT LT	
135E2 135E2	=	50 50	09-oct-1991	1.0	UGG	LM18	ABHC	3.000	MD	R
13SE2	RF1\$*53 C	SO	09-oct-1991	1.0	UGG	LH18	ACLDAN	3.000	ND	Ř
13SE2		SO	09-oct-1991	1.0	UGG	LH18	AENSLF	6.000	MD	R
13sez 13sez		50 50	09-oct-1991 09-oct-1991	1.0 1.0	ugg Ugg	LX18 LX18	ALDRN ANAPHE	3.000 0.360	ND LT	R
13SE2		SO	09-oct-1991	1_0	UGG	LK18	ANAPYL	0.330	LT	
13SE2	RFIS*53 C	SO	09-oct-1991	1.0	UGG	LM18	ANTRO	0.330	ĻT	
13SE2		\$0 50	09-oct-1991	1.0	UGG	LM18	B2CEXM	0.590	LT	
13SE2 13SE2		92 92	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	1,418 1,418	B2CIPE B2CLEE	2.000 0.330	LT LT	

<u>Site</u>	ID.	Field ID	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
170-0										_	
13SE2 13SE2	_	RF15*53	CSO	09-oct-1991 09-oct-1991	1.0	UGG	U118	BZEHP	6.200	LT	
13SE2		RFIS*53 RFIS*53	CSO	09-oct-1991	1.0	UGG UGG	LM18 LM18	BAANTR BAPYR	1.700 2.500	LT LT	
13se2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LM18	BBFANT	2.100	LT	
13SE2		RFIS*53	CSC	09-oct-1991	1.0	UGG	UN18	BBHC	3.000	ND	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	BBZP	1.700	LT	••
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	BENSLF	6.000	ND	R
13SE2		RF1\$*53	CSO	09-oct-1991	1.0	UGG	LM18	BENZ!D	9.000	ЖĎ	R
13\$22		RF15*53	CSO	09-oct-1991	1.0	UGG	LM18	BENZOA	60.000	ND	Ř
13SE2		RFIS*53 RFIS*53	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LH18 LH18	BGH I PY BKFANT	2.500	ĻŢ	
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	BZALC	0.660 1.900	LT LT	
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LM18	CHRY	1.200	LT	
13SE2	?	RF1S*53	CSO	09-oct-1991	1.0	UGG	LM18	CL6BZ	0.330	ĹŤ	
13\$E2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LM18	CL6CP	62.000	LT	
13SE2		RFIS#53	CSO	09-oct-1991	1.0	UGG	LM18	CLÓET	1,500	LT	
13SE2	_	RFIS*53	CSO	09-oct-1991	1.0	UGG	LM18	DBAHA	2.100	LT	_
13SE2 13SE2		RF1S*53 RF1S*53	C20	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	LM18 LM18	DBHC	3.000	NO	R
13\$EZ	_	RF15*53	CSO	09-oct-1991	1.0	UGG	LM18	DBZFUR DEP	0.350 1.200	LT	
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LHIS	DLDRN	3.000	ND	. R
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LH18	DMP	1.700	LT	• •
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	DNBP	1.590		
13SE2	-	RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	DNOP	1,900	ĻT	
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LH18	ENDRN	5.000	ND	R
- 13SE2		RF1\$*53	CSO	09-oct-1991	1.0	UGG	LM18	ENDRNA	5.000	ND	R
13SE2 13SE2		RFIS#53 RFIS#53	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	UN18	ENDRNK ESFSO4	5.000	ND	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG UGG	LM18 LM18	FANT	6,000 0,680	ND LT	R
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LH18	FLRENE	0.330	LT	
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	GCLDAN	3.000	ND	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	HCBD	2.300	LT	
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LM18	HPCL	1.000	MD	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LM18	HPCLE	3.000	ND	R
13SE2 13SE2		RFIS*53 RFIS*53	CSO CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LM18	ICDPYR	2.900	LT	
135E2		RF15*53	CSO	09-oct-1991	1.0	ugg Ugg	LM18 LM18	ISOPHR LIN	0.330 3.000	LT MD	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	UN18	MEXCLR	3.000	ND	R
13SE2		RFIS*53	CSC	09-oct-1991	1.0	UGG	LN18	NAP	0.370	LT	-
13SE2		RF1\$*53	CSO	09-oct-1991	1.0	UGG	LM18	BK	0.450	LT	
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LH18	NNDMEA	1.000	ND	R
13\$E2 13\$E2		RFIS*53 RFIS*53	CSO CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LM18	HINDNPA	2.000	LT	
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG UGG	LM18 LM18	NNDPA PCB016	1.900 10.000	LT ND	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LN18	PCB221	10.000	ND	R
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LH18	PCB232	10.000	ND	Ř
13SE2		RF15*53	CSO	09-oct-1991	1.0	UGG	LM18	PC8242	10.000	ND	R
13\$EZ		RFIS*53	CSO	09-oct-1991	1.0	UGG	LM18	PC8248	20.000	ND	R
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LN18	PCB254	20.000	KO.	R
13SE2 13SE2		RFIS*53 RFIS*53	C\$0	09-oct-1991 09-oct-1991	1.0	ugg ugg	LM18 LM18	PCB260 PCP	30.000 13.000	MD	R
13SE2		RF15*53	CSO	09-oct-1991	1.0	UGG	LM18	PHANTR	0.330	LT LT	
13SE2		RF15*53	CSO	09-oct-1991	1.0	UGG	LM18	PHENOL	1.100	LT	
13SE2	2	RFIS*53	CSO	09-oct-1991	1.0	UGG	LN18	PPDDD	3.000	ND	R
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LN18	PPODE	3.000	ND	R
13\$E2		RFIS*53	CSO	09-oct-1991	1.0	UGG	LM18	PPODT	3.000	ND	R
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	LM18	PYR	0.330	LT	_
13\$E2 13\$E2		RFIS*53 RFIS*53	CSO	09-oct-1991 09-oct-1991	1.0	ugg ugg	LM18 JS16	TXPHEN AG	30.000 1.030	NO	R
13SE2	<u>.</u>	RF15*53	cso	09-oct-1991	1.0	UGG	JS16	AL	29100,000		
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	JS16	BA	351.000		
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	J\$16	BE	1.360		
13\$E2		RFIS*53	CSO	09-oct-1991	1.0	UGG	JS16	CA	9300.000		
13SE2		RF1S*53	ÇSO	09-oct-1991	1.0	UGG	J\$16	CD	1.450		
13SE2 13SE2		RFIS*53 RFIS*53	CSO CSO	09-oct-1991	1.0	UGG	1516	CO	24,400		
13SE2		RF15*53	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG UGG	J\$16 J\$16	CR CU	53.400 99.400		
13522		RF1S*53	CSO	09-oct-1991	1.0	UGG	45 16 JS16	FE	39700.000		
13522		RF1S*53	CSO	09-oct-1991	1.0	UGG	J\$16	K	4880.000		
13SE2	2	RFIS*53	CSO	09-oct-1991	1.0	UGG	JS16	HG	9310.000		
13SE2		RF15*53	CSO	09-oct-1991	1.0	UGG	JS16	MN	1320.000		
13SE2		RFIS*53	CSO	09-oct-1991	1.0	UGG	J\$16	KA	428.000		
13SE2		RF1S*53	CSO	09-oct-1991	1.0	UGG	J\$16	N C	33.300		
13SE2	4	RF1S*53	CSO	09-oct-1991	1.0	UGG	JS16	PS	731.000		

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13SE2	RF1S*53	CSO	09-oct-1991	1.0	UGG	J216	SB	7.140	LT	
13SE2	RF15*53	CSO	09-act-1991	1.0	UGG	J\$16	TL	14,100	41	
13SE2	RFIS*53	CSD	09-oct-1991	1.0	UGG	JS16	V	64.800		
13SE2 13SE2	RFIS*53 RFIS*53	CSO	09-oct-1991 09-oct-1991	1.0 1.0	ugg ugg	JS16	ZH	646.000		
135E2	RF15*53	CSO	09-oct-1991	1.0	UGG	LW12 LW12	135TNB 13DNB	0.488 0.496	LT LT	
13SE2	RF1S*53	CSO	09-oct-1991	1.0	UGG	L¥12	246TNT	3.940		C
13SE2	RF15*53	CSO	09-oct-1991	1.0	UGG	LW12	24DNT	1.450		Ċ
13SE2 13SE2	RF1\$*53	CSO	09-oct-1991 09-oct-1991	1.0 1.0	UGG	LW12	26DNT	0.524	ĻŢ	
135E2	RFIS*53 RFIS*53	CSO	09-oct-1991	1.0	UGG	LW12 LW12	NB HMX	0.666 2.410	LT LT	
13SE2	RF15*53	CSO	09-oct-1991	1.0	UGG	LW12	RDX	0.587	ĹŤ	
13SE2	RFIS*53	CSO	09-oct-1991	1.0	UGG	LW12	TETRYL	0.731	LT	
135\$1 138\$1	RF15*47 RF15*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	JD15 LM19	SE 111TCE	0.250 0.004	LT	
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LN19	112TCE	0.005	LT LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	11DCE	0.004	ĹŤ	
13551	RF15*47	C20	09-oct-1991	0.5	UCG	LH19	11DCLE	0.002	LT	
135\$1 135\$1	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LM19 LM19	12DCE 12DCLE	0.003 0.002	LT LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM19	120CLP	0.003	LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	2CLEVE	0.010	ND	R
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	ACET	0.017	LT	
138 51 13851	RF15*47 RF15*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LN19 LN19	ACROLN ACRYLO	0.100 0.100	ND	R
73881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN19	BROCLM	0.003	ND LT	R
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	C130CP	0.003	LT	
13551	RF1S*47	CSO	09-oct-1991	0.5	UGG	LM19	CZAVE	0.003	LT	
13881 13881	RF15*47 RF15*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LN19 LN19	CZH3CL CZH5CL	0.006	LŢ	
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LH19	C6H6	0.012 0.002	LT LT	
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LH19	CCL3F	0.006	ίŤ	
135\$1	RF15*47	CSO	09-oct-1991	0.5	UGG	LM19	CCL4	0.007	LT	
13881 13881	RFIS*47 RFIS*47	C20 C20	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LH19 LH19	CH2CL2 CH3BR	0.012 0.006	LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	CH3CL	0.009	LT LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	LIGG	LN19	CHBR3	0.007	ĹŤ	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	CHCL3	0.001	LT	_
13\$\$1 13\$\$1	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LN19 LN19	CL2BZ CLC6H5	0.100 0.001	ND	R
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LH19	CZS	0.004	LT LT	
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LH19	DBRCLM	0.003	LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN19	ETC6K5	0.002	LŤ	
13551 13551	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LN19 LN19	MEC6H5 MEK	0.001 0.070	LT LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH19	MIBK	0.027	LT	
135\$1	RF15*47	CSO	09-oct-1991	0.5	UGG	LM19	MNBK	0.032	LT	
13551	RF1S*47	CSO	09-oct-1991	0.5	UGG	LN19	STYR	0.003	LT	
13881 13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LN19 LN19	T130CP TCLEA	0.003 0.002	LT LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	<u>⊔</u> 119	TCLEE	0.001	LT	
13881	RF1S*47	CSO	09-oct-1991	0.5	UGG	LH19	TRCLE	0.019		
13881	RF1S*47	CSO	09-oct-1991	0.5	UGG	LM19	XYLEN	0.002	LT	
13881 13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	.1801 JD19	HG AS	0.050 2.060	LT	
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LH18	124TCB	0.200	LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM18	12DCLB	0.550	ĹŤ	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	120PK	0.500	ND	R
13551 13551	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	1.M18 1.M18	130CL9 140CLB	0.650 0.490	LT LT	
135\$1	RF15*47	CSO	09-oct-1991	0.5	UGG	LH18	245TCP	0.500	LT	
13\$\$1	RF15*47	CSO	09-oct-1991	0.5	UGG	LN18	246TCP	0.850	LT	
13\$\$1	RFIS*47	CSO	09-ect-1991	0.5 0.5	UGG	LN18	24DCLP	0.900 3.450	LT	
13881 13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5	ugg Ugg	1,H18 1,H18	24DMPN 24DNP	3.45U 6.000	LT LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	ZADNT	3.440		
13\$\$1	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	260NT	2.020		
13881	RF1\$*47	CSO	09-oct-1991	0.5	UGG	LK18	ZCLP ZCVAD	0.300 0.180	LT	
13881 13881	RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LM18 LM18	2CHAP 2MNAP	0.180	LT LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM18	2HP	0.145	LT	
13881	RF1S*47	cso	09-oct-1991	0.5	UGG	LH18	ZNANIL	0.310	ĻT	
13881	RFIS*47	CSO	09-set-1991	0.5	UGG	LM18	ŽNP ZZDCRO	0.700	LŢ	
13881	RFIS*47	CZO	09-oct-1991	0.5	UGG	LM18	33DC8D	31.500	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
13551	RF1S*47	cso	09-oct-1991	0.5	UGG	1 H4 G	344411	* 252		
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LM18 LM18	3NANIL 46DN2C	2. <i>2</i> 50 2. <i>7</i> 50	LT LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	4BRPPE	0.165	ĹŤ	
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LH18	4CANIL	4.050	LT	
13881 13881	RF1S*47 RFIS*47	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LX18 LX18	4CL3C	0.475	LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM18	4CLPPE 4NP	0.165 1.200	LT LT	
13\$\$1	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	4NANIL	2.050	LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LK18	4NP	7.000	LT	
13251 13551	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM18	ABHC	1.500	MD	R
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LN18 LN18	ACLDAN AENSLF	1,500 3,000	ND ND	R R
13851	RF15*47	CSO	09-oct-1991	0.5	UGG	LH18	ALDRN	1.500	MD	Ř
13\$\$1	RF15*47	CSO	09-oct-1991	0.5	UGG	LX18	ANAPNE	0.180	LT	
13881 13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LM18 LM18	ANAPYL ANTRC	0.165	ĻŢ	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM18	BECEXH	0.165 0.295	LT LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	BZCIPE	1.000	ĻŤ	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LX18	BZCLEE	0.165	LT	
13881 13881	RFIS*47 RFIS*47	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LX18 LX18	B2EHP	3.100	LT	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	BAANTR BAPYR	0.850 1.250	LT LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	SEFANT	1.050	ĹŤ	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	BBHC	1.500	ND	R
13881 13881	RFIS*47 RFIS*47	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LH18 LH18	BBZP	0.850	LT	_
13551	RF15-47	CSO	09-oct-1991	0.5	UGG	LK18	BENSLF BENZID	3.000 4.500	NED NED	R R
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	BENZOA	30.000	NO	Ř
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LX18	BGHIPY	1.250	LT	
13881 13881	RF1S*47	CSO	09-oct-1991	0.5	UGG	LM18	BKFANT	0.330	LŢ	
13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LM18 LM18	BZALC CHRY	0.950 0.600	LŤ LŤ	
13551	RF1S*47	CSO	09-oct-1991	0.5	UGG	UH18	CL6BZ	0.165	LT	
13551	RF15*47	CSC	09-oct-1991	0.5	UGG	LM18	CL6CP	31.000	LT	
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LM18	CL6ET	0.750	LT	
13881 13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	UH18 UH18	DBAKA DBHC	1.050 1.500	LT ND	R
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	UN18	DEZFUR	0.175	LT	ĸ
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	DEP	13.900		
13551 13551	RFIS=47 RFIS=47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LH18	DLDRN	1.500	MO	R
13551	RF15*47	CSC	09-oct-1991	0.5	UGG	LM18 LM18	DMP DNBP	0.850 6.880	ĻT	
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LH18	DNOP	0.950	LT	
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LM18	ENDRN	2.500	MD	Ŕ
13881 13881	RFIS*47 RFIS*47	C2O	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LN18 LM18	ENDRNA	2.500 2.500	NO	Ř
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LN18	ENDRNK ESFSO4	3.000	ND ND	R R
13881	RF1S*47	CSO	09-oct-1991	0.5	UGG	LN18	FANT	0.340	LT	•
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LN18	FLRENE	0.165	LT	
13\$\$1 13\$\$1	RF15*47	CSO CSO	09-oct-1991 09-oct-1991	0.5	UGG	LH18	GCLDAN	1.500	ND	R
13881	RF1S*47 RF1S*47	CSO	09-oct-1991	0.5 0.5	ugg ugg	LM18 LM18	HCBD HPCL	1.150 0.500	LT MD	R
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LM18	HPCLE	1.500	KD	Ř
13551	RF15*47	CSO	09-oct-1991	0.5	VGG	LM18	ICDPYR	1.450	LT	••
13\$\$1 13\$\$1	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	ISOPHR	0.165	ĻŢ	_
13\$\$1	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LM18 LM18	LIN MEXCLR	1.500 1.500	ND ND	R R
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LN18	HAP	0.185	ĹΤ	K
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LM18	NB	0.225	LT	
13851 13 8 \$1	RFIS*47 RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	NNOMEA	0.500	MD	R
13\$\$1	RF15*47	CSC	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LM18 LM18	NNDNPA NNDPA	1.000 2.280	LT	
13\$\$1	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	PCSG16	5,000	ND	R
13551	RF15*47	CSO	09-oct-1991	0.5	UGG	LH18	PCB221	5.000	ND	Ř
13881 138 \$ 1	RFIS*47	CSO	09-oct-1991	0.5	UGG	LH18	PCB232	5.000	ND	R
135\$1	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	lm18 lm18	PC8242 PC8248	5.000 10.000	ND ND	R
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LK18	PCB254	10.000	ND ND	R R
13\$\$1	RF1S*47	CSO	09-oct-1991	0.5	UGG	LH18	PCB260	15.000	ND	Ř
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM18	PCP	6.500	LT	
13\$\$1 13\$\$1	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LM18 LM18	PHANTR	0.165 0.550	LT	
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	LM18	PHENOL PPODD	1.500	LT NO	R
13551	RF1S*47	CSO	09-oct-1991	0.5	UGG	UN18	PPODE	1.500	ND	Ř

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
13881	RFIS*47	CSO	09-oct-1991	0.5	UGĞ	LM18	PPDDT	1.500	ND	R
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	LN18	PYR	0.165	LT	•
135\$1	RF15*47	CSO	09-oct-1991	0.5	UGG	LN18	TXPHEN	15.000	NO	R
13881	RFISP47	CSO	09-oct-1991	0.5	UGG	LM18	UNK569	6.440		\$
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LM18	UNK606	1.290		s
13551 13551	RFIS=47 RFIS=47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGĞ UGĞ	lm18 JS16	UNK611 AG	2.570 0.589	LT	S
13\$\$1	RFIS#47	CSO	09-oct-1991	0.5	UGG	JS16	AL.	7890.000	LI	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	JS16	BA	128,000		
13881	RF15*47	CSO	09-oct-1991	0.5	UGG	J\$16	BĘ	0.500	LT	
13551	RF15*47	CZO	09-oct-1991	0.5	UGG	J\$16	CA	4050,000		
13881 13881	RFIS*47 RFIS*47	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	JS16 JS16	8	0.700 7.360	LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	1216	CR	24,400		
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	JS16	άũ	59.600		
13551	RF1S*47	CSO	09-oct-1991	0.5	UGG	J\$16	FE	16100.000		
13881	RF1S*47	CSO	09-oct-1991	0.5	UGG	JS16	K	1340.000		
13881 13881	RF1S*47 RF1S*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	JS16 JS16	MG MN	2270.000 729.000		
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	JS16	YA.	326.000		
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	JS16	MI	11.200		
13881	RF15*47	C20	09-oct-1991	0.5	UGG	J\$16	PB	986.000		
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	JS16	SB	7.140	LT	
13881 13881	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	912L 912L	TL V	6.620	LT	
13251	RF15*47	CSO	09-oct-1991	0.5	UGG	J\$16	ZN	19,100 525,000		
13881	RFIS*47	C2O	09-oct-1991	0.5	UGG	LW12	135TNB	0.488	LT	
13881	RFIS*47	CSO	09-oct-1991	0.5	UGG	L¥12	13DNB	0.496	ĹŤ	
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LW12	246TNT	4.030		C
138\$1 138\$1	RFIS*47 RFIS*47	CSO	09-oct-1991 09-oct-1991	0.5	UGG	LW12	24DMT	1.840		C
13551	RF15*47	CSO	09-oct-1991	0.5 0.5	UGG UGG	LW12 LW12	26DNT HNX	1.280 0.666	LT	C
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LW12	NB	2.410	LT	u
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LW12	ROX	0.587	LT	ยั
13551	RFIS*47	CSO	09-oct-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13551 13551	RFIS*51 RFIS*51	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	JD15	\$E	0.250	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN19 LN19	111TCE 112TCE	0.004 0.005	LT LT	
13251	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN19	11DCE	0.004	LT	
135\$1	RFIS*51	C\$O	09-oct-1991	0.5	UGG	LH19	11DCLE	0,002	LT	
13551	RF15*51	CSO	09-oct-1991	0.5	UGG	LN19	12DCE	0.003	LT	
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM19 LM19	12DCLE 12DCLP	0.002 0.003	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	2CLEVE	0.010	LT ND	R
13\$\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	ACET	0.017	ĹŤ	•
13991	RFIS*51	CSO	09-oct-1991	0.5		LN19	ACROLN	0.100	MD	R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN19	ACRYLO	0.100	ND	R
13\$\$1 13\$\$1	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN19 LN19	BRDCLM C13DCP	0.003 0.003	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	CZAVE	0.003	LT LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	C2H3CL	0.006	ĹŤ	
13551	RF15*51	C20	09-oct-1991	0.5	UGG	LH19	C2H5CL	0.012	LT	
135\$1	RF15*51	CSO	09-oct-1991	0.5	UGG	LN19	C6H6	0.002	LT	
13\$\$1 13\$\$1	RFIS*51 RFIS*51	C20 C20	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN19 LN19	CCL3F CCL4	0.006 0.007	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN19	CHZCLZ	0.007	LT LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN19	CH3BR	0.006	LT	
13\$\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	CH3CL	0.009	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	U(19	CHBR3	0.007	LT	
13551 13551	RF1S*51 RF1S*51	CSO	09-oct-1991 09-oct-1991	0.5	UGG	LN19	CHCL3	0.001	LT	_
13\$\$1	RFIS*51	CSO	09-oct-1991	0.5 0.5	UGG UGG	LN19 LN19	CLZBZ CLC6H5	0.100 9.001	KD LT	R
13881	RF15*51	CSO	09-oct-1991	0.5	UGG	LN19	CS2	0.004	LT	
132\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	DBRCLM	0.003	LŤ	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	ETCAH5	0.002	LT	
138\$1	RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5	UGG	LN19	MEC6H5	0.001	LT	
13551 13551	RFIS*51 RFIS*51	C\$0	09-0ct-1991	0.5 0.5	UGG	і;Н19 1:И19	MEK	0.070 0.027	LT LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	MNBK	0.032	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM19	STYR	0.003	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH19	T13DCP	0.003	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN19	TCLEA	\$200.0	LT	
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN19 LN19	TCLEE TRCLE	0.001 0.009	LT	
12001	WE 10.3	حادب	42-447-1331	٠.,	444	LD 17	INGLE	0.007		

Site ID	Field ID	<u>Medía</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbrv.	<u>Value</u>	Flag	Internal Std. Code
13551	RFIS*51	cso	09-oct-1991	0.5	UGG	LH19	XYLEN	0.002	LT	
13\$\$1	RF15*51	CSO	09-oct-1991	0.5	UGG	JB01	HG	0.064		
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	JD19	AS	1.780		
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	124TC8	0.200	LT	
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN18	120CL8	0.550	LT	_
13\$\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18 LM18	120PH 130CL8	0.500 0.650	ND LT	R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	14DCLB	0.490	LŤ	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	245TCP	0.500	LT	
13881	RFIS*51	CSC	09-oct-1991	0.5	UGG	LN18	246TCP	0.850	LT	
13551 13551	RFIS*51 RFIS*51	CSC	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LM18 LM18	24DCLP 24DMPN	0.900 3.450	LT LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	240NP	6.000	LT	
13881	RF15*51	CSO	09-oct-1991	0.5	UGG	LN18	24DNT	2.030		
13\$\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	260NT	1.990		
138\$1 138\$1	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LH18 LH18	2CLP 2CNAP	0.300	LT	
13881	RF15*51	CSO	09-oct-1991	0.5	UGG	LX18	2MNAP	0.180 0.245	LT LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LX18	2MP	0.145	LT	
13991	RFIS*51	CSO	09-oct-1991	0.5	UGG	LX18	2XANIL	0.310	ĻT	
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN18	2NP	0.700	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18 LM18	33DCBD 3NANIL	31.500 2.250	LT LT	
13881	RFIS*51	ÇSO	09-oct-1991	0.5	UGG	LM18	46DN2C	2.750	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	4BRPPE	0.165	LT	
~13ss1 -	RF15*51	CSO	09-oct-1991	0.5	UGG	LM18	4CANIL	4.050	LT	
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LM18 LM18	4CL3C 4CLPPE	0.475 0.165	LT LT	
13881	RFIS*51	cso	09-oct-1991	0.5	UGG	LH18	440	1.200	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	4NANIL	2.050	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	4MP	7.000	LT	_
13881 13881	RFIS*51 RF1S*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN18 LN18	ABHC ACLDAN	1.500 1.500	ND ND	R R
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LX18	AENSLF	3.000	ND	Ř
13991	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	ALDRN	1,500	ND	R
13551	RFIS*51	cso	09-oct-1991	0.5	UGG	LH18	ANAPNE	0.180	LT	
138\$1 138\$1	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	lm18 lm18	ANAPYL ANTRC	0.165 0.165	LT LT	
13551	RF15*51	CSC	09-oct-1991	0.5	UGS	LM18	B2CEXM	0.295	LT	
13881	RF1S*51	CSO	09-oct-1991	0.5	UGG	LN18	B2CIPE	1.000	LŤ	
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	BZCLEE	0.165	LT	
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LM18 LM18	B2EHP BAANTR	3.100 0.850	LT LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UCG	LM18	BAPYR	1.250	LT	
13551	RFIS*51	ÇSO	09-oct-1991	0.5	UGG	LN18	BBFANT	1.050	LT	
13881	RFIS*51	CSO	09-oct-1991	0.5	UCC	LM18	BBHC	1.500	ND	R
13\$\$1 13\$\$1	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LM18 LM18	BBZP BENSLF	0.850 3.000	LT ND	•
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	BENZID	4.500	ND ND	R R
13551	RF15*51	CSQ	09-oct-1991	0.5	UGG	LN18	BENZOA	30.000	ND	Ř
13551	RF1S*51	CSO	09-oct-1991	0.5	UGG	LM18	BCHIPY	1.250	LŤ	
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	UN18 UN18	BKFANT BZALC	0.330 0.950	LT LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	CHRY	0.600	ĻT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	CL68Z	0.165	LT	
13\$\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LX18	CL6CP	31.000	LT	
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	uge Uge	LX18	CLEET	0.750	LT	
135\$1	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18 LM18	DBAHA DBHC	1.050 1.500	LT ND	R
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	DB2FUR	0.175	ĻT	•
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	DEP	27.300		
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	DLDRM	1.500	ND	R
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LH18 LH18	DMP	0.850 6.780	ĻŢ	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	UN18	DNOP	0.950	LŤ	
13881	RF1\$*51	CSO	09-oct-1991	0.5	UGG	LM18	ENDRN	2.500	MD	R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	EMDRNA	2,500	MD	R
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM18	ENDRNK ESECO	2.500	MD	R
13551	RF15*51	CSO	09-oct-1991	0.5	UGG	LM18 LM18	ESFSO4 FANT	3.000 0.340	MD LT	R
13881	RF15*51	CSO	09-oct-1991	0.5	UGG	LM18	FLRENE	0.165	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	GCLDAN	1.500	MD	R
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	HCBD	1.150	ĻŢ	_
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LK18	HPCL	0.500	MD	R

Site ID	Field ID	Marii s	Date	Depth	Units	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal
	11010 10						ACCI V.	Yatue	rtay	<u>Std. Code</u>
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	HPCLE	1.500	ND	R
13881 13881	RF1S*51 RFIS*51	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN18 LX18	ICDPYR ISOPHR	1.450 0.165	LT LT	
13881	RFIS*51	ÇSO	09-oct-1991	0.5	UGG	LN18	LIN	1.500	ND	R
135\$1	RFIS*51	ÇSO	09-oct-1991	0.5	UGG	LH18	MEXCLR	1.500	ND	R
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LM18 LM18	nap NB	0.185 0.225	LT LT	
13551	RF15*51	CSO	09-oct-1991	0.5	UGG	LH18	NNDMEA	0.500	ND	R
13251	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	NUNDA	1.000	LT	
13251 13251	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LM18 LM18	NNOPA PATPE	3.740 3.800		e
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	PCB016	5.000	MD	S R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	PCB221	5.000	ND	R
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM18 LM18	PCB232 PCB242	5.000 5.000	ND ND	R R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LN18	PCB248	10.000	NO	R R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	PC8254	10.000	MD	R
13\$\$1 13\$\$1	RFIS*51 RFIS*51	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LM18 LM18	PC8260 PCP	15.000 6.500	ND LT	R
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	UH18	PHANTR	0.165	LT	
135\$1	RF1\$*51	CSO	09-oct-1991	0.5	UGG	LM18	PHENOL	0.550	LT	
132\$1 132\$1	RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5	UGG	U118	PPODD	1.500	ND	R
13\$\$1	RFIS*51 RFIS*51	CSC	09-oct-1991	0.5 0.5	ugg Ugg	LN18 LN18	PPODE PPODT	1.500 1.500	ND ND	R R
13851	RFIS*51	CSO	09-oct-1991	0.5	UGG	LM18	PYR	0.165	LT	•
13\$\$1 - 13\$\$1	RF15*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM18	TXPHEN	15.000	ND	R
13881	RFIS*51 RFIS*51	CSO CSO	09-oct-1991	0.5	UGG	lm18 lm18	UNK569 UNK606	12.700 3.800		\$ \$
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LH18	UNK611	3.800		Š
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	J\$16	AG	0.589	LT	
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	J\$16 J\$16	AL BA	8160.000 132.000		
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	JS16	BE	0.500	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	J\$16	CY	5730.000		
13551 13551	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg	7216 7216	8	1.230 7.260		
13551	RF1S*51	CSO	09-oct-1991	0.5	UGG	JS16	COR	30.500		
13881	RFIS*51	CSO	09-oct-1991	0.5	UGG	J\$16	а	69.900		
13881 13881	RF1S*51 RF1S*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	JS16 JS16	FE K	15200.000 1410.000		
13551	RF1S*51	CSO	09-oct-1991	0.5	UGG	J\$16	NG	2780.000		
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	JS16	MM	474.000		
135\$1 135\$1	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	JS16 JS16	NA NI	335.000 14.700		
13\$\$1	RFIS*51	CSO	09-oct-1991	-0.5	UGG	JS16	PB	1050.000		
13551	RFIS*51	CSO	09-oct-1991	0.5		JS16	S8	7.140	LT	
13881 13881	RFIS*51 RFIS*51	C\$0	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	7219 7219	TL V	6.620 19.400	LT	
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	1516	ZN	507.000		
13551	RF1S*51	ÇSO	09-oct-1991	0.5	UGG	LU12	135TNB	0_488	LT	
13881 13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LW12 LW12	130NB 246TNT	0. 858 2.130		C
13551	RFIS*51	CSO	09-oct-1991	0.5	UGG	LW1Z	24DNT	2.150		C C
13881	RFIS*51	C20	09-oct-1991	0.5	UGG	LW12	26DNT	1.330		C
13881 13881	RFIS*51	CSO CSO	09-oct-1991	0.5	UGG UGG	LW12	HICK	0.666 2.410	Lī	u
13881	RFIS*51 RFIS*51	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	FR15	NB RDX	0.587	LŤ LŤ	บ บ
13251	RF15*51	CSO	09-oct-1991	0.5	UGG	LW12	TETRYL	0.731	LT	•
13552	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH14	245TP	0.170	LŢ	
13882 13882	VFSL*102 VFSL*102	CSO CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	UH14 UH13	240 CLDAN	0.802 0.265	LT LT	
1322	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH 13	ENDRN	0.024	ĻŢ	
13\$\$2	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH13	HPCL	0.042	ĻT	
13552 13552	VFSL*102 VFSL*102	CSO CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	UH13 UH13	LIN MEXCLR	0.051 0.057	LT LT	
13882	VFSL=102	CSO	09-mar-1992	0.5	UGL	UH13	TXPHEN	1.350	LT	
13\$\$2	VFSL*102	CSO	09-mar-1992	0.5	UGL	SD21	SE .	3.020	ĻΤ	
13882 13882	VFSL*102 VFSL*102	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL	SD22 SB01	AS NG	2.540 0.243	LT LT	
13552 135 5 2	VFSL*102	CSD	09-mar-1992	0.5	UGL	\$801 \$\$10	HG AG	4.600	LT	
13882	VFSL*102	C2O	09-mar-1992	0.5	NCT.	\$\$10	BA	799.000		
13552	VFSL*102	CSO	09-mar-1992	0.5	UGL	SS10	0	4.560		
13552 13 55 2	VFSL*102 VFSL*102	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	2S10 SS10	CR PB	6.020 756.00 0	LT	
				-,-						

								4			
	Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Unīts</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	Flag	Internal Std. Code
	13882	VFSL*102	cso	09-mar-1992	0.5	UGL	UH20	11DCE	0.500	. •	
	13552	VFSL*10Z	CSO	09-mar-1992	0.5	UGL	UN20	120CLE	0.500	LT LT	
	13SS2	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH20	C2H3CL	2,600	ĹŤ	
	13\$\$2	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH20	C6H6	0.500	LT	
	13552	VFSL*102	CSO	09-mar-1992	0.5	UGL	UN20	CCL4	0.580	LT	
	13\$\$2 13\$\$2	VFSL*102 VFSL*102	CSO	09-mar-1992 09-mar-1992	0.5 0.5	UGL UGL	UM20	CHCL3	0.544	. •	
	13552	VFSL*102	CSO	09-mar-1992	0.5	UGL	UM20 UM20	CLC6H5	0.500 6.400	LT LT	
	13552	VFSL*10Z	cso	09-mar-1992	0.5	UGL	UM20	TCLEE	1.600	LT	
	13552	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH20	TRCLE	0.500	LT	
	13\$\$2	VFSL*102	CSO	09-mar-1992	0.5	UGL	UN18	14DCLB	1.700	LT	
	13882	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH18	245TCP	5.200	LT	
	13\$\$2 13\$\$2	VFSL*102 VFSL*102	CSO	09-mar-1992	0.5 0.5	UGL	UH18	246TCP	4.200	LT	
	13882	VFSL*102	CSO	09-mar-1992	0.5	UGL	LM18 UH18	24DNT 2MP	4.500 3.900	LT LT	
	13552	VFSL*102	CSO	09-mar-1992	0.5	UGL	UN18	3MP	3.900	ND	R
	13882	VFSL*102	CSO	09-mar-1992	0.5	UGL	UN18	4HP	0.520	LT	
	13882	VFSL*10Z	CZO	09-mar-1992	0.5	UGL	UK18	82EHP	1.820		S
	13552	VFSL*102	CZO	09-mar-1992	0.5	UGL	UK18	CL68Z	1.600	LT	
	13552 13552	VFSL*102 VFSL*102	CSO	09-mar-1992 09-mar-1992	0.5	UGL	UN18	CL6ET	1.500	LT	
	13552 13552	VFSL*102	CSO	09-mar-1992	0.5 0.5	UGL	UM18 UM18	HCSD NB	3.400 0.500	LT LT	
	13882	VFSL*102	CSO	09-mar-1992	0.5	UGL	UH18	PCP	18.000	LT	
	13882	VFSL*102	CSO	09-mar-1992	0.5	UGL	UM18	PYRDIN	5,200	NO.	R
	13882	VFSL*102	CSO	09-mar-1992	0.5	UGL	UM18	THTISO	20.000		S
_	13952	VFSL*102	CSO	09-mar-1992	0.5	UGL	UN18-	UNK526	10.000	_	S
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	JD15	SE	0.250	LT	
	13552 13552	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LN19	111TCE 112TCE	0.004 9.005	LT	
	13SS2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM19 LM19	11DCE	0.004	LT LT	
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	⊔ 419	11DCLE	0.002	ĹŤ	
	13882	RF15*48	CZO	09-oct-1991	0.5	UGG	LN19	120CE	0,003	ĹŤ	
	13SS2	RF15*48	CSO	09-oct-1991	0.5	UGG	LX19	1ZDCLE	0.002	ĻŦ	
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LN19	120CLP	0.003	LT	_
	13\$\$2 13\$\$2	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN19	SCLEVE	0.010	NO	R
	13552 13552	RFIS*48	CSC	09-oct-1991	0.5	UGG	LN19 LN19	ACET ACROLN	0.017 0.100	LT ND	R
	13ss2	RFIS*48	CSO	09-oct-1991	0.5	UGG	UH19	ACRYLO	0.100	NO	â
	13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LH19	BRDCLM	0.003	LT	
	13\$\$2	RFIS*48	C20	09-oct-1991	0.5	UGG	LH19	C130CP	0.003	LT	
	13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH19	CZAVE	0.003	LT	
	13\$\$2 13\$\$2	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM19 LM19	C2H3CL C2H5CL	0.006 0.012	LT LT	
	13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LM19	CÓHÓ	0.002	LT	
	13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LN19	CCL3F	0.006	LT	
	13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LM19	CCL4	0.007	LT	
	13\$\$2	RF15*48	CSO	09-oct-1991	0.5	UGG	LN19	CH2CL2	0.012	LT	
	13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LX19	CH3BR	0.006	LT	
	13552 13552	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN19	CH3CL CHBR3	0.00 9 0.007	ĻŢ	
	13552	RFIS*48	C20	09-oct-1991	0.5	UGG	LN19 LN19	CXCL3	0.007	LT LT	
	13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LH19	CL2BZ	0.100	MD	R
	13882	RFIS*48	CZO	09-oct-1991	0.5	UGG	LH19	CLC6K5	0.001	LT	
	13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LN19	CS2	0.004	LT	
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LK19	DBRCLM	0.003	LT	
	13552 13552	RF15*48 RF15*48	CSO	09-oct-1991 09-oct-1991	0.5	UGG	LN19	ETC6N5	0.002	LT	
	13552	RFIS*48	CSO CSO	09-oct-1991	0.5 0.5	ugg Ugg	LN19 LN19	MEC6H5 MEK	0.001 0.070	LT LT	
	13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LH19	MIBK	0.027	LT	
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH19	MNBK	0.032	LT	
	13552	RFIS*48	ÇSO	09-oct-1991	0.5	UGG	LM19	STYR	0.003	LT	
	13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM19	T13DCP	0.003	LT	
	13\$\$2 13\$\$2	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LH19	TCLEA	0.002	ĻŢ	
	13882	RF15*48	CSO	09-oct-1991	0.5	ugg ugg	LM19 LM19	TCLEE TRCLE	0.001 0.003	LT LT	
	13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LH19	XYLEN	0.002	LT	
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	JB01	HG	0.050	LT	
	13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	JD19	AS	1.250		
	13882	RFIS*48	C2O	09-oct-1991	0.5	UGG	LM18	124TCB	0.200	LT	
	13\$\$2	RF15*48	CSO	09-oct-1991	0.5	UGG	LM18	12DCLB	0.550	ĻŢ	_
	13552 13552	RF15*48 RF15*48	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LN18	120PH	0.500	MD	R
	13552 13552	RF15*48	CSO	09-oct-1991	0.5	ugg ugg	LM18 LM18	130CLB 140CLB	0.650 0.490	LT LT	
	13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LM18	245TCP	0.500	LT	
		·			715				-1444		

Site ID	Field 10	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	Flag	internal Std. Code
13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LX18	246TCP	0.850	LT	
13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LH18	24DCLP	0.900	ίŤ	
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LN18	24DMPN	3.450	LT	
13552	RF15*48	CSO	09-oct-1991	0.5	UGG	UH18	24DNP	6.000	ĹŤ	
13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LH18	24DNT	11.500		
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	26DNT	5.640		
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LN18	2CLP	0.300	LT	
13552	RF15*48	CSO	09-oct-1991 09-oct-1991	0.5	UGG	LH18	SCHAP	0.180	LT	
13882 13882	RF15*48 RF15*48	CSO	09-oct-1991	0.5 0.5	ugg ugg	LH18 LH18	ZHRAP ZHP	0.245 0.145	LT LT	
13552	RFIS*48	cso	09-oct-1991	0.5	UGG	LM18	ZNANIL	0.310	LT	
13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	2NP	0.700	ĹŤ	
13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	33DCBD	31.500	LT	
13\$\$2	RF15*48	C20	09-oct-1991	0.5	UGG	LM18	3NAHIL	2.250	LT	
13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	46DNZC	2.750	ĻŢ	
13882 13882	RFIS*48 RFIS*48	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LN18 LN18	4BRPPE 4CANIL	0.165 4.050	LT LT	
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	4CL3C	0.475	LT	
13\$\$2	RFIS#48	cso	09-oct-1991	0.5	UGG	LN18	4CLPPE	0.165	ĹŤ	
13\$\$2	RF15*48	CSO	09-oct-1991	0.5	UGG	LH18	4MP	1.200	ĻŤ	
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	4NANIL	2.050	LT	
13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LN18	4NP	7.000	LT	•
13\$\$2	RF1S*48	CSO	09-oct-1991	0.5	UGG	LN18	ABHC	1.500	ND	R
13882 13882	RF1\$*48 RF1S*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	1,M18 1,M18	ACLDAN AENSL F	1.500 3.000	ND	R
- 13SS2	RFIS*48	CSO	09-oct-1991	Q.5	UGG	LX18	ALDRN	1.500	ND ND	R R
13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	ANAPNE	0.180	LT	^
13552	RFIS#48	CSO	09-oct-1991	0.5	UGG	LN18	AKAPYL	0.165	LT	
13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LM18	ANTRC	0.165	LT	
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LN18	B2CEXM	0.295	LT	
13\$\$2 13\$\$2	RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	UI18	B2CIPE	1.000	LT	
13882	RF1S*48 RF1S*48	CSO	09-oct-1991	0.5	ugg ugg	LM18 LM18	B2CLEE B2ENP	0.165 3.100	LT LT	
13\$\$2	RFIS*48	cso	09-oct-1991	0.5	UGG	LN18	BAANTR	0.850	LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	BAPYR	1,250	LT	
13552	RFIS*48	ÇSO	09-oct-1991	0.5	UGG	LX18	BBFANT	1.050	LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	BBHC	1.500	ND	R
13222 13222	RF1S*48 RF1S*48	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LM18 LM18	BEZP BENSLF	0.850 3.000	LT ND	_
13\$\$2	RFIS*48	CSC	09-oct-1991	0.5	UGG	LM18	BENZID	4.500	ND	R R
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	UN18	SENZOA	30.000	ND	Ř
13882	RFIS*48	Ċ20	09-oct-1991	0.5	UGG	LM18	BCHIPY	1.250	LT	
13652	RF15*48	CSO	09-oct-1991	0.5	UGG	UN18	BKFANT	0.330	LT	
13\$\$2 13\$\$2	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LN18 LN18	BZALC CHRY	0.950 0.600	LT LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	CL6BZ	0.165	LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	CL6CP	31.000	LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	CLOET	0.750	ĻŤ	
13\$\$2	RFIS#48	CZO	09-oct-1991	0.5	UGG	LH18	AKARO	1.050	LT	
13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LN18	DBHC	1.500	MD	R
13882 13882	RFIS*48 RFIS*48	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG UGG	LN18	DBZFUR DEP	0.175	LT	
13552	RFIS*48	ÇSO	09-oct-1991	0.5	UGG	LN18 LN18	DLDRN	11.600 1.500	ND:	R
135\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	DMP	0.850	LT	*
135\$2	RFIS*48	CSO	09-act-1991	0.5	UGG	LN18	DNBP	27.600		
135\$2	RF1S*48	CSO	09-oct-1991	0.5	UGG	LH18	DNOP	0.950	LT	
13552	RFIS*48	CZO	09-oct-1991	0.5	UGG	LM18	ENDRN	2.500	MD	R
13852 13882	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	LN18	ENDRNA ENDRNK	2.500	MD	R
13552	RF15*48	CSO CSO	09-oct-1991	0.5	UGG	LM18 LM18	ESFSO4	2.500 3.000	ND ND	R R
13552	RF15*48	ÇSO	09-oct-1991	0.5	UGG	LM18	FANT	0.340	LT	K
13882	RFIST48	CSO	09-oct-1991	0.5	UGG	LH18	FLRENE	0.165	LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	GCLDAN	1.500	ND	R
13\$\$2	RF15*48	CSO	09-oct-1991	0.5	UGG	LH18	HCBD	1.150	LT	
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	HPCL	0.500	ND	R
13552 13552	RFIS*48 RFIS*48	C20	09-oct-1991 09-oct-1991	0.5 0.5	ugg ugg	LN18	HPCLE ICOPYR	1.500	MD	R
13882	RF15*48	CSO	09-oct-1991	0.5	UGG	LM18 LM18	ISOPHR	1.450 0.165	LT LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGS	LH18	LIN	1.500	ND	R
13552	RFIS*48	ÇSO	09-oct-1991	0.5	UGG	LN18	MEXCLR	1.500	ND	R
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	NAP	0.185	LT	~
13\$\$2	RFIS*48	CSO	09-act-1991	0.5	UGG	LH18	KB	0.225	LT	
13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LM18	NNDMEA	0.500	ND	R
13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LN18	HINDRPA	1.000	LT	

			•			Analytical				Internal
Site ID	Field ID	<u>Media</u>	<u>Qate</u>	<u>Qepth</u>	<u>Units</u>	Method	Abbry,	Va (ue	Flag	Std. Code
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	HNDPA	1.270		
13SS2	RFIS*48	CZO	09-oct-1991	0.5	UGG	LH18	PCB016	5,000	ND	Ř
13882 13882	RFIS*48 RFIS*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LH18	PC8221	5.000	XD	R
13\$\$ <u>2</u> 13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18 LM18	PCBZ32 PCB242	5.000 5.000	ND ND	R R
13552	RF15*48	CSG	09-oct-1991	0.5	UGG	LH18	PCB248	10.000	ND	Ŕ
13552	RF15*48	CSO	09-oct-1991	0.5	UGG	LH18	PC8254	10.000	ND	Ř
13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	PC8260	15.000	ND	R
13552 13552	RFIS*48 RFIS*48	CSO	09-oct-1991	0.5	UGG	LM18	PCP	6.500	LT	
13882 13882	RFIS=48	CSO	09-oct-1991	0.5 0.5	ugg ugg	LN18 LN18	PHANTR PHENOL	0.165 0.550	LT LT	
13552	RF15=48	CSO	09-oct-1991	0.3	UGG	LH18	PPDDD	1.500	MD	Ř
13\$\$2	RFIS*48	CSC	09-oct-1991	0.5	UGG	LH18	PPODE	1.500	ИD	Ř
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LH18	PPODT	1.500	KD	R
13\$\$2	RFIS#48	CSO	09-oct-1991	0.5	UGG	LN18	PYR	0.165	LT	_
13882 13882	RFIS*48 RFIS*48	CSO	09-act-1991 09-act-1991	0.5 0.5	UGG UGG	LH18 LH18	TXPHEN UNK595	15.000 21.500	ИĎ	R
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	JS16	AG	0.589	LT	S
13SS2	RFIS*48	CSO	09-oct-1991	0.5	UGG	J\$16	AL	5840.000	•••	
13\$\$2	RFIS*48	CSO	09-oct-1991	0.5	UGG	J\$16	BA	110.000		
13552	RFIS*48	C20	09-oct-1991	0.5	UGG	J\$16	BE	0.500	LT	
13882 13882	RFIS=48 RFIS=48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	JS16	CA	6700.000		
13552	RFIS*48	ÇSO	09-oct-1991	0.5	UGG	1\$16 1816	8	0.700 4.810	LT	
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	J\$16	CR	14.400		
139S2 ·	RFIS*48	CSO	09-oct-1991	0.5	UGG	JS16-	ຒ	26.300		
13882	RFIS=48	CSO	09-oct-1991	0.5	UGG	J\$16	fE	11000.000		
13882 13882	RFIS*48 RFIS*48	CSO	09-oct-1991	0.5	UGG	J\$16	K	1010.000		
13882	RF15*48	CSO	09-oct-1991 09-oct-1991	0.5 0.5	ugg Ugg	JS16 JS16	NG NN	4030.000 314.000		
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	JS16	NA	452.000		
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	JS16	MI	7.360		
13882	RFIS*48	CSO	09-oct-1991	0.5	ugg	JS16	PB.	478.000		
135\$2 135\$2	RFIS*48 RFIS*48	CSO	09-oct-1991	0.5 0.5	UGG	J\$16	S8	7.140	LT	
13\$\$2	RF15*48	CSO	09-oct-1991 09-oct-1991	0.5	UGG	J\$16 J\$16	TL V	6.620 16.200	LT	
13\$\$2	RFIS*48	cso	09-oct-1991	0.5	UGG	J\$16	ZN	196.000		
13882	RFIS*48	CSO	09-oct-1991	0.5	UGG	LU12	135TNB	6.860		C
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LW12	130MB	0.496	LT	
13882 13882	RFIS*48 RFIS*48	CSO CSO	09-oct-1991 09-oct-1991	0.5 0.5	UGG	LW12	246TNT	130.000		Ç
13882	RF15*48	CSO	09-oct-1991	Q.5	UGG UGG	LW12 LW12	24DNT 26DNT	10.400 4.650		C C
13ss2	RFIS*48	CSO	09-oct-1991	0.5	UGG	LW12	HINCK	0,666	LT	•
13552	RFIS*48	CSO	09-oct-1991	0.5	UGG	LW12	NB	2.410	LT	U
13\$\$2	RFIS*48	C\$O	09-oct-1991	0.5	UGG	LW12	RDX	0.587	ĻŢ	
138 <u>52</u> 13853	RFIS*48 RFIS*49	¢20	09-oct-1991 27-aug-1991	0.5 0.5	UGG	LV12	TETRYL	0.731	LT	
13ss3	RF15*49	CSO	27-aug-1991	0.5	ugg Ugg	J801 L≌12	HG 135TNB	0.064 0.488	LT	
13\$\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	LW12	130 NB	0.496	LT	
13883	RF15#49	CSO	27-aug-1991	0.5	UGG	LW12	246THT	0.456	LT	
13883	RFIS=49	CSO	27-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	
13883 13883	RFIS*49 RFIS*49	CSO	27-aug-1991	0.5 0.5	UGG	LW12	26DNT	0.524	LT	
13553	RF15*49	CSD	27-aug-1991 27-aug-1991	0.5	UGG UGG	LW12 LW12	HHX NB	0.666 2.410	LT LT	
13883	RF15*49	cso	27-aug-1991	0.5	UGG	LW12	RDX	0.587	LT	
13\$\$3	RFIS*49	CZO	27-aug-1991	0.5	UGG	LW12	TETRYL	0.731	LT	
13883	RFIS*49	CZO	27-aug-1991	0.5	UGG	JD15	SE	0.250	LT	
13\$\$3 13\$\$3	RF15*49 RF15*49	CSO	27-aug-1991	Q.5 Q.5	UGG	LM19	111TCE	0.004	LT	
13883	RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5	UGG UGG	LH19 LH19	112TCE 11DCE	0.005 0.004	LT LT	
13\$\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	U119	11DCLE	0.002	LT	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LH19	12DCE	0.003	ĻŢ	
13SS3	RF15*49	CSO	27-aug-1991	0.5	UGG	LH19	12DCLE	0.002	LT	
13553 13667	RF15*49	CSO	27-eug-1991	0.5	UGG	LH19	120CLP	0.003	LT	_
138 53 138 53	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN19 LN19	2CLEVE	0.010	MD	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH19 LH19	ACET ACROLN	0.017 0.100	LT ND	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LN19	ACRYLO	0.100	KD	K R
138\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM19	BRDCLM	0.003	LT	~
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM19	C13DCP	0.003	LT	
13883 13863	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM19	C2AVE	0.003	LT	
1355 3 1355 3	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM19 LH19	C2H3CL C2H5CL	0.006 0.012	LT	
13\$\$3	RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LH19	COHO COHO	0.012	LT LT	
	**		4. and 14.4	7.0				7.005	••	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
47447			27 4204							*****
13883 13883	RFIS*49 RFIS*49	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LN19	CCL3F	0.006	LT	
13933	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM19 LM19	CCL4 CH2CL2	0.007 0.012	ĻŢ	
13883	RF15*49	CSC	27-aug-1991	0.5	UGG	LH19	CH3BR	0.006	LT LT	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LH19	CH3CL	0.009	ĹŤ	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH19	CHBR3	0.007	LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LN19	CHCL3	0.001	LT	
138 53 138 53	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	CL2BZ CLC6N5	0.100	KD	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM19	CS2	0.001 0.004	LT LT	
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH19	DBRCLM	0.003	ĹŤ	
13\$\$3	RF1S*49	CSO	27-aug-1991	0.5	UGG	LM19	ETC6H5	0.002	LT	
13\$\$3	RFIS*49	CSO	27-sug-1991	0.5	UGG	LM19	MEC6H5	0.001	LT	
13883 13883	RF1S=49 RF1S=49	CSO CSO	27-aug-1991 27-aug-1991	6.5 0.5	UGG UGG	LM19 LM19	MIBK	0.070	ĻŢ	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LM19	MNBK	0.027 0.032	LT LT	
13\$\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	LN19	STYR	0.003	ĹŤ	
13883	RFIS#49	CSO	27-aug-1991	0.5	UGG	LH19	T130CP	0.003	LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM19	TCLEA	0.002	LT	•
13\$\$3 13\$\$3	RFIS*49 RFIS*49	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LH19 LH19	TCLEE	0.001	LŢ	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LH19	TRCLE XYLEN	0.003 0.002	LT LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	124TC8	0.200	LT	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LM18	12DCLB	0.550	ĹŤ	
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	12DPH	0.500	MD	R
- 13\$\$3 13\$\$3	RF15*49	CZO	27-aug-1991	0.5	UGG	LM18.	13DCLB	0.650	LT	
13853	RF15*49 RF15*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	1.M18 1.M18	140CL8 245TCP	0.490 0.500	LT LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	246TCP	0.850	ŁT	
13883	RF15*49	CSC	27-aug-1991	0.5	UGG	LN18	24DCLP	0.900	LT	
13883	RFIS=49	CSO	27-sug-1991	0.5	UGG	LH18	24DMPM	3.450	LT	
13SS3	RF15*49	CSO	27-sug-1991	0.5	UGG	LM18	24DNP	6.000	LT	
13883 13883	RF1S*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LM18 LM18	24DNT 26DNT	1.170 0.425	LT	
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	2CLP	0.300	LŤ	
13883	RFIS=49	CSO	27-aug-1991	0.5	UGG	LN18	2CNAP	0.180	ĹŤ	
13253	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	2MKAP	0.245	LT	
138 \$3 138 \$3	RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5	UGG UGG	LM18	2MP	0.145	LT	
13\$\$3	RFIS*49 RFIS*49	CSO	27-aug-1991	0.5 0.5	UGG	LM18 LM18	2NANIL ZNP	0.310 0.700	LT LT	
13223	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	330CBD	31.500	ĹŤ	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LM18	3NANIL	2.250	ĹŤ	
13883	RF15*49	CZO	27-aug-1991	0.5	UGG	LM18	46DN2C	2.750	LT	
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	48RPPE	0.165	LT	
13\$\$3 13\$\$3	RFIS*49 RFIS*49	C20	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	4CANIL 4CL3C	4.050 0.475	LT LT	
13883	RFIS=49	cso	27-aug-1991	0.5	UGG	LN18	4CLPPE	0.165	ĻŢ	
13883	RF15*49	CSC	27-aug-1991	0.5	UGG	LM18	4MP	1.200	ĹŤ	
13SS3	RFIS*49	CSO	27-sug-1991	0.5	UGG	LN18	4HANIL	2.050	LT	
13993	RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LM18	4NP	7.000	LT	_
13\$\$ 3 13\$\$3	RFIS*49 RFIS*49	CSO	27-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	ABHC ACLDAN	1.500 1.500	ND ND	R R
13553	RF15=49	CSO	27-aug-1991	0.5	UGG	UH18	AENSLF	3.000	ND	Ř
13\$\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	ALDRN	1.500	ND	Ř
138\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	ANAPNE	0.180	LT	
13883	RF15*49	CZO	27-aug-1991	0.5	UGG	LN18	ANAPYL	0.165	LT	
13SS3 13SS3	RFIS*49 RFIS*49	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	ANTRC B2CEXH	0.165 0.295	LT LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	BZCIPE	1.000	LT	
13853	RFIS#49	CSO	27-aug-1991	0.5	UGG	LN18	B2CLEE	0.165	LT	
13223	RF1S*49	cso	27-aug-1991	0.5	UGG	LH18	BZEHP	3.100	ĻŢ	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LHIS	BAANTR	0.850	LŤ	
138 23 138 83	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGB	LM18 LM18	BAPYR	1.250 1.050	LT LT	
13883	RF15=49	ÇSO	27-aug-1991	0.5	UGG	LM18	BBFANT BBHC	1.500	ND	R
13253	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	8B2P	0.850	ĻŤ	•
13883	RFIS*49	ÇSO	27-aug-1991	0.5	UGG	LM18	Benslf	3.000	ND	R
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	BENZID	4.500	ND	R
13883 13883	RFIS*49	CZO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LM18	BENZOA	30,000	MD	R
13883	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LM18 LM18	BGHIPY BKFANT	1.250 0.330	LT LT	
13883	RF15*49	CZO	27-aug-1991	0.5	UGG	LM18	BZALC	0.950	LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	CHRY	0.600	LT	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	CL6BZ	0.165	LT	

						Analytical				Internal
Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Method	Abbry.	Value	<u>Flag</u>	Std. Code
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LH18	CL6CP	31.000	LT	
132\$3 138\$3	RF15*49 RF15*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	CL6ET DBAHA	0.750 1.050	LT LT	
13883	RF15*49	ÇSO	27-aug-1991	0.5	UGG	LH18	DBHC	1.500	ND	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	DBZFUR	0.175	LT	
13883 13883	RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	22U 22U	LX18 LX18	DEP Dldrn	17,700 1,500	ND	
13823	RF15*49	CŞO	27-aug-1991	0.5	UGG	LX18	DMP	0.850	LT	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	DNBP	5.860		
13 5\$3 13 5\$3	RF15*49 RF15*49	CSO	27-aug-1991 27-aug-1991	0,5 0,5	uee Sec	LM18 LM18	DNOP ENDRN	0.950 2.500	LT ND	
13883	RF15*49	C20	27-aug-1991	0.5	UGG	LH18	ENDRNA	2.500	ND	R R
13\$\$3	RF15*49	CSO	27-aug-1991	0.5	UGG	LN18	ENDRNK	2.500	ND	R
13883 13883	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	ESFS04 FANT	3.000 0.340	ND LT	R
13253	RF15*49	CSO	27-aug-1991	0.5	UGG	LK18	FLRENE	0.165	LT	
13553	RF15*49	CSO	27-aug-1991	0.5	UGG	LN18	GCLDAN	1.500	ND	R
13883 13883	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	HCBD HPCL	1.150 0.500	LT ND	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	HPCLE	1.500	ND	Ř
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	ICDPYR	1.450	LT	
13\$£3 13\$£3	RFIS*49 RFIS*49	CSQ	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	isophr Lin	0.165 1.500	LT ND	•
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	MEXCLR	1.500	ND	R R
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LH18	NAP	0.185	LT	
_ 13\$\$3 . 13\$\$3	RF15*49 RF15*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	NB NNDMEA	0.225 0.500	LT ND	
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LN18	NNONPA	1.000	LT	R
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	KNDPA	1.160		
13883 13883	RF15*49 RF15*49	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	1.1418 1.1418	PCB016 PCB221	5.000 5.000	ND ND	R
13553	RFIS*49	cso	27-aug-1991	0.5	UGG	LH18	PC8232	5.000	MD	R R
13\$\$3	RF15*49	CSO	27-aug-1991	0.5	UGG	LM18	PCB242	5.000	ND	R
13553 13 553	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG DDU	LN18 LN18	PC8248 PC8254	10.000 10.000	ND ND	R
13SS 3	RF15*49	CSO	27-aug-1991	0.5	UGG	LM18	PCB260	15.000	ND	R R
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	LM18	PCP	6.500	LT	
135\$3 13\$\$3	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	PHANTR PHENOL	0.165 0.550	LT LT	
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	LM18	PPDOD	1,500	ND	R
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	PPODE	1.500	MD	R
13883 13883	RFIS*49 RFIS*49	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	PPOOT PYR	1.500 0.165	ND LT	R
13553	RF15*49	ÇSO	27-aug-1991	0.5	UGG	LH18	TXPHEN	15.000	ND	Ŕ
13\$\$3	RFIS*49	CSO	27-aug-1991	0.5	UGG	LH18	UNK569	5.480		S
13883 13883	RF15*49 RF15*49	C20	27-eug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	UNK606 UNK611	4.380 5.480		\$ \$
13553	RF15*49	CSO	27-aug-1991	0.5	UGG	LM18	UNK660	1.100		Š
13953	RF15*49	CSO	27-aug-1991	0.5	UGG	JS16	AG	0.589	ĻŢ	
13883 13883	RFIS*49 RFIS*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	1216 1216	AL Ba	6460.000 102.000		
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	J\$16	BE	1.270		
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	JS16	CA	3700.000		
138 \$3 138 \$3	RF1S*49 RF1S*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	1516 1516	6 8	0.700 7.390	LT	
13553	RF15*49	cso	27-aug-1991	0.5	UGG	J\$16	CR	21.600		
13883	RF15*49	CZO	27-aug-1991	0.5	UGG	J\$16	a	108.000		
13883 138 83	RFIS*49 RFIS*49	C2O	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	7219 9151	FÉ K	12600.000 1490.000		
13883	RFIS*49	CSO	27-aug-1991	0.5	UGĞ	1216	MG	2730.000		
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	JS16	MN	379.000		
13883 13883	RFIS*49 RFIS*49	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	JS16 JS16	NA Ni	284.000 12.600		
13883	RF15*49	CSO	27-aug-1991	0.5	UGG	JS16	PB PB	762.000		
13553	RFIS*49	CSO	27-aug-1991	0.5	UGG	JS16	SB	7,140	LT	
13223 13221	RF15*49 RF15*49	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	JS16 JS16	TL V	16.000 19.500		
13553	RFIS*49	CSC	27-aug-1991	0.5	UGG	JS16	V ZX	264.000		
13883	RFIS*49	CSO	27-aug-1991	0.5	UGG	JD19	AS	1.100		
13554 13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	J801	HG 1757WD	0.050	LT	
13884	RFIS*50 RFIS*50	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LW12 LW12	135TNB 130NB	0.488 0.496	LT LT	
13554	RF1S*50	CSO	27-aug-1991	0.5	UGG	LW12	246THT	0.456	LT	
13884	RF1\$*50	CSO	27-aug-1991	0.5	UGG	LW12	24DNT	0.424	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LW12	26DNT	0.524	LT	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LW12	HMX	0.666	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LW12	NB	2.410	LT	
13554 13554	RFIS*50 RFIS*50	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LW12 LW12	RDX TETRYL	0.587	LT	
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	JD15	SE	0.731 0.250	LT LT	
13\$\$4	RFIS*50	CSC	27-aug-1991	0.5	UGG	LH19	111TCE	0.005	.,	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19	112TCE	0.005	LŤ	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19	11DCE	0.004	LT	
13884	RF15*50	CZO	27-aug-1991	0.5	UGG	LN19	11DCLE	0.002	LT	
138\$4	RFIS#50	CSO	27-eug-1991	0.5	UGG	LH19	12DCE	0.003	LT	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM19	120CLE	0.002	LT	
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	LM19	120CLP	0.003	LT	_
13\$\$4 13\$\$4	RFIS*50 RFIS*50	C20	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM19 LM19	2CLEVE ACET	0.010	ND	R
13884	RF15*50	CSQ	27-aug-1991	0.5	UGG	LH19	ACROLN	0.025 0.100	КD	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	D419	ACRYLO	0.100	KD	R R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM19	BRDCLM	0.003	LŤ	•
13884	RF15*50	C\$0	27-aug-1991	0.5	UGG	LH19	C13DCP	0.003	LT	-
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM19	C2AVE	0.003	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH19	CZH3CL	0.006	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19	C2H5CL	0.012	LT	•
13884	RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LN19	C6H6	0.002	LT	
13554 13554	RFIS*50 RFIS*50	CSO	27-aug-1991	0.5 0.5	UGG	LM19 LM19	CCL3F CCL4	0.006 0.007	LT	
-13SS4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM19	CH2CL2	0.012	LT LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19	CH3BR	0.006	LT	
13554	RFIS*SO	CSO	27-aug-1991	0.5	UGG	LH19	CH3CL	0.009	LT	
13884	RFIS#50	CSO	27-aug-1991	0.5	UGG	LH19	CHBR3	0.007	LT	
13884	RF1\$*50	CSO	27-eug-1991	0.5	UGG	LH19	CHCL3	0.001	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19	CL2BZ_	0.100	ND	R
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19	CLC6H5	0.001	LT	
13\$\$ 4 13\$\$ 4	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LN19	C\$2	0.004	LT	
13884 13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN19 LN19	DBRCLM ETC6H5	0.003 0.002	LT	
13554	RF15*50	CSO	27-aug-1991	0.5	UGG	LN19	MEC6H5	0.001	LT	
13884	RFIS*50	cso	27-aug-1991	0.5	UGG	LH19	MEK	0.070	LT	
13884	RFIS*50	CSO	27-sug-1991	0.5	UGG	LN19	MIBK	0.027	LT	
13SS4	RF15*50	¢s0	27-aug-1991	0.5	UGG	LH19	MNBK	0.032	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH19	STYR	0.003	LT	
13884	RF1S*50	CSO	27-aug-1991	0.5	UGG	LH19	T13DCP	0.003	LT	
13884 13884	RFIS*50 RFIS*50	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LN19	TCLEA	0.002	LT	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG UGG	LM19 LM19	TCLEE TRCLE	0.001 0.003	LT LT	
13554	RFIS*50	cso	27-aug-1991	0.5	UGG	LN19	XYLEN	0.003	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	124TCB	0.200	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	12DCLB	0.550	LT	
13884	RF1S*50	CSO	27-aug-1991	0.5	UGG	ĻX18	120PH	0.500	MD	R
13554	RF15*50	CSO	27-aug-1991	0.5	UGG	LH18	13DCLB	0.650	LŤ	
13554	RFIS*50	CSO	27-sug-1991	0.5	UGG	LN18	140CLB	0.490	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	245TCP	0.500	LT	
13\$\$4 13\$\$4	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN18	246TCP 240CLP	0.850 0.900	LT	
13554	RF15*50	CSO	27-aug-1991	0.5	UGG	LM18 LM18	240CLP 240MPN	3.450	LT LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	240NP	6.000	LT	
13554	RF15*50	CSO	27-aug-1991	0.5	UGG	LN18	240NT	37.500	٠.	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LX18	26DNT	1.840		
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	2CLP	0.300	LŤ	
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	2CNAP	0.180	LT	
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	UN18	2MMAP	0.245	ŁT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	2MP	0.145	LT	
13884 13884	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LH18	2XAN1L 2XP ·	0.310 0.700	LT LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18 LH18	33DCBD	31.500	LT	
13554	RFIS*50	Ç\$O	27-sug-1991	0.5	UGG	LX18	3NANIL	2.250	LT	
13884	RFIS*50	CSO	27-sug-1991	0.5	UGG	LX18	46DN2C	2.750	LT	
138\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LX18	4BRPPE	0.165	ĹΤ	
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LX18	4CANIL	4.050	LT	
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	4CL3C	0.475	LT	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LX18	4CLPPE	0.165	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LX18	4 14 P	1.200	LT	
13554	RFIS*SQ	C20	27-aug-1991	0.5	UGG	LN18	4NANTL	2.050	LT	
13884 13884	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18	ABHC	7.000	ĻT	
12234	¥L19_3Å	CSU	61-808-124)	0.5	بابات	1,H18	7047	1.500	ND	R

Site ID	<u>Field ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	ACLDAN	1.500	NO	R
13\$\$4	RFIS*50	ÇSO	27-aug-1991	0.5	UGG	LH18	AENSLF	3.000	ND	Ř
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	ALDRN	1.500	ND	R
13\$\$4 13\$\$4	RFIS*50 RFIS*50	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LH18 LH18	ANAPNE	0.180 0.165	ĻŢ	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	ANAPYL ANTRC	0.165	LT LT	
13884	RFIS*50	CSO	27-sug-1991	0.5	UGG	LH18	82CEXM	0.295	LT	
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	BECIPE	1.000	LT	
13\$\$4 13\$\$4	RF1S*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN18 LN18	B2CLEE B2EHP	0.165 3.100	LT LT	
13554	RFIS*50	C20	27-aug-1991	0.5	UGG	LH18	BAANTR	0.850	ĹŤ	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	BAPYR	1.250	LT	
13\$\$4 13\$\$4	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	BBFANT BBHC	1.050 1.500	LT ND	ь
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	BBZP	0.850	LT	R
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	LM18	BEXSLF	3.000	ND	R
138 \$ 4 138 \$ 4	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN18	BEXZID	4.500	ND	R
13554	RF15*50	CSO	27-aug-1991	0.5	UGG	LX18 LX18	BENZOA BGHIPY	30.000 1.250	ND LT	R
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	LH18	BKFANT	0.330	LT	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	BZALC	0.950	LT	
13554 13554	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	CHRY CL68Z	0.600 0.165	LT LT	
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	CLOCP	31.000	LT	
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	CLSET	0.750	LT	
13\$ \$ 4 - 13\$\$4	RF15*50 RF15*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG	LN18 - LN18	DBAHA DBHC	1.050 1.500	LT	
13\$\$4	RF15*50	CSO	27-aug-1991	0.5	UGG	LM18	DBZFUR	0.175	ND Lt	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LX18	DEP	1.890		
13884 13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	DLDRN	1.500	ND	Ř
13884	RFIS*50 RFIS*50	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	DMP DNBP	0.850 31.300	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	DNOP	0.950	LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	ENDRN	2.500	ND	R
13884 13884	RFIS*50 RFIS*50	C20	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	ENDRNA ENDRNK	2.500 2.500	ND ND	R R
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	ESFSO4	3.000	MD	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	FANT	0.340	LT	
13884 13884	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LN18 LN18	FLRENE GCLDAN	0.165 1.500	LT ND	R
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	LN18	HC80	1.150	LT	ĸ
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LK18	HPCL	0.500	ND	Ř
13884 13884	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LN18	HPCLE	1.500	ND	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18 LM18	ICDPYR ISOPHR	1.450 0.165	LT LT	
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	LIN	1.500	ND	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	MEXCLR	1.500	ND	R
13884 13884	RFIS#50 RFIS#50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg Ugg	LM18 LM18	NAP NB	0.185 0.225	LT LT	
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	NNDMEA	0.500	ND	R
13554	RF15*50	CSO	27-eug-1991	0.5	UGG	LN18	NNDNPA	1.000	LT	
135\$4 135\$4	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	LM18 LM18	NNDPA PC8016	6.210 5.000	ND	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LM18	PCB221	5.000	ND	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	PCB232	5.000	MD	R
13554 13554	RF15*50 RF15*50	CSO	27-aug-1991 27-aug-1991	0.5	UGG	LH18	PCB242	5.000	MD	Ř
13554	RF15*50	CSO CSO	27-aug-1991	0.5 0.5	UGG UGG	lm18 lm18	PC8248 PC8254	10.000 10.000	ND ND	R R
13554	RF1S*50	CSO	27-aug-1991	0.5	UGG	LH18	PCB260	15.000	ND	Ř
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LH18	PCP	6.500	LT	
13884 13884	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	LM18 LM18	PHANTR PHENOL	0.165 0.550	LT LT	
13884	RF1S*50	CSO	27-aug-1991	0.5	UGG	LM18	PPODD	1.500	ND	R
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	LN18	PPODE	1.500	MD	R
13\$\$4 13\$\$4	RF15*50 RF15*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg	LM18 LM18	PPOOT PYR	1.500 0.165	NO LT	R
13884	RF15*50	CSC	27-aug-1991	0.5	UGG	LM18	TXPHEN	15.000	NO	R
13554	RF1S*50	CSO	27-aug-1991	0.5	UGG	J\$16	AG	0.793	,	·•
13\$\$4	RFIS*50	CSO	27-aug-1991	0.5	UGG	J\$16	AL	13000.000		
13554 13554	RFIS*50 RFIS*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	BA BE	225.000 2.520		
135\$4	RF1S*50	CSO	27-aug-1991	0.5	UGG	J\$16	CA	8580.000		
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	J\$16	CD CD	0.700	ĻŢ	
13554	RFI\$*50	CSO	27-aug-1991	0.5	UGG	J\$16	œ	17.300		

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal <u>Std. Code</u>
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	J\$16	CR	25,400		
13554	RF15*50	CSO	27-aug-1991	0.5	UGG	JS16	ä	55.400		
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	JS16	FE	28000.000		
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	JS16	K	2210.000		
13554 13554	RF1S*50 RF1S*50	CSO	27-aug-1991 27-aug-1991	0.5 0.5	ugg ugg	312L 312L	MG MN	6870.000		
13884	RF15*50	CSO	27-aug-1991	0.5	UGG	JS16	HA	1570.000 261.000		
13\$\$4	RF15*50	CSO	27-sug-1991	0.5	UGG	J\$16	NI	14.700		
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	JS16	PS	376.000		
13884	RFIS*50	CSO	27-aug-1991	0.5	UGG	JS16	28	7.140	ĻT	
13554 13554	RFIS*50 RFIS*50	CSO CSO	27-aug-1991 27-aug-1991	0.5 0.5	UGG UGG	J\$16 J\$16	TL V	26.900 45.900		
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	JS16	ZN	375.000		
13554	RFIS*50	CSO	27-aug-1991	0.5	UGG	JD 19	AS	2.710		
135W1	RDWA*11	CSW	15-jan-1992	0.0	UGL	SD 23	AG	0.250	LT	
135W1 135W1	RDWA*11 RDWA*11	CSM	15-jan-1992 15-jan-1992	0.0 0.0	UGL UGL	\$801 UH20	HG 111TCE	0.243 0.500	LT	
135W1	RDWA=11	CSW	15- jan-1992	0.0	UGL	UM20	1121CE	1.200	LT LT	
13su1	RDWA=11	CSW	15- jan-1992	0.0	UGL	UH20	11DCE	0.500	LT	
135W1	RDWA*11	CSM	15- jan-1992	0.0	UGL	UN20	11DCLE	0.680	LT	
135W1	ROMA*11	CSW	15-jan-1992	0.0	UGL	UN20	120CE	0.500	LT	
135W1 135W1	RDUA*11 RDUA*11	CZA	15- jan-1992 15- jan-1992	0.0	UGL UGL	UM20 UM20	12DCLE 12DCLP	0.500 0.500	LT LT	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM20	2CLEVE	0.710	ĹŤ	
135¥1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM20	ACET	13.000	LT	
135¥1	RDWA*11	CSM	15-jan-1992	0.0	UGL	UN20-	ACROLN	100.000	ND	R
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0 0.0	UGL	UM20 UM20	ACRYLO BRDCLM	100.000 0.590	ND	R
135W1	RDWA*11	CSM	15-jan-1992	0.0	UGL	UH20	C13DCP	0.580	LT LT	
13511	RDWA*11	CSM	15-jan-1992	0.0	UGL	UN20	CZAVE	8.300	ĹŤ	
13sw1	RDWA±11	CSM	15- Jan-1992	0.0	UGL	UH20	C2X3CL	2.600	LT	
135¥1 135¥1	RDWA*11 RDWA*11	CSM	15- jan-1992 15- jan-1992	0.0 0.0	UGL	UM20 UM20	C2H5CL C6H6	1,900	LŢ	
135W1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UM20	CCL3F	0.500 1.400	LT LT	
135W1	RDUA*11	CSW	15-jan-1992	0.0	UGL	UN20	CCL4	0.580	ĹŤ	
13SW1	RDUA+11	CSU	15-Jan-1992	0.0	UGL	UN20	CH2CL2	2.300	ĻŤ	
135W1 135W1	RDWA*11 RDWA*11	CSW	15-jan-1992 15-jan-1992	0.0 0.0	UGL UGL	UH20 UH20	CH3BR CH3CL	5.800 3.200	LT LT	
13\$W1	RDWA*11	CST	15- Jan-1992	0.0	OCT.	UN20	CHBR3	2.600	ĻŢ	
135W1	RDWA*11	CSW	15-jan-1992	0.0	UGL	LM20	CHCL3	0.500	ĹŤ	
135W1	RDWA+11	CSW	15- Jan-1992	0.0	UGL	UM20	CL2BZ	10.000	ND	R
135W1 135W1	RDUA*11 RDUA*11	CZM	15- jan- 1992 15- jan- 1992	0.0 0.0	ugt ugt	UM20 UM20	CLC6K5 CS2	0.500 0.500	LT LT	
135W1	RDWA+11	CSW	15-jan-1992	0.0	UGL	UN20	DBRCLM	0.570	LT	
13sw1	RDVA*11	CZM	15-jan-1992	0.0	UGL	UN20	ETC6H5	0.500	LT	
13sw1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UH20	MEC6H5	0.500	LT	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM20	MEK	6.400	LT	
135¥1 135¥1	RDWA+11 RDWA+11	CZF	15- jan-1992 15- jan-1992	0.0	ugl ugl	UM20 UM20	MISK	3.000 3.600	LT LT	
13SW1	ROWA*11	CSW	15-jan-1992	0.0	UGL	UH20	STYR	0.500	LT	
135¥1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN20	T130CP	0.700	LT	
135W1	RDUA*11	CZF	15- jan-1992	0.0	UGL	UH20	TCLEA	0.510	LT	
135¥1 135¥1	RDWA*11 RDWA*11	CSM	15-jan-1992 15-jan-1992	0.0 0.0	ugl Ugl	UM20 UM20	TCLEE	1.600 0.500	LT LT	
13591	RDWA*11	CSW	15-jan-1992	0.0	UGL	UM20	XYLEN	0.840	LT	
13541	RDWA*11	CSW	15- jan-1992	0.0	UGL	SD21	SE	3.020	LT	
13su1	RDWA*11	CSW	15- jan-1992	0.0	UGL	\$009	TL	6.990	LT	
135W1 135W1	RDWA*11 RDWA*11	CSM	15-jan-1992 15-jan-1992	0.0 0.0	UGL UGL	SD20 SD22	PB AS	500.000 2.990		
135¥1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN18	112TCE	6.000		s
135W1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN18	124TCB	1.800	LT	•
13 5 W1	RDMA*11	CSW	15-jan-1992	0.0	UGL	UN18	12DCLB	1.700	LT	
135W1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN18	120PH	2.000	MD	Ř
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0 0.0	UGL UGL	UM18 UM18	13DCLB 14DCLB	1.700 1.700	LT LT	
135W1	RDWA=11	CSM	15- jan-1992	0.0	UGL	UN18	2457CP	5.200	LT	
135 41	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM18	246TCP	4.200	ĻŤ	
13sw1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UN18	24DCLP	2.900	LT	
135W1	ROWA*11	CSW	15-jan-1992 15-jan-1992	0.0	UGL	UN18	240MPN 24DNP	5.800 21.000	LT	
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0	UGL	UN18 UN18	24DNP 24DNT	13.600	LT	
13sw1	RDWA*11	CSW	15-jan-1992	0.0	UGL,	UK18	26DNT	2.390		
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UK18	2CLP	0.990	LT	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UH18	ZCHAP	0.500	LT	

Site ID	<u> Field ID</u>	Media	Dat <u>e</u>	Deoth	<u>Units</u>	Analytical Method	Analyte Abbry	Value	Flag	Internal Std. Code
									- 124	***********
13sw1	RDWA*11	CSW	15-jan-1992	0.0	UGL	LM18	2MNAP	1.700	LT	
135W1 135W1	RDWA*11 RDWA*11	C2M C2M	15-jan-1992 15-jan-1992	0.0 0.0	ugl Ugl	UM18	2NP	3.900	LT	
135W1	RDWA*11	CSM	15- jan-1992	0.0	UGL	UN18 UN18	2NANTL 2NP	4.300 3.700	LT LT	
13SW1	RDWA*11	CZF	15- jan-1992	0.0	UGI.	UM18	330 CBO	12,000	ĻŢ	
135W1	RDUA*11	CSW	15- jan-1992	0.0	UGL	UM18	3NANIL	4.900	LT	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM18	46DN2C	17.000	LT	
13SU1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN18	4BRPPE	4.200	LT	
135W1 135W1	RDWA#11 RDWA#11	CSM	15-jan-1992 15-jan-1992	0.0 0.0	UGL UGL	UM18 UM18	4CANIL 4CL3C	7.300 4.000	LT LT	
13sw1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM18	4CLPPE	5.100	LT	
13SW1	RDWA*11	CSM	15- jan-1992	0.0	UGL	UM18	4MP	0.520	ĹŤ	
13SW1	RDWA*11	CZM	15- jan-1992	0.0	UGL	UH18	4RANIL	5.200	LT	
13SU1	RDUA*11	CSW	15- jan-1992	0.0	UGL	UM18	4RP	12.000	LT	_
135W1 135W1	RDWA*11 RDWA*11	CZM	15- jan-1992 15- jan-1992	0.0 0.0	UGL	UM18 UM18	ABHC ACLDAN	4.000 5.100	ND ND	Ř R
135W1	RDWA*11	CSM	15-jan-1992	0.0	UGL	UN18	AENSLF	9.200	MD	R
135¥1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN18	ALDRN	4.700	ND	Ŕ
13\$W1	RDWA*11	CSM	15- jan-1992	0.0	UGL	UN18	ANAPHE	1.700	LT	
135W1	RDWA*11	CZM	15- jan-1992	0.0	UGL	UH18	ANAPYL	0.500	ĻŢ	
138W1 138W1	RDWA*11 RDWA*11	CSM	15- jan-1992 15- jan-1992	0.0 0.0	UGL UGL	UM18	ANTRO B2CEXXX	0.500	LT	
13SW1	RDUA*11	CSM	15- jan-1992	0.0	UGL	UM18 UM18	B2CIPE	1,500 5,300	LT LT	
13511	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM18	B2CLEE	1.900	ĹŤ	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM18	B2EHP	4.800	LT	
- 139W1 -	RDWA*11	CZM	15- jan-1992	0.0	UGL	UN18	BAANTR	1.600	LT	
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0 0.0	UGL	UN18	BAPYR	4.700	LT	
13sw1	RDWA*11	CSW	15- jan-1992	0.0	ugl Ugl	UM18 UM18	BBHC	5.400 4.000	LT ND	R
135W1	RDWA+11	CSW	15-jan-1992	0.0	UGL	UN18	BSZP	3.400	LT	•
135W1	RDWA*11	CSH	15- jan-1992	0.0	UGL.	UN18	BENSLF	9.200	ND	R
135W1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	UN18	BENZID	10.000	MD	R
138W1 138W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0 0.0	UGL	UH18	BENZOA	13,000	LT	
13 541	RDWA*11	CSW	15-jan-1992	0.0	ugl ugl	UM18 UM18	BGHIPY BKFANT	6.100 0.870	LT LT	
135W1	RDWA*11	CZH	15-jan-1992	0.0	UGL	UM18	8ZALC	0.720	LT	
13 5W1	RDWA*11	CSM	15- jan- 1992	0.0	UGL	UM18	CHRY	2.400	LT	
135W1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	UN18	CL68Z	1.600	LT	
135W1 135W1	RDWA*11 RDWA*11	CSW	15-jan-1992 15-jan-1992	0.0	UGL	UN18	CL6CP	8.600	LT	
135W1	RDWA*11	CSW	15-jan-1992	0.0 0.0	ugl ugl	UM18 UM18	CL6ET DBAHA	1.500 6.500	LT LT	
13su1	RDWA*11	CZM	15- jan-1992	0.0	UCL	UN18	DBHC	4,000	ND	R
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UN18	DBZFUR	1,700	LT	••
135W1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	UK18	DEP	2.000	LT	
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0 0.0	UGL	UK18	DLDRN	4.700	ND	R
135W1	RDWA*11	CZM	15-jan-1992	0.0	UGL	UM18 UM18	DHP DNBP	1.500 3.700	LT LT	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UN18	DNOP	15.000	LT	
13sw1	RDUA*11	CSU	15- jan- 1992	0.0	UGL	UH18	ENDRN	7.600	ND	R
13SW1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UM18	ENDRNA	8,000	ND	R
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0	UGL	UN18	ENDRNK	5.000	ND	R
135W1	RDWA*11	CSH	15-jan-1992	0.0	UGL	UM18 UM18	ESFSO4 FANT	9,200 3,300	ND LT	R
13SW1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	UM18	FLRENE	3,700	LT	
135W1	RDMA*11	CSW	15-jan-1992	0.0	UGL	UN18	GCLDAN	5.100	ND	R
135¥1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UH18	HCBD	3,400	LT	
135W1 135W1	RDWA*11 RDWA*11	CZA	15-jan-1992 15-jan-1992	0.0 0.0	UGL.	UM18	HPCL	2.000	ND	R
13\$W1	RDWA*11	CSW	15-jan-1992	0.0	ugl ugl	UM18 UM18	HPCLE ICDPYR	5.000 8.600	ND LT	R
135W1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UM18	ISOPHR	4.800	LT	
135W1	RDWA*11	CSW	15- jan-1992	0.0	UCL,	UH18	LIN	4.000	ND	R
13541	RDHA*11	CSM	15 · jan-1992	0.0	UGL,	LM18	MEXCLR	5.100	ND	R
135W1 135W1	RDWA*11 RDWA*11	CZM	15-jan-1992	0.0	UGL	UK18	KAP	0.500	LT	
135W1	RDWA*11	CZM	15-jan-1992 15-jan-1992	0.0 0.0	UGL UGL	UM18 UM18	NB NNDMEA	0.500 2.000	LT ND	
135W1	ROMA*11	CSW	15- jan-1992	0.0	UGL	UN18	NNDNPA	4,400	LT	R
13SW1	RDWA*11	CSW	15-jan-1992	0.0	UGI,	UN18	NNDPA	3.000	ίŤ	
13SU1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UN18	PC8016	21.000	ND	R
135W1	RDWA=11	CSW	15- jan-1992	0.0	UGL	UN18	PCB221	21.000	ND	R
135W1 135W1	RDWA*11 RDWA*11	CSM	15-jan-1992 15-jan-1992	0.0 0.0	UGL	UN18	PC8232	21.000	ND	R
13SW1	RDWA*11	CSH	15-jan-1992	0.0	UGL UGL	UM18 UM18	PCB242 PCB248	30,000 30,000	ND ND	Ř R
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL.	UH18	PCB254	36,000	ND	R
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UN18	PC8260	36.000	KD	R

Site ID	<u>Field ID</u>	<u>Medi a</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte _Abbrv.	Value	Flag	Internal Std. Code
135W1	RDWA*11	CZA	15- jan-1992	0.0	UGL	UM18	PCP	18.000	LT	
13sv1	RDWA*11	CSW	15- jan-1992	0.0	UGL	LM18	PHANTR	0.500	LT	
135W1	RDMA*11	CZM	15- jan- 1992	0.0	UGL	UM18	PHENOL	9.200	ĻΤ	
13SW1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	UN18	PPODO	4.000	ND	R
135¥1	RDWA*11	CSW	15-jan-1992	0.0	UGL	UH18	PPODE	4.700	ND	R
135W1 135W1	RDWA*11	CSW	15-jan-1992	0.0	ugl ugl	UM18	PPODT	9.200	ND	R
135W1	RDWA*11 RDWA*11	CSM	15- jan- 1992 15- jan- 1992	0.0	UGL	UM18 UM18	PYR TCLEA	2.800	LT	_
13sw1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UM18	TXPHEN	6.000 36.000	400	S R
13sw1	RDUA*11	CZM	15- jan-1992	0.0	UGL	UN18	UNK594	10.000	MD	Š
13\$W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	SS10	AL	47500.000		•
135W1	RDWA*11	CZW	15- jan-1992	0.0	UGL	2210	BA	495.000		
13sw1	RDWA+11	CZM	15- Jan-1992	0.0	UGL	5510	SE	5.000	ĻŤ	
13511	RDWA*11	CZM	15- jan-1992	0.0	UGL	SS10	CA	22200.000		
135V1	RDWA*11	CSW	15-jan-1992	0.0	UGL	SS10	60	4.010	LŤ	
135W1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	\$\$10	CO	30.600		
138¥1 132¥1	RDWA+11 RDWA+11	CZFI	15- jan- 1992 15- jan- 1992	0.0 0.0	UGL UGL	SS10 SS10	CR CU	78.800		
135W1	RDWA=11	CSW	15- jan-1992	0.0	UGL	SS10	FE	143.000 59700.000		
135W1	RDWA*11	CZM	15- jan- 1992	0.0	UGL	S\$10	K	13600.000		
13521	RDWA*11	CSW	15- jan- 1992	0.0	UGL	\$\$10	MG	12400.000		
13su1	RDWA*11	CSW	15- jan-1992	0.0	UGL,	\$\$10	MH	1940.000		
13sw1	RDWA*11	CSW	15- jan-1992	0.0	UGL	\$\$10	NA.	1830.000		
135W1	RDWA*11	CZM	15- jan- 1992	0.0	UGL	\$\$10	NI	43,800		
13sw1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	\$\$10	SB	38.000	LT	
- 13\$¥1 ·	RDUA*11	CSW	15- jan- 1992	0.0	UGL	SS10-	Ā	89.900		
135¥1 135¥1	RDWA*11	CSW	15- jan- 1992	0.0 0.0	UGL	SS10	ZN	893.000		
135W1	RDWA*11 RDWA*11	CZA	15- jan- 1992 15- jan- 1992	0.0	UGL.	00 TF22	TOX NIT	33.500 530.000		
135¥1	RDWA*11	CSW	15- jan- 1992	0.0	UGL	00	TOC	12.000		
135W1	RDWA*11	CSW	15- jan- 1992	0.0		00	PH	7.680		K
135W1	ROWA*11	CSW	15- jan- 1992	0.0	UGL	UN32	135TNB	1.180		~
135W1	RDWA*11	CSW	15- jan-1992	0.0	UGL	UN32	13DNB	0.611	LT	
13SW1	RDWA*11	CZH	15- jan-1992	0.0	UGL	UU32	246TNT	32.900		
13sw1	RDWA*11	ÇŞW	15- jan- 1992	0.0	UGL	UN32	24DNT	15.800		
135W1	RDWA*11	CSW	15- Jan- 1992	0.0	UGL	UA32	260NT	3.710		
135V1	RDWA*11	CZM	15-jan-1992	0.0 0.0	UGL	UA32	HMX	12.800		
135W1 135W1	RDWA*11 RDWA*11	CZM	15- jan-1992 15- jan-1992	0.0	UGL	UM32 UM32	NB RDX	0.645 1.170	LT	
135W1	RDWA*11	CSM	15- jan-1992	0.0	UGL	UN32	TETRYL	2.490	LT LT	
16-1	RDUC*13	CGM	04-feb-1992	46.0	UGL	2009	TL	6,990	LT	
16-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	SD21	SE	3.020	ĹΤ	
16-1	RDMC*13	CGM	04-feb-1992	46.0	UGL	00	TOC	36.700		
16-1	RDUC*13	CGM	04-feb-1992	46.0	UGL	\$\$10	AL	141.000		
16-1	RDWC*13	CCM	04-feb-1992	46.0	UGL	\$\$10	BA	147.000		
16-1	ROUC*13	CGM	04-feb-1992	46.0	UGL	\$\$10	BE	5.000	LT	
16-1 16-1	RDWC*13 RDWC*13	CCM	04-feb-1992 04-feb-1992	46.0 46.0	UGL UGL	\$\$10	CA.	69400.000		
16-1	ROUC*13	CGM	04-feb-1992	46.0	UGL	\$\$10 \$\$10	co	4.010 25.000	LT	
16-1	RDMC*13	CCM	04-feb-1992	46.0	UGL	\$\$10 \$\$10	CR	6.020	LT LT	
16-1	RDWC=13	CGM	04-feb-1992	46.0	UGL	\$\$10	a	8.090	LT	
16-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	\$\$10	FE	180.000		
16-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	SS10	K	4190_000		
16-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	SS10	MG	29500.000		
16-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	SS10	MM	22.200		
16-1	RDWC*13	CCF	04-feb-1992	46.0	UGL	5510	NA.	4490.000		
16-1	RDWC*13	CGW	04-feb-1992	46.0	UGL	\$\$10	MI	34.300	LT	
16-1 16-1	RDMC*13 RDMC*13	CCM	04-feb-1992 04-feb-1992	46.0 46.0	UGL UGL	\$\$10	S8.	38.000	LŤ	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL	\$\$10 \$\$10	V ZN	11.000 26.400	LT	
16-1	RDMC*13	CGW	04-feb-1992	46.0	UGL	\$801	HG	0.243	LT	
16-1	RDUC*13	CGW	04-feb-1992	46.0	UGL	SD22	AS	2.540	LT	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL	00	TOX	180,000	•	
16-1	RDUC*13	CGW	04-feb-1992	46.0	UGL	SD20	PB	1.260	LT	
16-1	RDUC*13	CGW	04-feb-1992	46.0	UGL	SD23	AG	0.250	ĻŤ	
16-1	RDMC*13	CGM	04-feb-1992	46.0	UGL	UN20	111TCE	0.500	LT	
16-1	RDMC*13	CCM	04-feb-1992	46.0	UGL	UM20	112TCE	1.200	LT	
16-1 14-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	UN20	11DCE	0.500	LT	
16-1 16-1	RDWC*13	CCM	04-feb-1992	46.0 46.0	UGL	UM20	11DCLE	0.680	LT	
16-1	ROWC*13 ROWC*13	CCM	04-feb-1992 04-feb-1992	46.0	UGL	UM20 UM20	12DCE 12DCLE	0.500 0.500	LT LT	
16-1	RDWC*13	CGH	04-feb-1992	46.0	UGL	UM20	12DCLP	0.500	LT	
16-1	ROWC*13	CGW	04-feb-1992	46.0	UGL	UNZO	ZCLEVE	0.710	LT	
16-1	RDWC*13	COM	04-feb-1992	46.0	UGL	UM20	ACET	13.000	LT	
	- · -		-				-			

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	AG	0.589	ĻŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	AL	2910.000		
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	J\$16 J\$16	BA BE	37.800 0.500	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	CA	1200.000	L.I	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	CD	0.700	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	CD	4.150		
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	J\$16	CR CU	16.900		
NRSET NRSET	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	UGG UGG	JS16 JS16	FE	8.880 32200.000		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	K	388.000		
NRSET	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	MG	1210.000		
NRSE!	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	J\$16	MN NA	414.000		
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16 JS16	NI Ik	162.000 5.980		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	PB	113.000		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	88	7.140	L1	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	TL	6.620	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	JS16 JS16	V Zn	14.300 447.000		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JB01	HG	0.050	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JD19	AS .	2.290	•	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	1247CB	0.040	LT	
NRSE1 NRSE1	ROSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	12DCLB 12DPH	0.110 0.140	LT ND	ь
NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	12EPCH	0.390	NU	R S
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	13DCLB	0,130	LT	_
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	14DCLB	0.098	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	245TCP	0.100	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	246TCP 24DCLP	0.170 0.180	LT LT	
NRSET	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	24DMPN	0.690	ĻĪ	
NRSET	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	24DNP	1.200	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	24DNT	0.140	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	26DNT 2CLP	0.085 0.060	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	2CNAP	0.036	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ZMNAP	0.049	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LMT8	2MP	0.029	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	2NANIL 2NP	0.062 0.140	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	33DCBD	6.300	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	3MANIL	0.450	LT	
MRSET	RDSE*1	CSE	16-spr-1992	1.0	UGG	LM18	460N2C	0.550	L۲	
NRSE 1 NRSE 1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LN18 LN18	4BRPPE 4CANIL	0.033 0.810	LT LT	
HRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	4CL3C	0.095	LT	
HRSET	RDSE*1	CSE	16-spr-1992	1.0	UGG	LM18	4CLPPE	0.033	LŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	4MP	0.240	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-spr-1992 16-spr-1992	1.0	UGG UGG	LH18 LH18	4MANIL 4MP	0.410 1.400	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ABHC	0.270	ND	R
MRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ACLDAN	0.330	MD	Ř
MRSE1	RDSE*1	CSE	16-spr-1992	1.0	UGG	LM18	AENSLF	0.620	ND	R
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM18 LM18	ALDRN ANAPNE	0.330 0.036	ND Lt	R
NRSE!	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ANAPYL	0.033	LT	
MRSE?	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ANTRC	0.033	LT	
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	BZCEXM	0.059	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LN18	B2CIPE	0.200	LŢ	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	B2CLEE B2EHP	0.033 2.940	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	NGG	LH18	BAANTR	0.170	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	BAPYR	0.250	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	BBFANT	0.210	LT	_
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0	UGG	LN18	88HC	0.270 0.170	NĎ	R
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG UGG	LM18 LM18	BBZP BENSLF	0.620	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	BENZID	0.850	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	BENZOA	6.100	MD	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	BGHIPY	0.250	LT LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CZE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	BKFANT BZALC	0.066 0.190	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	CHRY	0.120	LŤ	
			·							

Site ID	Field ID	<u>Medía</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
NRSE1	RDSE*1	ÇSΕ	16-apr-1992	1.0	UGG	LM18	CL6BZ	0.033	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	CL6CP	6.200	LŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	CLÓET	0.150	LT	
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	DBAHA DBHC	0.210 0.270	LT	•
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	DSZFUR	0.035	ND LT	Ř
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	DEP	0.240	ĹŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	DLDRN	0.310	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	DMP	0.170	LT	
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	DNBP DNCP	0.061	Lī	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ENDRN	0.190 0.450	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1,0	UGG	LM18	ENDRNA	0,530	ND	Ř
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ENDRNK	0.530	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ESFS04	0.620	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	FANT FLRENE	0.068 0.033	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	GCLDAN	0.330	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	HCBD	0.230	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	HPCL	0.130	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	HPCLE	0.330	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0 1.0	UGG	LM18	COPYR	0.290	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	ugg Ugg	LM18 LM18	ISOPHR Lin	0.033 0.270	LT ND	R
_ NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	MEXCLR	0.330	ND	Ř
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	NAP	0.037	LT	,-
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	NB	0.045	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0 1.0	UGG	LM18	NNDMEA	0.140	ND	R
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	NADNPA NADPA	0.200 0.190	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PC8016	1.400	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PCB221	1.400	HD	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PC8232	1.400	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	ออบ	LM18	PC8242	1.400	ND	R
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	PC8248 PC8254	2.000 2.300	D DK	R R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PC8260	2.600	ХD	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PCP	1.300	LT	••
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	PHANTR	0.033	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PHENOL	0.110	ŁT.	_
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	PPDDD PPDDE	0.270 0.310	ND ND	R R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PPODT	0.310	ND	Ŕ
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	PYR	0.033	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	ngg	LM18	TXPHEN	2.600	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JD15	SE	0.250	LT	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	nee nee	LM19 LM19	111TCE 112TCE	0.004 0.005	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	11DCE	0.004	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	NGC	LM19	11DCLE	0.002	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	12DCE	0.003	LT	
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM19 LM19	12DCLE 12DCLP	0.002	LT	
NRSET NRSET	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0	ugg Ugg	LM19 LM19	2CLEVE	0.00 3 0.010	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	ACET	0.017	LT	κ.
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	ACROLN	0.100	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	ACRYLO	0.100	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	BRDCLM	0.003	LT	
NRSE! NRSE!	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM19 LM19	C13DCP C2AVE	0.003 0.003	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	C2H3CL	0.006	LT	
NRSE T	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	CZH5CL	0.012	LT	
NRSE!	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	Ç6 H6	0.002	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	CCL3F	0.006	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19 LM19	CCL4 CH2CL2	0.007 0.012	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	CH3BR	0.006	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.8	UGG	LM19	CH3CL	0.009	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	CHBR3	0.007	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	CHCL3	0.001	LT	_
NRSE1	RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN19 LH19	CL2BZ CLC6H5	0.100	ND	R
NRSE! NRSE!	RDSE*1 RDSE*1	CZE	16-apr-1992	1.0	UGG	LM19	CS2	0.001 0.004	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0		LM19	DBRCLM	0.003	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Uni ts</u>	Analytical <u>Method</u>	Analyte <u>Abbry.</u>	Value	Flag	Internal Std. Code
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	ETC6H5	0.002	ĻŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	MEC6H5	0.001	ĹŤ	
KRSET	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	MEK	0.070	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	MIBK	0.027	LT	
NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM19	MNBK	0.032	LT	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992	1.0	000 000	LM19 LM19	STYR T13DCP	0.003	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	TCLEA	0.002	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	TCLEE	0.001	LŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	TRCLE	0.003	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	XYLEN	0.002	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LW12 LW12	135TNB 13DNB	0.488 0.496	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LW12	246TNT	0.456	LT LT	
NRSE1	RDSE*1	·CSE	16-apr-1992	1.0	UGG	LW12	24DNT	0.424	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LW12	260NT	0.524	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LW12	HMX	0.666	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LW12	NB	2.410	LT -	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LW12 LW12	RDX Tetryl	0.587 0.731	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	AG	0.731	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	AL,	2250.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	ВА	40.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	BE	0.500	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	CA	558.000		
NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	JS16*	CD	0.700	LT	
NRSEZ NRSEZ	RDSE*Z	CSE	16-apr-1992	1.0 1.0	UGG	JS16 JS16	CO	3.900 10.100		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	cn cr	7,140		
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	FE	20900.000		
NRSEZ	RDSE*Z	CSE	16-apr-1992	1.0	UGG	JS16	K	282.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	MG	751.000		
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0 1.0	UGG	9121	MN	376.000		
NRSEZ NRSEZ	RDSE*Z	CSE CSE	16-apr-1992 16-apr-1992	1.0	ugg ugg	JS16 JS16	AK IN	138.000 5.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	PB	62.900		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	SB	7.140	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	TL	6.620	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	V	11,400		
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	JS16	ZN	272.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	J801 J019	HG As	0,050 1 .860	ŁT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	124TCB	0.040	LT	
HRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	120CLB	0.110	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	12DPH	0.140	ND	R
NRSE2	RDSE*2	CSE		1.0		LM18	12EPCH	0.388		S
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	13DCLB 14DCLB	0.130 0.098	ĻŤ	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	245TCP	0.100	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	246TCP	0.170	LT	
HRSEZ	RDSE*2	CSE	16-apr-1992	1.0		LM18	240CLP	0.180	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0		LH18	24DMPN	0.690	ŁT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0		LM18	24DNP	1.200	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CZE	16-apr-1992 16-apr-1992	1.0 1.0		EM18 EM18	24DNT 26DNT	0.140 0.085	LT	
NRSEZ NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	2CLP	0.060	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	ZCNAP	0.036	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	2MNAP	0.049	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	2MP	0.029	LŢ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	2NANIL	0.062	LŤ	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0		LM18 LM18	2NP 33DCBD	0.140 6.300	LT	
NRSE2	RDSE*2	CZE	16-apr-1992	1.0		LM18	3NANIL	0.450	LT LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0		LN18	46DNZC	0.550	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0		LM18	48RPPE	0.033	ĻŢ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	4CANIL	0.810	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	4CL3C	0.095	ĻŢ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0		LM18	4CLPPE	0.033	LT	
NRSEZ NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	4MP	0.240	LT	
NKSEZ NRSEZ	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	4NANIL 4NP	0.410 1.400	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0		LM18	ABHC	0.270	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0		LM18	ACLDAN	0.330	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	AENSLF	0.620	ND	R

Site 10	<u>Field ID</u>	<u>Medī a</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbrv.	Value	Flag	Internal Std. Code
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	UM18	ALDRN	0.330	ND	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	ANAPNE	0.036	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	ANAPYL	0.033	LT	
NRSEZ	RDSE*2	CZE	16-apr-1992	1.0	UGG	LM18	ANTRC	0.033	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	B2CEXM	0.059	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	BZCIPE	0.200	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	B2CLEE	0.033	LT	
HRSEZ NRSEZ	RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM18	BZEHP	0.620	ĻŢ	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	BAANTR BAPYR	0.170 0.250	LT LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM 18	BEFANT	0.210	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	BBHC	0.270	ND	R
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	ugg	LM18	882P	0,170	LT	•
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	BENSLF	0.620	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	BENZID	0.850	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	BENZOA	6.100	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	BGHIPY	0.250	LT	
NRSE2	RDSE#2	CSE	16-apr-1992	1.0	UGG	LM18	BKFANT	0.066	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	BZALC	0.190	ŁT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	CHRY	0.120	ĮŢ.	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	CL68Z CL6CP	0.033	LT	
MRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	CLOCY	6.200 0.150	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DBAHA	0.210	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DBHC	0.270	ND	R
- NRSE2 -	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DBZFUR	0.035	LT	Α.
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DEP	0.240	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DLDRN	0.310	ND	R
HRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DMP	0.170	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGĞ	LM18	DNBP	0.061	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DNOP	0,190	LT	_
NRSE2	RDSE*2	CZE	16-apr-1992	1.0	UGG	LM18	ENDRN	0.450	ND	R
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	ENDRNA	0.530	ND	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	ENDRNK ESFSO4	0.530 0.620	GN CN	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	FANT	0,068	LT	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	FLRENE	0.033	ĹŤ	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	GCLDAN	0.330	ND	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	HCSD	0.230	LT	•
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	HPCL	0.130	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	HPCLE	0.330	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	I CDPYR	0.290	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	ISOPHR	0.033	LŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	LIN	0.270	ND	R
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	MEXCLR	0.330	ND.	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	NAP N8	0.037 0.045	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	NNDMEA	0.140	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	NNDNPA	0.200	LT	κ.
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	NNDPA	0.190	ĹŤ	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PCB016	1.400	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PC8221	1.400	ND	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PCB232	1.400	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PCB242	1.400	MD	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PCB248	2.000	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PCBZ54	2.300	ND	R
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18	PCB260	2.600	ND	R
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	ugg ugg	LM18 LM18	PCP PHANTR	1.300 0.033	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PHENOL	0.110	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PPDOD	0.270	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PPDDE	0.310	ND	Ř
NRSEZ	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	PPDDT	0.310	ND	Ř
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PYR	0.033	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	TXPHEN	2,600	ND	R
NRSE2	RDSE*2	ÇSE	16-apr-1992	1.0	UGG	LM18	UNK623	0.647		S
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	UNK628	12.900		S
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	UNK630	0.517		S
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	UNK631	2.590		S
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	UNK632	1.290		S
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	UNK633	1.290		S
NRSEZ NRSEZ	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 JD15	UNK640	1.030 0.250	1 =	S
NRSEZ NRSEZ	RDSE*2 RDSE*2	CZE	16-apr-1992	1.0	UGG	JD 15 LN19	SE 111TCE	0.250	LT LT	
, 	undr F	705	apr. 1772		-44	-411 ×	1 144	0.004		

Sire 10	<u> Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	112TCE	0.005	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	110CE	0.004	LŤ	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LH19	11DCLE	0.002	ĻŤ	
NRSE2	RDSE*2	CZE	16-apr-1992	1.0	UGG	LM19	12DCE	0.003	LT	
HRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	12DCLE	0.002	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM19	120CLP	0.003	LT ND	
NRSEZ NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19 LM19	2CLEVE ACET	0.010 0.017	ND LT	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	ACROLN	0.100	פֿא	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	ACRYLO	0,100	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	BRDCLM	0.003	ĻΤ	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	C13DCP	0.003	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	£M19	CZAVE	0.003	ŁŢ	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM19 LM19	C2H3CL C2H5CL	0.006	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	C6H6	0.012 0.002	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	CCL3F	0.006	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	CCL4	0.007	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	VGG	LM19	CH2CL2	0.012	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	CH3BR	0.006	L,T	
NRSE2 NRSE2	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM19	CH3CL CHBR3	0.009	ĻŢ	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG UGG	LM19 LM19	CHCL3	0.007 0.001	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	CL28Z	0.100	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	CLC6H5	0.001	LT	Α.
T NRSEZ -	RDSE*2	CSE	16-apr-1992	1,0	UGG	LM19	CS2	0.004	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	DBRCLM	0.003	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	ETC6H5	0.002	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM19	MEC6H5	0.001	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19 LM19	MEK MEK	0.070 0.027	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	MNBK	0.032	LŤ	
NRSE2	RDSE*2	CSE	16-арг-1992	1.0	UGG	LH19	STYR	0.003	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	T13DCP	0.003	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	TCLEA	0.002	LT	
NRSE2 NRSE2	RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM19	TCLEE	0.001	LT	
NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	ugg ugg	LM19 LM19	TRCLE XYLEN	0.003 0.002	LT LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	220	LW12	135TNB	0.488	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LW12	13DNB	0.496	LT	
NRSĘ2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LW12	246TNT	0.456	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LW12	24DNT	0.424	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LW12	26DNT	0.524	LŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LW12 LW12	HMX NB	0.666 2.410	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	_	LW12	RDX	0.587	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1,0	UGG	LW12	TETRYL	0.731	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	AG	0.589	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	AL	4520.000		
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	J\$16	BA BC	54.900		
HRSE3	RDSE*3	CSE	16-apr-1992	1.0	ugg ugg	JS16 JS16	BE CA	0.500 1180.000	ŁŦ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	8	0.700	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1,0	UGG	JS16	CO	5.270		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	CR	12.300		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	J\$16	CU	29.800		
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	JS16	FE.	18600.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	1516 1516	K Mg	673.000 1810.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	MN	193.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	NA	226,000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	NI IN	8.550		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	28	204.000		
NRSE3 NRSE3	205E*3	CSE	16-apr-1992	1.0	UGG	J\$16	SB	7.140	17	
NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	JS16 JS16	TĹ V	6.620 16.100	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	1516 1516	ZN	374.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JB01	HG	0.050	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JD 19	AS	2.860		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	124TCB	0.040	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	12DCL8	0.110	LT	_
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18	12DPH 13DCLB	0.140	ND I T	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0 1.0	UGG	LM18 LM18	14DCLB	0.130 0.098	LT LT	
uv3E7	KU3E"3	47C	10-api - 1772	1.0	044	LMIG	ITUGES	0.070	£ 1	

Site ID	Field <u>10</u>	<u>Media</u>	Date	Depth	<u>Uni ts</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
			44 5000	• •						
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1,0	ugg U gg	LM18 LM18	245TCP 246TCP	0.100 0,170	LT LT	
NKSE3 NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	Z4DCLP	0.180	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	24DMPN	0.690	ĹŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	24DNP	1.200	ĹŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	24DNT	0.140	LT	
KRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	26DNT	0.085	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	L#18	SCLP	0.060	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	L#18 L#18	2CNAP 2MWAP	0.036 0.049	L T LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ZMP	0.029	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	2NANIL	0.062	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	2NP	0.140	LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	33bcb0	6.300	LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG UGG	LM18	3NANIL	0.450	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CZE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	46DN2C 48RPPE	0.550 0.033	LT LT	
HRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	4CANIL	0.810	ĹŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1,0	UGG	LM18	4CL3C	0.095	ĹŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGĞ	LM18	4CLPPE	0.033	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	4MP	0.240	ĻT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	4NANIL	0.410	LT	
NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	4NP ABHC	1.400 0.270	LT ND	_
NRSE3 NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ACLDAN	0.330	ND	R R
- NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	AENSLF	0.620	ND	Ř
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ALDRN	0.330	ND	Ř
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ANAPNE	0.036	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ANAPYL	0.033	LŤ	
NRSE3 HRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	ANTRC B2CEXM	0.033 0.059	LT LT	
#RSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	B2CIPE	0.200	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BZCLEE	0.033	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1,0	UGG	LM18	B2EHP	1.620		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	BAANTR	0.170	ĻŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	BAPYR	0.250	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BBFANT	0.210	LT	_
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	BBNC 88ZP	0.270 0.170	ND LT	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	SENSLF	0.620	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BENZID	0.850	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BENZOA	6.100	ND	Ř
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BGHIPY	0.250	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BKFANT	0.066	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BZALC	0.190	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM18	CHRY CL68Z	0.120	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	CL6CP	6.200	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGĞ	LH18	CLOET	0.150	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	DBAHA	0.210	ĻŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	DBHC	0.270	ND	R
NRSE3	ROSE*3	CSE	16-apr-1992	1.0	990	LM18	DBZFUR	0.035	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	DEP Dl d rn	0.240 0.310	LT ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	DMP	0.170	LT	ĸ
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	DNBP	0.061	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	DHOP	0.190	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ENDRN	0.450	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ENDRNA	0.530	ND	R
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	ENDRNK ESFS04	0.530 0.620	ND ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	FANT	0.068	LT	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	FLRENE	0.033	ĻŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	GCLDAN	0.330	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	HCBD	0.230	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	HPCL	0.130	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	HPCLE	0.330	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	I CDPYR	0.290	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG DDU	LM18 LM18	ISOPHR LIN	0.033 0.270	LT ND	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	MEXCLR	0.330	ИD	R R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	NAP	0.037	ĹŤ	**
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	NB	0.045	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	NNDMEA	0.140	MD	R

	Site ID	<u>Fi</u> e(d ID	<u>Medía</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	MINIDA	0.200		
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM 16	NNDNPA NNDPA	0.200 0.190	LT LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PC8016	1.400	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PCB221	1.400	ND	Ř
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PCB232	1.400	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PC8242	1.400	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PCB248	2.000	ND	R
	NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LM18	PCB254	2.300	ND	R
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18	PCB260	2.600	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0 1.0	UGG	LM18 LM18	PCP PHANTR	1.300	LT LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PHENOL	0.033	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PPDDD	0.270	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PPDDE	0.310	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PPDDT	0.310	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PYR	0.033	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	TXPHEN	2.600	GK	R
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	UNK612	14.300		\$ \$
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	00U 00U	JD15	UNK638 SE	2.870 0.250	LT	3
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LW12	135TNB	0.488	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LW12	13DNB	0.496	ĹŤ	
	NRSE3	RDSE#3	CSE	16-apr-1992	1.0	UGG	LW12	246TNT	0.456	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LW12	240NT	0.424	LT	
_	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LW12	26DNT	0.524	L1	
_	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LW12	HMX	0.666	LT	
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1.0	22 0	LW12	NB	2,410	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0 1.0	UGG UGG	LW12 LW12	RDX Tetryl	0.587 0.731	LT LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1,0	UGG	LM19	111TCE	0.004	iT	
	NRSE3	ROSE*3	CSE	16-apr-1992	1.0	UGG	LM19	112TCE	0.005	LŤ	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	11DCE	0.004	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	บดูดู	LM19	11DCLE	0.002	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH19	12DCE	0.003	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	12DCLE	0.002	LT	
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	12DCLP	0.003	LT	_
	NRSE3	RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN19 LN19	2CLEVE ACET	0.010 0.017	ND LT	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	ACROLN	0.100	ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	ACRYLO	0.100	ND	Ř
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	BRDCLM	0.003	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1,0	UGG	LM19	C13DCP	0.003	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN19	C2AVE	0.003	LŢ	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	C2H3CL	0.006	LŤ	
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19 LM19	C2H5CL C6H6	0.012 0.002	LT LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CCL3F	0.002	LT.	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CCL4	0.007	ĹŤ	
	NRSE3	RDSE#3	CSE	16-apr-1992	1.0	UGG	LM19	CH2CL2	0.012	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CH3BR	0.006	L7	
	MRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CH3CL	0.009	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CHBR3	0.007	LŢ	
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE CSE	16-apr-1992 16-apr-1992	1,0 1.0	ugg Ugg	LM19 LM19	CHCL3 CL2BZ	0.001 0.100	LT ND	R
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CLC6H5	0.001	LŤ	*
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	CS2	0.004	ĹŤ	
	NRSE3	RDSE*3	CSE	16-apr-1992	1,0	UGG	LM19	DBRCLM	0.003	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	ETC6K5	0.002	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	MEC6H5	0.001	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	MEK	0.070	LT	
	NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19 LM19	MIBK MNBK	0.027 0.032	LT LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	STYR	0.003	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	T13DCP	0.003	LT	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM19	TCLEA	0.002	ĹŤ	
	NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LM19	TCLEE	0.001	ĹŤ	
	NRSE3	ROSE*3	CSE	16-apr-1992	1.0	UGG	LM19	TRCLE	0.003	ĻŤ	
	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN19	XYLEN	0.002	LT	
	NRSE3 NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LW12	135TNB	0.488	LT	
	NRSE3	RDSE*7	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LW12 LW12	13DN8 246TNT	0.496	LT LT	
	NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LW12	2401N1 240NT	0.456 0.424	LT LT	
	NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LW12	26DNT	0.524	LT	
	NRSE3	RDSE*7	CSE	16-apr-1992	1,0	UGG	LW12	XMX	0.666	ĹĬ	
					-						

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.		<u> F(ag</u>	Internal <u>Std. Code</u>
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LW12	NB	2.410	LŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LW12	RDX	0.587	ĹŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LW12	TETRYL	0.731	ĹŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	111TCE	0.004	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	112TCE	0.005	LŢ	
NRSE3	RDSE*7 RDSE*7	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19	110CE	0.004	LT	
NRSE3 NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19 LM19	11DCLE 12DCE	0.002 0.003	LT LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	12DCLE	0.002	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1,0	UGG	LM19	12DCLP	0.003	ĹŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	SCLEVE	0.010	ND	R
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	ACET	0.017	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	ACROLN	0.100	ND	R
NRSE3 NRSE3	RDSE*7 RDSE*7	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19 LM19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	C13DCP	0.003	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	C2AVE	0.003	ĹŤ	
NRSE3	RDSE*7	CZE	16-apr-1992	1.0	UGG	LM19	C2H3CL	0.006	LT -	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	C2H5CL	0.012	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	C6H6	0.002	LT	
NRSE3 NRSE3	RDSE*7 RDSE*7	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19 LM19	CCL3F CCL4	0.006	LT	•
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	CH2CL2	0.007 0.012	LŤ LŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	CH3BR	0.006	ĹŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	CH3CL	0.009	ĹΤ	
WK2E3 -	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	CHBR3	0.007	LŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	CHCL3	0.001	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	CL2BZ	0.100	ND	R
NRSE3 NRSE3	RDSE*7 RDSE*7	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM19 LM19	CLC6H5 CS2	0.001 0.004	LŤ	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	DBRCLM	0.003	LT LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	ETC6H5	0.002	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	MEC6H5	0.001	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	MEK	0.070	LT	
NRSE3	RDSE*7	CSE	16-spr-1992	1.0	UGG	LM19	MIBK	0.027	LT	
NRSE3 NRSE3	RDSE*7 RDSE*7	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM19	MNBK	0.032	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19 LM19	STYR T13DCP	0.003 0.0031	L] 01491 T	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	TCLEA	0.002	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	TCLEE	0.001	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	TRCLE	0.003	LT	
NRSE3	RDSE*7	CSE	16-apr-1992	1.0	UGG	LM19	XYLEN	0.002	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	J\$16	AG	0.589	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16 JS16	AL BA	7860.000 112.000		
NRSE4	RDSE*4	CZE	16-apr-1992	1.0	UGG	J\$16	BE	0.943		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	CA	2120.000		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	J\$16	CD	0.700	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	co	10.000		
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	JS16	CR CU	21.300 15.900		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16 JS16	FE	29500,000		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	ĸ	1250,000		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	MG	2870.000		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	MN	1250.000		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	J\$16	NA	264.000		
NRSE4 NRSE4	RDSE*4	CSE	16-apr-1992	1.0 1.0	UGG	J\$16	NI BB	10.700		
NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	1816 1816	PB SB	136.000 7.140	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	TL	6.620	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JS16	v	27.800		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	J\$16	ZN	414.000		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JB01	HG	0.050	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JD19	AS	2.670	. –	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	1241CB	0.040	LŢ	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM18 LM18	12DCLB 12DPH	0.110 0.140	LT	D
NRSE4 NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	13DCLB	0.130	ND LT	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	14DCLB	0.098	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	245TCP	0.100	LŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	246TCP	0.170	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	240CLP	0.180	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	24DMPN	0.690	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	24DNP	1.200	ĻT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	24DNT	0,140	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	26DNT	0.085	ĽŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	2CLP	0.060	LŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ZCNAP	0.036	LŤ	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	ZMNAP ZMP	0.049 0.029	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	2NANIL	0.062	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	2NP	0.140	ĹŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	33DC8D	6.300	ĻŢ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	3NANIL	0.450	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	46DN2C	0.550	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	4BRPPE 4CANIL	0.033 0.810	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	4CL3C	0.095	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	4CLPPE	0.033	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	4MP	0.240	ĻT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	4MANIL	0.410	LŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	4NP	1.400	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM18 LM18	ABHC ACLDAN	0.270 0.330	ND ND	Ř Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	AENSLF	0.620	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ALDRN	0.330	ND	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ANAPNE	0.036	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ANAPYL	0.033	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	ANTRC	0.033	LT	
NR3E4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18	B2CEXM B2CEXM	0.059	LT	
NRSE4 NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18 LM18	B2CLEÉ	0.200 0.033	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BZEHP	15.500		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BAANTR	0.170	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BAPYR	0.250	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BBFANT	0.210	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BBHC	0.270	NED	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	BBZP BENSLF	0.170 0.620	LT ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BENZID	0.850	ND	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BENZCA	6.100	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BGHIPY	0.250	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BKFANT	0.066	LT	
NRSE4	RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LN18	BZALC	0.190	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	CHRY CL6BZ	0.120 0.033	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	CL6CP	6.200	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	CL6ET	0.150	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	AKABO	0.210	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	DBHC	0.270	ND	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18	DBZFUR	0.035	LŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18 LM18	DEP DLDRN	0.240 0.310	L.T NED	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	DMP	0.170	LT	ĸ
MRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	DNBP	1.960		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	DNOP	0.190	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ENDRN	0.450	ND	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0	ugg Ugg	LM18	ENDRNA	0.530	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18 LM18	ENDRNK ESFS04	0.530 0.620	ND ND	Ř R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	FANT	0.160		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	FLRENE	0.033	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	GCLDAN	0.330	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	HCBD	0.230	LT	_
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	HPCL HPCLE	0.130 0.330	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ICDPYR	0.290	NO LT	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ISOPHR	0.033	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	LIN	0.270	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	MEXCLR	0.330	ND	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	NAP	0.037	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	NB	0.045	LT	_
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18	NNOMEA	0.140	ND	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18 LM18	NNDNPA NNDPA	0.200 0.190	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PCB016	1.400	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PC8221	1.400	ND	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.9	VGG	LM18	PCB232	1.400	ND	R

Site ID	<u>Field_ID</u>	<u>Media</u>	<u>Date</u>	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PC8242	1,400	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PCBZ48	2,000	ND	Ŕ
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PC8254	2.300	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PCB260	2.600	ND	R
NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18	PCP	1.300	LT	
NRSE4 NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	EM18 EM18	PHANTR PHENOL	0.089 0.110	1.7	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PPDDD	0.270	LT ND	R
HRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PPDDE	0.310	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PPDDT	0.310	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PYR	0.181		
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	TXPHEN	2.600	ND	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	JD15 LW12	SE 135TNB	0.250	LŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LW12	130NB	0.488 0.496	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LW12	246TNT	0.456	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LW12	24DNT	0.424	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGĢ	LW12	ZEDNT	0.524	LT .	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LW1Z	HMX	0.666	ŁT.	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LW12	NB	2.410	LT	
NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LW1Z	ROX	0.587	LŤ	
NRSE4 NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG UGG	LW12 LM19	TETRYL 1117CE	0.731 0.004	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	1127CE	0.005	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	11DCE	0.004	LT	
- NRSE4 .	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	11DCLE	0.002	ĹŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	12DCE	0.003	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	12DCLE	0.002	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	TZDCLP	0.003	LT	_
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	SCLEVE	0.010	ND	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	ugg ugg	LM19 LM19	ACET ACROLN	0.017 0.100	LT ND	6
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	ACRYLO	0.100	ND ND	R R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	BRDCLM	0.003	LT	^
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	C13DCP	0.003	ĹΫ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	VGG	LM19	C2AVE	0.003	LT	
NRSE4	RDSE*4	CZÉ	16-apr-1992	1.0	UGG	LM19	C2H3CL	0.006	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	CZH5CL	0.012	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM19	C6H6 CCL3F	0.002	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19 LM19	CCL4	0.00 6 0.007	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	CH2CL2	0.012	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	CH3BR	0.006	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	CH3CL	0.009	LT	
NRSE4	RDSE*4	CZE	16-apr-1992	1.0	UGG	LM19	CHBR3	0.007	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	CHCL3	0.001	LT	_
HRSE4 HRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM19 LM19	CL2BZ CLC6H5	0.100 0.001	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	CSZ	0.004	ĻT Lī	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	DBRCLM	0.003	ĹŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	ETC6H5	0.002	ĹŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	MEC6H5	0.001	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	MEK	0.070	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	MIBK	0.027	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	ugg Ugg	LM19 LM19	MNBK STYR	0.032 0.003	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	T 13DCP	0.003	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM19	TCLEA	0.002	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1,0	UGG	LM19	TCLEE	0.001	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN19	TRCLE	0.003	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN19	XYLEN	0.002	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	SD09	TL ec	6.990	LT	
NRSW1 NRSW1	rdsw*1 rdsw*1	C2M C2M	16-apr-1992 16-apr-1992	0.0	UGL UGL	SD21 SD20	SE P8	3.020	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	SD 23	AG	1.950 0.250	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SD22	AS	2.540	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	124TCB	1.800	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	12DCLB	1.700	ĹŤ	
NRSW1	RDSW*1	CSH	16-apr-1992	0.0	UGL	UM18	12DPH	2.000	ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	13DCLB	1.700	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	14DCLB	1.700	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	245TCP 246TCP	5.200 4.200	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	240CLP	4,200 2,900	LT LT	
********	1		p-: 1774				TEI	2.700	- 1	

Site_ID	Field 10	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte <u>Abbrv.</u>	Value	Flag	Internal Std. Code
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	24DMPN	5.800	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	24DNP	21.000	ĹŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGĻ	UM18	24DNT	4.500	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	26DNT	0.7 9 0	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	2CLP	0.990	LŤ	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UN18	PAKAS	0.500	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18 UM18	2MMAP 2MP	1.700 3.900	LT LT	
HRSWI	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	ZNANIL	4.300	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	2NP	3,700	LŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	33DC8D	12,000	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	3NAN1L	4.900	LT	
NRSW1 NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL UGL	UM18	460N2C	17.000	LT	
NRSW1	RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UM18 UM18	4BRPPE 4CANIL	4.200 7.300	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	4CL3C	4.000	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	4CLPPE	5,100	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	4MP	0.520	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	4NANIL	5.200	ĻŤ	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	4NP	12.000	ĻΤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	ABHC	4.000	MD	, R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	ACLDAN	5,100	ND	R
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	AENSLF	9.200	MD	R
276XNRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18 UM18	ALDRN ANAPNE	4.700 1.700	ND Lt	R
- NRSW1 -	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	ANAPYL	0.500	ĹŤ	
MRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	ANTRO	0.500	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	B2CEXM	1.500	ĹŦ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	BZCIPE	5.300	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	BZCLEE	1.900	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	82EHP	4.800	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18	BAANTR	1.600	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18 UM18	BAPYR SBFANT	4.700 5.400	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	BBHC	4,000	KD	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	BBZP	3,400	LT	**
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	BENSLF	9,200	ND	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	BENZID	10,000	ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	BENZOA	13.000	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	BGHIPY	6.100	ŁT	
NRSW1 NRSW1	RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	BKFANT	0.870	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18 UM18	BZALC CHRY	0.720 2.400	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	CL6BZ	1.600	LT	
NRSW1	RDS₩*1	CSW	16-apr-1992	0.0	UGL	UM18	CL6CP	8.600	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	CL6ET	1.500	LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UH18	DBAHA	6.500	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	DBKC	4.000	ND	R
NRSW1 NRSW1	rosw*1 Rosw*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18	DEZFUR	1.700	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18 UM18	DEP Oldrn	2.000 4.700	LT ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	DMP	1.500	LT	N.
NRSW1	RDS₩*1	CSW	16-apr-1992	0.0	UGL	UM18	DNSP	3.700	LŦ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	DNOP	15.000	LT	
NRSW1	RDSW*1	CSM	16-арг-1992	0.0	UGŁ	UM18	ENDRN	7.600	ND	R
WRSW1	RDSW*1	CST	16-apr-1992	0.0	UGL	UM18	ENDRNA	8.000	MD	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	ENDRNK	8.000	ND	R
nrsw1 Nrsw1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	ESFS04	9.200 3.300	NO	R
NRSW1	RDS₩*1	CSW	16-apr-1992	0.0	UGL	UM18 UM18	FANT FLRENE	3.700	LT LT	
NRSW1	RDS⊌*1	CSW	16-apr-1992	0.0	UGL	UM18	GCLDAN	5.100	ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	HCBD	3.400	LT	••
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UH18	HPCL	2.000	MD	Ŕ
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	HPCLE	5.000	ND	Ř
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UH18	ICDPYR	8.600	LT	
NRSW1	RDS¥*1	CZM	16-apr-1992	0.0	UGL	UM18	ISOPHR	4.800	LT	_
NRSW1 NRSW1	rdsw*1 Rdsw*1	CZM	16-apr-1992 16-apr-1992	0.0	UGL	UM18	LIN	4-000	HD	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0 0.0	UGL	UM18 UM18	MEXCLR NAP	5.100 0.500	ND Lt	Ŕ
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	NB	0.500	LT.	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	NNOMEA	2.000	ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	NHONPA	4.400	LT	-
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	NNDPA	3.000	LŤ	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UM18	PCB016	21.000	ND	R

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSWT	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PC8221	21.000	ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PC8232	21.000	ND	Ŕ
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	BIMU	PC8242	30.000	ND	R
NRSW1 NRSW1	RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	PCB248 PCB254	30.000 36.000	ND	R
NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	PCB254 PCB260	36.000	ND ND	R R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PCP	18.000	LT	.,
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PHANTR	0.500	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	PHENOL PPDDD	9.200 4.000	LT ND	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PPDDE	4.700	ND	R R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PPODT	9.200	ND	Ř
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PYR	2.800	LT	_
NRSW1 NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UM18	TXPHEN UNK630	36,000 7,000	ND	R S
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	AL	168.000		•
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	ВА	22.800		
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	NGF	SS10 SS10	BE CA	5,000 16100,000	ŁT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	5510 5510	CD	4,010	LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	SS10	CO	25.000	ĹŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	\$\$10	CR	6.020	LT	
NRSW1 NRSW1	RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	SS10 SS10	CU FE	8.090	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	K	416.000 2130.000		
-NRSW1 -	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10 -	MG	6190.000		
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	MN	62.400		
nrsw1 Nrsw1	RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	S\$10	HA HT	7630.000		
NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10 SS10	NI Se	34.300 38.000	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	\$\$10	٧	11.000	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	ZN	21.100	LT	
NRSW1 NRSW1	RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	SB01 UM20	HG 111TCE	0.243 0.500	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	112TCE	1.200	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	11DCE	0.500	LŦ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	11DCLE	0.680	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UM20 UM20	12DCE 12DCLE	0.500 0.500	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	12DCLP	0.500	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN20	2CLEVE	0.710	LŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	ACET	13.000	LT	_
nrsw1 Nrsw1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM20 UM20	ACROLN ACRYLO	100.000 100.000	ND ND	R R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	BRDCLM	0.590	LT	•
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UMZO	C13DCP	0.580	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM20 UM20	CZAVE CZH3CL	8.300 2.600	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	C2H5CL	1.900	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	C6H6	0.500	LT	
NRSWT	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	CCL3F	1.400	LT	
nrsw1 Nrsw1	RDS¥*1 RDS¥*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM20 UM20	CCL4 CH2CL2	0.580 2.300	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	CH3BR	5.800	ĹŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	CH3CL	3.200	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0 0.0	UGL	UM20	CHBR3	2.600	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM20 UM20	CHCL3 CL2BZ	0.500 10.000	ĻŤ ND	R
NRSWI	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	CLC6H5	0.500	LT	•
MRSWT	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	CS2	24,000		
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	DBRCLM	0.670	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM20 UM20	ETC6H5 MEC6H5	0.500 0.500	LT LT	
NRSW1	RDSU* 1	CSW	16-apr-1992	0.0	UGL	UM20	MEK	6.400	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM20	MISK	3.000	LT	
Hrsw1 Hrsw1	RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM20 UM20	MNBK STYR	3.600 0.500	LT	
NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992	0.0	UGL	UM20	T13DCP	0.700	LT LT	
NRSWT	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM20	TCLEA	0.510	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UMZG	TCLEE	1.600	LT	
NRSW1 NRSW1	RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM20 UM20	TRCLE XYLEN	0.500 0.840	LT	
NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992	0.0	UGL	UM20 UM32	135TNB	0.649	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UW32	13DNB	0.611	ĽŢ.	

#		ب السياد	Dan-	D		Analytical	Analyte	·		Internal
Site ID	<u>Field ID</u>	Meg 1a	Date	Depth	<u>Units</u>	Method	Abbry.	<u>Value</u>	<u>Flag</u>	Std, Code
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UW32	246TNT	0.635	L.T	
NRSW1	RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UW32	240NT 260NT	0.064 0.074	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992	0.0 0.0	UGL UGL	UW32 UW32	HMX	1,210	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UW32	NB	0.645	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UW32	RDX	1.170	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM32	TETRYL	2.490	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	2009	TL	6.990	LT	
nrsw3 Nrsw3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	SD 21 SD 20	SE	3,020	LT	
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	SD 23	PB AG	2.060 0.250	LT	
HRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	SD22	AS	2.540	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	124TCB	1.800	LT	
NRSW3	RDSW*2	CZA	16-apr-1992	0.0	UGL	UM18	12DCLB	1.700	ŁT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	12DPH	2.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0	UGL	LM18	130CLB	1.700	Lī	
NRSW3 NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992	0.0	UGL UGL	UM18 UM18	14DCLS 245TCP	1.700 5.200	LT LT	
NRSV3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	246TCP	4.200	LT	
HRSH3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	24DCLP	2.900	ĹŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	24DMPN	5.800	ŁT	
KRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	24DNP	21.000	LT	•
MRSW3	RDSW*Z	CSM	16-apr-1992	0.0	UGL	UM18	24DNT	4.500	LT	
nrsw3 Xrsw3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UM18 UM18	26DNT 2CLP	0.790 0. 990	LŤ	
_ NRSW3 .	RDSW*Z	CSW	16-apr-1992	.0	UGL	UM18,	2CNAP	0.500	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	2MNAP	1.700	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL,	UM18	2MP	3.900	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	2NANIL	4.300	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	ZNP	3.700	LT	
NRSW3 NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0	UGL	UM18	33DCBD	12.000 4.900	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL UGL	UM18 UM18	3NANIL 46DN2C	17.000	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	48RPPE	4.200	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	4CANIL	7.300	ĹŤ	
nrsw3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	4CL3C	4.000	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	ŲGL	UM18	4CLPPE	5.100	LŦ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	4MP	0.520	LT	
NRSN3 NRSW3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	4NANIL 4NP	5.200 12.000	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	ABHC	4.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	ACLDAN	5.100	ND	Ř
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	AENSLF	9.200	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	ALDRN	4.700	ND	R
nrsw3 Nrsw3	RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UM18	ANAPNE	1.700	LT	
NRSW3	rdsw*2 rdsw*2	CSW	16-apr-1992	0.0	UGL	UM18 UM18	ANAPYL ANTRC	0.500	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	BZCEXM	1.500	ĹŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	B2CIPE	5.300	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	BZCLEE	1.900	LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	BZEHP	4.800	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	BAANTR	1.600	LT	
NRSW3 NRSW3	rdsw*2 Rdsw*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	BAPYR BBFANT	4.700 5.400	LT LT	
HRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	BBHC	4.000	ND	R
NRSW3	RDSY*2	ÇS₩	16-apr-1992	0.0	UGL	UM18	BB2P	3.400	LT	17
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	BENSLF	9.200	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	BENZID	10.000	ND	R
nrsw3 Hrsw3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	BENZOA	13.000	LT	
NRSW3	RDSW*Z RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	BGH I PY BKFANT	6.100 0.870	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	BZALC	0.720	ĹŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	CHRY	2.400	ĻŢ	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	CL6BZ	1.600	LŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	CL6CP	8.600	ĻT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	CL6ET	1.500	LT	
nrsw3 Nrsw3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	DBAHA	6.500	LT	-
NRSW3	RDSW*2 RDSW*Z	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	DBHC DBZFUR	4.000 1.700	מא	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	DEP	2.000	LT LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	DLDRN	4.700	ND.	R
NRSU3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	DMP	1.500	LT	••
HRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	DMBP	3.700	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGŁ	UM18	DNOP	15.000	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	ENDRN	7.600	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	ENDRNA	8.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	ENDRNK	8.000	ND	R
nrsw3 Nrsw3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	ESFSO4 Fant	9.200 3.300	ND LT	R
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	FLRENE	3.700	LT	
NRSW3	RDSW#2	CSW	16-apr-1992	0.0	UGL	UM18	GCLDAN	5.100	ND	R
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	HCBO	3.400	LT	_
nrsu3 Nrsu3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	HPCLE	2.000 5.000	ND ND	R R
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	ICDPYR	8,600	LT	•
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	ŲGL	UM18	ISOPHR	4.800	LT	
nrsw3 Nrsw3	RDSW*Z	CSW	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UM18	LIN MEXCLR	4.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	NAP	5.100 0.500	ND LT	R
NRSW3	ROSW*2	CSW	16-apr-1992	0.0	UGL	UM18	NB	0.500	ĹŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	NNDMEA	2.000	ND	R
NRSW3 NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	NNDNPA NNDPA	4.400 3.000	LT LT	-
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UM18	PCBO16	21.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	PCB221	21.000	ND	R
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	PC8232	21.000	ND	R
NRSW3 NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UM18	PC8242 PC8248	30.000 30.000	ND ND	R R
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	PC8254	36.000	ND	Ř
WRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	PCB260	36.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	PCP	18.000	LT	
nrsw3 nrsw3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UH18	PHANTR PHENOL	0.500 9.200	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	PPDDD	4.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	PPDDE	4.700	ND	R
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	บพ18 เพ18	PPDDT	9.200	ND	R
NRSW3 NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	PYR TXPHEN	2.800 36.000	ĻT ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	S\$10	AL	141.000	LT	Α.
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	S\$10	BA	18.600		
MRSW3 MRSW3	RDSW*2 RDSW*2	CSW CSW	16-apr-1992 16-apr-1992	0.0 0.0	NGF	SS10 SS10	BE Ca	5.000 13600.000	LT	
MRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	SS10	ΕD	4.010	LT	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	SS10	CO	25.000	LT	
NRSW3	RDSW*2	C2M	16-apr-1992	0.0	UGL	\$\$10	CR	6.020	LT	
NRSW3 NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0	UGL UGL	SS10 SS10	CU FE	8.090 217.000	ĻT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	\$\$10	K	2400.000		
NRSW3	ROSW*2	CSW	16-apr-1992	0.0	UGL	S\$10	MG	5230.000		
NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992	0.0	UGL UGL	SS10 SS10	MM NA	22.100		
NRSW3 NRSW3	RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0	UGL	SS10	NI	5220.000 34.300	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	SS10	SB	38.000	ĻŤ	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	SS10	٧ ~	11.000	LT	
NRSW3 NRSW3	rdsw*2 Rdsw*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	SS10 SB01	ZN KG	21.100 0.243	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	111TCE	0.500	ίŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	112TCE	1.200	ЦT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	11DCE	0.500	LŤ	
NRSW3 NRSW3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UMZO UMZO	11DCLE 12DCE	0.680 0.500	LŤ LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	12DCLE	0.500	LT	
HRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	MSO.	12DCLP	0.500	LT	
nrsw3 Nrsw3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM20 UM20	2CLEVE ACET	0.710 13.000	LT LT	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM20	ACROLN	100.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	ACRYLO	100.000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL.	UM20	BRDCLM	0.590	LT	
NRSW3 NRSW3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM20 UM20	C13DCP C2AVE	0.580 8.300	LT LT	
NRSW3	RDSW*Z	CZM	16-apr-1992	0.0	ner	UMZO UMZO	C2H3CL	2.600	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	C2H5CL	1.900	LT	
NRSW3	RDSU*2	CSM	16-apr-1992	0.0	UGL	UM20	C6H6	0.500	LT	
NRSW3 NRSW3	RDSW*2 RDSW*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM20 UM20	CCL3F CCL4	1.400 0.580	LT LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM20	CH2CL2	2.300	LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM20	CH3BR	5.800	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	CH3CL	3.200	LT	

•										
Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	CHBR3	2.600	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	CHCL3	0.500	LT	
nrsw3	RDSW*2	ÇS₩	16-apr-1992	0.0	UGL	UM20	CL2BZ	10.000	ND	R
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UMZO	CLC6H5	0.500	LŤ	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM20	CS2	2.300		
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	DERCLM	0.670	LT . .	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	ETC6K5	0.500	LT	÷
nrsw3 Nrsw3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM20 UM20	HXMTSX MEC6H5	9.000 0.500	LT	S
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	WEK	6.400	ΓŢ	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM20	MIBK	3.000	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	HNBK	3.600	ĻŤ	
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM20	STYR	0.500	LT	
HRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	T 130CP	0.700	LT	
HRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	TCLEA	0.510	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	TCLEE	1.600	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM20	TRCLE	0.500	ŧΤ	_
NRSW3	RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0	UGL	UM20	UNK 175 UNK 208	20.000		S S
nrsw3 Nrsw3	RDSW*2 RDSW*2	CSW	16-apr-1992	0.0	UGL UGL	UM20 UM20	XYLEN	40.000 0.840	LT	•
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN32	135TNB	0.449	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN32	13DN8	0.611	LŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0,0	UGL	UW32	246TNT	0.635	ĹŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0,0	UGL	Uw32	24DNT	0.064	LT.	
NRSW3	RDSW#2	CSW	16-apr-1992	0.0	UGL	UW32	26DNT	0.074	LT	
- NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UW32	HMX	1.210	LT	
nrsw3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UW32	HB	0.645	LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UW32	RDX	1.170	LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UW32	TETRYL	2.490	LT	
NRSW3	RDSW#4	CSW	16-apr-1992	0.0	UGL	UM20	TITCE	0.500	LT	
nrsw3 Nrsw3	RDSW*4 RDSW*4	CSW CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM20 UM20	112TCE 11DCE	1,200 0.500	LT LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	11DCLE	0.680	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	12DCE	0.500	ĹΤ	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UMZO	12DCLE	0.500	ĻŤ	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	12DCLP	0,500	LT	
nrsw3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	2CLEVE	0.710	ĻT	
nrsw3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	ACET	13.000	LT	
NRSW3	RDSW*4	CSM	16-apr-1992	0,0	UGL	UM20	ACROLN	100.000	ND	R
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	ACRYLO	100.000	ND	R
NRSW3	RDSW*4	CSW	16-spr-1992	0.0	UGL	UH20	BRDCLM	0.590	LT	
HRSW3 NRSW3	RDSW*4	CSW	16-apr-1992 16-apr-1992	0.0	UGL	UM20	C13DCP	0.580	LT	
NRSW3	rdsw=4 rdsw=4	CSM	16-apr-1992	0.0	UGL UGL	UM20 UM20	CZAVE CZH3CL	8.300 2.600	LT LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	CZH5CL	1.900	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	C6H6	0.500	ĩ.T	
NRSW3	RDSU*4	CSW	16-apr-1992	0.0	UGL	UM20	CCL3F	1.400	ŁΤ	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	CCL4	0.580	LT	
NRSW3	RDSW#4	CSM	16-apr-1992	0.0	UGL	UM20	CH2CL2	2.300	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	CH3BR	5.800	ĻŦ	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UHZO	CH3CL	3.200	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	CHBR3	2.600	LT	
NRSW3 NRSW3	RDSW*4	CSW	16-apr-1992 16-apr-1992	0.0	UGL	UM20	CHCL3	0.500	LT	•
NRSW3	RDSW*4 RDSW*4	CSM	16-apr-1992	0.0 0.0	UGL UGL	UN20 UN20	CL2BZ CLC6H5	10.000 0.500	ND	R
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	CS2	0.500	LT LT	
NRSW3	RDSW*4	CSW	16-spr-1992	0.0	UGL	UM20	OBRCLM	0.670	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	ETC6H5	0.500	ĽŤ	
HRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UN20	MEC6H5	0.500	LT	
NRSW3	RDSW#4	CSW	16-apr-1992	0.0	UGL	UM20	MEK	6.400	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	MIBK	3.000	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	MNBK	3.600	LT	
MRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	STYR	0.500	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	T13DCP	0.700	LT	
NRSW3	RDS₩*4	CSW	16-apr-1992	0.0	UGL	UM20	TCLEA	0.510	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	TCLEE	1.600	ŁŤ	
nrsw3 Nrsw3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UM20	TRCLE	0.500	LT	
NRSW3	RDSW*4 RDSW*4	CSM	16-spr-1992 16-apr-1992	0.0	UGL	UM20 UW32	XYLEN 1357NB	0.840 0.449	LT	
NRSW3	RDSW*4	CSM	16-apr-1992	0.0	UGL	UW32	13DNB 1331NR	0.449	LT LT	
NRSW3	RDSW*4	CSM	16-apr-1992	0.0	UGL	UW32	246TNT	0.635	ĻŤ	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UW32	24DNT	0.064	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UW32	26DNT	0.074	LT	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UW32	HMX	1.210	LT	
			•							

Site ID	Field ID	<u>Mędia</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbrv.	Value	Flag	Internal Std. Code
NR SU3	RDSW#4	CSW	16-apr-1992	0.0	UGL	U₩32	NB	0.645	LT	
NRSW3	ROSW*4	CSW	16-apr-1992	0.0	UGL	UN32	RDX	1.170	ĹŤ	
NRSW3	RDSW*4	CSW	16-apr-1992	0.0	UGL	UW32	TETRYL	2.490	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SD09	TL	6.990	ĹΫ	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	\$D21	SE	3.020	LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	SD20	PB	2.390		
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL UGL	SD 23	AG	0.250	LT	
NRSW4 NRSW4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL	\$022 UM18	ĄS 124TCB	2.540 1.800	LT LT	
NRSW4	RDSW=3	CZM	16-apr-1992	0.0	UGL	UM18	12DCLB	1.700	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	12DPH	2.000	ND	R
NRSW4	RDSW*3	CS₩	16-apr-1992	0.0	UGL	UM18	13DCLB	1.700	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	14DCLB	1.700	LŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	245TCP	5.200	LŤ	
nrsw4 Nrsw4	RDSW*3 RDSW*3	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	246TCP 24DCLP	4.200	LT	
MRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18 UM18	24DCLP 24DNPN	2.900 5.800	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	24DNP	21,000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	24DNT	4.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	26DNT	0.790	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	2CLP	0.990	LT	
NRSU4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	2CNAP	0.500	LT	
NRSW4	RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	2MNAP	1.700	LT	
nrsw4 Nrsw4	RDSW*3 RDSW*3	CSM	16-apr-1992	0.0	UGL	UM18 UM18	2MP 2NANIL	3.900 4.300	LT	
NR944 -	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	2NP	3,700	LT LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM18	33DCBD	12.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	3NAN1L	4.900	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	460NZC	17.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	4BRPPE	4.200	LŦ	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM18	4CANIL	7.300	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	4CL3C	4.000	LT	
HRSW4 NRSW4	RDSW*3 RDSW*3	CSW CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	LM18 UM18	4CLPPE 4MP	5.100	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	4NANIL	0.520 5.200	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	4NP	12.000	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGĻ	UN18	ABHÇ	4.000	NO	R
NRSW4	RD\$W+3	CSW	16-apr-1992	0.0	UGL	UM18	ACLDAN	5,100	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	AENSLF	9.200	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ALDRN	4.700	ND	Ř
NRSW4 NRSW4	RDSW*3 RDSW*3	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	ANAPNE ANAPYL	1.700 0.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ANTRO	0.500	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	B2CEXM	1.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	B2CIPE	5.300	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	BZCLEE	1.900	LŤ	
MRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UN18	BSEHP	4.800	LŤ	
NRSH4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	BAANTR	1.600	LT	
nrs u4 nrs u4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UM18	BAPYR BBFANT	4.700 5.400	LT	
NRSI4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	SBHC	4.000	LT ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	SBZP	3.400	LT	*
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	BENSLF	9.200	ND	R
NRSW4	RDSW+3	CSW	16-apr-1992	0.0	UGL	UM18	BENZID	10.000	ND	R
NRSW4	RDSW+3	CSW	16-apr-1992	0.0	UGL	UM18	BENZOA	13.000	ĻT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	BGHIPY	6.100	LT	
NRSU4	RDSW*3 RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	BKFANT	0.870	LT	
nrsw4 Nrsw4	RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UM18 UM18	BZALC CHRY	0.720 2.400	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	CLÓBZ	1.600	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	CL6CP	8.600	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	CL6ET	1.500	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	DBAHA	6.500	LT.	
NRSW4	RDSV*3	CSW	16-apr-1992	0.0	UGL	UM18	DBHC	4.000	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	DBZFUR	1.700	LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0 0.0	UGL	UM18	DEP	2.000	LT	-
NRSW4 NRSW4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UM18	DLDRN DMP	4.700 1.500	ND LT	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	DNBP	3.700	LT LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM18	DNOP	15.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ENDRN	7.600	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ENDRNA	8.000	NO	Ř
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ENDRNK	8.000	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ESFSO4	9.200	ND	R

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	FANT	3.300	LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18	FLRENE	3,700	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	GCLDAN	5.100	ND	'R
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UH18	HC8D	3.400	LT	_
NRSW4	8DSW#3	CSW	16-apr-1992	0.0	UGL	UM18	HPCL	2.000	ND	R
NRSW4 NRSW4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18	HPCLE	5.000	MD	R
NRSH4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM18 UM18	I COPYR I SOPHR	8,600 4,800	LT LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM 18	LIN	4.000	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	MEXCLR	5.100	ND	Ŕ
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	NAP	0.500	LT	••
NRS₩4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	NB	0.500	LT	
nrsw4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM 18	NNDMEA	2.000	MD	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ANDNPA	4.400	LT	
NRSU4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	NNDPA	3.000	LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18	PCB016	21.000	DK	R
nrsw4 Nrsw4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	PCB221	21.000	ND	R
NRSW4	RDSW*3 RDSW*3	CSW	16-apr-1992 16-apr-1992	0.0	UGL	UM18 UM18	PCB232 PCB242	21.000 30.000	ND	- R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	PCB248	30.000	ND ND	Ř R
NRSW4	RDSW*3	CSW	16-apr-1992	0,0	UGL	UM18	PCB254	36.000	ND	Ŕ
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	PCB260	36.000	ND	Ř
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	PCP	18.000	LT	
NRSW4	rdsw*3	CSW	16-apr-1992	0.0	UGL	UM18	PHANTR	0.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	PHENOL	9.200	LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18	PPDDD	4.000	ND	R
NRSU4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	PPDDE	4.700	ND	Ŕ
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM18	PPDDT	9.200	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UH18	PYR	2.800	LT	_
nrsw4 Nrsw4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 SS10	TXPHEN	36.000	ND	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	AL BA	141.000 19.200	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	BE	5.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	CÃ	13600.000		
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	CD	4.010	LT	
NRS W4	RDSW#3	CZM	16-apr-1992	0.0	UGL	SS10	CO	25.000	ĻТ	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	SS10	CR	6.020	LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	\$\$10	CU	8.090	LT	
MRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	FE	170.000		
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	K	2360.000		
NRSW4 NRSW4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	\$\$10	MG MN	5320.000		
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	\$\$10 \$\$10	MA NA	11.000 5300.000		
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	NI	34.300	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	S\$10	S8	38,000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	v	11.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	\$\$10	ZN	21.100	LΤ	
nrsw4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SB01	HG	0.243	LT	
NRSW4	ROSW*3	CSW	16-apr-1992	0.0	UGL	UM20	111TCE	0.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UH20	112TCE	1.200	LT	
NRS₩4 NRS₩4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN420	11DCE	0.500	LT	
NRSW4	RDSW*3 RDSW*3	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UMZO	110CLE	0.680	LŤ	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL UGL	UM20 UM20	120CE 120CLE	0.500 0.500	LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM20	120CLP	0.500	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UH20	SCLEVE	0.710	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN20	ACET	13,000	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	ACROLN	100.000	ND	R
NRSH4	rdsw*3	CSW	16-apr-1992	0.0	UGL	UM20	ACRYLO	100.000	ND	R
nrsw4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM20	BRDCLM	0.590	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGĻ	UM20	C13DCP	0.580	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	C2AVE	8.300	LT	
NRSU4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM20	C2H3CL	2.600	LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM20	CZHSCL	1.900	LT	
nrsw4 Nrsw4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM20	C6H6	0.500	LT	
NRSW4	RDSW*3 RDSW*3	CSM	16-apr-1992	0.0	UGL	UM20	CCL3F	1.400	LT	
NRSW4	RDSW*3	CSH	16-apr-1992 16-apr-1992	0.0 0.0	NGT	UM20 UM20	CCL4 CH2CL2	0.580 2.300	LT	
NRSW4	RDSW*3	CSH	16-apr-1992	0.0	UGL	UM20	CH3BR	5.800	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	CH3CL	3.200	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	CHBR3	2.600	LT	
NRSW4	RDSW#3	CZM	16-apr-1992	0.0	UGL	UMZO	CHCL3	0.500	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	CL28Z	10.000	ND	R
nrs u4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	CLC6H5	0.500	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	CS2	0.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	DBRCLM	0.670	L٣	
NRSW4	RDSW#3	CSW	16-apr-1992	0.0	UGL	UM20	ETC6H5	0.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UH20	MEC6H5	0.500	L.T	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	MEK	6.400	LT	
NRS14	RDSW*3	CSM	16-apr-1992	0.0	UGL	LM20	MIBK	3.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0,0	UGL	L#420	MNBK	3.600	LT	
NRS44	RDSW*3	CSW	16-apr-1992	0.0	UGL	LM20	STYR	0.500	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM 20	T13DCP	0.700	LT	
NRSU4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	TCLEA	0.510	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	TCLEE	1.600	ŁΤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	TRCLE	0.500	LT	
NRS14	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM20	XYLEN	0.840	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL,	UW32	135TNB	0.449	LT	
NRSW4	RDSW*3	ÇS₩	16-apr-1992	0.0	UGL	UM32	13DNB	0.611	LT	
NRSH4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UW32	246TNT	0.635	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UW32	24DNT	0.064	£.T	
NRSW4	RDS₩*3	CSW	16-apr-1992	0.0	UGL	UM32	260NT	0.074	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UW32	HMX	1.210	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN32	MB	0.645	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UW32	RDX	1,170	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UW32	TETRYL	2.490	LT	

Site ID	Field ID	Vedia	Date	Deoth	<u>Units</u>	Analytical Method		Value	El an	Internal
	Field 10	<u>NCO18</u>	<u> </u>	<u> </u>	AITLES	<u> </u>	Abbry.	Value	<u>Flag</u>	Std. Code
16-1	RDWC*13	CGW	04-feb-1992	46.0	UGL	UH20	ACROLN	100.000	KD	R
16-1 16-1	RDUC*13 RDUC*13	CGM	04-feb-1992 04-feb-1992	46.0 46.0	ugl ugl	UM20 UM20	ACRYLO BRDCLM	100.000	ND LT	R
16-1	RDWC*13	CGW	04-feb-1992	46.0	UGL	UM20	C13DCP	0.580	LT	
16-1	RDMC*13	COM	04-feb-1992	46.0	UGL	UM20	C2AVE	8.300	LT	
16-1	RDUC*13	CGW	04-feb-1992	46.0	UGL	UH20	C2H3CL	2.600	ĻŢ	
16-1 16-1	RDWC*13 RDWC*13	CGA	04-feb-1992 04-feb-1992	46.0 46.0	UGL	UH20 UH20	C2H5CL C6H6	1.900 0.500	LT LT	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL	UH20	CCL3F	1.400	LT	
16-1	RDWC*13	CCM	04-feb-1992	46.0	UGL	UNIZO	CCL4	0.580	LT	
16-1 16-1	RDWC*13 RDWC*13	CGW	04-feb-1992 04-feb-1992	46.0 46.0	UGL	UN20	CH2CL2 CH3BR	2.300	LT	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL UGL	UM20 UM20	CH3CL	5.80G 3.200	LT LT	
16-1	RDWC*13	CGW	04-feb-1992	46.0	UGL	UH20	CHBR3	2.600	LT	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL	UH20	CHCL3	0.500	LT	_
16-1 16-1	RDWC*13 RDWC*13	COM	04 - feb - 1992 04 - feb - 1992	46.0 46.0	ugl Ugl	UM20 UM20	CL2BZ CLC6H5	10.000 0.500	HD LT	R
16-1	RDWC*13	CGM	04 - feb- 1992	46.0	UGL	UM20	CSS	1.700	C)	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL	UM20	DERCLM	0.670	LT	
16-1	ROUC*13	CGM	04-feb-1992	46.0	UGL	UH20	ETC6H5	0.500	LT	
16-1 16-1	RDWC*13 RDWC*13	CCM	04 - feb- 1992 04 - feb- 1992	46.0 46.0	ugl ugl	UM20 UM20	NECSHS MEK	0.500 6.400	LT LT	
16-1	RDWC*13	CGW	04-feb-1992	46.0	UGL	UMZD	MIBK	3.000	LT	
16-1	RDWC*13	CGM	04-feb-1992	46.0	UGL	UH20	MNBK	3.600	LT	
16-1 16-1	RDUC*13	CCM	04-feb-1992	46.0	UGL	UN20	STYR	0.500	LT	
16-1 16-1	RDUC*13 RDUC*13	CGM	04-feb-1992 04-feb-1992	46.0 46.0	UGL	UM28 UM20	T13DCP TCLEA	0.700 0.510	LT LT	
16-1	ROWC*13	CGU	04-feb-1992	46.0	UGL	UM20	TCLEE	1.600	ĹŤ	
16-1	RDUC*13	CER	04-feb-1992	46.0	UGL	UH20	TRCLE	0.500	LT	
16-1 16-1	RDWC*13 RDWC*13	CGM	04-feb-1992	46.0 46.0	UCL	UN20	XAFEN	0.840	ĻT	
16-1	RDMC*34	CGM	04-feb-1992 05-feb-1992	46.0	UGL	00 UM32	PH 135TNB	7.320 0.449	LT	K
16-1	RDWC*34	CCM	05-feb-1992	46.0	UGL	UN32	13DNB	0.611	LT	
16-1	RDUC*34	CGM	05-feb-1992	46.0	UGL	U <u>⊾</u> 32	246TNT	0.635	LT	
16-1 16-1	RDWC*34 RDWC*34	CGW	05-feb-1992 05-feb-1992	46.0 46.0	UGL UGL	UM32 UM32	24DNT 26DNT	0.064 0.074	LT LT	
16-1	RDUC*34	CGM	05-feb-1992	46.0	UGL	UN32	HMX	1.210	LT	
16-1	RDUC*34	COL	05-feb-1992	46.0	UGL	UM32	MB	0.645	LŤ	
16-1 16-1	RDUC*34	CGM	05-feb-1992	46.0	UGL	UM32	RDX	1.170	LT	
16-1	RDUC*34 RDUC*33	CCM	05-feb-1992 07-feb-1992	46.0 46.0	UGL	UN32 UN18	TETRYL 124TCB	2.490 1.800	LT LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18	120CLB	1.700	ĹŤ	
16-1	ROWC*33	CGM	07-feb-1992	46.0	UGL	UH18	120PH	2.000	ND	R
16-1 16-1	RDUC*33 RDUC*33	COM	07-feb-1992 07-feb-1992	46.0 46.0	UGL UGL	UN18 UN18	130CLB 140CLB	1.700 1.700	LT LT	
16-1	RDuc*33	CGW	07-feb-1992	46.0	UGL	UH18	245TCP	5.200	LT	
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGI,	UN18	246TCP	4.200	LT	
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UM18	240CLP	2.900	LT	
16-1 16-1	RDUC*33 RDUC*33	CGW	07-feb-1992 07-feb-1992	46.0 46.0	UGL UGL	um18 um18	24DMPN 24DMP	5.800 21.000	LT LT	
16-1	RDUC*33	CGW	07-feb-1992	46.0	UGL	UN18	24DNT	4.500	LT	
16-1	RDUC*33	CCM	07-feb-1992	46.0	UGL	UH18	26DNT	0.790	ĹŤ	
16-1 16-1	RDUC*33 RDUC*33	CGM	07-feb-1992	46.0	UCL	UM18	2CLP	0.990	LT	
16-1	RDWC*33	CCM	07-feb-1992 07-feb-1992	46.0 46.0	UGL UGL	UM18 UM18	2CNAP 2MNAP	0.500 1.700	LT LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UN18	2VP	3.900	LT	
16-1	RDWC+33	ÇG₩	07-feb-1992	46.0	UGL	UN18	2NANTL	4.300	LT	
16-1 16-1	RDMC*33 RDMC*33	CCM	07-feb-1992 07-feb-1992	46.0 46.0	UGL,	UM18	2NP 330080	3.700	LT	
16-1	RDWC*33	CCA	07- feb- 1992	46.0	UGL UGL	UM18 UM18	SHANIL	12.000 4.900	LT LT	
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL	UN18	46DN2C	17.000	LT	
16-1	RDUC*33	CGW	07-feb-1992	46.0	UCL	UH18	4BRPPE	4.200	ĻT	
16-1 16-1	ROWC*33 ROWC*33	CGM	07-feb-1992 07-feb-1992	46.0 46.0	UGL UGL	UM18 UM18	4CANIL 4CL3C	7.300 4.000	LT LT	
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UM18	4CLPPE	5.100	LT	
16-1	RDWC*33	CCM	07-feb-1992	46.0	UGL	UH18	4MP	0.520	LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UN18	4NANIL	5.200	LT	
16-1 16-1	RDWC*33 RDWC*33	CGM	07-feb-1992 07-feb-1992	46.0 46.0	ugl ugl	UM18 UM18	ABHC	12.000 4.000	LT MD	R
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL	UM18	ACLDAN	5.100	MD MD	R
16-1	RDMC*33	CCM	07-feb-1992	46.0	UGL	UN18	AENSLF	9.200	ND	R
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18	ALDRN	4.700	ND	R
16-1 16- 1	RDWC*33	CGW	07-feb-1992 07-feb-1992	46.0 46.0	ugl	UM18 UM18	ANAPNE ANAPYL	1.700 0.500	LT LT	
	WW JJ	-44W	41 10D-1772	74.4	V-UL	SHIP	SERVE P	4.300	L 1	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.		Flag	Internal Std. Code
16-1	RDUC*33	CGH	07- feb- 1992	46.0	UGL	UM18	ANTRO	0.500	LT	
16-1	ROWC*33	CGW	07-feb-1992	46.0	UGL	UM18	B2CEXM	1.500	ĹŤ	
16-1	RDUC*33	CGW	07-feb-1992	46.0	UGL	UN18	BSCIPE	5.300	LT	
16-1 16-1	RDWC*33 RDWC*33	CCM	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UM18 UM18	B2CLEE B2EHP	1.900	ĻŢ	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18	BAANTR	4.800 1.600	LT LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UH18	BAPYR	4.700	LT	
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UM18	BBFANT	5.400	LT	
16-1 16-1	RDWC*33 RDWC*33	CGM	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UM18 UM18	BBHC BBZP	4.000 3.400	ND	R
16-1	RDMC*33	COM	07-feb-1992	46.0	UGL	UM18	BENSLF	9.200	LT ND	R
16-1	RDWC*33	CGW	07-feb-1992	46.0	LIGL	UN18	BEKZID	10,000	ND	Ř
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UN18	BENZCA	13.000	LT	
16-1 16-1	RDMC*33 RDMC*33	CGM	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UN18 UN18	BGH I PY BKFANT	6.100 0.870	LŤ LŤ	
16-1	RDUC*33	CGW	07-feb-1992	46.0	UGL	UN18	BZALC	0.720	LT	
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UH18	CHRY	2.400	LT	
16-1 16-1	RDWC+33 RDWC+33	CGW	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UM18	CL68Z CL6CP	1.600	LT	
16-1	RDWC+33	CGW	07-feb-1992	46.0	ugl ugl	UM18 UM18	CLSCF	8.600 1.500	LT LT	
16-1	RDWC*33	COW	07-feb-1992	46.0	UGL	UH18	DBAHA	6.500	LT	
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL	UH18	DBHC	4.000	ND	R
16-1 16-1	RDWC*33 RDWC*33	CCM	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UN18	DBZFUR	1.700	LĪ	
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL UGL	LM18 LM18	DEP DLDRN	2.000 4.700	LT ND	R
-16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL	UN18.	DHP	1.500	LT	•
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UH18	DNBP	3.700	LT	
16-1 16-1	ROWC*33 ROWC*33	CGM	07- feb- 1992 07- feb- 1992	46.0 46.0	UGL	UM18	DNOP	15.000	ĻŢ	_
16-1	RDMC+33	CGH	07-feb-1992	46.0	UGL	UM18 UM18	ENDRN ENDRNA	7,600 8,000	ND ND	R R
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL	UN18	ENDRNK	8.000	MD	Ř
16-1	RDWC*33	CGW	07- feb- 1992	46.0	UGL	UM18	ESFS04	9.200	ND	R
16-1 16-1	RDMC*33 RDMC*33	CGW	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UM18 UM18	FANT FLRENE	3.300 3.700	LT LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18	GCLDAN	5.100	MD F1	R
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UN18	HCBD	3.400	LT	
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UN18	HPCL	2.000	MD	R
16-1 16-1	RDUC*33 RDUC*33	CGW	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UM18 UM18	HPCLE ICDPYR	5.000 8.600	MD LT	R
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18	ISOPHR	4.800	ĹŤ	
16-1	RDWC*33	CGM	07-feb-1992	46.0	UGL	UH18	LIN	4.000	ND	R
16-1 16-1	RDWC*33	CGM	07-feb-1992 07-feb-1992	46.0 46.0	NCT NCT	LM18	MEXCLR NAP	5.100	NO.	R
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18 UM18	NB	0.500 0.500	LT LT	
16-1	RDMC*33	CGW	07-feb-1992	46.0	UGL	UN18	NHOMEA	2.000	HED	R
16-1	RDWC*33	CGW	07-feb-1992	46.0	-	UK18	NINDNPA	4.400	LT	
16-1 16-1	RDWC*33 RDWC*33	CGM	07-feb-1992 07-feb-1992	46.0 46.0	ugl ugl	UN18 UN18	NNDPA PC8016	3.000 21.000	LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UM18	PC8221	21.000	KD KD	R R
16-1	RDUC*33	CGW	07-feb-1992	46.0	UGL	UM18	PC8232	21.000	MD	Ŕ
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UN18	PC8242	30.000	КФ	R
16-1 16-1	RDWC*33 RDWC*33	CGW	07-feb-1992 07-feb-1992	46.0 46.0	UGL	UM18 UM18	PCB248 PCB254	30.000 36.000	MD MD	R
16-1	RDWC*33	CCM	07- feb- 1992	46.0	UGL	UH18	PC8260	36,000	KD	R R
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	UN18	PCP	18.000	LT	
16-1	RDWC*33	CGW	07-feb-1992	46.0	UGL	LH15	PHANTR	0.500	LT	
16-1 16-1	RDWC*33 RDWC*33	CCM	07-feb-1992 07-feb-1992	46.0 46.0	UGL UGL	UM18 UM18	PHENOL PPOOD	9.200 4.000	LT ND:	
16-1	RDUC*33	CGM	07-feb-1992	46.0	UGL	UN18	PPODE	4.700	ND	R R
16-1	RDWC*33	CCM	07-feb-1992	46.0	UGL	UN18	PPODT	9.200	ND	Ř
16-1	RDMC*33	CCH	07-feb-1992	46.0	UGL	UM18	PYR	2.800	LT	_
16-1 16-1	RDWC*33 RDWC*33	CCM	07-feb-1992 07-feb-1992	46.0 46.0	UGL UGL	UN18 UN18	TXPHEN UNKS73	36.000 5.000	NC	R S
16-1	RDWC*33	CGH	07-feb-1992	46.0	UGL	UM18	UNK637	10.000		2
16-3	RDWC*14	CCM	28- jan-1992	72.0	UGL	SB01	HG	0.243	LT	-
16-3	RDUC*14	CGM	28- jan-1992	72.0	UGL	SD22	A\$	2.540	LT	
16-3 16-3	RDWC*14 RDWC*14	CCA	28- jan-1992 28- jan-1992	72.0 72.0	UGL UGL	\$\$10 \$\$10	AL BA	141.000 381.000	LT	
16-3	RDWC*14	CCA	28-jan-1992	72.0	UGL	SS10	BE	5.000	LT	
16-3	RDUC*14	CGW	28- jan-1992	72.0	UCL	5510	ČÄ.	23100.000		
16-3	RDWC*14	CGW	28-jan-1992	72.0	UGL	SS10	6	4.010	LT	
16-3 16-3	RDWC*14 RDWC*14	CCA	28-jan-1992 28-jan-1992	72.0 72.0	UGL	SS10 SS10	CO CR	25.000 6.020	LT LT	
16-3	RDWC*14	CCM	28- jan-1992	72.0	UGL	\$\$10 \$\$10	Ci Ci	8.090	ĻŤ	

Site ID	<u>Field ID</u>	<u>Media</u>	<u>Qate</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
16-3	RDUC*14	CCH	28- jan-1992	72.0	UGL	S S10	FE	38.800	LT	
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	SS10	K	3110.000	••	
16-3	RDWC*14	CGW	28- jan- 1992	72.0	UGL	SS10	MG	22400.000		
16-3 16-3	RDWC*14 RDWC*14	CGM	28- jan-1992 28- jan-1992	72.0 72.0	UGL UGL	SS10 SS10	MM	3.950		
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	5510 5510	NA NI	922.000 34.300	LT	
16-3	RDWC*14	CGW	28- jan- 1992	72.0	UGL	SS10	SB	38.000	LT	
16-3	RDWC*14	CGM	28- jan-1992	72.0	HGL	SS10	¥	11.000	LT	
16-3 16-3	RDWC*14 RDWC*14	CCM	28-jan-1992 28-jan-1992	72.0 72.0	ugl Ugl	SS10 SD09	ZN TL	21.100 6.990	LT LT	
16-3	ROUC*14	CGW	28- jan-1992	72.0	UGL	SD20	PB	1.260	LŤ	
16-3	RDUC*14	CGW	28- jan-1992	72.0	UGL	00	TOC	11.300		
16-3	RDUC*14	CCM	28- jan-1992	72.0	UGL	UH18	112TCE	7.000		\$
16-3 16-3	RDWC*14 RDWC*14	CCA	28- jan-1992 28- jan-1992	72.0 72.0	UGL	UM18 UM18	124TC8 12DCLB	1.800 1.700	LT LT	
16-3	ROWC*14	CGW	28- jan- 1992	72.0	UGL	UM18	120PH	2.000	ND	R
16-3	RDUC*14	CGW	28- jan-1992	72.0	UGL	UN18	13DCLB	1.700	LT	
16-3 14-7	RDWC*14	CGW	28- jan-1992 28- jan-1992	72.0 72.0	UGL	UM18	14DCLB	1.700	LŢ	-
16-3 16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	UM18 UM18	245TCP 246TCP	5.200 4.200	LT LT	
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	UN18	24DCLP	2.900	ĹŤ	
16-3	RDWC*14	CGW	28- jan-1992	72.0	UGL	UH18	240MPN	5.800	LT	
16-3 16-3	RDWC*14	CCM	28- jan-1992 28- jan-1992	72.0	UGL	UH18	ZADNP	21.000	LT	
16-3	ROWC*14 RDWC*14	CCM	28-jan-1992	72.0 72.0	UGL UGL	UM18 UM18	24DNT 26DNT	4.500 0.790	LT LT	
16-3	RDWC*14	COM	28-jan-1992	72.0	UGL	UN18	2CHE10	5.000	••	s
16-3	RDWC*14	COM	28-jan-1992	72.0	UGL	UN15	2CLP	0.990	LT	
16-3	RDUC*14	CGM	28- jan- 1992	72.0	UGL	UH18	ZCNAP	0.500	LT	
16-3 16-3	RDUC*14 RDUC*14	CGM	28-jan-1992 28-jan-1992	72.0 72.0	UGL	UM18 UM18	2MMAP 2MP	1.700 3.900	LT LT	
16-3	RDUC*14	CCM	28- jan-1992	72.0	UGL	UN18	ZNANIL	4.300	ĹŤ	
16-3	RDUC*14	CCH	28- jan-1992	72.0	UGL	UN18	2NP	3.700	LT	
16-3 16-3	RDUC*14 RDUC*14	CCM	28- jan-1992	72.0 72.0	UGL UGL	UM18	33DC80	12.000	LT	
16-3	RDWC*14	CGM	28- jan-1992 28- jan-1992	72.0	UGL	UM18 UM18	3NANIL 46DN2C	4,900 17,000	LT LT	
16-3	RDWC*14	CGW	28- jan-1992	72.0	UGL	UM18	4BRPPE	4,200	ĻŤ	
16-3	RDWC*14	CCM	28-jan-1992	72.0	UGL	UM18	4CANIL	7.300	ĻŢ	
16-3 16-3	RDUC*14 RDUC*14	CCM	28- jan-1992 28- jan-1992	72.0 72.0	ugl ugl	UM18 UM18	4CL3C 4CLPPE	4.000 5.100	LT LT	
16-3	ROUC*14	CGM	28- jan-1992	72.0	UGL	UM18	4MP	0.520	LT	
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	UM18	4NANIL	5.200	LT	
16-3 16-3	RDUC*14	CGM	28- jan-1992	72.0	UGL	UN18	4NP	12.000	LT	_
16-3	RDUC*14 RDUC*14	CCM	28-jan-1992 28-jan-1992	72.0 72.0	UGL	UM18 UM18	ABHC ACLDAN	4.000 5.100	ND ND	R R
16-3	RDUC*14	CGM	28- jan-1992	72.0	UGL	UH18	AENSLF	9.200	MD	Ř
16-3	RDWC*14	CGW	28- jan-1992	72.0		UN18	ALDRN	4.700	ND	R
16-3 16-3	RDUC*14 RDUC*14	CCM	28- jan-1992 28- jan-1992	72.0 72.0	UGL	UN18	ANAPNE	1.700	L7	
16-3	ROWC*14	CGW	28- jan-1992	72.0	UGL	UN18 UN18	ANAPYL ANTRC	0.500 0.500	LT LT	
16-3	RDWC*14	CON	28- jan- 1992	72.0	UGL	UN18	B2CEXX	1.500	LT	
16-3	RDUC*14	CGM	28- jan- 1992	72.0	UGL	UN18	82CIPE	5.300	LT	
16-3 16-3	RDWC*14 RDWC*14	CGM	28- jan-1992 28- jan-1992	72.0 72.0		UN18	B2CLEE	1.900	LT	
16-3	RDWC*14	CCM	28- jan-1992	72.0	UGL	UM18 UM18	BZEHP BAANTR	4.800 1.600	LT LT	
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	UN18	BAPYR	4.700	ĻŤ	
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	UN18	88FANT	5.400	LT	
16-3 16-3	RDWC*14 RDWC*14	CCA	28- jan-1992 28- jan-1992	72.0 72.0	ugi. Ugi.	UM18 UM18	BBHC BB70	4,000 3,400	ND LT	R
16-3	ROUC*14	CGW	28- jan- 1992	72.0	UGL	UN18	BBZP Benslf	9.200	MD	R
16-3	RDWC*14	CGW	28- jan-1992	72.0	UGL	UK18	BENZID	10.000	ND	Ř
16-3	RDUC*14	CGM	28- jan-1992	72.0	UGL	UM18	SENZOA	13.000	LT	
16-3 16-3	RDWC*14 RDWC*14	CCM	28- jan-1992	72.0	UGL	1M18	BCHIPY	6.100	LT	
16-3	RDWC*14	CCM	28- jan-1992 28- jan-1992	72.0 72.0	UGL UGL	UM18 UN18	BKFANT BZALC	0. <i>5</i> 70 0.720	LT LT	
16-3	RDWC*14	CGM	28- jan- 1992	72.0	UGL	UH18	CHRY	2.400	LT	
16-3	RDWC*14	COM	28- jan- 1992	72.0	UGL	UM18 ,	CL6BZ	1.600	LT	
16-3 16-3	RDWC*14 RDWC*14	CCM	28-jan-1992 28-jan-1992	72.0 72.0	UGL UGL	UM18 ' UM18	CL6CP CL6ET	8.600 1.500	LT LT	
16-3	RDWC*14	CGW	28- jan-1992	72.0	UGL	UN18	CPO	9.000	• •	s
16-3	RDUC*14	CGM	28- jan-1992	72.0	UGL	UN18	DBAHA	6.500	LT	-
16-3 16-3	RDWC=14	CGM	28- jan-1992	72.0	UGL	UM18	DBHC	4.000	MD	R
16-3 16-3	RDWC*14 RDWC*14	CGM	28- jan- 1992 28- jan- 1992	72.0 72.0	UGL UGL	UM18 UM18	DBZFUR DEP	1.700 2.000	LT LT	
16-3	RDWC*14	CCM	28- jan-1992	72.0	UGL	UM18	DLDRN	4.700	ND	R
			-							

14-3	Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 3,700 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 15.000 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 7.600 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 8.000 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 8.000 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 8.000 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 8.000 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 8.000 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 DMSP 8.000 ND 8 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3,400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSD 3.400 LT 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.100 ND ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.000 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.000 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.000 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.000 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.000 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL UH18 NGSC 5.000 ND R 16-3 BOWT-16 COM 28-jan-1992 72.0 UGL	16-3	RDUC*14	CGW	28- jan-1992	72.0	UGL	UM18	DMP	1.500	17	
16-3 RDUCT-16 CGU 28- jan-1992 72.0 UGL UH18 DADOP 15.000 LT 16-3 RDUCT-16 CGU 28- jan-1992 72.0 UGL UH18 DADOP 15.000 R 2 16-3 RDUCT-16 CGU 28- jan-1992 72.0 UGL UH18 DADOP 16 CGU 28- jan-1992 72.0 UGL UH18 FANT 3.500 LT 16-3 RDUCT-16 CGU 28- jan-1992 72.0 UGL UH18 FANT 3.500 LT 16-3 RDUCT-16 CGU 28- jan-1992 72.0 UGL UH18 FANT 3.500 LT 16-3 RDUCT-16 CGU 28- jan-1992 72.0 UGL UH18 CGU 28- jan-1992 72.0 UGL UH18 CGU 28- jan-1992 72.0 UGL UH18 CGU 28- jan-1992 72.0 UGL UH18 RPCLE 5.000 MB R 26-53 RDUCT-16 CGU 28- jan-1992 72.0 UG											
16-3	16-3				72.0	UGL	UH18		15.000		
16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 ENDREW 3.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 FANT 3.300 LT 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 FANT 3.300 LT 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 FANT 3.300 LT 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 FANT 3.300 LT 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 08-R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 08-R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 08-R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 08-R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 INDPA 4.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 BUN-14 COM 08-R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 MEXICUR 5.100 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.0 UGL UH18 PERSON 5.000 MD R 16-3 BUN-14 COM 28-jan-1992 72.				-						_	
16-3							-				
16-3 BOLIC*14 CGV 22-jam*1992 72-0 UGL UH18 FANT 3.300 LT 1-16-3 ROMC*14 CGV 22-jam*1992 72-0 UGL UH18 GLDAN 5.100 MD R 1-16											
16-3 ROMCT14 CGU 28-] ann 1992 72.0 UGL UN18 HCBD 3.400 LT	16-3			•			UM18		3.300		
16-3 BONC**14 CGM											_
16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS MPCL 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG221 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG221 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG221 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG221 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG221 2.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG224 3.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG224 3.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG224 3.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG224 3.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG224 3.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CGW 22-jam*1992 72.0 UGL UNIS PCG254 3.000 NO N R 16-3 BONC**14 CG											ĸ
16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 1SOPNR 4.800 LT 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 1SOPNR 4.800 LT 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 8.400 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS 900 ND R 16-3 RDuC+14 CGU 28 jan-1992 72.0 UGL UNIS				· •							R
16-3 ROLC+14 COL 28- jan-1992 72.0 UGL LM18 LSPBR 4.800 LT									2.112.1		R
16-3											
16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 MB 0.500 LT 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 MB 0.500 LT 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 MB 0.500 LT 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 MDMPA 4.400 LT 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 MDMPA 4.400 LT 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPA 3.000 LT 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPA 3.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPA 3.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS22 21.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS22 21.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS22 21.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS22 21.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS22 21.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS24 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS24 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS24 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS24 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS24 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PCS24 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 30.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 4.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 4.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 4.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 4.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 4.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 4.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 5.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 5.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 5.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 5.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 5.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 PMOPO 5.000 MD R 16-3 RDMC+14 CGM 28 jan-1992 72.0 UGL UM18 UM1865 70.000 MD R 16-3 RDMC+14											P
16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 NB 0.500 LT 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 NBMPA 4.400 LT 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 NBMPA 3.000 LT 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG016 21.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG016 21.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG016 21.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG022 21.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG022 21.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG022 21.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG024 30.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG024 30.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG024 30.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG024 30.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG024 30.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG026 36.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PG026 36.000 ND R 16-3 RDW-14 CGW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW 28-jan-1992 72.0 UGL WH18 PF000 WH19 CDW-14 CDW-		RDMC*14						MEXCLR			
16-3											
16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 NROWPA 4.600 LT 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8016 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC80221 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8222 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8222 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8222 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8224 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC8226 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PC826 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 9.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PP000 9.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK557 90.000 NO R 1											
16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 NNOPA 3.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB215 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB221 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB221 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB225 21.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB226 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB226 30.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB226 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB226 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB226 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB26 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB26 36.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCP 18.000 LT 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 PCB00 4.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 VKS57 90.000 NO R 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WKS57 90.000 S 16-3 RDWC-14 CGW 28-jan-1992 72.0 UGL WH8 WK											. *
16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UM18 PC8232 21.000 MD R R R R R R R R R R R R R R R R R R			-								
16-3				•							
16-3 RDMC*14 CGI 28-jan-1992 72-0 UGL UR18 PCB242 30,000 NO R				-						_	
16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PC3254 36.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PC3254 36.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PC3250 36.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PC3250 36.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PMANTR 0.500 LT 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PMANTR 0.500 LT 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PPODE 4.700 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PPODE 4.700 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PPODE 4.700 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PPODE 4.700 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PPODT 9.200 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PR 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PR 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS PR 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS TENERN 36.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS575 90.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS575 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS555 40.000 ND R 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS555 40.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 20.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 20.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 20.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 20.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WHIS WKS655 90.000 S 16-3 RDMC**14 CGU 28-jan-1992 72-0 UGL WKS WKS655 90.000 S 16-3 RDMC**14 CGU 28										-	
16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PCS 260 36.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMANTR 0.500 LT 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMANTR 0.500 LT 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMDD 4.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMDD 4.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMDD 4.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMDD 7.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMDD 7.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPMDT 9.200 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPM 72 2.800 LT 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 PPM 72 2.800 LT 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 TXPHEN 36.000 ND R 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UNK557 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK557 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK555 40.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK625 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UKK645 90.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UH18 UK160 20.000 S 16-3 RDMC**14 CGW 28-jan-1992 72.0 UGL UK10 UK20 110	16-3	RDWC*14		28-jan-1992	72.0	UGL	UN18	PCB248	30,000		
16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PCP 18.000 LT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PRANTE 0.500 LT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 4.000 MD R 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 4.000 MD R 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 4.000 MD R 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 7.200 UT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 7.200 UT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 7.200 UT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 PPEND 7.200 UT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 TOREM 36.000 MD R 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 TOREM 36.000 MD R 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK557 90.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK557 90.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK557 90.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK558 40.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK585 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK528 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK528 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK527 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK527 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK527 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK527 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK527 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK545 90.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK545 90.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK545 90.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK549 200.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK549 200.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK549 200.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UHK549 200.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH18 UH1609 20.000 S 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL UH20 120CE 0.500 LT 16-3 RDUC*14 CGW 28-jan-1992 72.0 UGL				•					= 1.11.11		
16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PHENDL 9.200 LT 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPENDL 4.000 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPODD 4.000 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPODD 9.200 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPODD 9.200 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPOD 9.200 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPOD 9.200 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPR 2.800 LT 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 PPR 2.800 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 NCS57 09.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 09.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 09.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 09.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK585 09.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK585 09.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK582 20.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK582 20.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK585 20.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 20.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 20.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 20.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 00.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 00.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 00.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 00.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 00.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 S 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UNK587 100.000 ND R 16-3 RDUC**14 CGM 28-jan-1992 72.0 UGL UN18 UN180 CCM										_	R
16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDDD 4.000 MD R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDDT 9.200 MD R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDDT 9.200 MD R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDDT 9.200 MD R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TWENT 36.000 MD R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX557 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX557 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX557 1 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX555 40.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX525 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX525 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX527 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX542 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX643 200.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UMX645 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3											
16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDDE 4,700 ND R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDDT 9,200 ND R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 PPDR 7.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TXPHEN 36.000 ND R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TXPHEN 36.000 ND R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 TXPHEN 36.000 ND R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK557 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK555 40.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK555 40.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK555 40.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK565 40.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK562 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK662 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK662 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK662 20.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK663 200.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK663 200.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK664 200.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK664 200.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 WK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK665 90.000 S 17 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH18 UK669 90.000 S 18 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH20 110CLE 0.500 LT 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH20 100.000 ND R 16-3 RDMC**14 CGM 28-jan-1992 72.0 UGL UH20 CDMC**14 CGM 28-jan-1992 72.0 UG				•		UGŁ	UM18	PHENOL	9.200		
16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 PPDT 9.200 ND R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 ND R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 ND R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TXPHEN 36.000 ND R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH18571 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH18557 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1855 40.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1855 40.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1862 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1862 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1862 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1862 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1863 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1863 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH18657 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1864 40.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH18655 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH18655 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH18655 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UH1865 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 11DCE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 11DCE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 11DCE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 120 LDE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 ROCAN 100.000 ND R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 CENTEL 1.000 ND ND R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 CENTEL 1.000 ND ND R 16-3 ROMC*14											
16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 NO R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 TCLEA 7.000 NO R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK5571 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK5571 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK585 40.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK525 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK525 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK525 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK526 40.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK527 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK537 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK637 20.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK643 700.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK644 40.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK645 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK645 90.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK657 100.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK657 100.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK695 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK695 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK695 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK695 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH18 UNK695 200.000 S 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 111TCE 0.5500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 110CE 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 100.000 NO R 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 ACCCU 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 ACCCU 0.500 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL UH20 CCLEVE 0.710 LT 16-3 ROMC*14 CGM 28-jan-1992 72.0 UGL U								–			
16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK557 90.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK557 90.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK571 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK575 40.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK585 40.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK525 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK525 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK525 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK527 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK657 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK657 20.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK654 40.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK654 90.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK655 90.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK655 90.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK655 90.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 112TCE 0.500 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 112TCE 0.500 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 112TCE 0.500 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.710 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.710 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.710 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.710 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.710 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.750 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL UM20 CULEVE 0.750 LT 16-3 RDMC*14 CGW 28-jam-1992 72.0 UGL											•
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS57 90.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 40.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 40.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 40.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 20.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS85 100.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS95 100.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UNXS95 200.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UXS95 200.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM18 UXS95 200.000 \$ 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 110CE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 110CE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CLE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CLE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CLE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 120CLE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCUEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CUEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CUEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CUEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CUEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CUEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CUEV											
16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK571 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK625 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK625 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK628 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK628 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK627 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK637 20.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK643 200.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK644 40.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK694 200.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK694 200.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 110 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 110 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 110 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 120 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 120 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 120 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 120 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 120 CE 0.500 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 02 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 02 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 02 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 NO R 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992 72.0 UGL UM20 CLEVE 0.710 LT 16-3 ROWC*14 CGW 28-jan-1992						_				ND	
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK625 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK625 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK628 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK627 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK637 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK637 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK643 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK644 40.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK645 90.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK645 90.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK645 90.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK645 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN18 UNK695 200.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 111TCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 C2MCC 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20 C2MCC 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UN20											
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK628 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK637 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK637 20.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK643 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK643 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 112CE 1.200 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 112CE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 110CE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 RDMCH 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCMSCL 2.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCMSCL 2.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC					72.0						
16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6527 6.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6537 20.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6543 200.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6543 200.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6545 90.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6545 90.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK6575 100.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK694 200.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UNK695 200.000 S 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11TICE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-199					_						
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK643 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK644 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK644 40.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK645 90.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 S 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2M2CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C3M3CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C3M3CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C3M3CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-			-								S
16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK643 200.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK645 90.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK695 200.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK695 200.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM18 UMK695 200.000 \$ 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCL 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCL 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCL 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 1.000 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 1.000 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.660 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.600 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.500 LT 1.603 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.500 LT 1.603 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.500 LT 1.603 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3DCL 2.500 LT 1.603 RDMC*14 CG			-								
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK694 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 112TCE 1.200 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 110CE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 110CE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 110CLE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 MD R 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 MD R 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 MD R 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 MD R 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 100.000 MD R 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 100.000 MD R 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 100.000 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 100.000 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 100.000 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 100.000 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 0.580 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CARYLO 0.580 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 1 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 1 16-3 RDMC*14 CGM	16-3								200.000		\$
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK675 100.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK694 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UMK695 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 112TCE 1.200 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.680 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 100.000 MD R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 100.000 MD R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 100.000 MD R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACCT 100.000 MD R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL3 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL3 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL3 0.500 LT			-			UGL					s
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UNK694 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UNK695 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 112TCE 1.200 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.680 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 0.00.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 0.590 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 BROCLN 0.590 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 2.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH3F 1.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH3CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCH3CL 2.300 LT											
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM18 UNK695 200.000 \$ 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 111TCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 112TCE 1.200 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.680 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2MSCL 2.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC13F 1.400 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CC14G 0.580 LT											
16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 112TCE 1.200 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 110CE 0.500 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 110CLE 0.660 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 0.590 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLN 0.590 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.300 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.500 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 5.800 LT 16-3 RDVC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT									200.000		
16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 11DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.680 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRT 13.000 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRT 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRT 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRT 100.000 ND R 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 1.000 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 1.000 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 1.000 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 C3BF 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 2.300 LT											
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 11DCLE 0.680 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACROLN 0.590 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 BROCLM 0.590 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2ASCL 2.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CH38R 5.800 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CH38R 5.800 LT											
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLE 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 ND R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C5H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C5H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C5H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C5H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C5H5CL 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT											
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 12DCLP 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLM 100.000 MD R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLM 100.000 MD R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 BCDCLM 0.590 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 BCDCLM 0.590 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C5H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT										LT	
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 2CLEVE 0.710 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLM 100.000 MD R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 MD R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT			-								
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACET 13.000 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACROLN 100.000 MD R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 MD R 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C3H3CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT											
16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 ACRYLO 100.000 ND R 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H3CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT 16-3 RDMC*14 CGM 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT											
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 BRDCLM 0.590 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2M3CL 2.600 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2M5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6M6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6M6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CM2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CM2CL2 3.200 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CM3CL 3.200 LT						_					
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C13DCP 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2K3CL 2.600 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2K5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT											R
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2AVE 8.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H3CL 2.600 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH38R 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH38R 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH38R 5.800 LT											
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C2H5CL 1.900 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT	16-3	RDUC*14	CGM	28- Jan-1992	72.0	UGL	UM20	CZAVE	5.300		
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 C6H6 0.500 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT						_					
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL3F 1.400 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT								-			
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CCL4 0.580 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH2CL2 2.300 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT			-	-							
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3BR 5.800 LT 16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT	16-3	RDWC*14		28- jan-1992			UM20	CCL4	0.580	LT	
16-3 RDWC*14 CGW 28-jan-1992 72.0 UGL UM20 CH3CL 3.200 LT		-	-								
		-	-			_					

Site ID	<u>Field ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flac</u>	Internal Std. Code
16-3	RDUC*14	CGW	28- jan-1992	72.0	UGL	UM20	CHCL3	0.500	LT	
16-3	RDWC*14	CGH	28- jan- 1992	72.0	UGL	UM20	CL2BZ	10.000	ND	R
16-3 16-3	RDWC*14 RDWC*14	CGM	28- jan-1992 28- jan-1992	72.0 72.0	ugl Ugl	UM20 UH20	CLC6H5 CS2	0.500	LŢ	
16-3	RDWC*14	CGW	28- jan-1992	72.0	UGL	UM20	DBRCLM	0.669 0.670	LT	
16-3	RDUC*14	CGM	28- jan-1992	72.0	UGL	UH20	ETC6H5	0.500	ĹŤ	
16-3	RDUC*14	CGM	28- jan- 1992	72.0	UGL	UM20	MEC6H5	0.510		
16-3 16-3	RDUC*14 RDUC*14	CCF	28- jan-1992 28- jan-1992	72.0 72.0	UGL	UMŽ0 UMŽ0	MEK M18K	6.400 3.000	LŢ	
16-3	RDMC=14	CGW	28- jan-1992	72.0	UGL	LM20	MNBK	3.600	LT LT	
16-3	RDUC*14	CCM	28- jan- 1992	72.0	UGL	UM20	STYR	0.500	ĹΤ	
16-3 16-3	RDUC*14 RDUC*14	CGM	28-jan-1992 28-jan-1992	72.0 72.0	UGL	12H2O	T13DCP	0.700	LT	
16-3	RDUC*14	COM	28- jan- 1992	72.0	UGL	UM20 UM20	TCLEA TCLEE	0.510 1.600	lt Lt	
16-3	RDUC*14	CCH	28- jan-1992	72.0	ŲGL	UM20	TRCLE	0.500	LT	
16-3	RDUC*14	CGW	28-jan-1992	72.0	UGL	UM20	XYLEN	0-840	LT	
16-3 16-3	RDWC*14 RDWC*14	CCM	28- jan-1992 28- jan-1992	72.0 72.0	ugl Ugl	\$023 \$021	ag Se	0.250	LT	
16-3	RDWC*14	CGM	28- jan-1992	72.0	UGL	00	TOX	3.020 145.000	LT -	
16-3	RDWC*14	CGW	28- jan-1992	72.0	UGL	UM18	BTZ	5.000		\$
16-3 16-3	RDWC*14	COM	28-jan-1992	72.0		30	PH	7.920		
16-3	RDUC*14 RDUC*14	CGW	28-jan-1992 28-jan-1992	72.0 72.0	UGL	UN32 UN32	135TH8 13DNB	0.449 0.799	LT	
16-3	RDUC*14	CON	28- jan- 1992	72.0	ŲĠĹ	UN32	246TNT	0.635	ĻŢ	
_ 16-3	RDUC*14	CGM	28-jan-1992	72.0	UGL	UL32	24DNT	0.064	LT	
16-3 16-3	RDWC*14 RDWC*14	CGM	28-jan-1992 28-jan-1992	72.0 72.0	ugl	UW32 UW32	260NT HXX	0.074 1.210	LT LT	
16-3	RDUC*14	CGW	28-jan-1992	72.0	UGL	n=35	NB	0.645	LT	
16-3	RDWC*14	CGW	28- jan- 1992	72.0	UGL	UW32	RDX	1.170	LT	
16-3 16-4	RDUC*14	CGM	28- jan- 1992	72.0	UGL	UN32	TETRYL	2.490	LT	
16-4	RDWC*15 RDWC*15	CGM	23 - Jan - 1992 23 - jan - 1992	62.0 62.0	UGL UGL	SD 23 SB 01	AG NG	0.250 0.243	LT LT	
16-4	RDUC*15	CGM	23-jan-1992	62.0	UGL	5021	SE	3.020	ĹŤ	
16-4	RDWC*15	CGM	23-jan-1992	62.0	UGL	\$009	TL	6.990	LT	
16-4 16-4	RDWC*15 RDWC*15	CCM	23- jan-1992 23- jan-1992	62.0 62.0	UGL UGL	SD 20 SD 22	PB AS	1.410 2.540	LT	
16-4	RDUC*15	CCM	23- jan-1992	62.0	UGL	UM20	111TCE	9.500	Lĭ	
16-4	RDUC*15	CGH	23- jan-1992	62.0	UGL	UN20	112TCE	1.200	LT	
16-4 16-4	RDUC*15 RDUC*15	CCT	23- jan-1992 23- jan-1992	62.0	UGL	19120	11DCE	0.500	LT	
16-4	RDUC*15	CGM	23- jan-1992	62.0 62.0	UGL	UN20 UN20	11DCLE 12DCE	0.680 0.500	LT LT	
16-4	RDWC*15	CGW	23 - Jan - 1992	62.0	UGL	UNZO	12DCLE	0.500	LT	
16-4 16-4	RDWC*15 RDWC*15	CCM	23- jan-1992 23- jan-1992	62.0 62.0	UGL	UH20	120 CLP	0.500	LŤ	
16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	12M20 12M20	ACET ACET	0.710 13.000	LT LT	
16-4	RDWC*15	CGW	23-jan-1992	62.0	UGL	UM20	ACROLN	100.000	MD	R
16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	UH20	ACRYLO	100.000	ND	R
16-4 16-4	RDWC*15	CGM	23- jan-1992 23- jan-1992	62.0 62.0	ugl ugl	UN20 UN20	BRDCLM C13DCP	0.590	LT	
16-4	RDUC*15	CGM	23- jan-1992	62.0	UGL	UN20	C2AVE	0.580 8.300	LT LT	
16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UH20	CZH3CL	2.600	LT	
16-4	RDUC*15	CGW	23- jan- 1992	62-0	UGL	UN20	C2H5CL	1.900	LT	
16-4 16-4	RDWC*15 RDWC*15	CGM	23- jan-1992 23- jan-1992	62.0 62.0	UGL	UM20 UM20	CCL3F	0.500 6.510	LT	
16-4	RDWC*15	CCM	23-jan-1992	62.0	UGL,	UM20	CCL4	0.580	LT	
16-4	RDWC*15	CGH	23- jan-1992	62.0	UGL	UH20	CH2CL2	2.300	LT	
16-4 16-4	RDWC*15 RDWC*15	CGW	23- jan-1992 23- jan-1992	62.0 62.0	UGL UGL	UM20 UM20	CH3CL	5.800	LT	
16-4	RDWC+15	CGW	23- jan-1992	62.0	UGL	UM20	CHBR3	3.200 2.600	LT LT	
16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UM20	CHCL3	0.500	LT	
16-4 16-4	RDWC*15 RDWC*15	CGW	23- jan-1992 23- jan-1992	62.0	UGL	UH20	CL2BZ	10.000	KO	R
16-4	RDWC*15	CGM	23- jan-1992	62.0 62.0	UGL UGL	UMZO UMZO	CLC6H5 CS2	0.500 0.500	LT LT	
16-4	RDUC*15	CGW	23- jan-1992	62.0	UGL	UM20	DBRCLM	0.670	ĹŤ	
16-4	RDMC*15	CGM	23- jan-1992	62.0	UGL	LM20	ETC6H5	0.500	LT	
16-4 16-4	RDWC*15 RDWC*15	CCM	23- jan-1992 23- jan-1992	62.0 62.0	UGL UGL	UM20 UM20	NEC6H5 NEX	0.500 6.400	LT LT	
16-4	RDWC*15	CCM	23- jan-1992	62.0	UGL	UM20	MIBK	3.000	LT	
16-4	RDUC*15	CGM	23- jan-1992	62.0	UGL	UM20	MNBK	3.600	ĹŤ	
16-4 16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL.	UM20	STYR	0.500	LT	
16-4 16-4	RDWC*15 RDWC*15	CGM	23 - jan - 1992 23 - jan - 1992	62.0 62.0	UGL UGL	UM20 UM20	T13DCP TCLEA	0.700 0.510	LT LT	
16-4	ROWC*15	CGW	23- jan-1992	62.0	UGL	UH20	TCLEE	1.600	LT	
16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	UNZO	TRCLE	0.500	ĻŤ	

16-4	<u>Site ID</u>	Field ID	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte <u>Abbry,</u>	<u>Value</u>	<u>Flag</u>	Internal <u>Std. Code</u>
16-4	16-4	RDWC*15	CGW	23-jan-1992	62.0	UGL	UNZO	XYLEN	0.840	1 T	
16-4	16-4	RDWC*15		23- jan-1992	62.0						
16-4											
16-4						_				ŁT	
16-4										1.7	
16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 CJ 83.800 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 K 1800.000 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 K 1800.000 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 LT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 UT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 UT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 UT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 UT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 27-50 UT 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL SST0 M 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 UGL W18 120 LD 1 16-4 RDUCT15 CGM 22-jan-1992 62.0 U											
16-4											
16-4											
16-4				_						LI	
16-4 RDUCT15 COM 23-jan-1992 62.0 UGL SS10 M M 941.000		RDWC*15			62.0		5510				
16-4 RDUCT15 CDI 23-jan-1992 C2.0 UGL SS10 NI										ĻT	
16-4				-							
16-4		_									
16-4							SS10			LT	
16-4						_		-			
16-4										-	
16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 130CLB 1,700 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 245TCP 5.200 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 245TCP 5.200 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 246TCP 2.900 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 240CLP 2.900 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 240CLP 2.900 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 240CLP 2.900 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 240DLP 21.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 240DLP 21.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 240DLP 21.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLT 0.790 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 250DLP 0.990 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 350CBD 12.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 350CBD 12.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 350CBD 12.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 350CBD 12.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 350CBD 12.000 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 4.900 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 36ABIL 7.500 LT 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 3ABBIC 4.000 ND R 16-4 RDWC+15 CGW 23-jan-1992 62.0 UGL UN18 3ABBIC 4.000 ND R 16-4 RDWC+15 CGW 23-jan-1992											· R
16-4						_			1.700	LT	
16-4											
16-6											
16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 240NPP 21.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 240NP 21.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 240NT 4.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 220NT 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2CMP 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2CMP 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2MAPP 1.700 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2MAPP 1.700 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2MAPP 1.700 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2MANIL 4.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 2MANIL 4.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 3MANIL 4.900 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 3MANIL 4.900 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 3MANIL 4.900 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 3MANIL 4.900 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 4.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 4.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 4.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPP 0.520 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPP 12.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS 4MAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS AMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS RDMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS RDMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS RDMAPPE 1.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL URIS RDM		_									
16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 240NT 4.500 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLP 0.990 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 0.500 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 0.500 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 3.990 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 3.900 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 3.900 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 3.900 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 3.700 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 2CLWP 3.700 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 3MMIL 4.900 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 3MMIL 4.900 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4RRPPE 4.200 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4RRPPE 4.200 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4RRPPE 4.200 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4CLME 3MMIL 5.200 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4CLME 5.000 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4CLME 5.000 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4CLPE 5.100 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4CLPE 5.100 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4MP 0.520 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4MP 12.000 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS 4MP 12.000 LT 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRIL 4.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRIL 4.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRIL 4.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRIL 4.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRPLE 1.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRPLE 1.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRPLE 1.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRPLE 1.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRPLE 1.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS AMRPLE 1.700 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNIS BREZED 3.000 ND R 16-4 RDUCT15 CGW 23-jan-1992 62.0 UGL UNI					-					LT	
16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUT 0.790 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 0.590 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 0.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 1.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 1.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 1.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 1.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 1.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZCDUP 1.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 XCDUP 1.700 LT 16-4 RDUC*15 CGN				-							
16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 0.590 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 0.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 1.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 3.900 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ZCMAP 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 3.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.600 LC 17.000 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAIL 5.200 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAIL 5.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAIL 5.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAIL 5.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAPH 5.100 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAPH 5.100 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAPH 5.100 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAPH 5.100 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 ARMAPH 5.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 BRADT 5.000 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 BRADT 5.000 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 BRADT 5.000 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 BRADT 5.000 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 BRADT 5.000 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UH18 BRADT 5.000 LT 16-4 RDMC		_									
16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZUMAP 0.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZUMAP 3.900 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZUMAP 3.900 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZUMAP 3.900 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ZUMAP 3.700 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 330C8B 12.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 330C8B 12.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 460N2C 17.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 460N2C 17.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIL 7.300 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMP 0.520 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 AMP 0.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 AMP 12.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIL 5.200 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIN 5.100 ND R 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ACMAIN 5.100 ND R 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIN 6.000 ND R 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIN 6.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIN 6.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIN 6.000 ND R 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 ARMAIN 6.000 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 BEZEDN 1.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 BEZEDN 1.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 BEZEDN 1.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 BEZEDN 1.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 BEZEDN 1.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH18 BEZEDN 1.500 LT 16-4 RDUC*15 CGN 23-jan-1992 62.0 UGL UH						_					
16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 2MP 3,700 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 2MP 3,700 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 3DGBD 1.7 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 3DGBD 1.7 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 3DGBD 1.7 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCBC 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ABDCC 18.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECDEM 1.5000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECD										LT	
16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 2MP 3.700 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 330CBD 12.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 330CBD 12.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 460W2C 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 460W2C 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 460W2C 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 460W2C 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 460W2C 17.000 LT 16-4 RDMC=15 CGM 25-jan-1992 62.0 UGL UH18 4CMML 7.300 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 4CMM 0.520 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 4CMM 0.520 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 4MP 0.520 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 4MP 0.520 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 4MP 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 15.000 ND R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 15.000 ND R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 15.000 ND R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 15.000 ND R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 ARD 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BECIDE 15.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BEXID 15.000 ND R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BEXID 15.000 ND R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UH18 BEXID 15.											
16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 330CBD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 330CBD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 330CBD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 460N2C 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 460N2C 17.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 4CL3C 4.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 4CL3C 4.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 4CL3C 4.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 4CL3C 5.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 4CL3C 5.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 4MP 0.520 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 5.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 5.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 5.000 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 12.000 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 4.000 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 4.000 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 5.000 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 5.000 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 4.700 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARHD 4.700 MD R 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARMPYL 0.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARMPYL 0.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 ARMPYL 0.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.550 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.550 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.550 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CGM 23-jan-1992 62.0 UGL UN18 BZCEM 8.500 LT 16-4 RDMC=15 CG				•							
16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 3NAMIL 4.900 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 46DN2C 17.000 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 46DN2C 17.000 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4CANIL 7.300 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4CANIL 7.300 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4CANIL 7.300 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4CANIL 7.300 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4MP 0.520 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4MP 0.520 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 4MP 12.000 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 AND 12.000 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 AND 12.000 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 AND 12.000 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 AND 5.100 MD R 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 MD R 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 MD R 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 MD R 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 MD R 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 MD R 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 ALDRN 4.700 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BECEPO 1.500 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BECEPO 1.500 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BECEPO 1.500 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16-4 RDUC*15 CGM 23-jan-1992 62.0 UGL UN18 BANTR 1.600 LT 16	16-4	RDWC*15	CGW	23-jan-1992	62.0	_					
16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 46RPPE 4.200 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 46RPPE 4.200 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CLSC 4.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CLSC 4.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CLPPE 5.100 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 AMP 12.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.700 MD R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 1.700 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 1.700 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 1.700 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 1.700 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 1.700 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BECENM 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BECENM 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BECENM 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BERP 8.500 LT											
16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CANTL 7.300 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CANTL 7.300 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CL3C 4.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4CL3C 4.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 12.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 AND 12.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 AND 12.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 AND 12.000 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 5.100 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 5.100 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 5.100 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 5.100 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 5.100 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 5.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 6.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM				•					_		
16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 4CANIL 7.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 4CL3C 4.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 4CLPPE 5.100 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 0.520 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 4MP 12.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 AMP 12.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 AMP 12.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 5.100 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAN 4.700 MD LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CDE 5.300						_					
16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 4CLPPE 5.100 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 4WP 0.520 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 4WP 0.520 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AWANIL 5.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AWANIL 5.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ABHC 4.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ACLDAN 5.100 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ACMANIL 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AMANIL 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AMANIL 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AMANIL 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AMANIL 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 AMANIL 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 B2CHP 8.550 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BAANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BAANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 RDMC 1.000									7.300	LT	
16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 4MP 0.520 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 4MANIL 5.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 4MANIL 5.200 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ABHC 4.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ABHC 4.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ALDAN 5.100 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 ALDAN 4.700 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 DR 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 DR 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 DR 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 DR 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 DR 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL WH18 BCCCOM 1.500 DR 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 4NP 12.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ANP 12.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ARHC 4.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 5.100 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 5.100 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPNE 1.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPNE 1.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPYL 0.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BANATR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BANATR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BANATR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BANATR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ROWN DATA DATA DATA DATA DATA DATA DATA DAT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ABHC 4.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ACDAM 5.100 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAM 5.100 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAM 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAM 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDAM 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ANAPNE 1.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ANAPNE 0.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ANAPNE 0.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 5.300 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 5.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 8.550 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 8.550 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEPM 8.550 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBPANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBNC 4.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBNSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNZD 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BRNZD 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BCALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CARY 2.400 LT 1		RDWC*15									
16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ACLDAN 5.100 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 1.700 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPHE 1.700 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPHE 0.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BZCEDW 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CEW 8.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CEW 8.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CEW 8.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CEW 8.600 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AEMSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPHE 1.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPYL 0.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDE 1.900 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEDE 1.900 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2EHP 8.550 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 RORNY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 RORNY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 RORNY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 RORNY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66CP 8.600 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 ALDRN 4.700 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPNE 1.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPNE 0.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 AMAPYL 0.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2EXM 8.550 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BARNTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BARNTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BARYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BARYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRYM 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRYM 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRYM 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRYM 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 SKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 SKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CC 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CC 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CC 1.500 LT											
16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 AMAPNE 1.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 AMAPVL 0.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 AMTRC 0.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B2CEVM 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B2CIPE 5.300 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B2CIPE 5.300 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B2EHP 8.550 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B2HP 8.550 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B8FANT 5.400 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B8FANT 5.400 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B8FANT 5.400 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B8FANT 5.400 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BBRD 3.400 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BBRD 3.400 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 0.200 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 0.870 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 BENSLF 0.870 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 0.870 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT	16-4	RDWC*15		23-jan-1992							
16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CIPE 5.300 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CIPE 1.900 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 B2EHP 8.550 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BANTR 1.600 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BANTR 1.600 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BANTR 1.600 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRNT 5.400 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRNT 5.400 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRD 4.000 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRD 3.400 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRD 3.400 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 0.000 ND R 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 0.720 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BCALC 0.720 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 BCALC 0.720 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.600 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.600 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.600 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT 16-4 RDUC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT											
16-4 RDMC*15 CGM 23-jan-1992 62.0 UGL UM18 B2CEXM 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CLEE 1.900 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CLEE 1.900 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CHP 8.550 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B8FANT 5.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B8FANT 5.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PC 4.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 B8PS 3.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 0.870 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BCMRY 0.870 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66P 8.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66P 8.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66P 8.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66P 8.600 LT				•							
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CIPE 5.300 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 B2CHP 8.550 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBPC 4.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBZP 3.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZDA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BCMIPY 6.100 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6BZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6BZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CF 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CF 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CF 1.500 LT				•							
16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BARNTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BARNTR 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BARNTR 5.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRC 4.000 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRC 4.000 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BBRSLF 9.200 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BCMTPY 6.100 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 1.600 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDMC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT		RDWC*15			62.0		UH18	B2CIPE			
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAANTR 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBZP 3.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZOA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BGHIPY 6.100 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT				•						LT	
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BAPYR 4.700 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBZP 3.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 SKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBFANT 5.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBZP 3.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BBZP 3.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 MD R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6EZ 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BEZP 3.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BGHIPY 6.100 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6BZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6BZ 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 1.500 LT				•			UH18	BBFANT	5.400		
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENSLF 9.200 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZOA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BGHIPY 6.100 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6BZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CT 1.500 LT											R
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZID 10.000 ND R 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZOA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BGHIPY 6.100 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL68Z 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL66Z 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CT 1.500 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BENZOA 13.000 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BGH1PY 6.100 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BKFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6BZ 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CT 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CT 1.500 LT	16-4			-	62.0						
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 8KFANT 0.870 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL68Z 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 DBAHA 6.500 LT		RDWC*15				UGL	UM18	BENZOA	13.000	LT	-
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 BZALC 0.720 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL68Z 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CT 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CT 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 DBAHA 6.500 LT				•							
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CHRY 2.400 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL68Z 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 DBAHA 6.500 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL68Z 1.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6CP 8.600 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 DBAHA 6.500 LT											
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 CL6ET 1.500 LT 16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 DBAHA 6.500 LT		RDMC=15	CGM	23- jan-1992	62.0	UGL	UM18	CL6BZ	1.600	LT	
16-4 RDWC*15 CGW 23-jan-1992 62.0 UGL UM18 DBAHA 6.500 LT						-					
				_ 7.							
											R

	Site ID	Field ID	Media	0ate	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
								-2441.11		1708	3101 100E
	16-4	RDUC*15	CGM	23- jan-1992	62.0	UGL	LM18	DBZFUR	1,700	LT	
	16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	LM18	DEP	2.000	LT	
	16-4	RDWC*15	CCFI	23- jan-1992	62.0	UGĻ	UM18	DLDRN	4.700	ND	R
	16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	UM18	DMP	1.500	LT	
	16-4	RDMC*15	CCM	23- jan-1992	62.0	UGL	UN18	DNBP	3.700	LŤ	
	16-4	RDWC*15	CCM	23- jan-1992	62.0	UGL	UM18	DNOP	15.000	ĻT	
	16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	UN18	ENDRN	7.600	ND	R
	16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UN18	ENDRHA	8.000	ND	R
	16-4	RDUC*15	CSW	23- jan-1992	62.0	UGL	UN18	ENDRNK	8,000	ND	R
	16-4	RDUC*15	CGW	23- jan-1992	62.0	UGL	UN18	ESFS04	9.200	ND	R
	16-4	RDWC+15	CGW	23- jan-1992	62.0	UGL	UN18	FANT	3.300	ĻŢ	
	16-4	RDWC*15	CGW	23 - jan - 1992	62.0	UGL	UN18	FLRENE	3.700	LŤ	
	16-4	RDUC*15	CGM	23- jan-1992	62.0	UGL	UM18	GCLDAN	5_100	МĎ	R
	16-4	RDUC*15	CCM	23 - jan - 1992	62.0	UGL	UN18	HCBO	3.400	ĻŢ	
	16-4	RDWC*15	CGH	23 - jan - 1992	62.0	UGL	UM18	HPCL	2.000	ND	R
	16-4 16-4	RDWC*15	CGM	23 - jan - 1992	62.0	UGL	UM18	HPCLE	5.000	ND	R
	16-4	RDWC*15	CGM	23-jan-1992	62.0	UGL	UN18	ICOPYR	8.600	LT	
	16-4	RDWC*15	CGW	23-jan-1992	62.0	UGL	UN18	ISOPHR	4.800	LT	_
	16-4			23- jan-1992	62.0	UGL	UN18	LIN	4.000	ND	R
	16-4	RDWC*15	CGW	23- jan-1992 23- jan-1992	62.0	UGL	UM18	HEXCLR	5.100	ND	R
	16-4	RDWC*15	CGW		62.0	UGL	UM18	NAP	0.500	LT	
	16-4	ROUC*15	CGM	23 - jan - 1992	62.0	UGL	UN18	NB	0.500	LT	_
	16-4	RDUC*15	CGW	23- jan-1992 23- jan-1992	62.0	UGL	UM18	NNOMEA	2.000	ND	R
	16-4	RDWC*15	CGM		62.0	UGL	UM18	NNONPA	4.400	LT	
-	16-4	RDWC*15 RDWC*15	CGM	23 - jan - 1992 23 - jan - 1992	62.0	UGL	UM18	NNDPA	3.000	LT	_
	16-4		CCM		62.0	UGL	UN18	PC8016	21,000	ЖD	R
	16-4	RDUC*15	CGM	23-jan-1992	62.0	UGL	UM18	PCB221	21.000	MO	R
	16-4	RDUC*15	CGM	23- jan-1992	62.0	UCL	UM18	PCB232	21.000	ND	R
	16-4	RDUC*15	CGH	23- jan-1992	62.0	UGL	UM18	PCB242	30.000	ND	ž.
	16-4	RDMC*15 RDMC*15	CGM	23 - jan - 1992	62.0	UGL	UM18	PCB248	30,000	ND	Ŗ
	16-4	RDWC*15	CCM	23- jan-1992 23- jan-1992	62.0 62.0	UGL UGL	UM18 UM18	PCB254 PCB260	36.000	MD	R
	16-4	RDUC*15	CGW	23- jan-1992	62.0	UGL	UM18	PCB2DU PCP	36.000	ND	R
	16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL			000.81	LT	
	16-4	RDWC=15	CCM	23-jan-1992	62.0	UGL	UN18 UN18	PHANTR	0.500	LT	
	16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UH18	PHÉNOL PPODO	9.200 4.000	LT	
	16-4	RDUC*15	CGH	23- jan-1992	62.0	UGL	UH18	PPODE	4.700	ND ND	R
	16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UN18	PPODT	9.200	ND	R
	16-4	RDWC*15	CGM	23- jan-1992	62.0	NGT	UN18	PYR	2.800	LT	R
	16-4	RDUC*15	CGH	23- jan-1992	62.0	UGL	UM18	TXPHEN	36,000	ND.	R
	16-4	RDUC*15	CGM	23-jan-1992	62.0	UGL	UM18	UNK624	4.000	-	Ŝ
	16-4	RDUC*15	CGM	23- jan-1992	62.0	UGL	UM18	UNK642	100.000		S
	16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UM18	UNK643	4.000		Š
	16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL	UM18	UNK644	20.000		Š
	16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	UM18	UNK645	5.000		\$
	16-4	RDUC*15	CGW	23- jan-1992	62.0	UGL	UM18	UNK664	10,000		Š
	16-4	RDUC*15	CGW	23- jan-1992	62.0	UGL	UM18	URK676	50.000		Š
	16-4	RDUC*15	CGW	23- jan-1992	62.0	UGL	UM32	135TKB	0.449	LT	•
	16-4	RDWC*15	CGW	23 - jan-1992	62.0	UGL	UW32	130XB	0.611	LT	
	16-4	RDWC*15	CGM	23- jan-1992	62.0	UGL.	UW32	246TNT	0.635	ĻŤ	
	16-4	RDUC*15	COM	23 - jan - 1992	62.0	UGL	UW32	24DNT	0.064	LT	
	16-4	RDWC*15	CGM	23-jan-1992	62.0	UGL	UW32	26DNT	0.147	•	
	16-4	RDWC*15	CGW	23- jan-1992	62.0	UGL	UW32	HHOX	1.210	LT	
	16-4	RDWC*15	CGM	23 - jan - 1992	62.0	UGL	UW32	KB	0.645	LT	
	16-4	RDMC*15	CGM	23- jan-1992	62.0	UGL	UM32	RDX	1.170	LT	
	16-4	RDMC*15	CGW	23- jan-1992	62.0	UGL	UW32	TETRYL	2.490	LT	
	16-4	RDUC*90	CGM	28- jan-1992	62.0	UGL	00	TOC	2.410		
	16-4	RDWC*90	COM	28- jan-1992	62.0	UGL,	00	TOX	150.000		
	16-4	RDWC*90	CCM	28- jan-1992	62.0		00	PH	8.060		
	17ASS1	RF15*56	CSO	26-feb-1992	1.0	UGG	JD15	SE	0.250	LT	
	17ASS1	RF15*56	CSO	26-feb-1992	1.0	UGG	JB01	HG	0.569		
	17ASS1	RFIS*56	C2O	26-feb-1992	1.0	UGG	JD19	AS	100.000		
	17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	LW12	135TNB	0.488	LŤ	
	17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	L¥12	13DN8	0.496	LT	
	17ASS1	RF1S*56	C20	26-feb-1992	1.0	UGG	LW12	246TNT	0.456	LT	
	17AS\$1	RF15*56	CSO	26-feb-1992	1.0	UGG	LW1Z	24DNT	0.963		
	17ASS1	RF15*56	CSO	26-feb-1992	1.0	UGG	LW12	260NT	0.524	ĻT	
	17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	LW12	HMX	0.666	LT	
	17ASS1	RF15*56	CSO	26-feb-1992	1.0	UGG	LW12	NB	2.410	LT	
	17ASS1	RFIS*56	CZO	26-feb-1992	1.0	UGG	LW12	RDX	0.587	LT	
	17ASS1	rfis*56	CSQ	26-feb-1992	1.0	UGG	LW12	TETRYL	0.731	LT	
	17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	J\$16	AG	23.000		
	17ASS1	RFIS*56	CZO	26-feb-1992	1.0	UGG	J\$16	AL	24200.000		
	17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	3576	BA	941.000		

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
17ASS1	RF15*56	CSO	26-feb-1992	1.0	UGG	JS16	BE	0.500	LT	
17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	J\$16	ČÄ.	17300,000	F1	
17ASS1	RF1\$*56	CSO	26-feb-1992	1.0	UGG	JS16	ĊĎ	10.200		
17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	JS16	CO	15,100		
17ASS1 17ASS1	RFIS*56 RFIS*56	CSO	26-feb-1992 26-feb-1992	1.0 1.0	UGG	J\$16	CR.	167,000		
17ASS1	RF15-36	CSO	26-feb-1992	1.0	ugg ugg	912L 912L	CU FE	3500.000 50700.000		
17ASS1	RF1S*56	CSO	26-feb-1992	1.0	UGG	JS16	K	2070,000		
17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	J\$16	MG	10100.000		
17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	JS16	MN	901.000		
17ASS1 17ASS1	RF15*56 RF15*56	CSO	26-feb-1992 26-feb-1992	1.0 1.0	UGG	472L 472L	XA NI	1450.000 99.500		
17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	JS16	PB	1990.000		
17A\$\$1	RFIS*56	CSO	26-feb-1992	1.0	UGG	J\$16	SB	22.900		
17ASS1	RFIS*56	CSO	26-feb-1992	1.0	UGG	J\$16	TL	15.400		
17ASS1 17ASS1	RFIS*56 RFIS*56	CSO CSO	26-feb-1992 26-feb-1992	1.0 1.0	UGG UGG	JS16 JS16	V ZN	37.500 11000.000		
17ASS2	RFIS*58	C20	26-feb-1992	1.0	UGG	JD15	SE	0.250	LT .	
17AS52	RFIS*58	CSO	26-feb-1992	1.0	UGG	JB01	HG	0.050	LT	
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	JD19	AS	9.350		
17A\$\$2 17A\$\$2	RFIS*58 RFIS*58	CSO	26-feb-1992	1.8	UGG	LW12	135TNB	0.488	LT	
17ASS2 17ASS2	RFIS*58	CSO CSO	26-feb-1992 26-feb-1992	1.0 1.0	ugg ugg	L¥12 L¥12	13DNB 246TNT	0.496 0.456	LT LT	
17AS\$2	RFIS*58	CSO	26-feb-1992	1.0	UGG	LW12	24DNT	0.424	ĻŤ	
17ASS2	RF1S*58	CS0	26-feb-1992	1.0	UGG	LW12	Z6DNT	0.524	LT	
17ASS2 -	RF15*58	CSO .	26-feb-1992	1.0	UGG	LW12	HMX	0.666	LT	
17ASS2 17ASS2	RFIS*58 RFIS*58	CSO CSO	26-feb-1992 26-feb-1992	1.0 1.0	UGG UGG	LW12 LW12	NB RDX	2.410	LŢ	
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	LW12	TETRYL	0.587 0.731	LT LT	
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	J\$16	AG	1.070		
17ASS2	RFIS*58	CSO	26-feb-1992	1-0	UGG	JS16	AL	17600.000		
17ASSZ 17ASS2	RFIS*58 RFIS*58	CSO	26-feb-1992 26-feb-1992	1.0 1.0	ugg ugg	JS16	BA	124.000		
17ASS2	RF15*58	CSO	26-feb-1992	1.0	UGG	J\$16 J\$16	BE CA	1.070 2220.000		
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	JS16	5	0.700	LT	
17ASS2	RF15*58	CSO	26-feb-1992	1.0	UGG	J\$16	œ	19.700		
17ASS2 17ASS2	RFIS*58 RFIS*58	CSO CSO	26-feb-1992 26-feb-1992	1.0 1.0	ugg Ugg	JS16 JS16	CR	46.000		
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	JS16 JS16	CU FE	64,400 23000,000		
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	J\$16	ĸ	1600,000		
17ASS2	RFIS*58	CSO	26-feb-1992	1.0	UGG	1216	MG	13400,000		
17ASS2 17ASS2	RFIS*58 RFIS*58	CSO	26-feb-1992 26-feb-1992	1.0 1.0	UGG	J\$16	MN	834_000		
17ASS2	RF15*58	CSO	26-feb-1992	1.0	ugg ugg	J\$16 J\$16	NA NI	491.000 17.400		
17ASS2	RF1\$*58	CSO	26-feb-1992	1.0	UGG	J\$16	P8	216,000		
17ASS2	RFIS*58	CSO	26-feb-1992	1.0		JS16	\$8	7.140	LT	
17ASS2	RFIS*58	CSO	26-feb-1992 26-feb-1992	1.0	UGG	JS16	TL	6.620	LT	
17ASS2 17ASS2	RF15*58 RF15*58	CSO	26-feb-1992	1.0 1.0	UGG	JS16 JS16	V ZN	54.600 288.000		
17ASW1	RDWC*38	CSM	27-feb-1992	0.0	UGL	00	TOC	9330.000		
17ASW1	RDWC*38	CSM	27-feb-1992	0.0	UGL	SS10	AL	4000,000		
17ASW1	RDWC*38	CZM	27-feb-1992	0.0	UGL	\$\$10	BA	86.900		
17ASW1 17ASW1	RDWC*38 RDWC*38	CZM	27-feb-1992 27-feb-1992	0.0 0.0	UGL	\$\$10 \$\$10	BE CA	5.000 30200,000	LT	
17ASW1	RDWC*38	CSM	27-feb-1992	0.0	UGL	\$\$10	œ	4.010	LT	
17A\$W1	RDWC+38	CSW	27-feb-1992	0.0	UGL	SS10	Ö	25.000	LT	
17ASW1	RDWC+38	CSW	27-feb-1992	0.0	UGL	\$\$10	CR	156.000		
17ASW1 17ASW1	RDMC*38 RDMC*38	CZM	27-feb-1992 27-feb-1992	0.0 0.0	UGL	SS10 SS10	CU FE	266.000 3940.000		
17ASW1	RDWC*38	CSW	27-feb-1992	0.0	UGL	SS10	K	11400.000		
17ASU1	RDWC+38	CSW	27-feb-1992	0.0	UGL	SS10	MG	7800.000		
17ASW1	RDWC*38	CSW	27-feb-1992	0.0	UCL	\$\$10	MN	67.700		
17asu1 17asu1	RDWC*38 RDWC*38	CZM	27-feb-1992 27-feb-1992	0.0 0.0	UGL	SS10	NA HT	32000.000 34.300	17	
17ASW1	RDMC*38	CZA	27-feb-1992	0.0	UGL	\$\$10 \$\$10	28 KI	38.000	LT LT	
17ASW1	RDWC*38	CZW	27-feb-1992	0.0	UGL	\$\$10	ν	11.000	LT	
17ASW1	RDWC*38	CSW	27-feb-1992	0.0	UGL	\$\$10	2N	624,000		
17ASU1	RDWC*38	CSW	27-feb-1992	0.0	UGL	SB01	HG	0.268		
17ASW1 17ASW1	RDWC*38	CZM	27-feb-1992 27-feb-1992	0.0	UGL	SD09 SD21	TL SE	6,990 3,020	LT LT	
17ASW1	RD⊌C*38	CSW	27-feb-1992	0.0	UGL	SD20	PB	150.000		
17ASW1	RDWC*38	CZA	27-feb-1992	0.0	UGL	00	TOX	80.200		
17A\$W1	RDWC*38	CSW	27-feb-1992	0.0	1101	00	PH	7.410		L
17A\$W1	RDWC*38	CSM	27-feb-1992	0.0	UGL	SD22	AS	96.300		

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Unit</u>	Analytical <u>Hethod</u>		Value	Flag	Internal Std. Code
17ASW1	RDWC*38	CSW	27-feb-1992	0.0	UGL	UN32	135TNB	0.449	LT	
17ASW1	RDWC*38	CSW	27-feb-1992	0.0	UGL	UW32	13DNB	0.611	ĹŤ	
17ASW1	RDWC*38	CZW	27-feb-1992	0.0	UGL	UW32	246TNT	0.635	LT	
17ASW1	RDWC*38	CZW	27-feb-1992	0.0	UGŁ	UN32	24DNT	0.372		
17ASW1 17ASW1	RDWC*38 RDWC*38	CZM	27-feb-1992 27-feb-1992	0.0 0.0	UGL	UW32 UW32	Z6DNT HMX	0.074 1.210	LT	
17ASW1	RDUC*38	CSW	27-feb-1992	0.0	UGL	UN32	NB	0.645	LT LT	
17ASW1	RDWC*38	CZM	27-feb-1992	0.0	UGL	UN32	ROX	1.170	LT	
17ASW1	RDUC*38	CZM	27-feb-1992	0.0	UGL	UN32	TETRYL	2,490	LT	
17ASW1	RDMC*38	C\$P	27-feb-1992	0.0	UGL	SD23	AG	0.396	_	
1785E1 1785E1	RF1 S*69 RF1 S*69	CSE CSE	27-feb-1992 27-feb-1992	0.5 0.5	ugg Dou	JD 15 JB01	SE HG	0.250 1.690	LT	
178SE1	RF15*69	CSE	27-feb-1992	0.5	UGG	JB 19	AS	200.000		
17BSE1	RF15*69	CSE	27-feb-1992	0,5	UGG	LW12	135TNB	4.900	LŤ	
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	LW12	13DNB	5.000	LT	
178SE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	LU12	246TNT	4.600	ĻT	
178SE1 178SE1	RF1S*69 RF1S*69	CSE	27-feb-1992 27-feb-1992	0.5 0.5	UGG	LW12 LW12	24DNT 26DNT	56.000 5.200	LT ·	
178SE1	RF15*69	CSE	27-feb-1992	0.5	UGG	LW12	HMX	6.700	LT	
178SE1	RF1S*69	CSE	27-feb-1992	0.5	UGG	LW12	N8	24.000	ĹŤ	
178SE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	LW12	RDX	5.900	LT	
178SE1	RF15*69	CSE	27-feb-1992	0.5	UGG	LW12	TETRYL	7.300	LT	
178\$E1 178\$E1	RFIS*69 RFIS*69	CSE	27-feb-1992 27-feb-1992	0.5 0.5	UGG UGG	J\$16 J\$16	AG AL	6.310 22700.000		
1785E1	RFIS*69	CSE	27-feb-1992	0.5	UGG	JS16	BA	273.000		
178SE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	JS16	BE	0.500	LT	
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	JS16	CA	58100.000		
178SE1	RF15*69	CSE	27-feb-1992	0.5	UGG	JS16	89	14.100		
178SE1 17BSE1	RFIS*69 RFIS*69	CSE	27-feb-1992 27-feb-1992	0.5 0.5	ugg ugg	JS16	CD CR	13.500		
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	J\$16 J\$16	ᇝ	232.000 1130.000		
17B\$E1	RFIS*69	CSE	27-feb-1992	0.5	UGG	J\$16	FE	35900.000		
17BSE1	RFIS*69	CZE	27-feb-1992	0.5	UGG	JS16	K	1730.000		
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	1816	MG	26800.000		
178SE1 178SE1	RFIS*69 RFIS*69	CSE	27-feb-1992 27-feb-1992	0.5 0.5	ugg Ugg	JS16 1614	MN RA	427_000		
178SE1	RF15*69	CSE	27-feb-1992	0.5	UGG	412L 412L	MI	1400.000 56.100		
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	J\$16	PB	1370.000		
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGG	1216	SB	7.140	LT	
17BSE1	RFIS*69	CZE	27-feb-1992	0.5	UGG	JS16	TL.	6.620	LT	
178\$E1 178\$E1	RFIS*69 RFIS*69	CSE	27-feb-1992 27-feb-1992	0.5 0.5	UGG UGG	1216 1216	V ZN	49.100 4230.000		
178\$£1	RFIS*69	CSE	27-feb-1992	0.5	UGL	SD22	AS	97,000		
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGL	SS10	AG	13.200		
178SE1	RFIS*69	CSE	27-feb-1992	0.5	UGL	SS10	BA	1520.000		
1785E1 1785E1	RF1S=69 RF1S=69	CSE	27-feb-1992 27-feb-1992	0.5		SS10	CD	4.010	LT	
178SE1	RFIS*69	CSE	27-feb-1992	0.5 0.5	UGL	SS10 SS10	CR PS	102.000 18.600	ŁT	
17BSE1	RFIS*69	CSE	27-feb-1992	0.5	UGL	\$801	ЯG	0.243	ĹŤ	
17BSE1	RF15*69	CSE	27-feb-1992	0.5	UGL	SD21	SE	3.020	LT	
17CSS1	RF1S*71	CSO	27-feb-1992	1.0	UGG	JD15	\$E	0.250	LT	
17CSS1 17CSS1	RFIS*71 RFIS*71	CSO	27-feb-1992 27-feb-1992	1.0 1.0	nce	JB01 JD19	HG AS	0.050 6.230	LT	
17CSS1	RF15-71	CSO	27-feb-1992	1.0	UGG	LW12	135TNB	0.488	LT	
17C\$\$1	RFIS*71	CSO	27-feb-1992	1.0	UGG	LW12	130NB	0.496	LT	
17CSS1	RF15*71	CSO	27-feb-1992	1.0	UGG	LW12	246TNT	0.456	ĹŤ	
17CSS1	RFIS*71	C2O	27-feb-1992	1.0	UGG	LW12	24DNT	0.424	LT	
17CS\$1 17CS\$1	RFIS*71 RFIS*71	CSO CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg ugg	LW12	260NT	0.524	LT	
17CSS1	RFIS*71	CSO	27-feb-1992	1.0	UGG	LW12 LW12	HHOX NB	0.666 2.410	LT LT	
17CS\$1	RFIS*71	CSC	27-feb-1992	1.0	UGG	LW12	RDX	0.587	LT	
17CSS1	RFIS*71	CSO	27-feb-1992	1.0	UGG	LW12	TETRYL	0.731	LT	
170551	RFIS*71	CSO	27-feb-1992	1.0	UGG	JS16	AG	1.710		
170551 170551	RF1\$*71 RF1\$*71	CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg Ugg	J\$16	AL RA	8830,000 1120,000		
17CSS1	RFIS*71	CSO	27-feb-1992	1.0	UGG	1516 1516	BA BE	0.492		
17CSS1	RFIS*71	CSO	27-feb-1992	1.0	UGG	J\$16	CA CA	87000.000		
170551	RF1S*71	CSO	27-feb-1992	1.0	UGG	JS16	CD CD	0.700	LT	
17CSS1	RFIS*71	CSO	27-feb-1992	1.0	UGG	JS16	œ	10.700		
17CSS1 17CSS1	RFIS*71 RFIS*71	CSO	27-feb-1992 27-feb-1992	1.0 1.0	UGG	J\$16	CR C1	25.800		
17CSS1	RF15-71	CSO	27-1eb-1992	1.0	UGG UGG	J\$16 J\$16	CU FE	20.800 18500.000		
17CS\$1	RFIS*71	CSO	27-feb-1992	1.0	UGG	JS16	K	523.000		
17CS\$1	RFIS*71	CSO	27-feb-1992	1.0	UGG	J\$16	MG	48200,000		

Site ID	Field ID	<u>Medía</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbrv.	Value	<u>F(aq</u>	Internal Std. Code
170551	RFIS*71	cso	27- feb- 1992	1.0	UGG	JS16	MN	482.000		
170551	RFIS*71	CSO	27-feb-1992	1.0	VGG	JS16	HA	259.000		
17CS\$1	RF15*71	ÇSO	27-feb-1992	1.0	UGG	J\$16	NI	9.700		
17css1	RF1\$*71	CSO	27-feb-1992	1.0	UGG	JS16	P8	24.400		
17css1 17css1	RFIS*71 RFIS*71	CSO	27-feb-1992 27-feb-1992	1.0 1.0	UGG	JS16	28	7.140	LT	
17CSS1	RFIS*71	CSO	27-feb-1992	1.0	UGG UGG	JS16 J\$16	TL Y	17-500 45-100		
170551	RFIS*71	CSO	27-feb-1992	1.0	UGG	JS16	ZN	86.900		
17CSS1	RFIS*72	CSO	27-feb-1992	2.8	UGG	JD15	SE	0.250	LT	
1705\$1	RF1\$*72	CSO	27-feb-1992	Z.8	UGG	JB01	HG	0.075		
170351 170351	RF1\$*72 RF1\$*72	CSO	27-feb-1992 27-feb-1992	2.8 2.8	UGG UGG	JD19 LW12	as 135TNB	5.550		
17css1	RFIS*72	CSO	27-feb-1992	2.8	UGG	LW12	130 KB	0.488 0.496	LT LT	
17CSS1	RFIS*72	CSO	27-feb-1992	2.8	UGG	LW12	246TNT	0.456	ĹŤ	
17CSS1	RF15*72	CSO	27-feb-1992	2.8	UGG	LW12	24DNT	0.424	LT	
170551	RFIS*72	CSO	27-feb-1992	2.8	UGG	LW12	26DNT	0.524	LT	
17CSS1 17CSS1	RFIS*72 RFIS*72	CSO	27-feb-1992 27-feb-1992	2.8 2.8	ugg ugg	LW12 LW12	NB KMX	0.666 2.410	LT -	
170551	RFIS*72	CSO	27-feb-1992	2.8	UGG	LW12	RDX	0.587	LT	
170351	RFIS*72	CSO	27-feb-1992	2.8	UGG	LW12	TETRYL	0.731	LT	
170551	RFIS*72	CSO	27-feb-1992	2.8	DOG	1216	AG	1.080		
170881 170881	RF1S*72 RF1S*72	CSO	27-feb-1992 27-feb-1992	2.8 2.8	UGG UGG	J\$16 J\$16	AL BA	20200.000 68.000		
17CSS1	RFIS*72	CSO	27-feb-1992	2.8	UGG	J\$16	BE BV	2.110		
17css1	RF1\$*72	CSO	27-feb-1992	2.8	UGG	JS16	CA	1460.000		
17css1	RFIS*72	CZO	27-feb-1992	2.8	UGG	JS16	æ	0.700	LT	
170551	RFIS*72	CSO	27-feb-1992 27-feb-1992	2.8	UGG	JS16	œ	27.500		
17CSS1 17CSS1	RF1\$*72 RF1\$*72	CSO	27-feb-1992	2.8 2.8	UGG UGG	1216 1216	CR CJ	42.900 16.600		
170551	RFIS*72	CSO	27-feb-1992	2.8	UGG	1216	Æ	38000.000		
17C\$\$1	RFIS*72	CSO	27-feb-1992	2.8	UÇG	312L	K	1450.000		
17CSS1	RF1S*72	CSO	27-feb-1992	2.8	UGG	J\$16	MG	5270.000		
17CSS1 17CSS1	RF1S*72 RF1S*72	CSO	27-feb-1992 27-feb-1992	2.8 2.8	ugg ugg	J\$16 J\$16	MN NA	466.000 180.000		
17CSS1	RFIS*72	CSO	27-feb-1992	2.8	UGG	JS16	NI NI	29.400		
170351	RFIS*72	CSO	27-fab-1992	2.8	UGG	4516	PB	16-200		
170551	RFIS*72	CSO	27-feb-1992	2.8	UGG	JS16	SB	7.140	LT	
17CSS1 17CSS1	RFIS*72 RFIS*72	CSO CSO	27-feb-1992 27-feb-1992	2.8 2.8	ugg Ugg	1516 1516	TL V	6.620 69.100	LŤ	
170331	RFIS*72	CSO	27-feb-1992	2.8	UGG	J\$16	ZN	63.100		
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	JD15	SE	0.250	ĻT	
17css2	RFIS*73	C20	27-feb-1992	1.0	UGG	JB01	HG	0.079		
17CSS2 17CSS2	RFIS*73 RFIS*73	CSO	27-feb-1992 27-feb-1992	1.0 1.0	UGG UGG	JB19	AS 135TNB	7.370		
17CSS2	RF15*73	CSO	27-feb-1992	1.0	UGG	LW12 LW12	130 NB	0.488 0.496	LT LT	
17css2	RF15*73	CSO	27-feb-1992		UGG	LW12	246TNT	0.456	LT	
17CSSZ	RF15*73	CSO	27-feb-1992	1.0	UGG	L¥12	24DNT	0.558		
17CSSZ	RF1\$*73	CSO	27-feb-1992	1.0	UGG	FR15	26DNT	0.524	LT	
17CSS2 17CSS2	RFIS*73 RFIS*73	CSO CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg ugg	LW12 LW12	N9 N8	0.666 2.410	LT LT	
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	LW12	RDX	0.587	LT	
17CSS2	RFIS*73	CSC	27-feb-1992	1.0	UGG	LW12	TETRYL	0.731	LT	
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	J\$16	AG	1.890		
1703\$2 1703\$2	RFIS*73 RF1S*73	CSO	27-feb-1992	1.0	UGG	412L	AL .	37600.000		
170552 170552	RFIS*73	CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg Ugg	1216 1216	BA BE	290.000 1.270		
17CS\$2	RFIS*73	CSO	27-feb-1992	1.0	UGG	JS16	CA	14800.000		
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	JS16	CD	0.700	LT	
17CSS2	RFIS*73	C\$O	27-feb-1992	1.0	UGG	J\$16 1614	CO	24.900		
17CSS2 17CSS2	RFIS*73 RFIS*73	CSO CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg ugg	312L 312L	CR CU	126.000 569.000		
17CSS2	RFIS*73	cso	27-feb-1992	1.0	UGG	J\$16	FE	46300.000		
17CSS2	RF1S*73	CSO	27-feb-1992	1.0	UGG	JS16	K	3870.000		
17CSS2	RF1S*73	CSO	27-feb-1992	1.0	UGG	JS16	MG	18300.000		
170552 170552	RFIS*73 RFIS*73	C\$O	27-feb-1992 27-feb-1992	1.0 1.0	UGG UGG	1216 1216	MN	745.000 1390.000		
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	JS16	MA HI	73.100		
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	JS16	PB	123.000		
17CS\$2	RFIS*73	CSO	27-feb-1992	1.0	UGG	J\$16	S8	7.140	ĻŢ	
17CSS2	RFIS*73	CSO	27-feb-1992	1.0	UGG	J\$16	TL.	25.100		
170552 170552	RFIS*73 RFIS*73	CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg Ugg	612L 1516	V Zn	64.500 615.000		
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	JD15	SE	0.250	LT	
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	JB01	HG	0.050	LT	

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry	<u>Value</u>	<u>Fles</u>	Internal Std. Code
17CSS2	RF15*74	CSO	27-feb-1992	2.4	UGG	JD 19	AS	5.640		
17CSS2	RF1S*74	CSO	27-feb-1992	2.4	UGG	LW12	135THB	0.488	LT	
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	LW12	13DNB	0.496	LT	
17CSS2 17CSS2	RFIS=74 RFIS=74	CSO	27-feb-1992 27-feb-1992	2.4 2.4	UGG	LW12 LW12	246TNT 24DNT	0.456	LT	
17CSS2	RF15*74	CSO	27-feb-1992	2.4	UGG	LW12	26DNT	0.424 0.524	LT LT	
17CSS2	RF15*74	CSO	27-feb-1992	2.4	UGG	L¥12	HMX	0.666	LT	
170552	RFIS*74	cso	27-feb-1992	2.4	UGG	LW12	NB	2.410	ĻŢ	
170552 170552	RFIS*74 RFIS*74	CSO	27-feb-1992 27-feb-1992	2.4 2.4	UGG UGG	LW12 LW12	RDX TETRYL	0.587 0.731	LŢ	
17CSS2	RF15*74	CSC	27-feb-1992	2.4	UGG	J\$16	AG	1,940	ŁT	
17CSS2	RF15*74	CSC	27-feb-1992	2.4	UGG	J\$16	AL	27600.000		
17CSS2	RF15*74	CSO	27-feb-1992	2.4	UGG	J\$16	BA	39.300		
17C\$\$2 17C\$\$2	RFIS*74 RFIS*74	CSO	27-feb-1992 27-feb-1992	2.4 2.4	ugg ugg	7219 7219	CA CA	1.150 76000.000		
170552	RFIS*74	CSO	27-feb-1992	2.4	UGG	JS16	æ	0.700	LT	
17C\$\$2	RFIS*74	CSO	27-feb-1992	2.4	UGG	JS16	CO	7-830		
17CSS2 17CSS2	RFIS*74 RFIS*74	CSO	27-feb-1992 27-feb-1992	2.4 2.4	UGG UGG	J\$16	CR CU	41.100 149.000		-
17CSS2	RF15*74	CSO	27-feb-1992	2.4	UGG	912L 1516	FE	23400.000		
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	J\$16	K	8580.000		
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	JS16	MG	92000.000		
17CSS2 17CSS2	RFIS*74 RFIS*74	CSO	27-feb-1992 27-feb-1992	2.4 2.4	UGG	J\$16	MN NA	200.000		
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	JS16 JS16	NI	671.000 27.500		
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	JS16	PB	41.700		
17CSS2	RFIS*74	CSO	27-feb-1992	2.4	UGG	J\$16	SB	7.140	LT	
17CSS2 17CSS2	RF1S*74 RF1S*74	CSO	27-feb-1992 27-feb-1992	2.4 2.4	UGG	J\$16	TL Y	28.100		
17C\$\$Z	RF15*74	CSO	27-feb-1992	2.4	UGG	1216 1216	Y ZN	42.800 202.000		
17DS\$1	RFIS*76	CSO	27-feb-1992	0.3	UGG	JD15	SE	0.250	ĻT	
17DSS1	RFIS*76	CSO	27-feb-1992	0.3	UGG	JB01	HG	0.138	_	
17DSS1 17D\$S1	RFIS*76 RFIS*76	CSO CSO	27-feb-1992 27-feb-1992	0.3	UGG	JD19	AS 135TNB	100.000		
17DSS1	RFIS*76	CSO	27-feb-1992	0.3 0.3	UGG UGG	L912 L912	13DNB	0.488 0.496	ĻT LT	
1705\$1	RFIS*76	CSO	27-feb-1992	0.3	UGG	LW12	246TNT	0.456	ĹΤ	
170551	RFIS*76	CZO	27-feb-1992	0.3	UGG	LU12	24DNT	0.424	LT	
170551 170551	RF1S*76 RF1S*76	CSO	27-feb-1992 27-feb-1992	0.3 0.3	UGG UGG	LW12 LW12	26DNT HMX	0.524 0.666	LT LT	
170551	RFIS*76	CSO	27-feb-1992	0.3	UGG	LW12	KB	2.410	LT	
170\$\$1	RF15*76	CSO	27-feb-1992	0.3	UGG	LW12	RDX	0.587	LT	
170\$\$1 170\$\$1	RF15*76 RF15*76	CSO	27-feb-1992	0.3	UGG	1912	TETRYL	0.731	LT	
17DSS1	RFIS*76	CSO	27-feb-1992 27-feb-1992	0.3 0.3	UGG	1\$16 J\$16	AG AL	5.200 12000.000		
17DSS1	RFIS*76	CSO	27-feb-1992	0.3	UGG	J\$16	BA	800.000		
170\$\$1	RFIS*76	CSO	27-feb-1992	0.3	UGG	J\$16	B€	2.500	LT	
170551 170551	RFIS*76 RFIS*76	CSO	27-feb-1992	0.3 0.3	UGG	JS16	CA CO	76000.000		
17DSS1	RF15*76	CSO	27-feb-1992 27-feb-1992	0.3	UGG UGG	1216 1216	8	3.500 14.000	LT	
170551	RF1\$*76	CSO	27-feb-1992	0.3	UGG	J\$16	CR	210.000		
170551	RF1\$*76	CSO	27-feb-1992	0.3	UGG	J\$16	cu	4000.000		
170551 170551	RFIS*76 RFIS*76	C20 C20	27-feb-1992 27-feb-1992	0.3 0.3	ugg ugg	1516 1516	FE K	110000.000 1240.000		
170551	RF15*76	CSO	27-feb-1992	0.3	UGG	JS16	NG	43000.000		
170551	RF15*76	CSO	27-feb-1992	0.3	UGG	JS16	MN	880.000		
170SS1	RFIS*76	CSO	27-feb-1992	0.3	UGG	J\$16	NA	3240.000		
170551 170551	RFIS*76 RFIS*76	CSO	27-feb-1992 27-feb-1992	0.3 0.3	ugg ugg	1216 1216	NI PB	120,000 1600,000		
170SS1	RFIS*76	CSO	27-feb-1992	0.3	UGG	J\$16	SB.	36.000	LT	
170SS1	RFIS*76	C20	27-feb-1992	0.3	UGG	412L	TL	79.000	_,	
170SS1 170SS1	RFIS*76	CSO	27-feb-1992	0.3	UGG	J\$16	V	32.000		
170551 170552	RFIS*76 RFIS*78	CSO	27-feb-1992 27-feb-1992	0.3 1.0	ugg ugg	JS16 JD15	ZN SE	5500,000 0.250	LT	
17DSS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	JB01	HG	0.133		
17DSS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	JD19	AS	34.000		
170\$\$2 170\$\$2	RFIS*78 RFIS*78	CSO	27-feb-1992	1.0	UGG	LW12	135TNB	0.488	LT	
170552 170552	RFIS*78	CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg Ugg	LW12 LW12	130NB 246TNT	0.4 96 0.456	LT LT	
170552	RFIS*78	CSO	27-feb-1992	1.0	nee.	L¥12	24DNT	0.424	LT	
170SS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	LW12	26DNT	0.524	LT	
170SSZ 170SS2	RFIS*78 RFIS*78	CSO	27-feb-1992	1.0 1.0	UGG	LW12	HMX	0.666	LT	
170SS2	RF15*78	CSO	27-feb-1992 27-feb-1992	1.0	UGG	LW12 LW12	NB RDX	2.410 0.587	LT LT	
170552	RF15*78	CSO	27-feb-1992	1.0	UGG	LW12	TETRYL	0.731	LT	
			···-				-			

Site ID	Field ID	<u>Medía</u>	Date	Depth	<u>Units</u>	Analytical <u>Kethod</u>	Analyte Abbry,	Value	<u>flag</u>	internal <u>Std. Code</u>
170552	RFIS*78	cso	27-feb-1992	1,0	ŲGG	JS16	AG	2 (50		
170ss2	RFIS*78	CSC	27-feb-1992	1.0	UGG	J\$16	AL.	2.650 7170.000		
17pss2	RF1S*78	CSO	27-feb-1992	1.0	UGG	JS16	BA	459.000		
17DS\$2	RF1S*78	CSO	27-feb-1992	1.0	UGG	J\$16	BE	0.500	LT	
17DSS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	JS16	CA	130000.000		
1705\$2	RFIS*78	csc	27-feb-1992	1.0	UCG	J\$16	CD	5.430		
170\$\$2 170\$\$2	RFIS*78 RFIS*78	CSO	27-feb-1992 27-feb-1992	1.0 1.0	ugg Ugg	1216 1216	CR	8.240		
170SS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	J\$16	ᅄ	76.800 888.000		
170SS2	RF1S*78	CSO	27-feb-1992	1.0	UGG	JS16	FE	24100.000		
170SS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	JS16	K	1040.000		
170\$\$2	RF15*78	CSO	27-feb-1992	1.0	UGG	JS16	MG	32900.000		
170\$\$2 170\$\$2	RF1S*78 RFIS*78	CSO	27-feb-1992 27-feb-1992	1.0 1.0	UGG	JS16	MN	430.000		
170SS2	RFIS*78	CSO	27-feb-1992	1.0	UGG UGG	1516 1516	NA NI	384.000 56.400		
17DSS2	RFIS*78	cso	27-feb-1992	1.0	UGG	JS16	PB.	781.000		
170SS2	RF!S*78	CSO	27-feb-1992	1.0	UGG	JS16	SB	17.000		
170SS2	RFIS*78	CSO	27-feb-1992	1.0	UGG	JS16	TL	34.500	-	
17DSS2	RF1\$*78	ÇSO	27-feb-1992	1.0	UGG	1516	٧	27.900		
170\$\$2 17E\$E1	RFIS*78 RVFS*111	CSO	27-feb-1992 05-mar-1992	1.0 1.0	UGG	J\$16 J801	2N HG	2060.000		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	LW12	135TNB	0.272 0.488	LT	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	LW12	130NB	0.496	ĹŤ	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	LW12	246TNT	0.456	LT	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	LW12	24DNT	1.260		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	L¥12"	ZADNT	0.524	LŤ	
17ESE1 17ESE1	RVFS*111 RVFS*111	CSE	05-mar-1992 05-mar-1992	1.0 1.0	ugg Ugg	LW12 LW12	HDOX	0.666	LT	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	LW12	NB RDX	2.410 0.587	LT LT	
17ESE1	RVF5*111	CSE	05-mar-1992	1.0	UGG	LW12	TETRYL	0.731	LT	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	JS16	AG	2.000		
17ESE1	RVFS*111	CZE	05-mar-1992	1.0	UGG	JS16	AL	24800.000		
17ESE1	RVF\$*111	CSE	05-mar-1992	1.0	UGG	JS16	BA	243.000		
17ESE1 17ESE1	RVFS*111 RVFS*111	CZE	05-mar-1992 05-mar-1992	1.0 1.0	UGG UGG	JS16 JS16	BE CA	0.500 11600.000	LT	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	JS16	E	0.700	LT	
17ESE1	RVFS*111	CZE	05-mar-1992	1.0	UGG	JS16	CO	14.500		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	J\$16	CR	93.900		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	J\$16	<u>a</u>	494-000		
17E5E1 17E5E1	RVFS*111 RVFS*111	CZE	05-mar-1992 05-mar-1992	1.0 1.0	UGG UGG	JS16 JS16	FE K	27600.000 2670.000		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	J\$16	MG	16800.000		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	JS16	MN	253.000		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	JS16	NA	704.000		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	JS16	NI	38.200		
17ESE1 17ESE1	RVFS*111 RVFS*111	CSE	05-mar-1992 05-mar-1992	1.0 1.0	ugg ugg	JS16 JS16	PS.	544.000		
17ESE1	RVF5*111	CSE	05-mar-1992	1.0	UGG	J\$16	SB Tl	7.140 6.620	LT LT	
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	J\$16	Ý	65.200		
17ESE1	RVFS*111	CZE	05-mar-1992	1.0	UGG	JS16	ZX	1510.000		
17ESE1	RVFS*111	CSE	05-mar-1992	1.0	UGG	JD15	SE	_0.250	ĻŢ	
17ESE1	RVF5*111	CSE	05-mar-1992	1.0	UGG	JD19	AS	33.500		
17E\$E1 17E\$E1	RVFS*112 RVFS*112	CZE	05-mar-1992 05-mar-1992	1.0 1.0	UGG UGG	JB01 LW12	HG 135TNB	0.206 0.488	LT	
17ESE1	RVFS*112	CSE	05-mar-1992	1.0	UGG	LW12	130 NB	0.496	LT	
17ESE1	RVFS#112	CSE	05-mar-1992	1.0		LW12	246TNT	0.456	LT	
17ESE1	RVFS*112	CSE	05-mar-1992	1.0	UGG	LW12	24DNT	1.040		
17ESE1		CSE	05-mar-1992		UGG	LW12	26DNT	0.524	LT	
17ESE1 17ESE1	RVF5*112 RVF5*112	CSE	05-mar-1992 05-mar-1992	1.0	UGG UGG	LW12	HNX NB	0.666 2.410	ĻŢ	
17ESE1	RVFS*112	CSE	05-mar-1992	1.0	UGG	LW12 LW12	RDX	0.587	LT LT	
17E5E1	RVFS*112	CSE	05-mer-1992	1.0		LW12	TETRYL	0.731	LŤ	
17ESE1	RVFS*112	CSE	05-mer-1992	1.0	ŲGG	J\$16	AG	1.920		
17ESE1		CSE	05-mar-1992		UGG	JS16	AL	27200.000		
17ESE1	RVFS*112	CSE	05-mar-1992	1.0		JS16	BA	245.000	. –	
17ESE1 17ESE1	RVFS*112 RVFS*112	CSE	05-mar-1992 05-mar-1992	1.0 1.0		JS16	BE	0.500	LT	
17ESE1		CSE CSE	05-mar-1992		ugg Ugg	1516 1516	8	11000.000 2.870		
17ESE1	RVF5*112	CZE	05-mar-1992	1.0	UGG	JS 16	æ	14.600		
17ESE1	RVF\$*112	ÇSE	05-mar-1992	1.0		JS16	CR	96.700		
17ESE1	RVFS*112	CSE	05-mar-1992	1.0		1216	a	475.000		
17ESE 1	RVFS*112	CSE	05-mar-1992		UGG	JS16	fE	28400.000		
17ESE1 17ESE1	RVFS*112 RVFS*112	CSE	05-mar-1992 05-mar-1992	1.0	ugg	JS16	K	2920.000		
115951	KTF9-114	CJE	VJ-1188(- 1776	1,0	000	JS16	MG	16600.000		

Site ID	Field ID Media	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte _Abbrv.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	1044	MN	757 000		
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	312L 312L	NA NA	253.000 834.000		
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	JS16	NI IN	42.000		
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	JS16	PB	542.000		
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	JS16	SB	7.140	LT	
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	JS16	TL	6.620	LT	
17ESE1 17ESE1	RVFS*112 CSE RVFS*112 CSE	05-mar-1992 05-mar-1992	1.0	UGG	JS16 JS16	V ZN	45.200 1560.000		
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	JD 15	SE.	0.250	LT	
17ESE1	RVFS*112 CSE	05-mar-1992	1.0	UGG	JD19	AS	38,000		
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	SD09	TL	6.990	LT	
17ESW1 17ESW1	RDWC+101 CSW	05-mar-1992	0.0	UGL	SD23	AG	0.594		
17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992 05-mar-1992	0.0	UGL	SD22 00	AS TOC	59.200 11200.000		
17ESW1	RDWC+101 CSW	05-mar-1992	0.0	UGL	SD20	PS	300.000		
17ESW1	ROWC*101 CSW	05-mar-1992	0.0		00	PH	7.710		
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	SS10	AL	11000.000		
17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992 05-mar-1992	0.0	UGL	S\$10	BA	126.000		
17ESW1 17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992	0.0 0.0	UGL	\$\$10 \$\$10	BE CA	5.000 40200.000	LT	
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	\$\$10 \$\$10	8	4.010	LT	
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	\$\$10	Ö	25.000	ίτ	
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	SS10	CR	52.900		
17ESW1	RDVC*101 CSV	05-mar-1992	0.0	UGL	\$\$10	യ	411.000		
_17E\$W1 17E\$W1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992	0.0	UGL	SS10	FΕ	19000.000		
17ESW1	RDWC*101 CSW	05-mar-1992 05-mar-1992	0.0 0.0	UGL	\$\$10 \$\$10	K MG	8330.000 16900.000		
17ESW1	RDVC*101 CSV	05-mar-1992	0.0	UGL	SS10	MM	231.000		
17E5W1	RDWC*101 CSW	05-mar-1992	0.0	UGL	SS10	NA	14600.000		
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	SS10	MI	34.300	LŤ	
17ESW1 17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992 05-mar-1992	0.0	UGL	SS10	SB	38.000	LT	
17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992	0.0 0.0	UGL	S10 S10	V ZX	45,400 1030,000		
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	\$801	HG	0.236		
17E\$⊌1	RDMC*101 CSW	05-mar-1992	0.0	UGL	UN32	135TN8	0.449	LT	
17ESW1	RDUC*101 CSW	05-mar-1992	0.0	UGL	UA/32	13DNB	0.611	LT	
17ESW1 17ESW1	RDUC*101 CSW	05-mar-1992	0.0	UGL	U-/32	246TNT	0.635	LT	
17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mar-1992 05-mar-1992	0.0 0.0	UGL UGL	UW32 UW32	24DNT 26DNT	0.102 0.074	LT	
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	UN32	HIX	1.210	LT	
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	UM32	NB	0.645	LT	
17ESW1	RDMC*101 CSW	05-mar-1992	0.0	UGL	UN32	RDX	1.170	LT	
17ESW1 17ESW1	RDWC*101 CSW RDWC*101 CSW	05-mer-1992 05-mer-1992	0.0 0.0	UGL	UN32 SD21	TETRYL	2.490	LŢ	
17ESW1	RDWC*101 CSW	05-mar-1992	0.0	UGL	9021	SE TOX	3.020 44.900	LŢ	
17ESW1	RDUC*102 CSW	05-mar-1992	0.0	UGL	SD09	TL	6,990	LT	
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	SD23	AG	1.250	•	
17ESW1	RDUC*102 CSU	05-mar-1992	0.0	UGL	\$022	AS	66.000		
17ESW1	ROVC*102 CSW	05-mar-1992	0.0	UGL	00	TOC	12900.000		
17ESW1 17ESW1	RDWC*102 CSW RDWC*102 CSW	05-mar-1992 05-mar-1992	0.0 0.0	UGL	SD20 00	PB PK	520.000 7.640		
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	SS10	AL	21000.000		
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	\$\$10	BA	175.000		
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	SS10	BE	5.000	ŁT.	
17E\$W1 17E\$W1	RDVC*102 CSW	05-mar-1992	0.0	UGL	\$\$10	CA	47400.000		
17ESW1	RDWC*102 CSW RDWC*102 CSW	05-mar-1992 05-mar-1992	0.0	UGL	SS10 SS10	යා ස	4.010 25.000	LT LT	
17ESW1	ROWC*102 CSW	05-mar-1992	0.0	UGL	\$\$10	CR	90.000	Li	
17ESW1	RDWC+102 CSW	05-mar-1992	0.0	UGL	SS10	άi	682.000		
17ESW1	RDMC*102 CSW	05-mar-1992	0.0	UGL	\$\$10	FE	31200.000		
17ESW1	RDMC*102 CSW	05-mar-1992	0.0	UGL	\$\$10	K	9770.000		
17E\$¥1 17E\$¥1	RDWC*102 CSW RDWC*102 CSW	05-mar-1992 05-mar-1992	0.0 0.0	UGL UGL	SS10 SS10	MG	25700.000 339.000		
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	\$\$10 \$\$10	MA MA	14400.000		
17ESW1	RDMC*102 CSW	05-mar-1992	0.0	UGL	S\$10	NI	44.500		
17ESW1	RDMC*102 CSW	05-mar-1992	0.0	UGL,	\$\$10	SB	38.000	LT	
17ES¥1	RDWC*102 CSW	05-mar-1992	0.0	UGL	\$\$10	ν	68.700		
17ESW1 17ESW1	RDWC*102 CSW RDWC*102 CSW	05-mar-1992 05-mar-1992	0.0 0.0	UGL	SS10	ZN	1700.000		
17ESW1	RDMC*102 CSW	05-mar-1992	0.0	UGL	\$801 UN32	HG 135TNB	0.383 0.449	LT	
17ESW1	RDUC*102 CSW	05-mar-1992	0.0	UGL	UW32	13DNB	0.611	LT	
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	UW32	246TNT	0.635	ĹĬ	
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	UW3Z	240NT	0.092		
17ESW1	RDWC*102 CSW	05-mar-1992	0.0	UGL	UN32	26DNT	0.074	LT	

	Site ID	Field ID	<u>Medîa</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
	17ESW1	RDUC*102	CSW	05-mar-1992	0.0	UGL	UW32	них	1.210	LT	
	17ESW1	RDUC*102	CSH	05-mar-1992	0.0	UGL	UW32	NB	0.645	LT	
	17ESW1	RDMC*10Z	CSM	05-mar-1992	0.0	UGL	UM32	RDX	1.170	LT	
	17ESU1	RDWC*102	CSW	05-mar-1992	0.0	UGL	UN32	TETRYL	2.490	LŢ	
	17ESW1	RDUC*102	CZZ	05-mar-1992	0.0	VGL	SD21	SE	3.020	LT	
	17ESW1 28MW1	RDMC*102 RDMC*6	CCM	05-mar-1992 30-jan-1992	0.0 5 3 .0	UGL	00 \$009	TOX	96.500		
	28MU1	RDUC*6	CCM	30-jan-1992	53.0	ugl Ugl	SD21	TL SE	6.990 3.020	LT LT	
	28MW1	RDWC=6	CGH	30- jan-1992	53.0	UGL	00	TOC	3.750	LI	
	28/4/1	RDWC*6	CGM	30-jan-1992	53.0	UGL	SS10	AL	141.000	LŤ	
	28MV1	RDWC*6	CCH	30- jan- 1992	53.0	UGL	SS10	BA	78.000		
	28MJ1	RDWC*6	CCM	30- jan-1992	53.0	UGL	SS10	BE	5.000	LT	
	28ML1	RDUC*6	CGH	30- jan-1992	53.0	UGL	5510	CA	27600.000		
	28MW1	RDWC*6 RDWC*6	CCM	30-jan-1992 30-jan-1992	53.0 53.0	UGL	SS10	6	4-010	LT	
	28MW1	RDUC*6	COM	30- jan-1992	53.0	UGL UGL	SS10 SS10	CCI COR	25.000 6.020	LT	
	28MW1	RDUC*5	CCM	30- jan-1992	53.0	UGL	\$\$10	CL CL	8.090	LT LT	
	281411	RDUC*6	CGW	30- jan-1992	53.0	UGL	\$\$10	FE	83.900	Ļ.	
	28MH1	RDWC*6	CCM	30-jan-1992	53.0	UGL	5510	K	1710,000		
	28MW1	RDWC*6	CCM	30- Jan-1992	53.0	UGL	SS10	MG	22100.000		
	281611	RDWC*6	CCM	30-jan-1992	53.0	UGL	\$\$10	HIN	2.750	LT	
	28KU1	RDUC*6	CCH	30-jan-1992	53.0	UGL	\$\$10	XA	1330.000		
	28MW1 28MW1	RDWC*6 RDWC*6	CCM	30-jan-1992 30-jan-1992	53.0 53.0	UGL	S\$10	MI	34.300	LŢ	
	28MU1	RDUC*6	COM	30- jan-1992	53.0	UGL	SS10 SS10	A 25	38.000 11.000	ĻŤ	
_	28MV1	RDUC*6	CCM	30-jan-1992	53.0	UGL	\$\$10	ZN	30.900	LT	
	28MW1	RDWC=6	CGM	30- jan-1992	53.0	UGL	5801	HG	0.243	LT	
	28MW1	RDWC*6	CGM	30- jan- 1992	53.0	UGL	SD22	AS	2.540	LT	
	28HU1	RDUC*6	COM	30-jan-1992	53.0	UGL	00	TOX	59.700		
	28MV1	RDWC*6	CGM	30- jan-1992	53.0	UGL	\$020	P8	1.260	LT	
	28MV1	RDUC*6	CGW	30- jan-1992	53.0	UGL	S023	AG	0.250	LT	
	28MV1 28MV1	RDUC*6 RDUC*6	CGM	30-jan-1992 30-jan-1992	53.0 53.0	UGL	UM20 UM20	111TCE 112TCE	1.490		
	28MV1	RDUC*6	CCH	30- jan- 1992	53.0	UGL	UN20	11DCE	1.200 0.500	LT LT	
	28MV1	RDUC*6	CGM	30- jan-1992	53.0	UGL	UK29	11DCLE	0.680	LT	
	28/6/1	RDUC*6	CGW	30- jan-1992	53.0	UGL	UN20	120CE	0.500	ĹŤ	
	28MU1	RDWC*6	CGW	30- jan- 1992	53.0	UGL	UM20	12DCLE	0.500	LŤ	
	28MV1	RDUC*6	CCH	30- jan- 1992	53.0	UGL	UH20	120CLP	0.500	LT	
	28MV1	RDUC*6	CGM	30-jan-1992	53.0	UGL	UH20	SCLEVE	0.710	LT	
	28MJ1 28MJ1	RDUC*6	CCM	30- jan-1992 30- jan-1992	53.0 53.0	UGL UGL	LM20 LM20	ACET ACROLN	13.000	LT	
	28MU1	RDUC*6	CGW	30-jan-1992	53.0	UGL	UM20	ACRYLO	100.000 100.000	ND ND	R R
	28MW1	RDWC*6	CCM	30- jan- 1992	53.0	UGL	UHZO	BRDCLM	0.590	ĹŤ	•
	28/4/1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UM20	C130CP	0.580	LT	
	28MW1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UN20	C2AVE	8.300	LT	
	28MW1	RDUC*6	CGM	30-jan-1992	53.0	UGL	UH20	C2X3CL	2.600	LT	
	28MV1 28MV1	RDWC*6	CGM	30- jan-1992 30- jan-1992	53.0 53.0	UGL	UN20 UN20	C2H5CL C6H6	1.900	LT	
	28MV1	RDUC*6	CGW	30- jan- 1992	53.0	UGL	UH20	CCL3F	0.500 1.400	LT LT	
	2814-1	RDWC*6	CGH	30- jan-1992	53.0	UGL	UH20	CCL4	0.580	LT	
	28941	RDWC*6	CGW	30- jan-1992	53.0	UGL	UH20	CH2CL2	2.300	LT	
	28MH1	RDWC*6	CCM	30- jan-1992	53.0	UGL	UM20	CH3BR	5.800	LT	
	28%1	RDWC*6	CCM	30- jan-1992	53.0	UGL	UM20	CH3CL	3,200	LT	
	28M/1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UN20	CHBR3	2.600	LŤ	
	28MV1	RDUC*6	CCH	30-jan-1992 30-jan-1992	53.0	UGL	UH20	CHCL3	0.500	LT	_
	28MV1 28MV1	RDWC*6 RDWC*6	CGM	30-jan-1992	53.0 53.0	UGL	UM20 UM20	CLZBZ CLC6H5	10.000 0.500	MD LT	R
	28MU1	RDWC*6	CCA	30- jan-1992	53.0	VGL	UM20	CS2	1.250	LI	
	28MV1	RDUC*6	CCM	30- jan-1992	53.0	UGL	LIN20	DBRCLM	0.670	ĻŢ	
	2814/1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UM20	ETC6H5	0.500	ĹŤ	
	28MJ1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UM20	MEC6H5	0.500	LT	
	28MV1	RDUC*6	CCM	30-jan-1992	53.0	UGL	UM20	MEK	6.400	LT	
	28MU1	ROUC*6	CGL	30- jan-1992	53.0	UGL	UH20	MIBK	3.000	LT	
	28MJ1	RDWC*6	CCM	30- jan-1992	53.0	UGL	UM20	MNBK	3.600	LT	
	28MW1 28MW1	RDUC*6	CGM	30-jan-1992 30-jan-1992	53.0 53.0	ner ner	UM20 UM20	STYR T13DCP	0.500 0.700	LT LT	
	28MV1	RDWC+6	CGM	30- jan-1992	53.0	UGL	UM20	TCLEA	0.510	LT	
	28MU1	RDWC*6	CCF	30- jan-1992	53.0	UGL	UM20	TCLEE	1.600	LT	
	28HW1	RDUC*6	CGM	30- jan- 1992	53.0	UGL	UM20	TRCLE	0.500	LT	
	28MV1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UMZO	XYLER	0.840	LT	
	28/4/1	RDWC+6	CGW	30- jan-1992	53.0	UGL	UN18	124TC8	1.800	LT	
	28ML1	RDUC*6	CGW	30- jan-1992	53.0	UGL	UM18	120CLB	1-700	LT	
	28MV1	RDWC*6	CCM	30- jan-1992	53.0	UGL	UM18	120PH	2.000	KD	R
	28MV1	RDUC*6	can	30- jan-1992	53.0	UGL	UN18	130CLB	1.700	LŤ	

Site ID	<u>Field_ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	Flag	Internal Std. Code
28MU1	RDWC*6	CGM	30- ian- 1992	53.0	UGL	UM18	14DCLB	1.700	LT	
28MW1	RDWC*6	CGW	30- jan- 1992	53.0	UGL	UM18	Z45TCP	5.200	LT	
28MW1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UN18	246TCP	4.200	LT	
28MJ1	RDWC*6	CGW	30- jan- 1992	53.0	UGL.	UN18	24DCLP	2.900	LT	
28MU1 28MU1	RDWC*6 RDWC*6	CGW	30- jan- 1992 30- jan- 1992	53.0 53.0	UGL UGL	UM18 UM18	24DMPN 24DMP	5.800 21.000	LT	
28MW1	RDMC*6	CGM	30- jan-1992	53.0	UGL	UM18	24DNT	4.500	LT	
28MW1	RDWC*6	CCM	30-jan-1992	53.0	UGL	UN18	260NT	0.790	ĹŤ	
28MV1	RDUC*6	CGW	30-jan-1992	53.0	UGL	UN18	2CLP	0.990	ĻT	
28MW1	RDUC*6	CCT	30-jan-1992	53.0	UGL	UN18	2CNAP	0.500	LT	
28MW1 28MW1	RDWC*6	CCM	30-jan-1992 30-jan-1992	53.0 53.0	ugl ugl	UM18 UM18	2MNAP 2MP	1.700 3.900	LT LT	
28MW1	RDWC=6	CCM	30- jan- 1992	53.0	UGL	UM18	2XANIL	4.300	LT	
28MV1	RDWC*6	CGW	30- jan- 1992	53.0	UGL	UM18	2NP	3.700	ĻŤ	
28MV1	RDWC*6	CCM	30- jan- 1992	53.0	UCL	UM18	330 CBD	12.000	LT	
28MU1 28MU1	RDWC*6 RDWC*6	CGM	30- jan- 1992 30- jan- 1992	53.0 53.0	ugl Ugl	UN18 UN18	3MANIL 46DN2C	4.900 17.000	LT LT	
28MU1	RDWC*6	CGM	30- jan-1992	53.0	UGL	UN18	4BRPPE	4.200	LT	
28MU1	RDWC*6	CGH	30-jan-1992	53.0	UGL	UN18	4CANIL	7.300	LT	
28MW1	RDWC*6	CCM	30- Jan-1992	53.0	UGL,	LH18	4CL3C	4.000	LT	
28MU1 28MU1	RDWC*6	CGW	30- jan-1992 30- jan-1992	53.0	UGL	UM18	4CLPPE	5,100	LT	
28MW1	RDWC*6	CGW	30- jan- 1992	53.0 53.0	UGL	UM18 UM18	4MP 4NANTL	0.520 5.200	LT LT	
28MH1	RDMC*6	CGW	30- jan-1992	53.0	UGL	UN18	4NP	12.000	LT	
28MW1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UN18	ABHC	4.000	ND	R
28MW1 28MW1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UM18	ACLDAN	5.100	ND	R
28MW1	RDWC*6	CGM	30- jan-1992 30- jan-1992	53.0 53.0	ugl ugl	UN18 UN18	AENSLF ALDRN	9.200 4.700	ND ND	R R
28MJ1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UN18	ANAPHE	1.700	LT	•
28MV1	RDWC*6	COM	30-jan-1992	53.0	UGL	UN18	ANAPYL	0.500	LT	
28MJ1	RDWC*6	CCH	30-jan-1992	53.0	UGL	UN18	ANTRO	0.500	LT	
28MW1 28MW1	RDWC*6	CCM	30-jan-1992 30-jan-1992	53.0 53.0	UGL UGL	UM18 UM18	BZCEXM BZCIPE	1.500 5.300	LT LT	
28MW1	ROUC*6	CGW	30- Jan-1992	53.0	UGL	UM18	B2CLEE	1.900	LĪ	
28MH1	RDMC*6	CGW	30-jan-1992	53.0	UGL	UM18	B2EHP	4.800	LŤ	
28%/1	RDVC*6	CCH	30-jan-1992	53.0	UGL.	UM18	BAANTR	1.600	LT	
28MJ1 28MJ1	RDWC*6 RDWC*6	CCM	30- jan- 1992 30- jan- 1992	53.0 53.0	ugl ugl	UM18 UM18	BAPYR BBFANT	4.700 5.400	LT LT	
28441	RDWC*6	CCH	30-jan-1992	53.0	UGL	UM18	BBHC	4.000	ND	R
28MJ1	RDWC*6	CCM	30-jan-1992	53.0	UGL	UN18	8BZP	3.400	LT	
28MJ1	RDWC*6	CGN	30-jan-1992	23.0	UGL	UN18	BENSLF	9.200	ЖD	R
28MV1 28MV1	RDWC*6	CGM	30-jan-1992 30-jan-1992	53.0 53.0	UGL UGL	UM18 UM18	BENZID BENZOA	10.000 13.000	ND LT	R
28MU1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UM18	BGHIPY	6.100	LT	
28MU1	RDUC*6	CGW	30-jan-1992	53.0	UGL	UN18	BKFANT	0.870	LT	
28MV1	RDWC*6	CGW	30-jen-1992	53.0	UGL	UN18	BZALC	0.720	ĻŢ	
28MJ1 28MJ1	RDWC*6	CGM	30- jan- 1992 30- jan- 1992	53.0 53.0	UGL UGL	UM18 UN18	CHRY . CL6BZ	2.400 1.600	LT LT	
28MJ1	RDUC*6	CGW	30-jan-1992	53.0	UGL	UR18	CL6CP	8.600	נז	
28MW1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UN18	CL6ET	1.500	LT	
28MV1	RDWC*6	CGM	30- jan- 1992	53.0	UGL	UN18	DBAHA	6.500	LT	_
28MV1 28MV1	RDMC*6 RDMC*6	CCF	30- jan-1992 30- jan-1992	53.0 53.0	UGL	UN18	DEHC	4.000	ND	R
28MW1	RDWC*6	CGM	30- jan- 1992	53.0	VGL VGL	UM18 UM18	DBZFUR DEP	1.700 2.000	LT LT	
28MJ1	RDWC*6	CCM	30-jan-1992	53.0	UGL	UN18	DLDRM	4.700	ND	R
28MJ1	RDUC*6	CGW	30- jan- 1992	53.0	UGL	UH18	DIMP	1.500	LŦ	
28MW1 28MW1	RDWC*6 RDWC*6	COM	30-jan-1992 30-jan-1992	53.0 53.0	ugl ugl	UN18	DNSP	3.700 15.000	LT	
28MW1	RDWC*6	CGW	30- jan- 1992	53.0	UGL,	UM18 UM18	DNOP ENDRN	7.600	LT ND	R
28M¥1	RDUC*6	CGM	30- jan- 1992	53.0	UGL	UM18	ENDRNA	8.000	ND	Ř
28MV1	RDWC*6	CCM	30- jan- 1992	53.0	UGL	UM18	EXDRNK	8.900	ND	R
28MU1 28MU1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UM18	ESFSO4	9.200	ND	R
28M/1	RDWC*6	CGM	30-jan-1992 30-jan-1992	53.0 53.0	ugl Ugl	UM18 UM18	FANT FLRENÉ	3.300 3.700	LT LT	
ZBMW1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UM18	GCLDAN	5.100	ND	R
28MV1	RDWC+6	CGW	30- Jan-1992	53.0	UGL	UN18	HCBD	3.400	LT	- -
28MV1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UM18	HPCL	2.000	ND	R
28MV1 28MV1	RDWC*6	CGW	30- jan-1992 30- jan-1992	53.0 53.0	UGL UGL	UM18	HPCLE ICOPYR	5.000 8.600	ND	R
28MU1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UM18 UM18	I SOPHR	4.800	LT LT	
28MW1	RDWC*6	COM	30- jan- 1992	53.0	UGL	UN18	LIN	4.000	ND	R
28M-1	RDWC*6	CGW	30- jan- 1992	53.0	UGL	UM18	MEC6HS	4.000		\$
28MU1	RDWC*6	CCW	30- jan-1992	53.0 53.0	UGL	UN18	MEXCLR	5.100	ND	R
28MN1	RDWC*6	CCM	30- jan-1992	53.0	UGL	UM18	NAP	0.500	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth_	<u>Units</u>	Analytical Method	Analyte Abbry	Value	Flag	Internal Std. Code
28MW1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UN18	NB	0.500	LT	
28MW1	RDWC*6	CCM	30-jan-1992	53.0	UGL	UN18	NNDMEA	2.000	ND	R
28MU1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UM18	NNONPA	4.400	LT	
28MV1	RDWC*6	CGW	30-jan-1992 30-jan-1992	53.0 53.0	UGL	UN18	NNDPA	3.000	LT	_
28MV1 28MV1	RDWC*6 RDWC*6	CGM	30-jan-1992	53.0	UGŁ	UM18 UM18	PCB016 PCB221	21.000 21.000	ND ND	R R
28MV1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UH18	PCB232	21.000	ND	Ř
28MW1	RDWC*6	CGM	30- jan-1992	53.0	UGL	UH18	PC8242	30.000	ND	R
28MU1 28MU1	RDWC*6	CCM	30- jan-1992 30- jan-1992	53.0 53.0	UGL UGL	UM18 UM18	PCB248 PCB254	30,000 36,000	ND ND	R
28MW1	RDWC*6	CCM	30- jan- 1992	53.0	UGL	UM18	PCB260	36.000	ND	R R
28MV1	RDUC*6	CGM	30- jan-1992	53.0	UGL	UN18	PCP	18.000	LT	
28MW1 28MW1	RDWC*6	CGM	30-jan-1992 30-jan-1992	53.0 53.0	UGL	UM18 UM18	PHANTR PHENOL	0.500 9.200	LT LT	
28MW1	RDUC*6	CGW	30- jan-1992	53.0	UGL	UN18	PPDDD	4.000	MD FI	R
28MU1	RDWC*6	COM	30- jan-1992	53.0	UGL	UH18	PPDDE	4.700	ND	R
28MU1 28MU1	RDWC*6	CGM	30- jan-1992 30- jan-1992	53.0 53.0	UGL	UM18 UM18	PPDDT	9.200	ND	R
28MW1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UM18	PYR TXPHEN	2.800 36.000	LT .	R
28MW1	RDWC*6	CGW	30-jan-1992	53.0	UGL	UW32	135TNB	0.449	LŤ	•
28MW1	RDWC*6	CGM	30-jan-1992	53.0	UGL	UN32	13DNB	0.611	LT	
28MV1 28MV1	RDWC*6	CCH	30- jan-1992 30- jan-1992	53.0 53.0	UGL UGL	UM32 UM32	246TNT 24DNT	0.635 0.064	LT LT	
28MW1	RDWC*6	CCM	30- jan-1992	53.0	UGL	UM32	260NT	0.074	LT	
28MW1	RDWC*6	CGW	30- jan-1992	53.0	UGL	UN32	HIX	1.210	LT	
28MV1 28MV1	RDWC*6	CGA	30-jan-1992 30-jan-1992	53.0 53.0	UGL UGL	UH32 UH32	NB RDX	0.645	LŢ	•
28MV1	RDMC*6	CGM	30- jan-1992	53.0	UGL	UW32	TETRYL	1.170 2.490	LT LT	
28MJ1	RDWC*6	CGM	30- Jan-1992	53.0		00	PH	7.290		K
28M/2	RDWC*7	CCM	04-feb-1992 04-feb-1992	76.0	UGL	SD09	TL	6.990	LT	
28MV2 28MV2	RDWC*7	CGM	04-feb-1992	76.0 76.0	UGL	SD21 00	SE TOC	3.020 4.060	ĻŢ	
28MV2	RDWC*7	CGM	04-feb-1992	76.0	UGL	\$\$10	ÅL	141,000	LT	
28MW2	RDUC*7	CGA	04-feb-1992	76.0	UGL	\$\$10 \$\$10	BA	268.000		
28MW2 28MW2	RDWC*7	CCP	04-feb-1992 04-feb-1992	76.0 76.0	UGL	SS10 SS10	BE Ca	5,000 46800,000	ĻŢ	
28MJ2	ROUC*7	CGY	04-feb-1992	76.0	UGL	SS10	ČĎ.	4.010	LT	
28MW2	RDUC*7	CCM	04-feb-1992	76.0	UGL	SS10	œ	25.000	LT	
28MW2 28MW2	RDUC*7	CCM	04-feb-1992 04-feb-1992	76.0 76.0	ugl. Ugl	SS10 SS10	CU CU	6.020 8.090	LT LT	
28MW2	ROUC*7	CGH	04-feb-1992	76.0	UGL	\$\$10	FE	44,300		
28MW2	ROWC*7	CGM	04-feb-1992	76.0	UGL	SS10	K	2670.000		
28MH2 28MH2	RDWC*7 RDWC*7	CCM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	\$\$10 \$\$10	MG MN	23600,000 3,460		
28MV2	RDUC*7	CGW	04-feb-1992	76.0	UGL	SS10	HA	4400.000		
Z8MV2	RDWC*7	CGW	04 - feb - 1992		UGL	SS10	MI	34.300	LT	
28MV2 28MV2	RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	\$\$10 \$\$10	SB V	38.000 11.000	LT	
28MV2	RDWC*7	CGA	04-feb-1992	76.0	UGL	SS10	ZX	49.400	LT	
28MW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	\$801	HG	0.243	LT	
28MV2	RDWC*7	CGW	04-feb-1992	76.0	UGL	SD22	AS	2.540	LT	
28MV2 28MV2	RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL	00 SD20	TCX PB	82.500 1.260	LT	
28MJ2	RDUC*7	CCH	04-feb-1992	76.0	UGL	SD23	AG	0.250	ĹŤ	
28MJ2	RDWC*7	CCM	04-feb-1992	76.0	UGL	UN20	111TCE	0.500	LT	
28MV2 28MV2	RD¥C*7 RD¥C*7	CGM CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UN20 UN20	112TCE 11DCE	1,200 0,500	LT LT	
28MVZ	RDWC*7	CCH	04-feb-1992	76.0	UGL	UK20	11DCLE	0.680	ĹŤ	
28MV2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UH20	120CE	0.500	LT	
28MV2 28MV2	RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UM20 UM20	12DCLE 12DCLP	0.500 0.500	LT LT	
28MV2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN20	2CLEVE	0.710	LT	
28MW2	RDWC*7	COM	04-feb-1992	76.0	UGL	UN20	ACET	13.000	LT	
28MV2 28MV2	RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UN(20	ACROLN	100.000	ND	R
28MW2	RDWC*7	CGM	04-feb-1992	76.0 76.0	UGL	UM20 UM20	ACRYLO BRDCLM	100.000 0.590	ND Lt	R
28MW2	RDWC*7	CCM	04-feb-1992	76.0	UGL	UH20	C130CP	0.580	ĹŤ	
28MW2	RDUC*7	CGM	04~feb-1992	76.0	UGL	UM20	C2AVE	8.300	LT	
28MV2 28MV2	RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UN20 UN20	C2H3CL C2H5CL	2.600 1.900	LT LT	
28/4/2	RDWC*7	CGA	04-feb-1992	76.0	UGL	UM20	CóH6	0.500	LT	
28MJ2	RDWC*7	CEM	04-feb-1992	76.0	UGL	UK20	CCL3F	1.400	LT	
28MV2	RDWC*7	CGM	04-feb-1992	76.0		UM20	CCL4	0.580	ĻŢ	
28MU2	RDWC*7	can	04 - feb - 1992	76.0	UGL	UM20	CH2CL2	2.300	ĻŢ	

Site ID	<u> Field ID</u>	<u>Media</u>	Date	Depth	<u> Units</u>	Analytical <u>Method</u>	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
28MM2	RDWC*7	CGW	04 - feb- 1992	76.0	UGL,	UH20	CH3BR	5.800	LT	
28MJ2	ROWC*7	CGM	04-feb-1992	76.0	UGL	LIN20	CH3CL	3.200	LT	
28MW2 28MW2	RDWC*7 RDWC*7	CGM	04 - feb - 1992 04 - feb - 1992	76.0 76.0	UGL	UH20 UH20	CHBR3 CHCL3	2.600	ĻŢ	
28MJ2	RDMC*7	CGW	04-feb-1992	76.0	UGL	UH20	CL2BZ	0.500 10.000	LT ND	R
28HW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UMZO	CLC6H5	0.500	ίŤ	•
28/4/2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM20	CS2	18.100		
28MJ2 28MJ2	RDWC*7 RDWC*7	CGW	04 - feb - 1992 04 - feb - 1992	76.0 76.0	ugl ugl	UM20	DBRCLM ETC6H5	0.670	LΪ	
28MU2	RDUC*7	CGW	04-feb-1992	76.0	UGL	UM20 UM20	MECSHS	0.500 0.500	LT LT	
28MJ2	ROWC*7	CGW	04-feb-1992	76.0	UGL	UM20	MEK	6.400	ĹŤ	
28MJ2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UM20	MIBK	3.000	LT	
28MJ2 28MJ2	RDWC*7 ROWC*7	CCH	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UM20 UM20	MNBK	3.600	LŢ	
28MV2	RDWC*7	CCA	04-feb-1992	76.0	UGL	UM20	STYR T13DCP	0.500 0.700	LT LT	
28MU2	RDMC*7	CGW	04-feb-1992	76.0	UGL	UM20	TCLEA	0.510	LT	
2844/2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UH20	TCLEE	1.600	LT	
28MW2 28MW2	RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UH20 UH20	TRCLE XYLEN	0.500	LŢ	
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	124TCB	0.840 1.800	LT LT	
28442	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	120CLB	1.700	LT	
28MWZ	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	12DPK	2.000	ЖD	Ř
28MWZ 28MW2	RDWC*7 RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	ugl Ugl	UN18	130CLB	1.700	LT	
28MJ2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18 UM18	14DCLB 245TCP	1.700 5.200	LT LT	
28ML/2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UH18	246TCP	4.200	LT	
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	24DCLP	2.900	LT	
2814J2 2814J2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	24DMPN	5.800	LT	
28M/2	RDWC*7 RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UM18 UM18	24DNP 24DNT	21,000 4,500	LT LT	
28MJ2	RDUC*7	CGW	04-feb-1992	76.0	UGL	UN18	260NT	0.790	LT	
28MJ2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	2CLP	0.990	ĻT	
28MJ2 28MJ2	RDWC*7	CGW	04 - feb - 1992	76.0	UGL	UM18	2CNAP	0.500	LT	
2814.2	RDWC*7 RDWC*7	COR	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UM18 UM18	2MKAP 2MP	1.700 3.900	LT LT	
28MJ2	RDHC*7	CGM	04-feb-1992	76.0	UGL	UM18	2NANIL	4.300	ĹŤ	
2814.12	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	2NP	3.700	LT	
28MJ2 28MJ2	RDWC*7 RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UM18	330C80	12.000	LT	
28MV2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UN18 UN18	3NAN IL 46DN2C	4.900 17.000	LT LT	
28MJ2	RDWC+7	CGW	04-feb-1992	76.0	UGL,	UH18	48RPPE	4.200	LŤ	
28MJZ	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	4CANIL	7.300	LT	
2814J2 2814J2	RDWC*7 RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UM18 UM18	4CL3C 4CLPPE	4.000 5.100	LT	
28MJ2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UMTS	4MP	0.520	LT LT	
2BMW2	RDMC*7	CGW	04 - feb- 1992	76.0	UGL	UM18	4NANIL	5.200	ĹŤ	
28MU2	RDWC+7	CGW	04-feb-1992	76.0	UGL	UH18	4NP	12.000	LT	
28MV2 28MV2	RDUC*7 RDUC*7	CCM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UN18	ABHC	4.000	МĎ	R
28442	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18 UM18	ACLDAN AENSLF	5.100 9.200	ND ND	R R
2BML/2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	ALDRN	4_700	ND	Ř
25MWZ	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	ANAPNE	1.700	LT	
28MVZ 28MV2	RDWC*7 RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UM18 UM18	ANAPYL ANTRC	0.500	LT	
28MJ2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UM18	B2CEXM	0.500 1.500	LT LT	
28MW2	RDUC*7	CGW	04-feb-1992	76.0	UGL	UN18	BZCIPE	5.300	ίŤ	
28MUZ	RDUC-7	CGW	04-feb-1992	76.0	UGL	UN18	B2CLEE	1.900	LT	
28MJ2 28MJ2	ROWC*7 ROWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UM18 UM18	BZEHP BAANTR	4.800	LT	
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	BAPYR	1.600 4.700	LT LT	
28MJ2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UN18	BBFANT	5.400	LT	
28M/2	RDUC*7	CG≌	04-feb-1992	76.0	UCL	UH18	BBHC	4.000	ND:	R
28MW2 28MW2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	SEZP	3.400	LT	_
2BMV2	RDWC*7 RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UM18 UM18	BENSLF BENZID	9.200 10.000	ND ND	R R
28MW2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UM18	BENZOA	13.000	LT	R.
28HV2	RDWC*7	ÇG⊎	04-feb-1992	76.0	UGL	UN18	BGHIPY	6.100	LT	
28MW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	BKFANT	0.870	LT	
28MJ2 28MJ2	RDUC*7	CGM	04 - feb - 1992 04 - feb - 1992	76.0 76.0	UGL UGL	UM 18 UM 18	BZALC CHRY	0.720 2.400	LT	
28MV2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UM18	CL6BZ	1.600	LT LT	
28MJ2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UN18	CL6CP	8.600	LT	
28M/2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UM18	CL6ET	1.500	LT	
28M/2	RDUC*7	CGW	04-feb-1992	76.0	UGL	UN18	DBAHA	6.500	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth_	Units	Analytical <u>Method</u>	Analyte Abbry,	<u>Value</u>	Flag	Internal Std. Code
28MJ2	RDUC*7	CGW	04-feb-1992	76.0	UGL	UM18	DBHC	4,000	ЖD	R
28MJ2	RDUC*7	CGA	04-feb-1992	76.0	UGL	UN18	DBZFUR	1.700	ĹŤ	ĸ
28HW2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	DEP	2.000	ĹŤ	
28MW2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	DLDRN	4.700	ND	R
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	DMP	1.500	LT	
28MJ2 28MJ2	RDWC*7 RDWC*7	CCH	04-feb-1992 04-feb-1992	76.0 76.0	UGL	UN18	DNBP	3.700	LT	
28MWZ	RDWC*7	CCM	04-feb-1992	76.0	UGL	LM18 UH18	DNOP ENDRN	15.000 7.600	L† ND	Ř
28MWZ	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	ENDRNA	8.000	ND	Ř
28MV2	RDMC*7	CGM	04-feb-1992	76.0	UGL	UM18	ENDRNK	8,000	ND	Ř
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	ESF\$O4	9.200	ND	R
28M-2	RDWC*7	CGH	04-feb-1992	76.0	UGL	UH18	FANT	3.300	LT	
28MH2 28MH2	RDWC*7 RDWC*7	CCA	04-feb-1992 04-feb-1992	76.0 76.0	ugi. Ugl	UM18	FLRENE GCLDAN	3.700	LŢ	
28MW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18 UM18	HCBD	5.100 3.400	ND LT	R
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UNIS	HPCL	2.000	ND	R
28MWZ	RDWC*7	CGW	04-feb-1992	76.0	UGL	LM18	HPCLE	5.000	ND	Ř
28MV2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	I COPYR	8.600	LT -	
28MW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UH18	ISOPHR	4.800	LT	
28MJ2	RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0	UGL	UM18	LIM	4.000	MD	R
28MW2 28MW2	RDWC*7 RDWC*7	CGW	04-16b-1992	76.0 76.0	UGL	UM18 UM18	MEXCLR NAP	5.100 0.500	ΧĐ	· R
28MW2	RDUC*7	CGM	04-feb-1992	76.0	UGL	UM18	NB	0.500	LT LT	
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	NNDMEA	2.000	ND	R
28HW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	NNONPA	4,400	ĹT.	**
28Mw2	RDWC*7	¢GW	04-feb-1992	76.0	UGL	UH18	NHDPA	3.000	LT	
28MW2 28MW2	RDUC*7	CGW	04 - feb - 1992	76.0	UGL	UK18	PCB016	21,000	ND	R
28/4/2	RDWC*7 RDWC*7	CCM	04-feb-1992 04-feb-1992	76.0 76.0	ugl ugl	unis Unis	PC8221 PC8232	21,000	MD	R
28MV2	RDUC*7	CGW	04-feb-1992	76.0	UGL	UM18	PCB242	21,000 30,000	ND NC	R R
28MW2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UM18	PCB248	30,000	ND	Ř
28MJ2	RDWC*7	CCM	04-feb-1992	76.0	UGL	UN18	PC8254	36,000	MD	Ř
28MWZ	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	PCB260	36.000	KD	R
28MJ2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UH18	PCP	18.000	LT	
28MJ2 28MJ2	RDWC*7 RDWC*7	CCM	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UM18 UM18	PHANTR PHENOL	0.500 9.200	LŢ	
28HW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UM18	PPDDD	4.000	KD KD	R
28MV2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UH18	PPDDE	4.700	NEO	Ř
28MW2	RDWC*7	CGW	04-feb-1992	76.0	UGL	UN18	PPDDT	9.200	NO	R
28MW2	RDWC*7	CGH	04-feb-1992	76.0	UGL	UK18	PYR	2.800	LT	
28MJ2	RDUC*7	CCM	04-feb-1992	76.0	UGL	UM18	TXPHEN	36,000	MD	R
28MV2 28MV2	RDWC*7 RDWC*7	CGW	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UN 18 UN 32	UNK693 135TNB	5,000 0,449		S
28M/2	RDWC*7	CCM	04-feb-1992	76.0	UGL	UN32	13DNB	0.611	LT LT	
28MJ2	RDWC*7	CGM	04-feb-1992	76.0	UGL	UN32	246TNT	0.635	LT	
28MV2	RDWC*7	CCM	04-feb-1992	76.0	UGL	UW32	24DNT	0.064	LT	
28141/2	RDVC*7	CGW	04-feb-1992	76.0	UGL	UN32	26DNT	0.074	LŢ	
281412	RDWC*7	CGM	04-feb-1992	76.0	UGL	UN32	HHX	1.210	LT	
28MJ2 28MJ2	RDWC*7 RDWC*7	CCM	04 - feb - 1992	76.0 74.0	UGL	UN32	NS .	0.645	LT	
28M¥2	RDWC*7	CGM	04-feb-1992 04-feb-1992	76.0 76.0	UGL UGL	UM32 UM32	RDX Tetryl	1.170 2.490	LT LT	
28/1/2	RDWC*7	CGW	04-feb-1992	76.0		00	PH	8,130	-1	K
51MW1	RDWC*10	CGW	28-jan-1992	30.0	UGL	S801	HG	0.243	LT	
51MW1	RDMC*10	CGW	28-jan-1992	30.0	UGL	S 022	AS	2.540	LT	
51MV1	RDWC*10	CGM	28- jan-1992	30.0	UGL	\$\$10	AL	141.000	LT	
51MW1 51MW1	RDMC*18 RDMC*10	CCH	28- jan-1992 28- jan-1992	30.0 30.0	UGL	\$\$10	BA	9.720		
51MM1	RDWC*10	CCM	28- jan-1992	30.0	UGL UGL	\$\$10 \$\$10	BE CA	5.000 18800.000	LŤ	
51MJ1	RDWC*10	CGM	28- jan-1992	30.0	UGL	SS10	9	4.010	LŤ	
51MU1	RDWC*10	CGH	28- jan- 1992	30.0	UGL	SS10	ä	25,000	Ĺτ	
51MW1	RDWC*10	CGW	28-jan-1992	30.0	UGL	\$ \$10	CR	6.020	LT	
51HW1	RDUC*10	CGM	26- jan-1992	30.0	UGL	SS10	വ	8.090	ĻŢ	
51MW1 51MW4	RDWC*10	CCM	28- jan-1992	30.0 30.0	UGL,	\$\$10 \$\$10	FE	41,400		
51MW1 51MW1	RDWC*10 RDWC*10	CGW	28-jan-1992 28-jan-1992	30.0	UGL	SS10 SS10	K NG	2840.000 4840.000		
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	SS 10	MM	3.580		
51MW1	RDWC*10	CGM	28- Jan-1992	30.0	UGL	SS10	NA AK	1340,000		
51HW1	RDWC*10	CGW	28-jan-1992	30.0	UGL	SS10	NI	34.300	LŢ	
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	SS10	SB	38,000	LT	
51NW1	RDWC*10	CGW	28- jan-1992	30.0	UGL,	\$\$10	Υ	11.000	LT	
51MW1	RDWC*10	CCM	28- jan-1992	30.0	UGL	\$\$10 \$200	ZN	21,100	LT	
51MV1 51MV1	RDWC*10 RDWC*10	CGW	28- jan- 1992 28- jan- 1992	30.0 30.0	UGL UGL	SD09 SD20	TL PB	6.990 1.260	LT	
51MW1	RDWC*10	CCH	28- jan-1992	30.0	UGL	30Zu	TOC	4,550	LT	
-								.,		

Site 10	Field ID	<u> Medía</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Va(ue	<u>Flag</u>	Internal Std. Code
51MW1	RDUC*10	CGW	28- jan-1992	30.0	UGL	1 104 5 10	43/700	4 600		
SIMUI	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM18 UM18	124TC8 12DCLB	1.800 1.700	LT LT	
51MU1	RDWC*10	CGM	28- jan-1992	30.0	UGL	UM18	12DPH	2,000	ND	R
51MH1 51MH1	RDWC*10 RDWC*10	CCM	28-jan-1992 28-jan-1992	30.0 30.0	UGL	UN18 UN18	13DCLB 14DCLB	1.700 1.700	LT	
51MH1	RDWC*10	CCH	28- jan- 1992	30.0	UGL	UNIS	245TCP	5.200	LT LT	
51MJ1	RDWC*10	CGW	28- jan- 1992	30.0	UGL	UH18	246TCP	4.200	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28- jan- 1992 28- jan- 1992	30.0 30.0	UGL	UM18 UM18	24DCLP 24DNPN	2.900 5.800	LT LT	
51MW1	RDUC*10	CGW	28- jan-1992	30.0	UGL	UH18	24DNP	21.000	LT	
51MW1	RDWC*10	CGU	28- jan-1992	30.0	UGL	UH18	24DNT	4.500	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CGM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UM18 UM18	260NT 2CLP	0.790 0.990	LT LT	
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM18	2CNAP	0.500	ĹŤ	
51MW1 51MW1	RDMC*10	CGW	28- jan-1992	30.0	UGL	UN18	2MNAP	1.700	LT	
51MW1	RDWC*10 RDWC*10	CGW	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	umis Umis	2NP 2NANIL	3.900 4.300	LT LT	
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UH18	ZNP	3.700	LT	
51MU1 51MU1	RDWC*10	CGA	28- jan-1992 28- jan-1992	30.0 30.0	UGL	UM18	330CB0	12.000	LT	
51MW1	RDWC*10 RDWC*10	CGW	28- jan-1992	30.0	UGL UGL	UN18 UN18	3NANTL 46DH2C	4.900 17.000	LT LT	
51MW1	RDWC*10	CCW	28- jan-1992	30.0	UGL	UN18	4BRPPE	4.200	LT	
51MJ1 51MJ1	RDWC*10 RDWC*10	CGM	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UM18 UM18	4CANIL 4CL3C	7.300	LT	
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UN18	4CLPPE	4.000 5.100	LT LT	
31M21	RDWC*10	CCM	28- jan-1992	30.0	UGL	UN18	4949	0.520	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CGW	28- jan-1992 28- jan-1992	30.0 30.0	UGL	UH18 UH18	4NANIL 4NP	5.200	LŢ	
51MU1	RDMC*10	CGW	28- jan-1992	30.0	UGL	UM18	ABHC	12.000 4.000	ND LT	R
51641	RDWC=10	CGM	28- jan-1992	30.0	UGL	UN18	ACLDAN	5.100	ND	R
51MW1 51MW1	RDWC*10 RDWC*10	CGM	28-jan-1992 28-jan-1992	30.0 30.0	UGL	UH18 UH18	AENSLF ALDRN	9.200 4.700	ND ND	R R
51MH1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM18	ANAPNE	1.700	LT	
STMU1	RDWC*10	CGW	28- jan-1992	30.0	UGL	LH18	ANAPYL	0.500	ŁΤ	
51MH 51MH	RDWC*10 RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UM18 UM18	ANTRC B2CEXM	0.500 1.500	LT LT	
51MW1	RDWC*10	CGW	28-jan-1992	30.0	UGL	UM18	BZCIPÉ	5.300	LT	
51MV1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UN18	B2CLEE	1.900	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UM18 UM18	B2EHP BAANTR	4.800 1.600	LT LT	
51MU1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM18	BAPYR	4.700	ĻŤ	
51MW1 51MW1	RDWC*10 RDWC*10	CCH	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UM18 UM18	BBFANT	5.400	LT	
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM18	8BHC BRZP	4.000 3.400	ND LT	R
51MV1	RDWC*10	CGM	28- jan-1992	30.0	UGL	UH18	BENSLF	9.200	KD	R
51MJ1 51MJ1	RDWC*10 RDWC*10	CGM	28- jan-1992 28- jan-1992	30.0 30.0	UGL	UM18 UM18	BENZID BENZOA	10.000 13.000	ND	R
51MUT	RDWC*10	CGH	28-jan-1992	30.0	UGL,	UN18	BGHIPY	6.100	LT LT	
51 MU1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UN18	BKFANT	0.870	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CGM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UM18 UM18	BZALÇ CHRY	0.720 2.400	LT LT	
51MW1	RDWC*10	CCM	28- jan-1992	30.0	UGL	UH18	CL6BZ	1.600	LT	
51MV1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UN18	CL6CP	8.600	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28-jan-1992 28-jan-1992	30.0 30.0	UGL	UM18 UN18	CL6ET DBAHA	1.500 6.500	LT LT	
51MW1	RDWC*10	CGW	28-jan-1992	30.0	UGL	UH18	DBKC	4.000	ND	R
51MW1 51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UH18	DBZFUR	1.700	LŤ	
51MW1	RDWC*10 RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL	UM18 UM18	DEP Dldrn	2.000 4.700	LT ND	R
51MW1	RDWC*10	CGH	28-jan-1992	30.0	UGL,	UH18	DMP	1.500	LT	•
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28- jan- 1992 28- jan- 1992	30.0 30.0	UGL	UN18	DNBP	3.700	LT	
51HW1	RDMC*10	CGW	28- jan-1992	30.0	UGL	UM18 UM18	DNOP ENDRN	15.000 7.600	LT NED	R
51MV1	RDWC*10	CCM	28- jan-1992	30.0	UGL	UM18	ENDRNA	8.000	KD	R
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UM18 UM18	ENDRNK ESFSO4	8.000 9.200	ND	R
51MW1	ROWC*10	CCM	28-jan-1992	30.0	UGL	UM18	FANT	3.300	ND LT	R
51MV1	RDMC*10	CGM	28-jan-1992	30.0	UGL	UM18	FLRENE	3,700	LT	
51MU1 51MU1	RDWC*10 RDWC*10	CCM	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UN18 UN18	GCLDAN HCBD	5.100 3.400	ND.	R
51MW1	RDUC*10	CGW	28-jan-1992	30.0	UGL	UN15	HPCL	2.000	LT ND	R
51MW1	ROWC*10	CGM	28-jan-1992	30.0	UGL	UN18	HPCLE	5.000	ND	Ř
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UN18	ICDPYR	8.600	LT	
2 IS# (WORK- IO	COM	FO- 1911 1772	JU. U	cot.	UN18	ISOPHR	4.800	LŤ	

<u> Site ID</u>	Field 1D	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
51MW1	RDUC*10	CGM	28- jan-1992	30.0	UGL	UM18	LIM	4,000	ND	R
51MU1	RDUC*10	CGW	28- jan- 1992	30.0	UGL	UM18	MEXCLR	5. 100	ЖD	Ř
51MU1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UN18	NAP	0.500	LT	••
51MW1	RDUC*10	CCM	28- jan-1992	30.0	UGL	UH18	NB	0.500	LT	_
51MW1 51MW1	RDUC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL	UN18 UN18	NNDMEA NNDNPA	2.000 4.400	ND Lt	R
51MW1	RDWC*10	CEM	28- jan-1992	30.0	UGL	UM18	NNDPA	3.000	LT	
51MW1	RDMC*10	CGM	28- jan-1992	30.0	UGL	UM18	PCB016	21.000	ND	R
51MW1 51MW1	RDWC*10 RDWC*10	CGM	28-jan-1992 28-jan-1992	30.0 30.0	ugl	UM18	PCB221	21.000	ND	R
51MW1	RDWC*10	CCA	28- jan-1992	30.0	UGL	UM18 UM18	PCB232 PCB242	21.000 30.000	ND ND	R R
51MW1	RDWC*10	CGM	28- jan- 1992	30.0	UGL	UN18	PC8248	30.000	ND	Ř
51MV1	RDMC*10	CGM	28- jan-1992	30.0	UGL	UM18	PCB2S4	36.000	ND	R
51MW1 51MW1	RDUC*10 RDUC*10	CGM	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UM18 UM18	PCB260 PCP	36,000 18,000	ND	R
51MU1	RDWC*10	CCH	28- jan-1992	30.0	UGL	UN18	PHANTR	0.500	LT LT	
51MW1	RDMC*10	CG₩	28- jan-1992	30.0	UGL	LM18	PHENOL	9.200	ĹΤ	
51MH1	RDUC*10	CGL	28- jan-1992	30.0	UGL	UH18	PPODD	4.000	ND -	R
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UN18 UN18	PPDDE PPDDT	4,700 9,200	ND ND	R R
51MW1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM18	PYR	2.800	LT	
51MW1	RDWC*10	CCM	28- jan-1992	30.0	UGL	UM18	TXPHEN	36,000	ND	R
51MH1	RDWC*10	CCH	28- jan- 1992	30.0	UGL	UN18	UNX556	7.000		\$
51MW1 51MW1	RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL	UM18 UM18	UNK584 UNK643	10,000 5,000		S S
- 51MW1	RDWC*10	CCM	28-jan-1992	30.0	UGL	UM18	UNK693	4.000		Š
51MW1	RDMC*10	CGW	28- jan-1992	30.0	UGL	UH20	111TCE	0.500	LT	_
51MU1	RDUC*10	CCM	28- jan-1992	30.0	UGL	UNZO	112TCE	1.200	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CGM	28-jan-1992 28-jan-1992	30.D 30.0	ugl ugl	UM20 UM20	11DCE 11DCLE	0.500 0.680	LT LT	
51MW1	RDMC*10	ÇGW	28- jan-1992	30.0	UGL	UH20	12DCE	0.500	LT	
51MW1	RDUC*10	CGM	28- jan-1992	30.0	UGL	UN20	12DCLE	0.500	LT	
51MW1	RDUC*10	CCH	28-jan-1992	30.0	UGL	UH20	120CLP	0.500	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CGM	28-jan-1992 28-jan-1992	30.0 30.0	ugl	UM20 UM20	2CLEVE ACET	0.710 13.000	LT LT	
51MW1	RDWC*10	CGM	28- jan-1992	30.0	UCL	UN20	ACROLN	100,000	ND	R
51NV1	RDWC*10	CCA	28-jan-1992	30.0	UGL	UMZO	ACRYLO	100,000	MD	R
51HW1 51HW1	RDWC*10 RDWC*10	CGA	28-jan-1992 28-jan-1992	30.0 30.0	UGL	UM20 UM20	BRDCLM C13DCP	0,590 0,580	LT	
51MW1	RDMC*10	CGW	28- jan-1992	30.0	UGL	UM20	C2AVE	8.300	LT LT	
51MU1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UM20	C2H3CL	2.600	L7	
51MV3	RDWC*10	CCH	28-jan-1992	30.0	UGL	UH20	C2H5CL	1.900	LT	
51MW1 51MW1	RDUC*10	CGM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UN20 UN20	CCL3F	0.500 1.400	LT LT	
51MW1	RDUC*10	CGW	28- jan-1992	30.0	UGL	UH20	CCL4	0.580	ĹŤ	
51MW1	RDWC*10	CGM	28- jan-1992	30.0		UN20	CH2CL2	2.300	LT	
51 MV1	RDWC*10	CCF	28- jan-1992	30.0	UGL	UM20	CH3BR	5.800	LŢ	
51MH1 51MH1	ROWC*10 RDWC*10	CGM	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UM20 UM20	CH3CL CH8R3	3.200 2.600	LT LT	
51MJ1	RDWC*10	CGW	28- jan-1992	30.0	UGL	UH20	CHCL3	0.500	LT	
51M/1	RDWC*10	CGW	28- jan-1992	30.0	UGL	M50	CL2BZ	10.000	ND	R
51MV1	RDWC*10	CCA	28- jan-1992	30.0	UGL	UN20	CLC6H5	0.500	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CCA	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UM20 UM20	CSZ DBRCLM	0.500 0.670	LT LT	
51MW1	RDWC*10	CGW	28-jan-1992	30.0	UGL	UH20	ETC6H5	0.500	ĹŤ	
51MW1	RDUC*10	CCM	28- jan-1992	30.0	UGL	UM20	MEC6H5	0.500	LT	
51MV1	RDUC*10	CCM	28-jan-1992 28-jan-1992	30.0 30.0	UGL	UM20	MEK	6.400	LT	
51MU1 51MU1	RDWC*10 RDWC*10	CGM	28- jan-1992	30.0	UGL	UM20 UM20	MIBK	3,000 3,600	LŢ LŢ	
51MH1	RDWC*10	CEW	28- jan-1992	30.0	UGL	UN20	STYR	0.500	ĹΤ	
51MJ1	RDWC*10	CGW	28- jan-1992	30.0	UGL.	UH20	T130CP	0.700	LT	
51MV1 51MV1	ROWC*10	CGH	28- jan- 1992	30.0	UGL	UN20	TCLEA	0.510	LŢ	
51MV1 51MV1	RDMC*10 RDMC*10	CCM	28-jan-1992 25-jan-1992	30.0 30.0	UGL UGL	UM20 UM20	TCLEE TRCLE	1.600 0.500	LT LT	
51MU1	RDWC*10	CGM	28- jan-1992	30.0	UGL	UM20	XYLEN	0.840	LŢ	
51MV1	ROUC*10	CGM	28- jan-1992	30.0	UGL	\$023	AG	0.250	LT	
51MW1 51MW1	RDUC*10	CGA	28- jan-1992	30.0 30.0	UGL UGL	SD21	\$E	3.020	LT	
51MV1 51MV1	RDWC*10 RDWC*10	CCM	28-jan-1992 28-jan-1992	30.0	UGL	00 00	TOX PH	158,000 8,630		
51MU1	RDWC*10	CCM	28- jan-1992	30.0	UGL	UN32	135TNB	0.449	LT	
51MW1	RDWC*10	CGW	28- jan- 1992	30.0	UGL	UW32	13DNB	0.611	LT	
51MW1 51MW1	RDWC*10	CCM	28-jan-1992 28-jan-1992	30.0 30.0	UGL UGL	UN32 UN32	246TNT 24DNT	0.635 0.064	LT	
S1MW1	RDWC*10	CCH	28-jan-1992	30.0	UGL	UM32	260NT	0.074	LT LT	
-					. –	_				

Site ID	<u>Field_ID</u>	<u> Media</u>	Date	<u>Deoth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
51MW1	ROWC*10	CGM	28- jan-1992	30.0	UGL	U L 32	HMX	1.210	LT	
51NW1	RDMC*10	CCM	28- jan- 1992	30.0	UGL	UM32	M8	0.645	LT	
51MW1 51MW1	RDWC*10 RDWC*10	CCM	28- jan-1992 28- jan-1992	30.0 30.0	UGL UGL	UM32 UM32	RDX TETRYL	1.170 2.490	LT LT	
51MW2	RDWC*11	CGW	23- Jan-1992	48.0	UGL	SD 23	AG	0.250	LT	
51MW2	RDWC*11	CGW	23-jan-1992	48.0	UGL	SBO1	HG	0.243	LT	
51MW2	RDWC*11 RDWC*11	CGM	23- jan-1992 23- jan-1992	48.0 48.0	LIGL	SD21	SE	3.020	LT	
51MW2 51MW2	RDWC*11	CCFI	23- jan-1992	48.0	UGL	\$009 \$020	TL PB	6.990 1.520	LŤ	
STMW2	RDWC*11	CGW	23- jan-1992	48.0	UGL	SD22	A\$	2.540	LT	
51MV2	ROWC=11	CCM	23- jan- 1992	48.0	UGL	UM20	1117CE	0.500	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CCM	23- jan-1992 23- jan-1992	48.0 48.0	UGL	UM20 UM20	112TCE 11DCE	1.200 0.500	LT LT	
51MN2	RDWC*11	CGM	23 - Jan - 1992	48.0	UGL	UM20	11DCLE	0.680	ίť	
51MV2	RDUC*11	CGM	23- jan-1992	48.0	UGL	UH20	12DCE	0.500	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CEM	23- jan-1992 23- jan-1992	48.0 48.0	UGL, UGL	UM20 UM20	120CLE 120CLP	0.500 0.500	LT LT	
51MJ2	RDWC*11	CCH	23-jan-1992	48.0	UGL.	UN20	2CLEVE	0.710	LT	
51HW2	RDWC*11	CGM	23- jan-1992	48.0	UGL	UH20	ACET	13.000	LT	
51MW2 51MW2	RDWC*11 RDWC*11	Cen Cen	23- jan-1992 23- jan-1992	48.0 48.0	UGL UGL	UH20	ACROLN ACRYLO	100.000	MO	R
51MW2	RDWC*11	CEM	23-jan-1992	48.0	UGL	UM20 UM20	BRDCLM	100 <u>-000</u> 0 -590	ND LT	R
51MW2	RDWC*11	CGW	23- jan-1992	48.0	UGL	UM20	C130CP	0.580	LT	
51MW2	RDWC*11	CGM	23- jan-1992	48.0	UGL	UH20	C2AVE	8.300	LŢ	
51MW2 51MW2	RDWC*11 RDWC*11	CGM	23- jan-1992 23- jan-1992	48.0 48.0	UGL	UM20	C2H3CL C2H5CL	2.600 1.900	LT	
51MWZ	RDUC*11	CER	23- jan-1992	48.0	UGL	UM20 UM20	CóHó	0.500	LT LT	
51MW2	RDWC*11	CCM	23- jan-1992	48.0	UGL	UH20	CCL3F	2.510		
51MW2	RDWC*11	CEM	23- jan-1992	48.0	UGL	UN20	CCL4	0.580	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CCW	23- jan-1992 23- jan-1992	48.0 48.0	UGL UGL	UM20 UM20	CH2CL2 CH3BR	2.300 5.800	LT	
51MW2	RDUC*11	CEM	23- jan-1992	48.0	UGL	UM20	CH3CL	3.200	LT LT	
51MW2	RDWC+11	CGW	23- jan-1992	48.0	UGL	UH20	CHBR3	2.600	LT	
S1MJ2	RDWC*11	CGW	23- jan- 1992	48.0	UGL	UH20	CHCL3	0.500	LT	_
51MW2 51MW2	RDWC*11 RDWC*11	CGW	23- jan- 1992 23- jan- 1992	48.0 48.0	UGL	UM20 UM20	CL2BZ CLC6H5	10.000 0.500	MD LT	R
51M/2	RDWC*11	CGW	23- jan-1992	48.0	UGL	UM20	CS2	0.500	LT	
51MJ2	RDWC*11	CGM	23- jan- 1992	48.0	UGL	UH20	DBRCLM	0.670	ĻT	
51MWZ 51MWZ	RDWC*11 RDWC*11	CEM	23- jan-1992	48.0 48.0	UGL	UK20	ETC6H5	0.500	LT	
51MW2	RDWC=11	CGM	23- jan-1992 23- jan-1992	48.0	UGL	UH20 UH20	MEC6H5 MEK	0.500 6.400	LT LT	
51MWZ	RDWC*11	CCM	23- jan-1992	48.0	UGL	UM20	MIBK	3.000	LT	
51NV2	ROWC*11	CGW	23- jan-1992	48.0	UGL	UM20	MNBK	3.600	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CGM	23- jan-1992 23- jan-1992	48.0 48.0	UGL	UM20 UM20	STYR T13DCP	0.500 0.700	LT LT	
51MW2	RDWC*11	CEM	23- jan-1992	48.0	UGL	UM20	TCLEA	0.510	LŤ	
51MWZ	RDWC*11	CGW	23- jan-1992	48.0	UGL	UM20	TCLEE	1.600	LT	
51MJZ	RDWC*11	CGM	23 - jan - 1992	48.0	UGL	UH20	TRCLE	0.500	LŤ	
51MJ2 51MJ2	RDWC*11 RDWC*11	CGM	23 - jan - 1992 23 - jan - 1992	48.0 48.0	UGL	UM20 \$\$10	XYLEN AL	0.840 141.000	LT LT	
51MJ2	RDWC*11	CGW	23- jan- 1992	48.0	UGL	SS10	BA	11.500	•	
51MW2	RDWC+11	CGU	23- jan- 1992	48.0	UGL	\$\$10	BE	5.000	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CCM	23 - jan - 1992 23 - jan - 1992	48.0 48.0	ugl ugl	\$\$10 \$\$10	CA CD	36400.000 4.010	LT	
51MU2	RDWC*11	CGW	23- jan-1992	48.0	UGL	\$\$10	æ	25.000	LT	
51MV2	RDWC*11	CGW	23- jan- 1992	48.0	UGL	SS10	CR	6.020	ĻŦ	
51MW2	RDWC*11	CGW	23- jan-1992	48.0	UGL,	\$\$10	ai	8.090	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CCM	23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	\$\$10 \$\$10	FÉ K	38.800 1290.000	LT	
51MV2	RDWC*11	CGW	23- jan-1992	48.0	UGL	\$\$10	MG	10500.000		
51MV2	RDWC*11	CGM	23-jan-1992	48.0	UGL	\$\$10	MN	2.750	ĻT	
51MW2 51MW2	RDWC*11 RDWC*11	CCM	23- jan-1992 23- jan-1992	48.0 48.0	UGL	\$\$10 \$\$10	NA HT	1560.000		
51MV2	RDWC*11	CCM	23- jan-1992	48.0	UGL	SS10 SS10	NI SB	34.300 38.000	LT LT	
51MW2	RDWC+11	CCH	23-jan-1992	48.0	UGL	SS10	v	11.000	LT	
51MU2	RDUC*11	CCLI	23-jan-1992	48.0	UGL	\$\$10	ZN	21.100	LT	
51MW2 51MW2	RDWC*11 RDWC*11	COM	23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	UM18	124TCB 120CL8	1.800 1.700	LŤ	
51MW2	RDWC*11	CCA	23-jan-1992	48.0	UGL	UM18 UM18	120CL# 120PH	2,000	LT MD	R
51MW2	RDWC*11	CGW	23-jan-1992	48.0	UGL	UH18	130CLB	1.700	ĹŤ	
51MV2	RDWC*11	CGW	23- jan- 1992	48.0	UGL	UN18	14DCL8	1.700	LT	
51MW2 51MW2	RDWC*11 RDWC*11	CCM	23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	UM18	245TCP 246TCP	5.200	LT	
51MW2	RDWC*11	CCA	23-jan-1992	48.0	UGL	um18 um18	240CLP	4.200 2.900	LT LT	
				7317	-44	J110	2 TO BEE	2.700		

Site ID	Field ID Med	dia i	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
51MHZ	RDWC*11 CC	gw i	23- jan-1992	48.0	UGL	UN18	240MPN	5.800	LT	
51MW2	RDWC*11 CO		23 - jan - 1992	48.0	UGL	UM18	24DNP	21.000	LT	
51NW2 51NW2	RDUC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	UN18	24DNT	4.500	LT	
51MW2	RDWC*11 C		23-jan-1992	48.0	UGL	UM18 UM18	26DNT 2CLP	0.790 0.990	LT LT	
51MW2		GW	23- jan-1992	48.0	UGL	UH18	2CNAP	0.500	ĹŤ	
51MW2			23- jan-1992	48.0	UGL	UH18	ZMNAP	1.700	LŢ	
51MW2 51MW2	RDWC*11 CC		23- jan-1992 23- jan-1992	48.0 48.0	UGL	UN18 UN18	2MP 2MANIL	3.900 4.300	LT LT	
51M/2	RDWC*11 CO	GW	23-jan-1992	48.0	UGL	UH18	2NP	3.700	Lī	
51MW2	RDUC*11 CO		23 - jan - 1992	48.0	UGL	UH18	330C80	12.000	LT	
51MW2 51MW2	RDWC*11 CC		23- jan-1992 23- jan-1992	48.0 48.0	UGL	UM18 UM18	3NANIL 46DN2C	4-900 17-000	LT LT	
51MW2			23- jan- 1992	48.0	UGL	UN18	4BRPPE	4.200	LT	
51MV2	RDWC+11 CC		23 - Jan - 1992	48.0	UGL	UNTS	4CANIL	7.300	LT	
51MW2 51MW2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	UGL	UM18 UM18	4CLPPE	4.000 5.100	LT	
51MW2	RDWC*11 CC		23- jan- 1992	48.0	UGL	UM18	4MP	0.520	LT LT	
51MJ2	RDWC*11 CO	GM :	23-jan-1992	48.0	UGL	UN18	4NANIL	5.200	LT	
51MW2	RDUC*11 CO		23- jan-1992	48.0	UGL	UN18	4NP	12.000	LT	_
51MW2 51MW2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	UGL	UM18 UM18	ABHC ACLDAN	4.000 5.100	ND ND	R R
51MW2	RDWC*11 CO		23- jan-1992	48.0	UGL	UM18	AENSLF	9-200	ND	R
51MW2	RDWC*11 CO		23- jan-1992	48.0	UGL	UM18	ALDRM	4-700	ND	Ř
_ 51MV2	ROWC*11 CC		23-jan-1992 23-jan-1992	48.0	UGL	UN18	ANAPNE	1.700	LT	
51MW2 51MW2	RDMC*11 CC		23-jan-1992	48.0 48.0	NGF	UN18 UN18	ANAPYL ANTRO	0.500 0.500	LT LT	
51MW2	RDWC*11 CC		23 - jan - 1992	48.0	UGL	UN18	B2CEXM	1.500	ĹŤ	
51MW2	RDWC+11 CC		23- jan-1992	48.0	UGL	UH18	82CIPE	5.300	LT	
51MW2 51MW2			23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	UM18	BZCLEE BZEHP	1.900	LŢ	
51MW2	RDWC*11 CC		23-jan-1992	48.0	UGL	UM18 UM18	BAANTR	4-800 1.600	LT LT	
51MW2	RDWC*11 CO		23- jan-1992	48.0	UGL	UH18	BAPYR	4-700	LT	
51MV2			23 - jan - 1992	48.0	UGL	UN18	BBFANT	5.400	LT	_
51MW2 51MW2	RDWC*11 CC		23 - jan - 1992 23 - jan - 1992	48.0 48.0	UGL	UM18 UM18	BBHC 8BZP	4.000 3.400	ND LT	R
51MJ2	ROUC*11 CO		23- jan-1992	48.0	UGL	UM18	BENSLF	9.200	ND	R
51MJ2	ROUC*11 CO	GW	23-jan-1992	48.0	UGL	UM18	BENZIO	10.000	ND	R
51MW2 51MW2	RDUC*11 C		23 - jan - 1992 23 - jan - 1992	48.0	UGL	UM18	BENZQA	13.000	LŤ	
51MW2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	UM18 UM18	BGHIPY SKFANT	6.100 0.870	LT LT	
51HU2	RDWC*11 CO		23- jan-1992	48.0	UGL	UM18	BZALC	0.720	LŦ	
51MW2	RDWC*11 CC		23- jan- 1992	48.0	UGL	UN18	CHRY	2.400	LT	
51MW2 51MW2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	ugl	UM18 UM18	CL6BZ CL6CP	1.600 8.600	LT LT	
51MU2	RDWC*11 CO		23-jan-1992	48.0	UGL	UM18	CLOET	1.500	LŤ	
51MW2	RDWC*11 CC	SW 3	23- jan- 1992	48.0	UGL	UN18	AHABC	6.500	LT	
51MW2			23- jan-1992	48.0	UGL	UN18	DBHC	4-000	ND	R
51MV2 51MV2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	UM18 UM18	DBZFUR DEP	1.700 2.000	LT LT	
51MU2			23- jan-1992	48.0	UGL	UM18	DLDRN	4.700	ND	R
51MW2			23- Jan-1992	48.0	UGL	UN18	DHP	1.500	LT	
51MW2 51MW2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	LM18	DNBP DNOP	3.700	LT	
51MW2			23-jan-1992	48.0	UGL	um18 um18	ENDRN	15.000 7.600	LT ND	R
51M/2			23- jan-1992	48.0	VGL	UN18	ENDRNA	8.000	ND	Ř
51MN2			23- jan-1992	48.0	UGL	UM18	ENDRNK	8.000	ND	R
51MW2 51MW2			23- jan-1992 23- jan-1992	48.0 48.0	UGL	UN18 UN18	ESFSO4 FANT	9.200 3.300	ND LT	R
51MW2			23- jan-1992	48.8	UGL	UH18	FLRENE	3.700	LT	
51MUZ		CM .	23- jan-1992	48.0	UGL	UN18	GCLDAN	5.100	ND	R
51MW2			23 - jan - 1992	48.0	UGL	UN18	HC80	3.400	LT	_
51MW2 51MW2			23- jan-1992 23- jan-1992	48.0 48.0	ner ner	UN18 UN18	HPCL HPCLE	2.000 5.000	KD KD	R R
51MW2			23- jan-1992	48.0	UGL	UM18	I COPYR	8.600	LT	*
51MW2	RDUC*11 CO	GW :	23-jan-1992	48.0	UGL	UM18	ISOPHR	4-800	LT	
51MW2 51MW2		_	23- jan-1992 23- jan-1992	48.0 48.0	UGL	UN18 UN18	FIN	4.000	MD	R
51MV2			23 - jan - 1992 23 - jan - 1992	48.0 48.0	UGL	UN18	MEXCLR NAP	5.100 0.500	ND LT	R
51MW2		GW :	23- jan-1992	48.0	UGL	UN18	NB	0.500	ĻŤ	
51MW2			23 - jan - 1992	48.0	UGL	UN15	NNOMEA	2.000	ND	R
51M/2	RDWC*11 CC		23-jan-1992 23-jan-1992	48.0	UGL	UM18	NNDNPA	4.400	LT	
51MV2 51MV2			23- jan-1992 23- jan-1992	48.0 48.0	ngr ngr	UM18 UM18	NNDPA PCB016	3.000 21.000	LT ND	R
2 11.10E			— J=: 177E	₩,0				E11000	74	Α

Site ID	<u>Field ID</u>	<u>Hedia</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
51MW2	RDWC*11	CGM	23- jan-1992	48.0	UGL	UH18	PCB221	21.000	ND	R
51MW2	RDWC*11	COM	23- jan-1992	48.0	UGL	UN18	PCB232	21,000	ND	Ř
51MW2	RDMC*11	CGM	23 - jan - 1992	48.0	UGL	UN18	PCB242	30,000	ND	R
51MU2	RDWC*11	CGW	23-jan-1992	48.0	UGL	UM18	PC8248	30.000	ND	R
51MU2 51MU2	RDMC*11 RDMC*11	CCM	23-jan-1992 23-jan-1992	48.0 48.0	UGL	UM18 UM18	PC8254 PC8260	36.000	MO	R
51MW2	RDUC*11	COM	23-jan-1992	48.0	UGL	UM18	PCP	36,000 18,000	LT	R
51MW2	ROUC*11	CGW	23- jan-1992	48.0	UGL	UN18	PHANTR	0.506	LT	
51MU2	RDWC*11	CGM	23- jan-1992	48.0	UGL	UN18	PHENOL	9.200	LŤ	
51MW2	RDWC*11	CGW	23-jan-1992	48.0	UGL	UN18	PPDDD	4.000	ND	R
51MW2	RDWC*11	CGW	23- jan-1992	48.0	UGL	UM18	PPODE	4.700	ND	R
51MW2	RDWC*11	CGW	23- jan-1992	48.0	UGL	UN18	PPODT	9.200	ND	R
51MW2 51MW2	RDWC*11 RDWC*11	CCM	23-jan-1992 23-jan-1992	48.0 48.0	UGL	UM18	PYR TXPHEN	2.800	LT	
51MW2	RDUC*11	CCA	23-jan-1992	48.0	UGL UGL	UM18 UM32	135TNB	36.000 0.449	MD LT	R
51MU2	RDWC*11	CGW	23-jan-1992	48.0	UGL	UW32	130NB	0.611	ĹŤ	
51MW2	RDWC*11	CGM	23-jan-1992	48.0	UGL	UW32	246THT	0.635	LŤ	
51MW2	RDUC*11	CGM	23-jan-1992	48.0	UGL	UW32	24DNT	0.064	LT -	
51MV2	RDUC*11	CGM	23- jan-1992	48.0	UGL	UN32	260NT	0_126		
51MJ2	RDWC*11	CGW	23- Jan- 1992	48.0	UCL	UM32	HMX	1.210	LT	
51MJ2 51MJ2	RDWC*11 RDWC*11	CGM	23-jan-1992 23-jan-1992	48.0 48.0	UGL UGL	U¥32 U¥32	NB RDX	0.645	LT	•
51MW2	ROWC*11	CGH	23- jan-1992	48.0	UGL	UW32	TETRYL	1.170 2.490	LT LT	
51MW2	RDUC*89	CGW	28- jan-1992	48.0	UGL	00	TOC	3.830	٠.	
51MM2	RDWC*89	CGM	28- jan-1992	48.0	UGL	00	TOX	174,000		
51MW2	RDWC*89	CGW	28 - jan - 1992	48.0		00	PH	8.810		
8B	RDWC*47	CGW	25-feb-1992	25.0	UGL	UM20	111TCE	0.500	LT	
88 88	RDWC*47 RDWC*47	CGM	25-feb-1992 25-feb-1992	25.0	UGL	UM20	112TCE	1.200	LT	
88	ROWC*47	CCM	25-feb-1992	25.0 25.0	UGL UGL	UM20 UM20	11DCE 11DCLE	0.500 0.480	LT LT	
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UH20	120CE	0.500	LT	
88	RDWC*47	CGM	25-feb-1992	25.0	UGL	UH20	120CLE	0.500	ĻŤ	
88	RDWC*47	CCA	25 - feb - 1992	25.0	UGL	UN20	120CLP	0.500	LT	
88	RDWC*47	CGM	25 - feb - 1992	25.0	UGL	UN20	ZCLEVE	0.710	ĻŢ	
88 88	RDUC*47	CGW	25-feb-1992	25.0	UGL.	UH20	ACET	13.000	LT	_
82 82	RDUC*47 ROUC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	ugl ugl	UH20 UH20	ACROLN ACRYLO	100.000	ND ND	R
88	ROWC*47	CGW	25-feb-1992	25.0	UGL	UH20	BRDCLM	0.590	LT	R
88	RDWC+47	CGW	25-feb-1992	25.0	UGL	UN20	C13DCP	0.580	ĹŤ	
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UN20	C2AVE	8.300	LT	
88	RDWC*47	CCM	25-feb-1992	25.0	UGL	UM20	CZH3CL	2.600	ĻŦ	
88	RDWC*47	CGM	25-feb-1992	25.0	UGL	UM20	CZH5CL	1.900	LT	
88 8B	RDWC*47	CGW	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UM20 UM20	CGH6 CCL3F	0.500 1.400	LT LT	
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UN20	CCL4	0.580	LT	
88	RDMC*47	CGM	25-feb-1992	25.0	UGL	UN20	CH2CL2	2,300	ĹŤ	
8B	RDWC*47	CGM	25-feb-1992	25.0	UGL	UM20	CH3BR	5.800	LT	
88	RDUC*47	CCM	25-feb-1992	25.0	UCL	UH20	CH3CL	6.830		
88	RDWC*47	CGW	25- feb- 1992	25.0	UGL	UH20	CHBR3	2.600	LT	
88 88	RDUC*47	CGM	25-feb-1992 25-feb-1992	25.0	UGL,	UH20	CHCL3	0.500	LT	_
88	RDWC*47	CEM	25-feb-1992	25.0 25.0	UGL	UM20 UM20	CLC6H5	10.000 0.500	ND LT	R
88 .	RDUC*47	CGW	25-feb-1992	25.0	UGL	UM20	CS2	4.760	61	
8B	RDWC*47	CGM	25-feb-1992	25.0	UGL	UM20	DBRCLM	0.670	LT	
88	RDWC+47	CGM	25-feb-1992	25.0	UGL	UH20	ETC6H5	0.500	LT	
88 ***	RDWC*47	CGW	25-feb-1992	25.0	UGL	UH25	NEC6HS	0.500	LT	
88	ROUC*47	CGW	25-feb-1992	25.0	UGL	UM20	HEK	6.400	LŤ	
88 88	RDWC*47	CGW	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UNZO	MIBK	3.000	LT	
88	RDUC*47	CGW	25-feb-1992	25.0	UGL	UM20 UM20	MNBK STYR	3.600 0.500	LT LT	
88	RDUC*47	CCM	25-feb-1992	25.0	UGL	UM20	T13DCP	0.700	LT	
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UN20	TCLEA	0.510	LT	
8 B	RDWC*47	COM	25-feb-1992	25.0	UGL	UM20	TCLEE	1.600	LT	
8B	RDWC*47	CGW	25-feb-1992	25.0	UGL	UH20	TRCLE	0.500	LT	
88 90	RDUC*47	CGW	25-feb-1992	25.0	UGL,	UH20	UNK03Z	5.000	. –	S
88 88	RDWC*47	CGM	25-feb-1992 25-feb-1992	25.0	UGL	UN20	XYLEN	0.840	ĻT	
88 88	RDWC*47	CUM	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	00 00	TOX TOC	102.000 6570.000		
88	RDWC*47	CCA	25-feb-1992	25.0	- JL	00	PH	7.670		L
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UM18	124TC8	1.800	ĻŢ	•
88	RDWC*47	CGM	25-feb-1992	25.0	UGL	UN18	120CL8	1.700	Ľ1	
88	RDWC*47	CCM	25-feb-1992	25.0	UGL	UN18	120PH	2.000	ND	R
88	RDWC*47	CGM	25-feb-1992	25.0	UGL	UN18	130CLB	1.700	LT	
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UN18	14DCLB	1.700	LT	

Site_ID	Field ID	Media	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry	Value	Flag	Internal Std. Code
										31315005
88 88	RDWC*47	CGF	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	245TCP 246TCP	5-200 4-200	LT LT	
88	RDWC*47	CCM	25-feb-1992	25.0	UGL	UN18	24DCLP	2.900	LT	
88	RDMC*47	CGM	25-feb-1992	25.0	UGL	UM18	24DHPN	5.800	LT	
88 88	RDWC*47	COM	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UN18 UN18	240NP 240NT	21.000 4.500	LT LT	
88	RDWC*47	CEM	25-feb-1992	25.0	UGL	UM18	26DNT	0.790	LT	
8B	RDUC*47	CGM	25- feb- 1992	25.0	UGL	LM18	2CLP	0.990	LT	
88 88	RDWC*47	CGW	25-feb-1992 25-feb-1992	25.0 25.0	ugl ugl	UN18 UN18	ZCNAP ZMNAP	0.500 1.700	lt Lt	
88	RDUC*47	CGH	25-feb-1992	25.0	UGL	UH18	2149	3.900	ĻŤ	
\$B	RDUC*47	CGM	25-feb-1992	25.0	UGL	UM18	2NANIL	4-300	LŦ	
88 88	RDMC*47 RDMC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	2NP 33DCBD	3.700 12.000	LT LT	
88	RDUC*47	CGM	25-feb-1992	25.0	UGL	UM18	SHANIL	4.900	LŤ	
8B	RDWC*47	CCM	25-feb-1992	25.0	UGL	UM18	460N2C	17.000	ĻŢ	
88 88	RDWC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UN18 UN18	48RPPE 4CANIL	4.200 7.300	LT LT	-
88	RDUC*47	CGM	25-feb-1992	25.0	UGL	UN18	4CL3C	4.000	LT	
88	RDUC*47	CCM	25-feb-1992	25.0	UGL	UM18	4CLPPE	5.100	LT	
88 88	RDUC*47	COM	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UN18 UN18	4HP 4HANIL	0.520 5.200	LT LT	
8B	RDUC*47	COH	25-feb-1992	25.0	UGL	UN18	4NP	12.000	ĹŤ	
58 60	RDUC*47 RDUC*47	CGW	25-feb-1992 25-feb-1992	25.0	UGL	UM18	ABHC	4-000	ND	R
88 88	RDUC*47	CGM	25-feb-1992	25.0 25.0	UGL	UN18 UN18	ACLDAN AENSL F	5.100 9.200	ND:	R R
88	RDUC*47	CGW	25-feb-1992	25.0	UGL	UM18	ALDRN	4.700	ND	Ř
88 88	RDWC*47	CGW	25-feb-1992 25-feb-1992	25.0	UGL	UK18	AKAPNE	1.700	ĻŢ	
88 88	RDUC*47	CCM	25-feb-1992	25.0 25.0	UGL	UM18 UM18	ANAPYL ANTRC	0.500 0.500	LT LT	
8B	RDWC*47	CGW	25-feb-1992	25.0	UGL	UM18	82CEXM	1.500	LT	
88 88	RDWC*47	CCM	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UM18 UM18	B2CIPE B2CLEE	5.300	LŢ	
88 88	RDWC*47	CCM	25-feb-1992	25.0	UGL	UM18	BZEHP	1.900 4.800	LT LT	
8B	RDUC*47	CGW	25 - feb- 1992	25,0	UGL	UM18	BAANTR	1.600	LT	
88 88	RDWC*47 RDWC*47	CGW	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	BAPYR BBFANT	4.700 5.400	LT	
88	RDUC*47	CCM	25-feb-1992	25.0	UGL	UM18	88XC	4.000	LT ND	R
88	RDUC=47	CGW	25-feb-1992	25.0	UGL	UH18	B8ZP	3.400	LT	
88 88	RDUC*47	CGM	25 - feb - 1992 25 - feb - 1992	25.0 25.0	UGL UGL	UM18 UM18	BENSLF BENZID	9.200 10.000	ND ND	R R
88	RDUC*47	ÇGM	25-feb-1992	25.0	UGL	UN18	BENZOA	13.000	ĹŤ	•
88	ROUC*47	CGW	25-feb-1992	25.0	UGL	UN18	BGHIPY	6.100	LT	
88 88	RDUC*47	CGM	25 - feb - 1992 25 - feb - 1992	25.0 25.0	UGL	UM18 UM18	BKFANT BZALC	0.870 0.720	LT LT	
88	RDMC*47	CCA	25-feb-1992	25.0	UGL	UN18	CHRY	2.400	LT	
88 88	RDWC*47	CGM	25-feb-1992 25-feb-1992	25,0 25,0	UGL	UM18	CL682	1.600	LT	
88	RDWC*47	CCM	25-feb-1992	25.0	UGL	UM18 UM18	CL6CP CL6ET	8.600 1.500	LT LT	
88	RDUC*47	CGW	25-feb-1992	25.0	UGL	UH18	DBAHA	6.500	LT	
86 88	RDUC*47 RDUC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UN18	DBHC	4.000	KD	R
88	ROUC*47	CCH	25-feb-1992	25.0	UGL	UM18 UM18	DBZFUR DEP	1.700 2.000	LT LT	
88	ROUC*47	CCH	25-feb-1992	25.0	UGL	UK18	DLDRN	4.700	NO	R
88 88	RDWC*47	CCM	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UN18 UN18	DMP DN8P	1.500 3.700	LT	
88	RDMC*47	CGW	25-feb-1992	25.0	UGL	UH18	DNOP	15.000	LT LT	
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UN18	ENDRM	7.600	MD	R
88 83	RDWC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	ugl Ugl	UN18 UN18	ENDRNA ENDRNK	8.000 8.000	NID NID:	R
88	RDHC*47	CGW	25-feb-1992	25.0	UGL	UN18	ESFS04	9.200	ND	R R
88	ROWC-47	CGM	25-feb-1992	25.0	UGL	UM18	FART	3.300	LT	
88 88	RDWC*47 RDWC*47	CCM	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	FLRENE GCLDAN	3.700 5.100	LT ND	
88	RDWC*47	COR	25-feb-1992	25.0	UGL	UM18	HCBD	3.400	LT	R
8B	ROUC*47	CGN	25-feb-1992	25.0	UGL	UN18	HPCL	2.000	MD	R
88 88	RDWC*47	CCA	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UM18 UM18	HPCLE ICDPYR	5.000 8.600	ND LT	R
88	RDUC*47	CGL	25-feb-1992	25.0	UGL	UH18	ISOPHR	4.800	LT	
88	RDUC*47	CGW	25-feb-1992	25.0	UGL.	UH18	LIN	4.000	ND	R
88 88	RDMC*47 RDMC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UM18 UM18	MEXCLR NAP	5.100 0.500	ND LT	R
88	RDWC*47	CGW	25-feb-1992	25.0	UGL	UM18	N8	0.500	LT	
88	RDWC*47	CCM	25-feb-1992	25.0	UGL	UN18	NHOMEA	2.000	ND	R

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Yalue</u>	<u>Flag</u>	Internal Std. Code
88	RDWC*47	COM	25-feb-1992	25.0	UGL	UN18	HNDNPA	4,400	LT	
8B	RDWC*47	CGM	25-feb-1992	25.0	UGL	UM18	NNDPA	3.000	LT	
8B	RDUC*47	CGW	25 - feb - 1992	25.0	UGL	UM18	PCB016	21.000	ND	R
88 88	RDWC*47	CGM	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UN18	PC8221 PC8232	21.000	ND	R
88	RDWC*47	CCA	25-feb-1992	25.0	UGL	UM18 UM18	PCB242	21.000 30.000	ND ND	R R
88	RDWC*47	CGY	25-feb-1992	25.0	UGL	UM18	PCB248	30.000	ND	Ř
88	ROUC*47	CGM	25-feb-1992	25.0	UGL	UH18	PC8254	36.000	NO	R
86 88	RDWC*47	CCFI	25-feb-1992 25-feb-1992	25.0 25.0	UGL	UM18 UM18	PCB260 PCP	36,000	MD	R
8B	RDUC*47	CGN	25-feb-1992	25.0	UGL	UH18	PHANTR	18.000 0.500	LT LT	
88	RDMC*47	CGM	25 - feb - 1992	25.0	UGL	UN18	PHENOL	9.200	ĹŤ	
88 88	RDWC*47	CGM	25-feb-1992	25.0	UGL	UN18	PPDOD	4.000	ND	R
88	RDWC*47 RDWC*47	CGW	25-feb-1992 25-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	PPOOE PPOOT	4.700 9.200	ND ND	R R
8B	RDWC*47	CGW	25-feb-1992	25.0	UGL	UN18	PYR	2.800	ND LT	K
88	RDWC*47	CGW	25-feb-1992	25.0	UGL.	UH18	TXPHEN	36.000	ND	R
BKSS1 BKSS1	RVFS*88 RVFS*88	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	JD15	SË	0.250	LT	
BKSS1	RVFS*88	CSC	10-mar-1992	0.5	UGG	JD19 JS16	AS AG	5.380 1.050		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	JS16	AL	19100.000		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	JS16	BA	56.500		
8KSS1 BKSS1	RVFS*88 RVFS*88	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	J\$16 J\$16	BE CA	0.922 6270.000		
_ BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	JS16	8	0.700	LŤ	
8K\$S1	RVFS*88	CSO	10-mar-1992	0.5	UGG	JS16	œ	22.100		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	J\$16	CR	32.000		
BKSS1 BKSS1	RVFS*88 RVFS*88	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	JS16 JS16	CU FE	22.600		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	JS16	K	28600,000 3160.000		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	J\$16	MG	16200.000		
BKSS1	RVF5*88	CSO	10-mar-1992	0.5	UGS	JS16	MN	400.000		
8KSS1 BKSS1	RVF\$*88 RVF\$*88	CSC	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	JS16 JS16	NA NI	211.000 27.400		
BK\$\$1	RVFS*88	CSO	10-mar-1992	0.5	UGG	J\$16	P9	255.000		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	J\$16	SB	7.140	LT	
BKSS1 BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	JS16	TL.	6.620	LT	
BKS\$1	RVFS*88 RVFS*88	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	J\$16 J\$16	V ZN	55.700 345.000		
BKSS1	RVFS*88	CSO	10-mar-1992	0.5	UGG	J801	HG	0.050	ĻT	
BKSS10	RVFS*66	CZO	10-mar-1992	8.5	UGG	JD 15	SE	0.250	ĻT	
BKSS10 BKSS10	RVF\$*66 RVF\$*66	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	ДС19 ДС16	AS AG	4.000 1.020		
BKSS10	RVFS*66	cso	10-mar-1992	0.5	UGG	JS16	AL.	10500.000		
BKSS10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	BA	147.000		
BKSS10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	BE	0.802		
8KSS10 8KSS10	RVFS*66 RVFS*66	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg Ugg	JS16 JS16	CA CD	7430.000 0.700	LT	
BKSS10	RVFS*66	CSO	10-mar-1992	0.5	UGG	J\$16	B	13.600	Ų.	
BKSS10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	CR	21.300		
BKSS10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	an	18.800		
BKSS10 BKSS10	RVFS*66 RVFS*66	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	JS16 JS16	FE K	25900,000 1690,000		
BKSS10	RVFS*66	cso	10-mar-1992	0.5	UGG	JS16	HG	5760.000		
BK\$\$10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	MK	927.000		
BKSS10 BKSS10	RVFS*66 RVFS*66	CSO	10-mar-1992	0.5	UGG	J\$16	NA NA	239.000		
BK\$\$10	RYFS*66	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	1\$16 JS16	NI PB	18.500 68.100		
BKS\$10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	\$8	7.140	LT	
BKSS10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JS16	TL	6.620	LT	
BKSS10 BKSS10	RVFS*66 RVFS*66	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	JS16 JS16	V 7¥	28.900 283.000		
BK\$\$10	RVFS*66	CSO	10-mar-1992	0.5	UGG	JB01	ZN NG	263.000 0.050	LT	
BKSS2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JD15	SE	0.250	LT	
8KSS2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JD19	AS	5.980		
BKSS2 BKSS2	RVFS*52 RVFS*52	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	JS16 JS16	AG AL	1.540 12200.000		
BKSS2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JS16	AL BA	152.000		
BKSS2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JS16	8E	0.500	LT	
BK\$\$2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JS16	CA	27100.000		
BK\$\$2 BK\$\$2	RVFS*52 RVFS*52	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	JS16 JS16	ය ස	1.070		
BKSS2	RVFS*52	C2O	10-mar-1992	0.5	UGG	JS16	CR.	11.500 20.700		
BK2S2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JS16	מט	15.400		

<u>Site ID</u>	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method		Value	<u>Elag</u>	Internal Std. Code
BKSS2	RVFS*5Z	CSO	10-mar-1992	0.5	UGG	JS16	FE	40800.000		
BKSSZ	RVFS*52	cso	10-mar-1992	0.5	UGG	JS16	K	1430.000		
BK\$S2	RVFS*52	CSO	10-mar-1992	0.5	UGG	J\$16	MG	9780.000		
BKSS2 BKSS2	RVFS*52 RVFS*52	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	312L	MOL	1950.000		
BKSSZ	RVFS*52	CSO	10-mar-1992	0.5	UGG UGG	J\$16 J\$16	na Ni	382.000 18.400		
BK\$\$Z	RVFS*52	CSO	10-mar-1992	0.5	UGG	JS16	PB	264.000		
BKSS2	RVFS*52	CSO	10-mar-1992 10-mar-1992	0.5	UGG	JS16	SB	7.140	LT	
BKSS2 BKSS2	RVFS*52 RVFS*52	CSO CSO	10-mar-1992	0.5 0.5	UGG	3516 3516	TL V	6.620 32.300	LT	
BKSS2	RYFS*52	CSO	10-mar-1992	0.5	UGG	JS16	ZN	840.000		
BK\$S2	RVFS*52	CSO	10-mar-1992	0.5	UGG	JB01	HG	0.050	LT	
BKSS3 BKSS3	RVFS*49 RVFS*49	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	1015 1019	SE As	0.250 6.420	LT	
BK\$\$3	RVFS*49	ÇSO	10-mer-1992	0.5	UGG	J\$16	AG	1.030		
BKSS3	RVFS*49	CSO	10-mar-1992	0.5	UGG	JS16	AL.	9710.000		
BKSS3 BKSS3	RVFS*49 RVFS*49	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	JS16 JS16	BA BE	74.200 0.799		
BKSS3	RVFS*49	cso	10-mar-1992	0.5	UGG	JS16	CA	19600.000		
BKSS3	RVFS*49	CSO	10-mar-1992	0.5	UGG	J\$16	œ	0.700	LT	
BKSS3	RVFS*49 RVFS*49	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	7219 7219	CCR CCR	19.700 39.800		•
BKSS3	RVFS*49	CSO	10-mar-1992	0.5	UGG	J\$16	a	23.400		
BKSS3	RVFS*49	CSO	10-mar-1992	0.5	UGG	J\$16	FE	31300.000		
#K\$\$3 #K\$\$3	RVFS*49 RVFS*49	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	J\$16	K Mg	1520.000		
BKSS3	RVFS*49	CSO	10-mar-1992	0.5	UGG	312L 312L	MN	11200.000 436.000		
BK\$\$3	RVFS*49	CSO	10-mar-1992	0.5	UGG	J\$16	KA	246.000		
8K\$\$3 8K\$\$3	RVFS*49 RVFS*49	C\$0	10-mar-1992	0.5	DOU	J\$16	MI	24.500		
BKS\$3	RVFS*49	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	312L 312L	PB \$8	80.800 7.140	LT	
BKSS3	RVFS*49	CSO	10-mar-1992	0.5	ŲGG	J\$16	TL	6.620	ĻŤ	
BKSS3 BKSS3	RVFS*49	CSO	10-mar-1992	0.5	UGG	J\$16	٧	60.400		
BKSS3	RVF5*49 RVF5*49	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	1816 JB01	ZN KG	58.300 0.050	LT	
BKSS4	RVF5*51	CSO	10-mar-1992	0.5	UGG	JD 15	SE	0.250	LT	
BKSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JD19	AS	3.450		
BK\$\$4 BK\$\$4	RVFS*51 RVFS*51	C20	10-mar-1992 10-mar-1992	0.5 0.5	ugg Ugg	1516 1516	AG AL	1.670 16800.000		
BKSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	BA	180.000		
8KSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	BE .	0.720		
BK\$\$4 BK\$\$4	RVFS*51 RVFS*51	CSO CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	1216 1216	CA CD	78000.000 0.700	LT	
BKSS4	RVF5*51	CSO	10-mar-1992	0.5	UGG	JS16	œ	9.190		
BKSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	CR	20, 200		
BKSS4 BKSS4	RVFS*51 RVFS*51	czo czo	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	J\$16 J\$16	CLI FE	13.300 22900.000		
8KSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	K	4180.000		
BKSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	MG	31800.000		
BK\$\$4 BK\$\$4	RVFS*51 RVFS*51	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	1216 312L	KA KA	1000.000 278.000		
BKSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	KI	15.600		
BKSS4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	PB	75.600		
BK\$\$4 BK\$\$4	RVFS*51 RVFS*51	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	J\$16 J\$16	SB '	9.780 6.620	1.7	
BKSS4	RVFS*51	ÇSO	10-mar-1992	0.5	UGG	JS16	Y	36.600	LT	
BK\$\$4	RVFS*51	CSO	10-mar-1992	0.5	UGG	JS16	ZN	284.000		
BKSS4 BKSS 5	RVFS*51 RVFS*64	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg Ugg	JB01	HG CE	0.050	LT	
BKSS5	RVFS*64	CSO	10-mar-1992	0.5	UGG	JD 15 JD 19	SE AS	0. <i>2</i> 50 3.490	LT	
BKSS5	RVF\$*64	CSO	10-mar-1992	0.5	UGG	JS16	AG	1.060		
BXSS5	RVFS*64	CSO	10-mar-1992	0.5	UGG	JS16	AL	7620.000		
BK\$\$5 BK\$\$5	RVFS*64 RVFS*64	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	J\$16 J\$16	BA BE	88.500 0.500	LT	
8KS\$5	RVFS*64	CSG	10-mar-1992	0.5	UGG	JS16	CA	41300.000		
BKSS5	RVF5*64	CSO	10-mar-1992	0.5	UGG	J\$16	ස	0.700	LT	
8KSS5 8KSS5	RVFS*64 RVFS*64	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	1216 1216	CD CR	4.000 12.500		
8K5\$5	RVFS*64	CSO	10-mar-1992	0.5	UGG	J\$16	ຒ	12.800		
BKSS5	RVFS*64	CSO	10-mar-1992	0.5	UGG	J\$16	FE	11200.000		
BKSS5 BKSS5	RVFS*64 RVFS*64	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	312L 312L	K Mg	795.000 22800.000		
BK\$S5	RVF5*64	CSC	10-mar-1992	0.5	UGG	JS16	MN	221.000		
BKSS5	RVFS=64	cso	10-mar-1992	0.5	UGG	JS16	NA	258.000		

Site ID	<u>Field 1D</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
BKSS5	RVFS*64	cso	10-mar-1992	0.5	UGG	JS16	NI	6,200		
BKSS5	RVFS*64	CSO	10-mar-1992	0.5	UGG	313 L	PB	27.000		
BK\$S5	RVFS*64	CSO	10-mar-1992	0.5	UGG	JS16	2 B	7.140	LT	
BKSS5 BKSS5	RVFS*64 RVFS*64	CSO CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	JS16 JS16	TL V	6.620	ĻŢ	
8K\$\$5	RVFS*64	CSO	10-mar-1992	0.5	UGG	JS16	ZX	28.100 69.700		
8K2Z\$	RVFS*64	CSO	10-mar-1992	0.5	UGG	JB01	HG	0.050	LT	
BKSS6	RVFS*89	CSO	10-маг-1992	0.5	UGG	JD15	SE	0.541		
BK\$S6 BK\$S6	RVFS*89	CSO	10-mar-1992 10-mar-1992	0.5	UGG	JD19	AS	8.070		
BK\$\$6	RVFS*89 RVFS*89	CSO CSO	10-mar-1992	0.5 0.5	UGG UGG	JS16 JS16	AG AL	1.200 9730.000		
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	J\$16	SA.	143.000		
BKSS6	RVF5*89	CSO	10-mar-1992	0.5	UGG	J\$16	8E	0.500	LT	
BKSS6	RVF5*89	CSO	10-mar-1992	0.5	UGG	JS16	Ö	12300.000		
BKSS6 BKSS6	RVFS*89 RVFS*89	CSO CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg Ugg	J\$16 J\$16	ස ස	0.700 13.300	LT	
BKSS6	RVFS*89	cso	10-mar-1992	0.5	UGG	JS16	CR.	16.700		
BKSS6	RVF5*89	CSO	10-mar-1992	0.5	UGG	JS16	αJ	42.600	-	
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	J\$16	FE	29500.000		
ekss6 Bkss6	RVFS*89 RVFS*89	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	JS16 JS16	K Ng	1320.000 4650.000		
BKSS6	RVFS*89	CZO	10-mar-1992	0.5	UGG	JS16	XN	914.000		
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	JS16	HA	235.000		
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	J\$16	NI	24.100		
BKSS6	RVFS*89 RVFS*89	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg Ugg	J\$16	P8	10.500	LT	
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	1216 1216	SB TL	7.140 6.620	LT LT	
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	JS16	Ÿ	19.900		
BKSS6	RVFS*89	CSO	10-mar-1992	0.5	UGG	JS16	ZN	60.400		
BKSS6 BKSS7	RVFS*89 RVFS*90	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	JB01 JD15	HG CE	0.050	LT	
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JD19	SE AS	0.250 3.520	LT	
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	J\$16	AG	1,570		
BKSS7	RVF\$*90	CSO	10-mar-1992	0.5	UGG	J516	AL	6830.000		
BK\$\$7 BK\$\$7	RVFS*90 RVFS*90	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg	1216 1216	BA BE	70.500		
BK\$\$7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JS16	CA	0.500 100000,000	LT	
BK\$\$7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JS16	CD CD	0.700	LT	
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JS16	œ	5.040		
BKSS7 BKSS7	RVFS*90 RVFS*90	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	JS16 JS16	CR CU	13.000		
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JS16	FE	14.000 10500.000		
BKSS7	RYFS*90	CSO	10-mar-1992	0.5	UGG	JS16	K	1460.000		
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	J\$16	MG	41200.000		
BK\$\$7 BK\$\$7	RVFS*90 RVFS*90	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	1816 1814	MM NA	199.000		
BK\$\$7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JS16 JS16	IK	299.000 11.300		
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG		PB	62.300		
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UCG	J\$16	SB	7.140	LT	
BKS\$7 BKS\$7	RVFS*90 RVFS*90	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg	JS16	TL V	6.620	LT	
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	JS16 JS16	Y ZN	23.400 73.200		
BKSS7	RVFS*90	CSO	10-mar-1992	0.5	UGG	J801	HG	0.050	LT	
BKSS8	RVFS*65	CSO	10-mar-1992	0.5	UGG	JD 15	SE .	0.250	LT	
BKSS8 BKSS8	RVFS*65 RVFS*65	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	JD19 JS16	AS AG	7.320 1.050		
8K5S8	RVF\$*65	CSO	10-mar-1992	0.5	UGG		AL	16600.000		
BKSS8	RVFS*65	CSO	10-mar-1992	0.5	UGG	J\$16	BA	103.000		
BKSS8	RVFS*65	CSO	10-mar-1992	0.5	VGG	J\$16	BE	0.811		
8K2S 8 BK2S 8	RVFS*65 RVFS*65	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	J\$16 J\$16	CA	23200.000		
BKSSB	RVFS*65	CSO	10-mar-1992	0.5	UGG	J\$16	ස ස	0.700 12.900	LT	
8K\$\$8	RVFS*65	CSO	10-mar-1992	0.5	UGG	J\$16	CR	28.500		
BKS\$8	RVFS*65	CSO	10-mar-1992	0.5	UGG	J\$16	a	16.300		
8KSS 8 8KSS 8	RVFS*65 RVFS*65	CSO	10-mar-1992	0.5	UGG		FE	25100.000		
BKSS8	RVF5*65	CSO	10-mar-1992 10-mar-1992	0.5 0.5	ugg ugg		K Mg	2590.000 12800.000		
BK\$S8	RVFS*65	CSO	10-mar-1992	0.5	UGG		MN	298.000		
BKSS8	RVFS*65	CSO	10-mar-1992	0.5	UGG	J\$16	KA	226.000		
BKSS& BKSS&	RVFS*65	CSO	10-mar-1992	0.5	UGG		NI	27.400	. –	
BKSS8	RVFS*65 RVFS*65	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG		P\$ S8	10.500 7.140	LT LT	
BKSS8	RVFS*65	CSO	10-mar-1992	0.5	UGG		TL	6.620	ĻT	
BKS\$8	RVFS*65	CSO	10-mar-1992	0.5	UGG		٧	36.500		

\$ite_ID	<u>Field 10</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
BKSS8	RVFS*65	CSO	10-mar-1992	0.5	ŲGG	JS16	ZN	63,900		
BK\$\$8	RVFS*65	CSO	10-mar-1992	0.5	UGG	JB01	HG	0.050	LT	
BK229	RVFS*113	CSO	10-mar-1992	0.5	UGG	JD 15	SE	0.250	LT	
8KSS9	RVFS*113 RVFS*113	C20 023	10-mar-1992 10-mar-1992	0.5 0.5	ugg Ugg	JD19 JS16	AS Ag	3.790 0.589		
BK\$S9	RVFS*113	C\$0	10-mar-1992	0.5	ŲGĞ	JS16	AL	8380,000	LT	
BK\$\$9	RVFS*113	CSO	10-mar-1992	0.5	UGG	J\$16	BA	66,100		
BKSS9	RVF5*113	CSO	10-mar-1992	0.5	UGG	J\$16	BE	0.500	LT	
8K259 8K259	RVFS*113 RVFS*113	CSO CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	312L 312L	CA CD	3560.000		
BK\$S9	RVF5*113	C20	10-mar-1992	0.5	UGG	JS16	80	0.700 12.500	LT	
BKSS9	RVFS*113	CSO	10-mar-1992	0.5	UGG	JS16	CR	25,900		
BKSS9	RVFS*113	CSO	10-mar-1992	0.5	UGG	J\$16	CU .	7,860		
BKSS9	RVFS*113 RVFS*113	CSO CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG	JS16	FE	16900_000 656_000		
BKSS9	RVF5*113	CSO	10-mar-1992	0.5	UGG	J\$16 J\$16	K Mg	2370.000		
BKSS9	RVFS*113	CSO	10-mar-1992	0.5	UGG	JS16	MN	892.000		
BK\$\$9	RVFS*113	CSO	10-mer-1992	0.5	UGG	J\$16	NA	205.000	-	
BKSSP	RVFS*113	CSO	10-mar-1992	0.5	UGG	J\$16	MI	11.000		
BKSS9	RVFS*113 RVFS*113	CSO	10-mar-1992 10-mar-1992	0.5 0.5	UGG UGG	J\$16 J\$16	PB \$8	27.400 7.140	LT	
8K559	RVFS*113	CSO	10-mar-1992	0.5	UGG	J\$16	ŤL	6.620	LT	
BK\$\$9	RVFS*113	CSO	10-mar-1992	0.5	ugg	J\$16	Ψ_	27,700		
BKSS9	RVF5*113	CSO	10-mar-1992	0.5	UGG	J\$16	ZX	36.100		
_ BK\$\$9 C1	RVFS*113 RDWC*8	CSO	10-mar-1992 30-jan-1992	0.5 63.0	UGG UGL	JB01. 00	HG TOC	0.050 37.100	LT	
C1	RDWC*8	CGW	30- jan-1992	63,0	UGL	00	TOX	97.000		
C1	RDWC*8	CGW	30- jan-1992	63.0	UGL	UH20	111TCE	4.950		
C1	RDUC*8	CGW	30- jan-1992	63.0	UGL	UM20	112TCE	1.200	LT.	
C1 C1	RDWC*8 RDWC*8	CCM	30- jan- 1992 30- jan- 1992	63.0 63.0	UGL UGL	UH20 UH20	11DCE 11DCLE	0.500 0.680	LT	
č1	ROWC*B	CGW	30-jan-1992	63.0	UGL	UH20	12DCE	0.500	LT LT	
C1	RDWC*8	CCH	30-jan-1992	63.0	UGL	UM20	12DCLE	0.500	LT	
C1	RDWC*8	CCM	30-jan-1992	63.0	UGL	UM20	120CLP	0.500	LT	
C1 C1	RDWC*8 RDWC*8	CGW	30- jan-1992 30- jan-1992	63.0 63.0	UGL UGL	UM20 UM20	2CLEVE ACET	0.710	LŤ	
C1	RDWC*8	CGW	30- jan-1992	63.0	UGL	UM20	ACROLN	13.000 100.000	LT NC	R
C1	RDWC*8	CGW	30- jan-1992	63.0	UGL	UH20	ACRYLO	100.000	MD	Ř
C1	RDWC*8	CGM	30- jan-1992	63.0	UGL	UH20	BRDCLM	0.590	LT	
C1 C1	RDWC*8 RDWC*8	CCM	30-jan-1992 30-jan-1992	63.0 63.0	NGT	UH20 UH20	C13DCP C2AVE	0.580	LT	
C1	RDWC*8	CCM	30-jan-1992	63.0	UGL	UH20	CZH3CL	8.300 2.600	LT LT	
C1	RDWC*8	CGW	30- jan-1992	63.0	UGL.	UM20	C2H5CL	1.900	LT	
C1	RDUC*8	CGW	30-jan-1992	63.0	UGL	UH20	CóH6	0.500	LŢ	
C1 C1	RDWC*8 RDWC*8	CCM	30-jan-1992 30-jan-1992	63.0 63.0	UGL UGL	UM20 UM20	CCL3F CCL4	9.620 0.580	LT	
č1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UM20	CH2CL2	2.300	LT	
C1	RDWC*B	CGM	30-jan-1992	63,0	UGL	UM20	CH3BR	5.800	LT	
C1	RDWC*8	CCN	30- jan-1992	63.0	UGL	UK20	CH3CL	3.200	LT	
C1 C1	RDWC*8 RDWC*8	CGM	30-jan-1992 30-jan-1992	63.0 63.0	UGL UGL	UM20 UM20	CHBR3 CHCL3	2.600 0.500	LŢ	
č1	RDWC*8	CGM	30-jan-1992	63.0	UGL	UM20	CLZBZ	10.000	LT ND	Ř
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UH20	CLC6H5	0.500	LT	
C1	RDWC*B	CGM	30- jan-1992	63.0	UGL	UM20	C25	1,130		
C1	RDWC*8	CGW	30- Jan-1992	63.0	UGL	UM20	DBRCLM	0.670	LT	
C1 C1	RDWC*8 RDWC*8	CCM	30-jan-1992 30-jan-1992	63.0 63.0	UGL	UM20 UM20	ETC6HS MEC6HS	0.500 0.500	LT LT	
č1	RDUC*8	CGW	30-jan-1992	63,0	UGL	UM20	MEK	6,400	LT	
C1	RDWC*8	CCM	30- jan-1992	63.0	UGL.	UH20	HIBK	3.000	LT	
C1	RDWC*8	CGW	30- jan-1992	63.0 63.0	UGL	UM20	MARK	3.600	LT	
C1 C1	rdwc*6 Rdwc*8	CGM	30-jan-1992 30-jan-1992	63.0	UGL UGL	UM20 UM20	STYR T13DCP	0.500 0.700	LT LT	
Č1	RDWC*8	CGM	30- jan-1992	63.0	UGL	UM20	TCLEA	0.510	LT	
C1	RDWC*8	CEM	30-jan-1992	63.0	UGL	UM20	TCLEE	1.600	LT	
C1	RDWC*8	CCM	30- jan-1992	63.0	UGL	UM20	TRCLE	0.500	LT	
C1 C1	RDMC*8 RDMC*8	CGM	30-jan-1992 30-jan-1992	63.0 63.0	UGL	UM20 UM18	XYLEN 124TCB	0_840 1_800	LT LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UM18	120 CLB	1.700	LT	
C1	ROUC*8	CGM	30- jan- 1992	63.0	UGL	UM18	120PH	2.000	ND	R
C1	RDWC*8	CCM	30- jan-1992	63.0	UGL	UH18	130CLB	1.700	LT	
C1 C1	RDWC*8 RDWC*8	CGW CGW	30-jan-1992 30-jan-1992	63.0 63.0	UGL	UM18	14DCLB 245TCP	1.700	LŢ	
C1	ROWC*8	CGW	30- jan- 1992	63.0	UGL	UM18 UM18	2451CP	5.200 4.200	LT LT	
či	RDWC*8	CGM	30- jan-1992	63.0	UGL	UN18	24DCLP	2.900	LT	

Site ID	Field ID	<u>Medî a</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	Flag	Internal Std. Code
C1	RDWC*8	CGW	30- jan-1992	63.0	UGL	LM18	240MPN	5.800	ĻŢ	
C1	RDWC*8	CGM	30- jan- 1992	63.0	UGL	UN18	24DNP	21.000	ĹŤ	
C1	RDWC*8	CGW	30- jan- 1992	63.0	UGL	UH18	24DNT	4.500	LT	
C1	RDWC*8	CGW	30- jan- 1992	63.0	UGL	UN18	26DNT	0.790	LT	
C1 C1	RDUC*8 RDUC*8	CGM	30-jan-1992 30-jan-1992	63.0 63.0	UGL	UM18	ZCLP ZCNAP	0.990	LT	
či	RDWC*8	CGW	30- jan-1992	63.0	UGL	UN18 UN18	ZHNAP	0.500 1.700	LT LT	
C1	RDUC*8	CCH	30-jan-1992	63.0	UGL	UN18	2HP	3.900	LT	
Ç1	RDWC*8	CCM	30- jan-1992	63.0	UGL.	UN18	2NANTL	4.300	LŤ	
C1	RDWC*8	CGM	30-jan-1992	63.0	UGL	UN18	ZNP	3.700	LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UN18	33DCBD	12.000	LT	
C1 C1	RDUC*8 RDUC*8	CCM	30-jan-1992 30-jan-1992	63.0 63.0	UGL	UN18	3NANIL	4.900	LT	
c1	RDWC*8	CGM	30-jan-1992	63.0	UGL	UN18 UN18	46DN2C 4BRPPE	17.000 4.200	LT LT	
C1	RDWC+8	CGM	30- jan- 1992	63.0	UGL	UN18	4CANIL	7.300	LT	
C1	RDUC*8	CGW	30- jan- 1992	63.0	UGL.	UH18	4CL3C	4.000	LT	
C1	RDWC*8	CGW	30- Jan- 1992	63.0	UGL	UM18	4CLPPE	5.100	LT	
C1	RDWC*8	CGM	30- jan- 1992	63.0	UGL	UK18	4MP	0.520	L,T	
C1 C1	RDWC*8	CGW	30- jan-1992	63.0	UGL	UM18	4NANIL	5.200	LT	
C1	RDUC*8	CCM	30- jan-1992 30- jan-1992	63.0 63.0	ug <u>t</u> ugl	UN18 UN18	ABHC	12.000 4.000	LT	
či	RDWC*8	CGW	30- jan-1992	63.0	UGL	UH18	ACLDAN	5.100	ND ND	· R R
C1	RDUC*8	CGW	30-jan-1992	63.0	UGL	UH18	AENSLF	9.200	ND	Ř
C1	RDWC*&	CGW	30- jan-1992	63.0	UGL	UH18	ALDRN	4.700	ND	R
_C1	RDWC*8	CGW	30- jan- 1992	63.0	UGL	UN18	ANAPNE	1.700	LT	
C1	RDWC*8	CCA	30- jan- 1992	63.0	UGL	UN18	ANAPYL	0.500	LT	
C1	RDWC*8 RDWC*8	CCM	30- jan- 1992 30- jan- 1992	63.0 63.0	UGL UGL	UM18 UM18	ANTRO B2CEXM	0.500	LT	
č1	RDWC*8	CGH	30- jan-1992	63.0	UGL	UH18	B2CIPE	1.500 5.300	LT LT	
C1	RDUC*8	CGW	30- jan-1992	63.0	UGL	UH18	B2CLEE	1.900	LŤ	
C1	RDWC*8	CGM	30- jan-1992	63.0	UGL	UN18	BZEHP	4_800	L7	
C1	RDMC*8	CGM	30- jan-1992	63.0	UGL	UN18	BAANTR	1.600	LT	
C1 C1	RDUC*8	CGM	30- jan-1992	63.0	UGL	UH18	BAPYR	4.700	LT	
C1	RDWC*8	COM	30- jan-1992 30- jan-1992	63.0 63.0	UGL UGL	UN18 UN18	BBFANT	5.400	LT	
či	RDWC*8	CGM	30-jan-1992	63.0	UGL	UM18	88XP	4.000 3.400	ND LT	R
C1	RDWC*8	CSW	30- jan-1992	63.0	UGL	UM18	BENSLF	9.200	ND	R
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UN18	BENZID	10.000	ND	Ř
C1	RDWC*8	CGW	30-jan-1992	63.0	UCL	UM18	BENZOA	13.000	LT	
C1 C1	RDWC*8 RDWC*8	CGW	30- jan-1992	63.0	UGL	UN18	BGHIPY	6.100	LT	
ci	RDWC*8	CGM	30- jan- 1992 30- jan- 1992	63.0 63.0	UGL UGL	UH18 UH18	BKFANT BZALC	0.870 0.720	LT LT	
C1	RDMC*8	CGM	30- jan- 1992	63.0	UGL	UM18	CHRY	2,400	LT	
C1	RDWC*8	CGM	30- jan-1992	63.0	UGL,	UN18	CL6BZ	1.600	ĹŤ	
<u>C1</u>	RDUC*8	CG₩	30-jan-1992	63.0	UGL	UM18	CL6CP	8.600	LT	
C1	RDWC*8	CGN	30- jan-1992	63.0	UGL	UH18	CL6ET	1.500	ĻŢ	
C1 C1	RDWC*8 RDWC*8	CCA	30- jan- 1992 30- jan- 1992	63.0 63.0	UGL UGL	LM18	DBARA	6.500	LT	_
či	RDWC*8	CGH	30- jan-1992	63.0	UGL	UM18 UM18	DBHC DBZFUR	4.000 1.700	ND	R
Č1	ROWC*S	CGN	30- jan-1992	63.0	UGL.	UM18	DEP	2.000	LT LT	
C1	RDUC*8	CCM	30- jan-1992	63.0	UGL	UM18	DLDRN	4.700	NO	R
C1	RDUC*8	CGM	30-jan-1992	63. 0	UGL	UN18	DMP	1.500	LT	
C1	RDUC*8	CGW	30-jan-1992	63.0	UG1.	UM18	DNBP	3.700	LŦ	
C1 C1	RDWC*5	CCM	30- jan-1992	63.0	UGL	UM18	DNOP	15.000	LT	_
C1	RDWC*8	CGW	30-jan-1992 30-jan-1992	63.0 63.0	UGL	UN 18 UN 18	ENDRN	7.600	NO	R
či	RDMC*8	CGW	30- jan-1992	63.0	UGL	UM18	ENDRNA ENDRNK	8.000 8.000	ND ND	R R
C1	RDUC*8	CGM	30- jan-1992	63.0	UGL	UN18	ESFS04	9.200	ND	â
C1	RDUC*8	CGW	30- jan-1992	63.0	UGL	UM18	FANT	3.300	LT	
C1	RDWC*8	COM	30-jan-1992	63.0	UGL	UN18	FLRENE	3.700	LT	
C1 C1	RDWC*8	CGW	30- jan-1992	63.0	UGL.	UK18	GCLDAN	5.100	MD	R
C1	RDWC*8 RDWC*8	CGM	30-jan-1992	63.0 63.0	UGL.	UK18	HCBD	3.400	LT	•
či	RDWC*8	CGW	30-jan-1992 30-jan-1992	63.0	UGL	UM18 UM18	HPCLE	2.000 5.000	ND ND	R R
C1	RDWC*8	CGW	30- jan- 1992	63.0	UGL	UM18	ICDPYR	8.600	LT	^
C1	RDUC*8	CGW	30- jan-1992	63.0	UGL	UM18	ISOPHR	4.800	LT	
C1	RDWC*8	CGM	30- jan-1992	63.0	UGL	UM18	LIN	4.000	ND	R
C1	RDMC*8	CCM	30-jan-1992	63.0	UCL	UM18	MEXCLR	5.100	ND	R
C1 C1	RDWC*8	CCM	30- jan-1992	63.0	UGL	UN18	KAP	0.500	LT	
C1	RDWC*8	CGW	30-jan-1992 30-jan-1992	63.0 63.0	ugl ugl	UM18	NB	0.500	LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UM18 UM18	NNOMEA NNOMPA	2.000 4.400	ND LT	R
C1	RDWC*5	CON	30- jan- 1992	63.0	UGL	UN18	NNDPA	3.000	LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UM18	PCB016	21.000	NO	R
	-									**

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	flag	Internal Std. Code
c1	RDUC*8	CGW	30-jan-1992	63.0	UGL	UN18	PC8221	21,000		
či	RDWC*B	CGW	30- jan- 1992	63.0	UGL	UM18	PCB232	21,000	ND ND	R R
C1	RDWC*8	CGH	30-jan-1992	63.0	UGL	UM18	PCB242	30,000	ND	R
C1	RDUC*8	CGW	30- jan-1992	63.0	UGL	UH18	PCB248	30.000	ND	R
C1	RDUC*8	CGW	30- jan-1992	63.0	UGL	UN18	PCB254	36.000	ND	R
C1 C1	RDWC*8	CGW CGW	30-jan-1992 30-jan-1992	63.0 63.0	ugl	UM18 UM18	PCB260 PCP	36.000 18.000	ND LT	R
C1	RDWC*8	CGW	30-jan-1992	63. Q	UGL	UN18	PHANTR	0.500	LT	
C1	RDWC*8	CCH	30- jan-1992	63.0	UGL	UM18	PHEXOL	9.200	LT	
C1	RDWC*8	CGM	30- jan-1992	63.0	UGL	UN18	PPDDD	4-000	ND	R
C1 C1	RDWC*8 RDWC*8	CGM	30- jan-1992 30- jan-1992	63.0 63.0	UGL	UN18 UN18	PPODE PPODT	4.700 9.200	ND ND	R R
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UN18	PYR	2.800	LT	•
C1	RDUC*8	CEM	30-jan-1992	63.0	UGL	UH18	TXPHEN	36,000	ND	R
C1	RDWC*8 RDWC*8	CGW	30-jan-1992	63.0 63.0	UGL	UN18	UNK643	20.000		S
C1 C1	RDUC*6	CGW	30-jan-1992 30-jan-1992	63.0	ugl Ugl	UM18 UM18	UNK648 UNK675	10.000 6.000		S S
C1	RDWC*8	CCM	30-jan-1992	63.0	UGL	UN18	UNK686	10.000		\$
C1	RDWC*8	CGM	30- jan- 1992	63.0	UGL	UN18	UNK693	30.000		\$
C1	RDWC*8	CGW	30- jan- 1992	63.0	UGL	UH18	UNK694	20.000		S
C1 C1	RDWC*6 RDWC*8	CCM	30- jan-1992 30- jan-1992	63.0 63.0	ugl Ugl	UW32 UW32	135TNB 13DNB	0,449 0,611	LT LT	
č1	RDUC*6	CGW	30- jan-1992	63.0	UGL	UN32	246TNT	0.635	LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UM32	24DNT	0.064	LT	
C1	RDWC*8	COM	30-jan-1992	63.0	UGL	UN32	26DNT	0.074	LT	
- C1 ·	RDWC*8	CGW	30-jan-1992 30-jan-1992	ಟ.0 ಟಿ.0	UGL	UN32	HMX	1.210	LŢ	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UN32 UN32	NB RDX	0.645 1.170	LT LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	UN32	TETRYL	2.490	LT	
C1	RDWC*8	CGM	30-jan-1992	63.0	UGL	\$\$10	AL	141.000	LT	
C1	RDWC*8	CGW	30-jan-1992 30-jan-1992	63.0 63.0	ugl ugl	SS10	BA DE	42.700		
C1 C1	RDWC*8	CGA	30-jan-1992	63.0	UGL	\$\$10 \$\$10	BÉ CA	5,000 37200,000	LT	
C1	RDWC*8	CCM	30-jan-1992	63.0	UGL	S\$10	a	4.010	LT	
Ç1	RDUC*8	CGM	30-jan-1992	63.0	UGL	SS10	CO	25.000	LT	
C1	RDWC*8	CGW	30- jan-1992	63.0 63.0	UGL	\$\$10	CR.	6.020	LT	
C1 C1	RDWC*8 RDWC*8	CGW	30- jan- 1992 30- jan- 1992	63.0	ugi. Ugi.	\$\$10 \$\$10	다 FE	8,090 38,800	LT LT	
Č1	RDWC*8	COM	30-jan-1992	63.0	UGL	SS10	K	2580.000		
C1	RDWC*8	CGW	30- jan- 1992	63.0	UGL	\$\$10	MG	15600.000		
C1 C1	RDWC*8 RDWC*8	CGM	30-jan-1992 30-jan-1992	63.0 63.0	UGL	\$\$10 \$\$10	MN MA	2.750 2540.000	LT	
C1	RDWC*8	CCM	30-jan-1992	63.8	UGL	\$\$10 \$\$10	NA NI	34,300	LT	
ci	RDWC*8	CGM	30-jan-1992	63.0	UGL	S\$10	\$8	38.000	LT	
C1	RDWC*8	CGW	30- jan-1992	63.0	UGL	\$\$10	٧	11,000	LT	
C1 C1	RDWC*8 RDWC*8	CGM	30- jan-1992 30- jan-1992	63.0 63.0	UGL UGL	\$\$10 \$801	ZN HG	21.100	LT	
C1	RDWC*8	CCA	30-jan-1992	63.0	UGL	2009	TL	0.24 3 6.9 90	LT LT	
C1	RDWC*8	CGW	30-jan-1992	63.0	UGL	\$022	AS	2,540	LT	
C1	RDWC*8	CGH	30- jan-1992	63.0	UGL	SD21	\$E	3.020	ĻT	
C1	RDWC*8	CCM	30-jan-1992	63.0 63.0	ugl	SD20	PB	2.820		
C1 C1	RDWC*8	CGW	30-jan-1992 30-jan-1992	63.0	UGL.	\$023 00	AG Ph	0.250 7.340	LT	K
C4	RDUC*18	CGM	04-feb-1992	63.0	UGL	\$009	TL	6.990	LT	~
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	\$021	SE	3.020	LT	
C4	RDWC*18	ÇGH	04-feb-1992	63.0	UGL	00	TOC	7.330		
C4 C4	RDWC*18 RDWC*18	CCM	04 - feb - 1992 04 - feb - 1992	63.0 63.0	UGL	SS10 SS10	AL BA	141,000 125,000	ĻТ	
~	RDUC*18	CGM	04-feb-1992	63.0	UGL	SS10	BE	5.000	LT	
C4	RDWC*18	CCM	04-feb-1992	63.0	ner	SS10	CA	45100.000		
C4	RDWC*18	COM	04-feb-1992	63.0	UGL	SS10	CD	4.010	ĻŢ	
C4 C4	RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	ugi, ugl	\$\$10 \$\$10	CD CR	25.000 6.020	LT LT	
24	RDWC*18	CGW	04-feb-1992	63.0	UGL	SS10	ä	8.090	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	SS10	FE	72.400	-	
C4	RDWC*18	CGU	04 - feb - 1992	63.0	UGL	5510	K	1190,000		
C4 C4	RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL	SS10 SS10	MG MN	21100,000 135,000		
C4	RDWC*18	CGM	04-feb-1992	63.0	UGT.	SS10	MM AA	2420,000		
C4	ROWC*18	CGW	04-feb-1992	63.0	UGL	\$\$10	NI	34.300	LT	
C4	RDUC*18	CCM	04-feb-1992	63.0	UGL	\$\$10	\$8	38.000	LŤ	
C4 C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	SS10	V	11.000	LT	
C4 C4	RDWC*18 RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	SS10 SB01	ZN HG	21.100 0.243	LT LT	
			4- 18M 1776		245	-pu		٧.٤٠٠		

Site ID	Field ID	<u>Hedî a</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
C4	ROWC*18	CGU	04-feb-1992	63.0	UGL	SD22	AS	6.400		
C4 C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	00	TOX	75.800		
C4	RDWC*18 RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	2023 2023	PB AC	1.260	LT	
24	ROUC*18	CGM	04-feb-1992	63.0	UGL	3023 UN20	AG 111TCE	0.250 0.500	LT LT	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM20	112TCE	1.200	LT	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM20	11DCE	0.500	ĹŤ	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UM20	11DCLE	0.680	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	LIGL,	UH20	120CE	0.500	LT	
C4 C4	RDWC*18 RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	ner ner	UN20	120CLE 120CLP	0.500	LT	
č4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UN20 UN20	2CLEVE	0.500 0.710	LT LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UH20	ACET	13.000	LT	
C4	RDWC*18	CGM	04 - feb - 1992	63.0	UGL	UK20	ACROLN	100.000	MD	R
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UK20	ACRYLO	100.000	ND	R
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UK20	BROCLM	0.590	LT	
C4 C4	RDWC*18 RDWC*18	CCH CC∏	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UM20	C130CP	0.580	LT	
2 4	RDMC*18	CGW	04-feb-1992	63.0	UGL UGL	UM20 UM20	CZAVE CZH3CL	8.300 2.600	LT LT	
Č4	RDMC*18	CGW	04-feb-1992	63.0	UGL	UN20	C2H5CL	1.900	ĹŤ	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN20	CéHé	0.500	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UNZC	CCL3F	2.100		•
C4	RDWC*18	CGW	04 - feb- 1992	63.0	UGL	UM20	CCL4	0.580	ĻŤ	
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UH20	CH2CL2	2.300	LT	
C4 C4	RDUC*18 RDUC*18	CGW	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	un20 un20.	CH3BR CH3CL	5.800 3.200	LT LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN20	CHBR3	2.600	LT	
C4	RDUC*18	CGW	04-feb-1992	63.0	UGL	UM20	CHCL3	0.500	ĹŤ	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UH20	CL2BZ	10.000	ND	R
C4	RDWC*18	CGW	04-feb-1992	63.0	uct.	UKZO	CLC6H5	0.500	LT	
C4 C4	RDWC*18	CGW	04-feb-1992 04-feb-1992	63.0	UGL	UH20	CSS	19.300		
C4	RDWC*18	CGW	04-feb-1992	63.0 63.0	UGL	UM20 UM20	DBRCLM ETC6HS	0.670 0.500	LT LT	
64	RDMC*18	CGM	04-feb-1992	63.0	UGL	UM20	MEC6H5	0.500	LT	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM20	MEK	6,400	ĹŤ	
C4	RDUC*18	CGW	04 - feb-1992	63.0	UGL	UN20	HIBK	3.000	LT	
C4	RDUC*18	CGW	04-feb-1992	63.0	UGL	UM20	MNBK	3.600	LT	
C4 C4	RDMC*18	CGM	04-feb-1992	63.0	UGL	UH20	STYR	0.500	LT	
24	RDUC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UM20 UM20	T13DCP TCLEA	0.700 0.510	LT LT	
2 4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UH20	TCLEE	1.600	LT	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGŁ	UH20	TRCLE	0,500	ĹŤ	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM20	XYLEN	0.840	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL,	UN18	1247CB	1.800	LT	
C4 C4	RDWC*18 RDWC*18	CGW	04 - feb - 1992 04 - feb - 1992	63.0	UGL	UN18	120CLB	1.700	LT	
C4	RDWC*18	CGM	04-feb-1992	63.0 63.0	ugl, ugl	UM18 UM18	120PH 13DCLB	2.000 1.700	ND LT	R
č4	RDWC*18	CCH	04-feb-1992	63.0	UGL	UM18	14DCLB	1.700	LT	
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UM18	245TCP	5.200	LT	
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UN18	246TCP	4.200	LT	
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UN18	24DCLP	2.900	LT	
C4	RDUC*18	CGW	04-feb-1992	63.0	UGL	UH18	24DMPN	5.800	LT	
C4 C4	RDWC*18 RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18	24DNP 24DNT	21.000	LT	
č4	RDMC*18	CCM	04-feb-1992	63.0	UGL	UN18 UN18	26DNT	4.500 0.790	LT LT	
č4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UH18	2CLP	0.990	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN18	2CHAP	0.500	ĹŤ	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN18	2NNAP	1.700	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN18	2NP	3.900	LT	
C4 C4	RDWC*18 RDWC*18	CGW	04-feb-1992	63.0	UGL	UH18	ZNANIL.	4.300	LT	
<u> </u>	RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	ugl Ugl	UM18 UM18	2NP 33DCBD	3.700 12.000	LT LT	
2 4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM18	3NANIL	4.900	LT	
C4	RDWC=18	COM	04-feb-1992	63.0	UGL	UN18	46DN2C	17.000	ĹŤ	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UR18	48RPPE	4.200	LT	
C4	RDWC*18	COM	04-feb-1992	63.0	UGL	UM18	4CANIL	7.300	LT	
C4	RDUC*18	CGW	04-feb-1992	63.0	UGL	UN18	4CL3C	4.000	LT	
C4 C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UH18	4CLPPE	5.100	LŤ	
C4	RDWC*18 RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18 UM18	4MP 4MANIL	0.520 5.200	LT	
64	RDWC*18	CGW	04-feb-1992	63.0	UGL	UM18	4NP	12.000	LT LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UM18	ABHC	4.000	ND	R
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UN18	ACLDAN	5.100	ND	Ř
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UH18	AENSLF	9.200	ND.	Ř

Site ID	<u>Field (D</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u> 2613</u>	Internal Std. Code
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UH18	ALDRN	4.700	ND	R
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	LM18	ANAPHE	1.700	LT	·-
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UM18	ANAPYL	0.500	LT	
C4 C4	RDWC*18	COM	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UN18 UN18	ANTRC B2CEXM	0.500 1.500	LT LT	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	LM18	82CIPE	5.300	ĻŤ	
C4	RDWC*18	COM	04-feb-1992	63.0	UGL	UN18	BZCLEE	1.900	LT	
C4 C4	RDWC*18 RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UN18 UN18	B2EHP BAANTR	4.800 1.600	LT LT	
C4	ROWC*18	CCW	04-feb-1992	63.0	UGL	UN18	BAPYR	4.700	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN18	B8FANT	5.400	LT	
C4 C4	RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UN18 UN18	BBHC BBZP	4.000 3.400	ND LT	R
64	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN18	BENSLF	9.200	ND	R
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UM18	BENZID	10.000	ND:	R
C4 C4	RDWC*18 RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18 UM18	BENZOA BGH1PY	13.000 6.100	LT LT	
č4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UN18	BKFANT	0.870	LT	
C4	RDWC*18	COM	04-feb-1992	63.0	UGL	UN18	BZALC	0.720	LT	
C4 C4	RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UM18	CHRY	2.400	LT	
3 4	RDUC*18	CCH	04-feb-1992	63.0	UGL	UN18 UN18	CL6BZ CL6CP	1.600 8.600	LT LT	·
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UH18	CL6ET	1.500	LT	
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL	UM18	DBAHA	6.500	LT	_
	RDWC*18 RDWC*18	CCA	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UN18 UN18	DBHC DBZFUR	4.000 1.700	ND LT	R
C4	RDWC*18	CON	04-feb-1992	63.0	UGL	UN18	DEP	2.000	ĹŤ	
C4 C4	RDUC*18	CON	04-feb-1992	63.0	UGL	UM18	DLDRN	4.700	ND	R
C4 C4	RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UM18 UM18	DMBP	1.500 3.700	LT LT	
C4	ROUC*18	CGW	04-feb-1992	63.0	UGL	UN18	DNOP	15.000	LT	
C4	RDUC*18	CGW	04-feb-1992	63.0	UGL	UN18	ENDRN	7.600	ND	R
C4 C4	RDWC*18	CGW	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UH18 UH18	ENDRNA ENDRNK	8.000 8.000	ND ND	Ř R
č4	RDUC*18	COM	04-feb-1992	63.0	UGL	UM18	ESFSO4	9.200	ND	Ř
C4	RDWC*18	CGH	04-feb-1992	63.0	UGL	UK18	FANT	3.300	LT	
C4 C4	RDMC*18	COR	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18 UM18	Firene GCLDAN	3.700 5.100	LT ND	R
64	RDMC*18	CCA	04-feb-1992	63.0	UGL	UM18	HCBD	3.400	LT	ĸ
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UN18	HPCL	2.000	MD	R
C4 C4	RDWC*18	CCM	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18 UM18	HPCLE ICDPYR	5.000 8.600	KD 1.7	R
24	RDUC*18	CCM	04-feb-1992	63.0	UGL	UM18	ISOPHR	4.800	LT LT	
C4	RDWC*18	CGM	04 - feb - 1992	63.0	UGL	UM18	LIM	4.000	ND	R
C4	RDWC*18	CGM	04-feb-1992 04-feb-1992	63.0	UGL	UM18	MEXCLR	5.100	ND	R
C4 C4	RDWC*18	CGA CGA	04-feb-1992	63.0 63.0	UGL	UN18 UN18	NAP XB	0.500 0.500	LT LT	
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM18	NHDMEA	2.000	KD.	R
C4	RDVC*18	CGW	04-feb-1992	63.0	UGL	UN18	NNDNPA	4.400	LT	
C4 C4	RDWC*18	CCA	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UN18 UN18	NNDPA PCB016	3.000 21.000	LT ND	R
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UN18	PCB221	21.000	XD	Ř
C4	ROUC*18	CGW	04-feb-1992	63.0	UGL	UK18	PCB232	21.000	NC	R
C4 C4	RDWC*18	CGW	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18 UM18	PCB242 PCB248	30.000 30.000	ND ND	R
c4	RDWC*18	CCA	04-feb-1992	63.0	UGL	UN18	PCB254	36.000	KD	R R
C4	RDWC*18	CGW	04-feb-1992	63.0	UGL,	UM18	PCB260	36.000	KD	R
C4	RDUC*18	CCF	04-feb-1992	63.0	UGL	UN18	PCP	18.000	LT	
54 64	RDWC*18	CGH	04-feb-1992 04-feb-1992	63.0 63.0	UGL UGL	UM18 UM18	PHANTR PHENOL	0.500 9.200	LT LT	
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	UH18	PPDOD	4.000	ND	R
C4 C/	RDVC*18	CGM	04-feb-1992	63.0	UGL	UN18	PPOOE	4.700	NO.	R
C4 C4	RDWC*18 RDWC*18	CCA	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UN18 UN18	PPOOT PYR	9.200 2.800	MED LT	Ř
C4	RDWC*18	CGM	04-feb-1992	63.0	UGL	UM18	TXPHEN	36.000	ND	R
C4	RDVC*18	CGM	04-feb-1992	63.0	UGL	LM18	UNK582	7.000		S
C4 . C4	RDWC*18 RDWC*18	CCA	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UN18 UN18	unk648 unk686	20.000 10.000		S S
<u>~</u>	RDWC*18	CGM	04-feb-1992	63.0	UGL	UN32	135TNB	0.449	LT	3
C4	RDWC*18	CCM	04-feb-1992	63.0	UGL	U U 32	13DNB	0_611	ĻŢ	
C4 C4	RDUC*18	CCM	04-feb-1992	63.0	UGL	UN32	246TNT	0.635	LT	
C4 C4	RDVC*18 RDVC*18	CGA	04-feb-1992 04-feb-1992	63.0 63.0	ugl ugl	UW32 UW32	240NT 260NT	0.064 0.074	LT LT	
24	RDWC*18	CGM	04-feb-1992	63.0	UGL	UN32	KMOX	1.210	LT	

Site ID	Field ID Media	<u>Date</u>	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	flag	Internal Std. Code
.		A/ 6-5 1000							
C4 C4	RDWC*18 CGW RDWC*18 CGW	04-feb-1992 04-feb-1992	63.0 63.0	UGL	UN32 UN32	NB RDX	0.645 1.170	LT LT	
C4	RDWC*18 CGW	04-feb-1992	63.0	UGL	∪ ⊌32	TETRYL	2.490	ĹŤ	
C4 CDH-2	RDUC*18 CGW	04-feb-1992 23-jan-1992	63.0 55.0	Links	00	PH	7.530		ĸ
CDH-2	RDMC*20 CGM RDMC*20 CGM	23-jan-1992	55.0	ugl Ugl	SD23 SB01	AG HG	0.250 0.243	LT LT	
CDH-2	RDWC*20 CGW	23-jan-1992	55.0	UGL	SD21	SE	3.020	LT	
CDH-2	RDWC*20 CGW	23- jan-1992 23- jan-1992	55.0	UGL	SD 09	TL	6.990	LT	
CDH-2	RDWC*20 CGW RDWC*20 CGW	23- jan- 1992	55.0 55.0	UGL UGL	SD 20 SD 22	PB AS	1.260 2.540	LT LT	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	UH20	111TCE	0.500	LŤ	
CDH-2 CDH-2	RDWC*20 CGW	23- jan-1992 23- jan-1992	55.0	UGL	UH20	112TCE	1.200	LT	
CDH-2	RDMC*20 CGM RDMC*20 CGM	23- jan-1992	55.0 55.0	UGL	UM20 UM20	11DCE 11DCLE	0.500 0.6 8 0	LT LT	
CDH-2	RDWC*20 CGW	23-jan-1992	55.0	UGL	UM20	120CE	0.500	LT	
CDH-2 CDH-2	RDUC*20 CGW	23- jan- 1992 23- jan- 1992	55.0	UGL	UH20	12DCLE	0.500	LT	
CDH-2	RDWC*20 CGW RDWC*20 CGW	23- jan- 1992	55.0 55.0	UGL	UM20 UM20	12DCLP 2CLEVE	0.500 0.710	LT LT	
CDH-2	RDWC*20 CGW	23-jan-1992	55.0	UGL.	UH20	ACET	13.000	LT	
CDH-2 CDH-2	RDWC*20 CGW RDWC*20 CGW	23-jan-1992 23-jan-1992	55.0 55.0	UGL	UM20	ACROLN	100.000	ND	R
CDH-2	RDWC*20 CGW RDWC*20 CGW	23- jan-1992	55.D	UGL	UM20 UM20	ACRYLO SRDCLM	100.000 0.590	ND LT	R
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	UH20	C130CP	0.580	LT	
CDH-2 CDH-2	RDWC*20 CGW	23- jan-1992 23- jan-1992	55.0	UGL	UM20	C2AVE	8.300	LT	
-CDH-2	RDWC*20 CGW RDWC*20 CGW	23- Jan- 1992	55.0 55.0	UGL	UM20 UM20	C2H3CL C2H5CL	2.600 1.900	LT LT	
CDH-2	RDWC*20 CGW	23 - jan - 1992	55.0	UGL	UH20	Сене	0.500	LT	
CDH-2	RDMC*28 CGM	23- jan-1992	55.0	UGL	UH20	CCL3F	1.400	LT	
CDH-2 CDH-2	RDWC*20 CGW RDWC*20 CGW	23-jan-1992 23-jan-1992	55.0 55.0	UGL UGL	UM20 UM20	CCL4 CH2CL2	0.580 2.300	LT LT	
CDH-2	RDMC*20 CGM	23- Jan-1992	55.0	UGL	UM20	CH3BR	5.800	ĹŤ	
CDH-2	RDWC*20 CGW	23 - jan - 1992	55.0	UGL	UN20	CH3CL	3.200	LT	
CDH-2 CDH-2	RDWC*20 CGW RDWC*20 CGW	23- jan-1992 23- jan-1992	55.0 55.0	ugl ugl	UM20 UM20	CHCL3	2.600 0.500	LT LT	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	UH20	CL2BZ	10.000	ND	R
CDH-2	RDVC*20 CGW	23- jan-1992	55.0	UGL	UN20	CLCSH5	0.500	LT	
CDH-2	RDMC*20 CGM RDMC*20 CGM	23- jan-1992 23- jan-1992	55.0 55.0	UGL UGL	UM20 UM20	CS2 DBRCLM	0.500 0.670	LT LT	
CDH-2	RDMC*20 CGM	23- jan-1992	55.0	UGL	UH20	ETC6HS	0.500	LT	
CDH-2 CDH-2	RDWC*20 CGM RDWC*20 CGM	23-jan-1992 23-jan-1992	55.0	UGL	UK20	MEC6H5	0.500	LŢ	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0 55.0	UGL UGL	UN20 UN20	MEK	6.400 3.000	LŤ LT	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	UM20	MNBK	3.600	LT	
CDH-2 CDH-2	RDWC*20 CGW RDWC*20 CGW	23-jan-1992 23-jan-1992	55.0 55.0	UGL UGL	UM20 UM20	STYR T13DCP	0.500 0.700	LT	
CDH-2	ROWC*20 CGM	23- jan-1992	55.0	UGL	UM20	TCLEA	0.510	LT LT	
CDH-2	RDMC*20 CGW	23-jan-1992	55.0	UGL	UM20	TCLEE	1.600	LT	
CDH-2 CDH-2	ROWC*20 CGW RDWC*20 CGW	23 - jan - 1992 23 - jan - 1992	\$5.0 55.0	UGL UGL	UM20 UM20	TRCLE XYLEN	0.500 0.840	ĻŢ	
CDH-2	RDWC*20 CGW	23-jan-1992	55.0	UGL	SS10	AL	141.000	LT LT	
CDH-2	RDWC*20 CGW	23-jan-1992	55.0	UGL	SS10	BA	108.000		
CDH-2	RDWC*20 CGW RDWC*20 CGW	23-jan-1992 23-jan-1992	55.0 55.0	UGL	SS10 SS10	BE	5.000 76600.000	LT	
CDH-2	RDWC*20 CGW	23- jan- 1992	55.0	UGL	\$\$10 \$\$10	CX	4.010	LT	
CDH-2	RDWC*20 CGW	23- jan- 1992	55.0	UGL	SS10	co	25.000	ĻT	
CDH-2 CDH-2	RDWC*20 CGW RDWC*20 CGW	23 - jan - 1992 23 - jan - 1992	55.0 55.0	UGL UGL	\$\$10 \$\$10	CR	6.020 8.090	LT	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	\$\$10 \$\$10	CU FE	38.800	LT LT	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	SS10	K	2430.000		
CDH-2 CDH-2	RDWC*20 CGW RDWC*20 CGW	23-jan-1992 23-jan-1992	55.0 55.0	UGL UGL	SS10 SS10	MG	27400.000 2.750	LT	
CDH-2	RDWC*20 CGW	23-jan-1992	55.0	UGL	SS10	MN NA	2800.000	Li	
CDH-2	RDWC*20 CGW	23- Jan-1992	55.0	UGL	SS10	NI	34.300	LT	
CDH-2	RDWC*20 CGM RDWC*20 CGM	23- jan-1992 23- jan-1992	55.0 55.0	UGL	SS10 SS10	SB V	38.000 11.000	LT	
CDH-2	RDWC*ZO CGW	23-jan-1992	55.0	UGL	\$\$10 \$\$10	V ZN	21.100	LT LT	
CDH-2	RDWC*20 CGW	23- jan-1992	55.0	UGL	UH18	124TCB	1.800	LT	
CDH-2 CDH-2	RDWC*20 CGW	23- jan-1992 23- jan-1992	55.0 55.0	UGL UGL	UN18 UN18	120CL8 120PH	1.700 2.000	LT	
CDH-5	RDWC*20 CGW	23- jan-1992	35.0 35.0	UGL	UN18	12EPCH	6.000	ND	R S
CDH-2	RDWC*20 CGM	23- jan-1992	55.0	UGL	UN18	13DCLB	1.700	LŢ	-
CDH-2 CDH-2	RDWC*20 CGM	23- jan-1992	55.0	UGL	UN18	140CL8	1.700	LŤ	
CDH-2	RDWC*20 CGW	23-jan-1992 23-jan-1992	55.0 55.0	UGL UGL	UN18 UN18	245TCP 246TCP	5.200 4.200	LT LT	
·· -		/					4.604		

Site ID	<u>Field ID</u>	<u>∺ed∮a</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method		Val_ue	<u>Flag</u>	Internal Std. Code
CDH-Z	RDWC*20	CGM	23- jan-1992	55.0	UGL	UH18	24DCLP	2.900	LT	
CDH-2	RDWC*20	CGW	23 - jan - 1992	55.0	UGL	UM18	24DMPN	5.800	LT	
CDH-2	RDWC*20	CCM	23- jan-1992	55.0	UGL	UM18	24DNP	21.000	LT	
CDH-2	RDWC*20	CCM	23- jan-1992	55.0	UGL	UM18	24DNT	4.500	ĻŢ	
CDH-2	RDVC*20	CGM	23 - jan - 1992	55.0	UGL	UM18	26DNT	0.790	ĻŢ	
CDH-2	RDWC*20 RDWC*20	CCM	23 - jan - 1992 23 - jan - 1992	55.0 55.0	ugi. Ugl	UN18	2CLP 2CNAP	0.990	LT	
CDH-2	RDWC*20	CGM	23- jan-1992	55.0	UGL	UM18 UM18	ZKNAP	0.500 1.700	LT LT	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UN18	2MP	3.900	ĻŤ	
CDH-2	RDWC*20	CGM	23- jan-1992	55.0	UGL,	UH18	ZNANIL	4.300	LT	
CDH-2	ROWC*20	CGW	23- jan-1992	55.0	UGL	UH18	2MP	3.700	LT	
CDH-2	SDMC#50	COM	23- jan-1992	55.0	UGL	UM18	330CB0	12.000	LT	
CDH-2	RDWC*20	CCM	23- jan-1992	55.0	UGL	UN18	SHARIL (ADMIC	4.900	LT	
CDH-2 CDH-2	RDWC*20 RDWC*20	CGM	23-jan-1992 23-jan-1992	55.0 55.0	UGL UGL	UM18 UM18	46DM2C 4BRPPE	17.000 4.200	LT LT	
CD#-2	RDWC*20	CCM	23- jan-1992	55.0	UGL	UM18	4CANIL	7.300	LT	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM 18	4CL3C	4.000	LŦ	
CDH-2	RDWC*20	CGW	23-jan-1992	55.0	UGL	UN18	4CLPPE	5.100	LT	
CDH-2	RDWC*ZO	CGW	23 - jan-1992	55.0	UGL	UN18	4MP	0.520	LT	
CDH-Z	RDWC*20	CGW	23-jan-1992	55.0	UGL	UM18	4NANIL	5.200	LT	
CDH-2 CDH-2	RDWC*20 RDWC*20	CGM	23-jan-1992 23-jan-1992	55.0 55.0	UGL	UN18	4NP	12.000	LT	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL UGL	UM18 UM18	ABRC ACLDAN	4.000 5.100	ND ND	R R
CDH-2	RDUC*20	CCM	23- jan-1992	55.0	UGL	UM18	AENSLF	9.200	ND	Ř
CDH-Z	RDWC*20	CGM	23- jan-1992	55.0	UGL,	UH18	ALDRN	4.700	ND	Ř
CD#-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UH18	ANAPHE	1.700	LŦ	
CDH-S	RDUC*20	CGW	23- jan-1992	55.0	UGL	UM18	ANAPYL	0.500	LT	
CDH-2	ROWC*20	CCM	23- jan-1992	55.0	UGL	UM18	ANTRO	0.500	LT	
CDH-2 CDH-2	RDWC*20 RDWC*20	CGM	23- jan-1992 23- jan-1992	55.0 55.0	UGL	UM18 UM18	B2CEXIA B2CIPE	1.500 5.300	LT LT	
CD4-5	RDUC*20	CCA	23- jan-1992	55.0	UGL	UM18	BZCLEE	1.900	LT	
CDH-2	ROWC*20	CGW	23 - jan- 1992	55.0	UGL	UN18	BZEHP	4.800	ĹΤ	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UH18	BAANTR	1.600	LT	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM18	BAPYR	4.700	LT	
CDH-2	RDWC*20	CCM	23-jan-1992	55.0	UG1.	UN18	BBFANT	5,400	LT	_
CDH-2 CDH-2	RDWC*20 RDWC*20	CCM	23- jan-1992 23- jan-1992	55.0 55.0	UGL	UM18 UM18	BBHC BBZP	4.000 3.400	ND LT	R
CDH-2	RDUC*20	CCH	23- Jan-1992	55.0	UGL	UH18	BENSLF	9.200	ND	R
CDH-2	RDUC*20	CGW	23- jan-1992	55.0	UGL	UN18	BENZID	10.000	ND	Ř
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UH18	BENZOA	13.000	1.T	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM18	BGHIPY	6.100	LT	
CDH-2	RDUC*20 RDUC*20	CCH	23-jan-1992 23-jan-1992	55.0 55.0	NGL	UN18	8KFANT	0.870	LĪ	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM18 UM18	BZALC CHRY	0.720 2.400	LT LT	
CDH-2	RDWC*20	CGW	23- ian-1992	55.0	UGL	UN18	CL68Z	1.600	LŤ	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0		UM18	CL6CP	8,600	LT	
CDH-S	RDWC*20	CCM	23-jan-1992	55.0	UGL	UN18	CL6ET	1.500	LT	
CDH-2	RDWC*20	CGM	23- jan-1992	55.0	UGL	UM18	DBAHA	6.500	LŤ	
CDH-2	RDUC*20	CGW	23- jan-1992	55.0	UGL	UM18	DBHC	4,000	MD	R
CDH-2 CDH-2	RDWC*20 RDWC*20	CCM	23-jan-1992 23-jan-1992	55.0 55.0	UGL UGL	UM18 UM18	DBZFUR	1.700	LŢ	
CDH-2	RDUC*20	CGW	23- jan-1992	55.0	UGL	UN18	DEP DLDRM	2.000 4.700	LT MD	R
CDH-2	RDUC*20	CCM	23- jan-1992	55.0	UGL	UN18	DIEP	1.500	ίī	•
CDH-2	RDMC*20	CGM	23-jan-1992	55.0	UGL	UN18	DNBP	3,700	ĹŤ	
CDH-2	RDWC*20	CGW	23-jan-1992	55.0	UGL	UH18	DHOP	15.000	LŤ	
CDH-2	RDWC*20	CGT	23- jan-1992	55.0	UGL	UN 18	ENDRN	7.600	HD	R
CDH-2	RDWC*20 RDWC*20	CCM	23 - jan - 1992 23 - jan - 1992	55.0 55.0	UGL	UN18 UN18	ENDRNA	8.000	MD	R
CDH-2 CDH-2	RDWC*20	CGM	23- jan- 1992	55.Q	UGL UGL	UH18	ENDRNK ESF\$04	8.000 9.200	XD XD	R R
CDH-2	RDWC*20	CGM	23- jan-1992	55.0	UGL	UM18	FANT	3.300	ĻŤ	ĸ
CDH-Z	RDWC*20	CGW	23-jan-1992	55.0	UGL	UN18	FLRENE	3.700	ĹŤ	
CDH-2	RDWC*ZO	CGW	23- jan-1992	55.0	UGL	UN18	GCLDAN	5.100	ND:	R
CDH-2	SDAC+50	CGW	23- jan-1992	55.0	UGL	UH18	HCBO	3.400	LT	_
CDH-2	RDWC*20	CCM	23- jan-1992	55.0	UGL	UN18	HPCL	2.000	HD.	R
CDH-2	RDWC*20	CCA	23- jan-1992	55.0 55.0	UGL	UM18	HPCLE	5.000 9.400	NO LT	R
CDH-2 CDH-2	RDWC*20 RDWC*20	CCM	23 - jan - 1992 23 - jan - 1992	55.0	ugl, ugl	UM18 UM18	ICDPYR ISOPHR	8,400 4,800	LT LT	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM18	LIX	4.000	MD	R
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM18	MEXCLR	5,100	MD	Ř
CDH-2	RDWC*ZO	CCM	23- jan-1992	55.0	UGL	UH18	KAP	0.500	LT	
CDH-2	RDVC*20	CCW	23 - jan - 1992	55.0	UGL	UN18	NB	0.500	LT	
CDH-2	RDWC*20	CSM	23- jan-1992	55.0	UGL	UH18	NNDMEA	2.000	ND	R
CDH-2	RDUC*20	CGW	23- jen-1992	55.0	UGL,	UM18	NNDNPA	4.400	LŢ	
CDH-2	RDWC*20	CGH	23- jan-1992	55.0	UGL	UN18	NNDPA	3.000	ŁT	

<u>șite ID</u>	<u>Field ID</u>	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
CDN-2	RDWC*20	CGM	23- jan-1992	55.0	UGL	UH18	PCB016	21.000	NO	R
CDH-2	RDWC*20	CEM	23-jan-1992	55.0	UGL	UM18	PCBZ21	21.000	ND	R
CDH-2	RDMC*20	CGM	23- jan-1992	55.0	UGL	UN18	PCB232	21.000	NO	Ř
CDH-5	RDUC=20	CCM	23 - jan - 1992	55.0	UGL	LM18	PCB242	30.000	ND	R
CDH-2 CDH-2	RDWC*20 RDWC*20	CCM	23 - jan - 1992 23 - jan - 1992	55.0 55.0	UGL UGL	UM18 UM18	PCB248 PCB254	30.000 36.000	ND ND	R R
CDH-2	RDWC*20	CCM	23- jan-1992	55.0	UGL	UN18	PCB260	36.000	ND	Ř
CDH-2	RDUC*20	CGA	23 - jan - 1992	55.0	UGL	UM18	PCP	18.000	LT	~
CDH-2	RDUC*20	CGM	23 - jan - 1992	55.0	UGL	UM18	PHANTR	0.500	LT	
CDH-2 CDH-2	RDUC*20 RDUC*20	CGM	23- jan-1992 23- jan-1992	55.0 55.0	UGL UGL	UM18 UM18	PHENOL PPODD	9.200 4.000	LT NO	R
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UM18	PPODE	4.700	NEO NEO	R
CDH-2	RDMC*20	CGW	23- jan-1992	55.0	UGL	UN18	PPOOT	9.200	NO	R
CDH-2 CDH-2	RDWC*20 RDWC*20	CCM	23- jan-1992 23- jan-1992	55.0 55.0	uct.	UN18	PYR	2.800	LT	_
CDH-2	RDUC*20	CCA	23- Jan-1992	55.0	UGL UGL	UN18 UN18	TXPHEN UNK655	36.000 100.000	ND	R S
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UN18	UNK693	70,000		Š
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UW32	135TN8	0.449	LT	
CDH-2 CDK-2	RDWC*20 RDWC*20	CCH	23 - jan - 1992 23 - jan - 1992	55.0 55.0	UGL	VM32	130 NB 246 TNT	0.611	LT	
CDH-2	RDWC*20	CGM	23- jan-1992	55.0	UGL	UW32 UW32	2401W1	0.635 0.064	LT LT	
CDN-2	RDWC*20	CGM	23- jan- 1992	55.0	UGL	UW32	260NT	0.074	ĹŤ	
CDH-2	RDWC*20	CGW	23- jan-1992	55.0	UGL	UN32	HMX	1.210	LT	
CDH-2 CDH-2	RDWC*20 RDWC*20	CCH	23 - jan - 1992	55.0	UGL	UV32	NB	0.645	LŢ	
- CDH-2 -	RDWC*20	CGM	23- jan-1992 23- jan-1992	55.0 55.0	UGL	UW32 UW32	RDX TETRYL	1.170 2.490	LT LT	
CDH-2	RDWC*91	CGM	28-jan-1992	55.0	UGL	00	TOC	5.250		
CDH-2	RDWC*91	CCM	28- jan-1992	55.0	UGL	00	TOX	212,000		
CDH-2	RDUC*91	CGM	28- jan-1992	55.0		00	PH	6.990		
MU9	RDUC*16 RDUC*16	CCM	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	\$801 \$022	KG AS	0.24 3 2.540	LT LT	
Mi/9	RDWC*16	CCM	29-jan-1992	70.0	UGL	SS10	ÃĪ.	141.000	ĹŤ	
MW9	RDUC*16	COM	29- jan-1992	70.0	UGL	\$\$10	BA	165.000		
MW9 MW9	RDWC*16	CGM	29- jan-1992 29- jan-1992	70.0	UGL	SS10	BE	5.000	LŤ	
MW9	RDWC*16	CGW	29- jan-1992	70.0 70.0	UGL UGL	\$\$10 \$\$10	CA CD	59900.000 4.010	LT	
MLI9	RDWC*16	CGW	29-jan-1992	70.0	UGL	\$\$10	8	25.000	LT	
1449 1415	RDWC*16	CGM	29-jan-1992	70.0	UGL	\$\$10	CR	6.020	LT	
Mu9 Mu9	RDUC*16	CER	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	SS10 SS10	ÇU FE	8.090 38.800	LT LT	
MW9	RDUC*16	CCW	29- jan-1992	70.0	UGL	SS10	X	6190.000	LI	
NW9	RDWC*16	CGW	29- jan- 1992	70.0	UGL	SS10	NG	23500.000		
MU9 MU9	RDUC*16	CGW	29-jan-1992	70.0	UGL	\$\$10	MIN	4.370		
MU9	RDUC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	\$\$10 \$\$10	KA KI	7400.000 34.300	LT	
MW9	RDMC*16	CGW	29- jan-1992	70.0		SS10	SB	38.000	ĻŢ	
MM9	RDWC*16	CGW	29- jan-1992	70.0	UGL	\$\$10	٧	11.000	LT	
MU9 MU9	RDUC*16	CGH	29-jan-1992	70.0	UGL	SS10	ZN	21.100	LT	
MM3	RDWC*16 RDWC*16	CCM	29-jan-1992 29-jan-1992	70.0 70.0	UGL	SD09 SD20	TL P8	6.990 1.260	LT LT	
MU9	RDMC*16	CCM	29- jan- 1992	70.0	UGL	00	TOC	3.020	L 1	
MW9	RDWC*16	CGW	29- jan- 1992	70.0	UGL	UN18	124TCB	1.800	LT	
MW9 MW9	RDWC*16	CGM	29-jan-1992 29-jan-1992	70.0 70.0	UGL	UM18	120CL8	1.700	LT	_
MW9	RDWC*16	CCA	29-jan-1992	70.0	UGL	UM18 UM18	12DPH 130CLB	2.000 1.700	ND LT	R
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN18	14DCLB	1.700	LT	
MU9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UM18	245TCP	5.200	LT	
MW9 MW9	RDWC*16 RDWC*16	COM	29- jan-1992	70.0	UGL	UM18	246TCP	4.200	LŤ	
MES.	RDUC*16	CCM	29- jan- 1992 29- jan- 1992	70.0 70.0	ugl ugl	UN18 UN18	24DCLP 24DMPN	2.900 5.800	LT LT	
MW9	RDWC*16	CGW	29- jan-1992	70.0	UG1,	UN18	24DNP	21.000	ĻŤ	
NW9	RDWC*16	CGM	29- Jan-1992	70.0	UGL	UM18	24DNT	4.500	LT	
1469 1469	RDWC*16 RDWC*16	COM	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UM18 UM18	260NT 2CLP	0.790 0.990	LT	
MW9	RDWC*16	CCM	29- jan-1992	70.0	UGL	UN18	2CNAP	0.500	LT LT	
NW9	RDWC*16	CEM	29- jan-1992	70.0	UGL	UH18	2E1HXL	7.000		s
MW9	RDWC*16	CCH	29- jan- 1992	70.0	UGL	UM18	ZHNAP	1.700	LT	
MW9 MW9	RDWC*16	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18	2MP	3.900 4.300	LT	
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL UGL	UM18 UM18	2NANIL 2NP	4.300 3.700	LT LT	
MW9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UM18	330 CBD	12.000	LT	
MW9	RDUC*16	CGM	29- jan-1992	70.0	UGL,	UH18	3MANIL	4.900	LT	
MW9 MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM18	460N2C	17.000	LT	
DW7	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM18	4BRPPE	4.200	LT	

Site ID	<u>Field ID</u>	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry.	Value	Flag	Internal Std. Code
MU9	RDWC*16	CGM	29-jan-1992	70.0	UGL	LM18	4CANIL	7.300	LT	
MW9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UN18	4CL3C	4.000	Lī	
MM9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN18	4CLPPE	5.100	LT	
MH9	RDWC*16	CGM	29-jan-1992 29-jan-1992	70.0	UGL	UN18	4HP	0.520	LT	
14149 14149	RDWC*16 RDWC*16	CGM	29- jan-1992	70.0 70.0	UGL	UN18 UN18	4NANIL 4NP	5.200 12.000	LT LT	
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UH18	ABHC	4.000	ND	R
жэ	RDWC*16	CGM	29- jan-1992	70.0	UGL	UM18	ACLDAN	5.100	MD	Ř
MW9	RDWC*16	COM	29-jan-1992	70.0	UGL	UN18	AENSLF	9.200	ND	R
MW9	RDWC*16 RDWC*16	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UN18	ALDRN	4.700	ND	R
MW9 MW9	RDWC*16	CCH	29-jan-1992	70.0	UGL	UM18 UM18	ANAPNE ANAPYL	1.700 0.500	LT LT	
MW9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UH18	ANTRC	0.500	ĻŤ	
MJ9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UN18	B2CEXXI	1.500	LT	
MH9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UM18	B2CIPE	5.300	LŤ	
MU9 MU9	RDWC*16 RDWC*16	CGA	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UN18 UN18	B2CLEE B2EHP	1.900 4.800	LT	
MW9	RDWC*16	CGM	29- Jan-1992	70.0	UGL	UN18	BAANTR	1.600	LT LT	
MW9	RDUC*16	CGW	29-jan-1992	70.0	UGL	UN18	BAPYR	4,700	LT	
MWÝ	ROUC*16	CCM	29- jan-1992	70.0	uct.	UN18	BBFANT	5.400	LŤ	
HW9	RDWC*16	CCM	29- jan-1992	70.0	UGL	UN18	BBHC	4.000	ND	R
Mu9 Mu9	RDWC*16 RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM18 UM18	BBZP Benslf	3.400 9.200	LT	
MW9	RDWC*16	CGN	29- jan-1992	70.0	UGL	UN18	BENZID	10.000	ND ND	Ř R
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN18	BENZOA	13.000	LT	•
MW9	RDUC*16	CGW	29-jan-1992	70.0	UGL	UN18.	BGH I PY	6.100	LT	
MU9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN18	BKFANT	0.870	ĻŢ	
MW9 MW9	RDWC*16 RDWC*16	CGW	29- jan-1992 29- jan-1992	70.0 70.0	ugl Ugl	UN18 UN18	BZALC CHRY	0. <i>7</i> 20 2.400	LT LT	
MW9	RDUC*16	CCM	29- jan-1992	70.0	UGL	UH18	CL68Z	1.600	ĹŤ	
MU9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UK18	CL6CP	8.600	LŤ	
MN9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN18	CL6ET	1.500	LT	
MW9	RDWC*16 RDWC*16	CGM	29-jan-1992 29-jan-1992	70.0 70.0	ngt ngt	UN18	DBAHA	6.500	LT	_
MW9 MW9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UN18 UN18	DBHC DBZFUR	4.000 1.700	NO LT	R
MW9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UN18	DEP	2.000	ĹŤ	
MW9	RDWC*16	CGW	29-jan-1992	70.0	UGL,	UN18	DLDRM	4.700	HID	R
HW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN18	DMP	1.500	LŤ	
MW9 MW9	RDWC*16 RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	ugl ugl	UM18 UM18	DNEP	3.700 15.000	LT LT	
MLI9	RDWC*16	CGM	29- jan-1992	70.0	UGL	UN18	ENDRN	7.600	MD	R
ML9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM18	ENDRNA	8.000	ND	Ř
MW9	RDUC*16	CGW	29-jan-1992	70.0	UGL	UN18	ENDRNK	8.000	ND	R
MW9	RDWC*16 RDWC*16	CGW	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UN18	ESFSO4	9.200	ND	R
MW9 MW9	RDWC*16	CGM	29- jan-1992	70.0		UM18 UM18	FANT FLRENE	3.300 3.700	LT LT	
MW9	RDUC*16	CCH	29- jan-1992	70.0	UCL	UN18	GCLDAN	5.100	ND	R
MW9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UN18	HCBD	3.400	LT	
NW9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UH18	HPCL	2.000	ЖD	R
MW9 MW9	RDWC*16 RDWC*16	CCM	29-jan-1992 29-jan-1992	70.0 70.0	ugl	UM18 UM18	HPCLE ICDPYR	5.000 8.600	ND LT	R
HN9	RDUC*16	CGH	29- jan-1992	70.0	UGL	UN18	ISOPHR	4.800	LT	
MU9	RDWC*16	CCM	29- jan-1992	70.0	UGL	UN18	LIN	4.000	ND	R
MU9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UN18	MEXCLR	5,100	ND	R
HW9	RDMC*16	CGW	29- jan-1992	70.0	UGL	UK18	NAP	0.500	LŢ	
MW9 MW9	RDWC*16 RDWC*16	CCA	29- jan-1992 29- jan-1992	70.0 70.0	NGT NGT	UM18 UM18	NR NXDMEA	0.500 2.000	LŤ ND	R
MW9	RDWC*16	CCH	29- jan-1992	70.0	UGL	UN18	HNDNPA	4.400	LT	•
MN9	RDWC*16	CCA	29- jan- 1992	70.0	UGL	UM18	NNOPA	3.000	LT	
ML/9	RDUC*16	CGW	29- jan-1992	70.0	UGL	UM18	PCB016	21.000	ND	R
MW9 MW9	RDWC*16 RDWC*16	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UN18 UN18	PCB221 PCB232	21.000 21.000	ND ND	R R
MU9	RDWC*16	ÇGU	29- jan-1992	70.0	UGL	UM18	PC8242	30.000	ND	R R
MU9	RDWC*16	CCM	29-jan-1992	70.0	UGL	UM18	PC8248	30.000	ND	Ř
MMA	RDWC*16	CCM	29- jan-1992	70.0	UGL	UN18	PC8254	36.000	NĐ	R
MW9	RDWC*16	CEM	29- jan-1992	70.0	UGL	UM18	PC8260	36.000	IED 1.7	R
KW9 KW9	RDWC*16 RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM18 UM18	PCP PHANTR	18.000 0.500	LT LT	
MW9	RDUC*16	CGM	29- jan-1992	70.0	UGL	UN18	PHENOL	9.200	LT	
ML/9	RDWC*16	CGM	29- jan-1992	70.0	UGL	UM18	PPODD	4.000	ND	R
HU9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UH18	PPDDE	4.700	ND	R
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM18	PPODT	9.200	ND	R
MH9 MH9	RDWC*16 RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18 UM18	PYR TXPHEN	2.800 36.000	ĻT ND	R
ne,			-, ,	,		Q111Q		20.000		•

			_			Analytical				Internal
Site ID	<u>field ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Method	Abbry.	<u>Value</u>	<u>Flag</u>	Std. Code
m/9	RDWC*16	CCA	29-jan-1992	70.0	UGL	UN32	135TH8	0.449	LT	
MW9 MW9	RDWC*16	CCM	29-jan-1992	70.0	UGL	UM32	13DNB	0.611	LT	
muy Mu9	RDWC*16 RDWC*16	CCM	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UN32 UN32	246TNT 24DNT	0.635 0.064	ĻŢ	
HW9	RDWC=16	CCM	29- jan-1992	70.0	UGL	0M35	26DNT	0.074	LT LT	
HU9	RDWC*16	CCM	29- jan-1992	70.0	UGL	UW32	HNX	1,210	ĹΪ	
MU9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN32	NB	0.645	LT	
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN32	RDX	1.170	LT	
MU9 MU9	RDWC*16 RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	ULG2 SD23	TETRYL	2.490	Lĭ	
MH9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UK20	AG 111TCE	0.250 4.360	ĻŤ	
MV9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UH20	112TCE	1.200	LŤ	
MUS	RDWC*16	CGM	29- jan- 1992	70.0	UGL	UH20	11DCE	0.500	LT	
MM9	RDUC*16	CGH	29-jan-1992	70.0	UGL	UN20	11DCLE	1.420		
MW9 MW9	RDWC*16 RDWC*16	CGW	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UM20 UM20	120CE 120CLE	0.500 0.500	LŤ LT	
MJ9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM20	120CLP	0.500	LT	
NW9	RDWC*16	CCW	29- jan-1992	70.0	UGL	UM20	2CLEVE	0.710	LŤ	
MM9	RDWC*16	CCM	29- jan- 1992	70.0	UGL	UH20	ACET	13.000	LŤ	
MU9 MU9	RDWC*16	CGM	29- Jan-1992	70.0	UGL	UM20	ACROLN	100.000	ND	R
ML9	RDWC*16 RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM20 UM20	ACRYLO BRDCLM	100.000 0.590	ND LT	R
ML9	ROUC*16	CGM	29- jan-1992	70.0	UGL	UN20	C13DCP	0.580	LT	
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM20	CZAVE	8.300	LT	
MW9	RDWC*16	CGM	29- jan-1992	70.0	UGL	UH20	C2H3CL	2.600	LŤ	
MW9 MW9	RDUC*16	CCH	29- jan-1992	70.0	UGL	UM20	C2H5CL	1.900	LT	
ML9	RDWC*16	CCM	29- jan-1992 29- jan-1992	70.0 70.0	NGF	UM20 UM20	COH6 CCL3F	0.500 1,900	LT	
MW9	RDWC*16	CGM	29- jan-1992	70.0	UGL	UN20	CCL4	0.580	LT	
MJ9	RDWC*16	CCM	29- jan-1992	70.0	UGL	UM20	CH2CL2	6.600		
MU9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UN20	CH3BR	5.800	LT	
1649 1649	RDWC*16 RDWC*16	CCF	29- jan-1992 29- jan-1992	70.0 70.0	ugl ugl	UH20 UH20	CH3CL CHBR3	3.200 2.600	LT LT	
NW9	RDUC*16	CCM	29- jan-1992	70.0	ner	UN20	CXCL3	0.500	ĹŤ	
MW9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UM20	CL2BZ	10.000	MD	R
MU9	RDWC*16	CGW	29- jan-1992	70.0	UGL	UH20	CLC6H5	0.500	LT	
MW9 MW9	RDWC*16 RDWC*16	CGW	29-jan-1992 29-jan-1992	70.0 70.0	UGL	UM20 UM20	CSZ DBRCLM	0.500	LT	
MW9	RDWC*16	CGM	29-jan-1992	70.0	UGL	UM20	ETC6K5	0.670 0.500	LT LT	
ML/9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UH20	MEC6H5	0.500	LT	
MW9	RDWC*16	CGW	29-jan-1992	70.0	UGL	UM20	MEK	6.400	LT	
ML/9 ML/9	RDWC*16 RDWC*16	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM20 UM20	MIBK	3.000	LŢ	
MU9	RDWC*16	COM	29-jan-1992	70.0	UGL	UH20	MNBK STYR	3.400 0.500	LŤ LT	
MV9	RDUC*16	CCM	29-jan-1992	70.0	UGL	UH20	T130CP	0.700	ĻŤ	
XN9	RDUC*16	CCM	29- jan-1992	70.0	UGL	UK20	TCLEA	0.510	LT	
₩19 1419	RDWC*16	CGM	29- jan-1992	70.0	UGL	UH20	TCLEE	1.600	LT	
MM9	RDWC*16 RDWC*16	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UH20 UH20	TRCLE XYLEN	0.500 0.840	LT LT	
MU9	RDUC*16	CGW	29- jan-1992	70.0	UGL	SD21	SE	3.020	LT	
NU9	RDWC*16	CGW	29- jan-1992	70.0	UGL	00	TOX	140.000		
MW9	RDWC*16	CGW	29-jan-1992	70.0		00	PH	7.420		K
MW9 MW9	RDWC*4 RDWC*4	CGW	29- jan-1992	70.0	UGL	\$801	HG	0.243	LT	
MAS	RDWC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	SD22 SS10	AS AL	2.540 141.000	LT LT	
MU9	RDWC*4	CCM	29- jan-1992	70.0	UGL	\$\$10	BA	165.000	٠.	
MV9	RDWC*4	CCM	29- jan-1992	70.0	UGL	\$510	BE	5.000	LT	
MW9	RDWC*4	CGW	29- jan-1992	70.0	UGL	S\$10	CA	61700.000		
MU9 MU9	RDWC*4 RDWC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	\$\$10 \$\$10	8	4.010 25.000	LT LT	
MV9	RDWC*4	CCH	29- jan-1992	70.0	UGL	SS10	CR	6.020	LT	
MV9	RDWC*4	CGW	29- jan-1992	70.0	UGL	\$\$10	Ċ.	8.090	LT	
H19	RDUC*4	CGM	29- jan-1992	70.0	UGL	\$\$10	FE	38.800	LT	
MW9 MW9	RDMC*4	CGW	29- jan-1992	70.0	UGL	2510	K	6660,000		
MW9	RDWC*4 RDWC*4	CCM	29-jan-1992 29-jan-1992	70.0 70.0	UGL	\$\$10 \$\$10	MG MN	24200.000 3.670		
MV9	RDWC*4	CGW	29- jan-1992	70.0	NGT	\$\$10	NA NA	7410.000		
MW9	RDUC*4	CGM	29- jan-1992	70.0	UGL	SS10	NI	34.300	ĻΤ	
MV9	RDWC*4	CGW	29- jan- 1992	70.0	UGL	\$\$10	SB	38.000	LT	
MW9 MW9	RDWC*4	CGW	29-jan-1992	70.0	UGL	\$\$10	Y	11.000	LT	
MW9	RDUC*4 RDUC*4	CGW	29-jan-1992 29-jan-1992	70.0 70.0	UGL	SS10 SD09	ZN TL	21.100 6.990	LT LT	
MW9	RDWC*4	CGW	29- jan-1992	70.0	UGL	SD 20	P9	1.260	LT	
MW9	RDWC*4	CGW	29-jan-1992	70.0	UGL	00	TOC	4.640		

<u>Site ID</u>	<u>Field_ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
MU9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UM18	124TC8	1.800	LT	
MW9	RDWC*4	CCM	29- jan-1992	70.0	UGL	UN18	1ZDCLB	1,700	ίŤ	
MW9	RDWC*4	CCM	29-jan-1992	70.0	UGŁ	UH18	12DPH	2.000	ND	R
MU9 MU9	RDUC*4 RDUC*4	CCW	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18	13DCLB	1.700	LT	
MW9	RDWC*4	CCM	29-jan-1992	70.0	UGL	UN18 UN18	140CLB 245TCP	1.700 5.200	LT LT	
MW9	RDWC*4	CGM	29-jan-1992	70.0	UGL	UM18	246TCP	4.200	LT	
MW9	RDWC*4	CCA	29- jan-1992	70.0	UGL	LM18	24DCLP	2.900	LŤ	
MU9 MU9	RDWC*4 RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18 UM18	24DMPN 24DMP	5.800 21.000	LT LT	
MW9	RDWC*4	CGM	29- jan-1992	70.0	UGL	UM18	24DNT	4.500	LT	
MU9	RDWC*4	CGW	29- jan-1992	70.0	ŲGL	UM18	26DNT	0.790	LŤ	
1669 1669	RDWC*4 RDWC*4	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18 UM18	2CLP 2CMP	0.990	LŢ	
ML/9	RDUC*4	CCP	29- jan-1992	70.0	UGL	UN18	2E1HXL	0.500 6.000	LT	s
MU9	ROWC*4	CGW	29- jan-1992	70.0	UGL	UM18	2MNAP	1.700	LT	•
141/9	ROUC*4	CGW	29- jan-1992	70.0	UGL	UM18	2MP	3.900	LT	
MJ9 MJ9	RDWC*4 RDWC*4	CCA	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM18 UM18	2NANIL 2NP	4.300 3.700	LT LT	
NW9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UN18	330CBD	12.000	ĹŤ	
MLI9	RDMC*4	CGW	29- jan-1992	70.0	UGL	UM18	3NANIL	4.900	LT	
MW9	RDWC*4	CGW	29- jan-1992	70.0 70.0	UGL	UM18	460N2C	17.000	LŢ	
9W9 MW9	RDWC*4 RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0	UGL	UN18 UN18	48RPPE 4CANIL	4-200 7-300	LT LT	
MW9	RDWC*4	CGW	29- jan-1992	70.0	UGL	UH18	4CL3C	4-000	ĹŤ	
MW9	RDWC*4	CGW	29- Jan-1992	70.0	UGL	UN18.	4CLPPE	5.100	LT	
nw9 Nw9	RDWC*4 RDWC*4	CCM	29- jan-1992 29- Jan-1992	70.0 70.0	ugl	UM18 UM18	4MP 4NANIL	0.520 5.200	LT LT	
MU9	RDWC*4	CGW	29- jan-1992	70.0	UGL	UM18	4NP	12.000	LT	
MU9	RDUC*4	CCM	29- jan-1992	70.0	UGL	UN18	ASHC	4.000	ND	R
MW9	RDUC*4	CCM	29- jan- 1992	70.0	UGL	UN18	ACLDAN	5.100	ND	R
MU9 MU9	RDWC*4 RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UN18 UN18	AÉNSLF Aldrn	9.200 4.700	NO NO	R R
MW9	RDMC*4	CGM	29- jan- 1992	70.0	UGL	UNIS	ANAPHE	1.700	LT	•
ML/9	RDWC*4	CGW	29- Jan-1992	70.0	UGL	UN18	ANAPYL	0.500	LT	
ML9	RDWC*4 RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18 UM18	ANTRO B2CEXM	0.500 1.500	LT LT	
MU9	RDWC*4	CCA	29- jan-1992	70.0	UGL	UN18	82CIPE	5.300	ĹŢ	
MLP	RDUC*4	CGW	29- jan-1992	70.0	UGL	UN18	B2CLEE	1.900	LT	
ML9	RDWC*4	CCM	29- Jan-1992	70.0 70.0	UGL	UM18	BZÉHP	4.800	LT	
MJ9 MJ9	RDUC*4 RDUC*4	CGW	29- jan-1992 29- jan-1992	70.0	UGL UGL	UN18 UN18	SAANTR BAPYR	1.600 4.700	LT LT	
ML/9	RDMC*4	CGW	29-jan-1992	70.0	UGL	UN18	BBFANT	5.400	LT	
MW9	RDUC*4	CGW	29-jan-1992	70.0	UGL	UM18	BBHC	4-000	ND	R
1649 1649	RDUC*4 RDUC*4	CGW	29-jan-1992 29-jan-1992	70.0 70.0	UGL	UN18 UN18	BBZP Benslf	3.400 9.200	LT ND	R
MWS	RDUC*4	CCM	29- jan-1992	70.0	UGL	UM18	BENZID	10.000	NED	Ř
MU9	RDUC*4	CGW	29- jan- 1992	70.0	UGL	UM18	BENZOA	13.000	LŤ	
1469 1469	RDWC*4 RDWC*4	CCM	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UM18 UM18	BGHIPY BKFANT	6.100 0.870	LT	
MU9	RDWC*4	CGW	29-jan-1992	70.0	UGL	UNIS	BZALC	0.720	LT LT	
MU9	RDWC*4	CGW	29- Jan-1992	70.0	UGL	UM18	CHRY	2.400	LŤ	
MU9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UN18	CL68Z	1.600	LT	
ML19 ML19	RDWC*4 RDWC*4	CGA	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UN18 UN18	CL6CP CL6ET	8.600 1.500	lt Lt	
MU9	RDUC*4	CCM	29-jan-1992	70.0	UGL	UNTS	DBAHA	6.500	ίŤ	
MW9	RDUC*4	CGM	29- jan-1992	70.0	UGL	UK18	DBHC	4.000	ND	R
MH9 MH9	RDWC*4 RDWC*4	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	18118 18118	DBZFUR	1.700 2.000	LT	
MMA MMA	RDWC*4	CCM	29-jan-1992	70.0	UGL	UM18	DEP DLDRN	4.700	LT ND	R
MU9	RDWC*4	CGW	29-jan-1992	70.0	UGL	UM18	DMP	1.500	LT.	•
NN9	RDWC*4	CGW	29- jan-1992	70.0	UGL	UN18	DNBP	3.700	ĻŤ	
ML19 ML19	RDWC*4 RDWC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UH18 UH18	DNOP ENDRN	15.000 7.600	LT ND	P
MW9	RDWC*4	CGW	29-jan-1992	70.0	UGL	UM18	ENDRNA	8.000	NO	R R
MU9	RDWC*4	CGH	29- jan-1992	70.0	UGL	UH18	ENDRNK	8.000	HD	R
NW9	RDUC*4	CGU	29- jan-1992	70.0	UGL	UN18	ESFS04	9.200	敝	R
Mu9 Mu9	RDWC*4 RDWC*4	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UG1. UGL	UH18 UH18	FANT FLRENE	3.300 3.700	LT LT	
MU9	RDUC*4	CGM	29- jan-1992	70.0	UGL	UM18	GCLDAN	5.100	KD	R
MV9	RDUC#4	CGW	29- jan-1992	70.0	UGL	UM18	HCBD	3.400	LT	
MM9	RDWC*4	COM	29-jan-1992	70.B	UGL	UM18	HPCL	2.000	ND	R
mui9 Mui9	RDWC*4 RDWC*4	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UN18 UN18	HPCLE ICDPYR	5.000 8.600	NED LT	R

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u> Value</u>	Flag	Internal Std. Code
MU9	RDWC*4	CGM	29-jan-1992	70.0	UGL	UN18	ISOPHR	4.800	LT	
MH9	RDWC*4	CGM	29- jan- 1992	70.0	UGL,	UN18	LIN	4.000	ND	R
MW9 MW9	RDUC*4 RDUC*4	CCM	29- jan- 1992 29- jan- 1992	70.0 70.0	UGL UGL	UM18 UM18	MEXCLR NAP	5.100 0.500	MD	R
ML9	RDWC*4	CGW	29- jan-1992	70.0	UGL	UM18	NB	0.500	LT LT	
MM9	RDUC*4	CCM	29- jan- 1992	70.0	UGL	UM18	NNDMEA	2.000	ND	R
MU9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UN18	HNDHPA	4.400	LT	
MW9	RDWC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UM18 UM18	NNDPA PCB016	3.000 21.000	LT ND	Ř
MU9	RDUC*4	CCM	29- jan-1992	70.0	UGL,	UH18	PCB221	21.000	ND	Ŕ
Nu9	RDUC*4	CGH	29-jan-1992	70.0	UGL	UN18	PCB232	21.000	ND	R
MW9 MW9	RDUC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGŁ	UM18 UM18	PCB242 PCB248	30.000 30.000	ND	R
MP3	RDUC*4	CGH	29- jan-1992	70.0	UGL	UN18	PCB254	36.000	ND ND	R R
MW9	RDWC*4	CCM	29- jan-1992	70.0	UGL	UM18	PCB260	36.000	ND	Ř
MU9	RDWC*4	CGM	29- jan-1992	70.0	UGL	UN18	PCP	18.000	LT	
MU9 MU9	RDWC*4 RDWC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM18 UM18	PHANTR PRENCL	0.500 9.200	LT LT	
MH9	RDUC*4	CGM	29- jan-1992	70.0	UGL	UM18	PPDOD	4_000	ND	R
MUP	RDUC*4	CGY	29- jan- 1992	70.0	UGL	UM18	PPOOE	4.700	ND	R
HU9 HU9	RDWC*4 RDWC*4	CGM	29-jan-1992 29-jan-1992	70.0 70.0	UGL	UM18 UM18	PPODT PYR	9.200 2.800	ND LT	. R
MW9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UNIS	TXPHEN	36.000	ND	R
MU9	RDUC*4	CGW	29-jan-1992	70.0	UGL	UN32	135TNB	0.449	LT	
MM9 	RDWC*4	CCH	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UN32 UN32-	130NB	0.611 0.635	LT	
MW9	RDUC*4	COM	29- jan-1992	70.0	UGL	UW32	246TNT 24DNT	0.064	LT LT	
MW9	RDWC*4	CGW	29- Jan- 1992	70.0	UGL	UN32	260NT	0.074	LT	
MW9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UM32	HOCK	1.210	LŤ	
MW9 MW9	RDWC*4 RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL	UN32 UN32	NB RDX	0.645 1.170	LT LT	
MN9	RDWC*4	CGM	29-jan-1992	70.0	UGL	UN32	TETRYL	2.490	ĹŤ	
MH9	RDWC*4	CGW	29-jan-1992	70.0	UGL	\$023	AG	0.250	LT	
MW9 MW9	RDWC*4	CGM	29-jan-1992 29-jan-1992	70.0 70.0	ugl	UN20 UN20	111TCE 112TCE	4.260 1.200	LT	
ML9	RDMC*4	CGW	29- jan-1992	70.0	ugL	UMZO	11DCE	0.500	LT	
MLI9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UH20	11DCLE	1.320		
MPA MPA	RDUC*4 RDUC*4	CCA	29- jan- 1992 29- jan- 1992	70.0 70.0	UGL	UN20 UM20	120CE 120CLE	0.500 0.500	LT LT	
ML9	RDMC*4	CCA	29- jan- 1992	70.0	UGL	UM20	12DCLP	0.500	LT	
MU9	RDWC*4	CGM	29- jan-1992	70.0	UGL	UM20	2CLEVE	0.710	LT	
MU9 MU9	RDWC*4	CGM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UN20 UN20	ACET	13.000	LT	_
MUS	RDUC*4	CGW	29- jan-1992	70.0	UGL	UN20	ACROLN ACRYLO	100.000 100.000	ND ND	R R
MW9	RDWC*4	CCW	29- jan-1992	70.0	UGL	UH20	BRDCLM	0.590	LT	
MM9	RDWC*4	CGW	29-jan-1992	70.0	UGL	UH20	C130CP	0.580	LT	
MH9 MH9	RDMC*4	CCA	29-jan-1992 29-jan-1992	70.0 70.0	ugl ugl	UM20 UM20	CZAVE C2H3CL	8.300 2.600	LT LT	
ML/9	RDWC*4	CGM	29-jan-1992	70.0	UGL	UM20	C2H5CL	1.900	ŧΤ	
ML9	RDWC*4	CGM	29- jan-1992	70.0	UGL	UH20	C6H6	0.500	LT	
1669 1669	RDUC*4	CGW	29- jan- 1992 29- jan- 1992	70.0 70.0	UGL UGL	UM20 UM20	CCL3F CCL4	1.800 0.580	LT	
MJ9	RDUC*4	CGF	29- jan-1992	70.0	UGL	UN20	CH2CL2	5.660	L 1	
MW9	RDWC*4	CGW	29- jan-1992	70.0	UGL	UH20	CH3BR	5.800	LŤ	
MU9 MU9	RDUC*4 RDUC*4	CCM	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UNZO UNZO	CH3CL CHBR3	3.200 2.600	LT LT	
NW9	RDWC*4	CGW	29- jan-1992	70.0	UGL	UM20	CHCF2	0.500	LT.	
MM9	RDWC*4	CGW	29-jan-1992	70.0	UGL	UH20	CL2BZ	10.000	ND	R
MW9 MW9	RDWC*4 RDWC*4	CGW	29- jan-1992	70.0	UGL	UH20	CLC6H5	0.500	ĻŢ	
MN9	RDWC*4	CGW	29-jan-1992 29-jan-1992	70.0 70.0	UGL UGL	UN20 UN20	CS2 DBRCUM	0.500 0.670	LT LT	
MW9	RDUC*4	CGW	29- jan-1992	70.0	UGL	UM20	ETC6H5	0.500	LT	
MW9	ROUC*4	CGW	29- jan-1992	70.0	UGL	UM20	MEC6H5	0.500	LT	
MW9 MW9	RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM20 UM20	MISK MEK	6.400 3.000	LT LT	
MUS	RDWC*4	COM	29- jan-1992	70.8	UGL	UM20	MNBK	3.600	ĹŤ	
MAP	RDUC*4	CGW	29-jan-1992	70.0	UGL	UH20	STYR	0.500	LT	
MLIS MLIS	RDWC*4	CCM	29- jan-1992 29- jan-1992	70.0 70.0	UGL UGL	UM20 UM20	T130CP TCLEA	0.700	LT	
MW9	RDWC*4	COM	29- jan- 1992	70.0	UGL	UN20	TCLEE	0.510 1.600	LT LT	
M49	RDWC*4	CCA	29- jan-1992	70.0	UGL	UH20	TRCLE	0.500	LT	
1449	RDWC*4	CGM	29- jan- 1992	70.0	UGL	UM20	XYLEN	0.840	LT	
MW9 MW9	RDWC*4	CGW	29- jan-1992 29- jan-1992	70.0 70.0	ugl Ugl	SD21 00	se Tox	3.020 177.000	LT	
1147	IWNY 7	44H	#1 3mt 1776	14.4	44L	**	IVA	177.000		

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
MW9	RDWC*4	CGM	29- jan-1992	70.0		00	PH	7,620		ĸ
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	AG	0.589	LT	•
XRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	AL	2910.000		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	BA	37.800		
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	ugg Ugg	1216 1216	SE CA	0.500 1200.000	LT	
NRSE?	RDSE*1	CSE	16-apr-1992	1.0	UGS	J\$16	8	0.700	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	ÇO	4.150		
NRSE1	RDSE*1	ÇSE	16-apr-1992	1.0	UGG	JS16	CR	16,900		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	ជា	8.880		
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg	7219 915F	FE K	32200.000 388.000		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGĞ	315 315	MG	1210.000		
HRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	MN	414.000		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	NA	162.000		
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	JS16 JS16	NI CO	5.980		
NRSE1 NRSE1	ROSE*1 ROSE*1	CSE	16-apr-1992	1.0	UGG	JS16	P8 S8	113.000 7.140	LT -	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	TL	6,620	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JS16	٧	14.300		
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	J\$16	ZN	447.000		
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	JB01 JD19	HG AS	0.050	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	124TCB	2.290 0.040	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	ŲGG	LN18	12DCL8	0.110	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LX18	12DPH	0.140	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	12EPCH	0.390		S
NRSE1 NRSE1	RDSE*1	C2E	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	lm18 lm18	13DCLB 14DCLB	0.130 0.098	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LX18	245TCP	0.100	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	246TCP	0.170	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	24DCLP	0.180	ĻŢ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	lm18 lm18	24DNPN	0.690	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18	24DNP 24DNT	1.200 0.140	LT LT	
NRSE!	ROSE*1	CSE	16-apr-1992	1.0	UGG	LH18	Zédnt	0.085	ĹŤ	
NRSE?	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	2CLP	0.060	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	2CNAP	0.036	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	2MNAP 2MP	0.049	ĻŢ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	2NANIL	0.029 0.062	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	2NP	0.140	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LN18	330C80	6.300	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0 1.0	UGG UGG	LH18	3NAMIL	0.450	LŢ	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM18 LM18	460N2C 4BRPPE	0.550 0.033	LŤ LŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	4CANIL	0.810	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LM18	4CL3C	0.095	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	4CLPPE	0.033	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	ugg Ugg	LM18 LM18	4NP 4NANIL	0.240 0.410	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	4NP	1.400	LT	
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	ABHC	0.270	ND	R .
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LK18	ACLDAN	0.330	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LK18	AENSLF	0.620	ND	R
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	ALDRN ANAPNÉ	0.330 0.036	ND LT	R
KRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	UH18	ANAPYL	0.033	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	ANTRO	0.033	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LK18	B2CEXM	0.059	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	B2CIPE	0.200	ĻŤ	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	UN18 UN18	82CLÉÉ 82ÉHP	0.033 2.940	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	BAANTR	0.170	LT	
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	BAPYR	0.250	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	B8FANT	0.210	LT	_
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	ugg ugg	LH18 LH18	B8HC B8ZP	0.270 0.170	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	BENSLF	0.620	LT ND	R
NRSE1	RDSE*1	CSE	16-spr-1992	1.0	UGG	LN18	BENZID	0.850	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	UN18	BENZOA	6.100	ND	Ř
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	SCHIPY	0.250	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0 1.0	ugg Ugg	LM18 LM18	SKFANT	0.066	LT	
NRSE1	RDSE*1	عد-	16-apr-1992	1.4	444	PU 10	BZALC	0.190	LT	

Site ID	Field 10	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	CHRY	0.120	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	UH18	CL68Z	0.033	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH18	CL6CP	6.200	LT	
NRSE 1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	CL6ET	0.150	LT	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	DBAHA DBHC	0.210	LT	_
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	DBZFUR	0.270 0.035	ND LT	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	DEP	0.240	LŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	DLDRN	0.310	NO	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LK18	DMP	0.170	ĻŢ	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LX18 LX18	DNBP DNOP	0.061	LT	
HRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LK18	ENDRN	0.190 0.450	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	ENDRNA	0.530	ND	Ř
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	ENDRNK	0.530	ND	Ř
NRSE1	RDSE*1	ÇSE	16-apr-1992	1.0	UGG	LH18	ESFSO4	0.620	ND	R
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LH18	FANT FLRENE	0.068	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18 LM18	GCLDAN	0.033 0.330	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	HCBD	0.230	ĹŤ	•
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	HPCL	0.130	ND	. R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	HPCLE	0.330	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	ICDPYR	0.290	LT	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	ISOPHR LIN	0.033 0.270	LT	
- NRSE1 -	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	MEXCLR	0.330	ND ND	Ř R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	NAP	0.037	LT	•
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH18	MB	0.045	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	UN18	NNDMEA	0.140	ND	R
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18	NNDNPA	0.200	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LM18 LM18	NNDPA PCB016	0.190 1.400	LT ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	PCB221	1.400	ND	Ř
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	PCB232	1.400	ND	R
NRSE1	RDSE*1	CZĘ	16-apr-1992	1.0	UGG	LN18	PC8242	1.400	ND	R
XRSE1 XRSE1	RDSE*1 ROSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LN18	PCB248 PCB254	2.000	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	1N18 1N18	PCB260	2.300 2.600	ND ND	R R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH18	PCP	1.300	LT	•
NRSE1	RDSE*1	CSE	16-apr-1992	1,0	UGG	LN18	PHANTR	0.033	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18	PHENOL	0.110	LT	
NRSE! NRSE!	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LN18	PPODD	0.270	MD	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN18 LN18	PPODE	0.310 0.310	ND OK	R R
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH18	PYR	0.033	LT	•
MRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM18	TXPHEN	2.600	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	JD 15	SE	0.250	LŤ	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	111TCE	0.004	LT	
NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN19 LN19	112TCE 11DCE	0.005 0.004	LT LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH19	11DCLE	0.002	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH19	12DCE	0.003	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	120CLE	0.002	LŢ	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN19	120CLP	0.003	LT	_
NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LX19 LX19	SCLEVE	0.010 0.017	ND LT	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	ACROLN	0.100	MD	Ŕ
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	ACRYLO	0.100	HD	Ř
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	BRDCLM	0.003	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH19	C13DCP	0.003	LT	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LH19	CZAVE	0.003	LŢ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN19 LN19	C2H3CL C2H5CL	0.006 0.012	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	CONSCE	0.002	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	CCL3F	0.006	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	CCL4	0.007	LT	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	CH2CL2	0.012	LT	
NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LH19 LH19	CH3BR CH3CL	0.006 0.009	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	CHBR3	0.007	LT	
NRSE1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LM19	CHCL3	0.001	LT	
KRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	CL2BZ	0.100	ND	R
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LX19	CLC6H5	0.001	LT	
NRSE 1	RDSE*1	CZE	16-apr-1992	1.0	UGG	LH19	C2S	0.004	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte _Abbry.	Value	Flag	Internal Std. Code
NRSET	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	DBRCLM	0.003	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LM19	ETC6H5	0.002	ĹŤ	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LN19	MEC6H5	0.001	LT	
NRSE1	RDSE*1	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LN19	MEK	0.070	ĻŢ	
NRSE1 NRSE1	RDSE*1 RDSE*1	CSE	16-apr-1992	1.0 1.0	UGG	LH19 LH19	WNBK WISK	0.027 0.032	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LX19	STYR	0.003	LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	T13DCP	0.003	LT	
NRSE1	RDSE*1	CSE CSE	16-apr-1992 16-apr-1992	1.0	UGG	LN19	TCLEA	0.002	LT	
NRSE1 NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG UGG	LN19 LN19	TCLEE	0.001 0.003	LT LT	
NRSE1	RDSE*1	CSE	16-apr-1992	1.0	UGG	LH19	XYLEN	0.002	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	AG	0.589	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	J\$16 J\$16	AL BA	2250.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	BE	40.000 0.500	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	ČĀ.	558.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	æ	0.700	LŤ	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	ugg ugg	J516	CR CR	3.900		
NRSEZ NRSEZ	RDSE*2	CZE	16-apr-1992	1.0	UGG	1\$16 1816	ä	10.100 7.140		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	FE	20900.000		
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	K	282.000		
NRSE2 NRSE2	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	JS16	MG	751.000		
- KRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG	312L 312L	NA NA	376.000 138.000		
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	MI	5.000		
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	PB	62.900		
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	312L 312L	S8 TL	7.140 6.620	LT LT	
HRSEZ HRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	J\$16	V	11,400	E1	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JS16	ZN	272.000		
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	JB01	NG	0.050	LT	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	JD 19 LM 18	AS 124TCB	1.860		
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	U418	120CLB	0.040 0.110	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	UI18	120PH	0.140	MD	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	12EPCH	0.388		S
NRSE2 NRSE2	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	13DCLB 14DCLB	0.130 0.098	LT LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	245TCP	0.100	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	246TCP	0.170	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	24DCLP	0.180	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LX18 LX18	24DMPN 24DMP	0.690 1.200	LT LT	
NRSEZ	RDSE*2	CZE	16-apr-1992	1.0	UGG	LM18	24DNT	0.140	LŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	26DNT	0.085	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	2CLP	0.060	LT	
NRSE2 NRSE2	RDSE*Z RDSE*Z	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	2CNAP 2MNAP	0.036 0.049	LT LT	
KRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	214P	0.029	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LN18	ZNANIL	0.062	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	2NP	0_140	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM18 LM18	330CBD 3NANIL	6.300 0.450	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	460H2C	0.550	LŤ	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LN18	48RPPE	0.033	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UCG	LH18	4CANIL	0.810	ĻŢ	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM18 LM18	4CL3C 4CLPPE	0.095 0.033	LT LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	4MP	0.240	ĹŤ	
HRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	4MANIL	0.410	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	4NP	1.400	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	ABHC ACLDAN	0.270 0.330	ND ND	R R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	AENSLF	0.620	XD	Ř
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	ALDRN	0.330	MD	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	ANAPNE	0.036	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CZE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	ANAPYL ANTRC	0.033 0.033	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	B2CEXM	0.059	LT	
NRSE2	RDSE#2	CZE	16-apr-1992	1.0	UGG	LH18	B2CIPE	0.200	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	B2CLEE	0.033	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	B2EHP	0.620	LŤ	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u> Ynits</u>	Analytical Method	Analyte Abbry.	Vatue	<u>Flag</u>	internal Std. Code
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	1100	1 440	BAANIES			
NRSEZ NRSEZ	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18 LM18	BAANTR BAPYR	0.170 0.250	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	BBFANT	0.210	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	BBHC	0.270	MD	R
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18	88ZP	0.170	ĻŢ	_
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	ugg Ugg	LM18 LM18	Benslf Benzid	0.620 0.850	ND:	R R
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LH18	BENZQA	6.100	ЖD	Ŕ
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	BCHIPY	0.250	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	UCG	LN18	BKFANT	0.066	LT	
NRSEZ NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	ugg ugg	LM18 LM18	BZALC CHRY	0.190 0.120	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	CL6BZ	0.033	ίŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	CL,6CP	6.200	LT	
NRSEZ NRSE2	ROSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LH18	CL6ET	0.150	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18 LM18	DBAHA DBHC	0.210 0.270	L,T ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	DBZFUR	0.035	ĹŢ	•
NRSEZ	RDSE*2	C\$E	16-apr-1992	1.0	UGG	LH18	DEP	0.240	LT	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0 1.0	UGG	UN18	DLDRN	0.310	ND	R
NRSEZ NRSEZ	RDSE*2	CZĘ	16-apr-1992 16-apr-1992	1.0	ugg ugg	LM18 LM18	DMP	0.170 0.061	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	DNOP	0.190	ĹŤ	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	ENDRN	0.450	ND	R
NRSEŽ	RDSE*2	CSE	16-apr-1992	1.0	UGG	U118	ENDRNA	0.530	ND	R
- MRSE2 - NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	ENDRNK ESFS04	0.5 30 0.620	NO ND	R R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	FANT	0.068	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	FLRENE	0.033	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	GCLDAN	0.330	ND	R
NRSEŻ NRSEŻ	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	UN18 UN18	HCBO HPCL	0.230 0.130	LT ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	HPCLE	0.330	MD	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	ICDPYR	0.290	LT	-
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LX18	ISOPHR	0.033	LT	_
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	LIN MEXCLR	0.270 0.330	ND ND	R R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	NAP	0.037	LT	κ.
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	NB	0.045	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM18	NNOMEA	0.140	ND	R
NRSE2 NRSE2	rdse*2 Rdse*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	NNDNPA NNDPA	0.200 0.190	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	PC8016	1.400	MD	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PCB221	1,400	MD	R
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18	PCB232	1.400	MD	R
NRSE2	RDSE*2	ÇSE	16-apr-1992	1.0	UGG	LN18 LN18	PCB242 PCB248	1.400 2.000	ND ND	R R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PC8254	2.300	NED	Ř
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	PC8260	2.600	ND	R
NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	PCP	1.300	LT	
NRSEZ NRSEZ	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	PHANTR PHENOL	0.033 0.110	LT LT	
NRSEZ	RDSE*2	CZE	16-apr-1992	1.0	UGG	LN18	PPDDD	0.270	MD	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	ugg	LN18	PPDDE	0.310	ND	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	PPDDT	0.310	MD	R
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	PYR TXPHEN	0.033 2.600	LT NO	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	UHK623	0.647	~	R S
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN18	UNK628	12.900		S
NRSE2 NRSE2	RDSE*2	CSE	16-epr-1992	1.0	UGG	LH18	UNK630	0.517		S
NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	nee	LN18 LN18	UNK631 UNK632	2.590 1.290		S S
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM18	UNK633	1.290		\$
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH18	UNK640	1.030		Š
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	JD15	SE	0.250	LT	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LH19 LH19	111TCE 112TCE	0.004 0.005	LT LT	
NRSE2	RDSE*2	CZE	16-apr-1992	1.0	UGG	LH19	110CE	0.004	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	11DCLE	0.002	LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	120CE	0.003	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LN19	12DCLE 12DCLP	0.002	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19 LN19	2CLEVE	0.003 0.010	LT ND	R
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	ACET	0.017	ĻŢ	-

Site ID	Field ID	<u> Media</u>	Date	Deoth	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	ACROLN	0.100	NO	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	ACRYLO	0.100	ND	Ř
NRSE2	RDSE*2	CZE	16-apr-1992	1.0	UGG	LH19	BRDCLM	0.003	LT	
NRSE2	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LN19	C13DCP	0.003	LT	
NRSEZ NRSEZ	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19 LH19	C2AVE C2H3CL	0.003 0.006	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	C2H5CL	0.012	LT	
NRSE2	RDSE*2	CZE	16-арг-1992	1.0	UGG	LH19	C6H6	0.002	LT	
NRSE2	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LX19	CCL3F CCL4	0.006	LT	
NRSE2 NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19 LH19	CH2CL2	0.007 0.012	LT LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	CH3BR	0.006	ĹŤ	
MRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	CH3CL	0.009	LT	
NRSE2	RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LN19	CHER3 CHCL3	0.007	LT	
NRSEZ NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19 LN19	CL2BZ	0.001 0.100	LT NED	R
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	CLC6H5	0.001	ίŤ	•
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	CS2	0.004	LT .	
NRSEZ NRSEZ	RDSE*Z RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1,0	ugg Ugg	LX19 LN19	DBRCLM ETC6H5	0.003	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LM19	MECANS	0.002 0.001	LT LT	
MRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LN19	KEK	0.070	ĹŤ	•
MRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LM19	MIBK	0.027	ĻT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LH19	MNBK	0.032	LT	
NRSE2 - NRSE2	RDSE*2 RDSE*2	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LH19 LH19	STYR T13DCP	0.003 0.003	LT LT	
NRSEZ	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	TCLEA	0.002	LT	
NRSE2	RDSE*Z	CSE	16-apr-1992	1.0	UGG	LH19	TCLEE	0.001	LT	
NRSE2	RDSE*2	CSE	16-apr-1992	1.0	UGG	LH19	TRCLE	0.003	LT	
NRSE2 NRSE3	RDSE*2 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM19 JS16	XYLEN Ag	0.002 0.589	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	AL	4520.000	LI	
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	J\$16	BA	54.900		
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	J\$16	BE	0.500	ĻT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	JS16 JS16	CX CX	1180.000	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	8	5.270	٠.	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	313	CR	12.300		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	ä	29.800		
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	ugg ugg	JS16 JS16	FE K	18600.000 673.000		
NRSE3	RDSE*3	CSE	16-epr-1992	1.0	UGG	JS16	MG	1810.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	MK	193.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.6	UGG	J\$16	KA HT	226.000		
NRSE3 NRSE3	RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG	J\$16 J\$16	NI P8	8.550 204.000		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	SB	7.140	LT	
NRSE3	E*3209	CSE	16-apr-1992	1.0	UGG	J\$16	TL	6.620	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	JS16	Ā	16.100		
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	J\$16 J801	ZN HG	374.000 0.050	LT	
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	JD19	AS	2.860		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	124TCB	0.040	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH15	12DCLB	0.110	LT	_
HRSE3 HRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LH18	120PH 130CLB	0.140 0.130	ND LT	R
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LH18	14DCL9	0.098	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	245TCP	0.100	ĻŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	2467CP	0.170	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LN18 UN18	24DCLP 24DHPN	0.180 0.690	LŤ LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	24DNP	1.200	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	24DNT	0.140	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	26DNT	0.085	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSÉ CSÉ	16-apr-1992 16-apr-1992	1.0 1.0	ugg	LN18 LN18	2CLP 2CNAP	0.060 0.036	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	1418 1418	ZUKAP ZMNAP	0.049	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	2NP	0.029	LT	
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LN18	2NAN I L	0.062	LT	
NRSE3	RDSE*3	CSE	16-spr-1992	1.0	UGG	LH18	2MP	0.140	ŁΤ	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LH18 LH18	33DCBD 3NAKIL	6.300 0.450	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	460NZC	0.550	LT	
NRSE3	RDSE#3	CSE	16-apr-1992	1.0	UGG	LN18	4BRPPE	0.033	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	4CANIL	0.010		
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	4CL3C	0.810 0.095	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	4CLPPE	0.033	LŤ	
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LN18	4MP	0.240	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	4NANIL	0.410	LT	
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LX18	4NP	1.400	LT	_
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LX18 LX18	ABHC ACLDAN	0.270	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	AENSLF	0.330 0.620	ND ND	R R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	ALDRN	0.330	ND	Ř
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	ANAPNE	0.036	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LK18	ANAPYL	0.033	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LN18	ANTRE	0.033	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18 LM18	BZCEXM BZCIPE	0.059 0.20D	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	BZCLEE	0.033	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BZEHP	1.620		
NRSE3	ROSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BAANTR	0.170	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	UH18	BAPYR	0.250	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18	BBFANT	0.210	LT	_
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18 LN18	BBHC BBZP	0.270 0.170	ND Lï	, R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	BENSLF	0.620	NO NO	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	BENZID	0.850	NO.	Ř
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LX18	BENZOA	6.100	ND	R
- NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	BCH1PY	0.250	LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	BKFANT	0.066	LT	
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM18	BZALC	0.190	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18 LN18	CHRY CL6BZ	0.120 0.033	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	CL6CP	6.200	LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	CLSET	0.150	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	DBAHA	0.210	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	DBHC	0.270	ND	R
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18 LM18	D8ZFUR DEP	0.035	LT LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	DLDRN	0.240 0.310	NĎ	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	DMP	0.170	ĹŤ	•
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	DNBP	0.061	LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	DNOP	0.190	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	ENDRN	0.450	ND	R
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	ESFS04	0.620	ND	R R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	FANT	0.068	LT	~
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	FLRENE	0.033	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	GCLDAN	0.330	ND	R
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG	LM18	HCBO	0.230	LT	_
NRSE3	RDSE*3	CSE	16-apr-1992	1.0 1.0	ugg ugg	LM18 LM18	HPCL HPCLE	0. 130 0.330	ND ND	R R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	ICOPYR	0,290	LT	•
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	1SOPHR	0.033	LŤ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	L1N	0.270	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	MEXCLR	0.330	MD	R
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	LN18	NAP	0.037	ĻŢ	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18 LH18	NB NNDMEA	0.045 0.140	LT MD	R
NRSE3	RDSE*3	ÇSÉ	16-apr-1992	1.0	UGG	LM18	NNDNPA	0.200	ĹŤ	ĸ
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	NHDPA	0.190	LT	
NRSE3	RDSE*3	CZE	16-apr-1992	1.0	UGG	LX18	PCB016	1.400	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	PC8221	1.400	ND	Ŗ
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	PC8232	1.400	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LH18 LH18	PCBZ42 PCB248	1.400 2.000	ND ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	PC8254	2.300	ND ND	R R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	PCB260	2.600	ND	R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LN18	PCP	1.300	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	PHANTR	0.033	LT	
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	PHENOL	0.110	LT	_
NRSE3 NRSE3	RDSE*3 RDSE*3	CSE	16-apr-1992	1.0 1.0	UGG	LM18	PPDDD PPDDE	0.270	ND ND	R
NRSE3	RDSE*3	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LM18 LM18	PPDDE PPDDT	0,310 0,310	MD CM	R R
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	PYR	0.033	LT	~
NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LH18	TXPHEN	2.600	ND	R

MRSE3 ROSE**3 CSE 16-mar* 1992 1.0 UGG L118 UNIX.512 2.77 S	Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte _Abbrv,	Value	<u>Flag</u>	Internal Std. Code
MRSE4 MSE74 CSE 16-mp-1992 1.0 UGG JS16 AG D.589 LT	NRSE3	RDSE*3	CSE	16-apr-1992	1.0	UGG	LM18	UNK612	14.300		S
MRSE4			-			-					\$
MRSE4									·	_	
MRSE4 ROSE*4 CSE										Lī	
MRSE4 NOSE*4 CSE				16-apr-1992	1.0	UGG					
MRSE4											
MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 21,300 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 21,300 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 21,300 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 22,300 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 22,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 22,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 CR 22,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 KR LS20,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 KR LS20,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 KR LS20,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 KR LS20,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 KR LS20,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 KR LS20,000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 V Z7.800 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 V Z7.800 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 V Z7.800 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 V Z7.800 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG JS16 ZM ZM 414.000 MRSE4 DOSE** CSE 16-pp-1992 1.0 UGG LS18 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20, LS20 LS20 LS20, LS20 LS20 LS20, LS20 LS20 LS20, LS20 LS20,				•						17	
MRSE4					1.0		J\$16			•••	
MRSE4											
MRSE4											
MRSE4	_										
NRSE4											
NRSE4 NRSE4 CSE 16-apr-1992 1.0 LGG JS16 NR 135.000				•							
RRSE4	-		-	•							
RRSE4	NRSE4	RDSE*4		16-apr-1992	1.0	UGG	J\$16	-	136.000		
RRSE4											
NRSE4		–								ĻI	·
NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 124CTB 0.040 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 124CTB 0.110 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 124CTB 0.110 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 120CLB 0.110 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 120CLB 0.130 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 120CLB 0.130 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 120CLB 0.130 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.170 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 245TCP 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 440NTC 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG UR18 440NTC 0.000 LT NRSE4 NDSE*4 CSE 16-apr-1992 1.0 U	_			- 1							
MRSE4			-	•				-		1,T	
NRSE4 NDSE*4 CSE 16-apr-1992 1.0 UGG										1 T	
NRSE4 DOSE*4 CSE 16-apr-1992 1.0 UGG											
MRSE4 RDSE*4 CSE 16-spr-1992 1.0 UGG UH18 140CLB 0.098 LT											R
MRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG UH18 Z45TCP 0.170 LT											
NRSE4 RDSE**4 CSE 16-apr-1992 1.0 UGG										_	
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG				•		_		-			
NRSE6		-									
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG				•				-			
NRSE4									0.140	LT	
NRSE4	•			,					-		
MRSE4										_	
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG		RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	2MNAP		_	
NRSE4											
NRSE4										_	
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG		-		•	1.0						
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 4BRPPE 0.033 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 4CANIL 0.810 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 4CLIPE 0.033 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 4CLIPE 0.033 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 4MP 0.240 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 4MP 0.240 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 4MP 1.400 LT NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ABHC 0.270 MD R NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ABHC 0.270 MD R NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 ND R NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 ND R NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 ND R NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 ND R NRSE4 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.330 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 ALDAN 0.033 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 B2CIPE 0.033 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 B2CIPE 0.200 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 BANTR 0.170 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 BANTR 0.170 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 BANTR 0.210 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 BANTR 0.210 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 BANTR 0.210 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG LM18 BANTR 0.250 LT NRSE6 RDSE*6 CSE 16-apr-1992 1.0 UGG		-									
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG											
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 4CLPPE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 4MP 0.240 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 4MANIL 0.410 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 4MANIL 0.410 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ABHC 0.270 MD R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ABHC 0.270 MD R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 AENSLF 0.620 MD R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ALDRN 0.330 MD R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPNE 0.036 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPNE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPNE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPNE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.250 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2ANTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2ANTR 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2ANTR 0.270 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2ANTR 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2ANTF 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2ANTF 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENSLF 0.620 ND R NRSE4 RDSE*4								_			
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG										LŤ	
NRSE4									_		
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANP 1.400 LT									-		
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ACLDAN 0.330 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ALDRN 0.330 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ALDRN 0.330 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPYL 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPYL 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CIPE 0.200 LT	NRSE4				1.0	UGG	LH18	4NP	1.400		
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 AEMSLF 0.620 ND R HRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ALDRN 0.330 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPYL 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPYL 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4	-			т							
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ALDRN 0.330 ND R			_	,							
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANAPYL 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.200 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAANTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B8HT 0.210 LT NRSE4 RDSE*4 CS											
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 ANTRC 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAAHTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBHC 0.270 ND R NRSE4 RDSE*4 </td <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>				•					_		
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CEXM 0.059 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.200 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2EHP 15.500 NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAANTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAPYR 0.250 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBHC 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXIF 0.620 ND R NRSE4 RDSE*4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2CLEE 0.033 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2EHP 15.500 NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAANTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAPYR 0.250 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBHC 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBZP 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBZP 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENSLF 0.620 ND R NRSE4 RDSE*4											
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B2EHP 15.500 NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAANTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAPYR 0.250 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 B8FANT 0.210 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBHC 0.270 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBZP 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXSLF 0.620 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXSLF 0.620 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXID 0.250 LT				,							
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAANTR 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BAPYR 0.250 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBFAMT 0.210 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBHC 0.270 MD R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXPL 0.620 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BEXID 0.100 ND <										ĻŢ	
NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BAPYR 0.250 LT NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BBFANT 0.210 LT NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BBHC 0.270 ND R NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BEXSLF 0.620 ND R NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BENZID 0.850 ND R NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BENZID 0.850 ND R NRSE4 RDSE*4 CSE 16-mpr-1992 1.0 UGG LM18 BENZID 0.250 LT										ĹŤ	
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBHC 0.270 NO R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBZP 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENSLF 0.620 NO R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZID 0.850 NO R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZID 0.850 NO R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZOA 6.100 NO R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BGHIPY 0.250 LT	NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	BAPYR	0.250	LT	
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BBZP 0.170 LT NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENSLF 0.620 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZOA 6.100 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BGHIPY 0.250 LT											
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENSLF 0.620 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZOA 6.100 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BGHIPY 0.250 LT											ĸ
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZID 0.850 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BENZOA 6.100 ND R NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BGHIPY 0.250 LT	NRSE4				1.9	UGG	LM18				R
NRSE4 RDSE*4 CSE 16-apr-1992 1.0 UGG LM18 BGHIPY 0.250 LT			-								R
				•							R

Site ID	Field ID	<u>Media</u>	Date	Deoth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	BZALC	0.190	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	CHRY	0.120	ĹŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	CL68Z	0.033	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	DI18	CL6CP	6.200	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	ÇSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg ugg	UH18	CLÓET	0.150	LŤ	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18 LH18	DBAKA DBHC	0,210 0,270	LT ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	DSZFUR	0.035	LT	κ.
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	DEP	0.240	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	DLDRN	0.310	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	DMP	0.170	ĻT	
NRSE4	RDSE*4 RDSE*4	CSE CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG	LM18	DNBP	1.960		
NRSE4 NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG UGG	LX18 LX18	DNOP ENDRN	0.190 0.450	LT ND	R
NRSE4	RDSE*4	CSE	16-epr-1992	1.0	UGG	LN18	ENDRNA	0.530	ND	8
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ENDRNK	0.530	ND.	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ESFS04	0.620	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	FANT	0.160		-
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LX18	FLRENE	0.033	LT	_
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LM18 LM18	GCLDAN HCBD	0.330	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	HPCL	0.230 0.130	LŤ ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UCG	LX18	NPCLE	0.330	ND	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	ICDPYR	0.290	LT	
_MRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGĞ	LH18	ISOPHR	0.033	LT	
HRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LX18	L1X	0.270	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	MEXCLR	0.330	ND	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0	UGG UGG	LH18 LH18	nap NB	0.037 0.045	LT LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	NNDMEA	0.140	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1,0	UGG	LH18	NNDNPA	0.200	LT	-
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	UH18	NNDPA	0.190	LT	
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	PCB016	1.400	MD	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	PCB221	1.400	ND	R
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	UGG UGG	LN18 LN18	PCB232 PCB242	1.400 1.400	ND ND	R R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LM18	PCB248	2.000	ND	Ŕ
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LH18	PCB254	2.300	ND	Ř
NRSE4	RDSE*4	CZE	16-apr-1992	1.0	UGG	LH18	PCB260	2.600	ND	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	PCP	1.300	LT	
NRSE4 NRSE4	RDSE*4 RDSE*4	CSE	16-apr-1992	1.0	UGG	LX18	PHANTR	0.089		
NRSE4	RDSE*4	CSE	16-apr-1992 16-apr-1992	1.0 1.0	ugg Ugg	LM18 LM18	PHENOL	0.116 0.270	LT ND	R
NRSE4	RDSE*4	CSE	16-801-1992	1.0	UGG	LN18	PPDDE	0.310	ND	Ř
NRSE4	RDSE#4	CSE	16-apr-1992	1.0	UGG	LH18	PPODT	0.310	NO	Ř
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	LN18	PYR	0,181		
NRSE4	RDSE*4	CZE	16-apr-1992	1.0	UGG	LN18	TXPHEN	2,600	ХD	R
NRSE4	RDSE*4	CSE	16-apr-1992	1.0	UGG	JD15	\$E	0.250	LT	
nrsw1 Nrsw1	RDSW*1 RDSW*1	CZM	16-apr-1992	0.0	UGL	\$009	TL	6.990 7.000	LŤ	
NRSW1	RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0	UGL UGL	SD21 SD20	SE PB	3.020 1.950	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SD 23	AG	0.250	LT	
NRSW1	RDSW*1	CSU	16-apr-1992	0.0	UGL	\$022	AS	2.540	LT	
NRSW1	rosy*1	CSW	16-apr-1992	0.0	UGL	UM18	124TCB	1,800	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	12DCLB	1.700	LT	
NRSU1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UN18	120PK	2.000	ND	Ř
NRSW1 NRSW1	rdsw*1 Rosw*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	ugl ugl	UM 18 UM 18	13DCLB 14DCLB	1.700 1.700	LT LT	
NRSW1	RDSW*1	CSY	16-apr-1992	0.0	UGL	UM 18	245TCP	5,200	ĹŤ	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UH18	246TCP	4,200	ĽŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	24DCLP	2.900	LT	
NRSU1	RDSW*1	CZM	16-epr-1992	0.0	UGL	UH18	24DMPN	5,800	LT	
NRSU1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	240NP	21,000	LT	
HRSW1 NRSW1	RDSW#1	CSM	16-apr-1992	0.0	UGL	UN18	24DNT	4.500	LT	
NRSW1	rdsw*1 Rdsw*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18 UN18	260NT 2CLP	0.790 0.990	LT LT	
NRSW1	RDSU=1	CZM	16-apr-1992	0.0	UGL	UM18	2CNAP	0.500	ĻŢ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UH18	2MNAP	1.700	ίŤ	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UM18	214P	3.900	LT	
NRSW1	RDSV*1	CZM	16-apr-1992	0.0	UGL	UM18	2NAN1L	4.300	ĻŢ	
NRSW1	RDSV*1	CSW	16-apr-1992	0.0	UGL	UM18	2NP	3.700	LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UM18	330C80	12.000	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UN18	3NANIL	4.900	LT	
NRSW1	RDS¥#1	CSM	16-apr-1992	0.0	UGL	UM18	46DN2C	17_000	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Anelyte Abbry,	Value	Flag	Internal Std. Code
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	48RPPE	4.200	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UCT.	UK18	4CANIL	7.300	LT	
NRSU1	RDSW*1	ÇSW	16-apr-1992 16-apr-1992	0.0	UGL	UN18	4CL3C	4.000	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CZM	16-apr-1992	0.0 0.0	NGT	UH18 UH18	4CLPPÉ	5.100 0.520	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	ÚM18	4NANIL	5.200	LT	
NRSW1	RDSW*1	ÇSW	16-apr-1992	0.0	UGL	UM18	4NP	12.000	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	ABHC	4.000	ND	R
NRSW1 NRSW1	RDSW*1 RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0	UGL	UM18 UM18	ACLDAN AENSLF	5.100 9.200	NO:	R
NRSW1	RDSH#1	CSW	16-apr-1992	0.0	UGL	UK18	ALDRN	4,700	ND ND	R R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UN18	ANAPNE	1.700	ĹŤ	•
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UH18	ANAPYL	0.500	LT	
NRSW1 NRSW1	rdsw*1 rdsw*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	ANTRC B2CEXN	0.500	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UK18	BZCIPE	1.500 5.300	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0,0	UGL	UN18	BECLEE	1.900	ĹŤ	
NRSV1	RDSW*1	CSW	16-apr-1992	0.0	UGŁ	UN18	B2EHP	4.800	ĻT	
NRSW1	RDSU*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UN18	BAANTR	1.600	LT	
NRSW1 NRSW1	RDSW*1 RDSW*1	CZM	16-apr-1992	0.0	UGL	UN18 UN18	BAPYR BBFANY	4.700 5.400	LT LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UN18	BBHC	4.000	ND	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UN18	BBZP	3,400	LT	•
NRSW1	RDSU*1	CSM	16-apr-1992	0.0	UGL	UM18	BENSLF	9.200	ND	R
_NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	BENZCA BENZCA	10.000 13.000	ND LT	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	BGHIPY	6.100	LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UN18	BKFANT	0.870	LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UN18	BZALC	0.720	LT	
NRSW1 NRSW1	rdsw*1 rdsw*1	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UN18 UN18	CKRY CL68Z	2.400 1.600	LT LT	
NRSW1	RDSH*1	CSM	16-apr-1992	0.0	UGL	UM18	CLOSZ	8.600	LT	
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	UM18	CLSET	1.500	ĻŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	DBAHA	6.500	LT	
NRSW1	RDSW*1 RDSW*1	CSW	16-apr-1992 16-apr-1992	0.0	UGL UGL	UM18	DBHC	4.000	ND	R
NRSU1 NRSU1	RDSH*1	CSW	16-apr-1992	0.0	UGL	UH18 UH18	DBZFUR DEP	1.700 2.000	LT LT	
NRSW1	RDSW*1	CSU	16-apr-1992	0.0	UGL	UN18	DLDRN	4.700	ND	R
NRSW1	RDSW*1	CSU	16-apr-1992	0.0	UGL	UM18	DMP	1.500	LT	**
NRSW1	RDSU*1	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UN18	DMBP	3.700	LT	
NRSW1 NRSW1	rdsw*1 rdsw*1	CSW	16-apr-1992	0.0	UGL UGL	UM18 UM18	DNOP ENDRN	15,000 7,600	ŁŤ ND	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	ENDRNA	8.000	ND	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UN18	ENDRNK	8.000	ND	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UH18	ESFSO4	9.200	ND	R
NRSW1 NRSW1	rdsw*1 Rdsw*1	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UN18 UN18	FANT FLRENE	3.300 3.700	LT LT	
NRSW1	RDSW*1	ÇSW	16-apr-1992	0.0	UGL	UM18	GCLDAN	5.100	MD	R
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	HCBO	3.400	LT	•
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UK18	HPCL	2.000	ND	R
NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UN18	HPCLE [CDPYR	5.000 8.600	ND	R
NRSW1 NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18 UK18	ISOPHR	4.800	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	LIM	4.000	ND	R
NRSW1	RDSV*1	CSL	14-apr-1992	0.0	UGL	UN18	MEXCLR	5.100	ND	R
NRSW1	RDSV*1	CSW	16-apr-1992	0.0	UGL	UN18	HAP	0.500	LT	
NRSW1 NRSW1	rdsv*1 Rdsv*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	NB HNDMEA	0.500 2.000	LT ND	R
NRSW1	RDSW*1	CZF	16-apr-1992	0.0	UGL	UN18	NNONPA	4.400	ĹŦ	~
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UN18	KNOPA	3.000	LT	
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	PCB016	21.000	Ю	R
nrsw1 Nrsw1	rdsw*1 Rdsw*1	CZM	16-apr-1992 16-apr-1992	0.0	NGT	UM18 UM18	PC8221 PC8232	21.000 21.000	ND ND	R
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	PC8242	30.000	ND	R R
NRSW1	RDSU*1	CSM	16-apr-1992	0.0	UGL	UN18	PCB248	30.000	ND	Ř
NRSW1	RDSU*1	CSW	16-apr-1992	0.0	UGL	UN18	PC8254	36.000	HD	R
NRSW1	ROSW*1	CSU	16-apr-1992	0.0	UGL	UH18	PC8260	36.000	ND	見
NRSW1 NRSW1	RDSW*1 RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	PCP PHANTR	18.000 0.500	LT LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	UM18	PHENOL	9.200	LT	
NRSW1	RDSW*1	CSH	16-apr-1992	0.0	UGL	UH18	PPDDD	4.000	ND	R
NRSW1	RDSW#1	CSW	16-apr-1992	0.0	UGL	UH18	PPODE	4.700	ND	Ř
NRSW1	RDSW*1	CSF	16-apr-1992	0.0	UGL	UM18	PPDDT	9.200	KD	R
NRSW1	rdsw*1	CSW	16-apr-1992	0.0	UGL	UM18	PYR	2.800	LT	

Site ID	Field ID	<u>Hedia</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>flag</u>	Internal Std. Code
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	UM18	TXPHEN	36,000	ND	R
NRSW1	RDSW*1	CZĀ	16-apr-1992	0.0	UGL	UM18	UHK630	7.000	70	ŝ
NRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	\$\$10	AL.	168,000		
NRSW1	RDS⊌*1	CZM	16-apr-1992	0.0	UGL	SS10	SA	22.800		
NRSW1 NRSW1	RDSW*1 RDSW*1	C2M C2M	16-apr-1992 16-apr-1992	0.0 0.0	UGL	SS10 SS10	BE CA	5.000 16100.000	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	\$\$10	20	4.010	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	S\$10	œ	25.000	ĹŤ	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	CR	6.020	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	SS10	cn cn	8.090	LT	
NRS¥1 NRS¥1	RDSW*1 RDSW*1	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	SS10 SS10	FE K	416.000 2130.000		
NRSW1	RDSW=1	CSW	16-apr-1992	0.0	UGL	\$\$10	MG	6190.000		
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	S\$10	MM	62,400		
NRSW1	RDSW*1	CZM	16-apr-1992	0.0	UGL	\$\$10	HA	7630,000		
NRSW1 NRSW1	RDSW*1 RDSW*1	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	\$\$10 \$\$10	NI SB	34.300	LT	
NRSW1	RDSW*1	CSW	16-apr-1992	0.0	UGL	\$\$10 \$\$10	A 20	38.000 11.000	LT LT	
NRSW1	RDSW#1	CSW	16-apr-1992	0.0	UGL	\$\$10	ZN	21.100	LT	
MRSW1	RDSW*1	CSM	16-apr-1992	0.0	UGL	SB01	HG	0.243	LT	
NR SW3	RDSW*2	CZM	16-apr-1992	0.0	UCL	2009	TL	6.990	LŦ	
nrsv3 nrsv3	RDSW*Z RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	SD21 SD20	SÉ P B	3.020 2.060	LT	
NRSW3	RDSW*2	CZĀ	16-apr-1992	0.0	UGL	SD23	AG	0.250	LT	
NRSW3	RDSH*2	CZM	16-apr-1992	0.0	UGL	SD22	AS	2.540	LT	
NRSU3	RDSW*Z	CSW	16-apr-1992	0.0	UCL	UK18	124TCB	1.800	LT	
NRSW3	RDSV*2	CSW	16-apr-1992	0.0	UGL	UN18	120CL8	1.700	LT	_
nrsij Krsij	RDS₩*2 RDS₩*2	CZM	16-apr-1992 16-apr-1992	0.0 0.0	ugl ugl	UM18 UM18	12DPH 13DCLB	2.000 1.700	ND LT	R
NRSIG	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	14DCLB	1.700	LT	
NRSU3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UN18	245TCP	5.200	LŤ	
NRSW3	RDSW*2	CSA	16-apr-1992	0.0	UGL	UN18	246TCP	4.200	LT	
Hrsw3 Hrsw3	rdsw*2 Rdsw*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	24DCLP 24DMPN	2.900	LŢ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18 UM18	240NP	5.800 21.000	LT LT	
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UH18	24DNT	4.500	LT	
NRSL/3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	26DNT	0.790	LT	
NRSU3	RDSU=2	CSW	16-apr-1992	0.0	UGL	UN18	2CLP	0.990	ĻŢ	
nrsw3 Nrsw3	rdsw*2 Rdsw*2	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	2CHAP 2MHAP	G_500 1.700	LT LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	ZIEP	3.900	LT	
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UH18	ZNANIL	4.300	LT	
NRSW3	RDSU*2	CSW	16-apr-1992	0.0	UGL	UM18	ZNP	3.700	LŢ	
nrsu3 Nrsu3	RDSW*2 RDSW*2	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	33DCBD 3NANIL	12.000 4.900	LT LT	
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UN18	46DN2C	17.000	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	48RPPE	4.200	LT	
HRSW3	RDSW*2.	CSW	16-apr-1992	0.0	UGL	UH18	4CANIL	7.300	LT	
NRSW3 NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UK18	4CL3C	4.000	LŢ	
NRSW3	RDSW*2 RDSW*2	CSW	16-apr-1992 16-apr-1992	0.0 8.0	UGL	UM18 UM18	4CLPPE	5.100 0.520	LT LT	
NRSU3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UN18	4NAMIL	5.200	LT	
MRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UH18	4NP	12.000	LT	
NRSU3	RDSU*2	CSW	16-apr-1992	0.0	UGL	UM18	ABHC	4.000	ND	R
nrsus Nrsus	rdsw*2 Rdsw*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UM18 UM18	ACLDAN AENSLF	5.100 9.200	NO NO	R R
MRSW3	RDSH*2	CSU	16-apr-1992	0.0	UGL	UM18	ALDRN	4,700	ND	R R
NRSW3	RDSL*2	CSW	16-apr-1992	0.0	UGL	UH18	ANAPNE	1.700	LT	•
NRSW3	RDSU*2	CSW	16-apr-1992	0.0	UGL	UM18	ANAPYL	0.500	LŤ	
nrsu3 Nrsu3	RDSW*2	CSF	16-apr-1992	0.0	UGL	UN18	ANTRO	0.500	LT	
NRSN3 NRSN3	RDSW*2 RDSW*2	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	B2CEXM B2CIPE	1.500 5.300	LT LT	
NRSH3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	BSCTEE	1,900	ĹΤ	
NRSW3	RDSU*2	CSE	16-apr-1992	0.0	UGL	UM18	B2EHP	4.800	LT	
NRSL/3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UH18	BAANTR	1,600	LT	
nrsw3 Nrsw3	RDSY*2	CSW	16-apr-1992	0.0	UGL	UN18	BAPYR	4.700	LT	
NRSW3	RDS¥*2 RDS¥*2	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	BBFANT 88HC	5.400 4.000	LT ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	88ZP	3.400	LT	ri.
NRSV3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UM18	BENSLF	9.200	ND	R
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UK18	BEKZID	10.000	ND	R
nrsw3 Nrsw3	RDSW*2	CZA	16-apr-1992	0.0	UGL	UN18	BENZOA	13.000	LŢ	
nrsh3 Nrsh3	rdsw=2 rdsw=2	CZA	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	um18 um18	BGHIPY BKFANT	6.100 0.870	LT LT	
44.9MJ	W-34-5	-3 5	IO-Shi- (AAC	0.0	UGL	OF 10	SAFAR (0.010	F1	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.		Flag	Internal Std. Code
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	BZALC	0.720	LT	
NRSW3	RDSV*2	CSW	16-apr-1992	0.0	UGL	UM18	CHRY	2.400	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	CL6BZ	1,600	ĹŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	CLSCP	8.600	ĹŤ	
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UN18	CLSET	1.500	ĹΤ	
NRS¥3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	DBAHA	6.500	LT	
HRSW3	RDSW*2	CSY	16-apr-1992	0.0	UGL	UN18	DBHC	4.000	NO	R
nrsw3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UM18	DBZFUR	1.700	ĻŢ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	L#18	DEP	2.000	LT	
NRSV3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	DLDRN	4.700	ND	R
nrsu3 Nrsu3	rdsw*2 Rdsw*2	CSW	16-apr-1992 16-apr-1992	0.0 0.0	ugl ugl	UN18	DMP DMBP	1.500	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18 UM18	DNOP	3.700 15.000	LŤ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	ENDRN	7.600	LT ND	R
NRSV3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UK18	ENDRNA	8.000	ИD	Ř
nrsw3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	ENDRNK	8.000	ND	Ř
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	ESFS04	9.200	ND	Ř
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UN18	FANT	3.300	LT	
nrsh3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	FLRENE	3.700	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	GCLDAN	5.100	ND	R
NRSV3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	HCBD	3.400	LT	
NRSV3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UN18	HPCL	2.000	ND	R
NRSU3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	RPCLE	5.000	ND	R
nrsv3 Nrsv3	RDSW*2 RDSW*2	CSA	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18	ICOPYR	8.600	LŢ	
NRSU3	RDSW*2	CSH	16-apr-1992	0.0	UGL	LM18 UM18	ISOPHR Lin	4,800 4,000	LT ND	R
NRSUS	RDSW*2	CSW	16-apr-1992	0.0	UGL	UNTS	MEXCLR	5.100	ND	R
NRSW3	RDSW*Z	CSM	16-apr-1992	0.0	UGL	UN18	NAP	0.500	LT	R
NRSW3	RDSW*Z	CSW	16-apr-1992	0.0	UGL	UN18	NB	0.500	ĹŤ	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UN18	NNDMEA	2.000	ND	R
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UM18	NNDNPA	4,400	LT	
nrsw3	RDSW*2	CSM	16-apr-1992	0.0	UGL	UN18	NNDPA	3.000	LŦ	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UM18	PCB016	21.000	HD	R
NRSW3	RDSU*2	CZM	16-apr-1992	0.0	UGL	UN18	PC8221	21.000	ND	R
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UN18	PCB232	21.000	MD	Ř
nrsu3 Nrsu3	RDSW*2 RDSW*2	CZM	16-apr-1992 16-apr-1992	0.0	UGL	UN18 UN18	PC8242 PC8248	30,000	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	PC8254	30.000 36.000	ND ND	R R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	PCB260	36.000	ND	R
NRSW3	RDSW*Z	CSH	16-apr-1992	0.0	UGL	UH18	PCP	18,000	LT	•
NRSW3	RDSH*2	CSW	16-apr-1992	0.0	UGL	UM18	PHANTR	0.500	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	PHENOL	9.200	LT	
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	UM18	PPODD	4.000	NO	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UH18	PPODE	4,700	ND	R
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	UN18	PPDDT	9.200	ND	R
NRSV3	RDSW*2	CSM	16-spr-1992	0.0	UGL	UH18	PYR	2.800	LT	_
XRSW3	RDSW*2 RDSW*2	CZA	16-apr-1992 16-apr-1992	0.0	UGL	UN18	TXPHEN	36.000	ND	Ř
nrsu3 Nrsu3	RDSW*2	CSW	16-apr-1992	0.0	UGL UGL	\$\$10 \$\$10	AL Ba	141.000 18.600	LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	SS10	BE	5.000	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	\$\$10	CA	13600.000	••	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	SS10	Ö	4.010	LT	
NRSH3	RDSW*2	CZM	16-apr-1992	0.0	UGL	2510	ÇO	25.000	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0,0	UGL	SS10	CR	6.020	LT	
nrsw3	RDSW*2	CSW	16-apr-1992	0.0	UGL	SS10	¢n	8.090	LT	
NRSU3	RDS¥*2	CZM	16-apr-1992	0.0	UGŁ,	\$\$10	FE	217.000		
NRSW3	RDSW#2	CZM	16-apr-1992	0.0	UGL,	\$\$10	K	2400.000		
NRSW3	RDSW*2	CSU	16-apr-1992	0.0	UGL	\$\$10	MG	5230.000		
NRSUS	RDSW*2	CZA	16-apr-1992	0.0	UGL	SS10	XXX	22.100		
Krsu3 Krsu3	rdsw*2 rdsw*2	CZR	16-apr-1992 16-apr-1992	0.0 0.0	UGL	\$\$10 \$\$10	NA NA	5220.000		
NRSW3	RDSW*2	CZM	16-apr-1992	0.0	UGL	SS10 SS10	NI SB	34.300 38.000	LT LT	
NRSW3	RDSW*2	CSM	16-apr-1992	0.0	UGL	SS 10	Y	11.000	LT	
NRSW3	RDSW*2	CSW	16-apr-1992	0.0	UGL	\$510	ZN	21.100	ĹŤ	
NRSW3	RDSW=2	CSM	16-apr-1992	0.0	UGL	SB01	HG	0.243	LT	
NRSU4	RDSV*3	CSW	16-apr-1992	0.0	UGŁ	\$009	TL	6.990	ĹŤ	
NRSU4	RDSY*3	CSW	16-apr-1992	0.0	UGL	SD21	SE	3.020	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SD20	PB	2.390	-	
NRSU4	RDSW*3	CŞU	16-apr-1992	0.0	UGL	\$023	AG	0.250	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	\$022	AS	2.540	LT	
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UN18	124TCB	1.800	LT	
NRSU4	RDSV*3	CSW	16-apr-1992	0.0	UGL	UM18	120CL8	1.700	LT	_
NRSU4	RDSW*3	CSV	16-apr-1992	0.0	UGL	UM18	12DPH	2.000	ND	R
NRS U 4	RDSW*3	CSM	16-apr-1992	0.0	UGL,	UM18	13DCLB	1.700	LT	

Site ID	<u>Field ID</u>	<u>Medía</u>	Dete	Depth	<u>Units</u>	Analytical <u>Wethod</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
MRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	14DCLB	1.700	LT	
NRSW4	rdsy*3	CSU	16-apr-1992	0.0	UGL	UN18	245TCP	5,200	LT	
NRSV4	RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL	UM18	246TCP	4.200	LY	
nrsu4 Nrsu4	RDSW*3 RDSW*3	CSM	16-apr-1992	0.0 0.0	UGL UGL	UN18 UN18	24DCLP 24DMPN	2.900 5.800	LT LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18	24DNP	21,000	LŤ	
NRSW4	RDSW*3	C2A	16-apr-1992	0.0	UGL	UM18	24DNT	4.500	LŤ	
NRSU4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM18	26DNT	0.790	LT	
XRS₩4 XRS₩4	rosw+3 rosw+3	CZM	16-apr-1992 16-apr-1992	0.0	ugl ugl	UM18 UM18	2CLP 2CXAP	0.990 0.500	LT LT	
NRSH4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM18	2MNAP	1.700	LT	
nrsh4	RDSW=3	CSW	16-apr-1992	0.0	UGL	UN18	2HP	3.900	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	ZNANIL	4.300	ŁT	
nrsu4 Hrsu4	rdsw*3 rdsw*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UN18	2XP	3.700	LT	
NRSU4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18 UM18	33DCBD 3NAN I L	12.000 4.900	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0,0	UGL	UM18	460N2C	17.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	4BRPPE	4.200	LT	
NRSW4	RDSV*3	CSW	16-apr-1992	0.0	UGL	UM18	4CANIL	7.300	LT	
nrsu4 Xrsu4	RDSW*3 RDSW*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	4CL3C 4CLPPE	4.000 5.100	LT LT	
HRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	4MP	0.520	LŤ	
nrs44	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	4NANIL	5.200	ĹŤ	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	4NP	12.000	LT	
NRSH4 NRSH4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL UGL	UN18 UN18	ABHC ACLDAN	4.000	ND ND	R
NRSW4	RDSW=3	CSM	16-apr-1992	0.0	UGL	UM18	AENSLF	5.100 9.200	ND ND	R R
NRSH4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UN18	ALDRN	4,700	ND	Ř
NRSU4	RDS¥*3	CSW	16-apr-1992	0.0	UGL	UH18	AKAPNE	1.700	LT	
nrsw4 Nrsw4	RDSW*3	C\$¥	16-apr-1992 16-apr-1992	0.0	UGL	UN18	ANAPYL	0.500	LT	
NRSW4	rdsw*3 rdsw*3	CZM	16-apr-1992	0.0	UGL UGL	UM18 UM18	ANTRC B2CEXM	0.500 1.500	LT LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18	B2CIPE	5.300	LŤ	
NRS≌4	RDSW*3	CSW	16-apr-1992	0.0	UCL	LM18	BZCLEE	1.900	LT	
NRSW4	RDSW*3	CSV	16-apr-1992	0.0	UGL	UM18	BZEHP	4.800	LT	
nrs u4 nrs u4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	ugl Ugl	UM18 UM18	BAANTR BAPYR	1.600 4.700	LT LT	
NRSW4	RDSW=3	CSM	16-apr-1992	0.0	UGL	UH18	BBFANT	5.400	LT	
NRS44	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	8BHC	4.000	ND	R
NRS14	RDSW*3	CSW	16-apr-1992	0.0	UGL	UK18	88ZP	3.400	LT	
nrsh4	rdsw*3 rdsw*3	CSM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	um18 um18	BENSLF BENZID	9.200 10.000	ND NO	R R
NRSW4	RDSU*3	CZM	16-apr-1992	0.0	UGL	UN18	BENZCA	13.000	LT	К
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UH18	BGHIPY	6.100	LT	
NRSW4	RDSV*3	CSW	16-apr-1992	0.0	UGL	UN18	BKFANT	0.870	LT	
nrsu4 Nrsu4	RDSW*3 RDSW*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UN18	BZALC	0.720	LŢ	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18 UN18	CHRY CL68Z	2.400 1.600	LT LT	
NRSW4	RDS¥*3	CSW	16-apr-1992	0.0	UGL	UN18	CL6CP	8,600	LT	
NRS U4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	CL6ET	1.500	LT	
NRSW4	RDSW=3	CSM	16-apr-1992	0.0	UGL	UH18	DBAHA	6.500	LT	_
nrsw4 Nrsw4	RDSW*3 RDSW*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	UN 18 UN 18	DBHC DB2FUR	4.000 1.700	ND LT	R
NRSW4	RDSW*3	CSW	16-apr-1992	ŏ.ŏ	UGL	UN18	DEP	2.000	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	DLDRN	4.700	HD	R
NRSW4	RDSW*3	C\$Y	16-apr-1992	0.0	UGL	UN18	DHP	1.500	LT	
nrsij4 Nrsij4	RDS₩*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0 C.0	UGL	UN18 UN18	DNBP DNOP	3.700 15.000	LT LT	
NRS14	RDSW*3	CSM	16-apr-1992	0.0	UGL	UN18	ENDRN	7.600	ND	R
NRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UM18	ENDRHA	8.000	KD	Ř
NRS14	RDSW*3	CZM	16-apr-1992	0.0	UGL	UN18	ENDRNK	8.000	ND	R.
NRSW4	ROSW*3	CSW	16-apr-1992	0.0	UGŁ	UM18	ESFSO4	9.200	MD	R
nrsw4 Nrsw4	rdsw*3 Rdsw*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	FANT FLRENE	3.300 3.700	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	GCLDAN	5.100	NO	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	HCBD	3.400	LT	
NRSW4	RDSW*3	CZA	16-apr-1992	0.0	UGL	UN18	HPCL	2.000	ND	R
nrsij4 Nrsij4	rdsw=3 rdsw=3	CSM	16-apr-1992 16-apr-1992	0.0 8.0	UGL	LN18	HPCLE	5.000	ЖD	R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18 UM18	ICDPYR ISOPHR	8.600 4.800	LT LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	LIN	4.000	ND	R
NRSU4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM18	MEXCLR	5.100	СИ	Ř
NRSU4	RDSW*3	CSM	16-apr-1992	0.0	UGL	UH18	NAP	0.500	LT	
NRS44	RDSW*3	CSM	16-apr-1992	0.0	UGL	UN18	NB	0.500	LT	

Site ID	<u> Field ID</u>	<u>Media</u>	Date	<u>Deoth</u>	<u>Units</u>	Analytical Hethod	Analyte Abbrv.	Value	<u>Flag</u>	Internal <u>Std. Code</u>
NRSW4	ROSW*3	CSW	16-apr-1992	0.0	UGL	UM18	NNDMEA	2.000	ND	R
HRS14	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM18	NNONPA	4.400	ĹŤ	•
HRS14	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	NNDPA	3.000	LT	
nrsw4 Nrsw4	rdsw*3 Rdsw*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UN18 UN18	PC8016 PC8221	21.000 21.000	ND	R
NRSW4	RDSW*3	CSA	16-apr-1992	0.0	UGL	12418	PCBZ32	21.000	ND ND	R R
NRSH4	RDSW*3	CZM	16-apr-1992	0.0	UGL	UM18	PCB242	30.000	ND	R
NRSW4	RDSV*3	CSW	16-apr-1992	0.0	UGL	UN18	PC8248	30.000	ND	R
nrsu4 Nrsu4	rdsw*3 Rdsw*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UN18 UN18	PC8254 PCB260	36.000 36.000	ND ND	R R
HRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UN18	PCP	18.000	LT	•
NRSW4	RDSW*3	CSY	16-apr-1992	0.0	UGL	UM18	PHANTR	0.500	LŤ	
nrs u4 Nrs u4	RDSW*3 RDSW*3	CZA	16-apr-1992 16-apr-1992	0.0 0.0	UGL	UM18 UM18	PHÉNOL PPODO	9.200 4.000	ĻŤ KØ	В
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UM18	PPDDE	4.700	KD	R R
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	UNI18	PPODT	9.200	MD	Ř
NRSW4	RDSW*3	CSW	16-apr-1992 16-apr-1992	0.0	UGL	UN18	PYR	2.800	LT	_
nrsij4 Nrsij4	RDSW*3 ROSW*3	CZA	16-apr-1992	0.0	UGL	UN18 \$\$10	TXPHEN AL	36.000 141.000	ND LT	Ř
MRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	\$\$10	BA	19,200	•••	
MRSW4	RDSW*3	CSY	16-apr-1992	0.0	UGL	SS10	BE	5.000	LT	
nrsh4 Nrsh4	RDSW*3 RDSW*3	CSA	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	\$\$10 \$\$10	CA CD	13600.000 4.010	LT	
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	æ	25.000	LT	
MRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	\$\$10	CR	6.020	LT	
- NRSW4 - NRSW4	RDSW*3 RDSW*3	CSM	16-apr-1992 16-apr-1992	0.0	UGL	SS10-	CU FE	8.090 170.000	LT	
NRSW4	RDSW*3	CSH	16-apr-1992	0.0	UGL	\$\$10 \$\$10	re K	2360.000		
NRSW4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	MG	5320.000		
NRSU4	RDSW*3	CSW	16-apr-1992	0.0	UGL	SS10	MN	11.000		
nrsh4 Nrsh4	RDSW*3 RDSW*3	CZM	16-apr-1992 16-apr-1992	0.0 0.0	UGL UGL	SS10 SS10	NA NI	5300.000 34.300	LT	
HRSW4	RDSW*3	CSM	16-apr-1992	0.0	UGL	\$\$10	\$8	38.000	LT	
NRSW4	RDSW*3	CZM	16-apr-1992	0.0	UGL	SS10	٧	11.000	LT	
NRSW4 NRSW4	rdsw*3 rdsw*3	CSM	16-apr-1992 16-apr-1992	0.0	ugl Ugl	\$\$10 6901	Z) f	21.100	ĻŢ	
ONW1	RDWC*51	CCM	24-feb-1992	31.0	UGL	SB01 UM20	HG 111TCE	0.243 0.500	LT LT	
OMWT	RDUC*51	CGH	24-feb-1992	31.0	UGL	UN20	112TCE	1.200	ĻŤ	
OMV1	RDUC*51	CCH	24-feb-1992	31.0	UGL	UH20	11DCE	0.500	LT	
OMU1 OMU1	RDWC*51	CCA	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM20 UM20	11DCLE 12DCE	0.680 0.500	LT LT	
OHU1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH20	120CLE	0.500	LT	
OMMIT	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH20	120CLP	0.500	LT	
OMW1 OMW1	RDWC*51 RDWC*51	CCF	24-feb-1992 24-feb-1992	31.0 31.0	ugi. Ugi.	UH20 UH20	2CLEVE ACET	0.710 13.000	LŤ LT	
ONU1	RDUC*51	CEM	24-feb-1992	31.0		UH20	ACROLN	100.000	MD	R
CHW1	RDWC*51	CCH	24-feb-1992	31.0	UGL	UN120	ACRYLO	100.000	ND	Ř
OHV1	RDUC*51	CGM	24-feb-1992	31.0	UGL	UN20	BRDCLM	0.590	LT	
OMW1 OMW1	RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	ugl ugl	UM20 UM20	C13DCP C2AVE	0.580 8.300	LT LT	
OHU1	RDWC*51	CCM	24-feb-1992	31.0	UGL	UN20	C2H3CL	2,600	LT	
OMW1	RDWC*51	CCW	24-feb-1992	31.0	UGL	UM20	C2H5CL	1.900	ĻT	
OMU1 OMU1	RDWC*51 RDWC*51	CCA	24-feb-1992 24-feb-1992	31.0 31.0	UGL UGL	UM20 UM20	CCL3F	2.180 1.400	LT	
OMU!	RDMC*51	CGM	24-feb-1992	31.0	UGL	UH20	CCL4	0.580	LT	
OMW1	RDWC*51	CCM	24-feb-1992	31.0	UGL	UM20	CHZCLZ	2.300	LT	
OMV1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UH20	CH3BR	5.800	ĻŢ	
OMW1 OMW1	RDWC*51 RDWC*51	CCA	24-feb-1992 24-feb-1992	31.0 31.0	ugl	UM20 UM20	CH3CL CHBR3	3.200 2.600	LT LT	
QHV1	RDUC*51	CGM	24-feb-1992	31.0	UGL	UN20	CHCL3	0.697	•	
CHI/1	RDWC*51	CCA	24-feb-1992	31.0	UGL	UM20	CL2BZ	10.000	ND	R
OMV1 OMV1	RDWC*51 RDWC*51	CCM	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM20 UM20	CLC6H5 CS2	0.500 0.500	LT LT	
OMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UM20	D8RCLM	0.670	LT	
ONV1	RDWC=51	CGM	24-feb-1992	31.0	UGL	UM20	ETC6H5	0.895		
ONU1	RDWC*51	CGW	24 - feb - 1992	31.0	UGL	UM20	MEC6H5	0.500	LT	
OMM1 OMM1	RDWC*51 RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM20 UM20	MEK	6.400 3.000	LT LT	
OMW1	RDMC*51	CGW	24-feb-1992	31.0	UGL	UH20	MHBK	3.600	ĻŤ	
OHW1	RDWC*51	CCM	24-feb-1992	31.0	UGL	UH20	STYR	0.500	LT	
OMH1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM20 UM20	T130CP TCLEA	0.700 0.510	LT	
OMM1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UMZU UMZO	TCLEE	1.600	LT LT	
OMM1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UH20	TRCLE	0.500	ĹŤ	

Site ID	<u>Field JD</u>	<u> Media</u>	Date	<u>Depth</u>	<u> Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
ONU1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UM20	UNK183	4.000		s
OHW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH20	UNK190	8.000		S
OMU1	RDWC*51	CCW	24-feb-1992	31.0	UGL	UM20	UNK196	5.000		S
ONU1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH20	UNK200	5.000		\$
OMU1 OMU1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL	LM20 UM20	UNK207 UNK211	10.000		S
OMW1	RDWC*51	ÇGW	24-feb-1992	31.0	UGL	UM20	XYLEN	9.000 0.840	LT	S
OHH1	RDMC*51	CGW	24-feb-1992	31.0		00	PH	7.130		K
OMW1	RDWC*51	CCA	24-feb-1992	31.0	UGL	00	TOX	36.000		
OHV1	RDWC*51	CCM	24-feb-1992	31.0	UCL	00	TOC	7110,000	_	
OMM1 OMM1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL UGL	UN18	124TCB 12DCLB	1.800	LĪ	
OMW1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UM18 UM18	1200LB	1.700 2.000	LT ND	R
OFFIT	RDWC*51	CCM	24-feb-1992	31.0	UGL	UN18	12EPCH	5.000		Š
OMA1	RDMC*51	CEM	24-feb-1992	31.0	UGL	UH18	130CLB	1.700	LT	_
OHU1	RDUC*51	CGM	24-feb-1992	31.0	UGL	UH18	14DCLB	1.700	LT	
OMU1 QMU1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL UGL	UM18 UM18	245TCP 246TCP	5.200 4.200	LT LT	
OMMI	RDUC*51	CGW	24-feb-1992	31.0	UGL	UM18	24DCLP	2.900	LT	
QMU1	RDWC*51	CGM	Z4-feb-1992	31.0	UGL	UN18	24DMPN	5.800	LT	
DMW1	RDUC*51	CGM	24-feb-1992	31.0	UGL	UN18	24DMP	21.000	LT	
OMW1 OMW1	RDUC*51 RDUC*51	COM	24-feb-1992	31.0 31.0	UGL	UN18	24DNT	4.500	LT	
QMN1	RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0	UGL UGL	UN18 UN18	26DNT 2CLP	0.790 0.990	LT LT	
QMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UM18	2CXAP	0.500	LT	•
- OMM1 .	RDWC+51	COM	24-feb-1992	31.0	UGL	UM18	2MNAP	1.700	LT	
OMV1	RDUC*51	COL	24-feb-1992	31.0	UGL	UN18	ŽNP	3.900	ĻT	
OMU1 OMU1	RDWC*51 RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM18	2NANIL	4.300	LT	
ONU1	RDUC*51	CGM	24-feb-1992	31.0	UGL UGL	UM18 UM18	ZNP 33DCBD	3.700 12.000	LT LT	
OHU1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH18	3NANIL	4.900	ĹŤ	
CHU1	RDMC*51	CGW	24-feb-1992	31.0	UGL	UN18	46DN2C	17.000	LT	
CMU1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	4BRPPE	4.200	LT	
OMV1 OMV1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM18 UM18	4CANIL 4CL3C	7.300 4.000	LT LT	
ONU!	ROWC*51	CGM	24-feb-1992	31.0	UGL	UM18	4CLPPE	5.100	LT	
OHW1	RDWC*51	COM	24-feb-1992	31.0	UGL	UH18	4NP	0.520	LT	
QMU1	RDUC*51	CGM	24-feb-1992	31.0	UGL	UH18	4NANIL	5.200	LT	
QMV1 QMV1	RDWC*51	CCM	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UN18	ANP ABHÇ	12.000	LT	_
OHN1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18 UN18	ACLDAN	4.000 5.100	ND ND	R R
OMU1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	AENSLF	9.200	ND	Ř
OMM1	ROWC*51	CGW	24-feb-1992	31.0	UGL	UN18	ALDRN	4,700	ND	R
OMU1	RDWC*51	CGU	24-feb-1992	31.0	UGL	UN18	ANAPNE	1.700	LT	
OMN1 OMN1	RDWC*51 RDWC*51	CCM	24 - feb - 1992 24 - feb - 1992	31.0 31.0	UGL UGL	UM18 UM18	ANAPYL ANTRC	0.500 0.500	LT LT	
OMW1	ROWC*51	COM	24-feb-1992	31.0	UGL	UN18	82CEXM	1.500	LT	
OMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH18	82CIPE	5.300	LT	
ONU1	RDUC-51	CGW	24-feb-1992	31.0	UGL	UN18	B2CLEE	1,900	LT	
ONU1 ONU1	RDWC*51 RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	BZEHP	4.800	LT	
OML1	ROWC+51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL UGL	UM18 UM18	BAANTR BAPYR	1.600 4.700	LT LT	
QMU1	RDWC*51	COM	24-feb-1992	31.0	UGL	UN18	BBFANT	5.400	LT	
OHV1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UM18	BBHC	4.000	NO	R
CMW1	RDWC*51 RDWC*51	CCW	24-feb-1992	31.0	UGL	UN18	BBZP	3.400	LT	_
OMU1 OMU1	RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UN18	BENSLF BENZID	9.200	NO No	R
OM/1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UM18 UM18	BENZOA	10.000 13.000	ND LT	R
OMUT	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	BGHIPY	6.100	LT	
OMNT	RDUC*51	CGM	24-feb-1992	31.0	UGL	UM18	BKFANT	0.870	LT	
OMW1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0	UGL	UM18	BZALÇ	0.720	LŤ	
OMW1	RDWC*51	CCM	24-1eb-1992 24-feb-1992	31.0 31.0	UGL	UM18 UM18	CHRY CL6BZ	2.400 1.600	LT	
OHW1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UH18	CL6CP	8.600	LT	
OHM1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UN18	CL6ET	1.500	LŦ	
0HU1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UK18	DBAHA	6.500	LT	_
OMM1 OMM1	RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UN18	DBHC	4.000	MO	R
OMW1	ROWC*51	CGM	24-feb-1992	31.0	UGL	UM18 UM18	DBZFUR DEP	1.700 2.000	LT L T	
OHW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH18	DLDRN	4.700	MD	R
OMU1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UM18	DNP	1.500	LT	
OMV1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	DKBP	3.700	LT	
OMW1	RDMC*51	CCH	24-feb-1992	31.0	UGL	UN18	DNOP	15.000	LT	-
CMW1	RDWC*51	CGM	24- feb- 1992	31.0	UGL,	UN18	ENDRN	7.600	ND	R

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
OHW1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UM18	ENDRNA	8,000	MD	R
OHUT	ROUC*51	CCH	24-feb-1992	31.0	UGL	LM18	ENDRNK	8.000	ND	R
OMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UM18	ESFS04	9.200	ND	Ř
OMW1	RDUC*51	CGM	24-feb-1992	31.0	Ner	UN18	FANT	3.300	ĻT	
OMUT	RDMC*51	CGW	24-feb-1992	31.0	UGL	UM18	FLRENE	3.700	LT	
OMW1 OMW1	RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	UGL	LM18 UM18	GCLDAN	5.100	ND	R
OMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UM18	HCBD HPCL	3.400 2.000	LT ND	R
OML1	ROWC*51	CGW	24-feb-1992	31.0	UGL	UN18	HPCLE	5.000	ND	R
OMM1	RDWC*51	CGM	24 - feb- 1992	31.0	UGL	UN18	ICDPYR	8.600	LT	•
OMW1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UH18	ISOPHR	4.800	LT	
OMN1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	LIN	4.000	NO	R
OMW1 OMW1	RDWC*51 RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM18 UM18	NEXCLR NAP	5.100 0.500	ND LT	R
OMM1	RDWC*51	COL	24-feb-1992	31.0	UGL	UM18	NB	0.500	LT	
OMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	NNDMEA	2,000	ND	R
OMU1	RDWC*51	CCA	24-feb-1992	31.0	UGL	UH18	NNDNPA	4.400	ĻŢ	
CHILI1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH18	NNDPA	3.000	LT	
OMJ1 OMJ1	RDUC*51	CGM	24-feb-1992	31.0	UGL	UN18	PCB016	21.000	ND	R
OMU1	RDWC*51	CCH	24 - feb - 1992 24 - feb - 1992	31.0 31.0	UGL UGL	LM18 UM18	PC8221 PC8232	21.000 21.000	AD CN	R
OHU1	ROUC*51	CGM	24-feb-1992	31.0	UGL	UM18	PC8242	30.000	ND	· R R
OMM1	RDUC=51	CGH	24-feb-1992	31.0	UGL	UN18	PC3248	30.000	ND	R
OMUT	RDUC*51	CGW	24-feb-1992	31.0	UGL	UM18	PC8254	36.000	ND	Ř
OMW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	PCB260	36.000	ND	R
OMM)	RDWC*51	CGV	24-feb-1992	31.0	UGL	UM18	PCP	18.000	LT	
OMW1	RDWC*51 RDWC*51	CGW	24-feb-1992 24-feb-1992	31.0 31.0	UGL	UM18 UM18	PHANTR PHENOL	0.500	LT	
ONIJ1	RDWC*51	CCH	24 · feb · 1992	31.0	UGL	UM18	PPODD	9.200 4.000	LT ND	R
OHW1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	PPDDE	4.700	ND.	R R
OHW1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UM18	PPODT	9.200	ND	2
CHU1	RDUC*51	CCH	24-feb-1992	31.0	UGL	UN18	PYR	2.800	LT	
OHN1 OHN1	RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0	UGL.	UM18	TXPHEN	36.000	ND	R
OMW1	RDUC*51 RDUC*51	CCM	24-feb-1992	31.0 31.0	UGL UGL	UM18 UM18	UNK529 UNK533	70.000 10.000		\$ \$
OHU1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UN18	UNK543	30,000		S
ONI-1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	UNK552	6.000		Š
ONSJ1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	UNKS54	5.000		S
ONS/1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UN18	UNKS59	90.000		S
ONN1 ONN1	RDWC*51	CGM	24-feb-1992 24-feb-1992	31.0 31.0	UGL UGL	UM18 UM18	UNK563 UNK568	9.000		S
OMM1	RDWC*51	CGM	24-feb-1992	31.0	UGL	UM18	UNK569	6.000 6.000		\$ \$
OHL/1	RDWC*51	CGW	24-feb-1992	31.0	UGL	UH18	UNK574	7,000		Š
OMMIT	RDWC*51	CGM	24-feb-1992	31.0	UGL	UN18	UNX586	7.000		Š
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LN19	111TCE	0.004	LT	
0581	RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0	UGG	LN19	112TCE	0.005	LT	
0S81 0S81	RFIS*86 RFIS*86	CSO CSO	24-001-1991 24-001-1991	16.0 16.0	UGG UGG	LN19 LN19	11DCE 11DCLE	0.004 0.002	LT LT	
0581	RF15*86	CSO	24-oct-1991	16.0	UGG	LM19	12DCE	0.002	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LK19	12DCLE	0.002	ĹŤ	
OS#1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	12DCLP	0,003	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	2CLEVE	0.010	NO	2
0SB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM19	ACET	0.017	LT	
OSB1 OSB1	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg Ugg	LN19 LN19	ACROLN	0.100	ND ND	R
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	UH19	ACRYLO BRDCLM	0.100 0.003	MD LT	R
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	UH19	C13DCP	0.003	LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM19	C2AVE	0.003	LT	
OSB1	RFIS*86	CZO	24-oct-1991	16.0	UGG	LN19	C2H3CL	0.006	ĻŢ	
OSB1	RFIS*86	CSC	24-oct-1991	16.0	UGG	LN19	C2N5CL	0.012	LT	
0S81 0S81	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM19 LM19	C6H6	0.002 0.006	LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM19	CCL3F CCL4	0.007	LT LT	
0S81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM19	CH2CL2	0.012	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LN19	CH3BR	0.006	ĻŤ	
OS81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	CH3CL	0.009	LŤ	
0\$81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	CHBR3	0.007	LT	
0\$81 0\$81	RF1S*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG	LH19 LH19	CHCL3 CL2BZ	0.001	LT	_
0S81	RFIS*86 RFIS*86	¢so	24-oct-1991	16.0	UGG	LN19	CLZBZ CLZBZ	0.100 0.001	MD LT	R
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LX19	CS2	0.001	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LX19	DBRCLM	0.003	ĹŤ	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LH19	ETC6H5	0.002	ĻΤ	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LN19	MEC6H5	0.001	LT	

Site ID	Field 10	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
OSB1	RF1\$*86	CSO	24-oct-1991	16.0	UGG	LH19	MEK	0.070	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	MIBK	0.027	ĹŤ	
OS81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	MNBK	0.032	LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH19	STYR	0.003	LT	
0\$81 0\$81	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg Ugg	1.119 1.119	T13DCP TCLEA	0.003 0.002	LT LT	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LH19	TCLEE	0.001	LT	
0 \$81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LX19	TRCLE	0.003	ĹŤ	
QS\$1	RFIS*86	C20	24-oct-1991	16.0	UGG	LM19	XYLEN	0.002	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	124TCB	0.040	LT	
0S81 0S81	RF1S*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	U418 U418	12DCLB 12DPH	0.110 0.140	LT ND	R
OS81	RFIS*86	CSO	Z4-oct-1991	16.0	UGG	UN18	13DCLB	0.130	ĻŢ	ĸ
OSB1	RFIS*86	cso	24-oct-1991	16.0	UGG	LM18	14DCLB	0.098	ĹŤ	
OSB1	RF1S*86	CSO	24-oct-1991	16.0	UGG	LH18	245TCP	0.100	LT	
1820	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	246TCP	0.170	LT	
QS21 QS21	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	UN18 UN18	24DCLP 24DMPN	0.180 0.690	LT	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LH18	240NP	1.200	LT LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	24DNT	0.140	LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LX18	26DNT	0.085	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	2CLP	0.060	LT	
0581 0581	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0	UGG	LH18	2CXAP	0.036	LT	
OSB1	RF15*86	CSO	24-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	2HKAP 2NP	0.049 0.029	LT LT	
-OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH18 -	2NAN IL	0.062	ĹŤ	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LX18	2NP	0.140	LT	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	330CBD	6.300	LT	
0581 0581	RF15*86	CSO	24-oct-1991	16.0 16.0	UGG UGG	LM18	3NANIL 46DNZC	0.450	LT	
OSB1	RFIS*86 RFIS*86	CSO CSO	24-oct-1991 24-oct-1991	16.0	UGG	LH18 LH18	48RPPE	0.550 0.033	LT LT	
OSB1	RFIS*86	C20	24-oct-1991	16.0	UGG	LM18	4CANIL	0.810	LT	
0SB1	RF15*86	ÇSO	24-oct-1991	16.0	UGG	LH18	4CL3C	0.095	LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	4CLPPE	0.033	LT	
QSB1 QSB1	RF15*86 RF15*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG	LM18 LM18	4MP 4MANIL	0.240 0.410	LT LT	
0SB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LH18	4NP	1.400	LT	
0S81	RF15*86	CSO	24-oct-1991	16.0	UGG	LH18	ABRC	0.270	MD	R
0561	RFIS*86	CSC	24-oct-1991	16.0	UGG	LH18	ACLDAN	0.330	ND	R
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	AEHSLF	0.620	ND	R
OSB1 OSB1	RFI\$*86 RFI\$*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	UN18 UN18	ALDRN ANAPNE	0.330 0.036	MD LT	R
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	ANAPYL	0.033	LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH18	ANTRO	0.033	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LN18	B2CEXII	0.059	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	B2C1PE	0.200	LT	
OSB1 OSB1	RF15*86 RF15*86	C20	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LH18 LH18	B2CLEE B2EHP	0.033 0.620	LT LT	
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LN18	BAANTR	0.170	LT	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LN18	BAPYR	0.250	ĻŤ	
QSB1	RFIS*86	ÇS0	24-oct-1991	16.0	UGG	LM18	BBFANT	0.210	LT	
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	38HC	0.270	ND	R
0581 0581	RFIS*86 RFIS*86	CSO CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	BBZP BENELC	0.170 0.620	LT	•
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LN18	BENSLF BENZID	0.850	ND ND	R R
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LH18	BENZOA	6.100	ND	Ŕ
OSB1	RF1S*86	C\$O	24-oct-1991	16.0	UGG	LX18	BGKIPY	0.250	LT	
0SB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LH18	BKFANT	0.066	LT	
OSB1	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	BZALC CHRY	0.190 0.120	LT	
0SB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	U118	CL6BZ	0.033	LT LT	
0581	RF15*86	ÇSQ	24-oct-1991	16.0	UGG	LN18	CL6CP	6.200	ĹŤ	
OSB1	RF15*86	CZO	24-oct-1991	16.0	UGG	LM18	CL6ET	0.150	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LX18	DBAHA	0.210	LT	_
0581 0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	DBHC	0.270	100	R
OSB1	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	DBZFUR Dep	0.035 0.240	LT LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	DLDRN	0.310	MD	R
0581	RFIS*86	CSO	24-oct-1991	16.0	UGG	LN18	DMP	0.170	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	DNBP	0.061	LT	
0\$81 0\$81	RFIS*86 RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	DNOP	0.190	LT	-
OSB1	RF15*86	CSO CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	ENDRN ENDRNA	0.450 0.530	ND ND	R R
OS81	RFI\$*86	CSO	24-oct-1991	16.0	UGG	LX18	ENDRNK	0.530	ND	Ř
	·					- '	-			

Site ID	<u>field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbrv.	Value	<u>Flag</u>	Internal Std. Code
0281	RF15=86	CSO	24-oct-1991	16.0	UGG	LH18	ESFS04	0.620	ND	R
QSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	FANT	0.068	ĹŤ	•
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	FLRENE	0.033	ĹŤ	
0581	RF15*86	CSO	24-oct-1991	16.0	UGG	LH18	GCLDAN	0.330	ND	R
0SB1 0SB1	RF1S*86 RF1S*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG	LM18 LM18	HPCL HPCL	0.230 0.130	LT	•
OSB 1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	HPCLE	0.130	ND ND	R R
OSB1	RFI\$*86	CSO	24-oct-1991	16.0	UGG	LM18	ICDPYR	0.290	LT	•
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	ISOPHR	0.033	ĹŤ	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	UH18	LIM	0.270	MD	R
OSB1 OSB1	RFIS*86 RFIS*86	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	U18	MEXCLR NAP	0.330	ND	R
0S81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18 LM18	NB.	0.037 0.045	LT LT	
OSB1	RFIS*86	cso	24-oct-1991	16.0	UGG	LM18	NNDNEA	0.140	ND	R
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	NNDNPA	0.200	LT	
0\$81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	NNOPA	0.190	LT	
0581 0581	RF1S*86 RF1S*86	CSO CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG	LH18	PCB016 PCB221	1.400	ND	R
0\$81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18 LM18	PCB232	1.400 1.400	ND CM	R R
QS81	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	PCB242	1.400	ND	R
0581	RF1S*86	CSO	24-oct-1991	16.0	UGG	LH18	PCB248	2.000	ND	Ř
OSB1	RF1\$*86	CSO	24-oct-1991	16.0	UGG	LM18	PCB254	2.300	ND	R
OSB1	RF15*86	CSO	24-oct-1991	16.0	UGG	LM18	PC8260	2.600	MD	R
0\$81 0\$81	RFIS*86 RFIS*86	CSO CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg Ugg	LH18 LH18	PCP PHANTR	1.300 0.033	LT LT	
-05B1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LM18	PHENOL	0.110	LT	
OSB1	RFIS*86	CSO	24-oct-1991	16.0	UGG	LH18	PPDDD	0.270	ND	R
OSB1	RFIS*86	CZO	24-oct-1991	16.0	UGG	LN18	PPDDE	0.310	ND	R
1820	RFIS*86	ÇŞO	24-oct-1991	16.0	UGG	LN18	PPDDT	0.310	ND	R
0581 0581	RF15*86 RF15*86	CSO CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	PYR TXPHEN	0.033 2.600	LŤ	R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LM19	111TCE	0.004	MD LT	K
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	11ZTCE	0.005	ĹŤ	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH19	11DCE	0.004	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH19	11DCLE	0.002	LT	
OSB1 OSB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg Ugg	LN19 LN19	12DCE 12DCLE	0.003 0.002	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	120CLP	0.003	LT LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	2CLEVE	0.010	MD	R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LH19	ACET	0.017	LT	
0S81	RF15*87	C2O	24-oct-1991	22.0	UGG	LN19	ACROLN	0.100	ND	Ř
0S81 0S81	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg ugg	LH19 LH19	ACRYLO BRDCLM	0.100 0.003	MD	R
OSB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LH19	C13DCP	0.003	LT LT	
OSB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LH19	C2AVE	0.003	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0		LH19	C2H3CL	0.006	LT	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM19	C2H5CL	0.012	LT	
OSB1 OSB1	RF15*87 RF15*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg ugg	LM19 LM19	C6H6 CCL3F	0.002 0.006	LT	
0\$81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM19	CCL4	0.007	LT LT	
0\$81	RFIS*87	CSO	24-oct-1991	22.0	UÇÇ	LN19	CH2CL2	0.012	ĹŤ	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	CH38R	0.006	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	CH3CL	0.009	LT	
0SB1 0SB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg Ugg	LM19	CHBR3 CHCL3	0.007	ĻŢ	
.0\$81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM19 LN19	CL2BZ	0.001 0.100	LT ND	R
0\$81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH19	CLC6H5	0.001	LT	•
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LK19	CSZ	0.004	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	DBRCLM	0.003	LT	
0SB1 0SB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG UGG	LN19 LN19	RECONS MECONS	0.002 0.001	LT	
OSB1	RF15*87	cso	24-oct-1991	22.0	UGG	LH19	MEK	0.070	LT LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN19	MIBK	0.027	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM19	MNBK	0.032	LT	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM19	STYR	0.003	LŤ	
0581 0581	RF1S*87 RF1S*87	CSO CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg ugg	LM19 LM19	T13DCP TCLEA	0.003	LT	
0S81	RF15*87	CSO	24-oct-1991	22.0	UGG	LN19	TCLEE	0.00 <u>2</u> 0.001	LT LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH19	TRCLE	0.003	LT	
OSB1	RF1\$*87	CSO	24-oct-1991	22.0	UGG	LH19	XYLEN	0.002	ĻŤ	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	124TCB	0.040	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LX18	120CLB	0.110	LT	_
OSB1 OSB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG UGG	1,418 1,418	120PH 130CLB	0.140 0.130	KO	R
			24 OCC 1771		~74	PUID	FFFE	0.130	LT	

\$ite ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,	<u>Value</u>	Flag	Internal Std. Code
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	UH18	14DCLS	0.098	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	245TCP	0.100	LT	
QSB1 QSB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG UGG	LN18	246TCP	0.170	ĹΪ	
OSB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LM18 LM18	24DCLP 24DMPN	0.180 0.490	LT LT	
OSB1	RFIS*87	CZO	24-oct-1991	22.0	UGG	LX18	24DNP	1.200	LT	
O\$81	RF15*87	CSQ	24-oct-1991	22.0	UGG	LH18	24DNT	0.140	ĹŤ	
OSB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LH18	ZGDNT	0.085	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	2CLP	0.060	ĻŢ	
0581	RF1S*87	CSO	24-oct-1991 24-oct-1991	22.0	UGG	LM18	2CXAP	0.036	LT	
0SB1 0SB1	RF1S*87 RF1S*87	CSO	24-oct-1991	22.0 22.0	ugg Ugg	LN18 LN18	2MNAP 2MP	0.049 0.029	LT LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN18	ZNANIL	0.062	LT	
OSB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LH18	2NP	0.140	ĹŤ	
OS81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	33DCBD	6.300	LT	
QSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	3NANIL	0.450	LT	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	46DN2C	0.550	LT	
OSB1 OSB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG	LX18	48RPPE	0.033	LT	
OS81	RF15*87	CSO	24-oct-1991	22.0	ugg ugg	LX18 LX18	4CANTL 4CL3C	0.810 0.095	LT LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LX18	4CLPPE	0.033	LT	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	4MP	0.240	ĹŤ	•
OS81	RFIS*87	CSQ	24-oct-1991	22.0	UGG	LN18	4MANIL	0.410	LT	
0\$81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	4NP	1.400	LT	
OS81	RFIS*87	CSO	24-oct-1991	22.0	UGG	1.118	ABHC	0.270	ND	Ř
OS81	RFIS*87 RFIS*87	CSO CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG	LM18 LM18	ACLDAN AENSLF	0.330 0.620	MO	R
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	ALDRN	0.330	ND ND	R R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	UH18	ANAPNE	0.036	LT	•
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN18	ANAPYL	0.033	LT	
OSB1	RFIS*87	CZO	24-oct-1991	22.0	UGG	LM18	ANTRC	0.033	LT	
0581	RFIS*87	CSO	24-oct-1991	22.0	ucc	LH18	BZCEXM	0.059	LT	
0\$81 0\$81	RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG	LH18	B2CIPE	0.200	ĻŢ	
0S81	RFIS*87 RFIS*87	CSO	24-oct-1991	22.0	ugg	LM18 LM18	B2CLEE B2EHP	0.033 0.620	LT LT	
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LN18	BAANTR	0.170	ĹŤ	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	BAPYR	0.250	LŤ	
OSB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LH18	BBFANT	0.210	LŤ	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	BBHC	0.270	MO	R
0SB1 0SB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	B8ZP	0.170	LT	_
0581	RFIS*87 RFIS*87	CSC	24-oct-1991 24-oct-1991	22.0 22.0	UGG UGG	LH18 LH18	BENSLF BENZID	0.620 0.850	ND ND	R R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LHIS	BENZOA	6.100	ND	R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LH18	BGHIPY	0.250	LT	•
QSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN18	BKFANT	0.066	LT	
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	BZALC	0.190	LT	
OSB1	RF15*87	CZO	24-oct-1991	22.0	UGG	LM18	CHRY	0.120	ĻŢ	
0581 0581	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG	LM18	CL68Z	0.033	LT	
OSB1	RFIS*87	C20	24-oct-1991	22.0	ugg ugg	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN18	DBAHA	0.210	LT	
0 \$81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	DBHC	0.270	ND.	R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LN18	DBZFUR	0.035	LT.	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN18	DEP	0.240	LT	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	DLDRN	0.310	ND	R
OSB1 OSB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	UGG	LM18 LM18	DMP DNBP	0.170 0.061	LŤ	
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	DNOP	0,190	LŤ LT	
OSB1	RFIS*87	cso	24-oct-1991	22.0	UGG	LH18	ENDRN	0.450	ND	R
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LX18	ENDRNA	0.530	ND	Ř
OSB1	RF1S*87	CSO	24-oct-1991	22.0	UGG	LM18	ENDRNK	0.530	ND	R
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	ESFS04	0.620	ND	R
OSB1	RFIS*87	C20	24-oct-1991	22.0	UGG	LM18	FANT	0.068	LT	
OSB1 OSB1	RFIS*87 RFIS*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg ugg	LH18 LH18	FLRENE GCLDAN	0.033 0.330	LT	
OS81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	HCBD HCBD	0.330	ND LT	R
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LN18	HPCL	0.230	ND	R
0\$81	RFIS*87	cso	24-oct-1991	22.0	UGG	LH18	HPCLE	0.330	ND	Ř
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LN18	I CDPYR	0.290	LT	••
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LM18	ISOPHR	0.033	LT	
0SB1	RF15*87	CSO	24-oct-1991	22.0	UGG	LX18	LIN	0.270	ND	R
0\$81 0\$81	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	MEXCLR	0.330	ND.	R
OSB1	RFIS*87 RFIS*87	CSO CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg Ugg	LM18	NAP NB	0.037	LT	
OOD (VL 1301	نادب	64-061-1331	22,0	464	LM18	ИВ	0.045	LT	

<u> Site ID</u>	Field ID	<u>Hedia</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte <u>Abbrv.</u>	Value	<u> Flag</u>	Internal Std. Code
QSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	NNDMEA	0.140	ND	R
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	NHONPA	0.200	ĹŢ	•
OSB1	RFIS*87	C2G	24-oct-1991	22.0	UGG	LN18	NNDPA	0.190	LT	
0581	RFIS*87	CSC	24-oct-1991	22.0	UGG	LM18	PCB016	1.400	ND	R
0SB1 0SB1	RFIS*87 RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	PC8221	1.400	ND	R
OSB1	RF15*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg ugg	LH18 LH18	PCB232 PCB242	1.400	ND:	R
QSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	PCB248	1.400 2.000	ND ND	R R
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	PC8254	2.300	ND	Ř
CSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	PC8260	2.600	ND	Ř
QSB1	RFIS*87	CSQ	24-oct-1991	22.0	UGG	LX18	PCP	1.300	LT	
0581	RFIS*87	CSC	24-oct-1991	22.0	UGG	LM18	PHANTR	0.033	LT	
OS81 OS81	RFIS*87 RFIS*87	CSO CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg Ugg	1,418 1,418	PHENOL PPODD	0.110 0.270	LŢ	_
OS81	RFIS*87	cso	Z4-oct-1991	22.0	UGG	LH18	PPODE	0.310	ND CN	R R
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	PPDDT	0.310	ND	Ŕ
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	PYR	0.033	LT	
0581	RF15*87	CSO	24-oct-1991	22.0	UGG	LM18	TXPHEN	2.600	ND .	R
0S81 0S81	RF1S*87 RF1S*87	CSO	24-oct-1991 24-oct-1991	22.0 22.0	ugg Ugg	LN18	UNK580	0.681		s
DSB1	RF15-07	CSO	24-oct-1991	22.0	UGG	1,418 1,418	UNK586 UNK587	0.341 0.341		S
OSB1	RF15*87	C20	24-oct-1991	22.0	UGG	LM18	UNKS92	0.454		. S S
0581	RFIS*87	CSO	24-oct-1991	22.0	UGG	LH18	UNK594	0.341		Ş
OSB1	RFIS*87	CSO	24-oct-1991	22.0	UGG	LM18	UNKS95	2.270		Š
OSB1	RFIS*87	C20	24-oct-1991	22.0	UGG	LK18	UNK596	90.800		S
0SB1 0SB10	RFIS*87 RFIS*104	CSO	24-oct-1991 24-oct-1991	22.0 16.0	UGG	UN18	UNK604 111TCE	0.454		S
05810	RF15*104	CSO	24-oct-1991	16.0	ugg Ugg	LN19 LN19	112TCE	0.004 0.005	LT LT	
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	LN19	11DCE	0.004	ĹΪ	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	11DCLE	0.002	ĹŤ	
05810	RF15*104	CSO	24-oct-1991	16.0	UGG	LM19	12DCE	0.003	LT	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LM19	12DCLE	0.002	LŢ	
0SB10 0SB10	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	LM19 LM19	12DCLP 14DMCH	0.003	LT	_
CSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LM19	2CLEVE	0.004 0.010	NO	S R
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH19	ACET	0.017	LT	.
Q\$B10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH19	ACROLN	0.100	ND	R
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	ACRYLO	0.100	MD	R
0\$810 0\$810	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0	UGG	LN19	BRDCLM	0.003	LT	
OSB10	RFIS=104	CSO	24-oct-1991	16.0 16.0	UGG UGG	LM19 LM19	C13DCP C2AVE	0.003 0.003	LT LT	
05210	RFIS*104	CSO	24-oct-1991	16.0	UGG	LX19	C2H3CL	0.006	LT	
05810	RF1S*104	CSO	24-oct-1991	16.0	UGG	LH19	C2H5CL	0.012	ĹŤ	
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	LH19	C6H6	0.002	LT	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LM19	CCL3F	0.006	LT	
OSB10 OSB10	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM19 LM19	CCL4 CH2CL2	0.007	LŢ	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LM19	CH3BR	0.012 0.006	LT LT	
05810	RFIS*104	cso	24-oct-1991	16.0	UGG	LM19	CH3CL	0.009	LT	
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	LN19	CH8R3	0.007	ĹŤ	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH19	CHCL3	0.001	LT	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	CL2BZ	0.100	ND	R
05810 05810	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg Ugg	LN19 LN19	CLC6K5 CS2	0.001 0.004	LT	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	DBRCLM	0.003	LT LT	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH19	ETC6H5	0.003	-1	
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	LH19	MEC6H5	0.001	LT	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	MEK	0.070	LŢ	
0\$810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	MIBK	0.027	LT	
OSB10 OSB10	RFIS*104 RFIS*104	CSO CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM19 LM19	MNBK Styr	0.032 0.003	LŢ	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	T13DCP	0.003	LT LT	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	ÚN19	TCLEA	0.002	LT	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH19	TCLEE	0.001	ĹŤ	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH19	TRCLE	0.003	LŢ	
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	UNK109	0.007		\$
05810	RFIS*104		24-oct-1991	16.0	UGG	LN19	UXK116	0.003		S
OSB10 OSB10	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LN19 LN19	UNK131 UNK140	0.030 0.009		\$
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN19	UNK150	0.030		5 \$
OSB10	RFIS*104	ÇSO	24-oct-1991	16.0	UGG	LM19	UNX 156	0.030		S
OSB10	RF15=104		24-oct-1991	16.0	UGG	LH19	XYLEN	0.002	LT	•
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LM18	124TCB	0.040	LT	
0\$810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	120CLB	0.110	LT	

Site ID	Field ID Med	ia Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
05810	RFIS*104 CS	0 24-oct-1991	16.0	UGG	LM18	120PH	0.140	ND	R
OSB10	RFIS*104 CS	•	16.0	UGG	LH18	13DCLB	0.130	LT	*
05810	RFIS*104 CS		16.0	UGG	LM18	14DCLB	0.098	LŤ	
OSB10	RFIS*104 CS		16.0	UGG	LN18	1MNAP	2.950		\$
05810	RFIS*104 CS		16.0	UGG	LX18	2451CP	0.100	LT	
05810 05810	RFIS*104 CS		16.0 16.0	ugg Ugg	LX18	246TCP	0.170	LT	
OSB10	RFIS*104 CS	. –	16.0	UGG	LM18 LM18	24DCLP 24DMPN	0.180 0.690	LT LT	
OSB10	RFIS*104 CS	-	16.0	UGG	LH18	24DNP	1.200	LŤ	
OSB10	RFIS*104 CS	0 24-oct-1991	16.0	UGG	LX18	24DNT	0.140	LT	
OSB10	RFIS*104 CS		16.0	UGG	LX18	26DNT	0.085	LT	
OSB10	RFIS*104 CS		16.0	UGG	LK18	2CLP	0.060	LĪ	
OSB10 OSB10	RFIS*104 CS		16.0 16.0	ugg Ugg	LM18 LM18	20NAP 210NAP	0.036	LT	
OSB10	RFIS*104 CS		16.0	ugg	UN18	2NP	10.500 0.029	LT	
OS810	RFIS*104 CS		16.0	UGG	LH18	2NANIL	0.062	ŁT	
0\$810	RFIS*104 CS	0 24-oct-1991	16.0	UGG	LH18	2NP	0.140	LT	
OSB10	RFIS*104 CS		16.0	UGG	LX18	33DCBD	6.300	LT	
OSB10	RFIS*104 CS		16.0	UGG	LM18	3NANIL	0.450	LT	
OSB10 OSB10	RFIS*104 CS		16.0	UGG	LN18	460x2C	0.550	LT	
OSB10	RFIS*104 CS	-	16.0 16.0	UGG	LM18 LM18	4BRPPE 4CANIL	0.033 0.810	LT LT	
OSB10	RFIS*104 CS		16.0	UGG	LX18	4CL3C	0.095	LT	
05810	RFIS*104 CS		16.0	UGG	LN18	4CLPPE	0.033	ĹŤ	
OSB10	RFIS*104 CS	0 24-oct-1991	16.0	UGG	UH18	4142	0.240	LT	
- osa10	RFIS*104 CS		16.0	UGG	LH18	4NANIL	0.410	ĻŢ	
OSB10	RFIS*104 CS		16.0	UGG	LM18	4XP	1.400	ĻT	
05810 05810	RFIS*104 CS		16.0	UGG	LN18	ABHC	0.270	ЖD	R
0SB10	RFIS*104 CS		16.0 16.0	ugg ugg	ln18 ln18	ACLDAN AENSLF	0.330 0.620	ND ND	R R
OSB10	RFIS*104 CS		16.0	UGG	LM18	ALDRN	0.330	ND	Ř
OSB10	RFIS*104 CS		16.0	UGG	LH18	ANAPNE	0.036	LT	•
05810	RFIS*104 CS		16.0	UGG	LH18	ANAPYL	0.184		
05810	RFIS*104 CS		16.0	UGG	LN18	ANTRO	0.033	LT	
OS810 OS810	RFIS*104 CS		16.0 16.0	ugg ugg	LM18 LM18	B2CEXM B2CIPE	0.059 0.200	LŢ	
05810	RFIS*104 CS		16.0	UGG	LN18	B2CLEE	0.033	LT LT	
OSB10	RFIS*104 CS		16.0	UGG	UH18	B2EHP	0.620	LT	
OSB10	RFIS*104 CS	0 24-oct-1991	16.0	UGG	LM18	BAANTR	0.170	ĻT	
OSB10	RFIS*104 CS		16.0	UGG	LH18	BAPYR	0.250	ŁT	
01820	RFIS*104 CS		16.0	UGG	LN18	BBFANT	0.210	LT	_
OS810 OS810	RFIS*104 CS		16.0 16.0	UGG UGG	LM18 LM18	BBHÇ 98ZP	0.270	ND	R
05810	RFIS*104 CS		16.0	UGG	LM18	BENSLF	0.170 0.620	LT ND	R
OSB10	RFIS*104 CS		16.0	UGG	LH18	BENZID	0.850	ND	Ř
OS810	RFIS*104 CS		16.0	UGG	LN18	SENZOA	6.100	ND	Ř
0\$810	RFIS*104 CS		16.0	UGG	LM18	BGHIPY	0.250	ĻT	
OSB10	RFIS*104 CS		16.0	UGG	LH18	BKFANT	0,066	LT	
OSB10 OSB10	RFIS*104 CS		16.0	UGG	LM18	8ZALC	0.190	LT	_
OSB10	RFIS*104 CS		16.0 16.0	ugg Ugg	LM18 LM18	C12 C14	11_800 58_900		\$ \$
OSB10	RFIS*104 CS		16.0	UGG	LM18	C15	29.500		\$ \$
OSB10	RFIS*104 CS		16.0	UGG	LH18	CHRY	0.120	LT	Ū
05810	RFIS*104 CS		16.0	UGG	LH18	CL68Z	0.033	LT	
OSB10	RFIS*104 CS		16.0	UGG	LH18	CL6CP	6.200	LT	
OS810 OS810	RFIS*104 CS RFIS*104 CS		16.0	UGG	LM18	CL6ET	0.150	LT	
0S810	RFIS*104 CS		16.0 16.0	UGG UGG	1,#18 1,#18	DBAHA DBHC	0.210 0.270	LT ND	
OSB10	RFIS*104 CS		16.0	UGG	LM18	DBZFUR	0.425	NU	R
OS810	RFIS*104 CS		16.0	UGG	LM18	DEP	0.240	ŁT	
OSB10	RFIS*104 CS	0 24-oct-1991	16.0	UGG	LN18	DLDRN	0.310	ND	R
OS810	RFIS*104 CS		16.0	UGG	LH18	DHP	0.170	LT	
OSB10	RFIS*104 CS		16.0	UGG	LN18	DNBP	0.061	LT	
OS810 OS810	RFIS*104 CS		16.0	UGG	LN18	DHOP	0.190	LT	_
05810 05810	RFIS*104 CS		16.0 16.0	UGG UGG	LM18 LM18	ENDRN ENDRNA	0.450 0.530	CN	R
OSB10	RFIS*104 CS		16.0	UGG	LM18	ENDRNK	0.530	ND ND	R R
05810	RFIS*104 CS		16.0	UGG	LN18	ESFS04	0.620	ND	Ř
0\$810	RFIS*104 CS		16.0	UGG	LH18	FANT	0.068	LT	
OS810	RFIS*104 CS	0 24-oct-1991	16.0	UGG	LX18	FLRENE	1.030		
OSB10	RFIS*104 CS		16.0	UGG	LN18	GCLDAN	0.330	NO	R
OS810	RFIS*104 CS		16.0	UGG	LM18	HCBD	0.230	LT	_
0S810 0S810	RFIS*104 CS		16.0	UGG	LM18	HPCL F	0.130	ЖD	R
05810	RFIS*104 CS	O 24-oct-1991	16.0	UGG	LM18	HPCLE	0.330	NO	R

							_			
Site ID	<u>Field 10</u>	<u>Hedia</u>	Qate	<u>Depth</u>	Units	Analytical Method	Analyte _Abbrv.	Va <u>lue</u>	fleg	Internal Std. Code
01820	RFIS*104	CSO	24-oct-1991	16.0	UGG	LX18	I COPYR	0.290	LT	
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	1418	ISOPHR	0.033	LT	
05810	RF1S=104	CSO	24-oct-1991	16.0	UGG	LH18	LIM	0.270	ND	R
0\$810	RFIS#104	CS0	24-oct-1991	16.0	UGG	LH18	MEXCLR	0.330	ND	R
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	NAP	1.890		
0S810 0S810	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	UN18 UN18	N8 NNDMEA	0.045 0.140	LT	_
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	NNDNPA	0.200	ND LT	R
OSB10	RFIS#104	CSO	24-oct-1991	16.0	UGG	UI18	NNDPA	0.190	Lī	
Q\$810	RF1S*104	CSO	24-oct-1991	16.0	UGG	LN18	PC8016	1.400	HD	R
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	PC8221	1.400	ND	R
01820	RFIS*104	CSO	24-oct-1991	16.0	UGG	LH18	PC8232	1.400	ND	R
05810 05810	RFIS*104 RFIS*104	CZO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	PCB242 PCB248	1.400 2.000	ND ND	R R
0SB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LNIB	PC8254	2.300	NO	R R
OS810	RF1S*104	CSO	24-oct-1991	16.0	UGG	UI18	PCB260	2.600	NO	Ř
OSB10	RFIS*104	CSO	24-oct-1991	16.0	ŲGG	LH18	PCP	1.300	LT	
05810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LX18	PHANTR	1.980		
OSB10	RF1S*104	C\$O	24-oct-1991	16.0	UGG	LM18	PHENOL	0.110	LT	_
QSB10 QSB10	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LN18 LN18	PPODD PPODE	0.270	ND ND	R
05810	RFIS*104	CSO	24-oct-1991	16.0	UCG	LM18	PPDDT	0.310 0.310	ND ND	. R
OSB10	RF15*104	cso	24-oct-1991	16.0	UGG	U118	PYR	0.122	-	•
Q\$B10	RF15*104	CSO	24-oct-1991	16.0	UGG	LN18	TXPHEN	2.600	ND	R
QS810	RFIS*104	C20	24-oct-1991	16.0	UGG	LH18	UNK554	5.890		\$
_os810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LX18	UNKS59	4.420		Ş
OSB10 OSB10	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	unks63 Unks65	5.890		\$
OS810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LM18	UNK568	4.420 8.840		s s
CSB10	RFIS*104	cso	24-oct-1991	16.0	UGG	LM18	UNKS73	14.700		S
OSB10	RF15*104	CSO	24-oct-1991	16.0	ŲGG	LH18	UNX575	14.700		Ş
OSB10	RFIS#104	CSO	24-oct-1991	16.0	UGG	LH18	UNK578	29.500		S
QSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	UNKS79	8.840		\$
Q\$810 Q\$B10	RFIS*104 RFIS*104	CSO	24-oct-1991 24-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	UNKS80 UNKS81	13.300		S
OSB10	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	UNK586	14.700 13.300		\$ \$
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	LH18	UNKS87	14.700		\$
OS810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	UKK588	1180.000		Š
0\$810	RFIS*104	CSO	24-oct-1991	16.0	UGG	LN18	UNK593	1.470		S
OSB10	RF15*104	CSO	24-oct-1991	16.0	UGG	LM18	UNKS95	4-420		S
OSB10 OSB10	RFIS*104	CSO	24-oct-1991	16.0 32.0	UGG	LM18	UNK605 111TCE	2.950		S
05810	RFIS*101 RFIS*101	C2O	24-oct-1991 24-oct-1991	32.0	UGG	LH19 LH19	112TCE	0.004 0.005	LT LT	
OSB10	RF15*101	CSO	24-oct-1991	32.0	UGG	LN19	11DCE	0.004	ĹĪ	
OSB10	RF15*101	CSO	24-oct-1991	32.0	ŲGG	LH19	11DCLE	0.002	ĹŤ	
OS810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH19	12DCE	0.003	LT	
0SB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN19	12DCLE	0.002	LT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH19	12DCLP	0.003	LT	_
0SB10 CSB10	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LH19 LH19	2CLEVE ACET	0.010 0.028	ND	R
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM19	ACROLN	0.100	ND	R
05810	RFIS*101	CSO	24-oct-1991	32.0	ŲGG	LH19	ACRYLO	0.100	ND	Ř
OS810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN19	BRDCLM	0.003	LT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM19	C13DCP	0.003	ŁT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	UN19	CZAVE	0.003	LT	
OSB10 OSB10	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	UGG	LN19 LN19	C2H3CL C2H5CL	0.006 0.012	LT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN19	CSH6	0.002	LT LT	
05810	RF1S*101	CSO	24-oct-1991	32.0	UGG	LH19	CCL3F	0.006	ĹŤ	
05810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH19	CCL4	0.007	LŤ	
0\$810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH19	CHSCFS	0.012	LT	
OSB10	RFIS*101	CS0	24-oct-1991	32.0	UGG	LN19	CH3BR	0.006	LT	
05810 05810	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg	LK19	CH3CL	0.009	LT	
0\$810 0\$810	RFIS*101	CSO	24-001-1991 24-001-1991	32.0	UGG	LM19 LM19	CHER3 CHCL3	0.007 0.001	LT LT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	UN19	CL2BZ	0.100	MD	R
OSB10	RF15*101	cso	24-oct-1991	32.0	UGG	LH19	CLC6H5	0.001	LT	•
05810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH19	CS2	0.004	LT	
CSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH19	DBRCLM	0.003	LŤ	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	UN19	ETC6H5	0.002	LT	
05810	RFIS*101	CSO	24-oct-1991	32.0 32.0	UGG	UN19	MECOHS	0.001	LT	
05810 05810	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.U 32.0	ugg ugg	LM19	MEK	0.070	LT	
05810 05810	RFIS*101	CSO	24-oct-1991	32.0 32.0	UGG	LN19 LN19	Misk	0.027 0.032	LT LT	
555 10	mr + 9 = 10 l	لاجب		34.0	~~u	2717	- MOA	4.032	E1	

CSS10	Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,	Value	Flag	Internal Std. Code
Desilo Refirm CSO 24-oct-1997 32.0 USG LH19 TIDOD 0.003 TI	OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN19	STYR	0.003	ιT	
CSB10	OSB10	RF15*101	CSO	24-oct-1991							
Cost Cost			CSO			ugg					
CSS10										LT	
CSS10											
CSS10 RF1S*101 CSD 24-oct-1991 32.0 USG											
CSS10 RF1S*101 CSD Z4-oct-1991 32.0 UGG											
CSSILO RF15**101 CSD 24-oct-1991 32.0 USG LH18 130c1.8 0.785 LT											
CSS10 RF1S**101 CSO Z4-oct-1991 32.0 UGG											•
CSS10		RFIS*101	CSO	24-oct-1991	32.0	UGG					
C6810 RF18*101 C50 24-oct-1991 32.0 UGG LH18 240CLP 0.150 LT									0.446		S
CSS10											
CSS10											
CSS10						_					-
OSB10 CRITOR RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZéONT 0.140 ET COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZÉONT 0.050 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZÉONAP 0.056 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZÉMAP 0.029 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZÉMAP 0.029 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZÉMANT 0.062 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR ZÉMANT 0.062 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR 2300 LT 0.062 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR 2300 LT 0.062 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR 4600 ZC 0.550 LT COBIO RFISTION CSD 24-oct-1991 32.0 UGG LMIR 4600 ZC 0.550 LT <											
CORRIOD RFISTION ISON CSD 24-oct-1991 32.0 UGG LNHB ZEQUIT 0.085 1T CORRIOD RFISTION ISON CSD 24-oct-1991 32.0 UGG LNHB ZEQUIP 0.0336 LT CORRIOD RFISTION CSD 24-oct-1991 32.0 UGG LNHB ZEWIP 0.0356 LT COSRIO RFISTION CSD 24-oct-1991 32.0 UGG LNHB ZEWIP 0.029 LT COSRIO RFISTION CSD 24-oct-1991 32.0 UGG LNHB ZEWIP 0.140 LT COSRIO RFISTION CSD 24-oct-1991 32.0 UGG LNHB 33MAIL 0.50 LT COSRIO RFISTION CSD 24-oct-1991 32.0 UGG LNHB 34MAIL 0.50 LT COSRIO RFISTION CSD 24-oct-1991 32.0 UGG LNHB 46DAIL 0.50 LT COSRIO											
CASE10 PRISTOR CSD 24-oct-1991 32.0 UGG LN18 ZCLP 0.060 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 ZEMAP 0.056 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 ZEMP 0.029 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 ZEMBP 0.140 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 ZEMBP 0.140 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 ZEMBP 0.140 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 ZEMBP 0.150 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 AGADIZ 0.550 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 AGADIZ 0.955 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 AGLIDPE 0.033 LT CASI0 RFISTION CSD 24-oct-1991 32.0 UGG LN18 AGLIDPE 0.035 LT CASI0 RFISTION						-					
OSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANP 0.144 CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.062 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.062 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.062 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.450 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.450 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.450 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.450 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 ZMANIL 0.450 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4GRUPE 0.033 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4GRUPE 0.033 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4GLDP 0.035 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4GLDP 0.250 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4GLDP 0.250 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4MANIL 0.410 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 4MANIL 0.410 LT CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 ND R CSSIO RFISTIOI CSD 24-oct-1991 32.0 UGG LH18 AMBIG 0.270 LT CSSIO						ugg		ZCLP			
CSS10	OSB10									LT	
OSB10 RFIS**101 CSD 24-oct-1991 32.0 UGG LH18 2MMIL 0.022 LT								_			
OSS10											
- OSS10 - RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ZTMPD 4.4460 CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 330CBD 4.6500 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 3MANIL 0.450 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46AN2C 0.550 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46AN2C 0.6550 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46AN2C 0.6550 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46LDC 0.6055 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46LDC 0.6055 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46LDC 0.6055 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46LDC 0.6055 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 46LDC 0.6055 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 44P 1.400 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 44P 1.400 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 44P 1.400 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 44P 1.400 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.270 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.270 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.270 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.270 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.270 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.3330 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.3330 NO R CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.3330 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ABNC 0.3330 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.3330 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.3330 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.3330 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.2331 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.230 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.230 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.230 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.230 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BANC 0.230 LT CSS10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 CN18 CN18											
CSS10										ь.	s .
CSS10	OSB10				32.0					LT	•
OSB10						UGG			0.450	ĻT	
CSB10	-										
OSB10 RF1S*101 CSD 24-cct-1991 32.0 UGG LH18 4CL3C 0.095 LT											
OSB10											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG				-							
OSB10											
OSB10				24-oct-1991	32.0			4NANIL			
OSB10											
OSB10											
CS810											
OSB10											
OSB10											•
OSB10		RFIS*101	CSO	24-oct-1991							
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LN18 B2CIPE 0.200 LT											
OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 B2CHP 0.620 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BAANTR 0.170 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BAANTR 0.250 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BAPYR 0.250 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BBPANT 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BBPANT 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BBPANT 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BBPANT 0.270 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BBZP 0.170 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BEXIF 0.620 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BEXIF 0.620 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BEXIF 0.650 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZOA 6.100 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZOA 6.100 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZOA 6.100 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZOA 6.100 ND R 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CT4 0.595 S 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CT4 0.595 S 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CHAY 0.100 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CHAY 0.100 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CHAY 0.100 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL667 0.000 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL667 0.000 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA 0.210 LT 0SB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBANA											
OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BZEHP 0.620 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BAANTR 0.170 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BBAPTR 0.250 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BBAPTR 0.270 ND R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BBAPT 0.270 ND R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BENZID 0.550 ND R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BENZID 0.550 ND R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 BCRZID 0.250											
OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BANTR 0.170 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BAPYR 0.250 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BBFANT 0.210 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BBFANT 0.210 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BBNC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BBNC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BENZLF 0.620 MD R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BENZLF 0.620 MD R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BENZLD 0.850 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BENZDA 6.100 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BENZDA 6.100 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BKFANT 0.066 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BKFANT 0.066 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C14 0.595 S OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C15 0.744 S OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C16 0.595 S OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C16 0.595 C CT4 OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C16 0.00 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C16 0.00 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C16 0.00 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C16 0.00 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270 ND R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBRC 0.270					32.0						
OSB10											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG											
OS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BRZP 0.170 LT CS0 S810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BENSLF 0.620 MD R CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BENZID 0.850 MD R CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BENZID 0.850 MD R CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BENZID 0.850 MD R CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BENZID 0.250 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 C14 0.595 S CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 C15 0.744 S CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL682 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL682 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL662 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL662 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL662 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL662 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL662 0.033 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 CL662 0.035 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT CS810 RFIS*101 CS0 24-oct-1991 32.0 UGG LM18 DBAHA 0.210		RFIS*101		24-oct-1991	32.0						
OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENSLF 0.620 MD R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZID 0.850 ND R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZID 0.850 ND R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZID 0.250 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BENZID 0.250 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 C14 0.595 S OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 C15 0.744 S OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 C15 0.744 S OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL68Z 0.033 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL68Z 0.033 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL66Z 0.033 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL66Z 0.033 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL66CP 6.200 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL66CP 6.201 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBCC 0.270 MD R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBCC 0.270 MD R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBCP 0.240 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBCP 0.240 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBCP 0.240 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.170 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDCP 0.061 LT											R
OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 BENZID 0.850 ND R OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 BENZID 0.850 ND R OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 BENZID 0.250 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 BENZID 0.066 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 BEALC 0.190 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 C14 0.595 S OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 C15 0.744 S OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CHRY 0.120 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CHRY 0.120 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CL68Z 0.033 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CL68Z 0.033 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CL66Z 0.033 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CL6ET 0.150 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 CL6ET 0.150 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAHA 0.210 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAHA 0.210 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAHC 0.270 ND R OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAFU 0.035 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAFU 0.035 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAFU 0.035 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAFU 0.035 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAFU 0.035 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DBAFU 0.031 ND R OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.170 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.170 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.170 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.061 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.170 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.190 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.190 LT OSB10 RFIS*101 CS0 24-oct-1991 32.0 UGG LN18 DNAP 0.190 LT											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BENZOA 6.100 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BGHIPY 0.250 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BGHIPY 0.250 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C14 0.595 S OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C15 0.744 S OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C15 0.744 S OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CH8Y 0.120 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL68Z 0.033 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL66Z 0.033 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL66T 0.150 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL66T 0.150 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBHC 0.270 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBC 0.270 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBC 0.270 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBC 0.270 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBC 0.240 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DDCN 0.310 NO R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DDCN 0.310 NO R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DDCN 0.310 NO R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DDCN 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNCP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNCP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNCP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNCP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNCP 0.190 LT											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BGMIPY 0.250 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BKFANT 0.066 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 BZALC 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C14 0.595 S OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 C15 0.744 S OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CHRY 0.120 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CHRY 0.120 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL682 0.033 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL682 0.033 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL667 6.200 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL667 0.150 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL667 0.200 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHC 0.270 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHC 0.270 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBCP 0.240 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT											
OSB10											ĸ
OSB10	OSB10										
CSB10											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CHRY 0.120 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL682 0.033 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL6CP 6.200 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL6ET 0.150 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBHC 0.270 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBHC 0.270 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBZFUR 0.035 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.161 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.161 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.165 MD R											
OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL68Z 0.033 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL6CP 6.200 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 CL6ET 0.150 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 D8AHA 0.210 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 D8HC 0.270 MD R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 D8FUR 0.035 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 MD R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 MD R OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT OS810 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT											S
OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL6CP 6.200 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 CL6ET 0.150 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBHC 0.270 MD R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBZFUR 0.035 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DDRN 0.310 MD R OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMP 0.161 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMP 0.161 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMOP 0.190 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DMOP 0.450 MD R											
OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 CL6ET 0.150 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 D8AHA 0.210 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 D8HC 0.270 ND R OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 D8FUR 0.035 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DEP 0.240 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DLDRN 0.310 ND R OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DLDRN 0.310 ND R OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNP 0.170 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNP 0.061 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNP 0.061 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNP 0.190 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNP 0.190 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNOP 0.190 LT OS810 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNOP 0.190 LT											
OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LM18 DBAHA 0.210 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBHC 0.270 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBZFUR 0.035 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 MD R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.061 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.190 LT											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBHC 0.270 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBZFUR 0.035 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.061 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.450 ND R	05810	-									
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DBZFUR 0.035 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DEP 0.240 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DLDRN 0.310 ND R OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.061 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 ENDRN 0.450 ND R					32.0		LN18	DBHC	0.270		R
OSB10 RFIS*101 CSC 24*oct-1991 32.0 UGG LM18 DLDRN 0.310 ND R OSB10 RFIS*101 CSC 24*oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSC 24*oct-1991 32.0 UGG LM18 DNBP 0.061 LT OSB10 RFIS*101 CSC 24*oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSC 24*oct-1991 32.0 UGG LM18 DNOP 0.450 ND R											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DMP 0.170 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNBP 0.061 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 ENDRN 0.450 MD R											_
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNBP 0.061 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 DNOP 0.190 LT OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 ENDRN 0.450 MD R											×
OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 DNOP 0.190 LT OSB10 RFIS*101 CSD 24-oct-1991 32.0 UGG LN18 ENDRN 0.450 ND R											
OSB10 RFIS*101 CSO 24-oct-1991 32.0 UGG LM18 ENORN 0.450 ND R											
		RFIS*101	CSO		32.0	UGG			0.458		R
	05810	RFIS*101	C\$O	24-oct-1991	32.0	UGG		ENDRNA			

						Analytical	Anslyte			Internal
Site ID	<u>Field ID</u>	<u>Medi a</u>	Date	Depth	<u>Units</u>	<u>Method</u>	Abbry.	Value	Flag	Std. Code
01820	RFIS#101	CSO	24-oct-1991	32.0	UGG	LH18	ENDRNK	0.530	KD	R
05810	RF15*101	C20	24-oct-1991 24-oct-1991	32.0 32.0	UGĞ	LM18	ESFS04	0.620	NO	R
0SB10 0SB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18 LM18	FANT FLRENE	0.068 0.087	LT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18	GCLDAN	0.330	ND	R
05810 05810	RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg Ugg	LM18 LM18	HCSD HPCL	0.230 0.130	LT ND	. R
O\$810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN18	HPCLE	0.330	ND	Ř
05810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18	ICOPYR	0.290	LT	
0\$810 0\$810	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LM18 LM18	ISOPHR Lik	0.033 0.270	LT ND	Ŕ
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN18	MEXCLR	0.330	ЖD	Ř
OSB10 OSB10	RFIS*101 RFIS*101	CSO CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LM18 - LM18	NAP NB	0.037 0.045	LT	
05810	RFIS*101	ÇSC	24-oct-1991	32.0	UGG	LH18	NNDMEA	0.140	LT ND	R
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH18	NKONPA	0.200	LT	"
OSB10 OSB10	RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LM18 LM18	NNDPA PCB016	0.190 1.400	LŤ NĎ	
OSB10	RFIS*101	cso	24-oct-1991	32.0	VGG	LN18	PCB221	1.400	MD	R R
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18	PC8232	1.400	ND	R
0S810 0S810	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg Ugg	ln18 ln18	PCB242 PCB248	1.400 2.000	ND ND	R R
05810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH18	PC8254	2.300	ND	R.
OSB10	RFIS*101	ÇSO	24-oct-1991	32.0	UGG	LN18	PCB260	2.600	MD	Ř
OSB10 _OSB10	RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LM18 LM18	PCP PHANTR	1.300 0.230	LT	
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18	PHENOL	0.110	LŤ	
OSB10	RFIS*101	cso	24-oct-1991	32.0	UGG	LN18	PPDDD	0.270	WD	R
OSB10 OSB10	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	UGG UGG	LM18 LM18	PPDDE PPDDT	0.310 0.310	ND ND	R Ř
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18	PYR	0.033	ĹŤ	
05810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LH18	TXPHEN	2.600	ND	R
OSB10 OSB10	RFIS*101 RFIS*101	CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg Ugg	LM18 LM18	UNK563 UNK568	0.446 0.893		\$ \$
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18	UNK578	1.040		Š
OS810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN18	UNKSBO	1.490		S
0SB10 0SB10	RFIS*101	C20	24-oct-1991 24-oct-1991	32.0 32.0	UGG UGG	LM18 LM18	UNK581 UNK584	0.446 0.446		\$ \$
OSB10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN18	UNK586	0.595		S
0\$210 0\$210	RFIS*101 RFIS*101	CSO CSO	24-oct-1991 24-oct-1991	32.0 32.0	UGG UGG	LN18	UNK587 UNK588	0.446		S
OSB 10	RFIS*101	CSO	24-oct-1991	32.0	UGG	LM18 LM18	UNK589	0.744 0.893		\$ \$
OS810	RFIS*101	CSO	24-oct-1991	32.0	UGG	LN18	UNK590	0.446		S
OSB10 OSB10	RFIS*101 RFIS*101	C20 C20	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LM18 LM18	UNK591 UNK592	0.893 0.446		\$
OSB 10	RF15*101	CSO	24-oct-1991	32.0	UGG	LM18	UNK593	134.000		\$ \$
O\$810	RF15*101	CSO	24-oct-1991	32.0	UGG	LM18	UNKS94	0.595		Š
OSB10 OSB10	RFIS*101	CSO CSO	24-oct-1991 24-oct-1991	32.0 32.0	ugg ugg	LN18 LN18	UNKS97 UNK605	0.446 0.595		S
0SB11	RF15*102	ÇSO	25-oct-1991	13.0	UGG	LH19	111TCE	0.004	LT	s
0\$811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19	112TCE	0.005	LT	
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LN19 LN19	11DCE 11DCLE	0.004 0.002	LŤ LŤ	
OSB11	RFIS*102	CZO	25-oct-1991	13.0	UGG	LM19	120CE	0.003	LT	
05811	RF15*102	C20	25-oct-1991	13.8	UGG	LH19	12DCLE	0.002	LT	
05811 05811	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LN19 LN19	12DCLP 2CLEVE	0.003 0.010	ĻT ND	R
OSB11	RFIS*102	cso	25-oct-1991	13.0	UGG	LH19	ACET	0.017	ĹĬ	•
OSB11	RFIS*102	cso	25-oct-1991	13.0	UGG	LH19	ACROLN	0.100	MD	R
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LN19 LN19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
OSB11	RFIS*102	CSO	Z5-oct-1991	13.0	UGG	LM19	C13DCP	0.003	LT	
QSB11 QSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM19	C2AVE	0.003	LT	
0SB11	RFIS*102 RFIS*102	CSO CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	UN19 UN19	C2H3CL C2H5CL	0.006 0.012	LT LT	
QS811	RF15*102	CSO	25-oct-1991	13.0	UGG	LN19	C6H6	0.002	LT	
05B11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LX19	CCL3F	0.006	LT	
OSB11 OSB11	RFIS*102 RFIS*102	CSO CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LN19 LN19	CCL4 CHZCL2	0.007 0.012	LT LT	
05811	RF1S*102	CSO	25-oct-1991	13.0	UGG	LH19	CH3BR	0.006	LŤ	
OSB11	RFIS*102	020	25-oct-1991	13.0	UGE	LM19	CH3CL	0.009	LT	
OSB11 OSB11	RFIS*10Z RFIS*102	CSO CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LN19 LN19	CHBR3 CHCL3	0.007 0.001	LT LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19	CL2BZ	0.100	MD	R

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	Flag	Internal Std. Code
0\$811	RF15*102	CSO	25-oct-1991	13.0	UGG	LN19	CLC6N5	0.001	LT	
0S811	RF1S*102	CSO	25-oct-1991	13.0	UGG	LX19	C\$2	0.004	LT	
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LN19	DBRCLM	0.003	LT	
OS811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19 LH19	ETC6H5 MEC6HS	0.002 0.001	LT LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM19	MEK	0.070	ĹŤ	
OS811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19	MIBK	0.027	LŤ	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19	MNBK	0.032	ĻŢ	
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LH19 LH19	STYR T13DCP	0.003	LT	
OS811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19	TCLEA	0.003 0.002	LT LT	
OS811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH19	TCLEE	0.001	ĹŤ	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN19	TRCLE	0.003	ĻT	
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LM19 LM18	XYLEN 124TCB	0.002	LT	
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	120CLB	0.040 0.110	LT LT	
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	12DPH	0.140	NED	R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LX18	130CLB	0.130	LT .	
OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LX18	14DCLB 245TCP	0.098	LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18 LM18	2451CP	0.100 0.170	LT LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	24DCLP	0.180	ĻT	
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	24DMPN	0.690	LT	
05811 05811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	24DNP	1.200	LT	
 OSB11 ·	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LN18 LN18	240NT 260NT	0.140 0.085	LT LT	
05811	RFIS*102	cso	25-oct-1991	13.0	UGG	LH18	2CLP	0.060	LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	2CHAP	0.036	LŤ	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN18	ZMNAP	0.049	LT.	
OS811 OS811	RFIS*102 RFIS*102	C20	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LX18	214P	0.029	LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18 LM18	ZNAN I L ZNP	0.062 0.140	LT LT	
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	330CBD	6.300	ĻŤ	
CSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	3MANIL	0.450	1.T	
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	UK18	46DN2C 4BRPPE	0.550	LT	
OSB11	RFIS*102	CSC	25-oct-1991	13.0	UGG	LM18 LM18	4CANIL	0.033 0.810	LT LT	
CSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	4C1,3C	0.095	ĹŤ	
CS811	RFIS#102	CSO .	25-oct-1991	13.0	UGG	LH18	4CLPPE	0.033	ĻT	
O\$811 O\$B11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LH18	4MP	0.240	LT	
OSB11	RF15*102	CSC	25-oct-1991	13.0	UGG UGG	LM18 LM18	4NAN IL 4NP	0.410 1.400	LT LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	ABHC	0.270	ND	R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN18	ACLDAN	0.330	ND	Ř
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN18	AENSLF	0.620	ND	R
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LM18 LM18	ALDRN ANAPNE	0.330 0.036	ND LT	R
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	ANAPYL	0.033	ĹŤ	
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	ANTRC	0.033	LT	
0\$811	RF1S*102	CSO	25-oct-1991	13.0	UGG	LN18	BZCEXX	0.059	LŤ	
OSB11 OSB11	RFIS*102 RFIS*102	CZO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LN18 LN18	82CLEE	0.200 0.033	LT LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	UN18	82EHP	0.620	ĻT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN18	BAANTR	0.170	LT	
OSB11	RFIS*102	CZO	25-oct-1991	13.0	UGG	LN18	BAPYR	0.250	LT	
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LM18 LM18	SEFANT BEHC	0.210 0.270	LT	_
OS811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	BBZP	0.170	ND Lt	R
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	BENSLF	0.620	ND	R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN18	BENZID	0.850	ND	R
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LN18	BENZOA	6.100	ND	Ř
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18 LM18	BGHIPY BKFANT	0.250 0.066	LT LT	
0SB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	BZALC	0.190	ĻŤ	
0\$811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	CHRY	0.120	LT	
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	CL6BZ	0.033	ĻŢ	
OSB11 OSB11	RFIS*102 RFIS*102	CSO CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LM18 LM18	CL6CP CL6ET	6.200 0.150	ĻT 1 T	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	DBAHA	0.130	LT LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	DBHC	0.270	ND	R '
OSB11	RFIS*102	CSO	25-oct-1991	13.0	ugg	LM18	DBZFUR	0.035	LT	
OSB11 OSB11	RFIS*102	C\$0	25-oct-1991	13.0	UGG	LM18	DEP	0.240	LŤ	_
OS811	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg	LM18 UH18	DLDRN DHP	0.310 0.170	ND LT	R
		444	as 944 1771	19.0	440	G710		0.1(V	i, i	

Site ID	Field ID	<u>Medía</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	<u>Value</u>	Flag	internal Std. Code
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	DNBP	0.041		
05811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	DNOP	0.061 0.190	LT LT	
CSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	ENDRN	0.450	MO	R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	ENDRNA	0.530	ND	Ř
QS811	RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LM18	ENDRNK	0.530	ND	R
0S811 0S811	RFIS*102 RFIS*102	C2O C2O	25-oct-1991	13.0	UGG	LM18 LM18	ESF\$04 FANT	0.620 0.068	ND: LT	R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	FLRENE	0.033	LT	
05811	RFIS*102	C\$0	25-oct-1991	13.0	UGG	LM18	GCLDAN	0.330	ND	R
05811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	HCBO	0.230	LT	_
OSB11 OSB11	RFIS*102 RFIS*102	CSO CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LM18 LM18	HPCLE HPCLE	0.130 0.330	NED NED	R R
05811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LN18	ICOPYR	0.290	LT	ĸ
0\$811	RF15*10Z	CSO	25-oct-1991	13.0	UGG	LM18	ISOPHR	0.033	LŤ	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	LIN	0.270	ND	R
QSB11 QSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LM18 LX18	MEXCLR NAP	0.330	ND	R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	nap NB	0.037 0.045	LT LT	
05811	RF15*102	CSO	25-oct-1991	13.0	UGG	LM18	NNDMEA	0.140	ND	R
0\$811	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	NNDNPA	0.200	LT	
0SB11 0SB11	RFIS*102 RFIS*102	CSO CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG	LM18	NNDPA	0.190	LT	
OSB11	RFIS*102	CSO	25-oct-1991	13.0	ugg ugg	LM18 LM18	PCB016 PCB221	1.400 1.400	ND ND	R R
DSB11	RFI5*102	cso	25-oct-1991	13.0	UGG	LM18	PCB232	1.400	MD	R
05811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LH18	PC8242	1.400	ND	Ř
- OSB11 -	RF1S*102	CSO	25-oct-1991	13.0	UGG	LM18	PCB248	2.000	ЖĎ	Ŗ
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	UGG UGG	LM18 LM18	PC8254 PC8260	2.300 2.600	NO ND	R R
OSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	PCP	1.300	LT	*
OSB11	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	PKANTR	0.033	LT	
Q\$811	RFIS*102	CSO	25-oct-1991	13.0	UGG	LM18	PHEXOL	0-110	LT	_
OSB11 OSB11	RFIS*102 RFIS*102	CSO	25-oct-1991 25-oct-1991	13.0 13.0	ugg ugg	LM18 LM18	PPODD PPODE	0.270 0.310	ND ND	R R
QSB11	RFIS*102	CSO	25-oct-1991	13.0	UGG	UH18	PPODT	0.310	ND	R
05811	RF15*102	CSO	25-oct-1991	13.0	UGG	LH18	PYR	0.033	LT	
OSB11 OSB2	RFIS*102	CSO	25-oct-1991 23-oct-1991	13.0 16.0	UGG	LX18	TXPHEN	2.600	ND	R
0582	RFIS*88 RFIS*88	CSO	23-oct-1991	16.0	UGG	LN19 LN19	111TCE 112TCE	0.004 0.005	LT LT	
0\$82	RF15*88	CSO	23-oct-1991	16.0	UGG	LH19	11DCE	0.004	L†	
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH19	11DCLE	0.002	LT	
OSBZ OSBZ	RFIS*88 RFIS*88	C20	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LN19	12DCE	0.003	LT	
OSB2	RFIS*88	CSO CSO	23-oct-1991	16.0	UGG	LM19 LM19	12DCLE 12DCLP	0.002 0.003	LŢ LŢ	
0582	RF15*88	ÇSO	23-oct-1991	16.0	UGG	LN19	2CLEVE	0.010	ND	R
0\$82	RF1\$*88	CSO	23-oct-1991	16.0	UGG	LH19	ACET	0.017	LT	
OSB2 OSB2	RF15*88 RF15*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LN19 LN19	ACROLN	0.100	ND	R
0582	RF15*88	CSO	23-oct-1991	16.0	UGG	LN19	ACRYLO BRDCLM	0.100 0.003	ND LT	R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LK19	C130CP	0.003	ĹŤ	
0S82	RFIS*88	CSO	23-oct-1991	16.0		LH19	CZAVE	0.003	LT	
QSB2 QSB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LM19	C2H3CL	0.006	LŤ	
0S82	RFIS*88	CSO CSO	23-oct-1991	16.0	ugg Ugg	LN19 LN19	C2H5CL C6H6	0.012 0.002	LT LT	
OSB2	RFIS*88	CSO	23-oct-1991	16.0		LH19	CCL3F	0.006	LT	
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LH19	CCL4	0.007	LT	
OSB2 OSB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LM19 LM19	CH2CL2	0.012	LT	
0582	RFIS*88	CSO	23-oct-1991	16.0	UGG	LN19	CH3BR CH3CL	0.006 0.009	LT LT	
CS82	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH19	CHBR3	0.007	LŤ	
OSB2	RF15*88	CSO	23-oct-1991	16.0		LH19	CHCT2	0.002		
0582 0582	RF1\$*88 RF1\$*88	CSO	23-oct-1991 23-oct-1991	16.0	UGG	LM19	CL2BZ	0.100	KD	Ŕ
OSB2	RFIS*88	CSO	23-oct-1991	16.0 16.0	UGG UGG	LH19 LH19	CLC6H5 CS2	0.001 0.004	LT LT	
OSB2	RFIS*88	CSO	Z3-oct-1991	16.0		LX19	DBRCLM	0.003	LT	
0582	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH19	ETC6H5	0.002	LT	
0582	RFIS*88	CSO	23-oct-1991	16.0		LN19	MEC6H5	0.001	LŢ	
OSB2 OSB2	RF1\$*88 RFI\$*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LK19 LK19	MEK	0.070 0.027	ij Lt	
0582	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH19	MNBK	0.032	LT	
OSBZ	RF15*88	CSO	23-oct-1991	16.0	UGG	LH19	STYR	0.003	LT	
0582	RF15*88	CSO	23-oct-1991	16.0	UGG	LX19	T130CP	0.003	LT	
0SB2 0SB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LH19 LH19	TCLEA TCLEE	0.002 0.001	LT LT	
0582	RF15*88	CSO	23-oct-1991	16.0		LX19	TRCLE	0.003	LT	
						•				

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry.	Value	<u>Flaq</u>	Internal Std. Code
OS82	RFIS*88	CSO	23-oct-1991	16.0	UGG	1.419	XYLEN	0.002	LT	
0582	RF1\$*88	CSO	23-oct-1991	16.0	UGG	LM18	124TCB	0.040	ĹŤ	
Q\$82	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	12DCLB	0.110	LT	_
0582 0582	RFIS*88 RF1S*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LN18 LM18	12DPH 13DCLB	0.140	ND	R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	140CLB	0.130 0.098	LT LT	
OS82	RF1\$*88	CSO	23-oct-1991	16.0	UGG	LH18	245TCP	0,100	ĹŤ	
0882	RFIS*88	cso	23-oct-1991	16.0	UGG	LN18	246TCP	0.170	LT	
0\$82 0\$82	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LN18	24DCLP	0.180	LT	
0582	RF15*88	CSO	23-oct-1991	16.0	ugg ugg	LM18 LM18	24DMPN 24DNP	0.690 1.200	LT LT	
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LM18	24DNT	0.140	ĹŤ	
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	26DNT	0.085	LT	
0S82 0S82	RF1\$*88 RF1\$*88	CSO CSO	23-oct-1991	16.0	UGG	LM18	2CLP	0.060	LŤ	
0S82	RF15*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	ZCXAP 2MNAP	0.036 0.049	LT LT	
0\$82	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	2MP	0.029	LT	
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	TI KAKS	0.062	ĻŤ	
0\$82 0\$82	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	2NP	0,140	LT	
0582	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	L#18 L#18	330CBD 3NANIL	6.300 0.450	LŢ	
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	460N2C	0.550	LT LT	
OSBZ	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	4BRPPE	0.033	LT	
0882	RFIS*88	CSO	23-oct-1991	16.0	UGG	LM18	4CANIL	0.810	LT	
0S82 0S82 -	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	4CLPPE	0.095	ĻŢ	
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LM18	4MP	0.033 0.240	LT LT	
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LH18	4HANIL	0,410	ĹŤ	
0582	RFIS*88	czo	23-oct-1991	16.0	UGG	LH18	4NP	1.400	ĻŢ	
0\$82 0\$82	RFIS*88 RFIS*88	CSO	23-oct-1991	16.0	UGG	LX18	ABHC	0.270	ND	R
OSB2	RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LM18 LM18	ACLDAN AENSL F	0.330 0.620	ND ND	R R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	ALDRN	0.330	ND	Ř
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	ANAPNE	0.036	LT	
OSB2 OSB2	RF1S*88	CSO	23-oct-1991	16.0	UGG	LH18	ANAPYL	0.033	LT	
0SB2	RF15*88 RF15*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	ANTRC B2CEXM	0.033 0.059	LT LT	
OSB2	RFIS*88	ÇSO	23-oct-1991	16.0	UGG	LM18	B2CIPE	0.200	LT	
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGE	LN18	B2CLEE	0.033	LT	
0282	RFIS*88	CSO	23-oct-1991	16.0	UGG	LM18	BSEHP	0.620	LT	
0582 0582	RF1S*88 RF1S*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LM18 LM18	BAANTR BAPYR	0.170	LT	
0582	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	BOFANT	0.250 0.210	LT LT	
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	BBHC	0.270	ND	*
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	BBZP	0.170	LT	
0SB2 0SB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	ugg Ugg	lm18 lm18	BENSLF BENZID	0.620	NC	R
0582	RF15*88	CSO	23-oct-1991	16.0	UGG	LH18	BENZCA	0.850 6.100	ND On	R R
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	BGHIPY	0.250	LT	•
OSB2	RF1\$*88	CSO	Z3-oct-1991	16.0	UGG	LN18	BKFANT	0.066	ĻŢ	
OSB2 OSB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	ugg Ugg	LM18	BZALC	0.190	LT	
OSBZ	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18 LM18	CHRY CL68Z	0.120 0.033	LT LT	
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	CL6CP	6.200	ĹŤ	
OSBZ	RF15*88	CSO	23-oct-1991	16.0	ugg	LM18	CL6ET	0.150	LT	
0\$82 0\$82	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	DBAHA	0.210	LT	_
0SB2	RF1\$*88 RF1\$*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	ugg Ugg	LM18 LM18	DBHÇ DBZFUR	0.270 0.035	NO LT	R
0582	RFIS*88	CSO	23-oct-1991	16.0	UGG	LM18	DEP	0.240	LT	
0\$82	RF15*88	CSO	23-oct-1991	16.0	UGG	LH18	OLDRN	0.310	ND	R
0582	RF1\$*88	CSO	23-oct-1991	16.0	UGG	LH18	DMP	0.170	LT	
OSB2 OSB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LN18	DNBP	0.061	LT	
0582	RF15*88	CSO	23-oct-1991	16.0	UGG UGG	LM18 LM18	DNOP ENDRN	0.190 0.450	LT ND	R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LN18	ENDRNA	0.530	ND	R
0582	RFIS*88	CSD	23-oct-1991	16.0	UGG	LN18	ENDRNK	0.530	ND	R
OSB2 OSB2	RFIS*88 RFIS*88	CSO CSO	23-oct-1991	16.0	UGG	LM18	ESFS04	0.620	ND	R
OSB2	RF15*88	C20	23-oct-1991 23-oct-1991	16.0 16.0	ugg ugg	LM18 LM18	FANT FLRENE	0.068 0.033	LT LT	
OSB2	RF15*88	cso	23-oct-1991	16.0	UGG	LH18	GCLDAN	0.330	MD	R
OS82	RF1\$*88	CSO	23-oct-1991	16.0	UGG	LM18	HC8D	0,230	LT	-
OSB2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LH18	HPCL	0.130	MD	R
OSB2 OSB2	RF15*88	CSO CSO	23-oct-1991 23-oct-1991	16.0	UGG	LM18	HPCLE	0.330	ND	R
4405	RF15*88	444	ا ۱۷۷۱ - ۱۷۷۱ -	16.0	UGG	LX18	ICDPYR	0.290	LT	

Site ID	<u> Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
0582	RFIS*88	CSO	23-oct-1991	16.0	UGG	LN18	ISOPHR	0.033	LT	
oss2	RFIS*88	CSO	23-oct-1991	16.0	UGG	LN18	LIN	0.270	ND	R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LH18	MEXCLR	0.330	NO	R
OSB2 OSB2	RFIS*88 RFIS*88	CSO	23-oct-1991 23-oct-1991	16.0 16.0	ugg Ugg	LM18 LM18	NAP NB	0.037 0.045	LT LT	
OSB2	RF15*68	CSO	23-oct-1991	16.0	UGG	LM18	NNDMEA	0.140	MD	R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	ANDNPA	0.200	LT	
0S82 0S82	RF15*88 RF15*88	C\$0	23-oct-1991 23-oct-1991	16.0 16.0	ugg Ugg	LM18 LM18	NNDPA PCB016	0.190 1.400	LT ND	
0582	RF15*88	CSO	23-oct-1991	16.0	UGG	LN18	PCB221	1.400	ND	R R
OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LN18	PCB232	1.400	ND	R
OSB2 OSB2	RF15*88 RF15*88	CSO CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG UGG	LM18 LM18	PCB242 PCB248	1.400 2.000	MD	R
OSB2 OSB2	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	PC8254	2.300	ND ND	R R
OS82	RF1S*88	CSO	23-oct-1991	16.0	UGG	LX18	PC8260	2.600	ND	Ř
0582	RFIST88	CSO	23-oct-1991	16.0	UGG	LX18	PCP	1.300	LT	
OSB2 OSB2	RFIS*88 RFIS*88	CSO CSO	23-oct-1991 23-oct-1991	16.0 16.0	UGG	LM18 LM18	PHANTR PHENOL	0.033 0.110	LT LT	
OS82	RF15*88	ĊSO	23-oct-1991	16.0	UGG	LH18	PPDDD	0.270	ND	R
OS82	RF15*88	CSO	23-oct-1991	16.0	UGG	LM18	PPDDE	0.310	ND	R
0582 0582	RF15*88 RF15*88	C20	23-oct-1991 23-oct-1991	16.0 16.0	ugg ugg	1418 1418	PPODT PYR	0.310 0.033	ND LT	. R
0382 0382	RF15*88	CSO	23-oct-1991	16.0	UGG	LN18	TXPHEN	2.600	XD	R
QSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN19	111TCE	0.004	ĹŤ	^
0583	RF1S*90	CSO	23-oct-1991	18.0	UGG	LM19	112TCE	0.005	LT	
0583 0583	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	VGG VGG	LM19- LM19	11DCE 11DCLE	0.004 0.002	LT LT	
0SB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LH19	120CE	0.003	LT	
Q\$B3	RFIS*90	CSQ	23-oct-1991	18.0	UGG	LN19	12DCLE	0.002	LT	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM19	120CLP	0.003	LŤ	_
OSB3 OSB3	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LM19 LM19	2CLEVE ACET	0.010 0.017	ND LT	R
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN19	ACROLN	0.100	ND	R
0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LH19	ACRYLO	0.100	ND	Ř
0583	RF1S*90	C\$O	23-oct-1991	18.0	UGG	LH19	BRDCLM	0.003	LT	
OSB3 OSB3	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	LN19 LN19	C130CP C2AVÉ	0.003 0.003	LT LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH19	C2H3CL	0.006	ĹŤ	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH19	C2H5CL	0.012	LT	
0S83 0S83	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LM19 LM19	C6H6 CCL3F	0.002 0.006	ĻĪ LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN19	CCL4	0.007	LT	
OSB3	RFIS*90	CZO	23-oct-1991	18.0	UGG	LH19	CH2CL2	0.012	LT	
0\$83	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH19	CH3BR	0.006	LT	
0583 0583	RF15*90 RF15*90	CSO CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG	LM19 LM19	CH3CL CHBR3	0.00 9 0.007	LT LT	
OSB3	RF1\$*90	CSO	23-oct-1991	18.0	UGG	LH19	CHCL3	0.001	ĹĬ	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH19	CL2BZ	0.100	ND	R
0583 0583	RF1S*90 RF15*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LN19 LN19	CLC6H5 CSZ	0.001 0.004	LT	
0SB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH19	DBRCLM	0.003	LT LT	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM19	ETC6H5	0.002	LT	
osa3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM19	MEC6H5	0.001	LT	
OS83 OS83	RFIS*90 RFIS*90	C20	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	LN19 LN19	MEK	0.070 0.027	LT LT	
0583	RF15*90	CSO	23-oct-1991	18.0		LH19	MNBK	0.032	LT	
0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LM19	STYR	0.003	LT	
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM19	T13DCP	0.003	LT	
OSB3 OSB3	RFIS*90 RFIS*90	CSO CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	LM19 LM19	TCLEA TCLEE	0.002 0.001	LT LT	
0583	RFIS*90	CSO	23-oct-1991	18.0		LM19	TROLE	0.003	LT	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH19	XYLËN	0.002	LT	
0583 0583	RFIS*90 RFIS*90	CSO CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg	LN18 LN18	124TCB 12DCLB	0.040 0.110	LT LT	
0583	RF15*90	C20	23-oct-1991	18.0	UGG	LM18	120PH	0.140	ND ND	Ř
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	13DCLB	0.130	LT	-
0583	RFIS*90	ÇSO	23-oct-1991	18.0	UGG	LX18	14DCLB	0.098	LT	
0S83 0S83	RFIS*90 RFIS*90	CSO CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	LM18 LM18	245TCP 246TCP	0.100 0.170	LT LT	
0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LN18	24DCLP	0.180	LT	
OSB3	RFIS*90	cso	23-oct-1991	18.0	UGG	LH18	240MPN	0.690	LT	
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	24DNP	1.200	LT	
0583 0583	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18 LM18	24DNT 26DNT	0.140	LT	
COCH	KL19AA	CSO	C1 -OC (- 137)	10.0			the state of	0.085	LT	

Site ID	<u>Field_ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flac</u>	Internal <u>Std. Code</u>
CSB3	RF1S*90	CSO	23-oct-1991	18.0	UGG	LX18	ZCLP	0.060	LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN18	SCNAP	0.036	LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	ZHRAP	0.291		
0S83 0S83	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18 LM18	2MP 2NANIL	0.029 0.062	LT LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	2NP	0.140	LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	2TMPD	5.670		s
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN18	330CED	6.300	LT	
0\$83 0\$83	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18 LM18	3NANIL 46DN2C	0.450 0.550	LT LT	
OSB3	RFIS*90	ÇŞO	23-oct-1991	18.0	UGG	LM18	48RPPE	0.033	LT	
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	4CANIL	0.810	LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	4CL3C	0.095	LT	
0S83 0S83	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG	LM18 LM18	4CLPPE 4MP	0.033 0.240	LT LT	
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	4NANIL	0.410	LT	
CSB3	RF1S*90	CSO	23-oct-1991	18.0	UGG	LH18	4NP	1,400	LT	
OS83	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	ABHC	0.270	ND	R
0\$83 0\$83	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	lm18 lm18	ACLDAN AENSLF	0_330 0_620	ND ND	R R
0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	ALDRE	0.330	ND	Ř
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	ANAPNE	0.036	LT	
0583 0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	ANAPYL	0.033	LT	
0583	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LM18 LM18	ANTRC 82CEXM	0.033 0.059	LT LT	
~0S85	RF1S*90	CSO	23-oct-1991	18.0	UGG	LH18	BZCIPE	0.200	ĻŤ	
0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	85CTEE	0.033	LT	
OSB3 OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	82EKP	0.620	LT	
0583	RF15*90 RF15*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LN18 LN18	BAANTR BAPYR	0.170 0.250	LT LT	
OSB3	RFIS*90	cso	23-oct-1991	18.0	UGG	LM18	BBFANT	0.210	ĹŤ	
0583	RFIS*90	CZO	23-oct-1991	18.0	UGG	LM18	BBHC	0.270	ND	R
0883 0883	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN18	BBZP	0.170	LT	_
0583	RFIS*90 RFIS*90	C20	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	LM18 LM18	BENSLF BENZID	0.620 0.850	KD KD	R R
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	BENZOA	6.100	MD	Ř
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LH18	BGHIPY	0.250	LŤ	
0583 0583	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	lm18 lm18	BKFANT BZALC	0.066 0.190	LT LT	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN18	C14	0.708	.	\$
0283	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN18	CHRY	0.120	ĻT	•
OSB3	RF1S*90	CSO	23-oct-1991	18.0	UGG	LM18	CL6BZ	0.033	LŤ	
0583 0583	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT LT	
0\$83	RFIS*90	CSO	23-oct-1991	18.0	UGG	LN18	DBAHA	0.210	LT	
0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	DBHC	0.270	ND	R
0583 0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LH18	DBZFUR	0.035	LT	
0583	RF15*90 RF15*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18 LM18	DEP Dldrn	0.240 0.310	LŤ MD	R
OSB3	RFIS*90	CSO	23-oct-1991	18.0		LN18	DMP	0.170	LT	•
C820	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	DNBP	0.061	ĻT	
0583 0583	RF15*90 RF15*90	C\$O	23-oct-1991 23-oct-1991	18.0	UGG	LX18	DNOP	0.190	LT	_
0583	RF15*90	CSO	23-oct-1991	18.0 18.0	ugg Ugg	LM18 LM18	ENDRN ENDRNA	0.450 0.530	ND ND	R R
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LX18	ENDRNK	0.530	ND	R
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LX18	ESFS04	0.620	ND	R
OSB3 OSB3	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LN18 LN18	FANT FLRENE	0.068 0.099	LT	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	UN18	GCLDAN	0.330	XD	R
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	HCBD	0.230	LT	•
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LX18	HPCL	0.130	ND	R
0583 0583	RF15*90 RF15*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LX18 LX18	HPCLE HXADOE	0.330 1.130	MD	R
0383	RFIS*90	CSO	23-oct-1991	18.0	UGG	LX18	1CDPYR	0.290	ĻΤ	S
CB20	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	ISOPHR	0.033	ĻT	
OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	LIN	0.270	ND	R
OSB3	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18	MEXCLR NAP	0.330 0.037	ND	R
0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18 LM18	NB NB	0.045	LT LT	
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	NNDMEA	0.140	NO	R
OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	NNDNPA	0.200	LT	
OSB3 OSB3	RF15*90 RF15*90	CSO CSO	23-oct-1991 23-oct-1991	18.0	UGG	LM18	NNDPA DCD014	0.190	į.T	-
OSB3	RFIS*90	C\$0	23-oct-1991	18.0 18.0	ugg Ugg	LK18 LK18	PC8016 PC8221	1.400 1.400	ND ND	R R
-	· · · · · · · · ·		1							••

	Site ID	Field ID	<u>Media</u>	<u>Dete</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
	0\$83	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	PCB232	1_400	ND	R
	OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	PC8242	1.400	NC	Ř
	OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	PCB248	2.000	ND	R
	OS83	RF15*90	C20	23-oct-1991 23-oct-1991	18.0	UGG	LN18	PC8254	2.300	ND	R
	0583	RFIS*90 RFIS*90	CSO	23-oct-1991	18.0 18.0	ugg	LM18 LM18	PCB260 PCP	2.600 1.300	ND Lt	R
	0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	PHANTR	0.205	L,	
	OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	PHENOL	0,110	LT	
	0583 0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	PPODD	0,270	ND	Ŗ
	0S83	RF1S*90 RF1S*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	LN18 LN18	PPODE PPODT	0.310 0.310	ND ND	R R
	Q\$83	RFIS*90	CSO	23-oct-1991	18.0	UGG	UN18	PYR	0.033	LT	
	OSB3	RFI5*90	CSO	23-oct-1991	18.0	UGG	1,1118	TXPHEN	2,600	ND	R
	0S83 0S83	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	UGG UGG	LN18	UNIC563	0.992		S
	0SB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18 LM18	UNK565 UNK568	0.567 1.270		\$ S
	OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	UNKS78	1.130		S
	0\$83	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	UNX579	0.567		\$
	OSB3	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18 LM18	UNK580 UNK581	1.420		s
	0583	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	UNK582	0.567 0.567		S S
	0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18	UNK585	0.708		Š
	0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	UNK586	0.567		\$
	OSB3 OSB3	RFIS*90 RFIS*90	CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg ugg	LM18	UNKS87 UNKS88	0.567		S
_	0583	RFIS*90	CSO	23-oct-1991	18.0	UGG	LM18 LM18	UNK589	0.708 0.992		S S
	OSB3	RF15*90	CSO	23-oct-1991	18.0	UGG	LM18	UNK590	0.708		Š
	OSB3	RFIS*90	CSO	23-oct-1991	18.0	UGG	LH18	UNK591	1,130		S
	OSB3 OSB3	RFIS*90 RFIS*90	CSO CSO	23-oct-1991 23-oct-1991	18.0 18.0	ugg Ugg	lm18 lm18	UNK592 UNK593	142.000 0.850		s s
	OSB3	RF15*90	CSO	23-oct-1991	18.0	ŲGG	LM18	UNKS05	0.850		Š
	0\$84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN18	124TC8	0.040	LT	•
	OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN18	12DCLB	0.110	LŢ	_
	0584 0584	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	i.M18 i.M18	120PH 130CLB	0.140 0.130	ND LT	R
	OSB4	RF15*92	ÇSO	02-nov-1991	22.5	UGG	LH18	14DCLB	0.098	LT	
	OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	245TCP	0.100	LŢ	
	0S84 0S84	RF1S*92 RF1S*92	C20 C20	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LM18 LM18	246TCP 24DCLP	0.170	LŢ	
	0584	RF15*92	CSO	02-nov-1991	22.5	UGG	LM18	24DMPN	0.180 0.690	LT LT	
	0584	RFIS*92	CSO	02-nov-1991	22.5	UGĞ	LH18	240NP	1.200	LT	
	OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	24DNT	0,140	LT	
	OSB4 OSB4	RFIS*92 RF1S*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LM18 LM18	260NT 2CLP	0.085 0.060	LŢ LT	
	OSB4	RFIS*92	ÇSO	02-nov-1991	22.5	UGG	LM18	2CKAP	0.036	LT	
	0584	RFIS*9Z	CSO	02-nov-1991	22.5	UGG	LM18	2MNAP	26.500	٠.	
	0\$84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	2MP	0.029	LT	
	OS84	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LM18 UX18	ZNANIL ZNP	0.062 0.140	LT LT	
	0\$84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN18	33DC80	6.300	LT	
	0584	RFIS*92	CZO	02-nov-1991	22.5	UGG	LH18	3MANIL	0.450	LT	
	0S84 0S84	RFIS*92	CSO	02-nov-1991	22.5 22.5	UGG	LN18	46DN2C	0.550	LT	
	OSB4	RFIS*92 RFIS*92	CSO CSO	02-nov-1991 02-nov-1991	22.5	ugg ugg	LN18 LN18	48RPPE 4CANIL	0.033 0.810	LT LT	
	OSB4	RF15*92	CSO	02-nav-1991	22.5	UGG	LH18	4CL3C	0.095	ĹΤ	
	0\$84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	4CLPPE	0.033	LT	
	OSB4 OSB4	RFIS*92 RFIS*92	CSO CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LN18 LN18	AND ANAMES	0.240	LT	
	OSB4	RF15*92	CSO	02-nov-1991	22.5	UGG	LH18	4NANIL 4NP	0.410 1.400	LŢ LŢ	
	OSB4	RFIS*9Z	CSO	02-nov-1991	22.5	UGG	LN18	ABRC	0.270	ND	R
	0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	ACLDAN	0,330	ND	R
	OSB4 OSB4	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	LM18 LM18	AENSLF ALDRN	0.620 0.330	NO NO	R
	OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	ANAPNE	2.300	NO	R
	CS84	RF15*92	CSO	02-nov-1991	22.5	UGG	LH18	ANAPYL	0.033	LT	
	OSB4	RF15*92	CSO	02-nov-1991	22.5	UGG	LM18	ANTRO	0.808		
	OSB4 OSB4	RFIS*92 RFIS*9Z	CSO CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LM18 LM18	82CEXX 82CIPE	0.059 0.200	LT LT	
	0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LX18	82CLEE	0.033	LŢ	
	0\$84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	BZEHP	0.620	ĹŤ	
	QSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	BAANTR	0.170	LT	
	OSB4	RF15*92 RF15*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg Ugg	LM18 LK18	BAPYR BBFANT	0.250 0.210	LT LT	
	OSB4	RF15*92	CSO	02-nov-1991	22.5	UGG	LH18	B8HC	0.270	MD F1	R
									=		

Site ID	Field 1D	<u>Hedi a</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
0284	RF15*92	CSO	02-nov-1991	22.5	UGG	LM18	BEZP	0.170	LT	
0S84 0S84	RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	LM18	BENSLF	0.620	ND	R
0584 0584	RFIS*92 RFIS*92	CSO	02-nov-1991	22.5	ugg ugg	LM18 LM18	BENZID BENZOA	0.850 6.100	ND ND	R R
0584	RF15*92	CSO	02-nov-1991	22.5	UGG	LM18	BGHIPY	0.250	LT	^
0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	BKFANT	0.866	LT	
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	BZALC	0.190	LT	
0584 0584	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LM18	CHRY	0.120	LT	
0584 0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18 LX18	CL6BZ CL6CP	0.033 6.200	LT LT	
0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	CLSET	0.150	LT	
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN18	DBAHA	0.210	LT	
0584 0584	RF1S*92	CSO	02-nov-1991	22.5	UGG	LN18	DBHC	0.270	ND	R
OSB4	RF15*92 RF15*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LM18 LM18	DBZFUR DEP	0.991 0.240	LT	
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	DLDRN	0.310	ND F1	R
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	DMP	0.170	LŤ	
QSB4	RF15*92	CSO	02-nov-1991	22.5	UGG	LN18	DNBP	0.061	LT .	
0SB4 0SB4	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LN18 LN18	DNOP ENDRN	0.190 0.450	LT	
0SB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	ENDRNA	0.530	ND ND	R . R
0584	RF1\$*92	CSO	02-nov-1991	22.5	UGG	LM18	ENDRNK	0.530	ND	R
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	ESFSO4	0.620	ND	R
0584 0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	FANT	0.068	LŦ	
- 0S84	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LM18 LM18	FLRENE GCLDAN	3.080 0.330	ND	R
0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	HCSD	0.230	LT	^
OS84	RF15*92	CSO	02-nov-1991	22.5	UGG	LM18	HPCL	Q. 130	ND	R
OSB4	RF15*92	CSO	02-nov-1991	22.5	UGG	LN18	HPCLE	0.330	ND	R
OSB4 OSB4	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LH18	ICDPYR ISOPKR	0.290	LŢ	
0584	RF15*92	CSO	02-nov-1991	22.5	UGG	EN18 LH18	LIN	0.033 0.270	LT ND	R
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	MEXCLR	0.330	ND	Ř
0284	RF1\$*92	CSO	02-nov-1991	22.5	UGG	UH18	NAP	2.220		
0584 0584	RF1\$*92 RF1\$*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	LM18	NB KNDMEA	0.045	LT	
0584	RF15*92	CSO	02-nov-1991	22.5	UGG	LM18 LM18	HNDNPA	0.140 9.200	ND LT	R
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	HNDPA	0.190	ĹΫ	
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH18	PCB016	1.400	MD	R
0\$84 0\$84	RFIS*92 RFIS*92	CSO	02-nov-1991	22.5 22.5	UGG	LM18	PC8221 PC8232	1.400	ND	Ŕ
0S84	RF15*92	CSO	02-nov-1991 02-nov-1991	22.5	ugg ugg	1.M18 1.M18	PC8242	1.400 1.400	ND ND	R R
QSB4	RFIS*92	CSO	0Z-nov-1991	22.5	UGG	LH18	PC8248	2.000	ND	Ŕ
OSB4	RF15*92	CSO	02-nov-1991	22.5	UGG	EH18	PC8254	2.300	ND	R
0584	RF1\$*92	CSO	02-nov-1991	22.5	UGG	LN18	PCB260	2.600	MD	R
0584 0584	RFIS*92 RFIS*92	C20	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LN18 LN18	PCP PHANTR	1.300 4.680	LT	
0584	RFIS*92	cso	02-nov-1991	22.5	UGG	LN18	PHENOL	0.110	LT	
OSB4	RFIS*9Ž	cso	02-nov-1991	22.5	UGG	LH18	PPODD	0.270	ND	R
0\$84	RF15*9Z	CSO	02-nov-1991	22.5	UGG	LH18	PPODE	0.310	MD	R
0\$84 0\$84	RF15*92 RF15*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg Ugg	LM18 LM18	PPDDT PYR	0.310 0.399	MD	R
0SB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	TXPHEN	2.600	ND	R
OSB4	RFIS*92	CSO	02-nov-1991	22.5	LIGG	LH18	UNKS47	4.390		ŝ
OSB4	RFIS*92	CSO	02-nov-1991	22.5	ugg	LH18	UNK550	5.860		S
0SB4 0SB4	RFIS*92 RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	UNK551	8.780		S
OSB4	RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg Ugg	LM18 LM18	UNK552 UNK554	5.860 5.860		S S
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	UNK555	5.860		Š
CSB4	RFIS*92	C\$O	02-nov-1991	22.5	UGG	LM18	UNKS56	2.930		\$
CSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN18	UNKS57	4.390		S
0584 0584	RF1S*92 RF1S*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	LM18 LM18	UNK558 UNK559	4.390 14.600		S S
0S84	RFIS#9Z	CSO	02-nev-1991	22.5	UGG	LM18	UNK560	4.390		S
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18	UNK561	4.390		S
0584	RFIS*92	cso	02-nov-1991	22.5	UGG	LK18	UNK562	11.700		S
0584 0584	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LM18	UNK563 UNK564	14.600 2.930		S
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM18 LM18	UNX565	2.930		\$ \$
OSB4	RF1S*92	CSO	02-nov-1991	22.5	UGG	LN18	UNKS66	2.930		\$
OSB4	RFIS*92	CSO	02-nov-1991	Z2. 5	UGG	LH18	UNX567	4.390		S
OS84 OS84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN18	UNKS69	1.460		Ş
0584 0584	RF1S*92 RF1S*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LN18 LN18	UNK580 UNK605	14.600 1.460		5 S
	131 40 75		VE 1967 1771		-44	en iu		1.400		3

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
OSB4	RF1S*92	CSO	02-nov-1991	22.5	UGG	LH19	111775	0.00/	, •	
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM19	111TCE 112TCE	0,004	LT LT	
0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM19	11DCE	0.004	LT	
0\$84 0\$84	RFIS*92 RFIS*92	CSO CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LN19 LN19	11DCLE	0.002	LT	
0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN19	120CE 120CLE	0.003 0.002	LT LT	
0584	RFIS*9Z	CSO	02-nov-1991	ZŽ. 5	UGG	LH19	120CLP	0.003	ĹŤ	
OSB4 OSB4	RFIS*92	CSO CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	LN19	SCLEAE	0.010	ND	R
0584	RFIS*92 RFIS*92	CSO	02-nov-1991	22.5	UGG	LN19 LN19	ZMEPEN ACET	0.004 0.017	LT	S
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH19	ACROLN	0.100	ND	R
QSB4	RF15*92	CSO	02-nov-1991 02-nov-1991	22.5	UGG	LH19	ACRYLO	0.100	ND	R
0584 0584	RF1S*92 RF1S*92	CSO CSO	02-nov-1991	22.5 22.5	ugg ugg	LH19 LH19	BRDCLM C13DCP	0.003	LT LT	
0 \$84	RF15*92	CSO	02-nov-1991	22.5	UGG	LN19	C2AVE	0.003	LT	
0284	RF15*92	CSO	02-nov-1991	22.5	UGG	LN19	C2H3CL	0.006	LT	
0SB4 0SB4	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LM19 LM19	C2H5CL C6H6	0.012 0.002	LT LT	
0584	RFIS*92	ÇSO	02-nov-1991	22.5	UGG	ÜH19	CCL3F	0.002	LŤ	
0584	RFIS*92	CSO	02-nov-1991	22.5	UGG	LH19	CCL4	0.007	LT	
CSB4 CS84	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LM19 LM19	CH2CL2 CH3BR	0.012 0.006	ĻŢ	
OSB4	RFIS*92	CZO	02-nov-1991	22.5	UGG	LH19	CH3CL	0.009	LT LT	
OSB4	RFIS#92	CSD	02-nov-1991	22.5	UGG	LH19	CH8R3	0.007	LŤ	
0S84 0S84	RF15*92 RF15*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg Ugg	LH19 LH19	CHCL3 CL2BZ	0.001 0.100	ĻŢ	•
0584	RF15*92	CSO	02-nov-1991	22.5	UGG	UH19	CLC6H5	0.001	ND LT	R
OSB4	RFIS*92	CSO	0Z-nov-1991	22.5	UGG	LH19	CS2	0.004	LT	
0584 0584	RFIS*9Z	CSO	02-nov-1991 02-nov-1991	22.5 22.5	ugg ugg	LN19	DBRCLM	0.003	LT	
OSB4	RFIS*92 RFIS*92	CSO	02-nov-1991	22.5	UGG	LM19 LM19	ETCSH5 MECSHS	0.002 0.001	LT LT	
0\$84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LM19	MEK	0.070	LT	
0\$84 0\$84	RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LM19	MIBK	0.027	LT	
0S84	RFIS*92 RFIS*92	CSO	02-nov-1991	22.5 22.5	UGG	LN19 LN19	MNBK STYR	0.032 0.003	LT LT	
0584	RF15*92	CSO	02-nov-1991	22.5	UGG	LH19	T13DCP	0.003	LT	
OSB4	RFIS*92	CSO	02-nov-1991	22.5	UGG	UI19	TCLEA	0.002	LT	
OSB4 OSB4	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG UGG	LN19 LN19	TCLEE	0.001 0.003	LT LT	
OS84	RFIS*92	ÇSO	02-nov-1991	22.5	UGG	LH19	UNK098	0.007	-	S
0S84	RFIS*92	CSO	02-nov-1991	22.5	UGG	LN19	UNK110	0.029		S
0584 0584	RFIS*92 RFIS*92	CSO	02-nov-1991 02-nov-1991	22.5 22.5	UGG	LH19 LH19	UNK132 XYLEN	0.015 0.002	LT	S
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH18	124TCB	0.040	LT	
0584	RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0	UGG	LM18	120CLB	0.110	LT	_
0584 0584	RFIS*93 RFIS*93	CSO	02-nov-1991	35.0 35.0	UGG	LN18 LN18	120PH 13DCLB	0.140 0.130	MD LT	R
OSB4	RFIS#93	CSO	02-nov-1991	35.0	UGG	LH18	14DCLB	0.098	ĻŤ	
OSB4	RF1\$*93	CSO	02-nov-1991	35.0	UGG	LM18	245TCP	0.100	LT	
OSB4 OSB4	RFIS*93 RFIS*93	C2O C2O	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	i,M18 i,M18	246TCP 24DCLP	0.170 0.180	LT LT	
0584	RFIS*93	cso	02-nov-1991	35.0	UGG	LX18	24DMPN	0.690	ĹĬ	
0S84	RF1S*93	CSO	02-nov-1991	35.0	UGG	1118	ZADNP	1.200	LT	
QSB4 QSB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LM18 LM18	24DNT 26DNT	0,140 0.085	LT LT	
0\$84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	2CLP	0.060	LT	
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH18	2CNAP	0.036	LT	
OSB4 OSB4	RF15*93 RF15*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LH18 LH18	ZMNAP ZMP	0.049	LT	
OSB4	RF15-93	CSO	02-nov-1991	35.0	UGG	LH18	2NANIL	0.029 0.062	LT LT	
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH18	ZNP	0.140	LT	
OSB4	RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG	LM18	\$3DCBD	6.300	LT	
OSB4 OS84	RF1S*93 RF1S*93	CSO	02-nov-1991	35.0 35.0	ugg ugg	LN18 LN18	3NANIL 46DN2C	0.450 0.550	LT LT	
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	48RPPE	0.033	LT.	
0\$84 0\$84	RF1S*93	CSO CSO	02-nov-1991 02-nov-1991	35.0	UGG	LH18	4CANIL	0.810	LT	
0584 0584	RFIS*93 RFIS*93	CSO CSO	02-nov-1991	35.0 35.0	ugg ugg	LM18 LM18	4CL3C 4CLPPE	0.095 0.033	LT LT	
0584	RF1S*93	CSO	02-nov-1991	35.0	UGG	LN18	4HP	0.240	LT	
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	4NANIL	0.410	LT	
OSB4 OSB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LM18 LM18	4NP ABHC	1.400 0.270	LT ND	
0S84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	ACLDAN	0.330	ND	R R
0584	RF15*93	ÇSO	02-nov-1991	35.0	UGG	LH18	AENSLF	0.620	ND	R

-1			_			Analytical	Analyte			Internal
Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Method	Abbry.	Value	Flag	Std. Code
0584	RF15*93	CSO	02-nov-1991	35.0	UGG	LX18	ALDRN	0.330	ND	R
0SB4 0SB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LM18 LM18	AXAPYL	0.036 0.033	LT LT	
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	ANTRO	0.033	LT	
0SB4 0SB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LN18	B2CEXM	0.059	LT	
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18 LN18	B2CIPE B2CLEE	0.200 0.033	LT LT	
OS84	RF15*93	CSO	02-nov-1991	35.0	UGG	LM18	BZEHP	0.620	LT	
0SB4 0SB4	RF1S*93 RF1S*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	lk18 lx18	BAANTR	0.170	LŢ	
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LX18	BAPYR B8FANT	0.250 0.210	LT LT	
0584	RF1S*93	CSO	02-nov-1991	35.0	UGG	LH18	B8HC	0.270	ND	R
0S84 0S84	RFIS*93 RFIS*93	CSO CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LM18 LX18	B82P BENSLF	0.170 0.620	LT	_
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	BENZID	0.850	ND ND	Ř R
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH18	BENZOA	6.100	ND	Ř
0584 0584	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LH18 LH18	BGHIPY BKFANT	0.250 0.066	LT LT .	
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LM18	BZALC	0.190	LT.	
0SB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	CHRY	0.120	LŤ	
0584 0584	RF1S*93 RF1S*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LM18 LM18	CL68Z CL6CP	0.033 6.200	LT LT	
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LX18	CLSET	0.150	LT	
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	DBAHA	0.210	LT	
OSB4 OSB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg Ugg	LM18 LM18	DBHC DBZFUR	0.270 0.035	ND LT	Ř
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH18	DEP	0.240	LT	
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH18	DLDRM	0.310	ND	R
0\$84 0\$84	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg Ugg	LH18 LH18	DMP DNBP	0.170 0.061	LT LT	
0SB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LN18	DNOP	0.190	LT	
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	EXDRN	0.450	MD	R
0SB4 0SB4	RFIS*93 RFIS*93	CS0	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LX18 LX18	ENDRNA ENDRNK	0.530 0.530	ND ND	R
0\$84	RFIS*93	cso	02-nov-1991	35.0	UGG	LM18	ESFSO4	0.620	ND	R R
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM18	FANT	0.068	LT	
0SB4 0SB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LK18 LK18	FLRENE GCLDAN	0.033 0.330	LŤ ND	R
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	HCBD	0.230	LT	ĸ
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	UI18	HPCL	0.130	ND	R
0SB4 0SB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG	LM18 LM18	HPCLE ICOPYR	0.330 0.290	ND LT	R
QSB4	RF15*93	cso	02-nov-1991	35.0	UGG	LM18	ISOPHR	0.033	ĹŤ	
0\$84 0\$84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	LIN	0.270	ND	R
0S84	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LM18 LM18	MEXCLR NAP	0.330 0.037	ND LT	R
0584	RF1S*93	cso	02-nov-1991	35.0	UGG	LM18	XB	0.045	LT	
0SB4 0SB4	RF1S*93	CSO	02-nov-1991	35.0	UGG	LM18	NNDMEA	0.140	ND	R
OSB4	RF15*93 RF15*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LM18 LM18	NNDNPA NNDPA	0.200 0.190	LT LT	
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH18	PCB016	1,400	ЖD	R
0584 0584	RF1S*93	CSO	02-nov-1991	35.0	UGG	UH18	PCB221	1.400	ND	R
0584	RFIS*93 RFIS*93	CSO CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	lm18 lm18	PC8232 PC8242	1.400 1.400	ND ON	Ř R
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH18	PC8248	2.000	KD	Ř
CSB4 CSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	PCB254	2.300	ND	R
0584	RFIS*93 RF1S*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg Ugg	LN18 LN18	PCB260 PCP	2.600 1.300	ND LT	R
0\$84	RF1S*93	CSO	02-nov-1991	35.0	UGG	LX18	PHANTR	0.033	LT	
OSB4 OSB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG	LM18	PHENOL	0.110	LT	_
0584	RFIS*93	CSO	02-nov-1991	35.0	ugg ugg	LM18 LM18	PPDDD PPDDE	0.270 0.310	ND ND	R R
OSB4	RF1\$*93	CSO	02-nov-1991	35.0	UGG	LM18	PPDOT	0.310	NO	Ř
0584 0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN18	PYR	0.033	LT	
0584	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LM18 LM18	TXPHEN UNK635	2.600 2.940	ND	R S
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH19	111TCE	0.004	LT	•
0584 0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN19	112TCE	0.005	LT	
0584 0584	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg Ugg	LM19 LM19	11DCE 11DCLE	0.004 0.002	LT LT	
0584	RFIS=93	CSO	02-nov-1991	35.0	UGG	LH19	12DCE	0.003	LT	
OS84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH19	120CLE	0.002	LT	
0SB4 0SB4	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg UGG	LH19 LH19	120CLP 2CLEVE	0.003 0.010	LT ND	R
	R: 14 74	7-04	We 1977 1771	٠,٠٠	244	₩17	evek 16	4.010	100	n

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	<u>Value</u>	<u>Flag</u>	Internal Std. Code
OSB4	RFIS*93	cso	02-nov-1991	35.0	UGG	LN19	ACET	0.017	LT	
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH19	ACROLN	0.100	ND	R
0584	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH19	ACRYLO	0.100	ND	R
0SB4 0SB4	RFIS*93 RFIS*93	CSO CSO	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LN19 LN19	BRDCLM C13DCP	0.003	LT LT	
Q\$B4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH19	C2AVE	0.003	LT	
0\$84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LX19	CZH3CL	0.006	LT	
0SB4 0SB4	RFIS*93 RFIS*93	C20 C20	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LN19 LH19	C2H5CL C6H6	0.012 0.002	LT LT	
0584	RFIS*93	ÇSO	02-nov-1991	35.0	UGG	LM19	CCL3F	0.002	LT	
OS84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LH19	CCL4	0.007	LT	
QSB4 QS84	RFIS*93 RFIS*93	C20 C20	02-nov-1991 02-nov-1991	35.0 35.0	UGG UGG	LN19 LN19	CH2CL2 CH3BR	0.012	LT	
0SB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN19	CH3CL	0.006 0.009	LT LT	
os84	RF15*93	CSO	02-nov-1991	35.0	UGG	LN19	CHBR3	0.007	LT	
0584 0584	RFIS*93 RFIS*93	CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LM19 LM19	CHCL3 CL28Z	0.001	LŤ	_
0584	RF15*93	CSO	02-nov-1991	35.0	UGG	LH19	CLC6H5	0.100 0.001	ND LT	. R
0884	RF1\$*93	CSO	02-nov-1991	35.0	UGG	LM19	CS2	0.004	ĹΫ	
OSB4	RFIS*93	CSO	02-nov-1991	35.0	UGG	LM19	DBRCLM	0.003	LŢ	
Q\$84 Q\$84	RF15*93 RFIS*93	CSO CSO	02-nov-1991 02-nov-1991	35.0 35.0	ugg ugg	LM19 LM19	ETCANS HEXANE	0.002 0.004	LŤ	
OSB4	RFIS*93	CZO	02-nov-1991	35.0	UGG	LH19	MEC6H5	0.001	LT	\$
OS84	RFIS*93	CSO	02-nov-1991	35.0	UGG	LN19	MEK	0.070	ĹŤ	
_0\$84 0\$84	RF1S*93 RF1S*93	CSO	02-nov-1991 02-nov-1991	35.0	UGG	LN19	MIBK	0.027	LT	
0584	RFIS*93	CSO	02-nov-1991	35.0 35.0	UGG UGG	LN19 '	MM8K STYR	0.032 0.003	LT LT	
OSB4	RF1S*93	CSO	02-nov-1991	35.0	UGG	LX19	T13DCP	0.003	LŤ	
OSB4	RF15*93	CSO	02-nov-1991	35.0	UGG	LH19	TCLEA	0.002	LT	
0584 0584	RFIS*93 RFIS*93	CSO CSO	02-nov-1991 02-nov-1991	35.0	UGG	LH19	TCLEE	0.001	LT	
0S84	RF15*93	CSO	02-nov-1991	35.0 35.0	ugg Ugg	LH19 LH19	XYLEN	0.003 0.002	LT LT	
CS85	RF15*105	CSO	25-oct-1991	7.0	UGG	LH19	111TCE	0.004	ĻŤ	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN19	112TCE	0.005	LT	
0\$85 0\$85	RFIS*105 RFIS*105	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGĞ	LN19 LN19	11DCE 11DCLE	0.004 0.002	LT LT	
OS85	RF15*105	CSO	25-oct-1991	7.0	UGG	LH19	120CE	0.003	LŤ	
OS85	RF1S*105	CSO	25-oct-1991	7.0	UGG	LH19	12DCLE	0.002	LT	
0\$85 0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN19	12DCLP	0.003	LT	_
0585	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LH19 LH19	2CLEVE ACET	0.010 0.017	ND LT	R
OSB5	RF15*105	CSO	25-oct-1991	7.0	UGG	LH19	ACROLN	0.100	ND	R
0585	RF15*105	CSO	25-oct-1991	7.0	UGG	LH19	ACRYLO	0.100	ND	R
0S85 0S85	RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG	LN19 LN19	BRDCLM C13DCP	0.003 0.003	LT LT	
0585	RFIS*105	cso	25-oct-1991	7.0	UGG	LH19	CZAVE	0.003	LT	
0885	RFIS*105	CSO	25-oct-1991	7.0	UGĞ	LN19	C2H3CL	0.006	LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN19	CZH5CL	0.012	LT	
0\$85 0\$85	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.8 7.0	UGG UGG	LH19 LH19	CCL3F	0.002 0.006	LT LT	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH19	CCL4	0.007	ĹŤ	
0585	RFIS*105	CSC	25-oct-1991	7.0	UGG	LH19	CH2CL2	0.012	LT	
QS85 QS85	RF1S*105 RF1S*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LH19 LH19	CH3BR CH3CL	0.006 0.009	LT t T	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN19	CHBR3	0.009	LT LT	
QSB5	RF15*105	CSO	25-oct-1991	7.0	UGG	LN19	CHCL3	0.001	LŤ	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN19	CL2BZ	0.100	ND	R
OSB5 OSB5	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg Ugg	LH19 LH19	CLC6H5 CS2	0.001 0.004	LT LT	
OS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH19	DBRCLM	0.003	ĹŦ	
0585	RF15*105	CSO	25-oct-1991	7.0	UGG	LN19	ETC6H5	0.002	ĻŢ	
0\$85 0\$85	RFIS*105 RFIS*105	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LM19 LM19	MEC6H5 MEK	0.001 0.070	LT	
OS85	RFIS*105	C20	25-oct-1991	7.0	UGG	LH19	MIBK	0.027	LT LT	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH19	MNBK	0.032	LT	
0\$85	RF1S*105	CSO	25-oct-1991	7.0	UGG	LH19	STYR	0.003	LT	
OSB5 OSB5	RF15*105 RF15*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM19 LK19	T13DCP TCLEA	0.003 0.002	LT	
0S85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM19	TCLEE	0.002	LT LT	
QS85	RF15*105	CSO	25-oct-1991	7.0	UGG	LH19	TRCLE	0.003	LT	
OS85	RF15*105	CSO	25-oct-1991	7.0	UGĞ	LN19	XYLEN	0.002	LT	
OSB5 OSB5	RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LM18 LM18	124TCB 120CLB	0.040	LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	ŲGG	LM18	1200LB	0.110 0.140	LT ND	R
							-			**

						Analytical	Analyte			Internal
Site ID	Field 1D	<u>Media</u>	<u>Date</u>	Depth	<u>Units</u>	Method	Abbry.	<u>Value</u>	Flag	Std. Code
0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LX18	13DCLB	0.130	LT	
0585	RF15*105	CZC	25-oct-1991	7.0	UGG	LX18	14DCLB	0.098	ĹŤ	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN18	Z45TCP	0.100	LT	
O\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	246TCP	0.170	LT	
OS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	24DCLP	0.180	LT	
0\$85 0\$85	RFIS*105 RFIS*105	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LN18	24DMPN	0_690	LT	
QSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18 LM18	24DNP 24DNT	1.260 0.140	LT LT	
OSB5	RF15*105	CSO	25-oct-1991	7.0	UGG	LH18	26DNT	0.085	LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	2CLP	0.060	LT	
Q\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN18	2CNAP	0.036	LT	
OS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	ZMNAP	0.049	LT	
0585 0585	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	VGG VGG	LH18 LH18	2MP	0.029	LT	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	2NAN I L 2NP	0.062 0.140	LT LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	33DCBD	6.300	ĹŤ	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	SHANIL	0.450	ĹΫ	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	460N2C	0.550	LT	
0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	4BRPPE	0.033	LT	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	4CANIL	0.810	LT	
OSB5	RF1S*105	CSO	25-oct-1991	7.0	UGG	LM18	4CL3C	0.095	LT	
0\$85 0\$85	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LX18	4CLPPE	0.033	LT	
0585	RF15*105	CSO	25-oct-1991	7.0	UGG	LX18 LX18	4MP 4MANIL	0.240 0.410	LT LT	
_ 0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	4NP	1.400	LT	
QS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	ABHC	0.270	ЖD	R
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN18	ACLDAN	0.330	ND	R
OS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	AENSLF	0.620	ND	R
OSB5	RF15*105	CSO	25-oct-1991	7.0	UGG	LH18	ALDRM	0.330	KD	R
OSB5	RF1S*105	CSO	25-oct-1991	7.8	UGG	LX18	AKAPNE	0.036	LT	
0\$85 0\$85	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg Ugg	LH18 LH18	ANAPYL ANTRO	0.033 0.033	LT	
0585	RF1S*105	CSO	25-oct-1991	7.0	UGG	LH18	B2CEXM	0.059	LT LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	B2CIPE	0.200	LT	
0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	92CLEE	0.033	LT	
0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LK18	B2EHP	0.620	LT	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LX18	BAANTR	0.170	LŤ	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LX18	BAPYR	0.250	LT	
0SB5 0SB5	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg Ugg	LN18 LN18	BBFANT	0.210 0.270	LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	BBHC BBZP	0.170	NO LT	R
0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	BENSLF	0.620	ND	R
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	BENZID	0.850	ND	R
OSB5	RF1S*105	CSO	25-oct-1991	7.0	UGG	LM18	BENZOA	6.100	ND	R
OS85	RFIS*105	Ċ20	25-oct-1991	7.0	UGG	LX18	BGHIPY	0.250	LT	
0585	RF15*105	CSO	25-oct-1991	7.0	UGG	LN18	8KFANT	0.066	LT	
0585 0585	RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg Ugg	1M18 LM18	BZALC	0.190 0.120	LŢ	
OSB5	RFIS*105 RFIS*105	CSO	25-oct-1991	7.0	UGG	LN18	CHRY CL68Z	0.120	LT LT	
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	CLSCP	6.200	LT	
0885	RF1S*105	CSO	25-oct-1991	7.0	UGG	LH18	CLEET	0.150	ĹŤ	
OSBS	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	DBAHA	0.210	LT	
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	DBHC	0.270	ND	R
OSB5	RFIS*105	CS0	25-oct-1991	7.0	UGG	LH18	OBZFUR	0.035	LT	
0585 0585	RFIS*105	CSO	25-oct-1991	7.0	22U	LH18	DEP	0.240	LT	_
0285	RFIS*105 RFIS*105	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM18 LM18	DLDRN DMP	0.310 0.170	ND LT	R
OS85	RF15*105	CSO	25-oct-1991	7.0	UGG	LM18	DRBP	0.061	LT	
OS85	RF15*105	CSO	25-oct-1991	7.0	UGG	LH18	DNOP	9.190	LT	
OSB5	RF1S*105	CSO	25-oct-1991	7.0	UGG	LN18	ENDRN	0.450	ЖĐ	R
QSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	ENDRNA	0.530	NO	R
OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	ENDRNK	0.530	ND	R
2820 2025	RFIS*105	CSO	25-oct-1991	7.0	UGG	LX18	ESFSO4	0.620	HD.	R
CS85 OS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	FANT	0.068	LT	
US85 Q82Q	RFIS*105 RFIS*105	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LM18 LM18	FLRENÉ GCLDAN	0.033 0.330	LT	
0S85	RFIS*105	CZO	25-oct-1991	7.0	UGG	LM18	HCBD HCBD	0.230	ND LT	R
0585	RF15*105	CSO	25-oct-1991	7.0	UGG	LM18	HPCL	0.130	ND	R
OSB5	RF1S*105	CSO	25-oct-1991	7.0	UGG	LH18	HPCLE	0.330	ХD	Ř
OSB5	RF1S*105	CSO	25-oct-1991	7.0	UGG	LH18	ICDPYR	0.290	LT	
0 \$820	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	ISOPHR	0.033	LT	
0885	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	LIN	0.270	ND	R
0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	MEXCLR	0.330	ND	R
0885	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	NAP	0.037	LT	

	Site (D	<u>Field ID</u>	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	Flag	Internal Std. Code
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LX18	МВ	0.045	LT	
	QS85	RF15#105	ÇSO	25-oct-1991	7.0	UGG	UH18	NNDMEA	0.140	ND	R
	O\$B5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	NNDNPA	0.200	LŢ	
	0585	RF15*105	CSO	25-oct-1991	7.0	UGG	LM18	NNDPA	0.196	LT	
	0SB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	PCB016	1,400	ND	R
	OSB5 OSB5	RFIS*105 RFIS*105	C20	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LH18 LH18	PC3221 PC3232	1.400	ND	R
	OSB5	RF15*105	CSO	25-oct-1991	7.0	UGG	LM18	PC8242	1.400 1.400	ND ND	R R
	OS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	PCB248	2.000	ND	Ř
	CS85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	PC8254	2,300	ND	Ř
	C\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	PC9260	2.600	MD	R
	0\$85	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	PCP	1.300	LT	
	OSB5	RFIS*105 RFIS*105	CSO CSO	25-oct-1991 25-oct-1991	7.0	UGG UGG	LN18	PHANTR	0.033	LT	
	OS85	RF1S*105	CSO	25-oct-1991	7.0 7.0	UGG	LM18 LM18	PHENOL PPODD	0.110 0.270	LŢ	
	OS85	RF1S*105	CSO	25-oct-1991	7.0	UGG	LN18	PPDDE	0.310	ND ND	R R
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	PPDDT	0.310	ND	Ř
	0585	RF1S*105	¢20	25-oct-1991	7.0	UGG	LM18	PYR	0.033	LT	•
	OS85	RFIS*105	C20	25-oct-1991	7.0	UGG	LN18	TXPHEN	2.600	ND	R
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	UNK557	0.286		S
	OSB5	RFIS*105	C\$O	25-oct-1991	7.0	UGG	LM18	UNK563	0.429		S
	OS85	RFIS*105 RFIS*105	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG	LX18 LX18	UNKS71 UNKS72	0.572		ş
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN18	UNKS76	0.429 0.429		\$ \$
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LM18	UNK580	0.572		\$
-	OSB5	RF1S*105	ÇSO	25-oct-1991	7.0	UGG	LM18	UNX581	0.429		š
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	ŲGG	LH18	UNK582	0.429		\$
	0585	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	UNK591	143,000		S
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LH18	UNK592	0.858		S
	OSB5	RFIS*105	CSO	25-oct-1991	7.0	UGG	LN18	UNK595	0.858		S
	OS85 OS85	RFIS*105 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM18 LM19	UNK596 111TCE	0.429 0.004	LT	S
	OSB5	RFIS#94	CSO	25-oct-1991	7.0	UGG	LH19	112TCE	0.005	LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN19	11DCE	0.004	LT	
	0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	11DCLE	0.002	ĹŤ	
	OS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN19	120CE	0.003	LT	
	OS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	12DCLE	0.002	LT	
	0\$85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	120CLP	0.003	LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	2CLEVE	0.010	ND	Ŕ
	OSB5 OSB5	RF1S*94 RF1S*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LM19 LM19	ACET ACROLN	0.017 0.100	LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	ACRYLO	0.100	ND ND	R R
	OS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	BRDCLM	0.003	LT	•
	OSB5	RFIS#94	ÇS0	25-oct-1991	7.0	UGG	LH19	C13DCP	0.003	ĹΪ	
	CSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	C2AVE	0.003	LT	
	OS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	C2H3CL	0.006	LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM19	C2H5CL	0.012	LT	
	OSB5 OS85	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0	UGG	LN19	C6H6	0.002	LT	
	0SB5	RF15-94	CSO	25-oct-1991	7.0 7.0	ugg Ugg	LH19 LH19	CCL3F CCL4	0.006 0.007	LT LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN19	CH2CL2	0.012	LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	CH3BR	0.006	ĹΤ	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LK19	CH3CL	0,009	ĻŤ	
	OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LH19	CHER3	0.007	LŢ	
	QSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH19	CHCL3	0.001	LT	
	0585	RFI S*94	CSO	25-oct-1991	7.0	UGG	LH19	CL2BZ	0.100	MD	R
	OSB5 OSB5	RF15*94 RF15*94	C20	25-oct-1991 25-oct-1991	7.0	ugg ugg	LM19	CLC6H5	0.001	LT	
	OS85	RFIS*94	CSO	25-oct-1991	7.0 7.0	UGG	LM19 LM19	CS2 DBRCLM	0.004 0.003	LT LT	
	OSB5	RF1\$*94	CSO	25-oct-1991	7.0	UGG	LM19	ETC6H5	0.002	LŤ	
	CSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LM19	MECAH5	0.001	LŤ	
	OSB5	RF15*94	CSO	25-oct-1991	7.0	ŲGG	LH19	MEK	0.070	LT	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	ugg	LH19	MIBK	0.027	LŢ	
	OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM19	MNBK	0.032	LT	
	CSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LN19	STYR	0.003	LT	
	OSB5 OS85	RF1S*94 RF1S*94	CSO	25-oct-1991	7.0	UGG	LN19	T130CP	0.003	LŢ	
	0\$85	RF15*94 RF15*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM19 LM19	TCLEA TCLEE	0.002 0.001	LŢ L T	
	CSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LM19	TRCLE	0.003	LT LT	
	OS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LX19	XYLEN	0.003	LT	
	OSB5	RFIS*94	cso	25-oct-1991	7.0	UGG	LM18	124TCB	0.040	LŢ	
	0\$85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18	12DCLB	0.110	LT	
	0\$85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18	120PK	0.140	ND	R
	0\$85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18	130CL8	0.130	LŢ	

Site ID	<u>Field 10</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
0\$85	RFIS*94	ÇSO	25-oct-1991	7.0	UGG	LX18	14DCLB	0.098	LT	
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	245TCP	0.100	LT	
OSB5	RFIS*94	cso	25-oct-1991	7.0	UGG	LN18	246TCP	0. 170	LT	
OSB5 OS85	RFI5*94 RFI5*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LN18	24DCLP 24DMPN	0.180	LT	
0\$85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18 LM18	24DNP	0.690 1.200	LT LT	
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	24DNT	0.140	LT	
OS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	26DNT	0.085	LT	
Q\$85	RFIS*94 RFIS*94	C20	25-oct-1991 25-oct-1991	7.0	UGG	LH18	2CLP	0.060	LT	
0S85 0S85	RF15*94	CSO	25-oct-1991	7.0 7.0	ugg ugg	LM18 LM18	ZCNAP ZMNAP	0.036 0.049	LT LT	
OSBS	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	2MP	0.029	ĹŤ	
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	2NANIL	0.062	LT	
0\$85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	ZNP	0.140	LT	
OSB5 OSB5	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LN18 LN18	33DCBD 3NANIL	6.300 0.450	LT LT	
0585	RF15*94	CSO	25-oct-1991	7.0	UGG	LM18	460N2C	0.550	LT	
QS85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	4BRPPE	0.033	ĹΤ	
0225	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18	4CANIL	0.810	LT	
OSB5 OSB5	RFIS*94 RFIS*94	CZO	25-oct-1991 25-oct-1991	7.0 7.0	UGG	LN18	4CL3C 4CLPPE	0.095	LT	
0585	RF15*94	CSO	25-oct-1991	7.0	UGG	LM18 LM18	400	0.033 0.240	LŤ LT	
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	4MANIL	0.410	LT	
0\$85	RFIS*94	C\$O	25-oct-1991	7.0	UGG	LH18	4NP	1,400	LT	
_ 0282	RFIS*94	cso	25-oct-1991	7.0	UGG	LH18	ABHC	0.270	ND	R
OSB5 OSB5	RF15*94 RF15*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG	LM18 LM18	ACLDAN AENSLF	0.330 0.620	ND ND	R
OS85	RFIS#94	CSO	25-oct-1991	7.0	UGG	LM18	ALDRN	0.330	NO	R R
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	ANAPNE	0.036	ĻŤ	~
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	ANAPYL	0.033	LT	
0585 0585	RF15*94 RF15*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LN18	ANTRC B2CEXM	0.033 0.059	LT LT	
0385	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18 LN18	B2CIPE	0.200	LT	
OS85	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	BZCLEE	0.033	ĹŤ	
OSB5	RFIS#94	CSO	25-oct-1991	7.0	UGG	LM18	BZEHP	0.620	LT	
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	BAANTR	0.170	LT	
OSB5 OSB5	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG	LH18 LH18	BAPYR BBFANT	0 <i>.2</i> 50 0.210	LT LT	
OSB5	RF15*94	cso	25-oct-1991	7.0	UGG	LM18	BBHC	0.270	NO.	R
OSBS	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	BBZP	0.170	LT	
0885	RFIS*94	CSO	25-oct-1991	7-0	UGG	LM18	BENSLF	0.620	ND	R
0885 0885	RFIS*94 RFIS*94	CZO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM18 LM18	BENZID BENZOA	0.850 6.100	ND ND	R R
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LM18	BGHIPY	0.250	LŤ	ĸ
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	BKFANT	0.066	LT	
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	BZALC	0.190	LT	
0885 0885	RF15*94 RF15*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LN18	CHRY CL682	0.120	LT	
OS85	RF15*94	C\$0	25-oct-1991	7.0	UGG	LM18 LM18	CLOGZ	0.033 6.200	LT LT	
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LN18	CLÓET	0.150	ĹŤ	
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	DBAHA	0.210	LT	
0S85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	DBHC	0.270	ND	R
0585 0585	RFIS*94 RFIS*94	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM18 LM18	DBZFUR DEP	0.035 0.240	LT LT	
0S85	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	DLDRN	0.310	MD	R
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	DMP	0.170	LT	**
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	DNBP	0.061	LT	
0S85 0S85	RF15*94 RF15*94	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg Ugg	LH18	DNOP	0.190 0.450	LT	_
0S85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18 LM18	ENDRN ENDRNA	0.530	ND ND	R R
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	ENDRNK	0.530	ND	Ř
0885	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	ESFSO4	0.620	ND	R
0S85	RF15*94	CZO	25-oct-1991	7.0	UGG	LX18	FANT	0.068	LT	
0SB5 0SB5	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	lm18 lm18	FLRENE GCLDAN	0.033 0.330	LT ND	R
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	UH18	HCBD	0.230	LT	ĸ
0\$85	RF1S*94	CSO	25-oct-1991	7.0	UGG	LH18	HPCL	0.130	ND	R
0\$85	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	HPCLE	0.330	MD	R
OSB5 OSB5	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0	UGG	LN18	ICOPYR	0.290	LT	
0S85	RF15*94	CSO	25-oct-1991	7.0 7.0	UGG UGG	LM18 LM18	ISOPHR LIN	0.033 0.270	LT ND	R
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	MEXCLR	0.330	ND	K R
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18	KAP	0.037	LT	
osa5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	NB	0.045	LT	

Site ID	<u>Field_ID</u>	<u> Mędia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry	Value	<u>Flag</u>	Internal <u>Std. Code</u>
os85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	NNDMEA	0.140	ND	R
osa5	RF1S*94	CSO	25-oct-1991	7.0	UGG	LN18	NNDHPA	0.200	LT	~
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	NNDPA	0.190	LŤ	
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LX18	PCB016	1.400	ND	R
0S85 0S85	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LH18 LH18	PCB221 PCB232	1.400 1.400	ND ND	R R
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LX18	PC8242	1.400	ND	R
0585	RFIS#94	CSO	25-oct-1991	7.0	UGG	U418	PCB248	2.000	ND	Ř
0S85	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	PC8254	2.300	ND	R
0S85	RF15*94	CSO	25-oct-1991	7.0	UGG	LN18	PCB260	2.600	NO	R
0585 0585	RFIS*94 RFIS*94	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg Ugg	LX18 LH18	PCP PHANTR	1.300 0.033	LT LT	
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LN18	PHENOL	0.110	LT	
0885	RFIS*94	CSO	Z5-oct-1991	7.0	UGG	LH18	PPDDD	0.270	ND	R
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LN18	PPODE	0.310	KD	R
osa5	RFIS*94	CZO	25-oct-1991	7.0	UGG	LM18	PPDDT	0.310	ND	R
0585 0585	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	UGG UGG	LM18 LM18	PYR Txphen	0.033 2.600	LT MD	R
0585	RFIS*94	C20	25-oct-1991	7.0	UGG	LM18	UNKS57	0.577	AU .	Š
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LM18	UNKS63	0.577		š
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LM18	UNK571	0.866		· \$
0585 0585	RFIS*94 RFIS*94	CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM18 LM18	UNKS72 UNKS73	0.577		S
QS85	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	UNKS74	0. <i>7</i> 22 0.577		\$ \$
0585	RF15*94	CSO	25-oct-1991	7.0	UGG	LN18	UNK576	0.577		\$
	RFIS*94	C\$O	25-oct-1991	7.0	UGG	LX18	UNKS77	0.433		\$
0\$85	RF15*94	CSO	25-oct-1991	7.0	UGG	LM18	UNK578	0.433		\$
0SB5 0SB5	RF15*94	CSO CSO	25-oct-1991	7.0	UGG	LN18	UNK579	0.577		S
0S85	RF15*94 RFIS*94	ÇSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LN18 LN18	UNKS80 UNKS81	0.577 0.577		\$ \$
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LN18	UNK582	1.010		S
OSB5	RF15*94	CSO	25-oct-1991	7.0	UGG	LH18	UNK586	0.433		S
OS85	RF15*94	CSO	25-oct-1991	7.0	UGG	LM18	UNK589	0.433		S
0S85 0S85	RFIS*94 RFIS*94	CSO CSO	25-oct-1991 25-oct-1991	7.0 7.0	ugg ugg	LM18 LM18	UNK590 UNK591	0.433		S
0585	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	UNKS92	0.577 289.000		S S
OSB5	RFIS*94	CSO	25-oct-1991	7.0	UGG	LH18	UNK593	1. 150		Š
0\$85	RF15*94	CSO	25-oct-1991	7.0	UGG	LN18	UNK595	0.577		\$
0585 0586	RF1S*94	CSO	25-oct-1991	7.0 23.5	UGG	LN18	UNK596	0.577		\$
0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5	UGG	LH18 LH18	124TCB 12DCLB	0.040 0.110	LT LT	
0\$B6	RF15*96	CSO	02-nov-1991	23.5	UGG	LM18	12DPH	0.140	ND	R
8820	RF15*96	CSO	02-nov-1991	23.5	UGG	LX18	130CL8	0.130	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	14DCLB	0.098	LT	
0586 0586	RF1\$*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LH18	245TCP	0.100 0.170	LT	
OSB6	RF15*96	CSO	02-nov-1991	23.5	UGG	LM18 LM18	246TCP 24DCLP	0.180	LT LT	
0586	RFIS*96	CSO	02-nov-1991	23,5	UGG	LN18	24DMPN	0.690	ĹΤ	
OSB6	RF15*96	ÇS0	02-nov-1991	23.5	UGG	LM18	24DNP	1.200	LT	
0586	RF1S*96	CSO	02-nov-1991	23.5	UGG	LM18	24DNT	0.140	LT	
0\$86 0\$86	RFIS*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG	LM18 LM18	26DNT 2CLP	0.085 0.060	LT LT	
0586	RF15*96	CSO	02-nov-1991	23.5	ŲGG	LM18	2CHAP	9.036	LT	
0586	RFIS*96	CZO	02-nov-1991	23.5	UGG	LN18	ZMNAP	0.049	LT	
0\$86	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	2)4P	0.029	LT	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LK18	2NANIL	0.062	LT	
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LM18 LM18	2NP 330080	0.140 6.300	LT LT	
OSB6	RF15*96	cso	02-nov-1991	23.5	UGG	LN18	3MANIL	0.450	LT	
QS86	RFIS#96	CSO	02-nov-1991	23.5	UGG	LH18	46DN2C	0.550	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN18	4BRPPE	0.033	LT	
OSB6	RF15*96	CSO	02-nov-1991	23.5	UGG	U18	4CANIL	0.810	ĻŢ	
0886 0886	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LH18 LH18	4CL3C 4CLPPE	0.095 0.033	LT LT	
0586	RF15-96	CSO	02-nov-1991	23.5	UGG	LM18	4MP	0.240	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN18	4NANIL	0.410	ĹŤ	
OSB6	RF15*96	CSO	02-nov-1991	23.5	UGG	LH18	4NP	1-400	LT	
0586 0586	RFIS*96	CSO	02-nov-1991	23.5 23.5	UGG	LN18	ABHC	0.270	ND ND	R
0286	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5	UGG	LM18 LM18	MACLDAN FLENSA	0.330 0.620	ND CN	R R
0286	RF15*96	CSO	02-nov-1991	23.5	UGG	LN18	ALDRN	0.330	ND.	Ŕ
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	ANAPHE	0.036	LT	~
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	ANAPYL	0.033	ŁT	
0586	RF1S*96	CSO	02-nov-1991	23,5	UGG	LM18	ANTRC	0.033	LT	

Site ID	<u>Field [D</u>	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical <u>Method</u>	Analyte Abbry.	Value	Flag	Internal Std. Code
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN18	82CEXH	0.059	LT	
0\$86	RFIS*96	CSC	02-nov-1991	23.5	UGG	LH15	BSCIDE	0.200	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	82CLEE	0.033	LT	
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg ugg	LM18 LM18	82EHP BAANTR	0.620 0.170	LT LT	
0586	RF15*96	CSO	02-nov-1991	23.5	UGG	LM18	BAPYR	0.250	ĻŢ	
OSB6	RFIS*96	cso	02-nov-1991	23.5	UGG	LH18	BBFANT	0.210	ĹΤ	
OSB6	RF15*96	CSO	02-nov-1991	23.5	UGG	LX18	B8HC	0.270	ND	Ŕ
OSB6	RFIS*96	C20	02-nov-1991	23.5	UGG	LH18	BBZP	0.170	LŤ	_
0886 0886	RFIS*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LN18	BENSLF Benzid	0.620	MD	R
0\$8 6	RF15*96	ÇSG	02-nov-1991	23.5	UGG	LM18 LM18	BENZOA	0.850 6.100	ND ND	Ř R
0586	RFIS*96	cso	02-nov-1991	23.5	UGG	LH18	BGHIPY	0.250	LT	•
0886	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN18	BKFANT	0.066	LT	
OSB6	RF1\$*96	CSO	02-nov-1991	23.5	UGG	LH18	8ZALC	0.190	LT	
0586 0586	RF1S*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG	LN18 LN18	CHRY CL6BZ	0.120 0.033	LT LT	
0586	RFIS*96	cso	02-nov-1991	23.5	UGG	LX18	CL6CP	6.200	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	ugg	LK18	CLSET	0.150	LT	
0586	RFIS*96	cso	02-nov-1991	23.5	UGG	LM18	DBAHA	0.210	LT	
05B6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	DBHC	0.270	ND	Ř
0586 0586	RFIS*96 RFIS*96	C20	02-nov-1991 02-nov-1991	23.5 23.5	ugg Ugg	LM18 LM18	D82 FUR DEP	0.035 0.240	LT LT	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	DLDRN	0.310	ND	R
0\$86	RF15*96	CSO	02-nov-1991	23.5	UGG	LH18	DMP	0.170	LT	•
0\$86	RFIS*96	cso	02-nov-1991	23.5	UGG	LN18	DNBP	0.061	LT	
0\$B6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	DNOP	0.190	LT	_
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg Ugg	i.m18 i.m18	ENDRN Endrna	0.450 0.530	MD MD	R R
0586	RF15*96	CSO	02-nov-1991	23.5	UGG	LH18	ENDRNK	0.530	ND	R R
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	ESFS04	0.620	NO	Ř
0886	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	FANT	0.068	LT	
0886 0886	RF1\$*96 RF1\$*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG	LN18	FLRENE	0.033	LT	_
0SB6	RF15*96	CSC	02-nov-1991	23.5	ugg ugg	LM18 LM18	GCLDAN HCBD	0.330 0.230	ND LT	R
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	HPCL	0.130	ND	R
OSB6	RF15*96	CSO	02-nov-1991	23.5	UGG	LN18	HPCLE	0.330	ND	R
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN18	ICDPYR	0.290	LT	
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg Ugg	LM18 LM18	ISOPHR LIN	0.033 0.270	LT	
OSB6	RF15*96	CSO	0Z-nov-1991	23.5	UGG	LM18	MEXCLR	0.330	ND OK	R R
OS86	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	NAP	0.037	LT	~
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	NB	0.045	LT	
0586	RF15*96	CSO	02-nov-1991	23.5	UGG	LM18	HNDMEA	0.140	ND	R
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg ugg	LN18	NNDNPA NNDPA	0.200 0.190	LT LT	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN18 LN18	PCB016	1.400	ND	R
0\$86	RF15*96	CSO	02-nov-1991	23.5	UGG	LH18	PCB221	1.400	ND	Ř
0 586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	PC8232	1.400	ЖD	R
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	PC8242	1.400	HD	R
0\$86 0\$86	RFIS*96 RFIS*96	C20 C20	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LM18 LM18	PCB248 PCB254	2.000 2.300	ND ND	2
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	PC8260	2.600	ND	R R
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	Ui18	PCP	1.300	LT	
0886	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM18	PHANTR	0.033	LT	
0586 0586	RFIS*96 RFIS*96	CZO	02-nov-1991	23.5 23.5	UGG	LN18	PHENOL	0.110	LT	_
0586	RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5	ugg U gg	LH18 LH18	PPODE	0.270 0.310	ND ND	R
0886	RFIS*96	cso	02-nov-1991	23.5	UGG	UH18	PPDDT	0.310	NO.	R R
0\$86	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	PYR	0.033	LT	~
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	TXPHEN	2.600	ND	R
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH18	UNK635	0.412		\$
0586 0586	RFIS*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg ugg	LH19 LH19	111TCE 112TCE	0.004 0.005	LT LT	
OSBÓ	RF15*96	CSO	02-nov-1991	23.5	UGG	LH19	11DCE	0.004	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH19	11DCLE	0.002	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM19	120CE	0.003	LT	
0586 0584	RF1\$*96	CSO	02-nov-1991	23.5	UGG	LN19	120CLE	0.002	LT	
0586 0586	RFIS*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg ugg	LM19 LM19	12DCLP 2CLEVE	0.003 0.010	LT ND	R
0\$86	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM19	ACET	0.017	LT	ĸ
9820	RFIS*96	CSO	02-nov-1991	23.5	UGG	ÜH19	ACROLN	0.100	ND	R
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM19	ACRYLO	0.100	ND	R
9820	RFIS*96	CSC	02-nov-1991	23.5	ugg	LN19	BRDCLM	0.003	LT	

Site ID	<u>Field_ID</u>	<u>Media</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
OSB6	RFIS*96	czo	62-nov-1991	23.5	UGG	LX19	C130CP	0.003	L T	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN19	CZAVE	0.003	LT	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH19	C2H3CL	0.006	LT	
0586 0586	RFIS*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LM19 LM19	CZHSCL C óH6	0.012	LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LX19	CCL3F	0.002 0.006	lt Lt	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LN19	CCL4	0.007	ĹŤ	
0886	RF15*96	CS0	02-nov-1991	23.5	UGĞ	LH19	CH2CL2	0.012	LŤ	
0\$86 0\$86	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG	LH19 LH19	CH3BR CH3CL	0.006	LT	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM19	CHBR3	0.009 0.007	LT LT	
0S86	RFIS*96	CSO	02-nov-1991	23,5	UGG	LN19	CHCL3	0.001	ĹŤ	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH19	CL2BZ	0.100	ND	R
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	UGG UGG	LN19 LN19	CLC6H5 CS2	0.001	LT	
0386	RF15*96	CSO	02-nov-1991	23.5	UGĞ	LM19	DBRCLM	0.004 0.003	LT LT	
0820	RFIS*96	CSO	02-nov-1991	23.5	UGG	1119	ETC6H5	9.002	LT	
0\$86	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM19	MEC6H5	0.001	LT -	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH19	HEK	0.070	LT	
0586 0586	RFIS*96 RFIS*96	CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg Ugg	LN19 LN19	MIBK	0.027 0.032	LT LT	
0586	RFIS*96	CSO	02-nov-1991	23.5	UGG	LM19	STYR	0.003	LT	•
0586	RFIS*96	CSC	02-nov-1991	23.5	UGG	LH19	T130CP	0.003	ĹŤ	
OSB6	RFIS#96	CSO	02-nov-1991	23.5	UGG	LH19	TCLEA	0,002	LT	
_ OSB6 _ OSB6	RFIS*96 RFIS*96	CSO CSO	02-nov-1991 02-nov-1991	23.5 23.5	ugg ugg	LH19 LH19	TCLEE TRCLE	0.001 0.003	LT LT	
OSB6	RFIS*96	CSO	02-nov-1991	23.5	UGG	LH19	XYLEN	6.002	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH19	111TCE	0.004	ĹŤ	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH19	112TCE	0.005	LT	
0\$87 0\$87	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg	LN19 LN19	11DCE 11DCLE	0.004 0.002	LT	
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH19	12DCE	0.003	LT LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LH19	120CLE	0.002	ĻŤ	
OSB7	RF1S*98	CSO	04-nov-1991	19.5	UGG	LN19	120CLP	0.003	LT	
0S87 0S87	RFIS*98 RFIS*98	020 020	04-nov-1991 04-nov-1991	19.5 19.5	ugg ugg	LN19 LN19	2CLEVE ACET	0.010	NO	R
0587	RFIS*98	CZO	04-nov-1991	19.5	UGG	LH19	ACROLN	0.017 0.100	LT ND	R
OSB7	RF15*98	ÇSO	04-nov-1991	19.5	UGG	LN19	ACRYLO	0.100	ЖĐ	Ř
OS87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM19	BRDCLM	0.003	LT	
0SB7 0SB7	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LN19 LN19	C13DCP CZAVE	0.003	LT	
QS87	RF15"98	CSO	04-nov-1991	19.5	UGG	LN19	C2NVE	0.003 0.006	LT LT	
OS87	RF15*98	CSO	04-nov-1991	19.5	UGG	UI19	C2H5CL	0.012	LT	
OS87	RF1S*98	CSO	04-nov-1991	19.5	UGG	LH19	C6H6	0.002	LT	
OSB7 OSB7	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg Ugg	LM19 LK19	CCL3F CCL4	0.006	LT	
0587	RF15-98	C\$0	04-nov-1991	19.5	UGG	LN19	CH2CL2	0.007 0.012	LT LT	
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH19	CH3BR	0.006	ĹŤ	
OS87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH19	CH3CL	0.009	LT	
0587 0587	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LN19	CHBR3	0.007	LT	
OSB7	RF15*98	C20	04-nov-1991	19.5	UGG UGG	LH19 LH19	CHCL3 CL2BZ	0.001 0.108	LT ND	R
0587	RFIS*98	CSC	04-nov-1991	19.5	UGG	LH19	CLC6H5	0.001	LT	•
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH19	CS2	0.004	LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LH19	DBRCLM	0.003	LT	
0S87 0S87	RF15*98 RF15*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LM19 LM19	ETC6HS MEC6HS	0.002 0.001	LT LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LH19	MEK	0.070	LT	
0\$87	RF1S*98	CSO	04-nov-1991	19.5	UGG	LN19	MIBK	0.027	LT	
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN19	MNBK	0.032	LT	
OSB7 OSB7	RF1S*98 RF1S*98	CSO CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG UGG	LM19 LM19	STYR T130CP	0.003 0.003	LT LT	
0SB7	RF15*98	C\$0	04-nov-1991	19.5	UGG	LN19	TCLEA	0.002	LT	
OS87	RF15*98	CSO	04-nov-1991	19.5	UGG	LH19	TCLEE	0.001	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN19	TROLE	0.003	LT	
0SB7 0S87	RF1S*98 RF1S*98	C\$0	04-nov-1991 04-nov-1991	19.5 19.5	ugg ugg	LM19 LM18	XYLEN 124TC8	0.002	LT	
US87	RF15*98	CSO	04-nov-1991	19.5	UGG	LN18	120CLB	0.040 0.110	LT LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18	12DPH	0.140	ND	R
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18	130CLB	0.130	LT	
0SB7	RF1S*98	CSO	04-nov-1991	19.5	UGG	LH18	14DCLB	0.098	LT	
0SB7 0S87	RF1 S*98 RF1 S*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG UGG	LM18 LM18	245TCP 246TCP	0.100 0.170	LT LT	
05B7	RF15*98	CSQ	04-nov-1991	19.5	UGG	LH18	240CLP	0.180	LT	
			· · ·							

Site ID	<u>Field ID</u>	<u>Media</u>	Date	Depth	<u>Ynits</u>	Analytical <u>Method</u>	Analyte Abbry,	<u>Value</u>	Flag	Internal Std. Code
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LN18	24DMPN	0.690	LT	
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	24DHP	1.200	LT	
OSB7 OSB7	RF1S*98 RF1S*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LH18	24DHT	0_140	LT	
0587	RFIS*98	CSO	04-nov-1991	19.5	ugg Ugg	LM18 LM18	26DNT 2CLP	0.085 0.060	LT LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18	2CHAP	0.036	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	2MNAP	0.049	ĹŤ	
0887	RF1 S*98	CSO	04-nov-1991	19.5	UGG	LN18	2MP	0.029	LT	
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	2NAN I L	0.062	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	2NP	0.140	ĻŢ	
OSB7 OSB7	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg Ugg	LM18	33DCBD	6.300	LT LT	
0387	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18 LM18	3NANIL 46DH2C	0.450 0.550	LŤ	
0S87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	48RPPE	0.033	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5		LN18	4CANTL	0.810	LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	4CL3C	0.095	LT	
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	4CLPPE	0.033	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	4MP	0.240	LT	
0SB7 0SB7	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG UGG	LN18 LN18	4NANIL	0.410	LT	
QS87	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18	ANP ABHC	1_400 0.270	LT ND	. R
OSB7	RFIS*98	cso	04-nov-1991	19.5	UGG	LM18	ACLDAN	0.330	ND	R
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	AENSLF	0.620	ND	Ř
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	ALDRN	0.330	ND	Ř
0\$87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	ANAPNE	0.036	LT	
cs87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	ANAPYL	0.033	ĻŢ	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	ANTRC	0.033	ĻT	
0587 0587	RF15*98	CSO CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LM18	B2CEXX4	0.059	LT	
0587	RFIS*98 RFIS*98	CSO	04-nov-1991	19.5	ugg	LM18 LM18	B2C1PE B2CLEE	0.200 0.033	LT LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	B2EHP	0.620	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	BAANTR	0.170	LT	
0 587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	BAPYR	0.250	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	BBFANT	0.210	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	BBHC	0.270	ND	R
OSB7 OSB7	RFIS*98	CSO CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LM18	B8ZP	0.170	ĻT	_
OSB7	RFIS*98 RFIS*98	CSO	04-nov-1991	19.5	UGG UGG	LM18 LM18	BENSLF BENZID	0.620 0.850	ND Cik	R
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	UN18	BENZCA	6.100	ND	R R
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	BGHIPY	0.250	LT	•
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	BKFANT	0.066	LT	
0\$87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	BZALC	0.190	LT	
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	CHRY	0.120	LT	
0SB7 0SB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	CL68Z	0.033	LT	
OSB7	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg Ugg	LM18 LM18	CL6CP CL6ET	6.200 0.150	LT LT	
0587	RF15*98	CSO	04-nav-1991	19.5	UGG	LM18	DBAHA	0.210	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	DBHC	0.270	ND	R
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	DBZFUR	0.035	LT	•
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	DEP	0.240	LŤ	
0S87	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	DLDRN	0.310	ND	R
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18	DHP	0.170	LT	
0\$87 0\$87	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LM18	DNBP	0.061	LT	
0S87	RFIS*98	CSO	04-nov-1991	19.5	UGG UGG	LM18 LM18	DNOP ENDRN	0.190 0.450	LT ND	
0587	RF15*98	CZO	04-nov-1991	19.5	UGG	LN18	ENDRNA	0.530	ND	R R
0287	RFIS*98	CSO	04-nov-1991	19.5	UGG	U118	ENDRNK	0.530	ND	Ř
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	ESFSO4	0.620	ND	Ř
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	FANT	0.068	LT	
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	FLRENE	0.033	LT	
0SB7 0SB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	GCLDAN	0.330	ND	R
OSB7	RF1S*98 RF1S*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	UGG	LH18	HCBD	0.230	LŤ	_
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LM18 LM18	HPCL HPCLE	0.130 0.330	ND ND	R R
OSB7	RFIS*98	CSC	04-nov-1991	19.5	UGG	LK18	LCOPYR	0.290	LT	~
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	ISOPHR	0.033	ίŤ	
OSB7	RFIS*98	CZO	04-nov-1991	19.5	UGG	LH18	LIN	0.270	ND	R
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	MEXCLR	0.330	ND	Ř
0\$87	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	NAP	0.037	LT.	
0S87	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	NB	0.045	LT	
0587 0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LN18	NNDMEA	0.140	ND	R
0587 0587	RFIS*98 RFIS*98	CSO CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg ugg	LM18	NNDNPA	0.200	LĪ	
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LN18 LN18	NNOPA PCB016	0.190 1.400	ᄣ	•
	KF13"70	C3U	V9=(NT=177)	17.3	U UU	PVIG	Lrön 10	1.400	ND	R

<u>şite ID</u>	Field ID	<u>Med∮a</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Velue	Flag	Internal Std. Code
QSB7	RFIS*98	CŞO	04-nov-1991	19.5	UGG	LX18	PC8221	1.400	ND	R
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	PCB232	1.400	KD	Ř
0587	RFIS*98	CSO	04-nov-1991	19.5	UCG	LM18	PC8242	1.400	ND	Ř
0587	RF15*98	CSO	04-nov-1991	19.5	UGG	LH18	PCB248	2.000	ND	R
OSB7 OSB7	RFIS*98 RFIS*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg ugg	LM18 LM18	PCB254	2.300	МD	R
0587	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	PC8Z60 PCP	2.600 1.300	HD LT	R
OSB7	RF15*98	CSO	04-nov-1991	19.5	UGG	LK18	PHANTR	0.033	LT	
OSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LH18	PHENOL	0.110	LŤ	
0587	RFIS*98	C\$O	04-nov-1991	19.5	UGG	LM18	PPDDD	0.270	ND	R
0587 QS87	RF15*98 RF15*98	CSO	04-nov-1991 04-nov-1991	19.5 19.5	ugg Ugg	LM18 LM18	PPODE	0.310 0.310	ND	R
QSB7	RFIS*98	CSO	04-nov-1991	19.5	UGG	LM18	PPODT PYR	0.033	ND Lt	2
OSB7	RFIS*98	C\$O	04-nov-1991	19.5	UGG	LH18	TXPHEN	2.600	ЖĎ	R
O\$88	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH19	111TCE	0.004	LT	
0588 0588	RFIS*99	C20 C20	25-oct-1991 25-oct-1991	29.0	UGG	LH19	112TCE	0.005	LT	
0586 0588	RF1S*99 RF1S*99	CSC	25-oct-1991	29.0 29.0	UGG UGG	LM19 LM19	11DCE 11DCLE	0.004 0.002	LT LT	
0588	RF15*99	CSO	25-oct-1991	29.0	UGG	LH19	12DCE	0.003	LT	
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN19	120CLE	0.002	LT	
8820	RF1S*99	CSO	25-oct-1991	29.0	UGG	LH19	120CLP	0.903	LT	
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG	LH19 LH19	2CLEVE ACET	0.010 0.017	KID L T	R
0388	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN19	ACROLN	0.100	LT ND	R
8820	RF15*99	CSO	25-oct-1991	29.0	UGG	LH19	ACRYLO	0.100	NED	Ř
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN19	BRDCLM	0.003	LT	
0588 0588	RFIS*99 RFIS*99	CSO CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg Ugg	LN19 LN19	C13DCP CZAVE	0.003	LŢ	
0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM19	C2H3CL	0.003 0.006	LT LT	
0588	RFI 5*99	CSO	25-oct-1991	29.0	UGG	LH19	C2H5CL	0.012	ίτ	
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH19	C6H6	0.002	LT	
0\$88 0\$88	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN19	CCL3F	0.006	LŤ	
0586 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg ugg	LN19 LN19	CCL4 CH2CL2	0.007 0.012	LT LT	
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH19	CH38R	0-006	LT	
0588	RF15*99	CZO	25-oct-1991	29.0	UGG	LH19	CH3CL	0.009	LT	
0588 0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN19	CHBR3	0.007	LT	
8820	RF1S*99 RF1S*99	CSO CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG	LN19 LN19	CHCL3 CL2BZ	0.001 0.108	LT . ND	
8820	RFIS*99	cso	25-oct-1991	29.0	UGG	LN19	CLC6H5	0.001	LT	*
OSB8	RF15*99	CSO	25-oct-1991	29.0	UGG	LH19	CS2	0.004	LT	
OSB8	RFIS*99	C\$O	25-oct-1991 25-oct-1991	29.0	UGG	LN19	DSRCLM	0.003	LŤ	
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991	29.0 29.0	UGG UGG	LM19 LM19	ETCAKS MECAKS	0.002 0.001	LT LT	
8820	RFIS#99	CSO	25-oct-1991	29.0	UGG	LN19	MEK	0.070	LT	
OSB8	RFIS*99	C\$O	25-oct-1991	29.0		LH19	MIBK	0.027	LT	
OSB8	RFIS*99	cso	25-oct-1991	29.0	UGG	LM19	MNBK	0.032	LT	
0\$88 0\$88	RFIS*99 RFIS*99	C20 C20	25-oct-1991 25-oct-1991	29.0 29.0	UGG UGG	LN19 LN19	STYR T13DCP	0.003 0.003	LT	
OSB8	RFIS*99	CSO	25-oct-1991	29.0		LM19	TCLEA	0.002	LT LT	
0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM19	TCLEE	0.001	LT	
8820	RFIS*99	CSO	25-oct-1991	29.0		LN19	TRCLE	0.003	LT	
8820 8820	RF1S*99 RF1S*99	C2O C2O	25-oct-1991 25-oct-1991	29.0 29.0	ugg Ugg	LM19 LM18	XYLEN 124TCB	0.002 0.040	LT LT	
OSB8	RF15*99	cso	25-oct-1991	29.0		LM18	120CLB	0.110	LT	
0588	RFIS*99	C20	25-oct-1991	29.0	UGG	LH18	12DPH	0.140	NO	R
0588	RFIS*99	CSO	25-oct-1991	29.0		LM18	13DCLB	0.130	LŢ	
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG	LN18 LN18	14DCLB 245TCP	0.098 0.100	LT	
8820	RF1S*99	CSO	25-oct-1991	29.0		LM18	2451CP	0.170	LT LT	
8820	RF15*99	¢\$0	25-oct-1991	29.0	UGG	LM18	24DCLP	0.180	LŤ	
OSB8	RF1S*99	CSO	25-oct-1991	29.0		LM18	240MPM	0.690	LT	
8820 8820	RFIS*99 RFIS*99	CSO CSO	25-oct-1991 25-oct-1991	29.0 29.0		LX18 LX18	240NP	1.200	LT	
OZBS OZBS	RF15*99	CSO	25-oct-1991	29.0	UGG	LM18	24DNT 26DNT	0.140 0.085	LT LT	
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH18	2CLP	0.060	נד	
0588	RFIS*99	C\$0	25-oct-1991	29.0	UGG	LH18	2CNAP	0.036	LT	
8820	RF1S*99	CSO	25-oct-1991	29.0		LN18	2MKAP	0.049	LT	
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG UGG	LH18 LH18	2MP 2NANIL	0.029 0.062	LŤ	
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	ZNAHIL ZNP	0.140	LT LT	
0588	RF15*99	CSO	25-oct-1991	29.0	UGG	LH18	330CBD	6.300	LT	
CSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	ZNANIL.	0.450	LT	
OSB\$	RFIS*99	C\$O	25-oct-1991	29.0	ŲGG	LM18	46DN2C	0.550	LŢ	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	Internal Std. Code
8820	RF15*99	CSO	25-oct-1991	29.0	UGG	LH18	4BRPPE	0.033	LT	
OSB8	RFIS*99	cso	25-oct-1991	29.0	UGG	LH18	4CANIL	0.810	LT	
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG UGG	LM18 LM18	4CL3C	0.095	LT	
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	4CLPPE 4MP	0.033 0.240	LT LT	
8820	RF15*99	CSO	25-oct-1991	29.0	UGG	LH18	4NANIL	0.410	LT	
QSB8	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0	UGG	LM18	4NP	1.400	LT	_
8820 8820	RF15*99	CSO	25-oct-1991	29.0 29.0	UGG UGG	LM18 LM18	ABHC ACLDAN	0.270 0.330	ND ND	R R
0585	RF15*99	CSO	25-oct-1991	29.0	UGG	LK18	AENSLF	0.620	NO	Ř
0588	RF15*99	CSO	25-oct-1991	29.0	UGG	LH18	ALDRN	0.330	ND	R
8820 8820	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG UGG	LM18 LM18	ANAPNE ANAPYL	0.036 0.033	LT LT	
0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	ANTRO	0.033	ĹŤ	
0588	RFIS*99	CSC	25-oct-1991	29.0	UGG	LX18	BZCEXM	0.059	LT	
8820 8820	RF15*99 RF15*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg ugg	LM18 LM18	BSCTEE BSCIBE	0.200 0.033	LT LT	
0388	RF15*99	CSO	25-oct-1991	29.0	UGG	LM18	BZEHP	0.620	LT	
8520	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	BAANTR	0.170	LT	
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG	LN18	BAPYR	0.250	LT	
0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18 LM18	BBFANT BBHC	0.210 0.270	LT ND	R
0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	8BZP	0.170	LT	•
CSB8	RF1S*99	CSO	25-oct-1991	29.0	UGG	LK18	BENSLF	0.620	ND	R
_0588 _0588	RF15*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg ugg	LN18 LN18	BENZID BENZOA	0.850 6.100	ND ND	R R
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	BGHIPY	0.250	LT	R
0588	RF1\$*99	CSO	25-oct-1991	29.0	UGG	LN18	BKFANT	0.066	LT	
8820	RF1\$*99	CSO	25-oct-1991	29.0	UGG	LN18	BZALC	0.190	LT	
0\$88 0\$88	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg ugg	LN18 LN18	CHRY CL6BZ	0.120 0.033	LT LT	
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	CLACP	6.200	ĽΤ	
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	CL6ET	0.150	LT	
8820 8820	RF1S*99 RF1S*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG	LH18	DBAHA	0.210	LT	_
0588 0588	RFIS*99	CSO	25-oct-1991	29.0	ugg	LM18 LM18	DBHC DBZFUR	0.270 0.035	ND LT	R
0588	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH18	DEP	0.240	ĻŤ	
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	DLDRN	0.310	ND	R
0588 0588	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG UGG	LM18 LM18	DMP DNBP	0.170 0.061	LT LT	
OSB8	RF15*99	CSO	25-oct-1991	29.0	UGG	LM18	DNOP	0.190	LT	
OSB8	RF1S*99	CSO	25-oct-1991	29.0	UGG	LN18	ENDRN	0.450	KD	R
8820 8820	RF1S*99 RF1S*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg	LM18 LM18	ENDRNA ENDRNK	0.530 0.530	ND ND	R
8820	RF15*99	CSC	25-oct-1991	29.0	UGG	LN18	ESFS04	0.620	ND	R R
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH18	FANT	0.068	LT	-
0\$88 0\$88	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	FLRENE	0.033	LŤ	_
8820	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg Ugg	LH18 LH18	GCLDAN HCBD	0.330 0.230	ND LT	R
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LX18	HPCL	0.130	ND	R
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	HPCLE	0.330	ND	R
0588 0588	RFIS*99 RFIS*99	C20	25-oct-1991 25-oct-1991	29.0 29.0	ugg ugg	LN18 LN18	ICDPYR ISOPKR	0.290 0.033	LT	
0388 0388	RF15*99	CSO	25-oct-1991	29.0	UGG	LN18	LIN	0.270	LT MD	R
CSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	MEXCLR	0.330	ND	R
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	NAP	0.037	ĻT	
8820 8820	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg Ugg	LM18 LM18	N8 NNDMEA	0.045 0.140	LT ND	R
8820	RFIS*99	ÇŞO	25-oct-1991	29.0	UGG	LM18	NHDNPA	0.200	Į.T	*
Q\$88	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	NNDPA	0.190	LT	
058 8 058 8	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg Ugg	LM18 LM18	PC8016	1.400 1.400	ND	R
0388	RF15*99	CSO	25-oct-1991	29.0	UGG	LM18	PCB221 PCB232	1.400	ND ND	R R
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	PC8242	1.400	ND	Ř
8820 8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LK18	PCB248	2.000	MD	R
0588 0888	RFIS*99 RFIS*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	ugg ugg	LN18 LN18	PCB254 PCB260	2.300 2.600	ND QN	R R
8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LH18	PCP	1.300	LT	Α
8820	RFIS*99	CSC	25-oct-1991	29.0	UGG	LM18	PHANTR	0.033	LT	
8820 8820	RFIS*99	CSO	25-oct-1991	29.0	UGG	LN18	PHENOL	0.110	LT	_
0588	RF15*99 RF15*99	CSO	25-oct-1991 25-oct-1991	29.0 29.0	UGG UGG	LM18 LM18	PPODD PPODE	0.270 0.310	ND ND	R R
8820	RFIS*99	cso	25-oct-1991	29.0	UGG	LN18	PPODT	0.310	NO	R R
8820	RF15*99	CSO	25-oct-1991	29.0	UGG	LM18	PYR	0.033	LT	

Site ID	Field ID M	<u>edia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	Flag	Internal Std. Code
OSB8	RFIS*99	CSO	25-oct-1991	29.0	UGG	LM18	TXPHEN	2.600	ND	R
OSB9	RF15*100	CSO	04-nov-1991	12.0	UGG	LH19	111TCE	0.004	LT	
0589		CSO	04-nov-1991	12.0	UGG	LX19	112TCE	0.005	LT	
0589 0589		CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg ugg	LH19 LH19	11DCE 11DCLE	0.004	LT	
OSB9		CSO	04-nov-1991	12.0	UGG	LH19	12DCE	0.002 0.003	LT LT	
OSB9		CSO	04-nov-1991	12.0	UGG	LH19	12DCLE	0.002	LT	
OSB9	_	CSO	04-nov-1991	12.0	UGG	LH19	120CLP	0.003	LT	
0589 0589		CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG UGG	LH19 LH19	2CLEVE ACET	0.010	MD	R
0SB9		CSO	04-nov-1991	12.0	UGG	LN19	ACROLN	0.017 0.100	LT ND	Ŕ
OSB9		CSO	04-nov-1991	12.0	UGG	LH19	ACRYLO	0.100	NO	R
OSB9		CSO	04-nov-1991	12.0	UGG	LH19	BRDCLM	0.003	LT	
OSB9 OSB9		CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LH19	C130CP	0.003	LT	
0289		CSO	04-nov-1991	12.0	UGG	LN19 LN19	C2AVE C2H3CL	0.003 0.006	LT LT	
0589		CSO	04-nov-1991	12.0	UGG	LH19	C2H5CL	0.012	ĹŤ	
0589		CSO	04-nov-1991	12.0	UGG	LX19	C6H6	0.002	LT	
0589 0589	_	CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LN19	CCL3F	0.006	LĪ	
0289		CSO	04-nov-1991	12.0	UGG	LM19 LM19	CCL4 CH2CL2	0.007 0.012	LT LT	
QSB9		CSO	04-nov-1991	12.0	UGG	นมา9	CH3BR	0.006	LT	
0589		C20	04-nov-1991	12.0	UGG	LH19	CH3CL	0.009	LT	
OSB9		CSO	04-nov-1991	12.0	UGG	LM19	CHBR3	0.007	ĻŢ	
0589		CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG UGG	EN19. LH19	CKCL3 CL2BZ	0.001 0.100	MD T.T	R
0289	-	cso	04-nov-1991	12.0	UGG	LN19	CLC6H5	0.001	LT	•
OSB9		CSO	04-nov-1991	12.0	UGG	LN19	CS2	0.004	ĹŤ	
0889		CSO	04-nov-1991	12.0	UGG	LH19	DBRCLM	0.003	LT	
0589 0589		CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg Ugg	LM19 LN19	ETC6H5 MEC6H5	0.002	LT LT	
OSB9	-	CSO	04-nov-1991	12.0	UGG	LX19	WEK	0.001 0.070	LT	
0589		CSO	04-nov-1991	12.0	UGG	LN19	MISK	0.027	LT	
OSB9		CSO	04-nov-1991	12.0	UGG	LN19	MNBK	0.032	LT	
0589 0589	-	CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LM19 LM19	STYR T130CP	0.003	LT LT	
0589		CSO	04-nov-1991	12.0	UGG	UH19	TCLEA	0.003 0.00Z	LT	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH19	TCLEE	0.001	LT	
OSB9		CSG	04-nov-1991	12.0	UGG	LK19	TRCLE	0.003	LT	
0889 0889	-	CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LN19 LN18	XYLEN 124TCB	0.002	ĻŤ	
QSB9		CSO	04-nov-1991	12.0	UGG	LH18	12DCL8	0.040 0.110	LT LT	
0589		CSO	04-nov-1991	12.0	UGG	LH18	120PH	0.140	ND	R
0\$89		CSO	04-nov-1991	12.0	UGG	LX18	13DCLB	0.130	LT	
02B9 03B9		CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg Ugg	LM18 LM18	14DCLB 245TCP	0.098 0.100	LŤ	
0S89		CSO	04-nov-1991	12.0	VGG	LM18	246TCP	0.100	LT LT	
0589		CSO	04-nov-1991	12.0	UGG	LN18	24DCLP	0.180	ĹŤ	
OSB9		CSO	04-nov-1991	12.0	UGG	LH18	24DMPN	0.690	LT	
0589 0589	· · · · · · · · · · · · · · · · · · ·	CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG UGG	LM18	24DNP 24DNT	1.200	LT	
0SB9		CSO	04-nov-1991	12.0	UGG	LM18 LM18	26DNT	0.140 0.085	LT LT	
0589	-	CSO	04-nov-1991	12.0	UGG	LM18	2CLP	0.060	LT	
OSB9		CSO	04-nov-1991	12.0	ugg	LM18	2CNAP	0.036	LŤ	
0589 0589		CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LN18	ZHKAP	0,049	LT	
0SB9		CSO	04-nov-1991	12.0	UGG UGG	LM18 LM18	2MP 2NANIL	0.029 0.062	LT LT	
0589	RF15*100	CSO	04-nov-1991	12.0	UGG	LN18	2NP	0.140	ĹŤ	
0589		CSO	04-nov-1991	12.0	UGG	LN18	330CB0	6.300	LT	
OSB9		CSO	04-nov-1991	12.0	UGG	LN18	3NAN IL	0.450	LT	
9820 9820		CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg Dau	LM18 LM18	46DN2C 48RPPE	0.550 0.033	LT LT	
0589		CSO	04-nov-1991	12.0	UGG	LN18	4CAN1L	0.810	LT	
OSB9	RF1S*100	CSO	04-nov-1991	12.0	UGG	LN18	4CL3C	0.095	LT	
0589		CSO	04-nov-1991	12.0	UGG	LM18	4CLPPE	0.033	LT	
0589 0589		CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LM18	AMP	0.240	LT	
0283		CSO	04-nov-1991	12.0	ugg ugg	LH18 LH18	4NANIL 4NP	0.410 1.400	LT LT	
OSB9	_	CSO	04-nov-1991	12.0	UGG	LH18	ABHC	0.270	ND D	R
0589		CSO	04-nov-1991	12.0	UGG	LN18	ACLDAN	0.330	ND	R
0589 0589	_	CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LN18	AENSLF	0.620	MD	R
OS89	-	CSO	04-nov-1991	12.0	ug <u>e</u> Ugg	LM18 LM18	ALDRN ANAPNE	0.330 0.036	ND LT	R
0589		CSO	04-nov-1991	12.0	UGG	LN18	ANAPYL	0.033	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Hethod</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	ANTRC	0.033	LT	
OSB9	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	B2CEXM	0.059	LT	
OSB9	RF15*100	cso	04-nov-1991	12.0	UGG	LN18	B2CIPE	0.200	LT	
OSB9	RFIS*100 RFIS*100	CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg Ugg	LN18	BECLEE	0.033	LŢ	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18 LN18	B2EHP BAANTR	0.420 0.170	LT LT	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	BAPYR	0.250	LT	
OSB9	RF[S*100	CSO	04-nov-1991	12.0	UGG	LH18	BBFANT	0.210	LT	
0S89 0S89	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	8BHC	0.270	MD	Ř
0S89	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg ugg	LN18 LN18	88ZP Benslf	0.170 0.620	LT ND	R
0589	RFIS*100	cso	04-nov-1991	12.0	UGG	LH18	BENZID	0.850	MD	Ř
OS89	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	BENZOA	6.100	ND	R
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	BGHIPY	0.250	LŤ	
0589 0589	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg Ugg	LN18 LN18	BKFANT BZALC	0.066 0.190	LT LT	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	CHRY	0.120	LT	
9820	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	CL6BZ	0.033	LT	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	CL6CP	6.200	LT	
0S89 0S89	RFIS*100 RFIS*100	CSO CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG UGG	LN18 LN18	CL6ET DBAHA	0.150 0.210	LT LT	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	DBHC	0.270	ND	R
OSB9	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	DBZFUR	0.035	ĻT	•
0889	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	DEP	0.240	LT	
_ 0S89 0S89	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg ugg	LM18 LM18	DLDRM DMP	0.310 0.170	ND	R
0589	RF15*100	CSO	04-nov-1991	12.0	UGG	LM18	DNBP	0.061	LT LT	
OSB9	RF1S*100	CSO	04-nov-1991	12.0	UGG	LH18	DNOP	0.190	LT	
0889	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	ENDRN	0.450	MD	R
0589 0589	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LX18	ENDRNA	0.530	ЖD	R
CSB9	RFIS*100	CSO	04-nov-1991	12.0	UGG UGG	LM18 LM18	ENDRNK ESFSO4	0.530 0.620	ND ND	R R
0589	RFIS*100	cso	04-nov-1991	12.0	UGG	LN18	FANT	0.068	LT	
0S89	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	FLRENE	0.033	LT	
0589 0589	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG	LN18	GCLDAN	0.330	ND	R
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG UGG	UN18 UN18	HCBD HPCL	0.230 0.130	LT MD	R
OS89	RF1\$*100	CSO	04-nov-1991	12.0	UGG	LN18	HPCLE	0.330	NO	Ř
OS89	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	LCDPYR	0.290	LT	
0589 0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	ISOPHR	0.033	LT	_
0289	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	UGG UGG	LM18 LM18	LIN MEXCLR	0.270 0.330	MD MD	R R
OSB9	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	NAP	0.037	LT	^
OSB9	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	NB	0.045	LT	
0889 0880	RFIS*100	CSO	04-nov-1991	12.0	UGG	LN18	NNDMEA	0.140	ЖD	R
0289	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg ugg	LN18 LN18	NNDNPA NNDPA	0.200 0.190	LT LT	
0589	RF15*100	CSO	04-nov-1991	12.0	UGG	LN18	PC8016	1.400	ND	R
0\$89	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	PC8221	1.400	ND	R
0589	RF15*100	CSO	04-nov-1991	12.0	UGG	LN18	PC8232	1.400	ND	R
9820 9820	RFIS*100 RFIS*100	C20	04-nov-1991 04-nov-1991	12.0 12.0	VGG UGG	LM18 LM18	PC8242 PC8248	1.400 2.000	XD XD	R R
0589	RFIS*100	cso	04-nov-1991	12.0	UGG	LH18	PC8254	2.300	ЖD	R
OSB9	RF15*100	CSO	04-nov-1991	12.0	UGG	LH18	PCB260	2.600	MD	Ř
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	PCP	1.300	LT	
0589 0589	RFIS*100 RFIS*100	CSC	04-nov-1991 04-nov-1991	12.0 12.0	ugg Ugg	LM18 LM18	PHANTR PHENOL	0.033 0.110	LT	
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LM18	PPODD	0.270	LT NO	R
0289	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	PPDDE	0.310	MD	Ř
0589	RFIS*100	CSO	04-nov-1991	12.0	UGG	LH18	PPDDT	0.310	MD	R
0\$89 0\$89	RFIS*100	C20	04-nov-1991	12.0	UGG	LN18	PYR	0.033	LT	_
0S89	RFIS*100 RFIS*100	CSO	04-nov-1991 04-nov-1991	12.0 12.0	ugg ugg	LH18 LH18	TXPHEN UNK635	2.600 0.954	ND	R S
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LHIS	124TC8	0.400	LT	-
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LN18	120CLB	1.100	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	12DPH	1.000	ND	R
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM18 LX18	13DCLB 14DCLB	1.300 0.980	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LX18	245TCP	1.000	ĻŢ	
OSE 1	RFIS*106	CSE	26-sep-1991	0.5	UGG	UH18	246TCP	1.700	LT	
OSE1	RF1S*106	CSE	26-sep-1991	0.5	UGG	LM18	24DCLP	1.800	LT	
OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM18	24DHPN 24DHP	6.900 12.000	LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	UM18 LM18	240NT	1.400	LT LT	
			1661							

Site ID	Field ID	<u>Medía</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	Flag	internal Std. Code
QSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	L#18	26DNT	0.850	LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LM18	2CLP	0.600	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH18	2CNAP	0.360	ĹŤ	
OSE1	RFIS=106	CSE	26-sep-1991	0.5	UGG	LM18	2MKAP	0.490	LT	
OSE1	RFIS*106 RFIS*106	CSE CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM18	ZMP	0.290	LT	
OSE1 OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18 LM18	2NAN I L 2NP	0.620 1.400	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN18	330C80	63.000	LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LM18	SHANIL	4.500	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	46DN2C	5.500	ĻŢ	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	48RPPE	0.330	ĻŢ	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LM18	4CANTL 4CL3C	8.100	LT	
OSE 1	RFIS*106	CSE	26-sep-1991	0.5	UGĞ	LM18 LM18	4CLPPE	0.950 0.330	LT LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LH18	4MP	2.400	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	4NANIL	4.100	ίŤ	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	4HP	14.000	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH18	ABHC	3.000	ЖD	- R
OSE1 OSE1	RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM18	ACLDAN	3.000	MD	R
OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18 LM18	AENSLF ALDRN	6.000 3.000	ND ND	R R
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LM18	AXAPNE	0.360	LT	K
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN18	ANAPYL	0.330	LT	
OSE1	RF1\$*106	ÇSE	26-sep-1991	0.5	UGG	LM18	ANTRO	0.330	LT	
_OSE1	RF1S*106	CSE	26-sap-1991	0.5	UGG	LM18	B2CEXX4	0.590	LT	
OSE1	RFIS*106	ÇSE	26-sep-1991	0.5	UGG	LN18	B2CIPE	2.000	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM18 LM18	82CLEE B2EHP	0.330 6.200	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	BAANTR	1.700	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	BAPYR	2.500	LT	
OSE1	RFIS*106	ÇSE	26-sep-1991	0.5	UGG	LM18	BBFANT	2.100	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	BBHC	3.000	ND	R
OSE1	RF15*106	CSE	26-sep-1991	0.5 0.5	UGG UGG	LX18	BBZP	1.700	LT	_
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5	UGG	LN18 LN18	BENSLF BENZID	6.000 9.000	ND ND	R R
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LN18	BENZQA	60.000	ND ND	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	BCHIPY	2,500	LT	-
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN18	BKFANT	0.660	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	8ZALC	1.900	LT	
OSE1 OSE1	RFIS*106	CSE	26-sep-1991	0.5 0.5	UGG UGG	LX18	CHRY	1,200	LŤ	
OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5	UGG	UN18 UN18	CL68Z CL6CP	0.330 62.000	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN18	CLSET	1.500	LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LM18	DBAHA	2.100	ĹŤ	
OSE1	RFIS*106	CSE	26-sep- 1991	0.5	UGG	LH18	DBHC	3.000	ND	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN18	DEZFUR	0.350	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LN18 LN18	DEP DLDRN	2.400	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH18	DHP	3.000 1.700	ND LT	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LX18	DNSP	0.610	LT	
OSE1	RF1S*106	CSE	26-sep-1991	0.5	UGG	LM18	DNOP	1.900	ĻT	
OSE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LM18	ENDRN	5.000	ND	R
OSE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LM18	ENDRNA	5.000	NĐ	R
OSE1 OSE1	RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM18 LM18	ENDRNK ESF S 04	5.000 6.000	ND	R
0SE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LN18	FANT	0.880	MD LT	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	QQU	LM18	FLRENE	0.330	ĹŤ	
OSET	RF15*106	CSE	26-sep-1991	0.5	UGG	LM18	GCLDAN	3.000	ND	R
OSE1	RFIS*106	ÇSE	26-sep-1991	0.5	UGG	LM18	HCBD	2.300	LT	
OSE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LM18	HPCL	1.000	MD	R
OSE1	RFIS#106	CSE	26-sep-1991	0.5	UGG	LH18	HPCLE	3.000	ND	Ř
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LH18 LH18	ICDPYR ISOPHR	2.900 0.330	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH18	LIN	3-000	NĎ	R
OSET	RF15*106	CSE	26-sep-1991	0.5	UGG	LM18	MEXCLR	3.000	ND	Ř
OSE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LM18	KAP	0.370	LT	
0SE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LM18	NB	0.450	LT	
OSE1		CSE	26-sep-1991	0.5	UGG	LM18	NADHEA	1.000	ND	R
OSE1 OSE1	RFIS*106 RFIS*106	CSE CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LM18 LM18	NNDNPA NNDPA	2.000	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	VGG	LM18	PCB016	1.900 10.000	LT ND	R
CSE 1	RF15*106	ÇSE	26-sep-1991	0.5	UGG	LM18	PCB2Z1	10.000	KD:	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	VGG	LH18	PC8232	10.000	ЖD	R
OSE 1	RFIS*106	CSÉ	26-sep-1991	0.5	UGG	LM18	PCB242	10.900	ND	R

Site ID	<u>Field ID</u> !	<u>Hedía</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
OSE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LM18	PCB248	20.000		_
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	PC8254	20.000	ND ND	R R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	PC8260	30.000	ND	R
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LM18 LM18	PCP PHANTR	13.000 0.330	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	PHENOL	1.100	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LX18	PPODD	3.000	ND	R
OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM18 LM18	PPODE PPODT	3.000 3.000	ND ND	R R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	PYR	0.330	LT	•
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM18	TXPHEN	30.000	ND	R
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM19 LM19	111TCE 112TCE	0.004 0.005	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM19	113MCH	0.016	.,	S
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM19	110CE	0.004	LT	
OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM19 LM19	11DCLE 12DCE	0.002 0.003	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM19	12DCLE	0.002	ĻŤ	
OSE1	RFIS*106	CZE	26-sep-1991	0.5	UGG	LN19	12DCLP	0.003	LT	_
OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LN19 LN19	2CLEVE ACET	0.010 0.061	ND	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN19	ACROLN	0.100	ND	R
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN19	ACRYLO	0.100	ND	R
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LX19 LX19	BROCLM C130CP	0.003 0.003	LT LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LN19	CZAVE	0.003	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH19	CZH3CL	0.006	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LM19 LM19	C2H5CL C6H6	0.012 0.002	LT LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	UH19	CCL3F	0.002	ĻŤ	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH19	CCL4	0.007	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM19 LM19	CH2CL2 CH3BR	0.012	LŤ	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LK19	CH3CL	0.006 0.009	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LH19	CHBR3	0.007	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM19 LM19	CHCL3 CL2BZ	0.001	LT	
OSE1	RF15*106	CSE	26-sep-1991	0.5	UGG	LK19	CLC6H5	0.100 0.001	ND LT	R
OSE1	RF1S*106	CSE	26-sep-1991	0.5	UGG	LM19	CSZ	0.004	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG	LN19	DBRCLM	0.003	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LN19 LN19	ETC6H5 MEC6H5	0.002 0.001	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	ugg	LH19	MEK	0,070	LT	
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LN19 LN19	MIBK MNBK	0.027	LT	
OSE 1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM19	STYR	0.032 0.003	LT LT	
OSE1	RF1S*106	CSE	26-sep-1991	0.5	UGG	LM19	T13DCP	0.003	LŤ	
OSE1 OSE1	RFIS*106 RFIS*106	CSE CSE	26-sep-1991 26-sep-1991	0.5	ugg ugg	LN19	TCLEA	0.002	LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5 0.5	UGG	LH19 LH19	TCLEE TRCLE	0.001 0.003	LT LT	
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LX19	UNK109	0.006		s
OSE1 OSE1	RFIS*106 RFIS*106	CSE	26-sep-1991	0.5	UGG	LN19	UNK135	0.005		s
OSE1	RFIS*106	CSE	26-sep-1991 26-sep-1991	Q.5 Q.5	UGG	LN19 LN19	UNK139 UNK155	0.014 0.013		S 5
OSE1	RFIS*106	CSE	26-sep-1991	0.5	UGG	LM19	XYLEN	0.002	LT	•
OSE2 OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LM18	124TCB	8,400	LT	
OSE2	RFIS*107 RFIS*107	CZE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LM18 LM18	120CLB 120PH	1.100 1.000	LT ND	R
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	UH18	130CLB	1.300	LT	•
OSE2 OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LN18	14DCLB	0.980	LT	
OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg Ugg	LM18 LM18	245TCP 246TCP	1.000 1.700	LT LT	
OSE2	RF15*107	CSE	26-sep-1991	0.5	UGG	LM18	24DCLP	1.800	LT	
OSE2 OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LX18	240MPN	6.900	LT	
OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM18 LM18	240NP 240NT	12.000 1.400	LT LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LK18	26DNT	0.850	ĻŤ	
0SE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LM18	2CLP	0.600	LT	
OSE2 OSE2	RFIS*107 RFIS*107	CSE CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LM18 LM18	2CHAP 2MNAP	0.360 0.490	LT LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LM18	2MP	0.290	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LM18	2NANIL	0.620	LT	
OSE2 OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg	LM18	ZNP 33DCBD	1.400 63.000	LT	
VULL	VLTSIOL	COC	tn_2ch_133	0.5	hha	LX18	JUPTOU	טטע.כם	LT	

Site ID	Field ID Hed	ia Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
OSE2	RFIS*107 CS	E 26-sep-1991	0.5	UGG	LM18	3NANTL	4,500	LŤ	
QSE2	RFIS*107 CS	E 26-sep-1991	0.5	UGG	UN18	46DN 2C	5.500	ĻT	
OSEZ	RFIS*107 CS		0.5	UGG	LM18	4BRPPE	0.330	LŢ	
OSEZ OSEZ	RFIS*107 CS		0.5 0.5	UGG UGG	LN18 LN18	4CANIL 4CL3C	8,100	LŢ	
OSE2	RF15*107 CS		0.5	UGG	LM18	4CLPPE	0.950 0.330	LT LT	
OSE2	RFIS*107 CS		0.5	UGG	LH18	4MP	2,400	LT	
OSE2	RFIS*107 CS		0.5	UGG	LM18	4NANIL	4.100	ĻŢ	
CSE2	RFIS*107 CS		0.5	UGG	LM18	4NP	14.000	LT	_
OSE2 OSE2	RFIS*107 CS		0.5 0.5	UGG UGG	LH18 LH18	ABHC ACLDAN	3.000 3.000	MD MD	R R
OSE2	RFIS*107 CS		0.5	UGG	LM18	AENSLF	6,000	ND	Ř
OSE2	RF15*107 CS		0.5	UGG	LH18	ALDRN	3,000	ND	R
OSE2 OSE2	RFIS*107 CS	• .	0.5 0.5	UGG UGG	LN18 LN18	SKYANA	0.360	LT	
OSEZ	RFIS*107 CS		0.5	UGG	LM18	ANAPYL ANTRO	0.330 0.330	LT LT	
OSE2	RFIS*107 CS		0.5	UGG	LH18	B2CEXM	0.590	LT	
OSE2	RFIS*107 CS		0.5	UGG	LX18	B2CIPE	2.000	LT -	
05E2 0SE2	RFIS*107 CS		0.5 0.5	UGG UGG	EM18 EM18	BZCLEE B2EHP	0.330 6.200	LT LT	
OSE2	RFIS*107 CS		0.5	UGG	LH18	BAANTR	1.700	LT	
OSE2	RFIS*107 CS		0.5	UGG	LH18	BAPYR	2.500	LT	
OSE2	RFIS*107 CS		0.5	UGG	LH18	BBFANT	2,100	LT	
OSE2 OSE2	RFIS*107 CS		0.5 0.5	ugg Ugg	LX18	BBHC BBZP	3.000	ND	R
OSEZ	RFIS*107 CS		0.5	UGG	LM18 LM18	BENSLF	1.700 6.000	LT ND	R
OSE2	RFIS*107 CS	•	0.5	UGG	LM18	BENZID	9.000	ND	Ř
OSE2	RFIS*107 CS	,	0.5	UGG	LN18	BENZOA	60,000	ND	R
OSE2 OSE2	RFIS*107 CS		0.5	ugg	LN18	BGHIPY	2,500	LT	
OSEZ	RFIS*107 CS	•	0.5 0.5	UGG	LM18 LM18	BKFANT BZALÇ	0.660 1.900	LT LT	
OSE2	RFIS*107 CS		0.5	UGG	LH18	CHRY	1.200	ĻŤ	
OSEZ	RFIS*107 CS		0.5	UGG	LN18	CL68Z	0.330	LT	
OSE2 OSE2	RFIS*107 CS		0.5 0.5	UGG UGG	LM18 LM18	CL6CP CL6ET	62.000	LT	
OSE2	RFIS*107 CS	-	0.5	UGG	LH18	DBAHA	1.500 2.100	LT LT	
OSE2	RFIS*107 CS	77	0.5	UGG	LH18	DBHC	3.000	ND	R
OSE2	RFIS*107 CS		0.5	UGG	LM18	DBZFUR	0.350	LŤ	
OSEZ OSEZ	RFIS*107 CS		0.5 0.5	UGG	LH18 LH18	DEP Dlorn	2,400	LT ND	_
OSEZ	RFIS*107 CS		0.5	UGG	LN18	DMP	3.000 1.700	LT	R
OSE2	RFIS#107 CS	-	0.5	UGG	LM18	DNSP	0.610	ĻT	
ose2	RFIS*107 CS		0.5	UGG	LM18	DNOP	1,900	LT	
OSEZ OSEZ	RFIS*107 CS		0.5 0.5	ugg Dgu	LM18 LM18	ENDRM Endrna	5.000 5.000	ND ND	R R
OSE2	RFIS*107 CS		0.5		LM18	ENDRNK	5.000	ND CM	Ř
OSE2	RFIS*107 CS		0.5	UGG	LM18	ESFS04	6.000	ND	Ř
OSE2	RFIS*107 CS	•	0.5	UGG	LH18	FANT	0.680	ĻŢ	
OSE2 OSE2	RFIS*107 CS		0.5 0.5	ugg ugg	LM18 LM18	FLRENE GCLDAN	0.330 3.000	LT	
OSE2	RFIS*107 CS		0.5	UGĞ	LM18	HCBD	2,300	ND LT	R
OSEZ	RFIS*107 CS		0.5	UGG	LM18	HPCL	1.000	ND	R
OSE2	RFIS*107 CS		0.5	UGG	LM18	KPCLE	3.000	ND	R
ose2 ose2	RFIS*107 CS		0.5 0.5	VGG VGG	LM18 LM18	ICDPYR ISOPHR	2.900 0.330	Lī	
OSE2	RFIS*107 CS		0.5	UGG	LM18	LIN	3.000	LT MD	R
OSE2	RFIS*107 CS	,	0.5	UGG	LN18	MEXCLR	3.000	ND	Ř
OSE2	RFIS*107 CS	• .	0.5	UGG	LH18	KAP	0.370	LT	
OSE2 OSE2	RFIS*107 CS		0.5 0.5	UGG DDU	LH18 LH18	nb Nnomea	0.450 1.000	LŤ ND	R
OSEZ	RFIS*107 CS	•	0.5	UGG	LN18	NNDNPA	2.000	LT	
OSE2	RFIS*107 CS	E 26-sep-1991	0.5	UGG	LM18	NNDPA	1.900	LT	
OSE2	RF1S*107 CS		0.5	UGG	LH18	PCB016	10.000	ND	R
OSEŻ OSEŻ	RFIS*107 CS	•	0.5 0.5	UGG UGG	LM18 LM18	PCB221 PCB232	10.000 10.000	ND ND	R
OSE2	RFIS*107 CS		0.5	UGG	LM18	PC8242	10.000	MD	R R
0\$E2	RFIS*107 CS	E 26-sep-1991	0.5	UGG	LM18	PC8248	20.000	ND	Ř
OSE2	RF1S*107 CS		0.5	UGG	LM18	PCB254	20.000	ND	R
OSE2 OSE2	RFIS*107 CS		0.5 0.5	UGG	LM18	PCB260	30.000 13.000	MD	R
OSEZ	RF1S*107 CS	•	0.5	UGG	1418 1418	PCP PHANTR	0.330	LT LT	
OSEZ	RFIS*107 CS		0.5	UGG	LM18	PHENOL	1.100	ĹŤ	
OSE2	RFIS*107 CS		0.5	UGG	LH18	PPODD	3.000	ЖD	R
OSE2	RFIS*107 CS	E 26-sep-1991	0.5	UGG	LM18	PPODE	3.000	ND	R

Site ID	Field ID	Media	Date	Deoth_	<u>Units</u>	Analytical Method	Analyte Abb <u>ry</u>	Value	Flag	Internal Std. Code
										
OSEZ OSEZ	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	i,M18 i,M18	PPODT PYR	3.000 0.330	ND LT	R
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH18	TXPHEN	30.000	ND	R
OSE2	RFIS*107	CZE	26-sep-1991	0.5	UGG	LH19	111TCE	0,004	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	112TCE	0.005	LT	
OSE2	RF1S*107	CSE	26-sep-1991	0.5	UGG	LX19	110CE	0.004	LT	
OSE2 OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG	LN19 LN19	11DCLE 12DCE	0.002 0.003	LT LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	120CLE	0.002	LT	
OSE2	RF15*107	CSE	26-sep-1991	0.5	UGG	LH19	12DCLP	0.003	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	SCLEAE	0.010	ND	R
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LN19	ACET	0.122		_
OSE2 OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg DDU	LH19 LH19	ACROLN ACRYLO	0.100 0.100	ND ND	R R
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UCG	LH19	BRDCLM	0.003	LT	*
QSE2	RF15*107	CSE	26-sep-1991	0.5	UGG	LH19	C13DCP	0.003	ĹŤ	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LM19	C2AVE	0.003	LT	
OSEZ	RFIS*107	CZE	26-sep-1991	0.5	UGG	LH19	C2H3CL	0.006	LT	
OSE2 OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG	LM19 LM19	C2H5CL C6H6	0.012 0.00Z	LT LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	CCL3F	0.006	LT	
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	CCL4	0.007	LT	
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	LX19	CH2CL2	0.012	ĻT	
OSE2	RF15*107	CZE	26-sep-1991	0.5	UGG	LH19	CH3BR	0.006	LT	
OSE2 OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LN19 LN19	CH3CL CHBR3	0.009	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LX19	CHCL3	0.007 0.001	LT LT	
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	LX19	CL2BZ	0.100	NĎ	R
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	CLC6H5	0.001	ĻT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	CS2	0.004	LT	
OSEZ OSEZ	RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	ugg ugg	LX19	DBRCLM	0.003	LT	
OSEZ	RFIS*107 RFIS*107	CSE	26-sep-1991	0.5	UGG	LX19 LX19	ETC6H5 MEC6H5	0.002 0.001	LT LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LN19	MEK	0.070	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	MIBK	0.027	LT	
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	LN19	MNBK	0.032	ĻT	
OSE2 OSE2	RFIS*107 RFIS*107	CSE	26-sep-1991 26-sep-1991	0.5 0.5	UGG UGG	LH19 LH19	STYR T130CP	0.003 0.003	LT LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LN19	TCLEA	0.002	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	TCLEE	0.001	LT	
OSE2	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	TCLTFE	0.016		s
OSEZ	RFIS*107	CSE	26-sep-1991	0.5	UGG	LH19	TRCLE	0.003	LT	
OSE2 OSP1	RFIS*107 RDWA*37	CSE	26-sep-1991 26-sep-1991	0.5 0.0	UGG UGL	LN19 UN18	XYLEN 124TC8	0.002 1.800	LT	
OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UH18	120CLB	1.700	LT LT	
CSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UN18	120PH	2.000	ND	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	13DCLB	1.700	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	14DCLB	1.700	LT	
OSP1 OSP1	RDWA*37 RDWA*37	CSM	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UM18	245TCP	5.200	LT	
OSP1	RDUA*37	CSW	26-sep-1991	0.0	UGL	UM18 UM18	246TCP 24DCLP	4.200 2.900	LT LT	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UN18	24DHPN	5.800	ĹΤ	
OSP1	RDWA+37	CSW	26-sep-1991	0.0	UGL	UH18	240NP	21.000	LT	
OSP1	RDWA#37	CZM	26-sep-1991	0.0	UGL	UH18	24DNT	4.500	LT	
OSP1 OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UM18 UM18	260NT 2BEETO	0.790 8.000	LŦ	\$
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	2CLP	0.990	ĻŢ	•
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	SCNAP	0.500	LT	
OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UM18	200AP	2.070		
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	2NP	3,900	LT	
OSP1 OSP1	RDWA+37	CSW	26-sep-1991	0.0	ner	UK18	2MANIL	4.300	LT	
OSP1	RDWA*37 RDWA*37	CSM	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UM18 UM18	2NP 33DCBD	3.700 12.000	LT LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	3NAN IL	4,900	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	460N2C	17,000	LT	
OSP1	RDWA#37	C2™	26-sep-1991	0.0	UGL	UH18	48RPPE	4.200	ĻŢ	
OSP1 OSP1	RDWA#37	Ç\$₩	26-sep-1991	0.0	UGL	UN18	4CANIL	7.300	LT	
USP1 OSP1	RDWA*37 RDWA*37	CSM	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UM18 UM18	4CL3C 4CLPPE	4.000 5.100	LT LT	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM18	4MP	0.520	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	4NANIL	5.200	ĹŤ	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM18	4NP	12.000	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	ABHC	4.000	ND	Ŕ
OSP1	RDWA*37	CSU	26-sep-1991	0.0	UGL	UM18	ACLDAN	5.100	ND	R

<u>șițe ID</u>	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	AENSLF	9.200	ND	R
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL.	UM18	ALDRN	4.700	ND	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	ANAPHE	2.430		
OSP1	RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0	UGL	UM18	ANAPYL	0.500	LT	
OSP1 OSP1	RDWA*37 RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18 UM18	ANTRC B2CEXM	0.508 1.500	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	B2CIPE	5.300	LT	
OSP1	RDWA*37	C\$W	26-sep-1991	0.0	UGL	UN18	BZCLEE	1.900	LT	
OSP1	RDWA*37	CSU	26-sep-1991	0.0	UGL	UN18	82EHP	4-800	LŤ	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UH18	BAANTR	1.600	ĻT	
OSP1 OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0 0.0	ugl ugl	UN18 UN18	BAPYR BBFANT	4.700 5.400	LŢ	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	BBHC	4,000	LT ND	R
OSP1	RDWA*37	CZÄ	26-sep-1991	0.0	UGL	UM18	BBZP	3.400	ĹŤ	^
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UK 18	BENSLF	9.200	ND	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	BENZID	10.000	ND	R
OSP1 OSP1	RDWA*37	CSW	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UN18	BENZOA	13.000	LT	
OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991	0.0	UGL	UM18 UM18	BGHIPY BKFANT	6.100 0.870	LT ·	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	BZALC	0.720	LT	
OSP1	RDWA*37	CSY	26-sep-1991	0.0	UGL	UN18	CHRY	2.400	ĹŤ	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UN18	CL6BZ	1.600	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL.	UN18	CL6CP	8.600	LT	
OSP1 OSP1 _	RDWA*37 RDWA*37	CSW	26-sep-1991 26-sep-1991	0.0	UGL	UN 18	CLSET	1.500	LT	
OSE1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM18 UM18	DBAHA DBHC	6.500 4.000	LT ND	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	DSZFUR	1.810	ND	•
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	DEP	2.000	LT	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM18	DLDRN	4.700	ND	R
OSP1 OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	DMP	1.500	LT	
OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UM18 UM18	DNOP	3.700 15.000	LT LT	
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UK18	ENDRN	7-600	ND	R
QSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	ENDRNA	8.000	ND	Ř
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	ENDRNK	8.000	ND	R
0SP1	RDWA*37	CSW	26-sep- 1991	0.0	UGL	UH18	ESFSO4	9.200	ND	R
OSP1 OSP1	RDWA*37 RDWA*37	CSW	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UN18	FANT FLRENÉ	3.300	LT	
OSP1	RDWA*37	CZĀ	26-sep-1991	0.0	UGL	UM18 UM18	GCLDAN	5.210 5.100	NO	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	HCBD	3.400	ĹΤ	•
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	HPCL	2.000	ND	R
OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UN18	HPCLE	5.000	ND	R
OSP1 OSP1	RDWA*37	CSW	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UH18	1 COPYR	8.600	LT	
OSP1	RDWA*37 RDWA*37	CSW	26-sep-1991	0.0	ugl Ugl	UM18 UM18	ISOPHR Lin	4.800 4.000	LT ND	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	MEXCLR	5.100	ND D	Ř
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UK18	NAP	2.330	•••	•
OSP1	RDUA*37	CSW	26-sep-1991	0.0	UGL	UH18	NB	0.500	LT	
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	NNDMEA	2.000	ND	R
OSP1 OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0	UGL UGL	UM18 UM18	NNDNPA NNDPA	4.400 3.000	LŢ	
OSP1	RDWA*37	CSW	26-sep-1991	8.0	UGL	UN18	PCB016	21.000	LT ND	R
OSP1	RDWA*37	ÇSW	26-sep-1991	0.0	UGL.	UM18	PCBZ21	21.000	NEO	Ř
OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UR18	PC8232	21.000	ND:	Ř
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UN15	PC8242	30.000	ND	R
OSP1 OSP1	ROWA*37	CZA	26-sep-1991	0.0 0.0	UGL	UM18	PCB248	30.000	MD	R
OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0	UGL	UM18 UM18	PC8254 PC8260	36.000 36.000	ND ND	R R
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM18	PCP	18.000	LT	ĸ
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	PHANTR	2.200		
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UH18	PHENOL	9.200	LT	
OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UN18	PPDDD	4.000	NO	R
OSP1 OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0	ugl ugl	UM18 UM18	PPDDE PPDDT	4.700 9.200	MD	R
QSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UM18	PYR	2.800	ND LT	R
OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UN18	TXPHEN	36.000	ND	R
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	UNK543	8.000		ŝ
OSP1	RDWA*37	C\$M	26-sep-1991	0.0	UGL	UH18	UNK550	7.000		5
OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UM18	UNKS51	5.000		\$
OSP1 OSP1	RDWA*37	CSM	26-sep-1991 26-sep-1991	0.0 0.0	UGL.	UN18	UNKSS3	20.000		s
OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991	0.0	UGL	LM18 LM18	UNK559 UNK560	6.000 7.000		S S
OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	LIM18	UNK561	7.000		S
OSP1	RDWA*37	C\$W	26-sep-1991	0.0	UGL	UM18	UNK564	5.000		Š

	Site ID	<u>field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	Flag	Internal Std. Code
	GSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	UNK\$65	10.000		s
	OSP1	RDVA*37	CZM	26-sep-1991	0.0	UGL	UN18	UNK\$67	20.000		S
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UN18	UNKS68	8.000		\$
	OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UM18 UM18	UNK569 UNK573	5.000		Ş
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	UKKS75	7.000 30.000		s s
	OSP1	RDUA*37	CSW	26-sep-1991	0.0	UGL	UN18	UNK577	10.000		S
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18	UNK578	8.000		s
	OSP1	RDWA=37	CSW	26-sep-1991	0.0	UGL	UM18	UNK581	6.000		5
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH18	UNK584	6.000		S
	OSP1	RDWA*37 RDWA*37	C2A C2A	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UM18	UNK586	6.000		S
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM18 UM20	UNKS95 111TCE	6.000 0.500	LT	Ş
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	112TCE	1.200	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	11DCE	0.500	LT	
	OSP1	RDWA*37	CZM	26-sep-1991	0.0	UGL	UM20	11DCLE	0.680	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	12DCE	0.500	ĻŢ	
	OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UMZ0	12DCLE	0.500	LT	
	OSP1	RDWA*37	CSY	26-sep-1991	0.0	ngr ngr	UM20 UM20	12DCLP 2CLEVE	0.500 0.710	LT · LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	ACET	13.000	LT	
	OSP1	RDUA*37	CSW	26-sep-1991	0.0	UGL	UH20	ACROLN	100,000	ND	R
	OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UH20	ACRYLO	100.000	ND	R
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	BRDCLM	0.590	LT	
-	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	C130CP	0.580	LT	
	OSP1	RDWA*37 RDWA*37	CSM	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UN20 UN20	C2AVE C2H3CL	8.300	LT	
	OSP1	RDWA+37	CZM	26-sep-1991	0.0	UGL	UH20	C2H5CL	2.600 1.900	LT LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	CÓHÓ	0.500	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	CCL3F	1,400	ĹŤ	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	CCL4	0.580	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	CH2CL2	4.910		
	OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0	UGL UGL	UM20 UM20	CH3BR CH3CL	5.800	LT	
	OSP1	RDWA*37	CSA	26-sep-1991	0.0	UGL	UM20	CHBR3	10.500 2.600	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	CHCL3	0.500	LT	
	OSP1	RDWA+37	CSM	26-sep-1991	0.0	UGL	UN20	CL2BZ	10.000	ND	R
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UCL	UH20	CLC6H5	0.500	LT	-
	OSP1	RDWA*37	CSU	26-sep-1991	0.0	UGL	UM20	CS2	0.500	LT	
	OSP1 OSP1	RDWA*37 RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	DBRCLM	0.670	LT	
	OSP1	RDWA*37	CSM	26-sep-1991 26-sep-1991	0.0	UGL	UM20 UK20	MEC6H5	0.500 0.500	LŤ LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	XEK	6.400	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	MIBK	3.000	LT	
	OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM20	MNBK	3.600	LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	STYR	0.500	LT	
	OSP1	RDWA=37 RDWA=37	CSM	26-sep-1991	0.0	UGL	UN20	T13DCP	0.700	LT	
	OSP1	RDWA*37	CSW	26-sep-1991 26-sep-1991	0.0 0.0	UGL	UN20 UN20	TCLEA	0.510	LT	
	OSP1	RDWA*37	ÇS¥	26-sep-1991	8.0	UGL	UM20	TCLEE TRCLE	1.600 0.500	LT LT	
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UH20	XYLEN	0.840	LT	
	OSP1	RDWA+37	CSW	26-sep-1991	0.0	UGL	UN18	UNK570	5.000		S
	OSP1	RDWA+37	CST	26-sep-1991	0.0	UGL	UM20	1MPRB	9.000		S
	OSP1	RDWA*37	CSW	26-sep-1991	0.0	UGL	UM20	UNK033	7.000		S
	OSP1 OSP1	RDWA*37 RDWA*37	CZM	26-sep-1991 26-sep-1991	0.0 0.0	UGL UGL	UH20	UNK189	7.900		S
	OSP1	RDWA*37	CSM	26-sep-1991	0.0	UGL	UM20 UM20	UNK205 UNK210	10.000 7.000		S S
	P+1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UH20	111TCE	0.500	LT	3
	P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM20	112TCE	1.200	LT	
	P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM20	11DCE	0.500	LT	
	P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UH20	11DCLE	0.680	LT	
	P-1 P-1	RDVC*43	CGW	24-feb-1992	25.0	UGL	UH20	120CE	0.500	LT	
	P-1	RDWC*43 RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UM20 UM20	120CLE 120CLP	0.500 0.500	LT	
	P-1	RDUC*43	CCM	24-feb-1992	25.0	UGL	UM20	SCLEAE	0.500	LT LT	
	P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	UN20	3MEPEN	8.000	-1	s
	P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN20	ACET	13.000	LT	•
	P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	UN20	ACROLN	100_000	КD	R
	P-1	ROUC*43	CCM	24-feb-1992	25.0	UGL	UK20	ACRYLO	100.000	ND	R
	P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UN20	BRDCLM	0.590	ĻŢ	
	P-1 P-1	RDWC*43 RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UM20	C13DCP	0.580	LT	
	P-1	RDWC*43	CGM	24-1eb-1992	25.0	UGL	UM20 UM20	C2AVE C2H3CL	8.300 2.600	LT LT	
	P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN20	CZHSCL	1.900	LT	
		······································		W- 140 1776			44.254	*****	1.744	F.	

Site ID	Fjeld (D	<u>Medi a</u>	Çate	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM20	C6H6	0.500	LT	
P-1	RDUC*43	CCH	24-feb-1992	25.0	UGL	UM20	CCL3F	1,400	LT	
P-1	RDUC*43	COM	24-feb-1992	25.0	UGL	UN 20	CCL4	0.580	LT	
P-1 P-1	RDWC*43 RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UH20 UH20	CHZCL2	2.300	LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UH20	CH3BR CH3CL	5.800 3.200	LT LT	
₽-1	ROUC*43	CCM	24-feb-1992	25.0	UGL	UH20	CHBR3	2.600	LT	
P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	UN20	CHCL3	2.670	••	
P-1	RDWC*43	CGN	24-feb-1992	25.0	UGL	UH20	CL2BZ	10.000	ND	R
P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UM20	CLC6H5	0.500	LT	
P-1 P-1	RDWC*43 RDWC*43	COM	24-feb-1992	25.0	UGL	UN20	CS2	0.500	LT	
P-1	RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UN20 UN20	DBRCLM ETC6HS	0.670 0.500	ĻT LT	
P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UM20	HEXANE	40.000	Li	s
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN20	MEC6H5	5.200		•
P-1	RDUC*43	CGM	24-feb-1992	25.0	UGL	UH20	MECYPE	10,000		s
P-1	RDUC*43	CCM	24-feb-1992	25.0	UGL	UH20	MEK	6.400	LT	
P-1	RDUC*43	CCA	24-feb-1992	25.0	UGL	UM20	MIBK	3,000	LT -	
P-1 P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	ugl ugl	UM20 UM20	MNBK STYR	3.600 0.500	LT	
P-1	RDWC+43	CGM	24-feb-1992	25.0	UGL	UM20	T13DCP	0.700	LT LT	
P-1	ROWC*43	CCM	24-feb-1992	25.0	UGL	UM20	TCLEA	0.510	ĹŤ	
P-1	RDMC*43	CCM	24-feb-1992	25.0	UGL	UM20	TCLEE	1.600	LT	
P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	ONSO	TRCLE	0.500	LT	
P•1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM20	XYLEN	0.840	LT	
P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	00	PH	6.960		K
P+1	RDWC*43	CGR	24-feb-1992	25.0	UGL	90	TOX TOC	41.200 6340.000		
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM18	124TCB	1.800	LT	
P-1	RDUC*43	CGM	24-feb-1992	25.0	UGL,	UN18	12DCLB	1.700	LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	120PH	2.000	ND	R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	13DCLB	1.700	LT	
P-1 P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UN18 UN18	14DCLB 245TCP	1.700	LŤ	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	246TCP	5.200 4.200	LT LT	
P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UN18	240CLP	2.900	ĹŤ	
₽-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	LM18	24DMPN	5.800	LT	
P-1	RDHC*43	COM	24-feb-1992	25.0	UGL	UH18	24DNP	21.000	LŦ	
P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UM18	24DNT	4,500	LT	
P-1 P-1	RDWC*43	CCF	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	26DNT 2CLP	0.790	LŢ	
P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UM18	2CNAP	0.990 0.500	LT LT	
P-1	RDWC=43	CGW	24-feb-1992	25.0	UGL	UM18	ZMNAP	1.700	ĻŢ	
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM18	ZMP	3.900	ĹŤ	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	2NANT L	4.300	LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	2NP	3.700	LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	33DCBD	12.000	LT	
P-1 P-1	RDWC*43 RDWC*43	CGA	24-feb-1992 24-feb-1992	25.0 25.0	NGF	UN18 UN18	3NANIL 46DN2C	4.900 17.000	LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	4BRPPE	4.200	LT LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UH18	4CANIL	7.300	LT	
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	4CL3C	4.000	LT	
P-1	RDWC*43	CCM	24 - feb - 1992	25.0	UGŁ	UN18	4CLPPE	5.100	LT	
P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	UN18	4MP	0.520	LT	
P-1 P-1	RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0	UGL	UM18	4NANIL 4NP	5,200	LŢ	
P-1	RDWC*43 RDWC*43	CCM	24- feb- 1992	25.0 25.0	UGL	UM18 UM18	ABHC	12.000 4.000	LT ND	R
P-1	RDUC*43	CGW	24-feb-1992	25.0	UGL	UM18	ACLDAN	5.100	ND	R
P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	UN18	AENSLF	9.200	MD	Ř
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	ALDRN	4.700	HD	R
P-1	RDWC*43	CCA	24-feb-1992	25.0	UGL	UM18	ANAPNE	1.700	LT	
P-1	RDWC*43	CGU	24-feb-1992	25.0	UGL	UM18	ANAPYL	0.500	LT	
P-1 P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UM18 UM18	ANTRO BZCEXM	0.500 1.500	LŤ	
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM18	B2CIPE	5.300	LT LT	
P-1	ROUC*43	CGM	24-feb-1992	25.0	UGL	UM18	BSCTEE	1,900	LT	
P-1	RDUC*43	CGM	24-feb-1992	25.0	UGL	UM18	B2EHP	4.800	ĻŤ	
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UN18	BAANTR	1.600	ĻT	
P-1	RDMC*43	CGM	24-feb-1992	25.0	UGL	UK18	BAPYR	4,700	LT	
P-1	RDWC*43	CGA	24-feb-1992	25.0	UGL	UM18	BBFANT	5.400	LT	_
P-1	RDMC*43	CGW	24-feb-1992	25.0	UG1,	UM18	BSHC BSTO	4.000	ND	R
P-1 P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UK18 UK18	BBZP Benslf	3.400 9.200	LT ND	R
P-1	RDUC*43	CGM	24-feb-1992	25.0	UGL	UM18	BENZID	10.000	ND DK	R
-										

Site ID	Field !D	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Va(ue	<u>Flag</u>	Internal Std. Code
P-1	RDMC*43	CGM	24-feb-1992	25.0	UGL	UM18	BENZOA	13.000	LT	
P-1	RDWC*43	CGM	24 - feb - 1992	25.0	UGL	UM18	SCHIPY	6.100	LT	
P-1 P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	SKFANT	0.870	LT	
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM18	BZALC CHRY	0.720 2.400	LT LT	
P-1	RDMC*43	CCM	24 · feb · 1992	25.0	UGL	UM18	CL682	1.600	LT	
P-1 P-1	RDWC*43 RDWC*43	CCM	24 - feb - 1992 24 - feb - 1992	25.0	UGL	UM18	CL6CP	8.600	LT	
P-1	RDWC=43	CGW	24-feb-1992	25.0 25.0	UGL	UM18 UM18	CL6ET DBAHA	1.500 6.500	LT LT	
P-1	RDMC*43	CGM	24- feb- 1992	25.0	UGL	UN18	DBHC	4.000	MD	R
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM18	DBZFUR	1.700	LT	
P-1 P-1	RDWC*43	CGW	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	DEP DLDRN	2.000 4.700	LT ND	R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	DMP	1.500	LT	K
P-1	RDWC+43	CCM	24-feb-1992	25.0	UGL	UH18	DNBP	3.700	LT	
P-1 P-1	RDWC*43 RDWC*43	CGM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UN18 UN18	DNOP ENDRN	15.000 7.600	LT ND	R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	ENDRNA	8.000	ND	R R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	ENDRNK	8.000	ND	R
P-1 P-1	RDWC*43	CGW	24 - feb - 1992 24 - feb - 1992	25.0 25.0	UGL UGL	UM18 UM18	ESFSO4 FANT	9.200 3.300	ND	R
P-1	ROWC*43	CGM	24-feb-1992	25.0	UGL	UM18	FLRENE	3.700	LT LT	
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UN18	GCLDAN	5.100	ND	R
P-1 P-1	RDWC*43 RDWC*43	CGW	24-feb-1992 24-feb-1992	25.0	UGL	UN18	HCB0	3.400	LT	_
P-1	RDWC*43	CGW	24-feb-1992	25.0 25.0	UGL UGL	UN18	HPCLE	2.000 5.000	ND ND	R R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UM18	ICDPYR	8.600	ĻŢ	•
P-1	RDMC*43	CGM	24-feb-1992	25.0	UGL	UM18	ISOPHR	4.800	LT	
P-1 P-1	RDWC*43 RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	LIN MEXCLR	4.000 5.100	ND CM	R R
P-1	RDMC*43	CGW	24-feb-1992	25.0	UGL	UH18	XAP	0.500	LT	•
P-1	RDWC+43	CCM	24-feb-1992	25.0	UGL	UN18	KB	0.500	LT	
P-1 P-1	RDWC*43 RDWC*43	CCA	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UN18 UN18	NNOMEA NNONPA	2.000 4.400	ND LT	R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	NNOPA	3.000	LT	
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UN18	PCB016	21.000	ND	R
P-1 P-1	RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UM18 UM18	PC8221 PC8232	21.000 21.000	ND ND	R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	PC8242	30.000	NO	R R
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UN18	PC8248	30.000	ND	Ř
P-1 P-1	RDWC*43 RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0 25.0	NGF	UN18	PC8254	36.000	NO	R
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UN18 UN18	PC8260 PCP	36.000 18.000	ND LT	R
P-1	RDWC*43	CCM	24-feb-1992	25.0	UGL	UH18	PHANTR	0.500	LT	
P-1 P-1	RDWC*43	CCM	24-feb-1992 24-feb-1992	25.0	UGL	UN18	PHENOL	9.200	LT	_
P-1	RDWC*43	CGW	24-feb-1992	25.0 25.0	UGL UGL	UM18 UM18	PPDDD PPDDE	4.000 4.700	MD MD	R R
P-1	RDWC*43	CGW	24-feb-1992	25.0	UGL	UN18	PPOOT	9.200	ND	Ř
P-1	RDWC*43	CGM	24-feb-1992	25.0	UGL	UM18	PYR	2.800	ĻŢ	
P-1 P-1	RDWC*43	CCA	24-feb-1992 24-feb-1992	25.0 25.0	UGL	UM18 UM18	TXPHEN UNK609	36.000 5.000	MD	R S
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UH20	111TCE	0.500	LŤ	•
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UH20	112TCE	1.200	LT	
P-2 P-2	RDWC*48	COM	20-feb-1992 20-feb-1992	11.0 11.0	ugl Ugl	UN20 UN20	110CE	0.500 0.680	LT	
P-2	RDUC*48	CCM	20-feb-1992	11.0	UGL	UM20	110CLE 120CE	0.500	LT LT	
P-2	RDMC*48	COM	20-feb-1992	11.0	UGL	UM20	12DCLE	0.500	LT	
P-2 P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UH20	120CLP	0.500	ĻŢ	
P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UN20 UN20	2CLEVE ACET	0.710 13.000	LT LT	
P-2	RDWC+48	CGW	20-feb-1992	11.0	UGL	UM20	ACROLM	100.000	ND	R
P-2	RDWC*48	CGM	20-feb-1992	11.0	UGL	UM20	ACRYLO	100.000	ND	R
P-2 P-2	RDWC*48 RDWC*48	CGM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM20 UM20	BROCLM C13DCP	0.590 0.580	LT LT	
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UM20	CZAVE	8.300	LT	
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UH20	C2H3CL	2.600	LT	
P-2 P-2	RDWC*48 RDWC*48	CGM	20 - feb - 1992 20 - feb - 1992	11.0 11.0	UGL UGL	UM20 UM20	C2K5CL C6K6	1.900 0.500	LT LT	
P-2	RDWC*48	CGM	20-feb-1992	11.0	UGŁ	UM20	CCL3F	1.400	LT	
₽- 2	RDWC*48	CCH	20-feb-1992	11.0	UGL	UM20	CCL4	0.580	LT	
P-2 P-2	RDWC*48 RDWC*48	ÇGU	20-feb-1992	11.0	UGL	UM20	CH2CL2	2.300	LT	
P-2	RDWC*48	CGW	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM20 UM20	CH3BR CH3CL	5.800 3.200	LT LT	
P-2	RDUC*48	CGN	20-feb-1992	11.0	UGL	UM20	CHBR3	2.600	LT	

Site ID	<u>Field ID</u>	<u>Hedia</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method		Value	<u>Flag</u>	Internal Std. Code
P-2	RDWC+48	CSM	20-feb-1992	11.0	UGL	UM20	CHCL3	0.500	LT	
P-2	RDUC+48	CCM	20-feb-1992	11.0	UGL	UH20	CL2BZ	10.000	ND	R
P-2	RDWC*48	CCM	20-feb-1992	11.0	UGL	UH20	CLC6H5	0.500	LT	
P-2 P-2	RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UH20	C25	0.500	LT	
P-2	RDWC*48 RDWC*48	CGA	20-feb-1992	11.0	UGL	UM20 UM20	DBRCLM ETC6HS	0.670 0.500	LT LT	
P-2	RDWC*48	CGW	20 - feb - 1992	11.0	UGL	UN20	MEC6H5	0.500	ĹŤ	
P-2	RDWC*48	CEM	20-feb-1992	11.0	UGL	UH20	MEK	6.400	LT	
P-2	RDWC+48	CCM	20-feb-1992	11.0	UGL	UM20	MISK	3.000	LT	
P-2 P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UM20 UM20	MNBK STYR	3.400 0.500	LT LT	
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UH20	T13DCP	0.700	LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UN20	TCLEA	0.510	LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UH20	TCLEE	1.600	LT	
P-2 P-2	RDYC*48 RDYC*48	CGA	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM20 UM20	TRCLE	0.500 0.840	LT LT	
P-2	RDWC*48	CGM	20- feb- 1992	11.0		00	PH	7.040	٠.	
P-2	RDUC*48	CGH	20-feb-1992	11.0	UGL	00	TOC	1940.000		-
P-2	ROUC*48	CGW	20-feb-1992	11.0	UGL	00	TOX	58.800		
P-2 P-2	RDWC*48 RDWC*48	CGM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM18 UM18	124TCB 12DCLB	1.800	LT	
P-2	RDUC*48	CCM	20-feb-1992	11.0	UGL	UM18	120PH	1.700 2.000	LT NO	R
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UN18	13DCLB	1.700	LT	•
P-2	RDUC*48	CCM	20-feb-1992	11.0	UGL	UH18	14DCLB	1,700	LT	
P-2 P-2	RDWC*48 RDWC*48	CGH	20-feb-1992	11.0	UGL	UN18	245TCP	5.200	LT	
P-2	RDMC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UN18: UN18	246TCP 24DCLP	4.200 2.900	LT LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UH18	24DMPN	5.800	LT	
P-2	RDWC*48	COM	20-feb-1992	11.0	UGL	UN18	24DNP	21.000	LT	
P-2	RDUC*48	CCH	20-feb-1992	11.0	UGL	UN18	24DNT	4.500	LT	
P-2 P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UM18 UM18	26DNT 2CLP	0.790 0.990	LT LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UN18	ZCHAP	0.500	LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UN18	2MNAP	1,700	1,7	
P-Z	RDUC*48	CGW	20-feb-1992	11.0	UGL	UH18	2NP	3.900	LT	
P-2 P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	um18 um18	ZNANIL ZNP	4,300 3,700	LT LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UM18	33DC80	12.000	LŤ	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UM18	3KANIL	4.900	LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UH18	460NZC	17.000	LT	
P-2 P-2	RDWC*48 RDWC*48	CGM	20-feb-1992 20-feb-1992	11.0 11.0	ugl ugl	UM18 UM18	48RPPE 4CANIL	4.200 7.300	LT LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UH18	4CL3C	4,000	ĹŤ	
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UNIS	4CLPPE	5.100	LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UH18	4MP	0.520	LŤ	
P-2 P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM18 UM18	4NANIL 4NP	5.200 12.000	LT LT	
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UM18	ABHC	4.000	ND	R
P-2	RDWC+48	CCM	20-feb-1992	11.0	UGL	UM18	ACLDAN	5.100	ND	Ř
P-2	RDWC*48	COM	20-feb-1992	11.0	UGL	UH18	AENSLF	9.200	ND	R
P-2 P-2	RDUC*48	CGM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM18 UM18	ALDRN ANAPNE	4.700	ND	R
P-2	RDUC*48	CCA	20-feb-1992	11.0	UGL	UM18	ANAPYL	1.700 0.500	LT LT	
P-2	RDUC*48	CCM	20-feb-1992	11.0	UGL,	UN18	ANTRO	0.500	LT	
P-2	RDUC*48	CCH	20-feb-1992	11.0	UGL	UH18	82CEXM	1.500	LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UN18	BZCIPE	5.300	LT	
P-2 P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM18 UM18	B2CLEE B2EHP	1.900 4.800	LT LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UM18	BAANTR	1.600	LŤ	
P-2	RDUC*48	COL	20-feb-1992	11.0	UGL	UM18	BAPYR	4.700	LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UM18	BBFANT	5.400	LT	_
P-2 P-2	RDWC*48 RDWC*48	CGM	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UM18	BBHC BBZP	4.000 3.400	ND 1.7	R
P-2	RDWC*48	CCA	20-feb-1992	11.0	UGL	UM18 UM18	BENSLF	9.200	LT ND	R
P-2	RDUC*48	CGM	20-feb-1992	11.0	UGL	UM18	BENZID	10.000	ND	Ř
P-2	RDUC*48	CGH	20-feb-1992	11.0	UGL,	UM18	BENZOA	13.000	ĻT	
P-2	RDUC*48	CGH	20-feb-1992	11.0	UGL	UM18	BGHIPY	6.100	LT	
P-2 P-2	RDWC*48 RDWC*48	CGW	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UM18 UM18	BKFANT BZALC	0.870 0.720	LT LT	
P-2	RDWC*48	CCA	20-feb-1992	11.0	UGL	UM18	CHRY	2.400	LT	
P-2	RDWC*48	CCM	20-feb-1992	11.0	UGL	UM18	CL6BZ	1.600	LT	
P-2	RDWC*48	CCW	20-feb-1992	11.0	UGL	UM18	CL6CP	8.600	LT	
P-2 P-2	RDUC*48 RDUC*48	CCA	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UM18	CL6ET D8AHA	1.500 6.500	LT LT	
C-4	40 AC. 40	-um	70-14D-1337	11.0	UGL	UH18	POVEN	0.300	LI	

Site ID	<u>Field ID</u>	<u> Media</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
P-2	RDWC*48	CGM	20-feb-1992	11.0	UGL	UN18	DBHC	4.000	KD	R
P-2	RDWC*48	CGM	20-feb-1992	11.0	UGL	UM18	OBZFUR	1.700	LT	
P-2	RDWC*48	CGH	20-feb-1992	11.0	UGL	UM18	DEP	2.000	LT	_
P-2 P-2	RDWC*48 RDWC*48	CGM	20-feb-1992 20-feb-1992	11.0	UGL	UM18	DLDRN	4.700	ND	R
p-2	RDWC*48	CGM	20-feb-1992	11.0 11.0	UGL	UN18 UN18	DMP DNBP	1.500 3.700	LŢ	
P-2	RDWC*48	CGM	20-feb-1992	11.0	UGL	UN18	DNOP	15.000	LT LT	
P-2	RDWC+48	CGW	20-feb-1992	11.0	UGL	UM18	ENDRN	7.600	MD	R
P-2	RDWC=48	CGW	20-feb-1992	11.0	UGL	UM18	ENDRNA	8.000	KD	Ř
P-2	RDUC*48	CCF	20-feb-1992	11.0	UGL	UM18	ENDRNK	8.000	ND	Ř
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UH18	ESFS04	9.200	MD	R
P-2	RDUC*48	CGH	20-feb-1992	11.0	UGL	UK18	FANT	3.300	LT	
P-Z	RDWC*48	CCM	20-feb-1992	11.0	UGL,	UN18	FLRENE	3.700	LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UN18	GCLDAN	5.100	ND	R
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UM18	HCBD	3.400	LT	_
P-2	RDUC*48	CCM	20 - feb - 1992	11.0	UGL	UN18	HPCL	2.000	KD	R
P-2 P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	UGL UGL	UM18 UM18	HPCLE ICDPYR	5.000	MD	. R
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UM18	ISOPHR	8.600 4.800	LT	
P-2	RDUC*48	CCM	20-feb-1992	11.0	UGL	UM18	LIN	4.000	LT ND	R
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UM18	MEXCLR	5.100	ND	Ř
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UN18	NAP	0.500	ĹΪ	•
P-2	RDUC*48	CCM	20-feb-1992	11.0	UGL	UM18	N8	0.500	LT	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UN18	NNDMEA	2.000	ND	R
_P-Z	RDUC*48	CGW	20-feb-1992	11.0	UGL	UM18	NNDNPA	4.400	LT	
P-2	RDWC*48	CCM	20-feb-1992	11.0	UGL	UM18	NNOPA	3.000	LT	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UN18	PC8016	21.000	ND	R
P-5	RDWC*48	CGW	20- feb- 1992	11.0	UGL	UN18	PC8221	21.000	NO	R
P-2 P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UM18	PC8232	21.000	ND	R
P-2	RDWC*48 RDWC*48	CCM	20-feb-1992 20-feb-1992	11.0 11.0	ugl ugl	UN18	PC8242 PC8248	30,000	NĎ	R
P-2	RDWC*48	CGA	20-feb-1992	11.0	UGL	UM18 UM18	PC8254	30.000 36.000	ND ND	R R
P-2	RDWC*48	CGA	20-feb-1992	11.0	UGL	UM18	PC8260	36.000	ND	Ř
P-2	RDWC*48	CCH	20- feb- 1992	11.0	UGL	UH18	PCP	18.000	LT	•
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UN18	PHANTR	0.500	ĹŤ	
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL.	UH18	PHENOL	9.200	ĹŤ	
P-2	RDUC*48	CGW	20-feb-1992	11.0	UGL	UN18	PPDDD	4.000	ND	Ŕ
P-2	RDWC*48	CCM	20-feb-1992	11.0	UGL	UH18	PPDDE	4.700	MD	R
P-2	RDUC*48	COM	20- feb- 1992	11.0	UGL	UM18	PPDDT	9.200	ND	R
P-2	RDWC*48	CGW	20-feb-1992	11.0	UGL	UM18	PYR	2.800	LT	_
P~Z	RDUC*48	CGM	20-feb-1992	11.0	UGL	UN18	TXPHEN	36.000	ND	R
P-2 P-2	RDWC*48 RDWC*48	CGW	20-feb-1992 20-feb-1992	11.0 11.0	UGL	UN18	UNK532 UNK559	10.000		S
P-2	RDWC*48	CGW	20-feb-1992	11.0	ugl	UN18 UN18	UNK609	10.000 8.000		S S
P-3	RDMC*49	CGW	20-feb-1992	18.0	UGL	UM20	111TCE	0.500	LT	3
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM20	112TCE	1.200	LT	
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UM20	11DCE	0.500	LT	
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UNZO	110CLE	0.680	LŤ	
P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL	UM20	12DCE	0.500	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM20	120CLE	0.500	LT	
P-3	RDUC*49	CCM	20-feb-1992	18.0	UGL	UM20	12DCLP	0.500	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM20	2CLEVE	0.710	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	LM20	ACET	13.000	LT	_
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM20	ACROLN	100.000	ND	R
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM20	ACRYLO	100.000	Ж	R
P-3 P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL	UH20	BROCLM	0.590	LT	
P-3	RDWC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UH20 UH20	C13DCP C2AVE	0.580 8.300	LT LT	
P-3	RDUC*49	COM	20-feb-1992	18.0	UGL	UH20	CZH3CL	2.600	LT	
P-3	RDWC=49	CGW	20-feb-1992	18.0	UGL	UM20	C2H5CL	1.900	LT	
P-3	RDWC=49	CGW	20-feb-1992	18.0	UGL	UM20	C6H6	0.500	ĹŤ	
P-3	RDUC*49	CCM	20-feb-1992	18.0	UGL	UK20	CCL3F	1.400	ĻŤ	
P-3	ROWC*49	CCM	20-feb-1992	18.0	UGL	UM20	CCL4	0.580	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM20	CH2CL2	2.300	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM20	CH3BR	5.800	LT	
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UM20	CH3CF	3.200	LT	
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UN20	CHBR3	2.600	LT	
P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL	UM20	CHCL3	0.500	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM20	CL2BZ	10.000	ND	R
P-3	RDWC*49	CCH	20-feb-1992	18.0	UGL	UM20	CLC6H5	0.500	LT	
P-3 P-3	RDWC*49	CCM	20 - feb - 1992	18.0	UGL	UM20	CS2	0.500	LT	
P-3	RDWC*49	CCA CCA	20-feb-1992 20-feb-1992	18.0	UGL	UM20	DBRCLM ETC6H5	0.670 0.500	LT	
P-3	RDMC*49	CCM	20-feb-1992	18.0 19.0	UGL	UM20	MEC6H5		LT	
F-3	AD#L"47	Can	CU-160-1774	18.0	UGL	UM20	HELONJ	0.500	LT	

Site ID	<u>Field 10</u>	<u>Media</u>	Cate	<u>Depth</u>	<u>Unitş</u>	Analytical <u>Method</u>	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UM20	MEK	6.400	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UH20	MISK	3.000	LT	
P-3	RDWC=49	CGW	20-feb-1992	18.0	UGL	UM20	MNBK	3.600	LT	
P-3 P-3	RDWC*49	CCM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UM20 UM20	STYR T13DCP	0.500 0.700	LT	
p-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UMZO	TCLEA	0.510	LŢ LŢ	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM20	TCLEE	1.500	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM20	TRCLE	0.500	LT	
P-3 P-3	RDUC*49	CCM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UM20 00	XYLEN PH	0.840 7.020	LŢ	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	00	TOC	2060,000		
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	90	TOX	60.700		
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UN18	124TCB	1.800	LŢ	
P-3 P-3	RDWC*49	CGW	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UM18	120CLB 120PH	1.700	LŢ	_
P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL UGL	UN18 UN18	120PH 130CLB	2.000 1.700	ND Lt	R
p-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	14DCLB	1.700	ĹŤ	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UH18	245TCP	5.200	LŢ	
P-3 P-3	RDUC*49	CCW	20-feb-1992	18.0	UGL	UM18	246TCP	4.200	LŢ	
P-3	RDUC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UM18 UM18	24DCLP 24DMPN	2.900 5.800	LT LT	
P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL	UM18	240NP	21.000	LT	
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UM18	24DNT	4.500	LT	
P-3 P-3	RDUC*49	CGH	20-feb-1992	18.0	UGL	UH18	26DNT	0.790	LT	
- p-3	RDWC*49 RDWC*49	CCM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UM18 UM18	2CLP 2CNAP	0.990 0.500	LT LT	
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UM18	2MNAP	1.700	LT	
P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL	UN18	2MP	3.900	LT	
P-3	RDWC*49	CCH	20-feb-1992	18.0	UGL	UN18	2NANIL	4.300	LT	
P-3 P-3	RDWC*49 RDWC*49	CCM	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UM18 UM18	2NP 330CB0	3.700 12.000	LT LT	
P-3	RDWC*49	CCH	20-feb-1992	18.0	UGL	UM18	3NANIL	4.900	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	460x2C	17,000	LT	
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UM18	4BRPPE	4.200	LT	
P-3 P-3	RDWC*49 RDWC*49	CGW	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UM18 UM18	4CANIL 4CL3C	7.300 4.000	LT LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	4CLPPE	5.100	LT	
P-3	RDMC*49	CCM	20-feb-1992	18.0	UGL	LIM18	4MP	0.520	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	4NANIL	5.200	LT	
P-3 P-3	RDWC*49 RDWC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	ugl ugl	UM18 UM18	4NP ABHC	12.000 4.000	LT MD	
P-3	RDUC*49	CCA	20-feb-1992	18.0	UGL	UM18	ACLDAN	5.100	ND N	R R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	AENSLF	9.200	ND	R
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UN18	ALDRN	4.700	ND	R
P-3 P-3	RDMC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UN18 UN18	ANAPNE ANAPYL	1.700 0.500	LT LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	LIM18	ANTRO	0.500	LT	
P-3	RDUC*49	CCH	20-feb-1992	18.0	UGL	UM18	B2CEXM	1.500	LT.	
P-3	RDWC*49	CGW	20-feb-1992	18.0		UM18	B2CIPE	5.300	LT	
P-3 P-3	RDWC*49	CCM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UM18 UM18	BZEHP	1.900 4.800	LT LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0		UM18	BAANTR	1,600	1.7	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	BAPYR	4.700	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UN18	BBFANT	5,400	LT	_
P-3 P-3	RDWC*49 RDWC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UM18 UM18	BBHC BBZP	4.000 3.400	ND LT	R
P-3	RDWC*49	CGW	20-feb-199Z	18.0	UGL	UM18	BEXSLF	9.200	ND	R
P-3	RDWC*49	CGH	20-feb-1992	18.0	UGL	UN18	BENZID	10,000	ND	Ř
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UM18	BENZOA	13.000	LT	
P-3 P-3	RDWC*49 RDWC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UM18 UM18	BGH1PY BKFANT	6.100 0.870	LT LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UNIS	BZALC	0.720	LT	
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UN18	CHRY	2,400	LŢ	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	CL68Z	1.600	LT	
P-3 P-3	RDMC*49 RDMC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UM18 UM18	CL6CP CL6ET	8.600 1.500	LT	
P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UM18	DBAHA	6.500	LT LT	
P-3	RDWC*49	CCM	20-feb-1992	18.0	UGL	UM18	DBHC	4.000	MO	R
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UM18	D8ZFUR	1.700	LT.	
P-3	RDWC*49	CGM	20-feb-1992		UGL	UM18	DEP	2.000	LT	
P-3 P-3	RDWC*49 RDWC*49	CGW	20-feb-1992 20-feb-1992	18.0 18.0	ugl ugl	UM18 UM18	DLDRN DMP	4.700 1.500	ND LT	R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	DNBP	3.700	LT	
P-3	RDUC*49	CCM	20-feb-1992	18.0	UGL	UN18	DNOP	15.000	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	<u>Value</u>	<u>Flag</u>	Internal Std. Code
P-3	RDUC*49	CGW	20-feb-1992	18.0	UGL	UN18	ENDRN	7,600	ND	R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	ENDRNA	8.000	MD	Ř
P-3	RDWC=49	CGW	20-feb-1992	18.0	UGL	UM18	ENDRNK	8.000	ND	R
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UN18	ESFSO4	9.200	ND	R
P-3 P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	FANT	3.300	LT	
P-3	RDWC*49	COM	20 - feb - 1992 20 - feb - 1992	18.0 18.0	UGL UGL	UN18 UN18	FLRENE GCLDAN	3.700	LT	
P-3	RDUC*49	CGM	20 - feb - 1992	18.0	UGL	UM18	HCBD	5.100 3.400	HD LT	R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	HPCL	2.000	ND	R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL,	UN18	HPCLE	5.000	MD	Ř
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	ICDPYR	8,600	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	ISOPHR	4.800	LT	
P-3 P-3	RDWC*49	CCA	20-feb-1992	18.0	UGL	UN18	LIK	4.000	ND	R
P-3	RDWC*49	CGW	20-feb-1992 20-feb-1992	18.0 18.0	UGL UGL	UM18 UM18	NEXCLR NAP	5.100 0.500	ND	R
P-3	RDWC*49	CSH	20-feb-1992	18.0	UGL	UM18	NB	0.500	LT LT	
P-3	RDWC*49	CGW	20- feb- 1992	18.0	UGL	UN18	NNDMEA	2.000	ND	R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	NNONPA	4.400	LT	
P-3	RDWC*49	CCM	20 - feb - 1992	18.0	UGL	UM18	HNDPA	3_000	LT	
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	PC8016	21.000	ND	R
P-3 P-3	RDMC*49	CCH	20-feb-1992	18.0	UGL	UN18	PCBZ21	21.000	ND	·R
P-3	RDWC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	UGL	UH18 UH18	PCB232 PCB242	21.000	ND	R
P-3	RDWC*49	CGM	20- feb- 1992	18.0	UGL	UM18	PC9242	30.000 30.000	ND ND	R R
P-3	RDWC*49	CCW	20- feb- 1992	18.0	UGL	UN18	PCB2S4	36.000	ND	Ř
P-3	RDUC*49	CGM	20-feb-1992	18.0	UGL	UN18	PCB260	36.000	ND	Ř
P-3	RDWC*49	CGW	20 - feb - 1992	18.0	UGL	UN18	PCP	18.000	LT	
P- <u>3</u>	RDUC*49	CGM	20- feb- 1992	18.0	UGL	UM18	PHANTR	0.500	LT	
P-3	RDMC+49	CGW	20- feb-1992	18.0	UGL	UN18	PHENOL	9.200	LT	
P-3 P-3	RDWC*49	CGM	20-feb-1992	18.0	UGL	UN18	PPODD	4.000	ND	R
P-3	RDWC*49	CGM	20-feb-1992 20-feb-1992	18.0 18.0	ugl ugl	UM18 UM18	PPODE PPODT	4.700 9.200	ND	R R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UM18	PYR	2.800	ND LT	ĸ
P-3	RDUC*49	COR	20-feb-1992	18.0	UGL	UM18	TXPHEN	36.000	ND.	R
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	UNK532	9.000	•••	s
P-3	RDUC*49	CCI	20-feb-1992	18.0	UGL	UM18	UNK559	20.000		S
P-3	RDWC*49	CGW	20-feb-1992	18.0	UGL	UN18	UNK594	4.000		\$
P-4 P-4	ROWC*50	CGW	20-feb-1992	23.0	UGL	UM20	111TCE	0.500	LT	
P-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	ugl ugl	UM20 UM20	112TCE 11DCE	1.200 0.500	LT	
P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UM20	11DCLE	0.500	LT LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UK20	120CE	0.500	LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UH20	12DCLE	0.500	LT	
P-4	RDUC*50	CGW	20-feb-1992	23.0	UGL,	UN20	120CLP	0.500	LT	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UH20	SCLEVE	0.710	LT	
P-4 P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM20	ACET	13.000	LT	_
P-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM20	ACROLN	100.000	ND	Ŕ
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM20 UM20	ACRYLO BROCLM	100.000 0.590	ND	R
P-4	ROUC*50	CGW	20-feb-1992	23.0	UGL	UH20	C13DCP	0.580	LT LT	
P-4	RDMC*50	CCM	20-feb-1992	23.0	UGL	UM20	C2AVE	8.300	LT	
P-4	RDMC*50	CGW	20-feb-1992	23.0	UGL	UM20	C2H3CL	2.600	ĹŤ	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM20	C2H5CL	1.900	LT	
P-4	RDWC*50	CGU	20-feb-1992	23.0	UGL	UH20	C6H6	0.500	ĻT	
P-4 P-4	RDWC*50 RDWC*50	CGW	20-feb-1992	23.0	UGL	UM20	CCL3F	1.400	LT	
P-4	RDWC*50	CGW	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UH20 UH20	CCL4 CH2CL2	0.580	LT	
P-4	RDMC*50	CGM	20-feb-1992	23.0	UGL	UN20	CHZCLZ CH3BR	2.300 5.800	LT LT	
P-4	RDWC*50	CGW	20-feb-1992	23,0	UGL	UH20	CH3CL	3.200	ĻŢ	
P-4	RDWC*50	¢g⊯	20-feb-1992	23.0	UGL	UH20	CHBR3	2.600	LT	
P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UM20	CHCL3	0.500	LT	
P-4	RDMC*50	CCM	20-feb-1992	23.0	UGL	UM20	CL2BZ	10.000	ND	R
P-4	ROWC*50	CGW	20-feb-1992	23.0	UGL	UM20	CLC6H5	0.500	LT	
P-4 P-4	RDWC*50 RDWC*50	CCH	20-feb-1992	23.0 23.0	UGL	UM20	CS2	0.500	LT	
P-4	ROWC*50	CCM	20-feb-1992 20-feb-1992	23.0	ugi, ugl	UM20 UM20	DBRCLM ETC6H5	0.670	LT	
P-4	RDWC*50	CCH	20- feb-1992	23.0	UGL	UN20	MEC6H5	0.500 0.500	LT LT	
P-4	RDWC*50	CGW	20- feb- 1992	23.0	UGL	UM20	MEK	6.400	LT	
P-4	RDWC*50	CCA	20-feb-1992	23.0	UGL	UM20	MIBK	3.000	LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UMZ0	MNBK	3,600	LŤ	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UH20	STYR	0.500	LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM20	T130CP	0.700	LT	
P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UM20	TCLEA	0.510	LT	
P-4	RDMC*50	CCM	20-feb-1992	23.0	UGL	UM20	TCLEE	1.600	LT	

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte _Abbry,	Va(ue	Flag	Internal Std. Code
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM20	TRCLE	0,500	LT	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UNI20	XYLEN	0.840	ĹŤ	
P-4	RDMC*50	CGM	20-feb-1992	23.0		00	₽H	7.270		
P-4 P-4	RDMC*50 RDMC*50	CCP	20-feb-1992 20-feb-1992	23.0 23.0	UGL	00 00	TOC TOX	1000.000 134.000	LT	
P-4	RDWC*50	CGH	20-feb-1992	23.0	UGL	UN18	124TCB	1.800	LŤ	
P-4	RDUC*50	CGM	20-feb-1992	23.0	UGL	LW18	12DCLB	1.700	LT	
P-4	ROWC*50	CCA	20-feb-1992	23.0	UGL	UN18	12DPH	2.000	ND	R
P-4 P-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UN18 UN18	13DCLB 14DCLB	1.700 1.700	ĻŢ	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UNIS	245TCP	5.200	LT LT	
P-4	RDWC*50	CCH	20-feb-1992	23.0	UGL	UM18	246TCP	4.200	LT	
P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UN18	24DCLP	2.900	LT	
P-4 P-4	RDWC*50 RDWC*50	CGW	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18 UM18	240MPN 240MP	5.800 21.000	LT LT	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	19418	24DNT	4.500	LT	
P-4	ROWC*50	ÇGW	20-feb-1992	23.0	UGL	UN18	26DNT	0.790	LT	
P-4 P-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18	2CLP	0.990	LŢ	
P-4	ROWC*50	CGW	20-feb-1992	23.0	UGL	UM18 UM18	ZCNAP ZMNAP	0.500 1.700	LT LT	
P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UN18	2MP	3.900	LT	
P-4	RDMC*50	CGW	20-feb-1992	23.0	UGL	LW18	ZNANIL	4.300	LT	
P-4 P-4	RDWC*50 RDWC*50	CGM	20 - feb - 1992 20 - feb - 1992	23.0 23.0	UGL	UN18 UN18	ZNP 330CBD	3.700	LŢ	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UN18	3NANIL	12.000 4.900	LT LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	46DN2C	17,000	LT	
P-4	RDWC*50	CCA	20-feb-1992	23.0	UGL	LW18	4BRPPE	4.200	LT	
P-4 P+4	RDWC*50 RDWC*50	CGW	20-feb-1992 20-feb-1992	23.0 23.0	UGL UGL	UM18 UM18	4CANIL 4CL3C	7.300 4.000	LT LT	
P+4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	4CLPPE	5.100	LT	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM18	4MP	0.520	LT	
P-4	RDMC*50	CGW	20-feb-1992	23.0	UGL	UN18	4NANIL	5.200	LT	
P-4 P-4	RDWC*50 RDWC*50	CCH	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18 UM18	ANP ABHC	12.000 4.000	LT ND	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	ACLDAN	5.100	MD	Ř
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	AENSLF	9.200	ND	R
P-4 P-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18 UM18	ALDRN ANAPNE	4.700 1.700	DM LT	R
P-4	RDMC*50	CGW	20-feb-1992	23.0	UGL	UM18	ANAPYL	9.500	LT	
P-4	RDUC*50	CGM	20-feb-1992	23.0	UGL	UN18	ANTRO	0.500	LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	B2CEXM	1.500	LT	
P-4 P-4	RDMC*50 RDMC*50	CGA	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18 UM18	82CIPE B2CLEE	5.300 1.900	LT LT	
P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UM18	8ZEHP	4.800	ĹΪ	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UN18	BAANTR	1.600	LT	
P-4 P-4	RDWC*50 RDWC*50	CGW	20-feb-1992 20-feb-1992	23.0 23.0	UGL UGL	UN18	BAPYR	4.700 5.400	LŢ	
P-4	RDUC*50	CGM	20-feb-1992	23.0	UGL	UM18 UM18	BBFANT BBKC	4.000	LT ND	R
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGĻ	UN18	BBZP	3.400	LT	•
P-4	RDUC*50	CGW	20-feb-1992	23.0		UN18	BENSLF	9.200	NO	R
P-4 P-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL UGL	UN18 UN18	BENZID BENZQA	10,000 13,000	NO	R
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM18	BCHIPY	6.100	LT LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	BKFANT	0.870	Ľτ	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM18	8ZALC	0.720	LT	
P-4 P-4	RDWC*50 RDWC*50	CCF	20-feb-1992 20-feb-1992	23.0 23.0	UGL UGL	UM18 UM18	CHRY CL68Z	2.400 1.600	LT LT	
P-4	RDWC*50	CGM	20-feb-1992		UGL	UN18	CLOCP	8.600	ĻŤ	
P-4	RDMC*50	CGM	20-feb-1992	23.0	UGL	UM18	CL6ET	1.500	LT	
P-4	RDMC*50	CGW	20-feb-1992	23.0		UM18	DBAHA	6.500	LT	_
P-4 P-4	RDWC*50 RDWC*50	CCM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	um18 um18	DBHC DBZFUR	4.000 1.700	ND LT	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	DEP	2.000	LT	
P-4	RDVC*50	CCM	20-feb-1992	23.0	UGL	UM18	DLDRN	4.700	ND	R
P-4	RDMC*50	CCA	20-feb-1992	23.0	UGL	LM18	DMP	1.500	LT	
P-4 P-4	RDWC*50 RDWC*50	CCA	20-feb-1992 20-feb-1992	23.0 23.0	UGL UGL	UN18 UN18	DKBP DXOP	3.700 15.000	LT LT	
P-4	RDWC*50	CGH	20-feb-1992	23.0	UGL	UN18	ENDRN	7.600	ND	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	ENDRNA	8.000	ND	Ř
P-4	RDUC*50	CCM	20-feb-1992	23.0	UGL	UN18	ENDRNK	8.000	ЖD	R
P-4 P-4	RDUC*50 RDUC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL UGL	UM18 UM18	ESFSO4 FANT	9.200 3.300	ND LT	R
P-4	ROWC*50	CGM	20-feb-1992	23.0	UGL	UN18	FLRENE	3.700	LT	
P-4	RDWC*50	COM	20-feb-1992	23.0	UGL	UN18	GCLDAN	5.100	ND	R

Site ID	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UN18	HCBD	3.400	ĻŢ	
P-4	RDMC*50	CGW	20-feb-1992	23.0	UGL	UN18	HPCL	2.000	ND	R
P-4 P-4	RDMC*50	CGW	20-feb-1992	23.0	UGL	UH18	HPCLE	5.000	ND	R
p-4	RDWC*50 RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18	I COPYR	8.600	LT	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL UGL	UN18 UN18	ISOPHR LIN	4.800	LŤ	•
P-4	RDUC*50	CGW	20-feb-1992	23.0	UGL	UM18	MEXCLR	4.000 5,100	NO NO	R R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	NAP	0.500	LT	ĸ
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	NB	0.500	LT	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	NNDKEA	2.000	ЖĎ	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN18	NNDNPA	4.400	LT	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM18	KNDPA	3.000	LT	
P~4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	PC8016	21.000	ND	R
P-4	RDWC*50	CGN	20-feb-1992	23.0	UGL	UM18	PCB221	21.000	ЖD	R
P-4 P-4	RDMC*50	CGM	20-feb-1992	23.0	UGL	LM18	PC8232	21,000	ND	R
P-4	RDWC*50	CGM	20-feb-1992 20-feb-1992	23.0 23.0	UGL	UM18 UM18	PCB242 PCB248	30.000	ND	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	PCB254	30.000 36.000	ND -	R R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	PCB260	36.000	NO.	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	PCP	18.000	LT	•
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UN15	PHANTR	0.500	ĻŢ	
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UN18	PHENOL	9.200	ĹŤ	
P-4	RDUC*50	CCM	20-feb-1992	23.0	UGL	UN18	PPDDD	4.000	ND	R
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	PPODE	4.700	ND	R
_P-4	RDWC*50	CCM	20-feb-1992	23.0	UGL	UM18	PPOOT	9.200	MD	R
P-4	RDWC*50	CGM	20-feb-1992	23.0	UGL	UK18	PYR	2.800	LŤ	
P-4	RDWC*50	CGW	20-feb-1992	23.0	UGL	UM18	TXPHEN	36.000	ЖD	R
P-4 S4W-1	RDWC*50	CGM	20-feb-1992	23.0	UGL	UM18	UNK610	50.000		S
34#-1 \$4⊌-1	RDWC*44 RDWC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0	ugl. Ugl	UM20 UM20	111TCE 112TCE	1_000	LT	
S4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	UM20	11DCE	2.400 1.000	LT LT	
S4W-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UN20	11DCLE	1.360	LT	
\$4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	12DCE	1,000	LT	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UN20	12DCLE	1.000	LT	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UM20	120CLP	1.000	LT	
S4U-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	UN20	ZCLEVE	1,420	LT	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	ACET	26.000	LT	
\$4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	ACROLN	200.000	KD	R
\$4W-1 \$4W-1	RDWC*44 RDWC*44	CCM	24-feb-1992	10.0	UGL	UN20	ACRYLO	200.000	NO	R
54W-1	RDWC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UN20 UN20	BRDCLM	1.180	LT	
S4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGŁ	UM20	C13DCP CZAVE	1.160 16.600	LT LT	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	CZH3CL	5.200	LT	
S4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	UN20	C2H5CL	3.800	ĹŤ	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UM20	C6H6	1.000	ĹŤ	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UN20	CCL3F	2.800	LT	
s4w-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UM20	CCL4	1.160	LT	
\$4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	UM20	CH2CL2	4.600	LT	
\$4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	UN20	CH3BR	11.600	LT	
\$4U-1	RDWC*44	COM	24-feb-1992	10.0	UGL	UN20	CH3CL	6.400	LT	
S4U-1 S4U-1	RDWC=44	CCM	24-feb-1992	10.0	UGL	UM20	CH8R3	5.200	LT	
54W-1	RDWC*44 RDWC*44	CGM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UN20 UN20	CHCL3 CL2BZ	1.000	LT	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	CLC6H5	20.000 1.000	ND LT	R
\$4W-1	RDWC*44	CGW	24 - feb- 1992	10.0	UGL	UM20	CS2	1.000	LT	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	DBRCLM	1.340	LT	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UM20	ETC6H5	1.000	ĹŤ	
\$4¥-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	MEC6H5	1.000	LT	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	KEK	12.800	LT	
\$4 U-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UNZO	MISK	6.000	LT	
S4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	UH20	WHEK	7.200	LT	
S4W-1	RDUC*44	CCM	24-feb-1992	10.0	UGL	UN20	STYR	1.000	LŤ	
S4W-1	RDUC*44	ÇGW	24 - feb - 1992	10.0	UGL	UM20	T130CP	1.400	ĻŢ	
\$4U-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UM20	TCLEA	1.020	LŤ	
S4W-1 S4W-1	RDWC*44 RDWC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UM20	TCLEE	3.200	LT	
54W-1	RDWC*44	COM	24-feb-1992	10.0	UGL UGL	UM20 UM20	TRCLE UNK198	1.000	LT	
S4U-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UM20	UNK 198	12.000 10.000		S
S4W-1	RDMC*44	CGW	24-feb-1992	10.0	UGL	UM20	UNK200	40.000		\$ \$
S4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGŁ	UM20	UNK211	20.000		s S
S4V-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM20	XYLEN	1.680	LT	•
S4W-1	RDWC*44	CCH	24-feb-1992	10.0		00	PH	7.280		K
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	00	TOX	46.100		
S4W-1	RDWC*44	CCM	24-feb-1992	10.0	UGL	00	TOC	9930.000		

Site ID	Field !D	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>flag</u>	Internal Std. Code
			3/ /-h 1000	40.0						
54W-1 54W-1	RDWC=44 RDWC=44	CCA	24-feb-1992 24-feb-1992	10.0 10.0	UGL UGL	UM 18 UM 18	124TC8 12DCL8	1.800 1.700	lt Lt	
S4U-1	RDUC-44	CGA	24 - feb- 1992	10.0	UGL	UM18	120PH	2.000	ND	R
S4W-1	RDWC*44	CCH	24 - feb - 1992	10.0	UGL	UH18	130CLB	1.700	LT	•
S4W-1	RDWC-44	CGW	24-feb-1992	10.0	UGL	UN18	14DCLB	1.700	LT	
54W-1 54W-1	RDUC*44 RDUC*44	CGA	24-feb-1992 24-feb-1992	10.0 18.0	UGL	UM18 UM18	245TCP 246TCP	5.200 4.200	LT	
S4W-1	RDUC*44	CGW	24 - feb - 1992	10.0	UGL	UM18	240CLP	2.900	LT LT	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UK18	24DMPN	5.800	ĹŤ	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UM18	240NP	21.000	LT	
54u-1 54u-1	RDUC*44 RDUC*44	CGM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UM18 UM18	24DNT 26DNT	4.500 0.790	LŢ LŢ	
54U-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	ÚH18	2CLP	0.990	LT	
S4W-1	RDWC+44	CGM	24-feb-1992	10.0	UGL	UN18	2CNAP	0.500	LT	
54W-1	RDUC*44	CCM	24-feb-1992	10.0	UGL	UN18	ZMNAP	53.300		
54W-1 54W-1	RDWC*44 RDWC*44	CGW	24-feb-1992 24-feb-1992	10.8 10.0	UGL	UM18 UM18	ZMP ZNANIL	3.900 4.300	LT LT	
S49-1	ROWC*44	CGW	24-feb-1992	10.0	UGL	UN18	2NP	3.700	LT -	
S4W-1	RDWC+44	CCM	24-feb-1992	10.0	UGL	UN18	2TMPD	90-000		S
\$4W-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UN18	330CBD	12.000	LT	
\$44-1 \$44-1	RDWC*44 RDWC*44	CGM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UM18 UM18	3XANIL 460N2C	4.900 17.000	LT LT	•
S4W-1	RDUC*44	CGA	24-feb-1992	10.0	UGL	UH18	4BRPPE	4.200	LT	
s4W-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UM18	4CAN1L	7.300	ĹŤ	
_ \$4 <u>1</u> -1 . \$40-1 .	RDWC*44	CGW	24-feb-1992	10.0	UGL	UK18	4CL3C	4.000	LT	
54W-1	RDWC*44 RDWC*44	CCA	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UN18 UN18	4CLPPE 4MP	5.100 0.520	LT LT	
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UH18	4HANIL	5-200	LŢ	
\$4w-1	RDWC+44	CGM	24-feb-1992	10.0	UGL	UN18	4NP	12.000	LT	
S4¥-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UM18	ABHC	4.000	ND	R
54W-1 54W-1	RDWC*44 RDWC*44	CGM	24-feb-1992 24-feb-1992	10.0 10.0	ngt	UN18 UN18	ACLDAN AENSLF	5.100 9.200	ND ND	R R
S4W-1	RDWC*44	CGW	24-feb-1992	10.0	UGL	UM18	ALDRN	4.700	ND	Ř
S4W-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UH18	ANAPHE	18.000		
S4W-1	RDWC*44 RDWC*44	CGM	24-feb-1992	10.0	UGL	UM18	ANAPYL	0.500	LT	
\$44-1 \$44-1	RDUC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UM18 UM18	ANTRO B2CEXM	0.500 1.500	LT LT	
S49-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UN18	B2C1PE	5.300	ĽŤ	
S4W-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UN18	BZCLEE	1.900	LT	
54W-1 54W-1	RDUC*44 RDUC*44	CGM	24-feb-1992 24-feb-1992	10.0 10.0	UGL UGL	UK18	BZEHP	4.450		
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UM18 UM18	BAANTR BAPYR	1.600 4.700	LT LT	
S4W-1	RDWC+44	CGW	24-feb-1992	10.0	UGL	UM18	BBFANT	5.400	ĹŤ	
S4₩-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UM18	BBHC	4.000	MD	R
S4W-1 S4W-1	RDUC*44 RDUC*44	CGW	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UM18 UM18	8BZP Benslf	3.400 9.200	LT ND	
S4y-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UK18	BENZID	10,000	ND	R
54W-1	RDUC*44	CGM	24 - feb- 1992	10.0		UN18	8ENZCA	13.000	LT	••
S4W-1	RDWC*44	CGW	24-feb-1992	10.0		UM18	BGHIPY	6.100	LT	
S4W-1 S4W-1	RDWC*44 RDWC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0	ugl ugl	UN18 UN18	BKFANT BZALC	0.870 0.720	LT LT	
54u-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UM18	CHRY	2.400	LT	
S4W-1	RDWC*44	CGM	24-feb-1992	10.0	UGL	UN18	CL6BZ	1.600	LT	
\$4W-1	RDWC*44	CGW	24-feb-1992	10.0		UN18	CL6CP	8.600	LŢ	
54W-1 54W-1	RDUC*44 RDUC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0	UGL	UM18 UM18	CL6ET DBAHA	1.500 6.500	LT LT	
s4u-1	RDUC*44	CCM	24-feb-1992	10.0		UN18	DBHC	4.000	ND	R
S4W-1	RDUC*44	CGW	24-feb-1992	10.0		UM18	DSZFUR	1.700	LT	
S4W-1	RDWC*44 ROWC*44	CGM	24-feb-1992	10.0		UN18	DEP	2.000	LT	
S4W-1 S4W-1	RDWC*44	CCM	24-feb-1992 24-feb-1992	10.0 10.0		UM18 UM18	DLDRM DMP	4.700 1.500	ND LT	R
S4W-1	RDUC*44	CGW	24-feb-1992	10.0		UM18	DNBP	3.700	LT	
\$4W-1	RDUC*44	CGM	24-feb-1992	10.0	UGL	UN18	DNOP	15.006	LT	_
54u-1 54u-1	RDWC*44 RDWC*44	CCA	24-feb-1992 24-feb-1992	10.0	-	UM18	ENDRN	7.600	ND ND	R
549-1 549-1	RDWC=44	CGM	24-feb-1992	10.0 10.0		UM18 UM18	ENDRNA ENDRNK	8.000 8.000	ND ND	R R
54W-1	RDWC*44	CCM	24-feb-1992	10.0		UN18	ESFS04	9.200	ND	Ř
S4W-1	RDWC*44	CCH	24-feb-1992	10.0		UN18	FANT	4.020		
549-1 \$49-1	RDWC=44	CGW	24-feb-1992 24-feb-1992	10.0	UGL	UM18	FLRENE	42.700	1207	
\$44-1 \$44-1	RDUC*44 RDUC*44	CCA	24-feb-1992 24-feb-1992	10.0 10.0	UGL UGL	UM18 UM18	GCLDAN HCBD	5-100 3-400	ND LT	R
S4U-1	RDUC*44	CCA	24-feb-1992	10.0		UN18	HPCL	2-000	ND	Ŕ
54W-1	RDUC*44	CGW	24-feb-1992	10.0	UGL	UH18	HPCLE	5.000	ND	R
s4W-1	RDWC*44	CGM	24 - feb - 1992	10.0	UGL	UN18	ICDPYR	8.600	LT	

\$40-1	Site ID	Field 10	<u>Media</u>	Date	<u>Depth</u>	Units	Analytical Method	Analyte Abbry.	. Value	Flag	Internal Std. Code
SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS EXT. 4.000 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS MAP 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 LT SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS PERSON 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS NOTES 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS NOTES 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS NOTES 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS NOTES 0.500 NO R SAU-1 ROUCEAL COU 24-160-1992 10.0 USL UNIS NOTES 0.500	e/u_t	SDI WALL		2/ 5-1- 1003	40.0						
SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 RECLEX 5.100 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 NBMPA 0.500 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 NBMPA 4.400 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 NBMPA 4.400 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 NBMPA 4.400 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 NBMPA 4.400 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 NBMPA 4.400 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE21 21.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE21 21.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE21 21.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE22 21.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE22 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE24 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE24 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE24 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE26 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE26 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PGE26 30.000 NO R SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 PF000 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH18 UH185 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH18 UH185 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH18 UH185 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH18 UH185 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH185 UH185 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH185 UH185 LT SAM-1 ROUCHA COM 24-feb-1992 10.0 UGL UH18 UH185 U											
SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NUP 0.500 LT SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NB DEPA 4.000 LT SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NB NB 2.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NB NB A 4.000 LT SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NB NB A 4.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NB NB A 4.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NB NB A 4.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE251 21.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE252 21.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE252 21.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE252 21.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE253 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 PGE254 30.000 ND R SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NG SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NG SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NG SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18 NG SAU-1 ROUTE-4 CDU 24-feb-1992 10.0 UGL UH18											
SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 MINDEA 2.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 MINDEA 4.400 LT SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 MINDEA 4.400 LT SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 MINDEA 4.400 LT SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB05 4.400 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB05 21.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB252 21.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB252 21.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB252 21.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB254 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB254 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB254 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB260 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB260 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB260 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB260 30.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 PGB06 4.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 UK1559 20.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 UK1559 20.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 UK1559 20.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 UK1559 20.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 UK1559 20.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 USL UH18 UK1559 20.000 MO R SAU-1 ROUCHA COM 24-feb-1992 10.0 U										_	•
SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 NIDWEA 2.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 NIDWEA 4.000 LT SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 NIDWEA 4.000 LT SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB211 21.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB211 21.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB212 21.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB22 21.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB24 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB24 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB25 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB25 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB25 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB25 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB26 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB26 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB26 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB26 30.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB26 4.700 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB26 4.700 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB 5.550 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB 5.550 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB 5.550 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 PCB 5.550 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000 NO R SAU-1 ROUC-44 CDU 22-feb-1992 10.0 UGL UH18 WING-55 50.000											
SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 MIDDA 45.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS216 21.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS212 21.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS222 21.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS222 21.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS222 21.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS222 33.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS226 35.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS226 35.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS226 35.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS226 36.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS266 36.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS266 36.000 ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 PCS 26.00 ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 ND ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 ND ND ND ND R SAU-1 RDLC-44 CDL 24-feb-1992 10.0 UBL UN18 ND ND ND ND ND ND ND ND ND ND ND ND ND		RDWC*44	CGM	24 - feb - 1992				-			R
SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB016 21.000 MD R R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB221 21.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB222 21.000 MD R R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB222 21.000 MD R R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB222 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB223 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 PCB226 30.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1851 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1855 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1855 20.000 MD R SAU-1 RDLC*44 CDL 24-feb-1992 10.0 UBL LW18 LW1855 20.000 MD R SAU-1 RDLC*44 CDL 24-feb		RDWC*44		24-feb-1992	10.0	UGL	LM18	NNDNPA	4.400		
SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 21.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 21.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 30.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 30.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 30.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 30.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS PCEZZ2 36.000 NO R SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.000 S SAU-1 ROUCY-44 CDU 24-feb-1992 10.0 USL UNIS NOSS 50.						_	LM18	NNDPA	46.000		
SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3242 30.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3242 30.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3248 30.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3248 30.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3248 36.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3240 36.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3240 36.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC3240 36.000 ND R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UGL LM18 PC4 ND ND ND ND ND ND ND ND ND ND ND ND ND										ND	
SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3242 30.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3243 30.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3243 30.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3243 30.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 36.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 36.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 36.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 36.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 4.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 4.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 4.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 4.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 PC3240 4.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND R SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS51 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS54 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS54 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS54 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS54 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS54 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNISS54 20.000 ND S SAU-1 ROLCY-44 COM 24-feb-1992 10.0 USL LW18 UNIS											
SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB254 35.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB250 36.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB250 36.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB250 36.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 LT SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 LT SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 LT SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 LT SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 LT SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 LT SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 PCB 18.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 TSPERM 36.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 TSPERM 36.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD R SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992 10.0 UBL LN18 UNICSS 50.000 MD S SAU-1 RDUCY-44 CDU 24-feb-1992										_	
SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 PC2254 36,000 NO R SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 PC26 36,000 LT SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 PPANTR 87,000 LT SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 PPANTR 87,000 LT SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 PPODE 4,700 NO R SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 PPODE 4,700 NO R SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 LW255 20.000 N R SAU-1 BOUT-44 CGI 24-feb-1972 10.0 UGL LW18 LW255 20.000											
SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDESO 35.000 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDESO 15.000 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDESO 4.700 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 4.700 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 4.700 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 4.700 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 4.700 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 4.700 NO R SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 5.550 SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 5.550 SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 5.550 SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 5.550 SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS PEDES 5.550 SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS UNISS 5.0 UNIS SAU-1 BOUCY-4 COM 24-feb-1992 10.0 UEL UNIS UNISS 22.0000 S SAU-1 BOUCY-4											
\$44-1			-								
SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PHEND 9.200 IT SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PHEND 9.200 IT SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PHEND 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PHEND 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PHEND 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PROT 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PROT 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PROT 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS PROT 9.200 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS UNIS 9.300 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS UNIS 9.300 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS UNIS 9.300 ND R SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS UNIS 9.300 ND S SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS UNIS 9.300 ND S SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS UNIS 9.300 ND S SAU-1 RDUCY-44 CGU 24-feb-1992 10.0 UGL UNIS 9.300 ND S SAU-1 RDUC										_	n.
SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 PHENDL 9.200 LT SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 PP000 4.000 ND R SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9.200 ND R SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9.200 ND R SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9.200 ND R SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 TYPEN 36.000 ND R SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 TYPEN 36.000 ND R SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 50.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 40.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 40.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 40.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 40.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 40.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 20.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb-1992 10.0 UGL UN18 UNISSS 30.000 S SALF-1 RDUCC44 CGN 24-feb											
SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 PP000 4,700 ND R SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9,200 ND R SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9,200 ND R SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9,200 ND R SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 PP00T 9,200 ND R SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 50,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC555 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC556 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC565 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC577 20,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC579 30,000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC579 10.000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC579 10.000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC579 10.000 S SALI-1 RDNC-44 CGN 24-feb-1992 10.0 UGL UN18 UNC579 10.000 S SALI-1 RDNC-44 CGN 24-feb-19	\$4 ⊌-1	RDUC*44	CGW							LT -	
SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 PPOR 5.330 NO R SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 PYR 5.330 NO R SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 50.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK555 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK556 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK563 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK563 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK563 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 20.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL UN18 WK565 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK565 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL WK18 WK569 30.000 S SAU-1 RONC-44 COM 24-feb-1992 10.0 UGL		RDWC*44	CGM	24-feb-1992	10.0	UGL	UN18				R
SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 TYPREN 36.000 MD R SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 TYPREN 36.000 MD R SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 40.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 40.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 40.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 40.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 40.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS52 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS52 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS52 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS56 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 20.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS57 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS57 50.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS57 50.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992 10.0 UGL UH18 UNICS55 30.000 S SAU-1 RDVC-44 CDW 24-feb-1992					10.0		UN18	PPODE	4.700	ND	R
SALI-1 ROUGHAL COJ 24-Feb-1992 10.0 UEL UH18										ND	R
SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX555 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX562 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX564 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX564 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX564 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX564 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX565 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX565 20.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX565 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX565 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX565 70.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX565 70.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX575 30.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX577 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX577 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX577 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX578 50.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX579 10.000.00 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX579 10.000.00 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX579 10.000.00 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX579 10.000.00 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX599 60.000 S SAU-1 ROUCY-64 CGV 24-feb-1992 10.0 UGL UH18 UNIX599 60.000 S SAU-1 ROUCY-64 CGV 28-feb-1992 10.0 UGL UH18 UNIX599 60.000 S SAU-1 ROUCY-64 CGV 28-feb-1992 10.0 UGL UH18 UNIX5											
SA44-1 RDMC*44 CGV 24-feb-1992 10.0 UEL UH18 UNIS51 20.000 S										MD	
SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX552 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX555 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX555 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX555 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX555 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX562 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX562 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX564 50.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX565 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX565 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX565 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX565 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX565 20.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX569 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX575 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX575 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX575 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX579 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX595 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX595 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX595 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX595 30.000 S SAU-1 RDUC"44 CDV 24-feb-1992 10.0 UCIL UH18 UNIX597 10.0 UCIL UNIX59 10.0 UCIL UNIX59 10.0 UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL UCIL											
SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 20.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 30.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 30.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 30.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL WHI BURSSS 50.000 S SAU-1 RDWC*44 CDW 24-feb-1992 10.0 UGL W											
SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX559 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX559 40.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX561 40.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX562 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX562 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX565 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX565 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX565 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX565 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX565 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX565 20.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 30.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 30.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX575 30.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX579 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"44 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 S SAU-1 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX580 50.000 LT SAU-4 RDUC"46 CDM 24-feb-1992 10.0 UGL UH18 UHX680 50.000 LT SAU-	•										
\$44-1 RDUC**44 CDW 24-feb-1992 10.0 UGL WH18 UNX556											
\$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$63 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$63 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$63 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$64 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$65 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$68 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$68 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$68 20.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$67 30.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$75 30.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$75 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$78 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$78 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$78 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$78 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*44 CGU 24-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*46 CGU 28-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*46 CGU 28-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-1 RDMC*46 CGU 28-feb-1992 10.0 UGL UM18 UMC\$60 50.000 \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 RDCLM 0.000 ND R \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 CRACE 0.500 LT \$ \$444-4 RDMC*46 CGU 28-feb-1992 14.0 UGL UM20 CRACE 0.500 LT \$ \$444-4 RDMC*46 CGU 2											Š
SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS62 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS63 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS65 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS65 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS65 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS69 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS69 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS69 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS76 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS76 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS76 20.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS76 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS79 10000.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS79 10000.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS64 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS64 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS66 30.000 S SAM-1 RDMC*44 CGM 24-feb-1992 10.0 UGL UN18 UNISS66 30.000 S SAM-1 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS66 30.000 S SAM-1 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS66 30.000 S SAM-1 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS66 30.000 S SAM-1 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS66 30.000 S SAM-4 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS60 30.000 S SAM-4 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS60 30.000 S SAM-4 RDMC*46 CGM 24-feb-1992 10.0 UGL UN18 UNISS60 30.000 S SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 11DCE 0.500 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 11DCE 0.500 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 11DCE 0.500 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 12DCLP 0.500 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CDLEVE 0.710 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CDLEVE 0.710 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CDLEVE 0.710 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CDLEVE 0.500 LT SAM-4 RDMC*46 CGM 28-feb-1992 14.0 UGL						_					š
\$441-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK563 20.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK565 20.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK565 20.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK565 20.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK569 30.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK575 30.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK575 30.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK575 30.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK575 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK576 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK577 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK578 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK578 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK580 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK580 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK580 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK580 50.000 \$ \$444-1 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK590 40.000 \$ \$444-4 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK590 40.000 \$ \$444-4 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK590 40.000 \$ \$444-4 RDNC*44 CGU 24-feb-1992 10.0 UGL UH18 UNK590 10.000 \$ \$444-4 RDNC*44 CGU 28-feb-1992 14.0 UGL UH20 111TCE 0.500 LT \$ \$444-4 RDNC*44 CGU 28-feb-1992 14.0 UGL UH20 110CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 110CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 120CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 120CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 120CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 120CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 120CE 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 C2RCFU 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 C2RCFU 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 C2RCFU 0.500 LT \$ \$444-4 RDNC*46 CGU 28-feb-1992 14.0 UGL UH20 C2RCFU 0.500 LT \$ \$444-4 RDNC*46 C	S4W-1	RDWC*44	CGW	24-feb-1992					-		Š
\$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK564 50.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK568 20.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK568 20.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 50.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 50.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 50.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK575 50.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK579 1000.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK579 1000.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK586 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK585 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK585 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK585 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK585 30.000 \$ \$44-1 RDMC*44 CGM 24-feb-1992 10.0 UGL LM18 UNK590 40.000 \$ \$44-1 RDMC*44 CGM 28-feb-1992 10.0 UGL LM18 UNK590 50.000 \$ \$44-4 RDMC*44 CGM 28-feb-1992 14.0 UGL LM20 111TCE 0.500 LT \$ \$44-4 RDMC*44 CGM 28-feb-1992 14.0 UGL LM20 111TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL LM20 110TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 110TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 110TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 120TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 120TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 120TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 120TCE 0.500 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CXCLEVE 0.710 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CXCLEVE 0.700 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CXCLEVE 0.700 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CXCLEVE 0.700 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992 14.0 UGL UN20 CXCLEVE 0.700 LT \$ \$44-4 RDMC*46 CGM 28-feb-1992		RDMC+44		24-feb-1992	10.0	UGL	UN18	UNK563	20.000		
\$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK568 20.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK575 30.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK575 30.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK575 30.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK578 50.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK578 50.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK579 10000.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK579 10000.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK589 30.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK584 30.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK580 50.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK580 30.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK580 00.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK580 00.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK590 40.000 \$ \$44-1 RDUC*44 CGW 24-feb-1992 10.0 UGL W118 UNK605 20.000 \$ \$44-1 RDUC*44 CGW 28-feb-1992 14.0 UGL W118 UNK605 20.000 \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 111TCE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 11DCE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 11DCE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 1DCLE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 1DCLE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 1DCLE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 1DCLE 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 2DCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 2DCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 2DCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 2DCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 2DCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 CDCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 CDCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 CDCLP 0.500 LT \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W120 CDCLS 1.000 ND R \$ \$44-4 RDUC*46 CGW 28-feb-1992 14.0 UGL W1						UGL	UM18		50.000		S
\$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$69 30.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$76 20.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$76 20.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$78 50.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$79 1000.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$79 10000.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$79 10000.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$80 50.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$85 30.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$85 30.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$85 30.000 \$ \$44-1 RDUC*44 CGJ 24-feb-1992 10.0 UGL UM18 UNIC\$85 30.000 \$ \$44-4 RDUC*46 CGJ 28-feb-1992 10.0 UGL UM18 UNIC\$85 20.000 \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 1117CE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 1117CE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 111CE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 CCJSCL 1.900 ND R \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 CCJSCL 1.900 ND R \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 CCJSCL 1.900 LT \$ \$44-4 RDUC*46 CGJ 28-feb-1992 14.0 UGL UM20 CCJSCL 2.300 LT \$ \$44-4 RDUC		_									\$
\$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK575 30.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK575 50.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK578 50.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK578 50.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK580 50.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK580 50.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK580 30.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK590 40.000 \$ \$4N-1 RDNC*44 CGN 24-feb-1992 10.0 UGL UM18 UNK590 20.000 \$ \$4N-1 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 11TCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCL 0.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 UGL UM20 12DCL 1.500 LT \$ \$4N-4 RDNC*46 CGN 28-feb-1992 14.0 U											
\$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK576 20.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK579 10000.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK579 10000.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK584 30.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 30.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 00.000 \$ \$4M-1 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 00.000 \$ \$4M-4 RDNC*44 CGM 24-feb-1992 10.0 UGL UM18 UNK585 00.000 \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCLEVE 0.710 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCLEVE 0.710 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCLEVE 0.710 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCLEVE 0.710 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCLEVE 1.000 ND R \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCMSCL 2.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCMSCL 2.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCMSCL 2.500 LT \$ \$4M-4 RDNC*44 CGM 28-feb-1992 14.0 UGL UM20 CCMSCL 2.500 LT \$ \$4M-4 RDNC*44 CGM											S
\$\frac{\text{S4H-1}}{\text{R0MC*44}} \text{CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UM18} \text{ UM18778} \text{ 50.000} \text{ S}\$ \$\frac{\text{S4H-1}}{\text{R0MC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UM18} \text{ UM1579} \text{ 10000 000} \text{ S}\$ \$\frac{\text{S4H-1}}{\text{R0MC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UM18} \text{ UM1580} \text{ 50.000} \text{ S}\$ \$\frac{\text{S4H-1}}{\text{R0MC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UM18} \text{ UM1585} \text{ 30.000} \text{ S}\$ \$\frac{\text{S4H-1}}{\text{R0MC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UM18} \text{ UM1585} \text{ 30.000} \text{ S}\$ \$\frac{\text{S4H-1}}{\text{ R0MC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UM18} \text{ UM15879} \text{ 40.000} \text{ S}\$ \$\frac{\text{S4H-1}}{\text{ R0MC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ 11TCE} \text{ 0.500} \text{ LT}\$ \$\frac{\text{S4H-4}}{\text{ R0MC*44}} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ 11DCE} \text{ 0.500} \text{ LT}\$ \$\frac{\text{S4H-4}}{\text{ R0MC*46}} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ 12DCLE} \text{ 0.500} \text{ LT}\$ \$\frac{\text{S4H-4}}{\text{ R0MC*46}} \text{ R0MC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ 12DCLE} \text{ 0.500} \text{ LT}\$ \$\frac{\text{S4H-4}}{\text{ R0MC*46}} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ 12DCLE} \text{ 0.500} \text{ LT}\$ \$\frac{\text{S4H-4}}{\text{ R0MC*46}} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ ACROLIN 100.000} \text{ ND} \text{ R0MC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ ACROLIN 100.000} \text{ ND} \text{ R0MC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UM20} \text{ ACROLIN 100.000} \text{ ND} R0		-									Ş
\$\frac{\text{S4H-1}}{\text{RDMC*44}} \text{CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UR18} \text{ URIX579} \text{ 10000.000} \text{ \$S\$} \$\frac{\text{S4H-1}}{\text{RDMC*44}} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UR18} \text{ URIX584} \text{ 30.000} \text{ \$S\$} \$\frac{\text{S4H-1}}{\text{RDMC*44}} \text{ RDMC*44} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UR18} \text{ URIX585} \text{ 30.000} \text{ \$S\$} \$\frac{\text{S4H-1}}{\text{RDMC*44}} \text{ RDMC*44} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UR18} \text{ URIX590} \text{ 40.000} \text{ \$S\$} \$\frac{\text{S4H-1}}{\text{RDMC*44}} \text{ RDMC*44} \text{ CGM} \text{ 24-feb-1992} \text{ 10.0} \text{ UGL} \text{ UR18} \text{ URIX590} \text{ 40.000} \text{ \$S\$} \$\frac{\text{S4H-4}}{\text{RDMC*44}} \text{ RDMC*44} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 112TCE} \text{ 1.200} \text{ LT} \text{ \$S4H-4} \text{ RDMC*44} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 11DCE} \text{ 0.500} \text{ LT} \text{ \$S4H-4} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 11DCE} \text{ 0.500} \text{ LT} \text{ \$S4H-4} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 12DCE} \text{ 0.500} \text{ LT} \text{ \$S4H-4} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 12DCE} \text{ 0.500} \text{ LT} \text{ \$S4H-4} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 22DCLF} \text{ 0.500} \text{ LT} \text{ \$S4H-4} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ 2RDC} \text{ 0.710} \text{ LT} \text{ \$S4H-4} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ ACRVIO} \text{ 100.000} \text{ ND} \text{ RDMC*46} \text{ CGM} \text{ 28-feb-1992} \text{ 14.0} \text{ UGL} \text{ UR20} \text{ CRSDC}											
\$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UNKS80 50.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UNKS85 30.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UNKS85 30.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UNKS85 30.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UNKS95 20.000 \$ \$4W-1 RDWC*44 CGW 28-feb-1992 10.0 UGL UM18 UNKS95 20.000 \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 11ECE 1.200 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 11ECE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 11ECE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12ECE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12ECE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12ECE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12ECE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12ECLE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12ECLE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 2ELEVE 0.710 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 2ELEVE 0.710 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CX2 22 2.300 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CX2 22 2.300 LT \$ \$4W-4 RDWC*4											3
\$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UMC585 30.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UMC585 30.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UMC585 30.000 \$ \$4W-1 RDWC*44 CGW 24-feb-1992 10.0 UGL UM18 UMC605 20.000 \$ \$4W-1 RDWC*44 CGW 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 110CE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 110CE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 110CE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 110CE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 2MNAP 6.000 \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLD 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLD 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLD 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLD 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLD 100.000 ND R \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 2.600 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT \$ \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2MSCL 1.900 LT											
\$\frac{84\text{N-1}}{4}\$ RD\text{RDVC*44} CGM 24-feb-1992 10.0 UGL UM18 UMKS95 30.000 \$ \$\frac{84\text{N-1}}{4}\$ RD\text{RDVC*44} CGM 24-feb-1992 10.0 UGL UM18 UMKS95 40.000 \$ \$\frac{84\text{N-1}}{4}\$ RD\text{RDVC*44} CGM 24-feb-1992 10.0 UGL UM18 UMKS95 20.000 \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 1117CE 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 1117CE 1.200 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 11DCLE 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 11DCLE 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 2DR\text{NAP} 6.000 \$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 2DR\text{NAP} 6.000 \$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 ACET 100.000 ND R \$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 CENDLIN 0.590 LT \$\$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 CENDLIN 0.590 LT \$\$\$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 CENDLIN 0.590 LT \$\$\$\$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 CENDLIN 0.590 LT \$\$\$\$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\text{RDVC*46} CGM 28-feb-1992 14.0 UGL UM20 CENDLIN 0.590 LT \$\$\$\$\$\$\$ \$\frac{84\text{N-4}}{4}\$ RD\t											
\$\frac{84\text{4}}{4}\$ ROMC*44 CGM 24-feb-1992 10.0 UGL UM18 UM16505 20.000 \$\$ \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 111TCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 11DCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 2CMAP 6.000 \$\$ \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 ACET 100.000 ND R \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 ACET 100.000 ND R \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CT30CP 0.580 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CT30CP 0.580 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CC135CP 0.580 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CC135CL 2.600 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CC135CL 2.600 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CC135CL 3.000 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CC135CL 3.200 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb-1992 14.0 UGL UM20 CC135CL 3.000 LT \$\frac{84\text{4}}{4}\$ ROMC*46 CGM 28-feb	S4W-1	RDWC*44									
SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 111TCE 1.200 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 110CE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 110CE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 110CE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 110CLE 0.680 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 120CE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 120CLE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 120CLE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 120CLE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 120CLE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 120CLE 0.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 2CLEVE 0.710 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 ACET 13.000 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 ACET 13.000 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 ACET 13.000 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 ACROLN 100.000 ND R SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 ACROLN 100.000 ND R SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 BRDCLN 0.590 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCP 0.580 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCP 0.580 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C2H3CL 2.600 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C2H3CL 2.600 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC C13F 1.400 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC C3DC 1.500 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UN20 C3DCC 2.350 LT SAW-4 RDW	S4W-1	RDUC*44	CCM	24-feb-1992	10.0	UGL					
\$\frac{84\text{A}}{4\text{4}}\$ \ \text{RDMC*46} \ \ \text{CGM} \ \ 28-feb-1992 \ 14.0 \ \ \text{UGL} \ \ \text{UR2O} \ 112TCE \ \ 0.500 \ \ \text{LT} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					10.0	UGL	LIN18	UNK605	20.000		S
\$\frac{44-4}{844-4} \text{RDMC*46} \text{CGW} \qquad \qquad \qquad \qquad \qua											
\$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 11DCLE 0.680 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 RDRDLM 0.590 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 RDRDLM 0.590 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 2.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CASCL 3.200 LT \$4W-4 RDMC*46 CGW 28											
\$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCE 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CMAP 6.000 \$ \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRT 13.000 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRT 100.000 ND R \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLO 100.000 ND R \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLO 100.000 ND R \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRTLO 100.000 ND R \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 BRDCLM 0.590 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 2.600 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 2.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 2.300 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.400 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.400 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.400 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.400 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC13F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC18F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC18F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC18F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC18F 1.500 LT \$4W-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CC18F 1.500 LT \$4W-4 RDMC*46											
\$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLE 0.500 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 2CMRAP 6.000 \$ \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACROLM 100.000 ND R \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 BRDCLM 0.590 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CCL 2.600 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CCL 2.600 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CCL 2.600 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3CCL 2.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3C 2.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3C 2.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3C 2.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3C 2.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3 3.200 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.300 LT \$44-4 RDMC*4											
\$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 12DCLP 0.500 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 2CLEVE 0.710 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 2MNAP 6.000 \$ \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 ND R \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 100.000 ND R \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 100.000 ND R \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 BRDCLN 0.590 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.500 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.500 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3CL 1.900 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3C 0.580 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.600 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.600 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.600 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$44-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CL3BZ 10.000 ND R						_					
\$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{CGW} 28-feb-1992		_									
SAW-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ZNNAP 6.000 S SAW-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACET 13.000 LT SAW-4 RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRYLO 100.000 ND R SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 BRDCLM 0.590 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2XFSCL 1.900 LT SAW-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.400 LT SAW-4											
\$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ ACET } 13.000 LT \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ ACROLM } 100.000 ND R \\ \$\frac{\text{RDMC*46}}{\text{CGW}} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ ACROLM } 0.000 ND R \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ ACROLM } 0.590 LT \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ C13DCP} 0.580 LT \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ C2AVE} 8.300 LT \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ C2H3CL } 2.600 LT \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ C2H3CL } 1.900 LT \\ \$\frac{\text{SAW-4}}{\text{RDMC*46}} \text{ RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CCL3F} \text{ 1.400 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CCL3F} \text{ 1.400 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CCL2F} \text{ 2.300 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CH3CL2} \text{ 2.300 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CH3CL2} \text{ 3.200 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CH3CL3} \text{ 3.200 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CH3CL3} \text{ 0.500 LT} \\ \$\frac{\text{SAW-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL UM20} \text{ CL56H5} \text{ 0.500 LT} \\						-				Li	9
\$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ ACROLN} \text{ 100.000 ND R} \\ \$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ ACRYLO} \text{ 100.000 ND R} \\ \$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CT3DCP} \text{ 0.580 LT} \\ \$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ C2AVE} \\ \$\frac{\text{8.300 LT}}{\text{S4W-4}} \\ \$\text{RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ C2AVE} \\ \$\frac{\text{8.300 LT}}{\text{S4W-4}} \\ \$\text{RDMC*46} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ C2H5CL} \text{ 1.900 LT} \\ \$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CC13F} \text{ 1.400 LT} \\ \$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CC13F} \text{ 1.400 LT} \\ \$\frac{\text{S4W-4}}{\text{RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH2CL2} \text{ 2.300 LT} \\ \$\frac{\text{S4W-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH3GL} \text{ 3.200 LT} \\ \$\frac{\text{S4W-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH3GL} \text{ 3.200 LT} \\ \$\frac{\text{S4W-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH8R3} \text{ 2.600 LT} \\ \$\frac{\text{S4W-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH8R3} \text{ 2.600 LT} \\ \$\frac{\text{S4W-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH8R3} \text{ 2.600 LT} \\ \$\frac{\text{S4W-4}}{\text{ RDMC*46}} \text{ CGW} \text{ 28-feb-1992} \text{ 14.0 UGL} \text{ UM20} \text{ CH8R3} \text{ 2.600 LT} \\ \$\frac{\text{ CGM}}{										17	•
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 ACRYLO 100.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 BRDCLM 0.590 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2AVE 8.300 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 2.600 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCH3CL 1.900 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.400 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.400 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL4 0.580 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH2CL2 2.300 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 5.000 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 5.000 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3GR 0.500 LT											R
\$\frac{44-4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 C13DCP 0.580 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 C2A\cong 8.300 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 C2H3CL 2.600 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 C6H6 0.500 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CCL3F 1.400 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CCL4 0.580 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH2CL2 2.300 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\c^*46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{54\cong 4}{4}\$ RD\c\cong 46 CG\cong 28-feb-1992 14.0 UGL UM20 CH3BR 5.0		RDWC*46			14.0	UGL	UN20	ACRYLO	100.000		
\$\frac{\capacle \text{S4W-4}}{\capacle \text{RDWC*46}} \text{CGW} & 28-feb-1992 & 14.0 \text{ UGL} & UM20 & C2AVE & 8.300 \text{ LT} \\ \$\frac{\capacle \capacle \text{S4W-4}}{\capacle \capacle						UGL			0.590	LT	
\$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 C2H3CL 2.600 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 C2H3CL 1.900 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 C6H6 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CCL3F 1.400 LY \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CCL4 0.580 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CL2 2.300 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3BR 3.200 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3BR 3 2.600 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CL3 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CL3 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CL3 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CL3 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CL3 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$ CGW 28-fab-1992 14.0 UGL UM20 CH3CH5 0.500 LT \$\frac{\text{S4W-4}}{\text{RDWC*46}}\$										LT	
\$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C2H5CL 1.900 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 C6H6 0.500 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.400 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL4 0.580 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH2CL2 2.300 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.000 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3C3 0.500 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH2C3 0.500 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R											
\$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ C6H6 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL3F \ 1.400 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL4 \ 0.580 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK2CL2 \ 2.300 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK3BR \ \$\frac{5.800}{3.200} \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK3BR \ \$\frac{5.800}{3.200} \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK3CL \ 3.200 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK3CL \ 3.200 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK3CL \ 3.000 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CK3CL \ 3.000 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ CGW \ 28-feb-1992 \ 14.0 \ UGL \ UM20 \ CCL685 \ 0.500 \ LT \ \$\frac{54W-4}{8PWC*46} \ C											
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL3F 1.400 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL4 0.580 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH2CL2 2.300 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHBR3 2.600 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 0.500 LT						_					
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CCL4 0.580 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH2CL2 2.300 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHBR3 2.600 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH23 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 0.794						-					
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH2CL2 2.300 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH8R3 2.600 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL2BZ 0.794											
\$4W-4 RDVC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3BR 5.800 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CLC6H5 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794											
\$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3CL 3.200 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CH3C3 2.600 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 0.500 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL26H5 0.500 LT \$\text{S4W-4}\$ RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794						_					
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHRR3 2.600 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL26H5 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794						-					
\$\text{S4W-4}\$ RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CHCL3 0.500 LT \$\text{S4W-4}\$ RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$\text{S4W-4}\$ RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CLC6H5 0.500 LT \$\text{S4W-4}\$ RDMC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794											
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CL28Z 10.000 ND R \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CLC6H5 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794											
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CLC6H5 0.500 LT \$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794											R
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 CS2 0.794		RDWC*46	CGW								- -
\$4W-4 RDWC*46 CGW 28-feb-1992 14.0 UGL UM20 DBRCLM 0.670 LT						UGL			0.794	-	
	54W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM20	DBRCLM	0.670	LT	

Site ID	<u>Field ID</u>	<u>Media</u>	<u>Date</u>	Depth	<u>Units</u>	Analytical Method			<u>Flag</u>	internal Std. Code
S4U-4	RDWC*46	CCH	28 · feb- 1992	14.0	UGL	UM2Q	ETC6H5	0.500	ĻŢ	
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UM20	MEC6H5	0.500	LT	
S4W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UN20	MEK	6.400	LT	
\$4W-4	RDUC*46	CCM	28-feb-1992	14.0	UGL	UN20	MIBK	3.000	LT	
54W-4 54W-4	RDWC*46 RDWC*46	CCA	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UM20 UM20	MNBK Styr	3.600 0.500	LT LT	
S4W-4	RDWC*46	CCH	28-feb-1992	14.0	UGL	UH20	T13DCP	0.700	LT	
S44-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN20	TCLEA	0.510	LT	
S44-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM20	TCLEE	1.600	LT	
\$4 4 -4	RDUC*46	CCM	28-feb-1992	14.0	UGL	W120	TRCLE	0.500	LT.	
54W-4 54W-4	RDUC*46 RDUC*46	CGM	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UM20 00	XYLEN	0.840	LT	
54W-4	RDUC*46	CGW	28-feb-1992	14.0	UGL UGL	UM18	TOC 124TCB	14900.000 1.800	LŤ	
S4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UN18	120CLB	1.700	LT	
S4W-4	RDMC*46	CGW	28-feb-1992	14.0	UGL	UN18	120PH	2.000	HD	R
54W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UN18	13DCLB	1.700	LT	
54W-4 54W-4	RDUC*46	CGW	28- feb- 1992	14.0	UGL	UNIS	14DCLB	1.700	LT	
544-4 544-4	RDWC*46 RDWC*46	CCA	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UN18 UN18	2451CP 2461CP	5.200 4.200	LT	
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UM18	Z4DCLP	2.900	ĻŢ	
\$4W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UM18	24DMPN	5.800	ĹŤ	
54U-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM18	24DNP	21.000	ĻŤ	
\$4 4 -4	RDWC*46	CCM	28-feb-1992	14.0	UGL.	UK18	24DNT	4.500	LT	
S4W-4 S4W-4	RDWC*46 RDWC*46	CCH	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UN18	260NT	0.790	LT	
S4W-4 S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UM18 UM18	2CLP 2CNAP	0.990 0.500	LT LT	
S4W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UM18	2MNAP	1.700	LT	
S4U-4	RDUC*46	CGW	28-feb-1992	14.0	UGL	UN18	2MP	3.900	LT	
S4W-4	RD⊌C*46	CGW	28-feb-1992	14.0	UGL	UN18	2NANIL	4.300	LT	
S4H-4	RDUC*46	CGW	28-feb-1992	14.0	UGL	UM18	2NP	3.700	LT	
544-4 544-4	RDUC*46 RDUC*46	CGM	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UH18	33DCBD 3NANIL	12.000	LŢ	
54W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM18 UM18	46DNZC	4.900 17.000	LT LT	
\$4W-4	RDUC*46	CCM	28-feb-1992	14.0	UGL	UN18	4BRPPE	4.200	LT	
54W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN18	4CANIL	7.300	LT	
\$4W-4	RDUC*46	CCU	28-feb-1992	14.0	UGL	UN18	4CL3C	4-000	LT	
54u-4 54u-4	RDWC*46 RDWC*46	CGM	28-feb-1992 28-feb-1992	14.0 14.0	UGL UGL	UM18 UM18	4CLPPE	5.100 0.520	LT	
\$4W-4	RDUC*46	CGM	28-feb-1992	14.0	UGL	UM18	4NANIL	5.200	LT	
S4H-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UN18	4NP	12.000	LŤ	
S44-4	RDUC*46	CCH	28-feb-1992	14.0	UGL	UM18	ABHC	4.000	ND	R
\$4W-4	RDUC*46	CGW	28-feb-1992	14.0	UGL	UH18	ACLDAN	5-100	ND	R
544-4 544-4	RDWC*46 RDWC*46	CCA	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UM18 UM18	AEMSLF ALDRN	9.200 4.700	ND	8
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN18	AXAPNE	1.700	ND LT	R
\$4¥-4	RDWC*46	CGH	28-feb-1992	14.0	UGL	UN18	ANAPYL	0.500	LŤ	
S4¥-4	RDWC*46	CGW	28- feb- 1992	14.0	UGL	UN18	ANTRO	0.500	LT	
S4¥-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UH18	B2CEXH	1.500	LŦ	
S4W-4	RDWC*46	CGW	28-feb-1992 28-feb-1992	14.0	UGL	UN18	B2CIPE	5.300	LT	
544-4 544-4	RDUC*46 RDUC*46	CCM	28-feb-1992	14.0 14.0	UGL UGL	UN18 UN18	B2CLEE B2EHP	1.900 4.800	LT LT	
S4W-4	RDUC*46	CGM	28-feb-1992	14.0	UGL	UH18	BAANTR	1.600	LT	
S4U-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UN18	BAPYR	4.700	LŤ	
\$4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UH18	BBFANT	5.400	ĻŢ	
54W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM18	BBHC	4-000	ND	R
544-4 544-4	RDUC*46 RDUC*46	CGM	28- feb- 1992 28- feb- 1992	14.0 14.0	UGL	UM18 UM18	BBZP BENSLF	3.400 9.200	LT	
S4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UN18	BENZID	10.000	ND ND	R R
S4W-4	RDWC*46	COM	28-feb-1992	14.0	UGL	UM18	BENZOA	13.000	LT	•
S4W-4	RDYC*46	CGM	28-feb-1992	14.0	UGL	UM18	BCHIPY	6. 100	LT	
S4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UN18	BKFANT	0.870	LT	
54W-4 54W-4	RDUC*46 RDUC*46	CGM	28-feb-1992 28-feb-1992	14.0 14.0	ugl ugl	UN18 UN18	BZALC CHRY	0.720	LT	
54W-4	RDWC*46	CGA	28-feb-1992	14.0	UGL	UM18	CL68Z	2.400 1.600	LT LT	
S4H-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UM18	CLSCP	8.600	ĻŢ	
S4W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UN18	CL6ET	1.500	LT	
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UK18	DRAHA	6.500	LT	
S4W-4	RDWC*46	CGM	28- feb- 1992	14.0	UGL	UM18	DBHC	4.000	NO.	R
54W-4 54W-4	RDUC*46 RDUC*46	CGM	28-feb-1992 28-feb-1992	14.0 14.0	UGL UGL	LN18 LN18	DBZFUR DEP	1.700 2.000	LT	,
54W-4 54W-4	RDUC*46	CGM	28-feb-1992	14.0	UGL	UM18	DLDRM	4.700	LT ND	R
S4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM18	DHP	1.500	LT	•
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN18	DNBP	3.700	LT	
54 4 -4	ROWC*46	CCM	28- feb-1992	14.0	UGL	UN18	DNOP	15.000	LT	

Site ID	<u>Field ID</u>	Madia	Date	Nanth	11=2==	Analytical		M=1	-1	Internal
31.5E 10	LIELO IN	MEGICA	<u>Date</u>	Depth	<u>Units</u>	Method	Abbry.	Value	Flag	Std. Code
S44-4	RDUC*46	CGM	28-feb-1992	14.0	UGL	UM18	ENDRN	7.600	ND	R
\$4W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	UN18	ENDRNA	8.000	ND	Ř
54W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UM18	ENDRNK	8.000	ND	R
s4W-4	RDWC*46	CCM	28- feb- 1992	14.0	UGL	LM18	ESFS04	9.200	KD	R
\$4H-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UM18	FANT	3.300	LT	
544-4 544-4	RDWC*46 RDWC*46	CGM	28-feb-1992 28-feb-1992	14.0 14.0	UGL	UM18 UM18	FLRENE	3.700	LT	
544-4	RDMC*46	CCM	28- feb- 1992	14.0	UGL UGL	UM18	GCLDAN HCBD	5.100 3.400	ND LT	R
S4W-4	RDWC*46	CGW	28- feb- 1992	14.0	UGL	UN18	HPCL	2.000	ND	R
54W-4	RDWC*46	CGM	28- feb- 1992	14.0	UGL	UN18	HPCLE	5.000	ND	R
\$4¥-4	RDWC*44	CGM	28 - feb - 1992	14.0	NGT	UM18	ICDPYR	8.600	LT	
S4W-4	RDUC*46	CGW	28-feb-1992	14.0	UGL	UN18	ISOPHR	4 . 800	LT	_
54W-4 54W-4	RDUC*46 RDUC*46	CGW	28- feb-1992 28- feb-1992	14.0 14.0	UGL	UM18	LIN	4.000	ND	R
S4U-4	RDWC*46	CGM	28-feb-1992	14.0	UGL UGL	UM18 UM18	MEXCLR NAP	5.100 0.500	ND LT	R
S4U-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM18	NB	0.500	LT	
S4U-4	RDUC*46	CGW	28-feb-1992	14.0	UGL	UM18	NNDMEA	2.000	ND	R
S4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	LM18	NNDNPA	4.400	LT	
\$4U-4	RDWC*46	CGW	28-feb-1992	14.0	JDU	UN18	NADPA	3.000	LT	
54W-4	RDWC*46	CCM	28-feb-1992	14.0	UGL	LRH18	PC8016	21,000	ND	R
S4¥-4	RDHC*46	CGW	28- feb- 1992	14.0	UGL	UM18	PCB221	21_000	ND	R
544-4 544-4	RDWC*46 RDWC*46	CGW	28-feb-1992 28-feb-1992	14.0 14.0	UGL UGL	UN18 UN18	PC8232 PC8242	21.000	ND	R
54W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	UM18	PC8248	30.000 30.000	ND ND	R R
S4¥-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN18	PCB254	36.000	ND	Ř
\$4U-4	RDUC*46	CGW	28-feb-1992	14.0	UGL	UN18	PCB260	36.000	ND	Ř
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL,	UN18	PCP	18.000	ĻŢ	
S4W-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN18	PHANTR	0.500	LT	
54W-4	RDWC*46	CGM	28- feb-1992	14.0	UGL	UH18	PHENOL	9.200	LT	_
544-4 544-4	RDWC*46	CCF	28-feb-1992	14.0	UGL	UN18	PPODD	4.000	ND	R
54W-4	RD¥C*46 RD¥C*46	CGM	28- feb- 1992 28- feb- 1992	14.0 14.0	ugl ugl	19418 19418	PPODE PPODT	4.700 9.200	ND ND	R R
94¥-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UM18	PYR	2.800	LT	•
S4W-4	RDWC+46	CGW	28-feb-1992	14.0	UGL	UH18	TXPHEN	36.000	ND	R
S4U-4	RDWC*46	CGW	28-feb-1992	14.0	UGL	UN18	UNK609	5.000	•	S
S4W-4	RDWC*46	CGM	28-feb-1992	14.0	UGL	00	TOX	75.000		
S4W-4	RDWC*46	CCM	28- feb- 1992	14.0		00	PH	7.490		L
WC1-2 WC1-2	ROWC*45	CGM	28- feb- 1992	39.0 39.0	UGL	UM20 UM20	111TCE	0.500	LŤ	
WC1-2	RDUC*45 RDUC*45	CCM	28- feb- 1992 28- feb- 1992	39.0	UGL UGL	UM20	112TCE 11DCE	1.200 0.500	LT LT	
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM20	11DCLE	0.680	LT	
WC1-2	RDMC*45	CGM	28-feb-1992	39.0	UGL	UM20	12DCE	0.500	ĹŤ	
WC1-2	RDWC*45	COM	28-feb-1992	39.0	UGL	UN20	12DCLE	0.500	LT	
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	ŲGL	UM20	12DCLP	0.500	LT	
WC1-2 WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UN20	2CLEVE	0.710	LT	
WC1-2	RDWC*45 RDWC*45	CGW	28-feb-1992 28-feb-1992	39.0 39.0	ner	UM20 UM20	ACET ACROLN	13.000 100.000	LT.	D
WC1-2	RDWC*45	CGW	28- feb- 1992	39.0	UGL	UN20	ACRYLO	100.000	ND Cin	R R
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM20	BRDCLM	0.590	LT	
WC1-2	RDUC*45	CCM	28-feb-1992	39.0	UGL	UH20	C13DCP	0.580	ĹŤ	
WC1-2	RDWC*45	CGW	28- feb- 1992	39.0	LIGE	UN20	C2AVE	8.300	LT	
MC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM20	CZH3CL	2.600	LT	
WC1-2	RDWC*45	CGM	28-feb-1992	39.0	UGL	UK20	C2H5CL	1.900	LT	
WC1-2 WC1-2	RDWC*45 RDWC*45	CCM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UM20 UM20	C6H6 CCL3F	0.500 1.400	ĻŢ	
WC1-2	RDUC*45	CCM	28-feb-1992	39.0	UGL	UM20	CCL4	0.580	LT LT	
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UN20	CH2CL2	2,300	ĹΤ	
WC1-2	RDWC*45	CG₩	28-feb-1992	39.0	UGL,	UH20	CH3BR	5.800	LT	
¥C1-2	RDUC*45	CGW	28-feb-1992	39.0	UGL	UM20	CH3CL	5.990		
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM20	CHBR3	2.600	LT	
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM20	CHCL3	0.500	LT	_
9C1-2 9C1-2	RDWC*45 RDWC*45	CGM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UM20 UM20	CLC6H5	10.000 0.500	ND	R
WC1-2	RDWC*45	CCM	28-feb-1992	39.0	UGL	UM20	CZS	0.500	LT LT	
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM20	DBRCLM	0.670	LT	
WC1-2	ROUC*45	CGW	28-feb-1992	39.0	UGL	UH20	ETC6H5	0.500	ĹŤ	
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UH20	MEC6H5	0.500	LT	
WC1-2	RDWC*45	CGM	28- feb- 1992	39.0	UGL	UM20	MEK	6.400	LT	
WC1-2	RDWC*45	CGW	28- feb- 1992	39.0	UGL	UM20	MIBK	3.000	LT	
¥C1-2 ¥C1-2	RDWC*45	CGM	28-feb-1992	39.0	UGL	UN20	MNBK	3.600	LŢ	
WC1-2	RDWC*45 RDWC*45	CCM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UM20 UM20	STYR T13DCP	0.500 0.700	LT	
WC1-2	RDWC*45	CCM	28-feb-1992	39.0	UGL	UM20	TCLEA	0.510	LT LT	
WC1-2	RDUC*45	CCM	28-feb-1992	39.0	UGL	UM20	TCLEE	1.600	17	
			, ,,,	_,						

<u>Sit</u>	e ID	Field ID	<u>Medfa</u>	<u>Date</u>	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
WC1	1-2	RDWC*45	COM	28- feb- 1992	39.0	UGL	UH20	TRCLE	0.500	LT	
WC1		RDUC*45	CCM	28-feb-1992	39.0	UGL	UH20	UNK178	9,000		\$
UC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UM20	UNK196	5.000		S
WC1	-	RDUC*45	CGW	28-feb-1992	39.0	UGL	UM20	XYLEN	0.840	LT	
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	00	TOC	18300.000		
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UN18	124TCB	1.800	LŤ	
WC1		RDWC*45 RDWC*45	CGM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UM18	120CLB 120PH	1.700	LT	_
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UM18 UM18	130CLB	2.000 1.700	ND LT	R
WC1		RDWC*45	CEM	28-feb-1992	39.0	UGL	UN18	140CLB	1.700	LT	
WC1		RDUC*45	CGW	28-feb-1992	39.0	UGL	UN18	245TCP	5.200	ĹŤ	
WC1		RDWC*45	CGW	28 - feb - 1992	39.0	UGL	UN18	246TCP	4,200	ĹŤ	
WC1	_	RDWC*45	CSW	28-feb-1992	39.0	UGL	UM18	24DCLP	2,900	LŤ	
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	24DMPN	5,800	LT	
WC1	-2	RDWC*45	CCM	28-feb-1992	39.0	UGL	UN18	24DNP	21.000	LT	
WC1		RDUC*45	CGM	28-feb-1992	39.0	UGL	UM18	24DNT	4.500	LT	
WC1		RDUC*45	CGM	28-feb-1992	39.0	UGL	UH18	26DHT	0.790	LT	
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UH18	2CLP	0.990	LT	
WC1		RDUC*45	CGW	28-feb-1992	39.0	UGL	UN18	2CNAP	0.500	LŢ	
WC1		RDWC*45	COM	28-feb-1992	39.0	UGL	UM18	ZMNAP	1.700	LT	
WC1		RDWC*45	CGM	28-feb-1992 28-feb-1992	39.0 39.0	NGT	UN 18	2149	3.900	LŢ	
WC1	_	RDWC*45	CCA	28-feb-1992	39.0	UGL	UM18 UM18	2NANIL 2NP	4.300	LŢ	
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UN 18	33DCBD	3.700 12.000	LT LT	
_ WC1		RDWC*45	CGM	28-1eb-1992	39.0	UGL	UN18	3NANIL	4.900	LT.	
- WCT		RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	46DNZC	17.000	LŤ	
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	UN18	4BRPPE	4.200	ĹŤ	
WC1		RDWC*45	CCM	28 - feb-1992	39.0	UGL	UN18	4CANIL	7.300	LT	
WC1	1-2	RDUC*45	CGW	28-feb-1992	39.0	UGL	UH18	4CL3C	4.000	LT	
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UH18	4CLPPE	5.100	LŤ	
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	4MP	0.520	LT	
WC1	•	RDWC*45	CGW	28-feb-1992	39.0	UGL	L#18	4NANIL	5.200	LŤ	
WC1		RDUC*45	CCM	28-feb-1992	39.0	UGL	UN18	4NP	12.000	LT	_
WC1	_	RDWC*45	CGM	28-feb-1992	39.0 39.0	UGL	UN18	ABHC	4.000	ND	R
WC1		RDWC*45	CGW	28-feb-1992 28-feb-1992	39.0	UGL	UM18 UM18	ACLDAN AENSL F	5,100	ND	R
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	ALDRN	9.200 4.700	ND ND	R R
WC1		RDUC*45	CCM	28-feb-1992	39.0	UGL	UN18	ANAPNE	1.700	LT	
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UM18	ANAPYL	0.500	LT	
WC1		ROUC*45	CGW	28-feb-1992	39.0	ŲGL	UH18	ANTRO	0.500	LT	
WC1		RDUC*45	CGW	28-feb-1992	39.0	UGL	UM18	BZCEXM	1.500	LT	
WC1		RDUC*45	CGW	28-feb-1992	39.0	UGL	UM18	BECIPE	5.300	LT.	
WC1	1-2	RDWC*45	CCW	28-feb-1992	39.0	UGL	UN18	BSCLEE	1,900	LT	
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UN18	B2EHP	4.800	LT	
WC1	_	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	BAANTR	1.600	LT	
WC1		RDWC*45	COF	28-feb-1992	39.0	UGL	UN18	BAPYR	4.700	LT	
WC1		RDWC*45	CGM	28- feb-1992	39.0	UGL	UM18	BBFANT	5.400	LŤ	_
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UN18	BBHC	4.000	ИD	R
WC1		RDWC*45 RDWC*45	CCM	28-feb-1992 28-feb-1992	39.0 39.0	UGL UGL	UM18 UM18	B8ZP BENSLF	3.400	ŁŤ	_
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UN18	BENZID	9.200 10.000	ND CM	R R
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UM18	BENZCA	13.000	LT	K
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UN 18	BCHIPY	6, 100	LT	
WC1		RDWC*45	CEM	28-feb-1992	39.0	UGL	UM18	BKFANT	0.870	ĹŤ	
WCT		RDWC*45	CGM	28-feb-1992	39.0	UGL	UN18	8ZALC	0.720	LT	
WCT		RDUC*45	CGW	28-feb-1992	39.0	UGL	UN18	CHRY	2,400	ĻŤ	
WC1		RDWC*45	CCF	28-feb-1992	39.0	UGL	UN18	CL6BZ	1.600	LT	
WC1	-2	RDWC*45	CCM	28-feb-1992	39.0	UGL	UM18	CLACP	8.600	LT	
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGĻ	UN18	CLSET	1,500	LT	
UC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UH18	DBARA	6.500	LT	
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UK18	DBHC	4.000	ND	R
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	UK18	DBZFUR	1.700	LĪ	
WC1		RDWC*45	CCF	28-feb-1992	39.0	UGL	UN18	DEP	2.000	LT	_
WC1		RDWC*45	CCM	28-feb-1992	39.0	UGL	UN18	DLDRN	4.700	KD	R
WC1		RDWC*45 RDWC*45	CGW	28-feb-1992 28-feb-1992	39.0 39.0	UGL UGL	UM18 UM18	DMP DNBP	1,500	LŤ	
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UM 18 UM 18	DNOP	3.700	LT	
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UNIS UNIS	EXDRN	15,000 7,600	LT ND	•
WC1		RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	ENDRNA	8.000	ND	R R
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UM18	ENDRNK	8.000	ND	R
WC1		RDWC*45	CGM	28-feb-1992	39.0	UGL	UM18	ESFSO4	9.200	ND	R
WC1		ROWC*45	CCM	28-feb-1992	39.0	UGL	UN18	FANT	3.300	LT	^
WC1		RDWC*45	CCA	28-feb-1992	39.0	UGL	UN18	FLRENE	3.700	LT	
WC1		ROUC=45	CCM	28-feb-1992	39.0	UGL	UN18	GCLDAN	5.100	ND	R
		· · •									

Site ID	Field ID	<u> Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry,	<u>Value</u>	flag	Internal Std. Code
WC1-2	RDWC*45	CCW	28-feb-1992	39.0	UGL	UM18	HCBD	3,400	. •	
WC1-2	RDMC=45	CCA	28-feb-1992	39.0	UGL	UM18	HPCL	2.000	LT ND	R
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	HPCLE	5.000	ND	R
WC1-2 WC1-2	RDUC*45	CGA	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UM18 UM18	ICDPYR ISOPHR	8.600 4.800	LT LT	
WC1-2	RDWC*45	CGM	28-feb-1992	39.0	UGL	UN18	LIN	4.000	ND	R
WC1-2	RDUC*45	CGW	28- feb- 1992	39.0	UGL	UN18	MEXCLR	5.100	ND	R
WC1-2 WC1-2	RDWC*45 RDWC*45	CCM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UN18 UN18	NAP NB	0.500 0.500	LT LT	
₩C1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	ÚM18	NNDMEA	2.000	MD	R
WC1-2	ROWC*45	CGW	28-feb-1992	39.0	UGL	UH18	MNDNPA	4.400	LT	
WC1-2 WC1-2	RDWC*45 RDWC*45	CGM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UN18	NNDPA DCDO14	3.000	LT	_
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18 UM18	PCB016 PCB221	21.000 21.000	ND ND	R R
WC1-2	RDWC*45	CGW	28 - feb - 1992	39.0	UGL	UN18	PCB232	21.000	ND	Ř
WC1-2 WC1-2	RDWC*45 RDWC*45	CGM	28-feb-1992 28-feb-1992	39.0	UGL	UN18	PCB242	30.000	ND	R
WC1-2	RDWC*45	CGW	28-feb-1992	39.0 39.0	UGL	UM18 UM18	PCB248 PCB254	30.000 36.000	ND ND	R R
WC1-2	RDWC*45	CGW	28-feb-1992	39.0	UGL	UM18	PCB260	36.000	NO	Ř
WC1-2 WC1-2	RDUC*45	CGW	28-feb-1992	39.0	UGL	UM18	PCP	18.000	LT	
WC1-2	RDUC*45 RDUC*45	CCM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	UM18 UM18	PHANTR PHENOL	0.500 9.200	LT LT	
WC1-2	ROWC*45	COM	28-feb-1992	39.0	UGL	UM18	PPODD	4.000	MD	R
WC1-2	RDUC*45	CCM	28-feb-1992	39.0	UGL	UM18	PPODE	4.700	MD	R
_ NC1-2 NC1-2	RDWC*45 RDWC*45	CCM	28-feb-1992 28-feb-1992	39.0 39.0	VGL VGL	UM18 UM18	PPODT PYR	9.200 2.800	ND LT	R
WC1-2	RDWC*45	CEM	28-feb-1992	39.0	UGL	UN18	TXPHEN	36.000	ND	R
WC1-2	RDUC*45	CCA	28-feb-1992	39.0	UGL.	UH18	UNKS84	10.000		S
WC1-2 WC1-2	RDWC*45 RDWC*45	CGM	28-feb-1992 28-feb-1992	39.0 39.0	UGL	00 00	TOX PH	60.300 7.420		
WC1-A	ROWC*21	CEM	24-jan-1992	89.0	UGL	SD23	AG	0.250	LŤ	Ļ
WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	SB01	HG	0.243	LT	
WC1-A WC1-A	RDUC*21 RDUC*21	CCH	24-jan-1992 24-jan-1992	89.0 89.0	UGL	SD21 SD09	SE TL	3.020 6.990	LT	
WC1-A	RDWC*21	CGW	24- jan-1992	89.0	LIGL	SD20	PS	5.640	LT	
WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	SD22	A\$	2.540	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	COM	24-jan-1992 24-jan-1992	89.0 89.0	UGL UGL	UM20	111TCE	0.500	LŤ	
UCT-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UM20 UM20	112TCE 11DCE	1.200 0.500	LT LT	
MC1-A	RDWC*Z1	CGW	24-jan-1992	89.0	UGL	UH20	11DCLE	0.680	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CCH	24-jan-1992 24-jan-1992	89.0	UGL	UK20	12DCE	0.500	LT	
WC1-A	RDWC*21	CGM	24-jan-1992	89.0 89.0	UGL UGL	UN20 UN20	120CLE 120CLP	0.500 0.500	LT LT	
WC1-A	RDWC*21	CCM	24-jan-1992	89.0	UGL	UM20	2CLEVE	0.710	LT	
UC1-A UC1-A	ROWC*21 RDWC*21	CGM	24- jan-1992	89.0	UGL	UN20	ACET	13.000	LT	_
WC1-A	RDWC*21	CGM	24- jan-1992 24- jan-1992	89.0 89.0	ugl ugl	UN20 UN20	ACROLN ACRYLO	100.000 100.000	ND ND	R R
WCT-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UH20	BRDÇLM	0.590	LT	Α
WC1-A	RDUC*21	CGA	24-jan-1992	89.0	UGL	UH20	C13DCP	0.580	LŤ	
WCT-A WC1-A	RDWC*21 RDWC*21	CCM	24- jan- 1992 24- jan- 1992	89.0 89.0	ner	UM20 UM20	C2AVE C2H3CL	8.300 2.600	LT	
WC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UMZO	CZH5CL	1.900	LT LT	
UC1-A	RDWC*21	CCM	24- jan- 1992	89.0	UGL	UH20	Сбнб	0.500	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24- jan- 1992 24- jan- 1992	89.0 89.0	UGL.	UN20	CCL3F	1.400	LT	
WC1-A	RDWC*21	CGM	24- jan- 1992	89.0	UGL	UM20 UM20	CCL4 CN2CL2	0.580 2.300	LT LT	
WC1-A	RDWC*21	CCM	24-jan-1992	89.0	UGL	UH20	CH3BR	5.800	LT	
WC1-A WC1-A	RDWC*21	CCW	24- jan-1992	89.0	UGL	UK20	CR3CL	3.200	LT	
WC1-A	RDWC*21 RDWC*21	CGW	24- jan-1992 24- jan-1992	89.0 89.0	UGL	UN20 UN20	CKCL3	2.600 0.500	LT LT	
WCT-A	RDUC*21	CGW	24- jan-1992	89.0	UGL	UN20	CL2BZ	10.000	ND	R
WC1-A	RDWC*21	CCM	24- jan- 1992	89.0	UGL	UK20	CLC6H5	0.500	LT	
WC1-A WC1-A	ROWC*21 ROWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL UGL	UN20 UN20	CS2 DBRCLM	0.998 0.670	LT	
WC1-A	RDMC*21	CGW	24- jan-1992	89.0	UGL	UM20	ETC6H5	0.500	LT	
MC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UH20	MEC6H5	0.500	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CCM	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM20	MEX	6.400	LT	
WC1-A	RDWC*21	ÇĞW	24- jan- 1992	89.0	UGL UGL	UN20 UN20	M18K	3.000 3.600	LT LT	
WC1-A	RDUC*21	CGM	24-jan-1992	89.0	UGL	UMZO	STYR	0.500	LT	
WC1-A	RDWC*21	CGA	24- jan-1992	89.0	UGL	UN20	T13DCP	0.700	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM20 UM20	TCLEA TCLEE	0.510	LT	
WC1-A	RDUC*21	CCA	24- jan-1992	89.0	UGL	UH20	TRCLE	1.600 0.500	LT LT	

<u>Site ID</u>	Field 10	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method	Analyte Abbry,	Value	<u>Flag</u>	Internal Std. Code
WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UM20	XYLEN	0.840	LT	
WC1-A	RDUC*21	CGW	24- jan-1992	89.0	UGL	\$\$10	AL	141.000	LT	
UC1-A	RDMC*21	CGM	24- jan- 1992	89.0	UGL	SS10	BA	136,000		
WC1-A WC1-A	RDWC*21 RDWC*21	CCH	24-jan-1992 24-jan-1992	89.0 89.0	UGL	\$\$10 \$\$10	CA CA	5.000 76100.000	LT	
GC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	SS 10	8	4.010	LT	
WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	\$510	œ	25,000	LT.	
UC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	\$\$10	CR	6.020	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CCM	24-jan-1992 24-jan-1992	89.0 89.0	UGL	0122 \$\$10	CU FE	8.090 38.800	LT LT	
WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	SS10	K	7050,000		
WC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	\$\$10	MG	29800.000		
WC1-A	RDWC*21	CGH	24- jan-1992	89.0	UGL	SS10	MN	23.900		
WC1-A WC1-A	RDWC*21	COM COM	24- jan-1992 24- jan-1992	89.0 89.0	UGL	\$\$10 \$\$10	NA In	7670.000 34.300	LŤ	
WC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	SS10	SB	38.000	LT	
UC1-A	RDMC*21	CGM	24- jan-1992	89.0	UGL	\$\$10	٧	11_000	LT	
WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	\$\$10	ZN	21.100	LT -	
WC1-A WC1-A	RDWC*21 RDWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM18 UM18	124TCB 12DCLB	1.800 1.700	LT LT	
MC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UN18	120PH	2.000	NO	· R
WC1-A	RDMC*21	CGM	24- jan-1992	89.0	UGL	UM18	13DCLB	1.700	LT	
WC1~A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UN18	14DCLB	1.700	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CCM	24-jan-1992 24-jan-1992	89.0 89.0	ugl ugl	UN18 UN18	245TCP 246TCP	5.200 4.200	LT LT	
WCT-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UM18'	24DCLP	2,900	ĻŢ	
WC1-A	RDWC*21	CSW	24- jan- 1992	89.0	UGL	UM18	24DMPN	5.800	LT	
WC1-A	RDWC*21	CGM	24- jan- 1992	89.0	UGL	UN18	240NP	21,000	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24-jan-1992 24-jan-1992	89.0 89.0	UGL UGL	UM18 UM18	24DNT 26DNT	4.500 0.790	LT LT	
WC1-A	ROWC*21	CCM	24- jan-1992	89.0	UGL	UN18	ZCLP	0.990	ĻŤ	
MC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UN18	2CHAP	0.500	ĻŤ	
WC1-A	RDUC*21	CGW	24- jan-1992	89.0 89.0	UGL	UN18	2MNAP	1.700	LT	
WC1-A WC1-A	RDUC*21 RDUC*21	COM	24-jan-1992 24-jan-1992	89.0	UGL UGL	UM18 UM18	2NP 2NAN I L	3.900 4.300	LT LT	
WC1-A	RDWC*21	CGH	24-jan-1992	89.0	UGL	UN18	ZNP	3.700	LT	
WC1-A	RDWC*21	CGW	24- jan- 1992	89.0	UGL	UM18	330CB0	12.000	LT	
WC1-A	RDUC*21	CCM	24- jan-1992 24- jan-1992	89.0 89.0	UGL	LM18	3RANIL	4.900	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CCW	24- jan-1992	89.0	UGL UGL	UN18 UN18	460N2C 4BRPPE	17.000 4.200	LT LT	
WC1-A	RDWC*21	CGH	24-jan-1992	89.0	UGL	UN18	4CANIL	7.300	ĹŤ	
NC1-A	RDWC*21	CGM	24- Jan-1992	89.0	UGL	UN18	4CL3C	4.000	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24-jan-1992 24-jan-1992	89.0 89.0	UGL UGL	LM18 LM18	4CLPPE 4MP	5.100 0.520	LT LT	
WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UH18	4NANIL	5.200	LT	
WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UM18	4NP	12,000	LT	
WC1-A	RDMC*21	CGW	24-jan-1992	89.0	UGL	UM18	ABHC	4.000	ND	R
WC1-A WC1-A	RDWC*21 RDWC*21	CCM	24-jan-1992 24-jan-1992	89.0 89.0	UGL UGL	UN18	ACLDAN	5.100	MD	R
WC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UN18 UN18	AENSLF ALDRN	9.200 4.700	ND ND	R R
WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UN18	ANAPNE	1.700	LT	•
HC1-A	RDMC*21	CCA	24-jan-1992	89.0	UGL	UN18	AXAPYL	0.500	LT	
WC1-A WC1-A	RDWC*21	CGW	24- jan-1992 24- jan-1992	89.0 89.0	NGT	UM18	ANTRC B2CEXM	0.500	LT	
WC1-A	ROWC*21	CGM	24- jan-1992	89.0	UGL	UN15 UN15	B2CIPE	1.500 5.300	LT LT	
WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UM18	BZCLEE	1.900	LT	
MC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UM18	B2EHP	5.270		
WC1-A WC1-A	RDWC*21 RDWC*21	CCM	24-jan-1992 24-jan-1992	89.0 89.0	ugl Ugl	UM18 UM18	BAANTR BAPYR	1.600 4.700	LT LT	
WC1-A	RDWC*21	CGA	24-jan-1992	89.0	UGL	UM18	BBFANT	5.400	LT	
WC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UN18	BBHC	4.000	ND	R
WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UM18	BBZP	3.400	LT	
WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24- jan-1992 24- jan-1992	89.0 89.0	UGL UGL	UK18 UK18	BENSLF BENZIO	9,200 10,000	ND NO	R R
WC1-A	RDUC*21	CCM	24- jan- 1992	89.0	UGL	UM18	BENZOA	13.000	ND LT	В.
WC1-A	RDWC*21	CGM	24 - jan - 1992	89.0	UGL	UN18	BGHIPY	6.100	LT	
UC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UM 18	SKFANT	0.870	LT	
WC1-A WC1-A	RDWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UN18	BZALC	0.720	Lī	
WC1-A	RDWC*21 RDWC*21	CCM	24- jan- 1992 24- jan- 1992	89.0	ugl ugl	UM18 UM18	CHRY CL68Z	2,400 1,600	LT LT	
WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UK18	CL6CP	8_600	LŤ	
UC1-A	RDUC*21	CGW	24-jan-1992	89.0	UGL	UM18	CLAET	1.500	LT	
WC1-A WC1-A	RDWC#21	CGA	24-jan-1992 24-jan-1992	89.0	UGL	UN18	DBAHA	6.500	LT	_
MC I.A	RDUC*21	FRM	24-1901-1AAC	89.0	UGL	UM18	DBHC	4.000	ND	R

	Site ID	<u>Field ID</u>	<u>Media</u>	Date	<u>Depth</u>	<u>Ųnits</u>	Analytical Method	Analyte Abbrv.	<u>Value</u>	Flag	Internal Std. Code
	UCT-A	RDWC*21	CSM	24- jan-1992	89.0	UGL	UM18	DEZFUR	1.700	LT	
	WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM18	DEP	2.000	LT	_
	WC1-A	RDWC*21	CGM	24-jan-1992	89.0	UGL	UM18 UM18	DLDRN DMP	4.700 1.500	ND LT	R
	WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UH18	ONBP	3,700	LT	
	WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UH18	DNOP	15.000	LT	_
	WC1-A WC1-A	RDWC*21 RDWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM18 UM18	ENDRN Endrna	7.600 8.000	NÍ) Ní)	R R
	WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UH18	ENDRNK	8.000	ND	Ř
	WC1-A	RDWC*21	CG≌	24-jan-1992	89.0	UGL	UH18	E5F\$04	9.200	ND	Ř
	WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UN18	FAXT	3.300	LΪ	
	WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UN18 UN18	FLRENE GCLDAN	3.700 5.100	LT ND	R
	WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UN18	HCBD	3.400	LT	•
	WC1-A	RDUC*21	CGW	24- jan-1992	89.0	UGL	UN18	HPCL	2.000	ND	R
	WC1-A WC1-A	RDWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM18 UM18	HPCLE ICDPYR	5.000 8.600	MD LT	R
	WC1-A	RDWC*21	CGW	24- jan- 1992	89.0	UGL	UH18	ISOPHR	4.800	LT	
	UC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UH18	LIM	4,000	ND	R
	WC1-A	ROWC*21	CGW	24-jan-1992 24-jan-1992	89.0	UGL	UH18	MEXCLR	5.100	ND	R
	WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24- jan-1992	89.0 89.0	UGL	UN18 UN18	NAP NB	0.500 0.500	LT LT	
	WC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL.	UH18	MAMEA	2.000	MD	R
	UC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UK18	NNDHPA	4,400	LT	
_	WCI-A . WCI-A	RDWC*21 RDWC*21	CCH	24-jan-1992 24-jan-1992	8 9.0 89.0	UGL	UM18 UM18	NNDPA PCB016	3.000 21.000	ĻŢ	
	WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UM18	PC8221	21.000	ND ND	R R
	WC1-A	RDWC*21	COM	24-jan-1992	89.0	UGL	UN18	PCB232	21.000	ND	Ř
	MC1-A	RDWC*21	CCM	24-jan-1992	89.0	UGL	UH18	PCB242	30.000	ND	R
	WC1-A WC1-A	RDWC*21 RDWC*21	CCM	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM18 UM18	PC8248 PC8254	30.000 36.000	MD	R
	WC1-A	RDWC*21	COM	24-jan-1992	89.0	UGL	UM18	PCB254	36.000	ND ND	R R
	WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UM18	PCP	18_000	LT	-
	WC1-A	RDUC*21	CGW	24- jan-1992	89.0	UGL	UN18	PHANTR	0.500	LT	
	WC1-A	RDWC*21 RDWC*21	CCA	24-jan-1992 24-jan-1992	89.0 89.0	UGL UGL	UM18 UM18	PHENOL PPODD	9,200 4,000	LT ND	R
	HC1-A	RDWC*21	CGW	24-jan-1992	89.0	UGL	UN18	PPDDE	4.700	NED	Ř
	UC1-A	RDWC*21	CCM	24-jan-1992	89.0	UGL	UN18	PPDDT	9.200	ND	R
	WC1-A WC1-A	RDWC*21 RDWC*21	CGM	24- jan-1992 24- jan-1992	89.0 89.0	UGL	UN18	PYR TXPHEN	2.800 36.000	LT ND	
	NC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UM18 UM18	UNK642	40.000	NU.	R S
	WC1-A	RDWC*21	CGW	24- jan-1992	89.0	UGL	UN18	UNK644	4.000		\$
	MC1-A	RDWC*21	CGW	24 - jan - 1992	89.0	UGL	UN18	UNK664	5.000		s
	WC1-A WC1-A	RDUC*21 RDUC*21	CGM	24- jan-1992 24- jan-1992	89.0 89.0	UGF UGF	UM18 UM32	UNK676 135TNB	20.000 0.449	LŤ	S
	WC1-A	RDMC*21	CGM	24- jan- 1992	89.0	UGL	UM32	13DNB	0.611	LT	
	WC1-A	RDWC*21	CGM	24- jan-1992	89.0	UGL	UN32	246TNT	0.635	LT	
	WC1-A	RDWC*21	CEM	24- jan-1992	89.0	UGL	UM32	24DNT	0.064	LT	
	WCT-A	RDWC*21 RDWC*21	CGW	24-jan-1992 24-jan-1992	89.0 89.0	UGL	UM32 UM32	260NT HMX	0.074 1.219	LT LT	
	WC1-A	RDMC*21	CGH	24-jan-1992	89.0	UGL	UW32	N8	0.645	LT	
	UCT-A	RDUC*21	CGW	24- jan-1992	89.0	UGL	UN32	ROX	1.170	LT	
	WCT-A WCT-A	RDWC*21 RDWC*92	CGW	24-jan-1992 28-jan-1992	89.0 89.0	UGL	UM32 00	TETRYL TOC	2.490 11.400	LŤ	
	WC1-A	RDWC*92	CGW	28- Jan-1992	89.0	UGL	00	TOX	51,200		
	WC1-A	RDWC*92	CGW	28- jan-1992	89.0		00	PH	7.140		
	WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	SB01	HG	0.243	LŢ	
	WCZ-A WCZ-A	RDWC*22 RDWC*22	CGM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	SD22 SS10	AS AL	2.540 141.000	LT LT	
	WCZ-A	RDWC*22	CGW	29-jan-1992	65.0	UGL	\$\$10	BA	132.000	•	
	WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	\$\$10	BE	5.000	LT	
	WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29-jan-1992 29-jan-1992	65.0 65.0	UGL	SS10 SS10	CA CD	23200.000 4.010	LT	
	WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	5510 5510	œ	25.000	LT	
	HCZ-A	RDUC*22	CCM	29- jan-1992	65.0	UGL	SS10	CR	6.020	LT	
	WC2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	SS10	an an	8.090	LT	
	WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	ugl ugl	SS10 SS10	FE K	38.800 3370,000	LT	
	WC2-A	RDWC*22	CCM	29- jan-1992	65.0	UGI,	SS10	NG	18500.000		
	UC2-A	RDUC*22	CGW	29- jan-1992	65.0	UGL	\$\$10	MM	18.800		
	WC2-A	RDUC*22	CGW	29- jan-1992	65.0	UGL	SS10	NA	4910.000		
	WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29-jan-1992 29-jan-1992	65.0 65.0	UGL UGL	SS10 SS10	NI SB	34.300 38.000	LT LT	
	VC2-A	RDWC*22	CCM	29- jan-1992	65.0	UGL	SS10	٧	11.000	LT	
				- · · · · -							

Site IO	Field ID	<u>Media</u>	Date	Depth	<u>Units</u>	Analytical Method		<u>Value</u>	Flag	Internal Std. Code
WCZ-A	RDWC*22	CCM	29- jan-1992	65.0	UGL	SS10	ZN	21,100	LT	
UCZ-A	RDWC*22	CCM	29- jan-1992	65.0	UGL	\$009	TL	6.990	ĹŤ	
UC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	SD20	PB	1,260	ĹŤ	
WCZ-A	ROWC*22	CGW	29- jan- 1992	65.0	UGL	00	TOC	9.470		
WC2-A	RDWC*22	CGM	29- jan- 1992	65.0	UGL	UM18	124TCB	1.800	LT	
WC2-A WC2-A	RDMC*22 ROWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	UM18	120CLB	1.700	LT	_
WC2-A	ROWC*22	CGW	29-jan-1992	65.0	UGL UGL	um18 um18	12DPH 13DCLB	2.000 1.700	MD LT	R
WC2-A	RDUC*22	CGW	29- jan-1992	65.0	UGL	UN18	14DCLB	1.700	LT	
WC2-A	RDWC*22	CGM	29- jan- 1992	65.0	UGL	UN18	24STCP	5.200	LT	
WC2-A	RDWC+22	CGW	29- jan-1992	65.0	UGL	UN18	246TCP	4.200	LT	
UCZ-A	RDWC*22	CGW	29-jan-1992	65.0	UGL	UM18	24DCLP	2.900	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	COM	29- jan-1992 29- jan-1992	65.0 65.0	UGL UGL	UN 18 UN 18	24DMPN 24DNP	5.800	LŢ	
WC2-A	RDUC*22	COM	29- jan- 1992	65.0	UGL	UN18	24DNT	21.000 4.500	LT LT	
WC2-A	RDWC*22	CGW	29-jan-1992	65.0	UGL	UM18	260NT	0.790	ĹΤ	
WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UM18	2CLP	0.990	LT	
UCZ-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL	UH18	2CNAP	0.500	LT -	
WCZ-A	RDWC*22	CCM	29- jan- 1992	65.0 45.0	UGL	UN18	2MNAP	1.700	LT	
UCZ-A UCZ-A	RDWC*22	CCM	29-jan-1992 29-jan-1992	65.0 65.0	UGL	UM18 UM18	2NP ZNANIL	3.900	LT	
WCZ-A	RDUC"ZZ	CCH	29- jan-1992	65.0	UGL	UM18	2NP	4.300 3.700	LT LT	•
WC2-A	RDWC*22	CCM	29- jan- 1992	65.0	UGL	UN18	33DCBD	12.000	LŤ	
WCZ-A	RDWC*22	CCM	29-jan-1992	65.0	UGL	UN18	SHANIL	4.900	LT	
MCS-V	RDWC+22	CCM	29- jan-1992	65.0	UGL	UN18	46DHZC	17.000	LT	
WC2-A	RDUC*22	CGW	29- jan-1992	65.0	UGL	UM18	4BRPPE	4.200	ĻT	
WC2-A WC2-A	ROWC*22 ROWC*22	CGW	29- jan- 1992 29- jan- 1992	65.0 65.0	UGL UGL	LM18	4CANIL 4CL3C	7.300	LT	
WC2-A	ROWC*22	CGM	29-jan-1992	65.0	UGL	UM18 UM18	4CLPPE	4.000 5.100	LT LT	
WC2-A	RDWC+22	CGH	29-jan-1992	65.0	UGL	UN18	4MP	0.520	LT	
WCZ-A	RDWC*22	CCW	29- jan-1992	65.0	UGL,	UM18	4NANIL	5.200	LT	
WCZ-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UN18	4NP	12.000	ĻT	
WC2-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL	UM18	ABHC	4.000	MD	R
WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	UGL UGL	um18 um18	ACLDAN AENSL F	5.100	ND	R
WC2-A	RDUC*22	CCH	29- jan-1992	65.0	UGL	UM18	ALDRN	9.200 4.700	ND ND	R R
UC2-A	RDWC*22	CGM	29-jan-1992	65.0	UGL	UM18	ANAPNE	1.700	LT	•
WC2-A	RDUC*22	CGW	29- Jan-1992	65.0	UGL	UN18	ANAPYL	0.500	LT	
MCS-V	RDWC*22	CCM	29- jan- 1992	65.0	UGL	UM18	ANTRC	0.500	LT	
WC2-A	RDWC*22 RDWC*22	CGM	29- jan-1992	65.0	UGL	UM18	B2CEXM	1.500	LT	
WC2-A WC2-A	RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	UGL UGL	UM18 UM18	B2CLEE B2CLEE	5.300 1.900	LT LT	
WC2-A	RDUC*22	COL	29- jan-1992	45.0	UGL	UN18	BZEHP	4.800	LT	
WC2-A	RDUC*22	CGW	29-jan-1992	65.0	UGL	UN18	BAANTR	1,600	LT	
WCZ-A	RDWC#22	CGW	29-jan-1992	65.0	UGL	UN18	BAPYR	4.700	LT	
WC2-A	RDWC*22	CGM	29-jan-1992	65.0		UM18	BBFANT	5.400	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CGM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	UM18	BBHC	4.000	ND	R
WCZ-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	UM18 UM18	BBZP BENSLF	3,400 9,200	LT ND	ь
WC2-A	RDUC*22	CGW	29-jan-1992	65.0	UGL	UM18	BENZID	10.000	ND	R R
WC2-A	RDUC*22	CGM	29- jan-1992	65.0	UGL	UN18	BENZOA	13.000	LT	•
WC2-A	ROWC*22	CCM	29- jan-1992	65.0	UGL	UN18	BGHIPY	6.100	LT	
WCZ-A	RDWC*22	CGW	29-jan-1992	65.0	UGL,	UN18	BKFANT	0.870	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CGM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	UM18	BZALC	0.720	LT	
WC2-A	RDWC*22	CCM	29- jan-1992	65.0	UGL UGL	LM18 UM18	CHRY CL6BZ	2.400 1.600	LT LT	
WC2-A	RDWC*22	CGW	29-jan-1992	65.0	UGL	UN18	CL6CP	8,600	LT	
WC2-A	RDUC*22	CGW	29-jan-1992	65.0	UGL	UN18	CL6ET	1.500	ĻŤ	
UCZ-A	RDWC*22	ÇGW	29- jan-1992	65.0	UGL	UN18	DSAHA	6.500	LT	
WC2-A	RDWC*ZZ	CGW	29- jan-1992	65.0	UGL	UM18	DBHC	4.000	ND	R
WC2-A	RDWC*22	CCH	29- jan-1992	65.0 45.0	UGL	UN18	DBZFUR	1.700	LT	
WC2-A WC2-A	ROWC*22 RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	UGL UGL	UM18 UM18	DEP DLDRN	2.000 4.700	LT ND	R
WC2-A	RDWC*ZZ	CGM	29- jan-1992	65.0	UGL	UK18	DMP	1.500	LT	*
MC2-A	RDMC*22	CGM	29- jan-1992	65.0	UGL	UH18	DKBP	3.700	LT	
WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UN18	DNOP	15.000	LT	
WC2-A	RDUC*22	CGW	29-jan-1992	65.0	UGL	UN18	ENDRN	7.600	ND	R
WC2-A	RDUC*22	CGF	29-jan-1992	65.0	UGL	UH18	ENDRNA	8.000	ND	R
WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29-jan-1992 29-jan-1992	65.0 65.0	UGL	UM18 UM18	ENDRNK	8,000 9,300	ND ND	R
WCZ-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL	UM18	ESFS04 FANT	9.200 3.300	ND Lt	R
WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UN18	FLRENE	3.700	LT	
WC2-A	RDWC*22	CGW	29-jan-1992	65.0	UGL	UM18	GCLDAN	5.100	ЖD	R
WC2-A	RDUC*22	CGM	29- jan-1992	65.0	UGL	UM18	HCBD	3.400	LT	

Site ID	Field ID	<u>Media</u>	Date	<u>Depth</u>	<u>Units</u>	Analytical Method	Analyte Abbry.	Value	<u>Flag</u>	Internal Std. Code
WCZ-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UH18	HPCL	2.000	ND	R
WC2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	UN18	HPCLE	5_000	ND	Ř
WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UM18	ICDPYR	8.600	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CGW	29- jan-1992 29- jan-1992	65.0 65.0	UGL UGL	UM18 UM18	ISOPHR LIN	4.800 4.000	LT ND	R
WC2-A	ROWC*22	CGW	29- jan- 1992	65.0	UGL	UH18	MEXCLR	5.100	NO.	Ř
WC2-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL	LH18	NAP	0.500	LT	
MCZ-A MCZ-A	RDWC*22 RDWC*22	CGW	29-jan-1992 29-jan-1992	65.0 65.0	UGL	UN18 UN18	nb Nndmea	0.500 2.000	LT ND	R
HC2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	UN18	NHDNPA	4,400	ĹŤ	•
WC2-A	ROWC*22	CGM	29- jan-1992	65.0	UGL	UH18	NNDPA	3.000	LT	
HC2-A HC2-A	RDWC*ZZ RDWC*ZZ	CGM	29- jan-1992 29- jan-1992	65.0 65.0	UGL UGL	UM18 UM18	PCS016 PCBZ21	21.000 21.000	ND ON	R R
MCS-V	RDWC*22	CCA	29-jan-1992	65.0	UGL	UM18	PC8232	21,000	ND ND	R
WC2-A	RDWC*22	CCM	29- jan-1992	65.0	UGL	UM18	PC8242	30.000	ND	R
WC2-A WC2-A	RDWC*22 RDWC*22	CGW	29- jan- 1992 29- jan- 1992	65.0 65.0	UGL	UN18 UN18	PCB248 PCB254	30.000 36.000	ND ND	R R
WCZ-A	RDWC*ZZ	CGW	29- jan-1992	65.0	UGL	UN18	PCB254	36.000	ND.	R
WC2-A	RDWC*2Z	CGW	29- jan- 1992	65.0	UGL	UM18	PCP	18.000	LT	
WCZ-A WCZ-A	RDUC*22	CGW	29- jan- 1992 29- jan- 1992	65.0	UGL	UM18	PHANTR	0.500	ĻŢ	
WC2-A	RDWC*22 RDWC*22	CGM	29- jan- 1992	65.0 65.0	UGL	UM18 UM18	PHENOL PPODO	9.200 4.000	LT ND	2
WCZ-A	RDWC*22	CCM	29- jan- 1992	65.0	UGL.	UM18	PPDDE	4.700	KD	Ř
¥C2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	UN18	PPDOT	9.200	ND	R
- WC2-A	RDWC*22 RDWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	UM18. UM18	PYR TXPHEN	2.800 36.000	LT ND	R
WC2-A	RDWC*22	CCM	29-jan-1992	65.0	UGL	UN/32	135TNB	0.449	ĻŢ	*
WCZ-A	RDWC*22	CGF	29-jan-1992	65.0	UGL	UN/32	13DNB	0.611	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	ugt agr	UN32 UN32	246TNT 24DNT	0.635 0.064	LT LT	
WC2-A	RDUC*22	CCM	29- jan-1992	65.0	UGL	UN32	26DNT	0.074	ĻŢ	
HC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UN32	HMX	1.210	LT	
WCZ-A WCZ-A	RDWC*22 RDWC*22	CGW	29-jan-1992 29-jan-1992	65.0 65.0	ugl ugl	UM32 UM32	NB RDX	0.645 1.170	LT LT	
¥C2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	UN32	TETRYL	2.490	LT	
WC2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	SD23	AG	0.250	LT	
WC2-A WCZ-A	RDWC*22 RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	ugl Ugl	UH20 UH20	111TCE 112TCE	0.500 1.200	LT LT	
UCZ-A	RDWC*22	CGM	29-jan-1992	65.0	UGL	UM20	11DCE	0.500	ĻŤ	
UC2-A	RDUC*22	CGM	29- jan-1992	65.0	UGL	UN20	11DCLE	0.680	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29-jan-1992 29-jan-1992	65.0 65.0	UGL UGL	UH20 UH20	120CE 120CLE	0.500 0.500	LT LT	
WC2-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UN20	12DCLP	0.500	LT	
UC2-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL	UN20	2CLEVE	0.710	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	UGL UGL	UK20 UK20	ACET ACROLN	13.000 100.000	LT ND	R
WCZ-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UN20	ACRYLO	100.000	ND	Ř
WCZ-A	RDWC*22	CGW	29- jan-1992	65.0	UGL	UH20	BRDCLM	0.590	LŤ	
WC2-A WC2-A	RDWC*22 RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	UGL UGL	UH20 UH20	C13DCP C2AVE	0.580	LT	
WC2-A	ROWC*ZZ	CGM	29- jan- 1992	65.0	UGL	UH20	C2H3CL	8.300 2.600	LT LT	
WCZ-A	RDWC*22	COM	29- jan-1992	65.0	UGL	UM20	C2H5CL	1.900	LT	
WC2-A WC2-A	RDUC*22	CCM	29- jan- 1992	65.0		UN20	C6H6	0.500	LT	
WC2-A	RDWC*22 RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	UGL	UH20 UH20	CCL3F CCL4	1.400 0.580	LT LT	
WCZ-A	RDWC*22	CCM	29- jan-1992	65.0	UGĻ	UM20	CH2CL2	5.570		
VC2-A	RDWC*22	CGW	29-jan-1992	65.0	UGL	UN20	CH3BR	5.800	LT	
HC2-A HC2-A	RDWC*22 RDWC*22	CGM	29- jan-1992 29- jan-1992	65.0 65.0	ner	UM20 UM20	CH3CL CHBR3	3.200 2.600	LT LT	
HCZ-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL	UH20	CHCL3	0.500	LT	
WCZ-A	RDWC*22	CGW	29- jan- 1992	65.0		UH20	CL28Z	10.000	ЖD	R
WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	UM20 UM20	CLC6H5 CS2	0.500 0.500	LT LT	
WCZ-A	RDWC=22	CCM	29-jan-1992	65.0		UH20	DBRCLM	0.670	LT	
WCZ-A	RDWC*22	CCM	29- jan-1992	65.0		UN20	ETC6H5	0.500	LT	
UC2-A UC2-A	RDWC*22 RDWC*22	CGM	29-jan-1992 29-jan-1992	65.0 65.0	ner ner	UH20 UH20	MEC6H5	0.500 6.400	LT LT	
WC2-A	RDWC*22	CCM	29- jan- 1992	65.0	UGL	UM20	WIBK	3.000	LT	
WC2-A	RDWC*2Z	CGW	29- jan-1992	65.0	UGL	UH20	MNBK	3.600	LT	
WC2-A WC2-A	RDWC*22 RDWC*22	CGM	29- jan-1992 29- jan-1992	65.0 65.0	UGL	UN20 UN20	STYR	0.500	LŢ	
WC2-A	RDWC*22	CGW	29- jan- 1992	65.0	UGL UGL	UH20 UH20	T13DCP TCLEA	0.700 0.510	LT LT	
WC2-A	RDUC*22	CGW	29- jan-1992	65.0	UGL	LM20	TCLEE	1.600	ĹŤ	
WC2-A	RDWC*22	CGM	29- jan-1992	65.0	UGL	UM20	TRCLE	0.500	LT	

Site ID	Field ID	<u> ¥edia</u>	Date	Depth	<u>Units</u>	Analytical <u>Method</u>	Analyte Abbry	Value	<u>Flag</u>	Internal Std. Code
WC2-A WC2-A	RDWC*22 RDWC*22	CCM	29- jan-1992 29- jan-1992	65.0 65.0	UGL UGL	UM20 SD21	XYLEN Se	0.840 3.020	LT LT	
WCZ-A WCZ-A	RDWC*22 RDWC*22	CGM	29- jan- 1992 29- jan- 1992	65.0 65.0	UGL	00 00	TCX PH	118,000 7,990		ĸ

APPENDIX G
Quality Assurance and Quality Control Analytical Data

NOTE: QC Samples Are Sorted By:

1. QC Type

2. Lot

QC Types Are Defined As Follows:

QCMB = QC Method Blank QCRB = QC Rinse Blank

QCTB = QC Trip Blank

The Drilling and Source Water Samples and Equipment Blanks Are Included With the QCRB Data.

Matrix Spike Sample Results with Percent Recoveries Are Included at the End of this Appendix.

QC Type	Spike Anount	Lab	Lot	Sample Number	Analysis Date		Test Name		Value	Units	Internal Standard C	
QCMB	0.00	FS	SWY	4	30-aug-1990	1019	135TNB		0.490	HOC	••	
-6.10	0.00		781	7	JU-809-1990	L# 12	13DNB	LT	0.488 0.496		¥	
	0.00						246TNT	LT	0.456		W	
	0.00						24DNT	LT	0.424			
	0.00						260NT	ĹŤ	0.524			
	0.00						HMX	LT	0.666			
	0.00						NB	LT	2.410		¥	
	0.00						RDX	LT	0.587		-	
	0.00						TETRYL	LT	0.731	UGG		
	0.00		TGI	5	12-sep-1990	SS10		LT	4.600	UGL		
	0.00						AL	LT	141.000		¥	
	0.00						BA	LT	5.000			
	0.00						BE	LT	5.000			
	0.00 0.00						CA	LT	500.000		W	
	0.00						ස ස	LT	4.010			
	0.00						CR	LT LT	25.000		u	
	0.00						CU CU	LT	6.020		11	
	0.00						FE	LT	8.090 38.800		¥	
	0.00						ĸ	LT	375.000		¥	
	0.00						MG	LT	500.000		ö	
	0.00						MN	ĹŤ	2.750		ē	
	0.00						NA	ĹŤ	500.000		ü	
	0.00						NI	LT	34.300		-	
	0,00						\$B	LT	38.000			
	0.00						TL	LT	81,400	UGL	¥	
	0.00						ZN	LT	21.100	UGL	¥	
	0.00		TGM		25-sep-1990		AG	LT	4,600	ŲGL		
	0.00						AL	LT	141,000		W	
	0.00						BA	ĻŢ	5.000			
	0.00						B€	LT	5.000			
	0.00						CA	LŢ	500.000		u	
	0.00						æ	LT	4.010			
	0.00						CC CR	LT LT	25.000		u	
	0.00						CU	LT	6.020 8.090		¥	
	0.00						FE	ĹΫ	38.800		Ü	
	0.00						K	ĹŤ	375.000			
	0.00						NG	ĹŤ	500.000		Ü	
	0.00						MN	LT	2.750		ü	
	0.00						NA.	LT	500,000		ÿ	
	6.00						NI	LT	34.300			
	0.00						PB	LT	18.600	UGL	u	
	0.00		,				82	LT	38.000	UGL		
	0.00						SE	LT	71.100		¥	
	0.00						TL	LT	81.400		W	
	0.00						V.	LŤ	11.000		W	
	0.00		THE	,	20 4000		2N	LT	21.100		W	
	0.00		THE	6	28-aug-1990	UW14	135TNB	LT	0.626		¥	
	0.00						13DHB	LT	0.519		w	
	0.00						246TNT	LT	0.588			
	0.00						24DNT	LT	0.612			
	0.00						26DNT HMX	LT LT	1.150			
	0.00						NB RMA	LT	1.650 1.070		w	
	0.00						RDX	LT	2.110		₩	
	0.00						TETRYL	LT	0.556			
	0.00		TKJ	5	21-sep-1990	JS11	AG	LŤ	2.500			
	0.00			-			AL		780.000		¥	
	0.00						8A	LT	29,600		-	
	0.00						BE	LT	1.860			
	0.00						CA		103.000		u	

QC					Analysis			Meas.			Internal
туре	Amount		LOT	MOIIDEL.	Date	Code			Value		Standard Code
QCMB	0.00	ES	TKJ	5	21-sep-1990	JS11	œ	LT	3.050	UGG	
	0.00						œ	LT	15.000		W
	0.00						CR	LT	12.700		
	0.00						CU FE	LT	58.600		¥
	0.00						K		1930.000 163.000		u
	0.00						MG		152.000		
	0.00						MN		38.000		
	0.00						NA		205.000		
	0.00						N I SB	LT LT	12.600 3.800	-	
	0.00						TL	ĹŤ	31.300		
	0.00						ZN	ĹŤ	30.200		¥
	0.00		VKH	7	30-sep-1991	SS10	AG		5.770		
	0.00						AL.	LT	141.000		
	0.00						B BA	LT LT	50,000 5,000		
	0.00						BE	LT	5.000		
	0.00						CA	LT	500.000		
	0.00						ထ	LT	4.010		
	0.00						CO	LT	25.000		
	0.00						ᅄ	LT LT	6.020 8.090		
	0.00						FE		79.600		
	0.00						K		1080.000	UGL	
	0.00						MG	LT	500.000		
	0.00						MN KA	LT LT	2.750 500.000		
	0.00						N.I	LT	34.300		
	0.00						PB	LT	18.600		
	0.00						\$8	LT	38.000		
	0.00 0.00						V Zn	LT	11.000		
	0.00		WZD	11	08-nov-1991		AG	LT LT	21,100 4,600		¥
	0.00			••			AL	ίΤ	141.000		•
	0.00						BA	L,T	5.000	UGL	
	0.00						BE	LT	5.000		
	0.00						CA CD	LT LT	500.000 4.010		
	0.00						~	LT.	25.000		
	0.00						CR	LT	6.020		
	0.00						cu .	LT	8.090		
	0.00						FE K	LT LT	38.800 375.000		w
	0.00		•				MG	LŤ	500,000		•
	0.00						MN	ĹŤ	2.750		
	0.00						MA	LT	500.000		
	0.00						NÎ PB	LT LT	34,300		
	0.00						SB	LT	18.600 38.000		W W
	0.00						\$E	ίŤ	71.100		-
	0.00						TL	LT	81,400	UGL	¥
	0.00						٧.	LT	11.000		
	0.00		WZJ	9	05-dec-1991		ZN Ag	LT LT	21.100 4.600		
	0.00			•	03 002 1771		AL	LT	141.000		
	0.00						BA	LT	5.000	UGL	
	0.00						BE	LT	5.000		
	0.00						CA CD	LT LT	500.000		
	0.00						æ	LT	4.010 25.000		
	0.00						CR	LT	6.020		
	0.00						ຒ	LT	8.090	UGL	
	0.00						FÆ K	LT	38.800		
	0.00						HG	LT LT	375.000 500.000		
									200.000	JGL	

ering.

QC	Spike			Sample	Analysis	Method	Test	Meas.			Internal
	Amount	Lab	Lot		Date	Code	Name	Bool ean	Value	Units	Standard Code
		•••				•••••					
QCMB	0.00	ES	WZJ	9	05-dec-1991	5510	MN	LT	2.750	Hei	
	0.00					••••	NA	LT	500.000		
	0.00						NI	LT	34.300	UGL	
	0.00						PB	LT	18.600		
	0.00						SB TL	LT LT	38.000 81,400		
	0.00						V	ĻŤ	11,000		
	0.00						ZN	ĹŤ	21,100		
	0.00		YGF	1	05-mar-1992	J\$16		LT	0.589		
	0.00						AL	LT	195.000		W
	0.00						BA BE	LT	5.180 0.500		u
	0.00						CA		1250.000		¥
	0.00						CD	LT	0.700	UGG	
	0.00						CO	LT	1.420		W
	0.00						CR CU	LT LT	4.050 0.965		
	0.00						FE		212.000		¥
	0.00						ĸ	LT	100.000		ũ
	0.00						MG		187.000		W
	0.00						MN	LT	2.050		W.
	0.00						NA NI	LT	328.000 1.710		¥
	0.00						PB	LT	10.500		w
	0.00						SB	LT	7.140		ũ
	0.00						TL	LT	6.620		
	0.00						Λ.	LŤ	3.390		W
	0.00		YJG		30-mar-1992	IM18	ZN 14DCLB	LT LT	8.030 1.700		
	0.00				, <u>-</u>		245TCP		5.200		u
	0.00						246TCP		4.200		Ü
	0.00						24DNT	LT	4.500		
	0.00						ZMP	LT	3.900		ň
	0.00						3MP 4MP	ND LT	3.900 0.520		R W
	0.00						B2EHP	••	2.000		S
	0.00						CL68Z	LT	1.600		Ÿ
	0.00						CL6ET	LT	1.500		¥
	0.00						HCBD NB	LT LT	3.400 0.500		¥
	0.00						PCP	LT	18.000		
	0.00						PHANTR	••	1,000		S
	0.00			:			PYRDIN	ND	5.200		R
	0.00						UNK517		20.000		S
	0.00						UNK519 UNK525		40.000 5.000		\$ \$
	0.00						UNK527		6.000		s
	0.00						UNK531		80.000		Š
	0.00						UNK532		5.000		S
	0.00		CCD	4	26-sep-1991	19147	UNK560		6.000		S
	0.00		ODE	•	20-3eh-1331	UW17	NQ PM	LT LT	30.900 30.900		
	0.00		OGV		03-oct-1991	UW19	NG	LT	10.000		
	0.00		OCW	_	04-oct-1991		NG	LT	10.000		
	0.00		PQX	1	16-mar-1992	UH14	245TP	LT	0.170		
	0.00		PTS	4	28-sep-1990	JD18	24D AG	LT LT	0.802		
	0.00		RCN	6	09-oct-1991	H2	PHENLC	LT	0.025 7.120		
	0.00		RDQ	7	26-sep-1991	TF27	P04	ĻŤ	13.300		
	0.00		RDR	5	10-oct-1991		P04	LT	13.300	UGL	
	0.00		SFZ	10 4	01-oct-1990	JD19	AS		0.468		
	0.00		SNP	10	27-sep-1991 15-sep-1990	TF26 SB01	NZKJEL HG	LT LT	183.000 0.243		
	0.00		SQU	ž	30-aug-1990	UM20	111TCE	LT	0.500		
	0.00		-	_			112TCE	LT	1.200		
	0.00						11DCE	LT	0.500		

ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Hethod Code	Name		Value	Units	Internal Standard Co
						•••••			*		
OCMB	0.00	ES	SQU	2	30-aug-1990	UM20	11DCLE		0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE 12DCLP		0.500 0.500		
	0.00						2CLEVE		0.710		
	0.00						ACET	LT	13,000		
	0.00						ACROLN ACRYLO		100.000 100.000		R
	0.00						BRDCLM		0.590		R
	0.00						C130CP	LT	0.580		
	0.00						C2AVE		8.300		
	0.00						CZH3CL CZH5CL	-	2.600 1.900		
	0.00						C6H6	LŤ	0.500		
	0.00						CCL3F	LT	1.400	UGL	
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2 CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3		2.600		
	0.00						CHCL3 CLZBZ	LT MD	0.500		_
	0.00						CLC6H5		10.000 0.500		Ř
	0.00						CS2	LT	0.500		
	0.00						DERCLM		0.670		
	0.00						ETC6H5 MEC6H5	_	0.500		
	0.00						MEK	LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T13DCP	ĻT LT	0.500 0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		SRR		11-sep-1990	LM18	XYLEN 124TCB	LT LT	0.840 1.800		
	0.00						12DCLB		1.700		
	0.00						12DPH	ND	2.000		R
	0.00						13DCLB 14DCLB	LT LT	1.700		
	0.00						245TCP		1.700 5.200		
	0.00			;			246TCP		4.200		
	0.00		-				24DCLP	LT	2.900	UGL	
	0.00 0.00						24DMPN 24DNP	LT LT	5.800 21,000		
	0.00						240NT	LT	4.500		
	0.00						260NT	LT	0.790	UGL	
	0.00 0.00						2CLP	LT	0.990		
	0.00						2CNAP 2MNAP	LT LT	0.500 1.700		
	0.00						2MP	LT	3.900		
	0.00						ZNANIL	LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						33DCBD 3NAN1L	LT LT	12.000 4.900		
	0.00						46DN2C	LT	17.000		
	0.00						48RPPE	LT	4.200	UGL	
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C 4CLPPE	LT LT	4.000 5.100		
	0.00						4MP	LT	5.100 0.520		
	0.00						4NANIL	LT	5.200	UGL	
	0.00						4NP	LT	12.000		_
	0.00						ABHÇ ACLDAN	ND ND	4.000		Ř
	0.00						VACTORI	NU	5.100	UUL	R

Grégica	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code		Meas. Boolean	Value	Units	Internal Standard Co
	□CMB	0.00	ES	SRR	2	11-sep-1990	IM18	AENSLF	ND	9.200	Hei	ь
		0.00			•	550 .,,,	QIII.U	ALDRN	ND	4.700		R R
		0.00						ANAPNE	LT	1.700		ĸ
		0.00						ANAPYL	ĹŤ	0.500		
		0.00						ANTRO	LŤ	0.500		
		0.00						B2CEXH	ĹŤ	1.500		
		0.00						B2C1P€	LŤ	5.300		
		0.00						B2CLEE	LŤ	1,900		
		0.00						B2EHP	ĹŤ	4.800		
		0.00						BAANTR	LT	1.600		
		0.00						BAPYR	LT	4.700		
		0.00						BBFANT	LT	5.400		
		0.00						8BKC	ND	4.000		R
		0.00						BBZP	LT	3,400		"
		0.00						BENSLF	ND	9.200		R
		0.00						BENZID	ND	10.000		R
		0.00						BENZOA	LT	13.000		
		0.00						BGHIPY	LT	6.100		
		0,00						BKFANT	LT	0.870		
	-	0.00						BZALC	LT	0,720		
		0.00						CHRY	LT	2.400		
		0.00						CL68Z	LT	1.600		
		0.00						CL6CP	LT	8.600		
		0.00						CL6ET	LT	1.500		
		0.00						DBAHA	LT	6.500	UGL	
		0.00						DBHC	ND	4.000		R
		0.00						DBZFUR	LT	1.700	UGL	
		0.00						DEP	LT	2,900	UCL.	
		0.00						DLDRN	MD	4.700	UGL	R
		0.00						DMP	LT	1.500		
		0.00						DNBP	LT	3.700	UGL	
		0.00						DNOP	<u>i.</u> T	15.000	UGL	
		0.00						ENDRN	NO	7.600	UGL	R
		0.00						ENDRNA	NED	8.000		R
		0.00						ENDRNK	MD	8.000	UGL	R
		0.00						ESFS04	MD	9.200		R
		0.00						FANT	LT	3.300		
		0.00						FLRENE	LT	3.700		
		0.00						GCLDAN	NO	5.100		R
		0.00						HCBD	LT	3.400		
		0.00						HPCL	NO	2.000		R
		0.00						HPCLE	ND	5.000		R
		0.00			•			ICDPYR	LT	8.600		
		0.00			•			ISOPHR	LT	4.800		
		0.00						LIN	MD	4.000		R
		0.00						NEXCLR	ND	5.100		R
		0.00						NAP	LT	0.500		
		0.00						NB	LT	0.500		
		0.00						NNDMEA	ND	2.000		Ř
		0.00						NNDNPA	LT	4.400		
		0.00						NNDPA	LT	3.000		
		0.00						PC8016		21.000		R
		0.00						PCB221	ND	21.000		R
		0.00						PCB232	ND	21.000		R
		0.00						PCB242	ND	30.000		R
		0.00						PC8248	ND	30.000		R
		0.00						PC8254	ND	36.000		R
		0.00						PCB260	ND	36.000		R
		0.00						PCP	ĻT	18.000		
		0.00						PHANTR	LT	0.500		
		0.00						PHENOL	ŁT	9.200		
		0.00						PPDDD	ND	4.000		R
		0.00						PPDDE	ND	4.700		R
		0.00						PPDDT	ND	9.200		R
		0.00						PYR	LT	2.800	UGL	
		0.00						TXPHEN		36.000		

~

qc Type	Spike Amount	Lab	Lot	Sample Number		Hethod Code			Value	Units	Internet Standard Cod
	0.00			-	44 4000						
QCMB	0.00	69	SRR	2	11-sep-1990 13-sep-1990	UM 10	124TOR		10,000		S
	0.00		330		(3-8eh-1330	FWID	12DCLB		0.040 0.110		
	0.00						12DPH		0,110		
	0.00						12EPCH		0.700		R S
	0.00						13DCL8		0.130		•
	0.00						14DCLB		0.098		
	0.00						245TCP	LT	0.100		
	0.00						246TCP	LT	0.170		
	0.00						24DCLP		0.180	UGG	
	0.00						24DMPN		0.690		
	0.00						24DNP	LT	1,200		
	0.00						24DNT		0.140		
	0.00						26DHT		0.085		_
	0.00						2CHE1L		0.200		S
	0.00						2CHE10		0.200		\$
	0.00						2CLP 2CNAP	LT	0.060		
	0.00						2MNAP	LT LT	0.036 0.049		
	0.00						2MP	LT	0.029		
	0.00						2NAN1L		0.062		
	0.00						2NP	ĹŤ	0.140		
	0.00						33DCBD		6.300		
	0.00						3NAN1L	LT	0.450	UGG	
	0.00						46DN2C	LT	0.550		
	0.00						4BRPPE		0.033	UGG	
	0.00						4CANIL		0.810	2DU	
	0.00						4CL3C		0.095		
	0.00						4CLPPE		0.033		
	0.00						4MP	LT	0.240		
	0.00						4NANIL		0.410		
	0.00						ANP ABHC	LT	1.400		
	0.00						ACLDAN	ND ND	0.270		R
	0.00						AENSLF		0.330 0.620		R R
	0.00						ALDRN	ND	0.330		R
	0.00						ANAPNE		0.036		~
	0.00						ANAPYL	ίŤ	0.033	-	
	0.00						ANTRO	ĹŤ	0.033		
	0.00						B2CEXM	LT	0.059		
	0.00						B2CIPE	LT	0.200		
	0.00						B2CLEE	LT	0.033	UGG	
	0.00						B2EHP	LT	0.620	UGG	
	0.00						BAANTR	LŤ	0.170	UGG	
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT	ŁT	0.210		
	0.00						BBHC	ND	0.270		R
	0.00						BBZP	LT	0.170		_
	0.00						BENSLF	ND	0.620		R
	0.00						BENZID	ND	0.850		R
	0.00						BENZOA	ND	6.100		R
	0.00						BKFANT	LT LT	0.250 0.066		
	0.00						BZALC	LT	0.190		
	0.00						CHRY	נֿז	0.120		
	0.00						CL6BZ	LT	0.033		
	0.00						CL6CP	ΪŤ	6.200		
	0.00						CL6ET	LŤ	0.150		
	0.00						DBAHA	LŤ	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR	LT	0.035		
	0.00						DEP	LT	0.240		
	0.00						DLDRN	ND	0.310		R
	0.00						DMP	LT	0.170		
	0.00						DNBP	LT	0.061		
	0.00						DNOP	LT	0.190	UGG	

oc Type					Analysis Date		Name		Value		Internal Standard Code
									***	•••	
GCMB	0.00	ES	SSU	2	13-sep-1990	LN18	ENDRN	NĎ	0.450	UGĞ	R
	0.00						ENDRNA	ND	0.530		R
	0.00						ENDRNK	ND	0.530		R
	0.00						ESFS04	ND	0.620	ŲGG	R
	0.00						FANT	LŤ	0.068	UGG	
	0.00						FLRENE	LT	0.033	UGG	
	0.00						GCLDAN	ND	0.330	UGG	R
	0.00						HCBD	LT	0.230		
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE	_	0.330		R
	0.00 0.00						1 COPYR		0.290		
	0.00						ISOPHR		0.033		_
	0.00						LIN		0.270		R
	0.00						MEXCLR		0.330		R
	0.00						NAP NB	LT LT	0.037		
	0.00						NNDMEA		0.045 0.140		R
	0.00						NNDNPA		0.200		ж,
	0.00						NNDPA	-	0.190		
- -	0.00						PC8016	ND	1.400		R
	0.00						PC8221		1,400		Ř
	0.00						PC8232	-	1.400		R
	0,00						PC8242		1.400		Ř
	0.00						PCB248	MD	2.000	UGG	R
	0.00						PCB254		2.300	UGG	R
	0.00						PCB260		2.600		R
	0.00						PCP		1.300		
	0.00						PHANTR		0.033		
	0.00						PHENOL		0.110		_
	0.00						PPDDD		0.270		R
	0.00						PPDDE PPDDT		0.310		R
	0.00						PYR	ND LT	0.310 0.033		R
	0.00						TXPHEN		2.600		R
	0.00						UNK653		0.400		ŝ
	0.00		SUP	10	02-oct-1990	JD15	SE	LT	0.250		•
	0.00		SVT	2	31-aug-1990	LM19	111TCE	LT	0.004		
	0.00						112TCE		0.005		
	0.00						11DCE	LT	0.004	UGG	
	0.00						11DCLE	LT	0.002	UGG	
	0.00						12DCE	LT	0.003	UGG	
	0.00						12DCLE		0.002		
	0.00						12DCLP		0.003		
	0.00		•				2CLEVE	ND	0.010		R
	0.00						ACET		0.017		_
	0.00						ACROLN	ND	0.100		R
	0.00						ACRYLO	ND	0.100		R
	0.00						BRDCLM C13DCP	ĻT	0.003		
	0.00						C2AVE	LT LT	0.003		
	0.00						C2H3CL	LT	0.003 0.006		
	0.00						C2H5CL	ĹŤ	0.012		
	0.00						C6H6	LT	0.002		
	0.00						CCL3F	LT	0.006		
	0.00						CCL4	LT	0.007		
	0.00						CHSCTS	LT	0.012		
	0.00						CH38R	LT	0.006		
	0.00						CH3CL	LT	0.009	UGG	
	0.00						CHBR3	LT	0.007		
	0.00						CHCL3	ĻŢ	0.001		
	0.00						CL2BZ	ND	0.100		R
	0.00						CLC6H5	LT	0.001		
	0.00						CS2	LT	0.004		
	0.00						DBRCLM ETC6H5	LT LT	0.003 0.002		
	0.00						MEC6H5	LT	0.002		
									3.001	244	

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date		Name	Boolean	Value	Units	Internal Standard Code
QCMB	0.00	FS	SVT	2	31-aug-1990	1 M10	MEK	LT	0.070	Hee	
	0.00			_			MIBK	ĹΤ	0.027		
	0.00						MNBK	LT	0.032		
	0.00						STYR	LT	0.003		
	0.00						T13DCP		0.003		
	0.00						TCLEA TCLEE	LT LT	0.002 0.001		
	0.00						TRCLE		0.001		
	0.00						XYLEN	ĹŤ	0.002		
	0.00		SVU		04-sep-1990		111TCE	LT	0.004		
	0.00						112TCE		0.005		
	0.00						11DCE		0.004		
	0.00						11DCLE 12DCE	LT LT	0.002 0.003		
	0.00						120CLE		0.002		
	0.00						120CLP		0.003		
	0.00						2CLEVE		0.010		R
	0.00						ACET	LT	0.017		
	0.00						ACROLN		0.100		R
	0.00 0.00						ACRYLO BRDCLM		0.100 0.003		R
	0.00						C13DCP		0.003		
	0.00						C2AVE		0.003		
	0.00						C2H3CL		0.006		
	0.00						CZH5CL		0.012		
	0.00						C6H6		0.002		
	0.00						CCL3F CCL4	LŤ	0.026 0.007		
	0.00						CH2CL2	LT	0.007		
	0.00						CH3BR	LT	0.006		
	0.00						CH3CL	LT	0.009	UGG	
	0.00						CHBR3	LT	0.007		
	0.00 0.00						CHCL3	LT	0.001		_
	0.00						CL2BZ CLC6H5	ND LT	0.100 0.001		R
	0.00						CS2	LT	0.004		
	0.00						DBRCLM		0.003		
	0.00						ETC6H5		0.002		
	0.00						MEC6H5		0.001		
	0.00 0.00						MEK M1BK	LT LT	0.070		
	0.00						HNBK	LT	0.027 0.032		
	0,00			:			STYR	ĹŤ	0.003		
	0.00						T13DCP	LT	0.003		
	0.00						TCLEA	LT	0.002		
	0.00 0.00						TCLEE	LT	0.001		_
	0.00						TCLTFE	ŁT	0.010 0.003		S
	0.00						UNKO73		0.030		s
	0.00						XYLEN	LT	0.002		•
	0.00		TCL	8	27-sep-1990	SD22	AS	LT	2.540		
	0.00		TFJ	_		SD21	SE	LT	3.020		
	0.00		TLB		01-oct-1990	SD09	TL	LT	6.990		
	0.00 0.00		THD	10 8	15-sep-1990 01-oct-1990	JB01 SD20	HG PB	LT	0.050		
	0.00		UFW		08-oct-1991	1110	CL	LT	4.500 2120,000		
	0.00			-			SO4	ĹŤ	10000.000		
	0.00		UOY	12	18-jul-1991	SD23	AG	LT	0.250		
	0.00		UOZ				AG	LT	0.250		
	0.00		UQV	_	09- jul-1991	TF22	NIT	LT	10.000		
	0.00		UQW	12	22- jul-1991	SD20	NIT PB	LT LT	10.000		
	0.00		UXZ	8	17-jul-1991	3U2U	PB PB	LT	1.260 1.260		
	0.00		VIS		03-jul-1991	UM18	124TCB	LT	1.800		
	0.00			_			12DCLB	ĽŤ	1.700		
	0.00						120PH	ND	2.000		R

90	Spike				Analysis			Meas.			Internal
Type	Amount	Lab			Date	Code	Name	Boolean	Value	Units	Standard Code

осмв	0.00	F¢	VIS	2	03-jul-1991	18418	125004		/ 000	Her	
-4.15	0.00		***	-	05 jut-1991	SHID	13DCL8	LT	4.000 1.700		\$
	0.00						14DCLB	ĹŤ	1.700		
	0.00						245TCP	LT	5.200		
	0.00						246TCP	LT	4.200		
	0.00						24DCLP 24DMPN		2.900 5.800		
	0.00						24DNP	LT	21,000		
	0.00						24DNT	ĹŤ	4.500		
	0.00						26DNT	LT	0.790	UGL	
	0.00						SCLP	LT	0.990		
	0.00						2CNAP 2MNAP	LT	0.500		
	0.00						2MP	LT LT	1.700 3.900		
	0.00						SNANIL	น้ำ	4.300		
	0.00						2NP	LT	3.700		
	0.00						33DCBD	LT.	12.000		
	0.00						3NANIL	-	4.900		
·	0.00						46DN2C 4BRPPE	LT	17.000		
	0.00						4CANIL	LT LT	4.200 7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP ABHC	LT ND	12.000 4.000		•
	0.00						ACLDAN		5.100		R R
	0.00						AENSLF	ND	9.200		R R
	0.00						ALDRN	MD	4.700		Ř
	0.00						ANAPNE	LT	1.700		
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRC B2CEXM	LT LT	0.500		
	0.00						82CIPE	LT	1.500 5.300		
	0.00						B2CLEE	ĹΪ	1.900		
	0.00						BZEHP	LT	4.800		
	0.00 0.00						BAANTR	LT	1.600		
	0.00						BAPYR BBFANT	LT	4.700		
	0.00						BBHC	LT ND	5.400 4.000		R
	0.00						BBZP	LT	3.400		•
	0.00			:			BENSLF	ND	9.200		R
	0.00			-:			BENZID	ND	10.000		R
	0.00 0.00						BENZOA	LT	13.000		
	0.00						BGHIPY BKFANT	LT LT	6.100 0.870		
	0.00						8ZALC	LT	0.720		
	0.00						CHRY	ίŤ	2.400		
	0.00						CL68Z	LT	1.600	UGL	
	0.00						CL6CP	LT	8.600		
	0.00 0.00						CL6ET DBAHA	LŤ	1.500		
	0.00						DBAC	LT ND	6.500 4.000		R
	0.00						DBZFUR	LT	1,700		K
	0.00						DEP	ĻT	2.000		
	0.00						DLDRN	ND	4.700	UGL	R
	0.00						DMP	LT	1.500		
	0.00						DNBP DNOP	LŤ	3.700		
	0.00						ENDRN	LT ND	15.000 7.600		R
	0.00						ENDRNA	ND	8.000		R
	0.00						ENDRNK	NO	8.000		Ř
	0.00						ESFS04	ND	9.200	UGL	Ř
	0.00						FANT	LT	3.300		
	0.00						FLRENE	LT	3.700	UGL	

-- ---

,

ec Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code	Name	Boolean	Value	Units	Internal Standard Code
QCMB	0.00	Ee	ure	7	03-jul-1991	18410	CC1 D.1.11	N/ED			_
WCMB	0.00	E3	412	2	U3-JUC-1991	URID	HCBD		5,100 3,400		R
	0.00						HPCL	-	2.000		R
	0.00						HPCLE		5.000		R
	0.00						I CDPYR		8.600		
	0.00						ISOPHR LIN	LT MD	4.800 4.000		R
	0.00						MEXCLR	-	5.100		Ř
	0.00						KAP	LT	0.500		
	0.00						NB	LT	0.500		_
	0.00						NADMEA		2.000 4.400		R
	0.00						NNDPA	ĹŤ	3.000		
	0.00						PCB016	-	21,000	UGL	R
	0.00						PCB221		21.000		R
	0.00						PCB232 PCB242	ND ND	21.000 30.000		R R
	0.00						PCB248		30,000		R R
	0.00						PCB254	ND	36.000	UGL	Ř
	0.00						PCB260	ND	36.000	UGL	R
	0.00						PCP PHANTR	- -	18.000 0.500		
	0.00						PHENOL	LT	9.200		
	0.00						PPDDD		4.000		R
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT PYR		9.200 2.800	_	R
	0.00						TXPHEN		36,000		R
	0.00		TIV				124TCB		1.800	. –	•
	0.00						120CLB	LT	1,700		_
	0.00 0.00						120PH 12EPCH	ND	2.000 6.000		R
	0.00						13DCLB	LT	1.700		S
	0.00						14DCLB	LT	1.700		
	0.00						245TCP	LT	5.200	_	
	0.00						246TCP 24DCLP	LT LT	4,200 2,900		
	0.00						24DMPN	ĹŤ	5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNT 26DNT	LT	4.500		
	0.00						2CLP		0.790 0.990		
	0.00			;			2CNAP		0.500	–	
	0.00		-	-			2MNAP	LŦ	1.700		
	0.00						2MP	LT	3.900		
	0.00						2NANIL 2NP	LŤ LT	4.300 3.700		
	0.00						330CBD	ĹŤ	12.000		
	0.00						3MANIL	LT	4.900	UGL	
	0.00 0.00						46DN2C	LT	17.000		
	0.00						4BRPPE 4CAN1L	LT LT	4.200 7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP	LT	0.520		
	0.00 0.00						4NANIL 4NP	LT LT	5.200		
	0.00						ABHC	ND	12.000 4.000		R
	0.00						ACLDAN	ND	5.100		Ř
	0.00						AENSLF	MD	9.200		R
	0.00						ALDRN ANAPNE	NAD Lt	4.700 1.700		R
	0.00						ANAPYL	LT	0.500		
	0.90						ANTRC	LT	0.500		
	0.00						B2CEXM	LT	1.500		
	0.00						BSCIDE	LT	5.300	UGL	

anta Magasi

QC	Spike			Samole	Analysis	Method	Tect	Mone			Internal
	Amount	Lab	Lot	Number		Code		Boolean	Value	Units	Standard Code
асмв	0.00	FS	VIT	2	03-jul-1991	18419	92c1 EE	LT	1,900	uei	
	0.00			-	144 1771	G 110	BZEHP		4.800		
	0.00						BAANTR		1,600		
	0.00						BAPYR		4.700		
	0.00						BBFANT		5.400		_
	0.00						88HC BBZP	ND LT	4.000 3.400		R
	0.00						BENSLF		9.200		R
	0.00						BENZID		10,000		Ř
	0.00						BENZOA		13.000		
	0.00						BCHIPY		6.100		
	0.00						BZALC	LT	0.870 0.720		
	0.00						CHRY	LT	2.400		
	0.00						CL68Z	LT	1.600		
	0.00						CL6CP	LT	8.600		
	0.00						CL6ET DBAHA	LT LT	1.500 6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LT	1.700		••
	0.00						DEP	LT	2.000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP DNBP	LT LT	1.500 3.700		
	0.00						DNOP	LŤ	15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA		8.000		R
	0.00						ENDRNK		8.000		R
	0.00						ESFS04 FANT	NĎ LT	9.200 3.300		R
	0.00						FLRENE		3.700		
	0.00						GCLDAN	JND	5.100		R
	0.00						HCBD	LT	3.400		
	0.00						HPCLE HPCLE	ND ND	2.000		R
	0.00						ICDPYR		5.000 8.600		R
	0.00						ISOPHR		4.800		
	0.00						LIN	NED	4.000		R
	0.00						MEXCLR		5.100		R
	0.00						NAP NB	LT LT	0.500 0.500		
	0.00						NHOMEA		2.000		R
	0.00			-			NNDNPA		4.400		
	0.00		-	-1			NNDPA	LT	3.000		
	0.00 0.00						PCB016		21.000		R
	0.00						PC8221 PC8232	NED NED	21.000 21.000		R R
	0.00						PCBZ42	ND	30.000		Ř
	0.00						PCB248	ND	30,000		R
	0.00 0.00						PCB254	ND	36.000		R
	0.00						PCB260 PCP	ND LT	36.000		R
	0.00						PHANTR	LT	18.000 0.500		
	0.00						PHENOL	LŤ	9.200		
	0.00						PPDDD	KD	4.000	UGL	R
	0.00						PPDDE	ND ND	4,700		R
	0.00						PPDDT PYR	ND Lt	9.200		R
	0.00						TXPHEN	MD	2.800 36.000		R
	0.00		VXN	9	16-jul-1991	SS10	AG	ĹŤ	4.600		ũ
	0.00						AL	LT	141.000		**
	0.00						BA	LT	5.000		
	0.00						8E CA	LT LT	5,000		
	0.00						CD	L) LT	500.000 4.010		
	0-00						co	ĹŤ	25.000		

oc Type	Spike Amount		Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Cod
e e un					46 5.1 4004						
QCMB	0.00	ES	VKN	9	16-jul-1991	5510		LT	6.020		
	0.00						t£ CD	LT LT	8.090		
	0.00						K	LT	38.800 375.000		
	0.00						MG	LT	500,000		
	0.00						MN	LT	2.750		
	0.00						NA	LT	500,000		
	0.00						NI	LT	34.300		
	0.00						PB	LT	18.600	UGL	w
	0.00						\$6	LT	38.000		
	0.00						TL	LT	81.400		¥
	0.00						V Zn	LT LT	11.000 21.100		
	0.00		VKO		17- jul-1991		AL	LT	141.000		
	0.00				,		BA	LT	5.000		
	0.00						BE	LŤ	5.000		
	0.00						CA	LT	500.000		
	0.00						CD	LT	4.010		
	0.00						CC	LT	25.000	UGL	
	0.00						CR	LT	6.020	-	
	0.00						αυ	LT	8.090		
	0.00						FE K	LT	38.800 375.000		
	0.00						MG	LT LT	500.000		
	0.00						MN	ĹŤ	2.750		
	0.00						NA	LT	500.000		
	0.00						NI	LT	34.300		
	0.00						SB	LT	38.000	UGL	
	0.00						٧	LT	11.000	UGL	
	0.00			45	24 1004		ZN	LT	21.100		
	0.00 0.00		VKT	15	21-oct-1991		AG	LŢ	4,600		
	0.00						BA CD	LT LT	5.000	_	
	0.00						CR	LT	4.010 6.020		
	0.00						PB	LT	18.600		¥
	0.00		VLK	8	18-jul-1991	SB01	HG	LT	0.243		-
	0.00		VLL		17- jul - 1991		HG	LT	0.243		
	0.00		VL.T	6	13-sep-1991		HG	LT	0.243	UGL	
	0.00		AFM		11-oct-1991		HG	LT	0.243		
	0.00		VLX		08-oct-1991 31-aug-1991		HG	LT	0.243		
	0.00 0.00		VMZ	2	31-aug-1991	LWIZ	135TNI 13DNB		0.488		
	0.00		٠,				246TN1		0.496 0.456		
	0.00						24DNT	LT	0.424		
	0.00						26DNT	LT	0.524		
	0.00						2NT	LT	0.307		
	0.00						HMX	LT	0.666		
	0.00						NB	LT	2.410		
	0.00						RDX	LT	0.587		
	0.00		VOI	4	10-jul-1991	18747	TETRYI 135TN		0.731		
	0.00		101	-	10 Jul-1991	UM 14	130NB	B LT LT	0.626 0.519		
	0.00						246TN1		0.588		
	0.00						24DNT	LT	0.612		
	0.00						260NT	LT	1.150		
	0.00				•		HMX	LT	1.650		
	0.00						NB	£Τ	1.070		
	0.00						RDX	LT	2.110		
	0.00		100				TETRY		0.556		
	0.00		AO1				135TN		0.626		
	0.00						13DNB 246TN	LT T LT	0.519 0.588		
	0.00						24DNT	LT	0.505		
	0.00						260NT	LT	1,150		
	0.00						HMX	ĹΤ	1.650		
	0.00						BK	LT	1,070		
									.,		

 $W_{2}(X_{\lambda}) = W_{2}(X_{\lambda})$

QCMB	0.00					Code	Name	Roofeau	Value	27100	Standard Code
		FS	VOJ	4	10-jul-1991	HU1Z	RDX	1.7	2 450	uet	
				7	10 101 1991	UN 14	TETRYL	LT	2.110 0.556		
	0.00		VOL	6	24- Jul - 1991		135TNB		0.626		
	0.00				•		13DNB		0.519		
	0.00						246TNT	LT	0.588		
	0.00						24DNT	LT	0.612		
	0.00 0.00						26DNT	LT	1.150		
	0.00						HMX NB	LT	1.650		
	0,00						RDX	LT LT	1,070 2,110		
	0.00						TETRYL		0.556		
	0.00		VQV	1	27-sug-1991	LM19	111TCE	ĻŤ	0.004		
	0.00						112TCE	LT	0.005	UGG	
	0.00						11DCE	LT	0.004		
	0.00						11DCLE		0.002		
	0.00						12DCE	LT	0.003		
	0.00						120CLE 120CLP	LT LT	0.002 0.003		
	0.00						2CLEVE		0.003		R
	0.00						ACET	LT	0.017		ĸ
	0.00						ACROLN	ND	0.100		R
	0.00						ACRYLO	ND	0.100		Ř
	0.00						BRDCLM		0.003	UGG	
	0.00 0.00						C13DCP	LT	0.003		
	0.00						CZAVE	LT	0.003		
	0.00						C2H3CL C2H5CL	LT LT	0.006 0.012		
	0.00						C6H6	LT	0.002		
	0.00						CCL3F	LT	0.006		
	0.00						CCL4	LT	0.007		
	0.00						CH2CL2	ĻT	0.012	UGG	
	0.00						CH3BR	LT	0.006		
	0.00 0.00						CH3CL	LT	0.009		
	0.00						CHBR3 CHCL3	LT	0.007		
	0.00						CL2BZ	LT ND	0.001 0.100		R
	0.00						CLC6H5	LT	0.001		
	0.00						CS2	LT	0.004		
	0.00						DBRCLM	LT	0.003	UGG	
	0.00						ETC6H5	LT	0.002		
	0.00						MEC6H5	LT	0.001		
	0.00						MEK	LT	0.070		
	0.00						MIBK	LT LT	0.027 0.032		
	0.00			-			STYR	LT	0.003		
	0.00						T13DCP	LT	0.003		
	0.00						TCLEA	LT	0.002		
	0.00						TCLEE	LT	0.001	UGG	
	0.00						TRCLE	LT	0.003		
	0.00		VQM		29-aug-1991		XYLEN	LT	0.002		
	0.00		148		29-809-1991		111TCE 112TCE	LT	0.004		
	0.00						11DCE	LT LT	0.005 0.004		
	0.00						11DCLE	ĹŤ	0.002		
	0.00						12DCE	ĹŤ	0.003		
	0.00						12DCLE	LŤ	0.002		
	0.00						12DCLP	L,T	0.003		
	0.00						2CLEVE	ND	0.010		R
	0.00						ACET	LT	0.017		_
	0.00						ACROLN ACRYLO	ND	0.100		R
	0.00						BROCLM	ND LT	0.100 0.003		R
	0.00						C13DCP	LT	0.003		
	0.00						CZAVE	LT	0.003		
	0.00						C2H3CL	ĹΤ	0.006		
	0.00						C2H5CL	LT	0.012		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Code
OCHD	0.00		w	1	20 1001		24114				
QCMB	0.00	E2	YW	'	29-aug-1991	TW1A	C6H6 CCL3F	LŤ	0.002 0.010		
	0.00						CCL4	LT	0.007		
	0.00						CH2CL2	LT	0.012		
	0.00						CH3BR	LT	0.006		
	0.00						CH3CL CHBR3	LT LT	0.009 0.007		
	0.00						CHCL3	ĹŤ	0.001		
	0.00						CL2BZ	ND	0.100		R
	0.00						CLC6H5	LT	0.001		
	0.00						CS2 DBRCLM	LT LT	0.004 0.003		
	0.00						ETC6H5	ίŤ	8.002		
	0.00						MEC6H5	LT	0.001		
	0.00						MEK	LT	0.070		
	0.00						MIBK	LT	0.027		
	0.00						MNBK STYR	LT LT	0.032 0.003		
	0.00						T13DCP		0.003		
	0.00						TCLEA	LT	0.002	UGG	
	0.00						TCLEE	LT	0.001		
	0.00						TRCLE UNKO73	LT	0.003 0.010		s
	0.00						XYLEN	LT	0.002		3
	0.00		YQX	2			111TCE	LT	0.220		
	0.00						112TCE	LT	0.270		
	0.00						11DCE 11DCLE	LT LT	0.195 0.115		
	0.00						12DCE	ĹŤ	0.150		
	0.00						12DCLE	LT	0.085		
	0.00						12DCLP	LT	0.145		_
	0.00 0.00						2CLEVE ACET	ND LT	0.500		R
	0.00						ACROLN	MD	0.850 5.000		R
	0.00						ACRYLO	MD	5.000		Ř
	0.00						BRDCLM	LT	0.145		
	0.00						C13DCP C2AVE	LT LT	0.160		
	0.00						C2H3CL	LT	0.160 0.310		
	0.00						C2H5CL	ĹŤ	0,600		
	0.00						C6H6	ĻŢ	0.075		
	0.00						CCL3F CCL4	LT LT	0.295		
	0.00		-				CH2CL2	LT	0.350 0.600		
	0.00						CH3BR	LT	0.285		
	0.00						CH3CL	LT	0.440		
	0.00						CHBR3	LŤ	0.345		
	0.00						CHCL3 CL2BZ	LT ND	0.043 5.000		R
	0.00						CLC6H5	ίŤ	0.043		K
	0.00						CS2	LT	0.220		
	0.00						DBRCLM	LT	0.155		
	0.00						MEC6H5	LT LT	0.085 0.039		
	0.00						MEK	LŤ	3.500		
	0.00						MIBK	LT	1.350		
	0.00						MNBK	L T	1.600		
	0.00						STYR	LT	0.130		
	0.00						T13DCP TCLEA	LT LT	0.140 0.120		
	0.00						TCLEE	ĹŤ	0.120		
	0.00						TRCLE	LT	0.140	UGG	
	0.00		1800		07 1004		XYLEN	LŦ	0.075		
	0.00 0.00		VQY	1	03-sep-1991		111TCE 112TCE	LT LT	0.004 0.005		
	0.00						110CE	LT	0.005		

ec Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Name	Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	F¢	VOV	1	03-sep-1991	1 1110	110015	17	0.003	1100	
40112	0.00		**	•	03 acp 1771	LMIT	120CE	LT	0.002 0.003		
	0.00						12DCLE		0.002		
	0.00						12DCLP		0.003		
	0.00						ZCLEVE	ND	0.010		R
	0.00						ACET	LT	0.017		
	0.00						ACROLN		0.100		R
	0.00						ACRYLO		0.100		R
	0.00						BRDCLH	-	0.003		
	0.00						C13DCP		0.003		
	0.00						C2AVE C2H3CL	LT LT	0.003 0.006		
	0.00						C2H5CL		0.012		
	0.00						C6H6	LT	0.002		
	0.00						CCL3F	LT	0.006		
	0.00						CCL4	LT	0.007		
	0.00						CH2CL2	LT	0.012	UGG	
	0.00						CH3BR	ĻT	0.006	UGG	
	0.00						CH3CL	LT	0.009		
	0.00						CHBR3	LT	0.007		
	0.00 0.00						CHCL3	LT	0.001		_
	0.00						CL2B2	ND	0.100		R
	0.00						CLC6H5	LT LT	0.001 0.004		
	0.00						DBRCLM		0.004		
	0.00						ETC6H5		0.002		
	0.00						MEC6H5		0.001		
	0.00						MEK	LT	0.070		
	0.00						MIBK	LT	0.027		
	0.00						MNBK	LT	0.032	UGG	
	0.00						STYR	LT	0.003		
	0.00						T13DCP		0.003		
	0.00						TCLEA	LT	0.002		
	0.00						TCLEE	LT	0.001 0.007	-	s
	0.00						TRCLE	LT	0.007 0.003		3
	0.00						XYLEN	ĹŤ	0.002		
	0.00		VQZ		04-sep-1991		111TCE		0.004		
	0.00						112TCE	LT	0.005		
	0.00						11DCE	LT	0.004	UGG	
	0.00						11DCLE		0.002		
	0.00						120CE	LT	0.003		
	0.00						120CLE		0.002		
	0.00			1.			120CLP 2CLEVE	LT Ndd	0.003		•
	0.00		-				ACET	LT	0.010 0.017		R .
	0.00						ACROLN	ND	0.100		R
	0.00						ACRYLO	ND	0.100		Ř
	0.00						BRDCLM	LT	0.003		•
	0.00						C130CP	LT	0,003		
	0.00						CZAVE	LT	0.003	UGG	
	0.00						CSH3CF	LT	0.006		
	0.00						C2H5CL	LT	0.012	-	
	0.00						C6H6	LT	0.002		
	0.00						CCL3F CCL4	LT	0.006		
	0.00						CH2CL2	LT LT	0.007		
	0.00						CH3BR	LT	0.012 0.006		
	0.00						CH3CL	LT	0.009		
	0.00						CHBR3	ĹŤ	0.007		
	0.00						CHCL3	LŤ	0.001		
	0.00						CL2BZ	ND	0.100		R
	0.00						CLC6R5	LT	0.001		•
	0.00						CS2	LT	0.004		
	0.00						DBRCLN		0.003		
	0.00						ETC6H5	LT	0,002	UGG	

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date	Code	Test	Boolean	Value	Units	Internal Standard C
осив	0.00	FS	עם <i>ד</i>	1	04-sep-1991	ı м 10	MECAUE	LT	0.001	uce	
	0.00			•	04 0Cp 1221	LAIT	MEK		0.070		
	0.00						MIBK	ĹŤ	0.027		
	0.00						MNBK		0.027		
	0.00						STYR		0.003		
	0.00						T13DCP		0.003		
	0.00						TCLEA		0.002		
	0.00						TCLEE		0.001		
	0.00						TRCLE	ĹŤ	0.003		
	0.00						XYLEN	17	0.002		
	0.00		VRI	12	17-jul-1991	SD09	TL	LT	6.990		
	0.00		VRJ		,	4	TL	ĻŤ	6.990		
	0.00		VRR	_	25-oct-1991		TL	ĹŤ	6,990		
	0.00							LT	6,990		
	0.00		VRX	8	.11-nov-1991		TL	ĹŤ	6.990		
	0.00		VSQ	4	11-sep-1991	JB01	HG	ĹŤ	0.050		
	0.00		VSU	8	16-sep-1991		#G	LT	0.050		
	0.00		VTF	12	19- Jul - 1991	SD22	AS	LT	2.540		
	0.00		VTG	8	22-jul-1991		AS	ĹŤ	2.540		
	0.00		VTP	6	25-oct-1991		AS	LŤ	2.540		
- -	0.00		VTR	12	31-oct-1991		AS	ĹŤ	2.540	IIGI	
	0.00		VTT	4	11-nov-1991 11-sep-1991 16-sep-1991 19-jul-1991 22-jul-1991 25-oct-1991 31-oct-1991 26-oct-1991 08-nov-1991 19-sep-1991		AS	ĹŤ	2.540	1 IGI	
	0.00		VIV	Ř	08-nov-1991		AS	LT	2.540	UGL	
	0.00		VXO	5	19-sep-1991	JS16	AG	ĹŤ	0.589	uce	
	0.00		*				AL		983.000	UGG	
	0.00						BA	LT LT	5,180		
	0.00						BE	LT	0.500		
	0.00						CA	LT	100.000		
	0.00						œ	ĹŤ	0.700		
	0.00						CO	LT	1,420		
	0.00						CR	LT	4.050		
	0.00						αu		1.510		
	0.00						FE		2450.000		
	0,00						K		279,000		
	0.00						MG		198.000		
	0.00						MN		57,100		
	0.00						NA		173.000		
	0.00						NI	LT	1.710		
	0.00						PB	LT	10.500		
	0.00						SB	1.7	7.140	UGG	
	0.00						TL	LT	6.620	UGG	
	0.00						٧	LT	3.390	UGG	
	0.00						ZN	LT	8.030	UGG	
	0.00		VXR	-	01-oct-1991		AG	ĻŢ	0.589	UGG	
	0.00						AL.		912.000	UGG	
	0.00						BA		8.300	UGG	
	0.00						₿E	LT	0.500	UGG	
	0.00						CA	LT	100.000		
	0.00						œ	LT	0.700		
	0.00						ထ	LT	1.420		
	0.00						CR	LT	4.050	UGG	
	0.00						CU		1.860		
	0.00						FE		2590.000	UGG	
	0.00						K		256.000	UGG	
	0.00						MG		181.000	UGG	
	0.00						MN		51,100		
	0.00						NA		174.000	UGG	
	0.00						NI	LT	1.710	UGG	
	0.00						PB	LT	10.500		
	0.00						SB	LT	7, 140		
	0.00						TL	LT	6.620		
	0.00						Ÿ	LT	3.390		
	0.00						ZN	ĹŤ	8.030		
	0.00		VYC	12	17-jul-1991	\$D21	SE	LT	3.020		•
	0.00		VYD				SE	LŤ	3.020		
	0.00		VYM	6	24-oct-1991		SE	LT	3.020		
										-	

Service.

	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code		Meas. Boolean	Value	linita	Internal Standard Code
•												4 COL 100
	QCMB	0.00	ES	VYO	12	01-nov-1991	SDZ1	SE	LT	3.020	LIGI	
		0.00		VYC	4	24-oct-1991		SE	LT	3.020		
		0.00		VYT	8	11-nov-1991		SE	LT	3.020		
		0.00		VYZ	_	06-dec-1991		SE	ĻT	3.020	UGL	
		0.00		VZA	3	28- jun-1991	00	TOX	LT	10.000		
		0.00		VZB		3/ : 1001		TOX	LT	10.000	UGL	
		0.00		VZF VZG	1	24- jun-1991		PH		6.580		
		0.00		VZK	4	17- jul-1991		PH TOC	LT	6.570	uer	
		0.00		VZL	-	10 - jus - 1991		TOC	LT	1000.000 1000.000		
		0.00		WAA		29- jun-1991	UM20	111TCE	ĹŤ	0.500		
		0.00				•		112TCE	LT	1.200		
		0.00						11DCE	LT	0.500		
		0.00						11DCLE	LT	0.680		
		0.00						120CE	LT	0.500		
		0.00						120CLE	LT	0,500	UGL	
		0.00						12DCLP	LT	0.500		
		0.00						2BUXEL		1.000		S
		0.00						2CLEVE	LT	0.710		
		0.00						ACET		18.000		
		0.00						ACROLN	ND	100.000		R
		0.00						ACRYLO	ND	100.000		R
		0.00						BRDCLM	LT	0.590		
		0.00						C13DCP	LT	0.580		
		0.00						C2AVE C2H3CL	LT	8.300		
		0.00						C2H5CL	LT LT	2.600		
		0.00						CEHSCE	ĹŤ	1.900 0.500		
		0.00						CCL3F	ĹŤ	1.400		
		0.00						CCL4	LT	0.580		
··.		0.00						CH2CL2	ĻŤ	2.300		
		0.00						CH3BR	ĹŤ	5.800	LIGIL	
		0.00						CH3CL	LT	3.200	UGL	
		0.00						CHBR3	LT	2.600		
		0.00						CHCL3	LT	0.500		
		0.00						CL2BZ	ND	10,000		R
		0.00						CLC6H5	LT	0.500	UGL,	
		0.00						CS2	LT	0.500		
		0.00						DBRCLM	LT	0.670		
		0.00						ETC6R5	LT	0.500		
		0.00						MEC6H5	LT	0.500		
		0.00 0.00						MEK	LT	6.400		
		0.00						MIBK	LŢ	3.000		
		0.00			·			MNBK Styr	LT	3.600		
		0.00						T13DCP	LT	0,500		
		0.00						TCLEA	LT	0.700 2.100		
		0.00						TCLEE	LT			
		0.00						TRCLE	LT	1.600 0.500		
		0.00						XYLEN	LT	0.840		
		0.00		WAB		30- jun-1991		TITCE	ĹŤ	0.500		
		0.00				- ,		112TCE	ĻŤ	1.200		
		0.00						11DCE	ĹŤ	0.500		
		0.00						11DCLE	LŤ	0.680		
		0.00						120CE	LT	0.500		
		0.00						12DCLE	LT -	0.500		
		0.00						12DCLP	ĹŤ	0.500		
		0.00						2CLEVE	LŤ	0.710		
		0.00						ACET	LT	13.000		
		0.00						ACROLN	MD	100.000		R
		0.00						ACRYLO	MD	100.000		R R
		0.00						BRDCLM	LT	0,590		=
		0.00						C130CP	LT	0.580		
		0.00						C2AVE	LT	8.300	UGL	
		0.00 0.00						CZH3CL	LT	2.600	UGL	
		n na						C2H5CL	LT	1,900		

QC	Spike			Sample	Analysis	Method	Test	Heas.			Internal
	Amount	Lab	Lot	Number		Code		Boolean	Value	Units	Standard Code
								•••••			
QCMB	0.00	E C	LIAG	4	70- I 1001	18420	04114				
WLMD	0.00	E 2	MVB	•	30- jun-1991	UNZU	CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR	LT	5.800		
	0.00 0.00						CH3CL	LT	3.200		
	0.00						CHBR3 CHCL3	LT	2.600 0.530		
	0.00						CLZBZ	ND	10.000		Ř
	0.00						CLC6H5	LT	0.500		
	0.00						CSZ	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670		
	0.00						MEC6H5	LT LT	0.500 0.500		
	0.00						MEK	ĹŤ	6.400		
	0.00						MIBK	LT	3.000	UGL	
	0.00						MNBK	LT	3.600		
	0.00 0.00						STYR T13DCP	LŤ LT	0.500		
	0.00						TCLEA		0.700 0.510		
	0.00						TCLEE		1.600		
	0.00						TRCLE		0.500		
	0.00		WAY	1	02-sep-1991		XYLEN	LT	0.840		
	0.00		441	•	02-8ep-1991		1117CE 112TCE	LT	8.300 1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680	UGL	
	0.00						12DCE	LT	0.500		
	0.00						12DCLE 12DCLP	LT	0.500		
	0.00						2CLEVE	LT LT	0.500 0.7 10		
	0.00						ACET	ĹŤ	13.000		
	0.00						ACROLN	ND	100.000	UGL	' R
	0.00						ACRYLO		100,000		R
	0.00						BRDCLM C13DCP		0.590 0.580		
	0.00						C2AVE	LT	8.300	UGL	
	0.00						C2H3CL	LT	2.600	UGL	
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00			_			CH2CL2		2.300		
	0.00			:			CH3BR	LT	5.800		
	0.00		-				CH3CL CHBR3	LŢ	3.200 2.600		
	0.00						CHCL3	LT LT	0.500		i
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LŦ	0.500	UGL	
	0.00						CS2	LŤ	0.500		
	0.00 0.00						DBRCLM ETC6H5	LT LT	0.670 0.500		
	0.00						NEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LŦ	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA	LT	0.700		
	0.00						TCLEE	LŦ	1.600	UGL	
	0.00						TRCLE	LT	0.500		
	0.00 0.00		WAW		03-sep-1991		XYLEN 111TCE	LT LT	0.840		
	0.00				-aeμ-1771		112TCE	LT	0.500 1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LŦ	0.680		

	qc Type	Spike Amount	Lab	Lot	Sample Number	Anelysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code	-
	oour	0.00	**			07 4004		450					
	QCMB	0.00		MAM	1	03-sep-1991	UM20	12DCE 12DCLE	LT	0.500			
		0.00						12DCLP	LT LT	0.500 0.500			
		0.00						2CLEVE	ĹŤ	0.710			
		0.00						ACET	LT	13.000			
		0.00						ACROLN	ND	100,000		R	
		0.00						ACRYLO	ND	100.000		R	
		0.00 0.00						BRDCLM	LT	0.590			
		0.00						C13DCP C2AVE	LT LT	0.580			
		0.00						C2H3CL	ĹŤ	8.300 2.600			
		0.00						C2H5CL	LT	1.900			
		0.00						C6H6	LT	0.500			
		0.00						CCL3F	ĻT	1.400			
		0.00						CCL4	LT	0.580			
		0.00 0.00						CH2CL2 CH3BR	ĻT L T	2.300			
		0.00						CH3CL	LT LT	5.800 3.200			
		0.00						CHBR3	LT	2,600			
		0.00						CHCL3	ĹŤ	0.500			
		0.00						CLZBZ	MD	10.000	UGL	R	
		0.00						CLC6H5	LT	0.500			
		0.00 0.00						CSS	LT	0.500			
		0.00						DBRCLM ETC6H5	LT	0.670			
		0.00						MEC6H5	LT LT	0.500 0.500			
		0.00						MEK	LT	6.400			
		0.00						MIBK	LT	3.000			
		0.00						MNBK	LT	3,600			
_		0.00						STYR	LT	0.500			
·· .		0.00						T13DCP TCLEA	LŢ	0.700			
		0.00						TCLEE	LT LT	0.510 1.600			
		0.00						TRCLE	LT	0.500			
		0.00						XYLEN	LT	0.840			
		0.00		WAX		09-sep-1991		111TCE	LT	0.500	UGL		
		0.00						112TCE	LT	1.200			
		0.00 0.00						11DCE	LŢ	0.500			
		0.00						11DCLE 12DCE	LT	0.680 0.500			
		0.00						120CLE	LT LT	0.500			
		0.00						12DCLP	LT	0.500			
		0.00		•	-			SCLEAE	LT	0.710			
		0.00		-	-:			ACET	LT	13,000			
		0.00 0.00						ACROLN	ND	100.000		R	
		0.00						ACRYLO BRDCLM	ND LT	100.000 0.590		R	
		0.00						C13DCP	LT	0.580			
		0.00						C2AVE	LT	8.300			
		0.00						C2H3CL	LT	2.600			
		0.00						C2H5CL	LT	1.900	UGL		
		0.00						C6H6	LŢ	0.500			
		0.00						CCL3F	LT	1.400			
		0.00						CCL4 CH2CL2	LT LT	0.580 2.300	UGL		
		0.00						CH3BR	LT	5.800			
		0.00						CH3CL	ĹŤ	3.200			
		0.00						CHBR3	LT	2.600	UGL		
		0.00						CHCL3	LT	0.500	UGL		
		0.00						CL2BZ	MD	10.000	UGL	R	
		0.00 0.00						CLC6H5	LT	0.500			
		0.00						CS2 DBRCLM	LT LT	0.500 0.670			
		0.00						ETC6H5	LT	0.500			
٠.		0.00						NEC6H5	LT	0.500			

$\left(M_{\rm B}/L_{\rm S}/M_{\rm G}\right)$
- N

q¢ Type	Spike Amount	Lab	Lot		Analysis Date	Method Code		Meas. Boolean	Value	Units	internal Standard Cod
QCMB	0.00	F¢	LIAV	1	09-sep-1991	IMOA	MIBK	LT	3.000		
40115	0.00		***	•	07 Sep 1771	UNZU	MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LŤ	0.510		
	0.00						TCLEE	LT	1,600		
	0.00						TRCLE	LT	0.500		
	0.00						XYLEN	LT	0.840		
	0.00		MDL	4	24-sep-1991	JD19	AS		0.607		
	0.00		MDO		07-nov-1991		AS		0.685	UGG	
	0.00		MEI	6	24-oct-1991	SD20	PB	LT	1.260		
	0.00		WEL	4	25-oct-1991		PB	LT	1.260		
	0.00		WEO	8	11-nov-1991		PB		1.300		
	0.00		WEU	4	10-dec-1991	en 77	PB	LT	1.260		
	0.00		WFI	6 4	27-oct-1991	SD23	AG	LT	0.250		
	0.00		WFL WFO	8	25-oct-1991		AG	LT	0.250	UGL	
	0.00		WFU		11-nov-1991 06-dec-1991		AG AG	LT	0.250	UGL	
	0.00		WFY	-	29- jan-1992		AG	LT	0.250		
	0.00		WFZ		04-feb-1992		AG	LT LT	0.250 0.250		
	0.00		MGH		09-sep-1991	IM18			0.040		
	0.00		-		07 3CP 1771	2410	120CLB		0.110		
	0.00						120PH	MD	0.140		R
	0.00						13DCLB		0.130		•
	0.00						140CLB		0.098		
	0.00						245TCP		0.100		
	0.00						246TCP	LT	0.170		
	0.00						24DCLP	LT	0.180		
	0.00						24DMPN	LT	0.690	UGG	
	0.00						24DNP	LT	1.200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085		
	0.00						2CLP	LT	0.060		
	0.00						2CNAP 2NNAP	LT	0.036		
	0.00						2MP	LT LT	0.049 0.029		
	0.00						2NANIL		0.062		
	0.00						2NP	LT	0.140		
	0.00						33DCBD	ĹŤ	6.300		
	0.00						3NANIL	LŤ	0.450		
	0.00						46DN2C	LT	0.550		
	0.00						4BRPPE	LT	0.033		
	0.00						4CANIL	LT	0.810	UGG	
	0.00						4CL3C	LT	0,095		
	0.00						4CLPPE	LT	0.033		
	0.00						4MP	LT	0.240		
	0.00						4NANIL	LT	0.410		
	0.00						4NP	ĻŢ	1.400		
	0.00						ABHÇ ACLDAN	ND ND	0.270		R
	0.00						AENSLF	ND ND	0.330 0.620		R
	0.00						ALDRN	ND	0.330		R R
	0.00						ANAPHE	ĽŤ	0.036		ĸ
	0.00						ANAPYL	ĹŤ	0.033		
	0.00						ANTRO	ĹΤ	0.033		
	0.00						82CEXM		0.059		
	0.00						B2CIPE	LT	0.200		
	0.00						B2CLEE	LT	0.033		
	0.00						B2EHP	LT	0.620		
	0.00						BAANTR	LT	0,170		
	0.00						BAPYR	LT	0.250		
	0.00						BSFANT	LT	0.210		
	0.00						BBHC	ND:	0.270	UGG	R
	0.00						BBZP	LT	0.170	UGG	
	0.00						BENSLF	ND	0.620	UGG	R
	0.00						BENZID	ND	0.850	UGG	R

QC Type	Spike Amount	Lah	Lot	Sample	Analysis Date	Method Code		Mens.	Value		Internal Standard Code
		•••						DOC(#M)		units	standard Code
QCMB	0.00	ES	MGH	1	09-sep-1991	LM18	BENZOA	ND	6,100	UGG	R
	0.00				•		BGHIPY		0.250		
	0.00						BKFANT		0.066		
	0.00						BZALC	LT	0.190		
	0.00						CHRY CL6BZ	LT LT	0.120 0.033		
	0.00						CL6CP	LT	6.200		
	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	ĻŤ	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR		0.035		
	0.00						DEP	LŤ	0.240		_
	0.00						DLDRN DMP	ND LT	0.310 0.170		R
	0.00						DNBP	ĹŤ	0.061		
	0.00						DNOP	LT	0.190		
	0.00						ENDRN	KD	0.450		R
	0.00						ENDRNA		0.530		R
	0.00						ENDRIK		0.530		R
	0.00						ESFSO4 FANT	ND LT	0.620		R
	0.00						FLRENE	LT	0.068 0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00						HCBD	LT	0,230		•
	0.00						KPCL	ND	0.130	UGG	R
	0.00						HPCLE	ND	0.330		R
	0.00						HXADOE		0.400		S
	0.00						ICDPYR ISOPHR		0.290 0.033		
	0.00						LIN	ND	0.033		R
	0.00						MEXCLR		0.330		Ř
	0.00						NAP	LT	0.037		•
	0.00						NB	LT	0.045		
	0.00						NADMEA		0.140		R
	0.00						NNDNPA		0.200		
	0.00						NNDPA PCB016	LT ND	0.190 1.400		R
	0.00						PCB221	ND	1.400		Ř
	0.00						PCB232	ND	1,400		Ř
	0.00						PCB242		1,400	UGG	R
	0.00						PCB248		2.000		R
	0.00						PC8254		2.300		R
	0.00						PCB260 PCP	ND LT	2.600 1.300		R
	0.00						PHANTR	LT	0.033		
	0.00						PHENOL	ĹŤ	0.110		
	0.00						PPDDD	ND	0.270		R
	0.00						PPDDE	ND	0.310		R
	0.00						PPDDT	ND.	0.310		R
	0.00						PYR	LT	0.033		_
	0.00		WG1		11-sep-1991		TXPHEN 124TCB	ND LT	2.600 0.040		R
	0.00				11 acp 1331		12DCLB	LT	0.110		
	0.00						12DPH	MD	0.140		R
	0.00						130CLB	LT	0.130		
	0.00						14DCLB	LT	0,098		
	0.00						245TCP	LT	0.100	-	
	0.00						246TCP 24DCLP	LT LT	0.170		
	0.00						24DMPN	LT	0.180 0.690		
	0.00						24DNP	LT	1.200		
	0.00						24DNT	LŤ	0.140		
	0.00						26DNT	LT	0.085		
	0.00						2CLP	LT	0.060		
	0.00						2CNAP	LT	0.036		
	0.00						ZMNAP	LT	0.049	UGG	

QC Type	Spike Amount	Lab		Number	Analysis Date	Method Code	Name	Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	E\$	WGI	1	11-sep-1991	LM18	2MP	LT	0.029		
	0.00						2NAN 1 L 2NP	LT LT	0.062 0.140		
	0.00						33DCBD	LT	6.300		
	0.00						3NANIL	LT	0.450		
	0.00						46DN2C 48RPPE	LT	0.550		
	0.00						4CANIL	LT LT	0.033 0.810		
	0.00						4CL3C		0.095		
	0.00						4CLPPE	LT	0.033		
	0.00						4MP 4NANIL	LT LT	0.240 0.410		
	0.00						4NP	LT	1.400		
	0.00						ABRC	ND	0.270		R
	0.00						ACLDAN	ND	0.330		R
	0.00 0. 0 0						AENSLF ALDRN	ND	0.620		R
	0.00						ANAPNE	AID Lt	0.330 0.036		R
	0.00						ANAPYL	ĹŤ	0.033		
	. 0.00						ANTRC	LT.	0.033	UGG	
	0.00						B2CEXM		0.059		
	0.00						B2CLEE	LT LT	0.200 0.033		
	0.00						82EHP	LT	0.620		
	0.00						BAANTR	LT	0.170	UGG	
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT BBHC	LT ND	0.210 0.270		•
	0.00						BBZP		0.270		R
	0.00						BENSLF		0.620		R
	0.00						BENZID	ND	0.850	UGG	R
	0.00						BENZOA		6.100		R
	0.00		•				BEFANT	LT LT	0.250 0.066		
	0.00						BZALC	ĹΪ	0.190		
	0.00						CHRY	LT	0.120		
	0.00						CL6BZ	LT	0.033		
	0.00						CL6CP CL6ET	LT LT	6.200 0.150		
	0.00						DBAHA	ĹŤ	0.210		
	0.00						DBHÇ	ND	0.270	UGG	R
	0.00						DBZFUR	LT	0.035		
	0.00			-			DEP DLDRN	LT ND	0.240 0.310		R
	0.00						DMP	LT	0.170		*
	0.00						DNBP	LT	0.061	UGG	
	0.00						DNOP	LT	0.190		_
	0.00						ENDRN Endrna	ND ND	0.450 0.530		R R
	0.00						ENDRNK	ND	0.530		Ř
	0.00						ESFS04	ND	0.620	UGG	R
	0.00						FANT	LT	0.068		
	0.00						FLRENE GCLDAN	L,T NID	0.033 0.330		R
	0.00						HCBD	LT	0.230		ж.
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE	ND	0.330		R
	0.00 0.00						ICDPYR ISOPHR	LT LT	0.290		
	0.00						LIN	ND ND	0.033 0.270		R
	0.00						MEXCLR	Ю	0.330		Ř
	0.00						NAP	LT	0.037	UGG	
	0.00						NS NUMBER	LT	0.045		_
	0.00						NNDMEA NNDNPA	ND LT	0.140 0.200		R
	0.00						NNDPA	LT	0.190		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Valu e	Units :	Internal Standard Code
		•••							••		
QCMB	0.00	ES	₩G I	1	11-sep-1991	1 11 12	9CB014	ND	1.400	Hee	R
	0.00			•	11 000 1771	LATO	PCB221	ND	1.400		R R
	0.00						PC8232	ND	1.400		Ř
	0.00						PCB242	ND	1.400		R
	0.00						PCB248	ND	2.000		Ŗ
	0.00						PCB254 PCB260	ND ND	2,300 2,600		R
	0.00						PCP	LT	1,300		R
	0.00						PHANTR	LT	0.033		
	0.00						PHENOL	LT	0.110		
	0.00						PPDDD	ND	0.270		R
	0.00						PPDDE	ND ND	0.310 0.310		R R
	0.00						PYR	LT	0.033		κ.
	0.00						TXPHEN	ND	2.600		R
	0.00						UNK527		0.200		\$
	0.00						UNK651		1.000		S
	0.00		NGJ		13-sep-1991		UNK660 124TCB	LT	0.500 0.040		S
·-	0.00				13 dep 1771		120CLB	LT.	0.110		
	0.00						12DPH	ND	0.140		R
	0.00						13DCLB	LŤ	0.130	UGG	
	0.00						14DCLB	LT	0.098		
	0.00						245TCP	LT	0.100		
	0.00						246TCP 240CLP	LT LT	0.170 0.180		
	0.00						24DMPN	LT	0.690		
	0.00						24DNP	LT	1.200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT 2CLP	LT	0.085		
	0.00						2CNAP	LT LT	0.060 0.036		
	0.00						ZMNAP	ĹŤ	0.049		
	0.00						2MP	LT	0.029		
	0.00						ZNANIL	LT	0.062		
	0.00						ZNP 330ceo	LT LT	0.140 6.300		
	0.00						SNAN IL	ĹŤ	0.450		
	0.00						46DN2C	LŤ	0.550		
	0.00						48RPPE	LT	0.033		
	0.00						4CANIL	LT	0.810		
	0.00		•				4CL3C	LT LT	0.095 0.033		
	0.00			-			4MP	ĹŤ	0.240		
	0.00		•				4NANIL	LŤ	0_410		
	0.00						4NP	LT	1,400		_
	0.00						ABHC ACLDAN	ND ND	0.270 0.330		R
	0.00						AENSLF	ND	0.620		R R
	0.00						ALDRN	ND	0.330		Ř
	0.00						ANAPNE	LT	0.036		
	0.00 0.00						AKAPYL	LT	0.033		
	0.00						ANTRC B2CEXM	LT LT	0.033 0.059		
	0.00						BZCIPE	LŤ	0.200		
	0.00						BECLEE	LT	0.033		
	0.00						B2EHP	LT	0.620	UGG	
	0.00						BAANTR	LT	0.170		
	0.00						BAPYR BBFANT	LT LT	0.250		
	0.00						BBHC	ND	0.210 0.270		R
	0.00						BBZP	ĹŤ	0.170		•
	0.00						BENSLF	MD	0.620	UGG	R
	0.00						BENZID	ND	0.850		R
	0.00						BENZOA	ND	6.100		R
	0.00						BGHIPY	LT	0.250	فأفال	

QC Type	Spike Amount	Lab		Sample Number	Analysis Date	Method Code			Value		Internal Standard Code
QCMB	0.00	FS	uc.i	1	13-sep-1991	I M18	BVEAUT	LT	0.044	1100	
-0.10	0.00		W-00	•	19-26b 1331	LMIO	BZALC	LT	0.066 0.190	-	
	0.00						CHRY	LT	0.120		
	0.00						CL6BZ	LT	0.033		
	0.00						CL6CP	ĹŤ	6.200		
	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	LT	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR DEP	LT	0.035		
	0.00						DLDRN	LT ND	0.240 0.310		R
	0.00						DMP	LT	0.170		^
	0.00						DNBP	ĹŤ	0.061		
	0.00						DNOP	LT	0.190		
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA	ND	0.530		R
	0.00						ENDRNK	NO MD	0.530		R
	0.00						ESFSO4 FANT	ND LT	0.620 0.068		R
	0.00						FLRENE	LT	0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00						HCBD	LT	0.230		**
	0.00						HPCL	MO	0.130		R
	0.00						HPCLE	ND	0.330		R
	0.00						COPYR	LT	0.290		
	0.00						ISOPHR LIN	LT ND	0.033		
	0.00						MEXCLR	ND	0.270 0.330		R R
	0.00						NAP	LT	0.037	•	*
	0.00						NB	ĹŤ	0.045		
	0.00						NNDMEA	ND	0.140		R
	0.00						NNDNPA		0.200		
	0.00						NNDPA	LŤ	0.190		_
	0.00						PCB016 PCB221	ND ND	1.400 1.400		R
	0.00						PCB232	ND	1.400		R R
	0.00						PC8242	ND	1.400		Ŕ
	0.00						PC8248	HD	2.000		R
	0.00						PCB254	MD	2.300	UGG	R
	0.00						PCB260	ND	2.600		R
	0.00 0.00						PCP	LT	1.300		
	0.00						PHENOL	LT LT	0.033 0.110		
	0.00						PPDDD	ND	0.270		R
	0.00		•				PPDDE	ND	0.310		Ř
	0.00						PPDDT	ND	0.310		R
	0.00						PYR	LT	0.033		
	0.00						TXPHEN	ND	2.600		R
	0.00		WGL	2	441001		UNK652		0.400		S
	0.00		WGL	2	16-sep-1991		124TCB 12DCLB	LT LT	0.040 0.110		
	0.00						120PH	ND	0.110		R
	0.00						130CLB	LT	0.130		•
	0.00						14DCLB	ĹŤ	0.098		
	0.00						245TCP	LT	0.100		
	0.00						246TCP	LT	0.170		
	0.00						24DCLP	LT	0.180		
	0.00						24DMPN 24DNP	LT	0.690		
	0.00						24DNT	LT LT	1.200 0.140		
	0.00						26DNT	LT	0.985		
	0.00						2CLP	LT	0.060		
	0.00						2CNAP	LŤ	0.036		
	0.00						2MNAP	LT	0.049	UGG	
	0.00						2MP	LT	0.029		
	0.00						ZNAKIL	LT	0.062	UGG	

qc Type	Spike Amount	Lab		Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCM8	0.00		WGL	2	16-sep-1991	LM18	2NP	LT	0.140	UGG	
	0.00						33DCBD	LT	6.300		
	0.00						3MANIL 46DN2C	LT	0.450		
	0.00						4BRPPE	LT LT	0.550 0.033		
	0.00						4CANIL	LT	0.810		
	0.00						4CL3C	LT	0.095		
	0.00						4CLPPE	LT	0.033		
	0.00						4MP	LT	0.240		
	0.00						4NANIL 4NP	LT LT	0.410		
	0.00						ABHC	ND	1.400 0.270		R
	0.00						ACLDAN	ND	0.330		R
	0.00						AENSLF	ND	0,620		R
	0.00						ALDRN	ND	0.330	UGG	R
	0.00 0.00						ANAPNE	LT	0.036		
	0.00						ANAPYL	LT	0.033		
	0.00						ANTRO B2CEXN	LT LT	0.033 0.059		
-m	0.00						B2CIPE	LT	0.200		
	0.00						B2CLEE	ĹŤ	0.033		
	0.00						B2EHP	£T.	0.620	UGG	
	0.00						BAANTR	LT	0.170		
	0.00						BAPYR BBFANT	LT LT	0.250		
	0.00						BBHC	NED	0.210 0.270		R
	0.00						BBZP	LT	0.170		•
	0.00						BENSLF		0.620		R
	0.00						BENZID	ND	0.850	UGG	R
	0.00						BENZOA	ND	6.100		R
	0.00						BGHIPY	LT	0.250		
	0.00						BKFANT BZALC	LT LT	0.066		
	0.00						C16ABE	LI	0.190 1.000		S
	0.00						C18ABE		0.700		S
	0.00						CHRY	LT	0.120	UGG	_
	0.00						CL6BZ	LT	0.033		
	0.00 0.00						CL6CP	LT	6.200		
	0.00						CL6ET DBAHA	LT LT	0.150 0.210		
	0.00						DBHC	ND	0,270		R
	0.00						DBZFUR		0.035		
	0.00						DEP	LT	0.240	UGG	
	0.00			•			DLDRN	ND	0.310		R
	0.00 0.00						DNBP	LT	0.170		
	0.00						DNOD	LT LT	0.061 0.190		
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA	ND	0.530		Ř
	0.00						ENDRNK	ND	0.530	UGG	R
	0.00						ESFS04	ND	0.620		R
	0.00						FANT FLRËNE	LŢ	0.068		
	0.00						GCLDAN	LT ND	0.033 0.330		В
	0.00						HCBD	LT	0.230		R
	0.00						HPCL	ND	0.130		R '
	0.00						HPCLE	ND	0.330	UGG	Ř
	0.00						ICDPYR	LT	0.290		
	0.00 0.00						ISOPHR	LT	0.033		_
	0.00						LIN MEXCLR	ND:	0.270		R
	0.00						NAP	ND LT	0.330 0.037		R
	0.00						NB	LT	0.037		
	0.00						NNDHEA	ND	0.140		R
	0.00						NNDRPA	LT	0.200	UGG	
	0.00						NADDA	LT	0.190	UGG	

- --

QС Туре	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	UGL	2	16-sep-1991	I M1R	ቅር ዌስ14	ND	1.400	1100	R
	0.00			-	10 0cp	CHIO	PC8221	ND	1.400		R R
	0.00						PCB232		1.400		Ŕ
	0.00						PCB242	ND	1.400		Ř
	0,00						PC8248	ND	2,000		R
	0.00						PC8254	ND	2.300		R
	0.00						PC8260	ND	2.600		R
	0.00						PCP	LT	1.300		
	0.00						PHANTR		0.033		
	0.00						PPDDD	LT ND	0.110 0.270		R
	0.00						PPDDE	ND	0.310		Ř
	0.00						PPDDT	ND	0.310		Ř
	0.00						PYR	LT	0.033		•
	0.00						TXPHEN	ND	2.600		R
	0.00						UNK643		0.300	ŲGG	S
	0.00						UNK651		2.000		Š
	0.00				47 1001		UNK660		0.900		S
	0.00		WGM	1	17-sep-1991		124TCB	LT	0.040		
<u> </u>	0.00						120CLB 120PH	LT	0.110		
	0.00						130CLB	NID Lt	0.140 0.130		R
	0.00						14DCLB	LT	0.130		
	0.00						245TCP	LT	0.100		
	0.00						246TCP	LŤ	0.170		
	0.00						24DCLP	LT	0.180		
	0.00						24DMPN	LT	0,690	UGG	
	0.00						24DNP	LT	1.200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085		
	0.00						ZCLP 2CNAP	LT LT	0.060		
	0.00						2MNAP	LT	0.036 0.049		
	0.00						2MP	ĹΪ	0.029		
	0.00						ZNANIL	LT	0.062		
	0.00						2NP	LT	0.140		
	0.00						33DCBD	LT	6.300		
	0.00						3NANIL	LT	0.450		
	0.00						46DN2C	LT	0.550		
	0.00						4BRPPE 4CANIL	LŢ	0.033	UGG	
	0.00						4CL3C	LT LT	0.810 0.095		
	0.00						4CLPPE		0.033		
	0.00			:			4MP	LT	0.240		
	0.00			* .			4NANIL	LT	0.410		
	0.00						4NP	LT	1.400		
	0.00						ABHC	ND	0.270		R
	0.00						ACLDAN	ND	0.330		R
	0,00 0,00						AENSLF	ND	0.620		R
	0.00						ALDRN ANAPNE	ND LT	0.330 0.036		R
	0.00						ANAPYL	LT	0.033		
	0.00						ANTRO	ĹŤ	0.033		
	0.00						BZCEXM	LŤ	0.059		
	0.00						B2CIPE	LT	0.200		
	0.00						B2CLEE	LT	0.033		
	0.00						82EHP	LT	0.620		
	0.00						BAANTR	LT	0.170		
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT	LT	0.210		_
	0.00						BBHC	ND	0.270		R
	0.00						BBZP BENSLF	LT ND	0.170 0.620		
	0.00						BENZID	ND	0.850		R R
	0.00						BENZOA	ND	6.100		K R
	0.00						BGHIPY	LT	0.250		n

(PA	qc Type				Sample Number		Nethod Code		Meas. Boolean	Value	Units	Internal Standard Code
	QCMB	0.00	ES	UCM	1	17-sep-1991	1 1 1 2	BKFANT	LT	0.066	Hee	
		0.00			•			BZALC	ĹŤ	0,190		
		0.00						CHRY	ĹŤ	0.120		
		0.00						CL6B2	LT	0.033	UGG	
		0.00						CL6CP	LT	6.200		
		0.00						CL6ET	LT	0.150		
		0.00						DBAHA	LT	0.210		_
		0.00 0.00						DBHC	MD	0.270		R
		0.00						DBZFUR DEP	LT	0.035		
		0.00						DLDRN	LT ND	0.240 0.310		R
		0.00						DMP	LT	0.170		^
		0.00						DNBP	ĹŤ	0.061		
		0.00						DNOP	LT	0.190		
		0.00						ENDRN	ND	0.450		R
		0,00						ENDRNA	MD	0.530	UGG	R
		0.00						ENDRNK	NED	0.530		R
		0.00 0.00						ESFS04	ND	0.620		R
		0.00						FANT	LT	0.068		
		0.00						FLRENE GCLDAN	LT MD	0.033 0.330		R
		0.00						HCBD	LT	0.230		ĸ
		0.00						HPCL	ND	0.130		R
		0.00						HPCLE	ND	0.330		Ř
		0.00						ICDPYR	LT	0.290		••
		0.00						ISOPHR	LT.	0.033		
		0.00						LIN	ND	0.270		R
		0.00						MEXCLR	ND	0.330	VGG	R
		0.00						NAP	LT	0.037		
		0.00						NB	LT	0.045		_
1.400.00		0.00						NNDMEA	ND	0.140		R
		0.00						NNDNPA NNDPA	LT	0.200		
•		0.00						PCB016	LT ND	0.190 1.400		R
		0.00						PC8221	ND	1.400		Ř
		0.00						PCB232	ND	1.400		Ř
		0.00						PCB242	ND	1.400		Ř
		0.00						PC8248	ND	2.000	UGG	R
		0.00						PCB254	ND	2.300	UGG	R
		0.00						PCB260	ND	2.600		R
		0.00						PCP	LT	1.300		
		0.00 0.00						PHANTR		0.033		
		0.00						PHENOL	LT	0.110		_
		0.00			٠.			PPDDDE	ND	0.270		R
		0.00						PPDDT	ND ND	0.310 0.310		R
		0.00						PYR	LT	0.033		R
		0.00						TXPHEN	ND	2.600		R
		0.00						UNK652		0.600		ŝ
		6.00						UNK660		0.300		S
		0.00		WGQ		19-sep-1991		124TCB	LT	0.040	UGG	
		0.00						12DCLB	LT	0.110		_
		0.00						12DPH	ND	0.140		R
		0.00 0.00						130CLB	LT	0.130		
		0.00						140CLB 245TCP	LT	0.098	UGG	
		0.00						2451CP	LT LT	0.100 0.170		
		0.00						24DCLP	LT	0.170		
		0.00						24DMPN	ĹŤ	0.690		
		0.00						24DNP	ĹŤ	1.200		
		0.00						24DNT	LT	0.140		
		0.00						260NT	LŤ	0.085		
		0.00						2CLP	LŤ	0.060	UGG	
		0.00						2CNAP	LT	0.036	UGG	
1.00		0.00						2MNAP	LT	0.049		
		0.00						ZMP	LT	0.029	UGG	
*		,										

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Nethod Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Cod
QCMB	0.00	FS	uco	1	19-sep-1991	1 W1R	DUANTI	LT	0.063		
-9.10	0.00		~~	•	17 Sep 1771	EMIO	2NP		0.062 0.140		
	0.00						330cso	LT	6.300	REC	
	0.00						SNANIL	ĹŤ	0.450	UGG	
	0.00						46DNZC	LT	0.550		
	0.00						4BRPPE	LT	0.033	UGG	
	0.00						4CANIL		0.810		
	0.00 0.00						4CL3C		0.095		
	0.00						4CLPPE 4MP	LT LT	0.033 0.240		
	0.00						4NANIL		0.410		
	0,00						4NP	LŤ	1,400		
	0.00						ABHC		0.270		R
	0.00						ACLDAN		0.330		Ř
	0.00						AENSLF		0.620		R
	0.00						ALDRN		0.330		R
	0.00						ANAPNE	LT	0.036	UGG	
	0.00						ANAPYL	LT	0.033		
	0.00						ANTRO 82CEXM	LT	0.033 0.059		
	0.00						B2CIPE		0.200		
	0.00						B2CLEE		0.033		
	0.00						BZEHP		0.620		
	0.00						BAANTR		0.170		
	0.00						BAPYR		0,250		
	0.00						BBFANT	LT	0.210		
	0.00						BBHC	ND	0.270	UGG	R
	0.00						88ZP		0.170	UGG	
	0.00						BENSLF		0.620	UGG	R
	0.00						BENZID BENZOA		0.850		R
	0.00						BENZUM		6.100 0.250		R
	0.00						BKFANT		0.066		
	0.00						BZALC	ĹŤ	0.190		
	0.00						CHRY	ŁT	0,120		
	0.00						CL6BZ	LT	0.033	UGG	
	0.00						CL6CP	LT	6.200		
	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	LT	0.210		_
	0.00						DBHC DBZFUR	ND LT	0.270		R
	0.00						DEP	LT	0.035 0.240		
	0.00						DLDRN	MD	0.310		R
	0.00						DMP	LT	0.170		
	0.00		-	٠.			DNBP	LŤ	0.061		
	0.00						DNOP	LT	0.190	UGG	
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA	ND	0.530		R
	0.00						ENDRUK		0.530		R
	0.00						ESF\$04 FANT	ND LT	0.620		R
	0.00						FLRENE	LT	0.068 0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00						HCBD	LT	0.230		•
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE	ND	0.330		Ř
	0.00						ICOPYR	LT	0.290	UGG	
	0.00						ISOPHR	LT	0.033		
	0.00						LIN	ND	0.270		R
	0.00						MEXCLR	KD	0.330		R
	0.00						NAP	LŢ	0.037		
	0.00						NB NNDMEA	LT	0.045		_
	0.00						NNDNPA	ND LT	8.140 0.200		R
	0.00						NNOPA	LT	0.200	HCC OGG	
	0.00						PCB016	ND	1.400	nge oog	R
									1.700	~~~	K

QC	Spike			Sample	Analysis	Method	Test	Neas.			Internal Standard Code
lype	Amount	Lab	Lot	Number	Date	Code			Value		
										•••••	
QCMB	0.00	ES	WGO	1	19-sep-1991	LM18	PCB221	ND	1,400	UGG	R
	0.00						PCB232	ND	1,400		R
	0.00						PCB242		1.400		R
	0.00						PCB248 PCB254		2.000 2.300		R
	0.00						PCB260		2.600		R R
	0.00						PCP		1.300		
	0.00						PHANTR		0.033		
	0.00						PHENOL		0.110		_
	0.00						PPDDE	ND ND	0.270 0.310		R R
	0.00						PPDDT PYR	ND	0.310		Ř
	0.00						PYR	LT	0.033		
	0.00						TXPHEN UNK586		2.600		R
	0.00		WIJ		09-sep-1991	UM18			0.300 1.800		s
	0.00				от фор		12DCLB	ĹŤ	1.700		
	0.00						120PH	NO	2.000		R
	0.00 0.00						13DCLB	LT	1.700		
	0.00						14DCLB 245TCP	LT	1.700 5.200		
	0.00						246TCP	LT	4,200		
	0.00						24DCLP	LT LT	2.900		
	0.00						24DMPN	LT	5.800		
	0.00						240NP	LT	21.000		
	0.00						26DNT	L! IT	4.500 0.790		
	0.00						2CLP	ĹŤ	0.990		
	0.00						2CNAP	LT LT LT LT	0.500	UGL	
	0.00 0.00						2MNAP	LT	1.700		
	0.00						2MP 2NANIL		3.900 4.300		
	0.00							LT	3.700		
	0.00						330C80	LT	12.000		
	0.00						3NANIL		4,900		
	0.00 0.00						46DN2C 4BRPPE		17.000 4.200		
	0.00								7.300		
	0.00						4CL3C	LT LT	4,000		
	0.00						4CLPPE	ĻT	5.100		
	0.00 0.00						4MP		0.520		
	0.00		2	_			4NANIL 4NP		5.200 12.000		
	0.00						ABHC	ND	4.000		R
	0.00		`				ACLDAN	ND	5.100	UGL	Ř
	0.00						AENSLF	ND	9.200		R
	0.00						ALDRN	MD Lt	4.700 1.700		R
	0.00						ANAPYL	ĹŤ	0.500		
	0.00						ANTRO	ĹΤ	0.500		
	0.00						B2CEXM	LT	1.500		
	0.00						B2CLEE	LT LT	5.300 1.900		
	0.00						B2EHP	LT	4.800		
	0.00						BAANTR	ĹŤ	1.600		
	0.00						BAPYR	LT	4.700	UGL	
	0.00						BBFANT	LT	5.400		_
	0.00						BBHC BBZP	MD LT	4.000 3.400		R
	0.00						BENSLF	ND.	9.200		R
	0.00						BENZID	ND	10.000		R
	0.00						BENZOA	LT	13.000	ŲGL	
	0.00 0.00						BGHIPY	LT	6.100		
	0.00						BKFANT BZALC	LT LT	0.870 0.720		
	0.00						CHRY	ĻT	2.400		

QC Typ	Spike e Amount				Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCM	8 0.00	FS	WI.J	1	09-sep-1991	LM18	CI ÁRZ	LT	1.600	Hel	
_•	0.00			•		•	CL6CP	ĹŤ	8.600		
	0.00						CLSET	LT	1,500		
	0.00						DBAHA	LT	6,500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LT	1.700		
	0.00						DEP	LT	2.000		
	0.00						DLDRN	MD	4.700		R
	0.00						DMP DNBP	LT	1.500		
	0.00						DNOP	LT LT	3.700 15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA		8.000		Ŕ
	0.00						ENDRNK	ND	8.000		Ř
	0.00						ESFS04		9.200		R
	0.00						FANT	LT	3.300		
	0.00						FLRENE	LT	3.700		_
	0.00 0.00						GCLDAN		5.100		R
	_ 0.00						HCBO HPCL	ĻT ND	3,400 2,000		
_	0.00						HPCLE		5.000		R R
	0.00						COPYR		8,600		
	0.00						ISOPHR		4,800		
	0.00						LIN	NO	4,000	UGL	R
	0.00						MEXCLR	ND	5.100	UGL	R
	0.00						NAP	LŦ	0.500		
	0.00						NB	LT	0.500		_
	0.00						NNDMEA		2.000		R
	0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016		21.000	UGL.	R
	0.00						PCB221	ND	21.000	UGL	Ř
	0.00						PCB232	ND	21.000		Ř
	0.00						PCB242	ND	30.000		R
	0.00						PCB248	ND	30.000		R
	0.00						PCB254	KD	36,000		R
	0.00						PC8260		36.000		R
	0,00						PCP PHANTR	LT LT	18.000 0.500		
	0,00						PHENOL	LT	9.200		
	0.00						PPODD	ND	4.000		R
	0.00						PPODE	ND	4.700		Ř
	0.00						PPDDT	MD	9_200		Ř
	0.00			-			PYR	LT	2.800		
	0.00						TXPHEN		36.000		R
	0.00		MIK				124TCB	LT	1.800		
	0.00 0.00						120CLB	LT	1.700		_
	0.00						12DPH 13DCLB	ND LT	2.000 1.700		R
	0.00						14DCLB	LT	1.700		
	0.00						245TCP	ĹŤ	5.200		
	0.00						246TCP	LT	4.200		
	0.00						24DCLP	LT	2,900	UGL	
	0.00						24DMPN	LT	5,800		
	0.00						24DNP	LT	21,000		
	0.00						24DNT	LŢ	4.500		
	0.00						26DNT 2CLP	LT LT	0.790		
	0.00						2CNAP	LT	0.990 0.500		
	0.00						2MNAP	LT	1.700		
	0.00						2NP	ĹŤ	3.900		
	0.00						2NANIL	LŤ	4.300		
	0.00						2NP	LT	3.700		
	0.00						330CBD	LT	12,000		
	0.00						3NANIL	LT	4.900		
	0.00						46DN2C	LT	17.000	UGL	

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date		Name		Value	Units	Internal Standard Code
QCMB		ES	WIK	1	09-sep-1991	UN18	4BRPPE	LT	4,200		
	0.00						4CANIL		7.300		
	0.00						4CL3C	LT	4,000		
	0.00						4CLPPE	LT LT	5.100 0.520		
	0.00						4NANIL		5.200		
	0.00						4NP	ĹŤ	12.000	UGL	
	0.00						ABHÇ	ND	4.000	UGL	R
	0.00 0.00						ACLDAN		5.100		R
	0.00						AENSLF ALDRN		9.200 4.700		R R
	0.00						ANAPNE	LT	1.700		κ.
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRC	LT	0.500		
	0.00						B2CEXX		1.500		
	0.00						B2CIPE B2CLEE		5.300 1.900		
	0.00						BZEHP		4.800		
	0.00						BAANTR		1.600		
	0.00						BAPYR	LT	4.700		
- -	0.00			,			BBFANT	_	5.400		_
	0.00						BBHC BBZP	ND Lt	4.000 3.400		R
	0.00						BENSLF		9.200		R
	0.00						BENZID		10.000		Ř
	0.00						BENZOA		13.000		
	0.00						BGHIPY		6.100		
	0.00						BKFANT BZALC	LT LT	0.870 0.720		
	0.00						CHRY	LT	2.400		
	0.00						CL6BZ	ĹŤ	1.600		
	0.00						CL6CP	LT	8.600	UGL	
	0.00						CL6ET	ĻT	1.500		
	0.00						DBAHA DBHÇ	LT	6.500		_
	0.00						DBZFUR	ND Lt	4.000 1.700		R
	0.00						DEP	ĹΪ	2.000		
	0.00						DLDRN	ND	4.700	UGL	R
	0.00						DMP	LT	1.500		
	0.00						DNBP DNOP	LT LT	3.700 15.000		
	0.00						ENDRN	ND	7.600		R
	9.00						ENDRNA	ND	8.000		Ř
	0.00			:			ENDRNK	ND	8.000		R
	0.00 0.00		-	• .			ESFS04	ND	9.200		R
	0.00						FANT FLRENE	LT LT	3.300		
	0.00						GCLDAN	ND	3.700 5.100		R
	0.00						HCBD	ĹŤ	3.400	-	•
	0.00						HPCL	ND	2.000	UGL	R
	0.00						HPCLE	ND	5.000		R
	0.00						I COPYR I SOPHR	LT	8.600		
	0.00						LIN	LT ND	4.800 4.000		R
	0.00						MEXCLR	ND	5.100		Ř
	0.00						NAP	LT	0.500		
	0.00						MB	LT	0.500		_
	0.00						NNDMEA	MD	2.000		R
	0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016	ND	21,000		R
	0.00						PCB221	ND	21.000		Ř
	0.00						PC8232	ND	21.000	UGL	Ř
	0.00						PC8242	ND	30.000		R
	0.00						PCB248	ND	30.000		R
	5.00						PCB254	ND	36.000	UGL	R

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Kethod Code			Value	Units	Internal Standard Co
QCMB	0.00	ES	WIK	1	09-sep-1991	LM18	PC8260	ND	36.000	UGL	R
	0.00						PCP		18.000		
	0.00						PHANTR PHENOL		0.500		
	0.00						PPODD	LT MD	9.200 4.000		R
	0.00						PPODE	ND	4.700		Ŕ
	0.00						PPDDT	ND	9.200		8
	0.00						PYR TXPHEN	LT ND	2.800 36.000		h
	0.00		WIL		23-sep-1991		124TCB		1.800		R
	0.00				•		120CLB	LT	1.700		
	0.00						120P# 130CLB		2.000		R
	0.00						140CLB		1.700 1.700		
	0.00						245TCP	LT	5.200		
	0.00						246TCP		4.200		
	0.00						24DCLP 24DMPN		2.900 5.800		
	0.00						24DNP		21.000		
_	0.00			•			24DNT	LT	4.500		
	0.00						26DNT		0.790		
	0.00						2CLP 2CNAP		0.990		
	0.00						2MNAP	LT	0.500 1.700		
	0.00						2MP	ĹŤ	3.900	UGL	
	0.00						2NAN1L		4.300		
	0.00						2NP 33DCBD	LT LT	3.700 12.000		
	0.00						SHANIL		4,900		
	0.00						46DN2C		17.000		
	0.00 0.00						4BRPPE 4CANIL		4.200		
	0.00						4CL3C		7.300 4.000		
	0.00						4CLPPE		5.100		
	0.00						4MP		0.520		
	0.00						4NANIL 4NP	LT LT	5.200 12.000		
	0.00						ABHC	MD	4,000		R
	0.00						ACLDAN		5.100		R
	0.00						AENSLF ALDRN		9.200 4.700		R R
	0.00						ANAPNE		1.700		ĸ
	0.00			-			ANAPYL	LT	0.500	UGL	
	0.00			• .			ANTRO	LT	0.500		
	0.00						B2CEXM B2CIPE	LT LT	1.500 5.300		
	0.00						B2CLEE	ĹŤ	1.900		
	0.00						BZEHP	LT	4.800		
	0.00						BAANTR BAPYR	LT LT	1.600		
	0.00						BBFANT	LT	4.700 5.400		
	0.00						BBHC	ND	4.000		Ř
	0.00						BBZP	LT	3,400		
	0.00 0.00						BENSLF BENZID	MD MD	9.200 10,000		R R
	0.00						BENZOA	LT	13.000		K
	0.00						BGHIPY	LT	6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC CHRY	LT LT	0.720 2.400		
	0.00						CL6BZ	ĹŤ	1.600		
	0.00						CL,6CP	LT	8.600	UGL	
	0.00						CLÓET	LT	1.500		
	0.00						DBAHA DBHC	LT ND	6.500 4.000		R
	0.00						DBZFUR	LT	1.700		
										-	

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas, Boolean	Value	Units	Internal Standard Co
QCMB	0.00	ES	WIL	1	23-sep-1991	UM18	DEP	L,T	2.000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP	LT	1.500		
	0.00						DNBP DNOP	LT LT	3.700 15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA		8.000		Ř
	0.00						ENDRNK		8.000		R
	0.00						ESFS04	ND	9.200		R
	0.00						FANT FLRENE	LT LT	3.300 3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400		
	0.00						HPCL	ND	2.000		R
	0.00						HPCLE 1CDPYR	ND LT	5.000		R
	0.00						1SOPHR	-	8.600 4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR	ND	5.100		Ř
	0.00						NAP	LT	0.500		
	0.00						NB	LT	0.500		_
	0.00						NNDMEA NNDNPA	-	2.000 4.400		R
	0.00			•			NNDPA	ĹŤ	3,000		
	0.00						PCB016		21.000		R
	0.00						PCB221	ND	21.000		R
	0.00						PCB232		21.000		R
	0.00						PCB242 PCB248	ND ND	30.000 30.000		R R
	0.00						PC8254	ND	36.000		Ř
	0.00						PCB260	ND	36.000	UGĻ	Ř
	0.00						PCP	LT	18.000		
	0.00 0.00						PHANTR		0.500		
	0.00						PHENOL.	LT ND	9.200 4.000		R
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT	NED	9,200		Ř
	0.00						PYR	LT	2.800		
	0.00		MIO	2	11-oct-1991		TXPHEN	MD	36.000		R
	0.00		#10	2	11-001-1991		124TCB 12DCLB		1.800 1.700		
	0.00						12DPH	ND	2.000		R
	0.00		•	_			13DCLB		1.700		
	0.00						14DCLB	-:	1,700		
	0.00			•			245TCP	LT	5.200		
	9.00						246TCP 24DCLP	LT LT	4.200 2.900		
	0.00						24DMPN	LT	5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						ZCLP ZCNAP	LT LT	0.990 0.500		
	0.00						2MNAP	LT	1.700		
	0.00						2149	LT	3,900		
	0.00						2NANIL	LT	4.300		
	0.00						ŽNP	LT	3.700		
	0.00						33DCBD 3NAN1L	LT LT	12.000 4.900		
	0.00						46DN2C		17.000		
	0.00						4BRPPE	ĹŤ	4.200		
	0.00						4CANIL	LT	7,300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LŢ	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200	UGL	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Boolean	Value	Units	internal Standard Code
		•••								• • • • • •	*********
QCMB	0.00			,	11-oct-1991	10/40	ć sam				
QCMD	0.00	E2	MID	-	11-001-1991	UMIO	4NP 5M2HXO	LT	12.000 300.000		s
	0.00		•				ABHC	ND	4.000		R.
	0.00						ACLDAN		5.100		R R
	0.00							ND	9.200		R
	0.00						ALDRN Anaphe		4.700 1.700		R
	0.00						ANAPYL		0.500		
	0.00						ANTRO		0.500		
	0.00						B2CEXM		1.500		
	0.00						BSCTEE BSCIDE		5,300 1,900		
	0.00						B2EHP		4.800		
	0.00						BAANTR		1.600		
	0.00						BAPYR		4,700		
	0.00 0.00						BBFANT BBHC	LT ND	5.400 4.000		
	0.00						BBZP	LT	3.400		R
	0.00						BENSLF		9.200		R
	0.00						BENZID		10.000		R
	0.00						BENZOA BGHIPY		13.000 6.100		
	0.00						BKFANT		0.870		
	0.00						BZALC	ĹŤ	0.720		
	0.00						CHRY	LT	2,400		
	0.00						CL6BZ CL6CP	LT LT	1.600 8.600		
	0.00						CLÓET	LT	1.500		
	0.00						DBAHA	ĹŤ	6,500		
	0.00						DBHC	XD	4,000		R
	0.00 0.00						DBZFUR DEP		1.700		
	0.00						DLDRN	LT ND	2.000 4.700		R
	0.00						DMP	LT	1.500		•
	0.00						DNBP	LT	3.700	UGL	
	0.00						DNOP	LT	15.000		_
	0.00						ENDRN ENDRNA	MD MD	7_600 8.000		R R
	0.00						ENDRNK	ND	8.000		Ř
	0.00						ESFS04	ND	9.200		R
	0.00						FANT	LŢ	3.300		
	0.00						FLRENE GCLDAN	LT ND	3.700 5.100		R
	0.00			-			HCBD	ĹŤ	3,400		•
	0.00			·· .			HPCL	MD	2.000		R
	0.00						HPCLE ICDPYR	ND Lt	5.000 8.600		R
	0.00						ISOPHR	LT	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR	ND	5.100		R
	0.00						NAP NB	LT	0.500		
	0.00						NNDMEA	L.T Ned	0.500 2.000		R
	0.00						NNDNPA	ίŤ	4.400		~
	0.00						NNDPA	LT	3,000	UGL	_
	0.00 0.00						PC8016	ND ND	21.000		R
	0.00						PCB221 PCB232	ND ND	21.000 21.000		R R
	0.00						PCB242	ND	30.000		Ř
	0.00						PCB248	ND	30.000	UGL	R
	0.00						PCB254	ND	36.000		R
	0.00						PC8260 PCP	MD LT	36.000 18.000		R
	0.00						PHANTR	LT	0.500		
	0.00						PHENOL	LT	9.200	UGL	
	0.00						PPDDD	ND	4.000	UGL	R

-- ---

er ek f

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code	Name	Meas. Boolean	Value .	Units	Internal Standard Code
				_							
OCMB	0.00	ES	MIO	Z	11-oct-1991	UM18			4.700		R
	0.00						PPDDT PYR	ND LT	9.200 2.800		R
	0.00						TXPHEN		36,000		R
	0.00		WIP				124TCB	LT	1.800		•
	0.00						12DCLB	LT	1.700	UGL	
	0.00						120PH	ND	2.000		R
	0.00						130CLB 140CLB		1.700		
	0.00						245TCP	L1	1.700 5.200		
	0.00						246TCP		4.200		
	0.00						24DCLP	LT	2.900	UGL	
	0.00						24DMPN		5.800		
	0.00						24DNP 24DNT		21.000		
	0.00						26DNT		4.500 0.790		
	0.00						2CLP		0.990		
	0.00						2CNAP	LŤ	0.500		
	0.00						2HKAP		1,700		
	0.00						2HP		3,900	UGL	
	0.00						ZNANIL		4.300	UGL	
	0.00						2NP 33DCBD	LT LT	3.700 12.000		
	0.00						3NANIL		4.900		
	0.00						46DN2C	ĹŤ	17.000		
	0.00						4BRPPE	LT	4.200	UGL	
	0.00						4CANIL		7,300		
	0.00						4CL3C	-	4.000		
	0.00						4CLPPE 4MP	LT LT	5.100 0.520		
	0.00						4NAN1L	LT	5.200		
	0.00						4NP	ĹΤ	12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN		5.100		R
	0.00						AENSL F ALDRN	ND	9.200		R
	0.00						ANAPNE	ND LT	4.700 1.700		R
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM		1.500	UGL	
	0.00						B2CIPE		5.300		
	0.00						B2CLEE B2EHP	ŁT LT	1,900 4,800		
	0.00						BAANTR	ĹŦ	1,600		
	0.00						BAPYR	ĹΤ	4.700		
	0.00						BSFANT	LT	5.400	UGL	
	0.00						BBHC	ND	4.000		R
	0.00						BBZP	LT	3.400		_
	0.00						BENSLF BENZID	ND ND	9.200 10.000		R R
	0.00						BENZOA	LT	13.000		М.
	0.00						BGH1PY	LT	6.100		
	0.00						BKFANT	LT	0.870		
	0.00 0.00						BZALC	LT	0.720		
	0.00						CHRY CL6BZ	LT	2.400		
	0.00						CLOSZ	LT LT	1.600 8.600		
	0.00						CLEET	LT	1.500		
	0.00						DBAHA	LT	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LT	1.700		
	0.00						DEP Dldrn	LT	2.000		
	0.00						DNP	ND LT	4.700 1.500		R
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000		

E CO	
C. Come	

QC Type	Spike Amount	Lab	Lot		Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	WIP	2	11-oct-1991	UM18	ENDRN	ND	7.600	LIGI	R
	0.00				,		ENDRNA	ND	8.000		Ř
	0.00						ENDRNK		8.000		Ř
	0.00						ESFS04	ND	9.200		Ř
	0.00						FANT	ίŤ	3.300		•
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3,400		••
	0.00						HPCL	ЖD	2.000	UGL	R
	0.00						HPCLE	ND	5.000		R
	0.00						COPYR	LT	8.600		
	0.00						ISOPHR	LT	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR		5.100		R
	0.00						NAP NB	LT LT	0.500 0.500		
	0.00						NNDMEA	ND	2.000		R
	0.00						NHDNPA		4.400		•
	0.00						NNDPA	ĹŤ	3.000		
	0.00						PC8016		21,000		R
	0.00						PCB221	ND	21.000	UGL	Ř
	0.00						PCB232	ND	21.000		R
	0.00						PCB242	ND	30.000		R
	0.00						PC8248	ND	30.000		R
	0.00						PC8254	MD	36.000		R
	0.00						PCB260	ND	36.000		R
	0.00						PCP PHANTR	LT	18.000		
	0.00						PHENOL	LT LT	0.500 9.200		
	0.00						PPDDD	ND.	4.000		R
	0.00						PPDDE	ND	4.700		Ř
	0.00						PPDDT	ND	9.200		Ř
	0.00						PYR	LT	2.800		•
	0.00						TXPHEN	ND	36.000		R
	0.00		WIT	1			124TCB	LT	1.800	UGL	
	0.00						120CLB	LT	1.700		
	0.00						120PH	MD	2.000		R
	0.00						130CLB	LT	1.700		
	0.00						14DCLB 245TCP	LT	1.700		
	0.00						2451CP	LT LT	5.200 4.200		
	0.00						24DCLP	LT	2.900		
	0.00		-	-			24DMPN	ĹŤ	5.800		
	0.00						240NP	LT	21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790	UGL	
	0.00						2CLP	LT	0.990		•
	0.00						2CNAP	L,T	0.500		
	0.00						2NHAP	LŤ	1.700		
	0.00						2NP 2NANTL	LT	3.900		
	0.00						2NAN LL	LT LT	4.300		
	0.00						33DCBD	LT	3.700 12.000		
	0.00						3NANIL	ĹŤ	4.900		
	0.00						46DN2C	ĹŤ	17.000		
	0.00						4BRPPE	LT	4.200		
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C	LT	4.000	UGL	
	0.00						4CLPPE	LT	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP	LT	12.000		_
	0.00						ABHC	ND ND	4.000		R
	0.00						ACLDAN AENSLF	ND ND	5.100		R
	0.00						ALDRN	ND	9.200 4.700		R R
	00						MAN KR	MV.	/00	JUL	R.

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Hame	Mees. Boolean	Value	Units	Internal Standard Code
DCMB	0.00	ce	1277	1	111001						
u CMB	0.00	63	m1.	•	11-oct-1991	UMIS	ANAPYL	LT LT	1.700 0.500		
	0.00						ANTRO	LT	0.500		
	0.00						82CEXM	LT	1,500	UGL	
	0.00						82CIPE	LT	5.300		
	0.00						BZCLEE BZEHP	LT LT	1.900 4.800		
	0.00						BAANTR	ĹΤ	1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT BBHC	LT ND	5.400 4.000		R
	0.00						BBZP	LT	3.400		κ.
	0.00						BENSLF	ND	9.200	UGL	R
	0.00						BENZID BENZOA	ND LT	10.000		R
	0.00						BGHIPY	LT	13,000 6,100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY CL6BZ	LT LT	2.400 1.600		
	0.00						CL6CP	LT	8.600		
	0.00 0.00						CLGET	LT	1.500		
	0.00						DBAHA DBHC	LT ND	6.500 4.000		R
	0.00						DBZFUR	LT	1.700		К
	0.00						DEP	LT	2.000	UGL	
	0.00						DLDRN DMP	ND LT	4.700		R
	0.00						DNBP	LT	1.500 3.700		
	0.00						DNOP	LŤ	15.000		
	0.00						ENDRN	ND	7_600		R
	0.00						ENDRNA ENDRNK	MD MD	8.000 8.000		R
	0.00						ESFS04	NO	9.200		R R
	0.00						FANT	LT	3.300	UGL	
	0.00						FLRENE GCLDAN	ND ND	3.700		_
	0.00						HCBD	LT	5.100 3.400		R
	0.00						HPCL	ND	2.000	UGL	R
	0.00						HPCLE	ND	5.000		R
	0.00						ICOPYR ISOPHR	LT LT	8.600 4.800		
	0.00						LIN	ND	4.000		R
	0.00			· .			MEC6H5		2.000		S
	0.00						MEXCLR NAP	NAD LT	5.100 0.500		R
	0.00						NB	ĽŤ	0.500		
	0.00						NNDMEA	ND	2.000		R
	0.00 0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016	ЯD	21.000		R
	0.00						PCB221	MD	21.000		Ř
	0.00						PC8232 PC8242	ND	21.000		R
	0.00						PC8248	ND ND	30.000 30.000		R R
	0.00						PCB254	ND	36.000		Ř
	0.00						PCB260	NO	36,000		R
	0.00						PCP PHANTR	LT LT	18.000 0.500		
	0.00						PHENOL	LT	9.200		
	0.00						PPDDD	ND	4.000	UGL	R
	0.00 0.00						PPDDE PPDDT	ND NC	4.700		R
	0.00						PYR	ND Lt	9.200 2.800		R
	0.00						TXPHEN	MD	36.000	UGL	R
	0.00						UNK644		2.000	UGL	8

-- ----

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code				Units	Internal Standard Code
				_							
QCM8	0.00 0.00	£5	MIA	2	25-oct-1991	UM18	124TCB 12DCLB	LT LT	1.800 1.700		
	0.00						12DPH	ND	2.000		R
	0.00						13DCLB	LT	1.700		•
	0.00						14DCLB	LT	1.700		
	0.00						2451CP		5.200		
	0.00						246TCP 24DCLP		4.200 2.900		
	0.00						24DMPN	_	5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT		0.790		
	0.00						2CLP 2CNAP	LT LT	0.990 0.500		
	0.00						2HNAP	LT	1.700		
	0.00						2MP	LT	3.900	UGL	
	0.00						2NANIL	LT	4.300		
	0.00 0.00						2NP 33DCBD	LT LT	3,700		
	0.00						3NANIL		12.000 4.900		
	0.00						46DN2C		17.000		
	0.00						4BRPPE		4.200		
	0.00						4CANIL		7.300		
	0.00						4CL3C	_	4,000 5,100		
	0.00				•		4MP	LT	0.520		
	0.00						4NANIL		5.200		
	0.00						4NP	LT	12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN AENSLF	ND ND	5.100 9.200		R R
	0.00						ALDRN	ND	4.700		R R
	0.00						ANAPNE	-	1.700		
	0.00						ANAPYL	LŤ	0.500		
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM B2CIPE	LT LT	1.500 5.300		
	0.00						BZCLEE	LT	1.900		
	0.00						B2EHP		4.800	UGL	
	0.00						BAANTR		1.600		
	0.00						BAPYR BBFANT		4.700 5.400		
	0.00			_			BBHC	NED	4.000		R
	0.00						BBZP	LT	3.400	UGL	~
	0.00			•			BENSLF		9.200	UGL	R
	0.00						BENZID BENZOA	ND LT	10.000 13.000		R
	0.00						BGHIPY	LT	6.100		
	0.00						BKFANT	ĹŤ	0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY	LT	2.400		
	0.00 0.00						CL68Z CL6CP	LT LT	1.600 8.600		
	0.00						CLOCET	LT	1.500		
	0.00						DBAHA	ĹŤ	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LŢ	1.700		
	0.00						DEP Dldrn	LT ND	2.000 4.700		ъ
	0.00						DMP	LT	1.500		R
	0.00						DNBP	ĹŤ	3.700		
	0.00						DNOP	LT	15.000	UGL	
	0.00						ENDRN	MD	7.600		R
	0.00						ENDRNA ENDRNK	ND ND	8.000 8.000		R
	0.00						ESFS04	ND	9.200		Ř R
									,		-

QC Tyme	Spike	i sh	Lot	Sample	Analysis Date	Method Code		Meas.	14.1		Internal Standard Code
				HOUNDER		Code		Pooreau		Units	Standard Code
QCMB		E\$	WIV	2	25-oct-1991	UM18	FANT		3.300		
	0.00						FLRENE	LT	3.700		_
	0.00						GCLDAN HCBD	ND Lt	5.100 3.400		R
	0.00						HPCL	ND	2.000		R
	0.00						HPCLE		5.000		Ř
	0.00						1CDPYR		8.600		
	0.00						1SOPHR		4.800		_
	0.00						LIN MEXCLR	ND ND	4.000 5.100		R
	0.00						NAP	LT	0.500		R
	0.00						NB	ĹŤ	0.500		
	0.00						NNDMEA		2.000		R
	0.00 0.00						NNDNPA		4.400		
	0.00						NNDPA PCB016	LT ND	3.000 21.000		R
	0.00						PC8221	ND	21.000		R
	0.00						PCB232	ND	21,000		Ř
	0.00						PCB242	ND	30.000		R
	0.00						PCBZ48		30.000	UGL	R
	0.00						PC8254		36.000		R
	0.00						PCB260 PCP	NED LT	36.000 18.000		R
	0.00						PHANTR		0.500		
	0.00						PHENOL		9.200		
	0.00						PPDDD	ND	4.000		R
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT PYR	ND Lt	9.200 2.800		R
	0.00						TXPHEN		36.000		R
	0.00		MIX		31-oct-1991		124TCB	-	1.800		•
	0.00						12DCLB		1.700		
	0.00						12DPH	MD	2.000		R
	0.00						1ZEPCH 13DCLB	LŤ	3.000 1.700		S
	0.00						14DCLB	LT	1,700		
	0.00						245TCP	ĹŤ	5.200		
	0.00						246TCP		4.200		
	0.00						24DCLP	LT	2.900		
	0.00						24DMPN 24DMP	LT LT	5.800 21.000		
	0.00						24DNT	LT	4,500		
	0.00						26DNT	LT	0.790		
	0.00						2CLP	LT	0.990	UGL	
	0.00						2CNAP	LT	0.500		
	0.00						2MNAP 2MP	LT LT	1,700 3,900		
	0.00						2NANIL	LŤ	4.300		
	0.00						2NP	ĻŤ	3.700		
	0.00						33DCBD	LT	12.000		
	0.00						3NANIL	LT	4.900		
	0.00						46DN2C 4BRPPE	LT LT	17.000 4.200		
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C	ĽΤ	4.000		
	0.00						4CLPPE	LT	5.100	UGL	
	0.00 0.00						4MP	LT	0.520		
	0.00						4NANIL	LT LT	5.200		
	0.00						ABHC	MĐ	12.000 4.000		R
	0.00						ACLDAN	ND	5.100		Ř
	0.00						AENSLF	ND	9.200	UGL	R
	0.00						ALDRN	ND	4.700		R
	0.00						ANAPNE	LT	1.700	–	
	0.00						ANAPYL	LT LT	0.500 0.500		
									9.500	erell,	

QC Tumo	Spike	l ab		Sample	Analysis	Method	Test	Meas.			Internal
Type	Alliourit	FAD	LOT	Number	Date	Code		Boolean	Value	Units	Standard Code
QCMB		ES	WIX	2	31-oct-1991	UM18	B2CEXM		1.500	UGL	
	0.00						B2CIPE		5.300		
	0.00						B2CLEE B2EHP		1.900 4.800		
	0.00						BAANTR		1.600		
	0.00						BAPYR		4.700		
	0.00						BBFANT BBHC		5.400 4.000		
	0.00						882P		3.400		R
	0.00							ND	9.200	UGL	R
	0.00						BENZID		10,000	UGL	R
	0.00						BENZOA		13.000 6.100	UGL	
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	ĻŢ	0.720		
	0.00						CHRY CL682	LT LT	2.400 1.600		
	0.00						CL6CP		8.600		
	0.00						CLSET	LT	1.500	UGL	
	0.00						DBAHA DBHC	LT ND	6.500 4.000		R
	0.00						DBZFUR	LT	1.700		K
	0.00						DEP	LT	2.000	UGL	
	0.00						DLDRN DMP	ND	4.700		R
	0.00						DNBP	LT LT	1.500 3.700		
	0.00						DNOP		15.000		
	0.00 0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA ENDRNK	ND ND	8.000 8.000		R R
	0.00						ESFS04	ND	9.200		Ř
	0.00						FANT	LT	3,300		
	0.00						FLRENE	LT No	3.700 5.100		R
	0.00						HCBD	LT	3.400		ж.
	0.00						HPCL	ND	2.000	UGL.	R
	0.00 0.00						HPCLE	ND	5_000		R
	0.00						1CDPYR	LT	8.000 8.600		S
	0.00						ISOPHR	ĹŤ	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MECCHS MEXCLR	ND	3.000 5,100		S R
	0.00						NAP	LT	0.500	UGL	•
	0.00		•	-			NS	LT	0.500	UGL	_
	0.00						NNDMEA	ND LT	2.000 4.400		R
	0.00						NNDPA	LŦ	3.000		
	0.00						PCB016	ND	21.000	UGL	R
	0.00						PC8221 PC8232	ND ND	21.000 21.000		R
	0.00						PCB242	ND ND	30.000		R R
	0.00						PCB248	ND	30.000	UGL	R
	0.00						PCB254	ND	36.000		R
	0.00						PCB260 PCP	ND Lt	36.000 18.000		R
	0.00						PHANTR	ĹŤ	0.500		
	0.00						PHENOL	LT	9.200	UGL	_
	0.00						PPDDD PPDDE	ND ND	4,000 4,700		R
	0.00						PPDDT	ND	9.200		R R
	0.00						PYR	LT	2.800	UGL	
	0.00		WIZ		30-oct-1991		TXPHEN 124TCB	NID LT	36,000		R
	0.00		#1£		JU-004-1771		120CLB	LT	1.800 1.700		
	0.00						120PH	ND	2.000		R

- --

QC Tyrne	Spike	l ah	1.00	Sample	Analysis Date		Test	Meas.	Malan		Internal
,,pc						Code	N BARC	Boolean	Value	Units	Standard Code
QCMB	0.00	ES	WIZ	2	30-oct-1991	UM18	130CLB	LT	1.700	UGL	
	0.00						14DCLB		1.700		
	0.00						245TCP		5.200	UGL	
	0.00						246TCP	LT	4.200		
	0.00						24DCLP		2.900		
	0.00						24DNPN 24DNP	LT LT	5. 800 21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						2CLP	LT	0.990		
	0.00						ZCNAP	LT	0.500		
	0.00						2MNAP	LT	1.700		
	0.00						2MP	LT	3.900		
	0.00						2NANIL 2NP	LT LT	4.300 3.700		
	0.00						330CBD		12.000		
	0.00						3NANIL		4.900		
	0.00							LT	17,000		
	0.00						48RPPE		4.200	UGL	
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C		4.000	-	
	0.00						4CLPPE	LT LT	5,100		
	0.00						4NANIL	LT	0.520 5.200		
	0.00						4NP	ĹŤ	12.000		
	0.00						ABHC		4.000		R
	0.00						ACLDAN		5.100		Ř
	0.00						AENSLF	MD	9.200		R
	0.00						ALDRN		4.700		R
	0.00						ANAPNE		1.700		
	0.00						ANAPYL Antro		0.500 0.500		
	0.00						B2CEXM		1.500		
	0.00						B2CIPE	ĹŤ	5.300		
	0.00						B2CLEE	LT	1.900		
	0.00						B2EHP		4.800		
	0.00						BAANTR		1.600		
	0.00 0.00						BAPYR	LT	4.700		
	0.00						BBFANT BBHC	LT ND	5.400 4.000		R
	0.00						BBZP	LT	3.400		5
	0.00						BENSLF		9.200		R
	0.00						BENZID	ND	10.000		Ř
	0.00			•			BENZOA	LT	13.000		
	0.00		•				BGHIPY		6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC CHRY	LT LT	0.720 2.400		
	0.00						CL6BZ	LT	1.600		
	0.00						CL6CP	ĹŤ	8,600		
	0.00						CL6ET	ĹŤ	1.500		
	0.00						DBAHA	LT	6.500	UGL	
	0.00						DBHC	ND	4,000		R
	0.00						DBZFUR	LT	1.700		
	0.00						DEP DIACAL	LT	2.000		
	0.00						DLDRN	ND	10.000 4.700		S R
	0.00						DHP	LT	1.500		•
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000		
	0.00						ENDRN	MD	7.600		R
	0.00						ENDRNA	ND	8.000		R
	0.00						ENDRNK	NO	8.000		R
	0.00						ESFSO4	ND	9.200		R
	0.00						FANT FLRENE	ET LT	3.300 3.700		
	~ • • •						· LACKE	E i	3.700	OPF	

-- ---

Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code	Name	Boolean	Value	Units	Internal Standard Code

QCMB	0.00	EG	U17	2	30-oct-1991	1M1R	CCI DAN	ND	5.100	1101	
4010	0.00	LJ		•	30 OCT 1771	OFFIC	HCBD		3.400		R
	0.00						HPCL	ND	2.000		R
	0.00						HPCLE		5.000	UGL	R
	0.00						ICDPYR		8.600		
	0.00						ISOPHR LIN	LT ND	4.800 4.000		_
	0.00						MEXCLR		5.100		R R
	0.00						NAP	LT	0.500		•
	0.00						NB	LT	0.500	UGL	
	0.00						NNDMEA		2.000		R
	0.00 0.00						NNDNPA NNDPA	LT LT	4.400		
	0.00						PCB016		3.000 21.000		R
	0.00						PC8221		21.000		Ř
	0.00						PC8232	ND	21.000		Ř
	0.00						PCB242		30,000		R
	0.00						PCB248		30.000		R
	0.00						PCB254 PCB260		36.000 36.000		R
	0.00						PCP	LT	18.000		R
	0.00						PHANTR	_	0.500		
	0.00						PHENOL		9.200		
	0.00						PPDDD		4.000		R
	0.00						PPDDE	•	4.700		R
	0.00						PPDDT PYR	ND LT	9.200 2.800		R
	0.00						TXPHEN		36,000		R
	0,00						UNK646		20.000		Š
	0.00						UNK648 UNK649 135TNB		8.000		Š
	0.00			_	07 4004		UNK649		9.000		S
	0.00		WLH	7	07-sep-1991	UW32			0.449		
	0.00						13DNB 246TNT		0.611 0.635		¥
	0.00						24DNT	LT	0.064		
	0.00						26DNT	LŤ	0.074		¥
	0.00						2NT	LT	0.406		¥
	0.00						HMX	LT	1.210		¥
	0.00						NB RDX	LT LT	0.645 1.170		
	0.00						TETRYL		2.490		u
	0.00		WLI	6	12-sep-1991		135TNB		0.449		•
	0.00				,		130NB		0.611		
	0.00						246TNT		0.635		
	0.00						24DNT		0.064		
	0.00						26DNT 2NT	LT LT	0.074 0.406		u
	0.00						34DNT		5.520		Ť
	0.00						XMX	LT	1.210		•
	0.00						NB	LT	0.645	UGL	
	0.00						RDX	ĻŢ	1.170		
	0.00		WLN		01-oct-1991		TETRYL 135TNB	LT	2.490		
	0.00		MEN		01-0¢t-1991		130NB	LT LT	0.449 0.611		
	0.00						246TNT	LT	0.635		
	0.00						24DNT	LT	0.064	UGL	
	0.00						26DNT	LT	0.074		
	0.00						2NT	LŤ	0.406		_
	0.00						34DNT HMX	LT	4.360 1.210		т
	0.00						NB	LT	0.645		
	0.00						ROX	LT	1.170		
	0.00						TETRYL	LT	2.490	UGL	
	0.00		WLT	7	25-oct-1991		135TNB	LT	0.449		
	0.00						13DNB	LT	0.611		
	0.00						246TNT	ŁT ,	0.635	UGL	

ec Type	Spike Amount	Lab	Lot	Sample Number		Method Code		Hea s. Boolean	Value	Units	Internal Standard Cod
QCMB	0.00	FS	LIT	7	25-oct-1991	18.772	24DNT		0.044	1101	
40.10	0.00		MYI	•	23-001-1991	UWJZ	ZADNT	ĻT LT	0.064 0.074		
	0.00						2NT	LT	0.406		
	0.00						34DNT	4.	4.370		τ
	0.00						HMX	LT	1.210		•
	0.00						NB	LT	0.645		
	0.00						RDX	LT	1.170		
	0.00						TETRYL	LT	2.490		
	0.00		WNE	8	22-sep-1991	TF22	NIT	LT	10,000	UGL	
	0.00		WKM	4	11-oct-1991		NIT	LT	10.000	UGL	
	0.00		MNM		05-nov-1991		NIT	LT	10.000		
	0.00		ACC	6	06-sep-1991	LW12			0.488		
	0.00						13DNB	LT	0.496		¥
	0.00						246TNT		0.456		
	0.00						24DNT	LT	0.424		
	0.00				•		26DNT HMX	LT	0.524		¥
	0.00						NB NB	LT LT	0.666 2.410		¥
	0.00						RDX	LT	0.587		
	0.00						TETRYL		0.731		u
-	0.00		WOE	4	09-sep-1991		135TNB		0.488		•
	0.00			-			130NB	LŤ	0.496		
	0.00						246TNT		0.456		
	0.00						24DNT	LT	0.424		
	0.00						SEDNI	ĹŦ	0.524		
	0.00						HMX	LT	0.666		
	0.00						NB	LT	2.410	UGG	
	0.00						RDX	LT	0.587		
	0.00			_			TETRYL	-	0.731	UGG	
	0.00		MOX	5	11-nov-1991		135TNB		0.488		
	0.00						13DNB	LT	0.496		
	0.00						246TNT		0.456		
	0.00 0.00						24DNT	ĻŢ	0.424		
	0.00						26DNT	LT	0.524		
	0.00						ZNT	LT	0.307		
	0.00						HMX NB	LT	0.666		
	0.00						RDX	LT LT	2.410 0.587		
	0.00						TETRYL		0.731		
	0.00		WOZ	7	21-oct-1991		135TNB	LT	0.488		
	0.00				•		13DNB	ĹΫ	0.496	-	¥
	0.00						246TNT	LT	0.456		-
	0.00						24DNT	ĹŤ	0.424		
	0.00						26DNT	LT	0.524	UGG	¥
	0.00						2NT	LT.	0.307		¥
	0.00						HMX	LT	0,666		W
	0.00						NB	ĻŢ	2,410		
	0.00 0.00						RDX	LT	0.587		
	0.00		LINC	,	3/1001	m15	TETRYL	LT	0.731		W
	0.00		WQF	4 12	24-sep-1991	JD15	SE ~	LT	0.250		
	0.00		MOU		01-nov-1991 20-nov-1991		SE SE	LT	0.250		
	0.00		WSA	ĭ	06-sep-1991	LM19	3E 111TCE	LT	0.250		
	0.00		RUM	•	00 acp 1331	EM 17	112TCE	LT	0.010 0.005		
	0.00						11DCE	LT	0.004		
	0.00						11DCLE	LT	0.002		
	0.00						12DCE	LT	0.002		
	0.00						120CLE	ĹΪ	0.002		
	0.00						120CLP	ĽŤ	0.003		
	0.00						SCLEAE	ND	0.010	LIGG	R
	0.00						ACET		0.023		~
	0.00						ACROLN	ND	0.100		R
	0.00						ACRYLO	ND	0.100		Ř
	0.00						BRDCLM	LT	0.003		
	0.00						C13DCP	LT	0.003		
	0.00						C2AVE	LT	0.003		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Boolean			Internal Standard Code
				_							
QCMB	0.00	F2	MZW	1	06-sep-1991	LM19	CZH3CL C2H5CL		0.006		
	0.00						COHO	LT LT	0.012 0.002		
	0.00						CCL3F		0.007		
	0.00						CCL4	LT	0.007		
	0.00						CH2CL2		0.012		
	0.00						CH3BR CH3CL	LT LT	0.006		
	0.00						CHBR3		0.009 0.007		
	0.00						CHCL3		0.001		
	0.00						CL2BZ	-	0.100	UGG	R
	0.00						CLC6H5		0.001		
	0.00 0.00						CS2 DBRCLM	LT LT	0.004 0.003		
	0.00						ETC6H5		0.003		
	0.00						MEC6H5		0,001		
	0.00						MEK	LT	0.070		
	0.00						MISK MNSK	LT	0.027		
	0.00						STYR	LT LT	0.032 0.003		
	0.00						T13DCP		0.003		
	0.00						TCLEA	LT	0.002		
	0.00						TCLEE		0.001		
	0.00 0.00						TRCLE XYLEN		0.003 0.002		
	0.00		WSC		09-sep-1991		111TCE		0.002		
	0.00						112TCE		0.005		
	0.00						11DCE	_	0.004	UGG	
	0.00						11DCLE		0.002		
	0.00						12DCE 12DCLE		0.003 0.002		
	0.00						120CLP		0.002		
	0.00						2CLEVE		0.010		R
	0.00						ACET		0.054		
	0.00						ACROLN		0.100		R
	0.00						ACRYLO BRDCLM		0.100 0.003		R
	0.00						C13DCP		0.003		
	0.00						C2AVE	LT	0.003		
	0.00						CSH3CT	LT	0.006		
	0.00						C2H5CL	LŢ	0.012		
	0.00						C6H6 CCL3F	LT LT	0.002 0.006		
	0.00						CCL4	LT	0.007		
	0.00			÷.			CH2CL2	LT	0.012		
	0.00						CH3BR	LT	0.006		
	0.00						CH3CL CHBR3 ·	LT LT	0.009		
	0.00						CHCL3	LT	0.007 0.001		
	0.00						CL2BZ	MD	0.100		R
	0.00						CLC6H5	LT	0.001	UGG	
	0.00 0.00						CS2	LT	0.004		
	0.00						DBRCLM ETC6H5	LT LT	0.003 0.002		
	0.00						MEC6H5	LT	0.001		
	0.00						MEK	LT	0.070	UGG	
	0.00						MIBK	LT	0.027	UGG	
	0.00						MNBK Styr	LT LT	0.032		
	0.00						T13DCP	LT	0.003 0.003		
	0.00						TCLEA	LT	0.003		
	0.00						TCLEE	ĹŤ	0.001		
	0.00						TRCLE	LT	0.003		
	0.00 0.00		USN	2	10-oct-1991		XYLEN	LT	0.002		
	0.00		434	~	10-001-1991		111TCE 112TCE	LT LT	0.004 0.005		
									0.005	544	

	qc Type	Spike Amount			Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
	QCMB	0.00	E2	USW.	2	10-oct-1991	1 M10	11DCE	1.*	0.004	nee	
	40110	0.00			-	10-001-1771	EH 17	11DCLE	LT LT	0.004 0.002		
		0.00						12DCE	ĹŤ	8.003		
		0.00						12DCLE	LT	0.002		
		0.00						12DCLP	LT	0.003		
		0.00						2CLEVE	ND	0.010		R
		0.00						ACET	LT	0.017		
		0.00						ACROLN	ND	0.100	UGG	R
		0.00						ACRYLO	ND	0.100		R
		0.00						BRDCLM	LT	0.003		
		0.00						C13DCP	LT	0.003		
		0.00						C2AVE	LT	0.003		
		0.00						CSH3CT	LT	0.006		
		0.00						C2H5CL	LT	0.012		
		0.00						C6H6	LŢ	0.002		
		0.00						CCL3F	LT	0.006		
		0.00						CCL4 CH2CL2	LT	0.007		
		0.00						CH3BR		0.012		
		0.00						CH3CT	LT LT	0.006 0.009		
		0.00						CHBR3	LT	0.007		
		0.00						CHCL3	LT	0.001		
		0.00						CL2BZ	ND	0.100		R
		0.00						CLC6H5	LŤ	0.001		•
		0.00						CS2	LT	0.004		
		0.00						DBRCLM	LT	0.003		
		0.00						ETC6N5	LT	0.002		
		0.00						MEC6H5	LT	0,001		
		0.00						MEK	LT	0.070		
		0.00						MIBK	LT	0.027		
arter a		0.00						MNBK	LT	0.032		
		0.00						STYR	LT	0.003	UGG	
•		0.00						T13DCP	LT	0.003	UGG	
		0.00						TCLEA	LT	0.002		
		0.00						TCLEE	LT	0.001		
		0.00						TRCLE	ĻŢ	0.003		
		0.00		1100		70 4004		XYLEN	LT	0.002		
		0.00		WSQ		22-oct-1991		111TCE		0.004		
		0.00						112TCE		0.005		
		0.00						11DCE	LŢ	0.004		
		0.00						11DCLE	LT	0.002		
		0.00						120CE	LŢ	0.003		
		0.00						12DCLE 12DCLP	LT LT	0.002		
		0.00						SCLEVE		0.003 0.010		P
		0.00						ACET	~~	0.010		ĸ
		0.00						ACROLN	ND	0.100		R
		0.00						ACRYLO		0.100		R R
		0.00						BRDCLM	LT	0.003		*
		0.00						C13DCP	LT	0,003		
		0.00						C2AVE	ĻŤ	0.003		
		0.00						C2H3CL	LT	0.006		
		0.00						C2H5CL	LT	0,012		
		0.00						C6H6	LT	0.002	UGG	
		0.00						CCL3F		0.006		
		0.00						CCL4	LT	0.007		
		0.00						CH2CL2		0.012		
		0.00						CH3BR	LT	0.006		
		0.00						CH3CL	LT	0.009		
		0.00						CHBR3	LT	0.007		
		0.00						CHCL3	LT	0.001		
		0.00						CL28Z	ND	0.100		R
		0.00						CLC6H5	LT	0.001		
		0.00						CS2	LT	0.004		
		0.00						DBRCLM	LT	0.003	UGG	
								ETC6H5	LT	0.002		

-- ---

O.ON S. USG 2 22-oct-1991 LM19 NECSMS LT 0.001 UGG O.00 O.00 O.00 NEK LT 0.079 UGG O.00 O.00 O.00 O.00 NEK LT O.032 UGG O.00	QÇ Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	OCMR	0.00	FS	uso.	2	22-act-1991	I M10	MECAUS	17	0.001	uce	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					-		E		_			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00												
0.00 TCLEA LT												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00								TRCLE	LT	0.003	UGG	
0.00												\$
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				USB		23-oct-1991						
0.00						25 000 1777						
0.00		0.00						11DCE				
120cle												
0.00												
0.00												
C.00								_				R
0.00												
0.00												
0.00												K
CAME												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										0.003	UGG	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
O.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								CCL4		0.007	UGG	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								-				
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
DBRCLM												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
MNBK												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									_			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				-								
TCLEE								T130CP	LT	0.003	UGG	
0.00 TRCLE LT 0.003 UGG 0.00 XYLEN LT 0.002 UGG 0.00 USV 04-nov-1991 111TCE LT 0.004 UGG 0.00 112TCE LT 0.005 UGG 0.00 11DCLE LT 0.004 UGG 0.00 11DCLE LT 0.002 UGG 0.00 12DCE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 ACET LT 0.017 UGG R 0.00 ACET LT 0.017 UGG R 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C130CP LT 0.003 UGG												
0.00												
0.00 WSV 04-nov-1991 111TCE LT 0.004 UGG 0.00 112TCE LT 0.005 UGG 0.00 11DCE LT 0.004 UGG 0.00 11DCLE LT 0.002 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 2CLEVE ND 0.010 UGG R 0.00 ACET LT 0.017 UGG 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C130CP LT 0.003 UGG												
0.00 11DCE LT 0.004 UGG 0.00 11DCLE LT 0.002 UGG 0.00 12DCE LT 0.003 UGG 0.00 12DCLE LT 0.003 UGG 0.00 12DCLP LT 0.003 UGG 0.00 12DCLP LT 0.003 UGG 0.00 2CLEVE ND 0.010 UGG R 0.00 ACET LT 0.017 UGG R 0.00 ACROLN ND 0.100 UGG R 0.00 ACROLN ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG				WSV		04-nov-1991				0.004	UGG	
0.00 110CLE LT 0.002 UGG 0.00 120CE LT 0.003 UGG 0.00 120CLE LT 0.003 UGG 0.00 120CLP LT 0.003 UGG 0.00 120CLP LT 0.003 UGG 0.00 2CLEVE MD 0.010 UGG R 0.00 ACET LT 0.017 UGG 0.00 ACROLN MD 0.100 UGG R 0.00 ACRYLO MD 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG											-	
0.00 12DCE LT 0.003 UGG 0.00 12DCLE LT 0.002 UGG 0.00 12DCLP LT 0.003 UGG 0.00 2CLEVE MD 0.010 UGG R 0.00 ACET LT 0.017 UGG R 0.00 ACROLN ND 0.100 UGG R 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG												
0.00 12DCLE LT 0.002 UGG 0.00 12DCLP LT 0.003 UGG 0.00 2CLEVE MD 0.010 UGG R 0.00 ACET LT 0.017 UGG 0.00 ACROLN ND 0.100 UGG R 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG												
0.00 2CLEVE ND 0.010 UGG R 0.00 ACET LT 0.017 UGG 0.00 ACROLN ND 0.100 UGG R 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2H3CL LT 0.006 UGG								12DCLE	LT			
0.00 ACET LT 0.017 UGG 0.00 ACROLN ND 0.100 UGG R 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2H3CL LT 0.006 UGG												_
0.00 ACROLN ND 0.100 UGG R 0.00 ACRYLO ND 0.100 UGG R 0.00 BRDCLM LT 0.003 UGG 0.00 C13DCP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2H3CL LT 0.006 UGG									_			R
0.00 ACRYLO MD 0.100 UGG R 0.00 BRDCLM LY 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2H3CL LT 0.006 UGG												P
0.00 BRDCLM LT 0.003 UGG 0.00 C130CP LT 0.003 UGG 0.00 C2AVE LT 0.003 UGG 0.00 C2H3CL LT 0.006 UGG		0.00										
0.00 C2AVE LT 0.003 UGG 0.00 C2H3CL LT 0.006 UGG								BRDCLM	LT	0.003	UGG	
0.00 C2H3CL LT 0.006 UGG												
											_	

QC Type	Spike Amount	Lab	Lot	Sample Kumber	Analysis Date	Method Code	Name		Value	Units	Internal Standard Code
QCMB	0.00	ES	WSV	2	04-nov-1991	LM19	C6H6	LT	0.002	ugg	
	0.00						CCI 3E		0.014		
	0.00						CCL4		0.007		
	0.00						CHZCLZ		0.012		
	0.00						CH3BR CH3CL	LT LT	0.006 0.009		
	0.00						CHBR3		0.007		
	0.00						CHCL3		0.001		
	0.00						CL2BZ	ND	0.100		R
	0.00						CLC6H5		0.001		
	0.00						C\$2	LT	0.004		
	0.00						DBRCLM ETC6H5		0.003 0.002		
	0.00						MEC6H5		0.002		
	0.00						MEK	LT	0.070		
	0.00		•				MIBK	LT	0.027		
	0.00						MNSK	LT	0.032		
	0.00						STYR	LT	0.003		
	0.00						T130CP	LT	0.003		
	0.00						TCLEA TCLEE	LT LT	0.002 0.001	UGG	
	0.00						TRCLE	LT	0.003	UGG	
	0.00						UNK112	•	0.003		5
	0.00						UNK112 XYLEN 111TCE	LT	0.002	UGG	-
	0.00		WSW		06-nov-1991		111TCE	LT	0.004		
	0.00							LT	0.005		
	0.00						11DCE 11DCLE	LT LT	0.004 0.002		
	0.00						120CE	LT	0.003		
	0.00						12DCLE		0.002		
	0.00						1ZQCLP	LT	0.003		
	0.00						2CLEVE		0.010		R
	0.00 0.00						ACET		0.017		_
	0.00						ACROLN ACRYLO		0.100 0.100		R R
	0.00						BRDCLM		0.003		ĸ
	0.00						C13DCP		0.003		
	0.00						CZAVE	LT	0.003	UGG	
	0.00						CZH3CL		0.006		
	0.00						C2H5CL C6H6	LT LT	0.012		
	0.00						CCL3F	LI	0.002 0.013		
	0.00						CCL4	LT	0.007		
	0.00			•			CH2CL2		0.012		
	0.00						CH3BR	LT	0.006		
	0.00 0.00						CH3CL	LT	0.009		
	0.00						CHBR3 CHCL3	LT	0.007		
	0.00						CL2BZ	LT ND	0.001 0.100		R
	0.00						CLC6H5	ĹΤ	0.001		•
	0.00						CS2	LT	0.004		
	0.00						DBRCLM	LT	0.003	ŲĢĠ	
	0.00						ETC6H5	LT	0.002		
	0.00						MEC6H5	LT	0.001		
	0.00						MEK	LT LT	0.070 0.027		
	0.00						MNBK	נד	0.032		
	0.00						STYR	LT	0.003		
	0.00						T13DCP	LT	0.003		
	0.00						TCLEA	LT	0.002	UGG	
	0.00 0.00						TCLEE	LT	0.001		
	0.00						TRCLE	LT LT	0.003		
	0.00		WSZ		15-nov-1991		111TCE	LT	0.002 0.004		
	0.00				,, 1221		112TCE	LT	0.005		
	0.00						11DCE	LT	0.004		

QC Type					Analysis Date	Method Code	Name	Boolean	Value	Units	Internal Standard Code

QCMB	0.00	ES	WSZ	2	15-nov-1991	LM19			0.002		
	0.00						12DCE 12DCLE	LT LT	0.003		
	0.00						12DCLP		0.002 0.003		
	0.00						2CLEVE	ND	0.010	UGG	R
	0.00						ACET		0.017		_
	0.00						ACROLN ACRYLO		0.100 0.100		R R
	0.00						BRDCLM	LT	0.003		•
	0.00						C13DCP		0.003		
	0.00						C2AVE C2H3CL	-	0.003 0.006		
	0.00						C2H5CL	LT	0.012	UGG	
	0.00						C6H6	LT	0.002		
	0.00						CCL3F CCL4	LT LT	0.006 0.007		
	0.00						CH2CL2	LT	0.012		
	0.00						CH39R		0.006		
	0.00						CH3CL CHBR3		0.009 0.007		
	0.00						CHCL3		0.001	UGG -	
	0.00						CL2BZ	ND	0.100		R
	0.00						CLC6H5 CS2	LT LT	0.001 0.004		
	0.00						DBRCLM		0.003		
	0.00						ETC6R5		0.002		
	0.00						MEC6H5 MEK	LT LT	0.001 0.070		
	0.00						MIBK	LT	0.027		
	0.00						MNBK	LT	0.032		
	0.00						STYR T13DCP	LT LT	0.003 0.003		
	0.00						TCLEA		0.002		
	0.00						TCLEE		0.001		
	0.00 0.00						TRCLE XYLEN	-	0.003 0.002		
	0.00		WTD	1	20-sep-1991	UM20	111TCE		0.500		
	0.00 0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00						12DCE	LT.	0.500		
	0.00						12DCLE	LT	0.500		
	0.00 0.00			•			12DCLP 2CLEVE	LT LT	0.500 0.710	_	
	0.00						ACET	ĹŤ	13.000		
	0.00 0.00						ACROLN	MD	100.000		R
	0.00						ACRYLO BRDCLM	ND Lt	100,000 0,590		R
	0.00						C13DCP	ĹŤ	0.580		
	0.00 0.00						C2AVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	ĹŤ	0,500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4 CH2CL2	LT LT	0.580 2.300		
	0.00						CH38R	LT	5.800		
	0.00						CH3CL	LT	3.200	UGL	
	0.00						CHBR3 CHCL3	LŤ	2.600 0.620		
	0.00						CL28Z	MD	10.000		R
	0.00						CLC6H5	LT	0.500	UGL	
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6N5	LT	0.570		
	0.00						MEC6H5	LT	0.500	UGL	

ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name	Meas. Boolean	Value	Units	Internat Standard Code
-		 .									
QCMB		ES	WTD	1	20-sep-1991	UM20	MEK	LT	6.400		
	0.00						MNBK	LŤ	3.000		
	0.00						STYR	LT LT	3.600 0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		WTE		24-sep-1991		XYLEN 111TCE		0.840 0.500		
	0.00		***		E4-86b-1771		112TCE		1.200		
	0,00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500		
	0.00 0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500		
	0.00						ACET	LI	0.710 18.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDCLM	LT	0.590	UGL	
	0.00						C13DCP	LT	0.580		
	0.00 0.00						C2AVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						CQHQ	LT	0.500		
	0.00						CCL3F	LT	1-400		
	0.00						CCL4	ŁΤ	0.580		
	0.00						CH2CL2		2.300		
	0.00 0.00						CH3BR	LŢ	5.800		
	0.00						CH3CL CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500	UCL	
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670		
	0.00						MEC6H5	LT	0.500 0.500		
	0.00				-	•	HEK	ĹŤ	6.400		
	0.00						MIBK	LŤ	3.000		
	0.00						MNBK	LT	3.600		
	0.00			-			STYR	LT	0.500		
	0.00						T13DCP	LT LT	0.700 0.510		
	0.00						TCLEE	ĹŤ	1.600		
	0.00						TRCLE	LT	0.500		
	0.00			_			XYLEN	LT	0.840	UGL	
	0.00		WTH	2	02-oct-1991		111TCE	LT	0.500		
	0.00 0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00						12DCE	ĹŤ	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500	UGL	
	0.00						2CLEVE	LT	0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROLN ACRYLO	ND ND	100.000 100.000		R R
	0.00						BRDCLM	LT	0.590		n.
	0.00						C13DCP	LT	0.580		
	0.00				•		C2AVE	LT	8.300	UGL	
	0.00						C2H3CL	LT	2.600		
	0.00 0.00						C2H5CL	LT	1.900		
	0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	-1							LI	1.400	OGL	

--

1876 K

qc Type	Spike Amount	Lab			Analysis Date			Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	WTH	2	02-oct-1991	UM20	CCL4	LT	0.580	UGL	
	0.00						CH2CL2		2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3		0.500		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5		0.500		
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5		0.500		
	0,00						MEK	LT	6.400	UGL	
	0.00						MIBK	LT	3.000		
	0.00						MNBK STYR	LT LT	3.600 0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE		1.600	UGL	
	0.00						TRCLE		0.500		
	0.00		WTL	1	16-oct-1991		XYLEN 111TCE	LT LT	0.840 0.500		
	0.00			•			112TCE		1.200		
	8.00						11DCE	LT	0.500	UGL	
	0.00						11DCLE		0.680		
	0.00						120CE		0.500		
	0.00						12DCLE 12DCLP		0.500 0.500		
	0.00						SCLEAR		0.710		
	0.00						ACET		13.000	UGL	
	0.00						ACROLN		100.000		R
	0.00 0.00						ACRYLO BRDCLM	-	100.000 0.590		R
	0.00						C13DCP		0.580		
	0.00						C2AVE	ĹŤ	8.300		
	0.00						C2H3CL		2.600		
	0.00 0.00						C2H5CL		1.900		
	0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00					•	CH2CL2		2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600 0.590		
	0.00		-				CL2BZ	ND	10.000		R
	0.00			•			CLC6H5	LT	0.500	UGŁ	
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670 0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA		0.750		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500	UGL	
	0.00		1 2754	•	10-444 4004		XYLEN	LT	0.840		
	0.00		WTN	2	18-oct-1991		111TCE 112TCE	LT LT	0.500 1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE	LT	0.500	UGL	
	0.00						12DCLE	LT	0.500	UGL	

QC Tymn	Spike	Lab	l at	Şample Number	Analysis			Meas.	17-1		Internal
1700	A.,			HUIRDEL.	Date	Code		Roofeau	Value	units	Standard Code
				_							
QCMB	0.00	ES	MIN	2	18-oct-1991	UM20	12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROUN	NED	100.000		R
	0.00						ACRYLO BRDCLM	ND LT	100.000 0.590		R
	0.00						C13DCP	LT	0.580	UGL	
	0.00						C2AVE C2H3CL	LT LT	8.300 2.600		
	0.00						C2H5CL	ĹŤ	1-900		
	0.00 0.00						CáHá	LT	0.500		
	0.00						CCL3F	LT LT	1.400 0.580		
	0.00						CH2CL2	LT	2.300	UGL	
	0.00 0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LŢ	0.500	UGL	
	0.00						CL28Z CLC6H5	ND LT	10.000 0.500		R
- -	0,00						CS2	ĹŤ	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5 MEC6H5	LT LT	0.500 0.500		
	0.00						MEK	ĹΤ	6.400		
	0.00					•	MIBK	LT	3.000	-	
	0.00						MNBK STYR	LT LT	3.600 0.500		
	0.00						T13DCP	LT	0.700	UGL	
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN	LT	0.840	UGL	
	0.00		WTR		25-oct-1991		111TCE 112TCE	LT LT	0.500 1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						120CE 120CLE	LT LT	0.500 0.500		
	0.00						12DCLP	LT	0.500		
	0.00 0.00					Ţ	SCLEVE	LT	0.710		
	0.00						ACET ACROLN	LT ND	13.000 100.000		R
	0.00		•	-			ACRYLO	ND	100.000		Ř
	0.00			· .			SRDCLM	LT	0.590		
	0.00			••			C130CP C2AVE	LT LT	0.580 8.300		
	0.00						C2H3CL	LT	2.600	UGL	
	0.00 0.00						C2H5CL C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	ĹŤ	1.400		
	0.00						CCL4	LT	0.580	UGL	
	0.00						CHZCL2 CX3BR	i,t Lt	2.300 5.800		
•	0.00						CH3CL	ĻŤ	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT ND	0.500 10.000		R
	0.00						CLC6H5	LT	0.500		•
	0.00 0.00						CS2	LŤ	0.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670 0.500		
	0.00						MEC6H5	LT	0.500	UGL	
	0.00 0.00						MEK MEK	LT	6.400		
	0.00						MNBK	LŢ L¶	3.000 3.600		

- --- -.

qc Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0_00	ES	WTR	2	25-oct-1991	UM20	STYR	LT	0.500	HĢI	
	0.00			-	CP GGT 1771	OFICE	T130CP		0,700		
	0.00						TCLEA		0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		WTT		01-nov-1991		XYLEN 111TCE	LŢ	0.840		
	0.00		W11		01-1004-1991		112TCE	17	0.500 1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP		0.500		
	0.00						2CLEVE ACET		0.710 13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO		100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE		8.300		
	0.00						C2H3CL C2H5CL		2.600 1.900		
	0.00						C6H6	LT	0.500	DOL	
	0,00						CCL3F	LT	1,490		
	0.00						CCL4		0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR		5.800		
	0.00						CH3CL CHBR3		3.200 2.600		
	0.00						CHCL3		0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6R5		0.500	UGL	
	0.00						C\$2	LT	0.500		
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500 0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	ίŤ	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00 0.00				,		T13DCP		0.700		
	0.00						TCLEE	LT LT	0.510 1.600		
	0.00			_			TRCLE	ĹŤ	0.500		
	0.00						XYLEN	LT	0.840		
	0.00		WTU	٠.	04-nov-1991		111TCE	LT	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						SCLEAE	LT	0.710		
	0.00						ACET	LT	13.000		_
	0.00						ACROLN ACRYLO	ND ND	100,000 100,000		R
	0.00						BRDCLM	LT	0.590		R
	0.00						C13DCP	ĹŤ	0.580		
	0.00						C2AVE	LT	8.300	UGL	
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR	LT	5.800		

San Mark

ac Type	Spike Amount	Lab	Lot	Sample Number	Anelysis Date	Method Code	Name	Meas. Boolean	Value	Units	Internal Standard Code
00110	0.00			_	2						
QCMB	0.00	F2	MIU	2	04-nov-1991	UM20	CH3CL CHBR3	LT LT	3.200		
	0.00						CHCL3	ĹŤ	2.600 0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	ĻŤ	0.500	UGL	
	0.00						MEC6H5	LT	0.500	UGL	
	0.00 0.00						MEK	LT	6.400		
	0.00						WIBK	LT LT	3.000 3.600		
	0.00						STYR	ĹŤ	0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA TCLEE	LT LT	0.510 1.600		
	0.00						TRCLE	LT	0.500		
	0.00						XYLEN	ĹŤ	0.840		
	0.00		WTW		06-nov-1991		111TCE	LT	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
- +	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						120CLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	ĹΫ	13.000		
	0.00						ACROLN	ND	100.000	UGL	R
	0.00 0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL	LT	2.600	UGL	
	0.00 0.00						CZH5CL C6H6	LT LT	1.900		
	0.00						CCL3F	LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00					-	CHBR3	ĹŤ	2.600		
	0.00				-		CHCL3	LT	0.500	UGL	
	0.00						CL2BZ	ND	10.000		R
	0.00						CTC9H2	LT LT	0.500 0.500		
	0.00		-	٠			DBRCLM	LŤ	0.670		
	0.00 0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5 MEK	LT LT	0.500 6.400		
	0.00						MIBK	ĹŤ	3.000		
	0.00						MNBK	LT	3,600	UGL	
	0.00						STYR	LT	0.500		
	0.00						T130CP TCLEA	LT LT	0.700 0.510		
	0.00						TCLEE	ĹŤ	1.600		
	0.00						TROLE	LT	0.500	UGL	
	0.00		WTX				XYLEN 111TCE	LT LT	0.840 0.500		
	0.00		· · · ·				112TCE	LT	1.200		
	0.00						11DCE	LT	0.500	UGL	
	0.00 0.00						11DCLE	LT	0.680		
	0.00						120CE 120CLE	LT LT	0.500 0.500		
	0.00						12DCLP	LT	0.500		
	0.00						SCLEAE	LT	0.710	UGL	
	0.00						ACET	LT	13.000	UGL	

QC	Spike			Sample				Heas.			Internal
Type	Amount	Lab	Lot	Number	Date	Code		Boolean	Value	Units	Standard Code
			•••	••••							
QCMB	0.00	ES	¥TX	2	06-nov-1991	UM20	ACROUN	ND	100.000	UGL	R
	0.00						ACRYLO		100.000	UGL	R
	0.00						BRDCLM		0.590		
	0.00						C13DCP C2AVE	LT LT	0.580 8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00 0.00						CCL3F	LT	1.400		
	0.00						CCL4 CH2CL2	LT LT	0.580 2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3,200	UGL	
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT ND	0.500 10.000		
	0.00						CLC6H5		0.500		R
	0.00						CSZ	ĹŤ	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5 MEK	LT LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA TCLEE	LT LT	0.510 1.600		
	0.00						TRCLE	LŤ	0.500		
	0.00						XYLEN	LT	0.840	UGL	
	0.00		WTY		08-nov-1991		111TCE		0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE	LT	0.500	UGL	
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00				•		SCLEVE ACET	LT LT	0.710 13.000		
	0.00						ACROLN	ND	100.000		R
	0.00					•	ACRYLO	ND	100.000	UGL	R
	0.00						BRDCLM		0.590		
	0.00						C13DCP		0.580		
	0.00			:			C2AVE C2H3CL	LT LT	8.300 2.600	UGL	
	0.00		-				C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LŤ	1.400		
	0.00						CCL4 CH2CL2	LT LT	0.580 2.300		
	0.00						CH38R	ĻŤ	5.800		
	0.00						CH3CL	LT	3.200	UGL	
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT	0.500	_	•
	0.00						CLC6H5	MD LT	10.000 0.500		R
	0.00						CSZ	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LŤ	0.500		
	0.00						MEC6H5	LT LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	ĹŤ	3.600		
	0.00						STYR	LT	0.500		
	0.00 0.00						T13DCP	LT	0.700		
	0.00						TCLEA	LŤ	0.510	UGL	

Sage 12

	ас Гуре	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
	2CMB	0.00	ES	WTY	2	08-nov-1991	UM20	TCLEE	LT	1,600	UGL	
		0.00		-				TRCLE	ĹŤ	0.500		
		0.00			_	_		XYLEN	LT	0.840		
		0.00		WVG	_	25-sep-1991	00	TOC	LT	1000.000		
		0.00		WVH		19-sep-1991		TOX	LT	10.000	NGF	
		0.00		IVW	1	21-sep-1991 19-sep-1991		PH Ph		6.390		
		0.00		VVV		11-oct-1991		PH		6.320 5.630		
		0.00		WYY		15-oct-1991		TOX	LT	1.000	UGL	
		0.00		WXA	2	23-oct-1991	LM18	124TCB	LT	0.040		
		0.00						12DCLB	LT	0.110		
		0.00						12DPH	ND	0.140		R
		0.00						13DCLB 14DCLB	LT LT	0.130 0.098		
		0.00						2451CP	LT	0.100		
		0.00						246TCP	LT	0.170		
		0.00						24DCLP	LT	0.180		
		0.00						24DMPN	LT	0.690		
		0.00						24DNP 24DNT	LT	1.200	-	
		0.00						26DNT	LT LT	0.140 0.085	-	
_	•	0.00						2CLP	ĹΤ	0.060		
		0.00						ZCNAP	LT	0,036		
		0.00						2MNAP	LŤ	0.049		
		0.00 0.00						2MP	LT	0.029		
		0.00						2NANIL 2NP	LT LT	0.062 0.140		
		0.00						330CB0	LT	6.300		
		0.00						SHANIL	LT	0.450		
		0.00						46DN2C	LT	0.550		
		0.00						4BRPPE 4CANIL	LT LT	0.033		
		0.00						4CL3C	LT	0.810 0.095		
		0.00						4CLPPE		0.033		
		0.00						4MP	LT	0.240		
		0.00						4NANIL	LT	0.410		
		0.00						ANP ABHC	LT ND	1.400 9.270		R
		0.00						ACLDAN	NED	0.330		Ř
		0.00						AENSLF	ND	0.620		R
		0.00				,		ALDRN	ND	0.330	UGG	Ř
		0.00						ANAPNE	LT	0.036		
		0.00						ANAPYL ANTRC	LT LT	0.033 0.033		
		0.00						B2CEXIN	LT	0.059		
		0.00		-				B2C1PE	LT	0.200		
		0.00						B2CLEE	ĻŢ	0.033	UGG	
		0.00						BZEHP	ĻŢ	0.620		
		0.00						BAANTR BAPYR	LT LT	0.170 0.250		
		0.00						BBFANT	LT	0.210		
		0.00						BBHC	ND	0.270		R
		0.00						BBZP	LT	0.170	UGG	
		0.00 0.00						BENSLF	ND	0.620		R
		0.00						BENZID BENZOA	ND ND	0.850		R
		0.00						BENZON	LT	6.100 0.250		R
		0.00						BKFANT	LT	0.066		
		0.00						BZALC	LT	0.190	UGG	
		0.00						CHRY	LT	0.120		
		0.00 0.00						CL6BZ CL6CP	1.T	0.033		
		0.00						CLOCP	LT LT	6.200 0.150		
		0.00						DBAHA	LT	0.130		
		0.00						DBHC	ND	0.270		R
		0.00						DBZFUR	LT	0.035		

oc Type	Spike Amount	Lab			Analysis Date	Method Code		Meas. Boolean	Yalu e	Units	Internal Standard Code
							****		**********	•	
QÇMŞ	0.00	ES	WXA	2	23-oct-1991	LM18	DEP	LT	0.240	UGG	
	0.00						DLDRN	ND	0.310		R
	0.00						DMP	LT	0.170		
	0.00						DN8P DNOP	LT LT	0.061 0.190		
	0.00						ENDRN	ND	0.450	UGG	R
	0.00						ENDRNA		0.530		R
	0.00						ENDRNK ESFS04	ND ND	0,530 0,620		R R
	0.00						FANT	LT	0.068		•
	0.00						FLRENE	LT	0.033		
	0.00						GCLDAN HCBD	ND LT	0.330 0.230		R
	0.00						HPCL	ND	0.130		R
	0.00						NPCLE		0,330	UGG	Ř
	0.00						ICOPYR		0.290		
	0.00						ISOPHR LIN	LT ND	0.033 0.270		R
	0.00						MEXCLR		0.330		Ř
	0.00						NAP	LT	0.037		
·	0.00						NB NNDMEA	LT ND	0.045 0.140		R
	0.00						NNDNPA		0.200		ĸ
	0.00						NNDPA	LŦ	0.190	UGG	
	0.00						PCB016 PCB221		1.400		Ř
	0.00						PCB232		1.400 1.400		R R
	0.00						PCBZ42	ND	1.400		Ř
	0.00						PCB248		2.000		R
	0.00						PCB254 PCB260	ND ND	2.300 2.600		R R
	0.00						PCP	LT	1.300		K
	0.00						PHANTR	LT	0.033	UGG	
	0.00						PHENOL	LT	0.110		_
	0.00						PPODD PPODE	ND ND	0.270 0.310		R R
	0.00						PPDDT	ND	0.310		Ř
	0.00						PYR	LT	0.033		_
	0.00						TXPHEN UNK652	ND	2.600 0.600		R S
	0.00		WXD	1	04-nov-1991	•	124TCB	LT	0.040		3
	0.00						12DCL8	LT	0.110		
	0.00		-				12DPH 13DCLB	ND	0.140		R
	0.00						14DCL8	LŤ LT	0.130 0.098		
	0.00						245TCP	LT	0.100	UGG	
	0.00						246TCP	LT	0.170		
	0.00						24DCLP 24DMPN	LT LT	0.180 0.690		
	0.00						24DNP	î.T	1.200		
	0.00						24DNT	LT	0.140		
	0.00						260NT 2CLP	LT LT	0.085 0.060		
	0.00						2CNAP	LT	0.036		
	0.00				•		2MNAP	LT	0.049	UGG	
	0.00						2MP 2NANIL	LT	0.029		
	0.00						2NP	LT LT	0.062 0.140		
	0.00						330CBD	1.T	6.300		
	0.00						SNANTL	LT	0.450	UGG	
	0.00						46DN2C 4BRPPE	LT LT	0.550 0.033		
	0.00						4CANIL	LT	0.810		
	0.00						4CL3C	LT	0.095	UGG	
	0.00						4CLPPE	LT	0.033		
	0.00						4MP	LT	0.240	بانال	

w.g.,

1570	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1							******	••••				
	QCMB	0.00	ES	foo	1	04-nov-1991	LM18	4NANIL	LT	0.410		
		0.00 0.00						ABHC	LT	1.400 0.270		
		0.00						ACLDAN	ND ND	0.330		R R
		0.00						AENSLF	NO	0.620	UGG	R
		0.00						ALDRN ANAPNE	ND Lt	0.330 0.036		R
		0.00						ANAPYL	ĹŤ	0.033		
		0.00 0.00						ANTRO	LT	0.033	UGG	
		0.00						B2CEXM B2CIPE	LT LT	0.05 9 0.200		
		0.00						B2CLEE	LT	0.033	UGG	
		0.00 0.00						B2EHP		2.600		
		0.00						BAANTR BAPYR	LT LT	0.170 0.250		
		0.00						BBFANT	ĻT	0.210	UGG	
		0.00						BBKC BBZP	ND	0,270 0,170		R
		0.00						BENSLF	LT ND	0.620		R
		0.00						BENZID		0.850	ŲGG	R
		0.00						BENZOA BGKIPY	ND Lt	6.100 0.250		R
		0.00						BKFANT	LT	0.066		
		0.00						BZALC	LT	0.190	UGG	
		0.00 0.00						CHRY CL6BZ	LT LT	0.120 0.033		
		0.00						CL6CP	ĹŤ	6.200		
		0.00 0.00						CL6ET	LT.	0.150		
		0.00						DBAHA DBHC	LT ND	0.210 0.270		R
		0.00						DBZFUR		0.035	UGG	•
240) 1		0.00						DEP Dldrn	LT	0.240		
ig.		0.00						DMP	NAD LT	0.310 0.170		R
		0.00						DNBP	LT	0.061	UGG	
		0.00						DNOP ENDRN	LT ND	0.190 0.450		
		0.00						ENDRNA	ND	0.530		R R
		0.00						ENDRNK	ND	0.530	UGG	R
		0.00						ESFSO4 FANT	MD LT	0.620 0.068		R
		0.00				•		FLRENE	LT	0.033		
		0.00						GCLDAN		0.330		R
		0.00			-			HCBO HPCL	LT ND	0.230 0.130		R
		0.00			٠.			HPCLE	ND	0.330	UGG	Ř
		0.00						I COPYR		0.290	UGG	
		0.00						I SOPHR LIN	LT ND	0.033 0.270		R
		0.00						MEXCLR	KØ	0.330	UGG	Ř
		0.00						NAP NB	LT LT	0.037 0.045		
		0.00						NNDMEA		0.045		R
		0.00						NNDNPA	LT	0.200	UGG	
		0.00						NNDPA PCB016	LT MD	0.190 1.400		R
		0.00						PCB221		1.400		Ř
		0.00						PCB232		1,400	UGG	R
		0.00						PC8242 PC8248		1.400 2.000		R R
		0.00						PCB254	ND	2.300		R R
		0.00						PCB260		2.600	UGG	R
		0.00						PCP PKANTR	LT LT	1.300 0.033		
		0.00						PHENOL		0.110	UGG	
•		0.00						PPDDD	ND	0.270	UGG	R

-----

·

-- ---

qc Type	Spike Amount	Lab	Lot	Number	Analysis Date	Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	EC	LIVID	1	04-nov-1991	1 1/10	PPDDE	LIFO.	0.710		_
4CUD	0.00	LJ	****	•	04-1604-1331	FW10	PPDDT	NED NED	0.310 0.310		R R
	0.00						PYR	LT	0.033		K
	0.00						TXPHEN	ND	2.600		R
	0.00						UNK652	•••	1.000		ŝ
	0.00						UNK661		0.500		Š
	0.00		WX1	2	07-nov-1991		124TC8	LT	0.040		-
	0.00						120CL8	LT	0.110		
	0.00						12DPH	MD	0.140		R
	0.00						13DCLB	LT	0.130		
	0.00						14DCLB 245TCP	LT	0.098		
	0.00						245TCP	LT LT	0.100 0.170		
	0.00						24DCLP	LT	0.180		
	0.00						24DMPN	ĹŤ	0.690		
	0.00						24DNP	ĹŤ	1,200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085	UGG	
	0.00						2CLP	LT	0.060		
	0.00						ZCNAP	LT	0.036		
<u>-</u>	0.00						2MNAP	LT	0.049		
	0.00						2HP	LT	0.029		
	0.00						2NANIL 2NP	LT LT	0.062 0.140		
	0.00						33DCBD	LT	6.300		
	0.00						3NANTL	ίŤ	0.450		
	0.00						46DN2C	LT	0.550		
	0.00						4BRPPE	LT	0.033		
	0.00						4CANIL	LT	0.810		
	0.00						4CL3C	LT	0.095		
	0.00						4CLPPE	LT	0.033		
	0.00						4MP	LT	0.240		
	0.00						4NANIL	LT	0.410		
	0.00						4NP ABHC	L.T ND	1.400 0.270		R
	0.00						ACLDAN	MD	0.330		R
	0.00						AENSLF	ND	0.620		Ř
	0.00						ALDRN	ND	0.330		R
	0.00						ANAPNE	LT	0.036	UGG	
	0.00						ANAPYL	LT	0.033		
	0.00					•	ANTRC	LT	0.033		
	0.00						B2CEXM		0.059		
	0.00						BECIPE	LT	0.200		
	0.00						B2CLEE B2EHP	LT LT:	0.033 0.620		
	0.00						BAANTR	LT	0.170		
	0.00			• •			BAPYR	LT	0.250		
	0.00						BBFANT	LŤ	0.210		
	0.00						BBHC	ND	0.270		R
	0.00						BBZP	LT	0.170		- -
	0.00						BENSLF	ND	0.620	UGG	R
	0.00						BENZID	ND	0.850		R
	0.00						BENZCA	ND	6.100		R
	0.00						BGHIPY	LŢ	0.250		
	0.00						BKFANT	LŤ	0.066		
	0.00						BZALC CHRY	LT LT	0.190 0.120		
	0.00						CL6BZ	LT	0.120		
	0.00						CLOCE	LT	6.200		
	0.00						CLÓET	LT	0.150		
	0.00						DBAHA	ĹŤ	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR	LT .	0.035		
	0.00						DEP	LT	0.240	UGG	
	0.00 0.00						DLDRN	ND	0.310	UGG	R
							DMP	LT	0.170		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Neas. Boolean	Value	Units	Internal Standard Code
		***									*************
A-8140				_							
QCMB	0.00	ES	MXI	2	07-nov-1991	LM18	DNBP	LT LT	0.061		
	0.00						ÉNDRN	ND	0.190 0.450		R
	0.00						ENDRNA	ND	0.530		Ř
	0.00						ENDRNK	ND	0.530		R
	0.00						ESFSO4 FANT	ND Lt	0.620 0.068		R
	0.00						FLRENE	ĹŤ	0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00						HCBD	LT ND	0.230		_
	0.00						HPCLE	ND	0.130 0.330		R R
	0.00						1CDPYR	ĹŤ	0.290		75
	0.00						ISOPHR	LT	0.033		
	0.00						LIN	ND ND	0.270 0.330		R R
	0.00						NAP	LT	0.330	_	ĸ
	0.00						NB	LT	0.045		
	0.00						NNDMEA	ND	0.140		R
	0.00						NNDNPA NNDPA	LT LT	0.200 0.190		
	0.00						PC8016	ND	1.400		R
	0.00						PC8221	ND	1.400		R
	0.00						PCB232	ND ND	1.400		R
	0.00						PCB242 PCB248	ND ND	1.400 2.000		R R
	0.00						PCB254	ND	2.300		Ř
	0.00						PCB260	ND	2.600		R
	0.00						PCP PHANTR	LT LT	1.300	-	
	0.00						PHENOL	LT	0.033 0.110		
	0.00						PPDDD	ND	0.270		R
	0.00						PPDDE	ND	0.310		R
	0.00						PPDDT PYR	ND Lt	0.310 0.033		R
	0.00						TXPHEN	KD	2.600		R
	0.00						UNK653		0.500		S
	0.00		WXX		26-nov-1991		UNK672		0.300		\$
	0.00		-		20-1104-1771		124TCB 12DCLB	LT LT	0.040 0.110		
	0.00					•	12DPH	ND	0.140		R
	0.00						13DCLB	LT	0.130		
	0.00						14DCLB 245TCP	LT LT	0.098 0.100		
	0.00						246TCP	LT	0.170		
	0.00						24DCLP	LT	0.180	UGG	
	0.00			•			24DMPN	LT	0.690		
	0.00						24DNP 24DNT	LT LT	1.200 0.140		
	0.00						26DNT	LT	0.085		
	0.00						2CLP	LT	0.060	UGG	
	0.00						2CNAP	LŢ	0.036		
	0.00						ZNNAP ZMP	LT LT	0.049 0.029		
	0.00						2NANIL	ĹŤ	0.062		
	0.00						2NP	LT	0.140	UGG	
	0.00						330CBD 3NAN 1 L	LT LT	6.300 0,450		
	0.00						46DN2C	LT.	0.550		
	0.00						4BRPPE	LT	0.033	UGG	
	0.00						4CANIL	LŦ	0.810		
	0.00						4CL3C 4CLPPE	LT LT	0.095 0.033		
	0.00						4MP	LT	0.240		
	0.00						4NANIL	LT	0.410		
	0.00						4NP	LT	1.400	UGG	

qc Type	Spike Amount	Lab			Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	UYY	2	26-nov-1991	1.118	ABHC	MD	0.270	Hee	R
4	0.00			-		23110	ACLDAN		0.330		R
	0.00						AENSLF		0.620		Ř
	0.00						ALDRN	ND	0.330		R
	0.00						ANAPNE ANAPYL		0.036		
	0.00						ANTRO	LT LT	0.033 0.033		
	0.00						BSCEXM		0.059		
	0.00						BZCIPE		0.200		
	0.00						B2CLEE B2EHP		0.033		
	0.00						BAANTR	LT LT	0.620 0.170		
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT	LT	0.210	UGG	
	0.00						BBHC	ND	0.270		R
	0.00						BBZP BENSLF	LT ND	0.170 0.620		R
	0.00						BENZID	_	0.850		Ř
	0.00						BENZOA	,	6.100		R
	0.00						BGHIPY		0.250		
	0.00						BKFANT		0.066		
	0.00						BZALC CHRY	LT LT	0.190 0.120		
	0.00						CL68Z	LT	0.033		
	0.00						CL6CP	ŁŤ	6.200	UGG	
	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	LT MD	0.210 0.270		R
	0.00						DBZFUR		0.035	UGG	ĸ
	0.00						DEP	LT	0.240		
	0.00						DLDRN	ND	0.310		R
	0.00						DMP DNBP	LT LT	0.170		
	0.00						DNOP	LT	0.061 0.190		
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA		0.530		R
	0.00						ENDRNK		0.530		R
	0.00						ESFS04 FANT	ND Lt	0.620 0.068		R
	0.00						FLRENE		0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00 0.00						HCBD	LT	0.230		_
	0.00						HPCLE	ND CM	0.130 0.330		R R
	0.00						HXADOE		0.400		K S
	0.00						COPYR	LT	0.290		_
	0.00						ISOPHR	LT	0.033		
	0.00 0.00						LIN MEXCLR	ND	0.270		R
	0.00						NAP	NID Lt	0.330 0.037		R
	0.00						NB	LT	0.045		
	0.00						NNDMEA	ND	0.140		R
	0.00 0.00						NNDNPA	ĻŢ	0.200		
	0.00						NNDPA PCB016	LT ND	0.190 1.400		R
	0.00				•		PCB221	ND	1,400		Ř
	0.00						PCB232	ND	1.400		R
	0.00						PCB242	ND	1.400		R
	0.00						PC8248 PC8254	ND ND	2.000 2.300		R
	0.00						PCB260	ND	2.500		R R
	0.00						PCP	LT	1.300	UGG	
	0.00						PHANTR		0.033		
	0.00 0.00						PHENOL	LT	0.110		_
	0.00						PPDD0 PPDDE	NO NO	0.270 0.310		R R
	-:40							-	0.310		ĸ

100 M

90	Spike			Sample	Analysis			Heas.			Internal
Type	Amount	Lab	Lot	Number	Date	Code	Name	Boolean	Value	Units	Standard Code
					•					•	
QCM8	0.00	ES	WXK	2	26-nov-1991	LN18	PPODT	ND	0,310	ນດດ	R
	0.00						PYR	LT	0.033		•
	0.00						TXPHEN	ND	2,600		R
	0.00 0.00		ועוו		07-d1001		UNK652		0.500		S
	0.00		WXL		02-dec-1991		124TCB 12DCLB	LT LT	0.040 0.110		
	0.00						120PH	ND	0.140		R
	0.00						13DCLB	LT	0.130		.,
	0.00						14DCLB	LŤ	0.098		
	0.00						245TCP	LT	0.100		
	0.00						246TCP 24DCLP	LT LT	0,170 0,180		
	0.00						24DMPN		0.690		
	0.00						24DNP	LT	1,200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085		
	0.00						SCLP	LT	0.060		
	0.00						2CNAP 2MNAP	LT LT	0.036 0.049		
	0.00						2MP	ĹŤ	0.029		
	0.00						2MANIL	LŦ	0.062	UGG	
	0.00 0.00						2NP	LT	0.140	UGG	
	0.00						330C80	LT	6.300		
	0.00						3NANIL 46DN2C	LT LT	0.450 0.550		
	0.00						4BRPPE		0.033		
	0.00						4CANIL	LT	0,810		
	0.00						4CL3C	LT	0.095		
	0.00						4CLPPE		0.033		
	0.00						4MP 4MANIL	LT LT	0.240 0.410		
	0.00						4NP	LT	1,400		
	0.00						ABHC	ND	0.270		R
	0.00						ACLDAN	ND	0.330		R
	0.00						AENSLF	MD	0.620		R
	0.00						ALDRN	NAD LT	0.330 0.036		R
	0.00						ANAPAL	LT	0.033		
	0.00						ANTRO	LT	0.033		
	0.00						B2CEXM	LT	0.059		
	0.00						B2CIPE		0.200		
	0.00						BSCTEE	LT	0.033		
	0.00						BZEHP BAANTR	LT LT	0.620 0.170		
	0.00			•			BAPYR	LT	0.170		
	0.00						BBFANT	LT	0.210	UGG	
	0.00						BBHC	MD	0.270	UGG	R
	0.00						BBZP	LT	0.170	UGG	_
	0.00						BENSLF BENZIO	ND NC	0.620 0.850		R R
	0.00						BENZOA	NO	6,100		K R
	0.00						BGHIPY	ĹŤ	0.250		
	0.00						BKFANT	LT	0.066	UGG	
	0.00						BZALC	LT	0.190		
	0.00						CHRY CL68Z	LT LT	0.120		
	0.00						CLOSZ	LT	0.033 6,200		
	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	LŤ	0.210		
	0.00						DBHC	ND	0.270	UGĞ	R
	0.00 0.00						DBZFUR	LT	0.035		
	0.00						DEP Dldrn	LT	0.240		
	0.00						DMP	ND LT	0.310 0.170		Ř
	0.00						DNBP	LT	0,061		
	0.00						DNOP	LT	0.190		
							-				

--- .

āĊ	Spike			\$ample	Analysis	Method	Test	Meas.			Internal
Type	Amount	Lab	Lot			Code			Value	Units St	tandard Code
••••											
QCMB	0.00	ES	LIXI	2	02-dec-1991	I M18	ENDRN	NID	0 (50	LICC	•
-0.10	0.00		****	•	JE GEO 1771	Livia	ENDRNA	NED NED	0.450 0.530		R R
	0.00						ENDRNK		0.530		Ř
	0.00						ESFS04	ND	0.620		R
	0.00						FANT FLRENE	LT LT	0.068		
	0.00						GCLDAN	ND	0.033 0.330		R
	0.00						HCBD	LT	0.230		•
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE 1CDPYR	ND LT	0.330 0.290		Ř
	0.00						ISOPHR	LT	0.033		
	0.00						LIN	ND	0.270		R
	0.00						MEC6H5		0.200		S
	0.00						MEXCLR NAP	ND Lt	0.330		Ř
	0.00						NB	ĹŤ	0.037 0.045		
	0.00						NNDMEA		0.140		R
	0.00						NNDNPA	LT	0.200		
	0.00						NNDPA PC8016	LT ND	0.190		_
	0.00						PC8221	ND	1.400		R R
	0.00						PCB232	ND	1.400		Ř
	0.00						PCB242	ND	1.400		R
	0.00						PC8248 PC8254	ND ND	2.000		R
	0.00						PC8260	ND	2.300 2.600		R R
	0.00						PCP	LT	1.300		^
	0.00						PHANTR	LŤ	0.033		
	0.00						PHENOL	LT	0.110		_
	0.00						PPDDD PPDDE	ND ND	0.270 0.310		R R
	0.00						PPDDT	ND	0.310		R
	0.00						PYR	LT	0.033		
	0.00						TXPHEN	ND	2.600		R
	0.00						UNK652 UNK670		0.500 0.300		S S
	0.00		WXO	1	28- Jan-1992		124TCB	LT	0.040		-
	0.00						12DCLB	LT	0.110		
	0.00					-	12DPH 13DCLB	ND LT	0.140		R
	0.00				-		14DCLB	LT	0.130 0.098		
	0.00						245TCP	LT	0.100		
	0.00		•	-			246TCP	LT	0.170		
	0.00 0.00							LŢ	0.180		
	0.00						24DMPN 24DMP	LT LT	0.690 1.200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085	UGG	
	0.00 0.00						2CLP	LT	0.060		
	0.00						2CNAP 2MNAP	LT LT	0.036 0.049		
	0.00						2MP	ĹŤ	0.029		
	0.00						2NANIL	LT	0.062		
	0.00						2NP	LT	0.140		
	0.00						330CBD 3NANIL	LT LT	6.300 0.450		
	0.00						46DN2C	ĹŤ	0.550		
	0.00						4BRPPE	LT	0.033	UGG	
	0.00						4CANIL 4CL3C	LT	0.810		
	0.00						4CLPPE	LT LT	0.095 0.033		
	0.00						4MP	LT	0.240		
	0.00						4NANTE	LT	0.410	UGG	
	0.00						4NP	LT	1.400		_
	0.00						ABHÇ	ND	0.270	UGG	R

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	FS	WX0	1	28- jan- 1992	LW18	ACLDAN	ND	0.330	uee	R
	0.00			•	,	211.10	AENSLF	ND	0.620		Ř
	0.00						ALDRN	ND	0.330		Ŕ
	0.00						ANAPNE	LT	0.036	UGG	
	0.00						ANAPYL	LT	0.033		
	0.00						ANTRO	LT	0.033		
	0.00						B2CEXM B2CIPE	LT LT	0.059		
	0.00						B2CLEE	LT	0.200 0.033		
	0.00						BZEHP	LT	0.620		
	0.00						BAANTR	LT	0.170		
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT	LT	0.210		_
	0.00 0.00						BBHC	ND LT	0.270		R
	0.00						BBZP Benslf	MD	0.170 0.620		R
	0.00						BENZID	ND	0.850		Ř
	0.00						BENZOA	ND	6.100		Ř
	0.00						BGHIPY	LT	0.250		
	0.00						BKFANT	LT	0.066		
	0.00						BZALC	LT	0.190		
	0.00						CHRY	LT	0.120		
	0.00						CL6BZ CL6CP	LT LT	0.033 6.200		
	0.00						CLOET	ĹΤ	0.150		
	0.00						DBAHA	LT	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR	LT	0.035		
	0.00						DEP	LT	0.240		_
	0.00						DLDRN DMP	ND LT	0.310 0.170		R
	0.00						DNBP	LT	0.061		
	0.00						DNOP	ĹŤ	0.190		
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA	ND	0.530		R
	0.00						ENDRNK	ND	0.530		Ŗ
	0.00						ESFS04	ND	0.620		R
	0.00						FANT FLRENE	LT LT	0.068 0.033		
	0.00					_	GCLDAN	MD	0.330		R
	0.00					•	HCBD	LT	0.230		
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE	ND	0.330		R
	0.00 0.00						ICOPYR	LT LT	0.290		
	0.00						ISOPHR LIN	ND	0.033 0.270	UGG	R
	0.00						MEXCLR	ND	0.330		Ř
	0.00						NAP	LT	0.037		"
	0.00						N8	LT	0.045		
	0.00						NNDMEA	ND	0.140		R
	0.00						NNDNPA	LT	0.200		
	0.00						NNDPA PCB016	LT ND	0.190 1.400		R
	0.00						PCB221	ND	1.400		Ř
	0.00						PCB232	ND	1.400		Ř
	0.00						PCB242	ND	1.400	UGG	R
	0.00						PCB248	ND	2.000		R
	0.00						PCB254	ND ND	2.300		R
	0.00						PCB260 PCP	ND LT	2.600 1.300		R
	0.00						PHANTR	LT	0.033		
	0.00						PHENOL	LT	0.110		
	0.00						PPDDD	ND	0.270		R
	0.00						PPDDE	ND	0.310	UGG	R
	0.00						PPDDT	ND	0.310		R
	0.00						PYR	LŤ	0.033	UGG	

	QC Type	Spike Amount				Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
N.o.	QCM8	0.00	ES	uxo	1	28- jan-1992	LN18	TXPHEN	MD	2.600	ugg	Ř
		0.00						UNK649		0.500		Š
		0.00		WXP		31-jan-1992		124TCB	LT	0.040		
		0.00 0.00						12DCLB 12DPH	LT Ned	0.110		b
		0.00						12EPCH	HU.	0.140 0.400		R S
		0.00						130CLB	LT	0.130		•
		0.00						14DCLB	LT	0.098		
		0.00						245TCP 246TCP	LT LT	0.100 0.170		
		0.00						24DCLP	ĹŤ	0.180		
		0.00						24DMPN	LT	0.690	UGG	
		0.00						24DNP	LT	1.200		
		0.00 0.00						24DNT 26DNT	LT LT	0.140 0.085		
		0.00						2CLP	LT	0.060		
		0.00						2CNAP	LT	0.036		
		0.00						ZMNAP	LT	0.049		
		0.00 0.00						2MP 2MANIL	LT LT	0.029		
		0.00						2NP	LT	0.062		
		0.00						33DCBD	LŤ	6.300		
		0.00						3NANIL	LT	0.450		
		0.00 0.00						46DN2C 48RPPE	LT LT	0.550 0.033		
		0.00						4CANIL	LT	0.810		
		0.00						4CL3C	LT	0.095		
		0.00						4CLPPE	LT	0.033		•
		0.00						4MP 4MANIL	LT LT	0.240 0.410		
		0.00						4NP	LT	1.400		
State State State		0.00						ABHC	ND	0.270		R
and the second		0.00						ACLDAN	ND	0.330		R
N.C.2		0.00						AENSLF	ND	0.620		R
		0.00						ALDRN Anapne	MD LT	0.330 0.036		R
		0.00						ANAPYL	LŤ	0.033		
		0.00						ANTRO	LT	0.033		
		0.00 0.00						B2CEXM B2CIPE	LT LT	0.059		
		0.00						B2CLEE	ĹΤ	0.200 0.033		
		0.00						B2EHP	LT	0.620		
		0.00						BAANTR	LT	0.170		
		0.00			:			BAPYR	LT	0.250		
		0.00		-				BBFANT BBHC	LT ND	0.210 0.270		R
		0.00						88ZP	LT	0.170		•
		0.00						BENSLF	ND	0.620	UGG	R
		0.00 0.00						BENZID	MD	0.850		R
		0.00						BENZOA BGHIPY	ND LT	6.100 0.250		R
		0.00						BKFANT	ĹŤ	0.066		
		0.00						BZALC	LT	0.190	UGG	
		0.00						CHRY	LT	0.120		
		0.00 0.00						CL6BZ CL6CP	LT LT	0.033 6.200		
		0.00						CLSET	LT	0.150		
		0.00						DBAHA	ŁT	0.210	UGG	
		0.00						DSHC	ND	0.270		R
		0.00 0.00						DBZFUR DEP	LT LT	0.035 0.240		
		0.00						DLDRN	NC NC	0.240		R
		0.00						DMP	์เา	0.170		•
		0.00						DNBP	LT	0.061	UGG	
		0.00						DNOP	LT	0.190		
		5.00						ENDRN	ND	0.450	UGE	R
Sept. 4												

QC Type					Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal St andard Code
			•••								
QCM8	0.00	ES	WXP	1	31-jan-1992	LM18	ENDRNA	ND.	0.530	LIGG	R
	0.00				-		ENDRNK		0.530		Ř
	0.00						ESFS04	ND	0.620		R
	0.00						FANT	LT	0.068		
	0.00						FLRENE	LT ND	0.033 0.330		R
	0.00						HCBD	ĹŤ	0.230		•
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE		0.330		R
	0.00						I COPYR I SOPHR	LT LT	0.290 0.033		
	0.00						LIN	ND	0.270		R
	0.00						MEXCLR	ND	0,330		Ř
	0.00						NAP	LT	0.037		
	0.00						NB NB	LŤ	0.045		_
	0.00						NNDMEA	ND LT	0.140 0.200		R
	0.00						NNDPA	LT	0.190		
	0.00						PCB016	ND	1.400		R
	0.00						PC8221	ND	1.400	UGG	R
	0.00						PCB232	ND	1.400		R
	0.00						PCB242 PCB248	ND ND	1.400 2.000		R
	0.00						PCB254	ND ND	2.300		R R
	0.00						PCB260		2.600		R
	0.00						PCP		1.300		
	0.00						PHANTR		0.033		
	0.00 0.00						PHENOL	LT	0.110		_
	0.00						PPDDD PPDDE	ND ND	0.270 0.310		R
	0.00						PPDDT	ND	0.310		R R
	0.00						PYR	LT	0.033		•
	0.00						TXPHEN	ND	2.600		R
	0.00				54 54 4000		UNK649		0.500		S
	0.00		WXT		24-feb-1992		124TCB	LT	0.040		
	0.00						120CLB 120PH	LT ND	0.110 0.140		R
	0.00						13DCLB	ίī	0.130		•
	0.00						14DCLB	LT	0.098		
	0.00						245TCP	LT	0.100		
	0.00 0.00				•		246TCP	LT	0.170		
	0.00						24DCLP 24DMPN	LT LT	0.180 0.690		
	0.00		•	-			24DNP	ĹΪ	1.200		
	0.00			•			24DNT	ĻŤ	0.140		
	0.00		•				26DNT	LT	0.085	UGG	
	0.00						2CLP	LT	0.060		
	0.00						2CNAP 2MNAP	LT LT	0.036 0.049		
	0.00						2MRAP	LT	0.049		
	0.00						2NAH1L	LT	0.062		
	0.00						2NP	ĹŤ	0.140	UGG	
	0.00						330CBD	LT	6.300		
	0.00 0.00						3NANTL	LT	0.450		
	0.00						460N2C 4BRPPE	LT LT	0.550 0.033		
	0.00						4CAN1L	LT	0.810		
	0.00						4CL3C	ĽŤ	0.095		
	0.00						4CLPPE	LT	0.033	UGG	
	0.00						4MP	LT	0.240		
	0.00						4NANIL 4NP	LT	0.410		
	0.00						ABHC	LT ND	1.400 0.270		R
	0.00						ACLDAN	ND	0.330		R
	0.00						AEHSLF	ND	0.620		Ř
	0.00						ALDRN	ND	0.330	UGG	R

QC	Spike			Sample	Analysis	Method	Test	Meas.			Internal
Type	Amount	Lab	Lot	Number		Code		Boolean	Value	Units	Standard Code

				_	-						
QCMB		E2	WXT	1	24-feb-1992	LM18			0.036		
	0.00 0.00						ANAPYL ANTRC	LT LT	0.033 0.033		
	0.00						BZCEXM		0.059		
	0.00						BZCIPE		0.200		
	0.00						B2CLEE		0.033		
	0.00						82EHP	LT	0.620		
	0.00						BAANTR		0.170		
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT		0.210		_
	0.00						BBHC BBZP	ND Lt	0.270 0.170		R
	0.00						BENSLF		0.470		R .
	0.00						SENZID	NE	0.850		R
	0.00						BENZOA		6.100		Ř
	0.00						BGHIPY		0.250		
	0.00						BKFANT	LT	0.066	UGG	
	0.00						BZALC	ĻT	0.190		
	0.00						CHRY	LT	0.120		
	0.00						CL68Z	LT	0.033		
	0.00						CL6CP CL6ET	LT LT	6.200 0.150		
	0.00						DBAHA	1 T	0.750		
	0.00						DBHC	LT ND	0.270		R
	0.00						DBZFUR		0.035		N.
	0.00						DEP	LT	0.240		
	0.00						DLDRN	ND	0.310	UGG	R
	0.00						DMP	LT	0.170		
	0.00						DNBP	LT	0.061		
	0.00 0.00						DNOP		0.190		_
	0.00						ENDRN Endrna	ND ND	0.450 0.530		R R
	0.00						ENDRNK		0.530		R R
	0.00						ESFS04		0.620		Ř
	0.00						FANT	LT	0.068		
	0.00						FLRENE	LT	0.033	UGG	
	0.00						GCLDAN		0.330		R
	0.00						HCBD	LŤ	0.230		_
	0.00					,	HPCL	MD	0.130		R
	0.00						HPCLE ICDPYR	ND LT	0.330 0.290		R
	0.00						SOPHR	LT	0.033		
	0.00						LIN	ND	0.270		R
	0.00						MEXCLR		0.330		Ř
	0.00							LT	0.037		
	0.00			•			NB	LT	0.045		
	0.00						NNDMEA		0.140		R
	0.00						NNDNPA		0.200		
	0.00						NNDPA PCB016	LT	0,190 1,400		•
	0.00						PC8221	ND ND	1.400		R R
	0.00						PCB232	ND	1.400		R R
	0.00						PCB242		1.400		Ř
	0.00						PC8248	ND	2.000		Ř
	0.00						PCB254		2.300		Ř
	0.00						PCB260		2.600		R
	0.00						PCP	LT	1.300		
	0.00						PHANTR		0.033		
	0.00						PHENOL	LT	0.110		
	0.00						PPODD PPODE	ND ND	0.270 0.310		R
	0.00						PPDDT	NC NC	0.310		R R
	0.00						PYR	LT	0.033		R
	0.00						TXPHEN		2.600		R
	0.00						UNK650		0.400	UGG	Š
	0.00		WXU		26-feb-1992		124108	LT	0.040		

ing week

qc Type	Spike Amount	Lab	Lat	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
										**	
QCMB	0.00	ES	ΨXÜ	1	26-feb-1992	LM18	12DCLB	LT	0.110		_
	0.00						12DPH 12EPCH	ND	0.140 0.400		R S
	0.00						13DCLB	LT	0.130		•
	0.00						14DCLB	LT	0.098		
	0.00						245TCP 246TCP	LT LT	0.100 0.170		
	0.00						24DCLP	LŤ	0.180		
	0.00						24DMPN	LT	0.690		
	0.00						24DNP 24DNT	LT LT	1.200 0.140		
	0.00						26DNT	LT	0.085		
	0.00						2CLP 2CNAP	LT	0.060		
	0.00						2MNAP	LT LT	0.036 0.049		
	0.00						2MP	LT	0.029	UGG	
	0.00						2NANIL 2NP	LT LT	0.062 0.140	-	
	0.00						330CB0	ίτ	6.300		
	0.00						3NAN1L	LT	0.450		
	0.00						46DN2C 48RPPE	LT LT	0.550 0.033		
	0.00						4CANIL	LT	0.810		
	0.00						4CL3C	LT	0.095		
	0,00						4CLPPE	LT LT	0.033 0.240		
	0.00						4NANIL	ĻŤ	0.410		
	0.00 0.00						4NP	LT	1.400		_
	0.00						ABHC ACLDAN	ND ND	0.270 0.330		R R
	0.00						AENSLF	MD	0.620		Ř
	0.00						ALDRH	ND	0.330		R
	0.00 0.00						ANAPHE	LT LT	0,036 0.033		
	0.00						ANTRO	ĹŤ	0.033		
	0.00						BZCEXM	LT	0.059		
	0.00						B2CIPE B2CLEE	LT LT	0.200 0.033		
	0.00						B2EHP	LŤ	0.620	UGG	
	0.00 0.00						BAANTR	LT	0.170		
	0.00				•		BAPYR BBFANT	LT LT	0.250 0.210	UGG	
	0.00						BBHC	ND	0.270	UGG	*
	0.00 0.00		·				BBZP	LT	0.170		_
	0.00						BENSLF BENZID	ND ND	0.620 0.850		R R
	0.00						BENZOA	ND	6.100		R
	0.00						BGH1PY BKFANT	LT LT	0.250		
	0.00						BZALC	LT	0.066 0.190		
	0.00						CHRY	LT	0.120	UGG	
	0.00						CL6BZ CL6CP	LT LT	0.033 6.200		
	0.00						CLOCF	LT	0.150		
	0.00						DBAHA	LT	0_210		
	0.00						DBHC DBZFUR	NID Lt	0.270 0.035		R
	0.00						DEP	LT	0.240		
	0.00						DLDRN	MD	0.310	UGG	R
	0.00						DMP DNBP	LT LT	0.170 0.061		
	0.00						DNOP	ĹŤ	0.190		
	0.00 0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA ENDRNK	ND ND	0.530 0.530		R R
	0.00						ESFS04	ЖД	0.620		Ř

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Kame		Value	Units	Internal Standard Code
QCMB	0.00	FS	UVII	1	26-feb-1992	1 1 1 1 1	FANT	LT	0.068	HCC	
-010	0.00	LJ	MAD	•	LU 160 177E	LMID	FLRENE	LT	0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00						HC8D	LT	0.230		•
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE	ND	0.330		Ř
	0.00						1COPYR		0.290		
	0.00						ISOPHR		0.033		
	0.00						LIN	ND	0.270		R
	0.00						MEXCLR		0.330		R
	0.00						NAP NB	LT LT	0.037 0.045		
	0.00						NNDMEA		0.140		R
	0.00						NNDNPA		0.200		•
	0.00						NNDPA	ĹŤ	0.190		
	0.00						PCB016	_	1.400		R
	0.00						PCB221	ND	1.400		R
	0.00						PCB232	ND	1.400		R
	0.00						PCB242	MD	1.400		R
	0.00						PCB248		2.000		R
	0.00						PCB254	MD	2.300		R
	0.00						PC8260	MD	2.600		R
	0.00						PCP PHANTR	LT LT	1.300 0.033		
	0.00						PHENOL	LT	0.033		
	0.00						PPDDD	ND	0.270		R
	0.00						PPDDE	ND	0.310		Ř
	0.00						PPDDT		0.310		Ř
	0.00						PYR	LT	0.033	UGG	
	0.00						TXPHEN	ND	2.600		R
	0.00						UNK650		0.800		Ş
	0.00		LIVV				UNK660		0.400		\$
	0.00		WXX				124TC8	LT	0.040		
	0.00						120CLB 120PH	LT ND	0.110 0.140		R
	0.00						130CL8	LT	0.130		
	0.00						14DCLB	ĹŤ	0.098		
	0.00						245TCP	LŤ	0.100		
	0,00						246TCP		0.170	UGG	
	0,00						24DCLP	LŤ	0.180	UGG	
	0.00						24DMPN	LT	0.690		
	0.00						240NP	LŤ	1.200		
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085		
	0.00		-	·			2CHAP	LT LT	0.060 0.036		
	0.00						2MNAP	เรี	0.049		
	0.00						2MP	ĹΤ	0.029		
	0.00						ZNANIL	ĹŤ	0.062		
	0.00						2NP	LT	0.140		
	0.00						33DCBD	ĻT	6.300	UGG	
	0.00						3NANIL	LT	0.450		
	0.00						46DN2C	ĻT	0.550		
	0.00						4BRPPE	LT	0-033		
	0.00						4CANIL	LT	0.810		
	0.00						4CL3C 4CLPPE	LT	0.095		
	0.00						4CLPYE	LT LT	0.033 0.240		
	0.00						4MANIL	LT	0.240		
	0.00						4NP	ĹŤ	1.400		
	0.00						ABHC	ND	0.270		R
	0.00						ACLDAN	ND	0.330		Ř
	0.00						AENSLF	ND	0.620	UGG	Ř
	0.00						ALDRN	ND	0.330		R
	0.00						ANAPNE	LT	0.036		
	0.00						ANAPYL	LT	0.033	UGG	

											•
oc.	Spike				Analysis			Meas.			Internal
Type	Amount	Lab	Lot	Number	Date	Code	Name	Boolean	Value	Units	Standard Code
				_							
QCMB	0.00	ĘS	WXX	1	26-feb-1992	LM18	ANTRO		0.033		
	0.00						B2CEXM B2CIPE		0.059		
	0.00						BSCTEE	LT LT	0.200 0.033		
	0.00						B2EHP		0.620		
	0.00						BAANTR	ĹŤ	0.170		
	0.00						BAPYR	LT	0.250		
	0.00						BBFANT		0.210		
	0.00						BBKC	MD	0.270		R
	0.00						BBZP	LT	0.170		_
	0.00						BENZID	ND ND	0.620		R R
	0.00						BENZOA		0.850 6.100		R R
	0.00						BGHIPY		0.250		•
	0.00						BKFANT		0.066		
	0.00						BZALC	LT	0,190		
	0.00						CHRY	LT	0.120	UGG	
	0.00						CL682	LT	0.033		
	0.00						CLOCP	LT	6.200		
-an -a.,	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	LT	0.210		_
	0.00						DBHC D82FUR	ND LT	0.270 0.035		R
	0.00						DEP	LT	0.240		
	0.00						DLDRN	ND	0.310		R
	0.00						DHP	LŤ	0.170		
	0.00						DNBP	LT	0.061		
	0.00						DNOP	LT	0.190		
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA	ND	0.530		R
	0.00						ENDRNK ESFS04	ND ND	0.530 0.620		R R
	0.00						FANT	LT	0.068		ĸ
	0.00						FLRENE	LT	0.033		
	0.00						GCLDAN	ND	0.330		R
	0.00						HCBD	LT	0.230		
	0.00						HPCL	ND	0.130	UGG	R
	0.00						HPCLE	ND	0,330		R
	0.00 0.00						ICOPYR		0.290		
	0.00						I SOPHR LIN	LT ND	0.033 0.270		
	0.00						MEXCLR	ND	0.270		R R
	0.00						NAP	LT	0.037		^
	0.00						NB	LT	0.045		
	0.00						NNDMEA	ND	0.140	UGG	R
	0.00						NNDNPA	LT	0.200		
	0.00						NNDPA	ĮТ	0.190		
	0.00 0.00						PCB016	ND ND	1.400		R
	0.00						PC8221 PC8232	ND ND	1.400 1.400		R
	0.00						PCB242	ND	1.400		R R
	0.00						PCB248	ND	2.000		R
	0.00						PC8254	ND	2.300		2
	0.00						PC8260	ND	2.600		Ř
	0.00						PCP	LT	1.300		
	0.00						PHANTR	LT	0.033	UGG	
	0.00						PHENOL	LT	0.110		
	0.00 0.00						PPDDD	ND	0.270		R
	0.00						PPDDE PPDDT	ND ND	0.310		Ř
	0.00						PYR	LT	0.310 0.033		R
	0.00						TXPHEN	ND -	2.600		R
	0.00						UNK650		0.500		ŝ
	0.00		WXZ		11-mar-1992		124TCB	LT.	0.040		-
	0.00						12DCLB	LT	0.110		
	0.00						120PH	MD	0.140	UGG	R

- --- - - -

ec.	Spike			Samole	Analysis	Mathad	Toot	Mass			I1
	Amount			Number	Date	Code			Value	Units 1	Internal Standard Code

				_							
QCMB	0.00	E\$	WXZ	1	11-mar-1992	LM18			0.200		S
	0.00						13DCLB 14DCLB		0.130 0.098		
	0.00						245TCP		0.100		
	0.00						246TCP		0.170		
	0.00						24DCLP		0.180		
	0.00 0.00						24DMPN 24DNP		0.690		
	0.00						24DNT		1.200 0.140		
	0.00						26DNT	LT	0.085		
	0.00						2CLP	LT	0.060		
	0.00						2CNAP 2MNAP	LT LT	0.036		
	0.00						2MP	LŤ	0.049 0.029		
	0.00						ZNANIL	LŤ	0.062		
	0.00						2NP	LT	0.140		
	0.00						33DCBD		6.300		
	0.00						3NANIL 46DN2C		0.450 0.550		
	0.00						48RPPE		0.033		
	0.00						4CANIL	LT	0.810		
	0.00						4CL3C		0.095		
	0.00						4CLPPE	LT LT	0.033		
	0.00						4MP 4MANIL		0.240 0.410		
	0.00						4NP	LT	1.400		
	0.00						ABHC	NĎ	0.270	UGG	R
	0.00						ACLDAN	NACI NACI	0.330		R
	0.00						AENSLF ALDRN		0.620 0.330		R R
	0.00						ANAPNE	-	0.036		^
	0.00						ANAPYL	LT	0.033	UGG	
	0.00						ANTRO		0.033		
	0.00						82CEXM 82CIPE		0.059 0.200		
	0.00						BECLEE	ĹŤ	0.233		
	0.00						B2EHP		0.620		
	0.00						BAANTR		0.170		
	0.00 0.00						BAPYR BBFANT		0.250		
	0.00				-	•	BBHC	ND	0.210 0.270		R
	0.00						BBZP		0.170		•
	0.00						BENSLF		0.620		R
	0.00 0.00						BENZID BENZOA	ND ND	0.850		R
	0.00						BGHIPY	LT	6.100 0.250		R
	0.00						BKFANT	LT	0.066		
	0.00						BZALC	LT	0.190		
	0.00						CHRY	ĻŤ	0.120		
	0.00						CL6BZ CL6CP	LT LT	0.033 6.200		
	0.00						CLEET	LT	0.150		
	0.00						DBAHA	LT	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR	£T	0.035		•
	0.00						DEP Dldrn	LT ND	0.240 0.310		R
	0.00						DMP	LT	0.170		-
	0.00						DNBP	LT	0.061	UGG	
	0.00						DNOP	LT	0.190		_
	0.00						ENDRNA ENDRNA	ND ND	0.450 0.530		. R
	0.00						ENDRNK	ND	0.530		R R
	0.00						ESFS04	ND	0.620		Ř
	0.00						FANT	LT	0.068	UGG	
	0.00						FLRENE	LT	0.033	UGG	

QC	Spike			Sample	Analysis	Method	Test	Meas.			Internal
Type	Amount	Lab	Lot	Number	Date	Code	Kame	Boolean	Value	Units	Standard Code
QCM8	0.00	ES	WXZ	1	11-mar-1992	1 X 18	GCLDAN	ND	0.330	ucc	R
	0.00						HCBD	LT	0,230		7
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE ICDPYR		0.330 0.290		R
	0.00						ISOPHR		0.033		
	0.00						LIN	ND	0.270		R
	0.00						MEXCLR	ND	0.330		R
	0.00						NAP NB	LT LT	0.037		
	0.00						NNDHEA		0.045 0.140		R
	0.00						NNDNPA		0.200		
	0.00						NNDPA		0.190		
	0.00						PCB016 PCB221		1.400		R
	0.00						PCB232		1.400 1.400		R R
	0.00						PC8242		1,400		Ř
	0.00						PCB248		2.000		R
	0.00						PC8254 PCB260		2.300		R
	0.00						PCP	ND Lt	1.300		R
	0.00						PHANTR		0.033		
	0.00						PHENOL		0.110		
	0.00						PPDDDE	ND ND	0.270 0.310		R
	0.00						PPDDT		0.310		R R
	0.00						PYR	LT	0.033		~
	0.00						TXPHEN		2.600		R
	0.00 0.00		WYH	8	06-nov-1991	J801	UNK651 HG	LT	0.500 0.050		S
	0.00		UYP	ĭ	30-nov-1991	1001	HG	LT	0.050		
	0.00		WYQ	_	03-dec-1991		HG	ĹŤ	0.050		
	0.00 0.00		WYX		12-feb-1992		HG	LT	0.050		
	0.00		WYY WZA		24-feb-1992 22-oct-1991	9910	HG Al	LT LT	0.050 141.000		
	0.00			-		00.0	BA	ĹŤ	5.000		
	0.00						BE	LT	5.000		
	0.00						CA CC	LT	500.000		
	0.00					•	CO	LT LT	4.010 25.000		
	0.00						CR	ĹŤ	6.020		
	0.00						œ	LT	8.090		
	0.00 0.00						FE	LŢ	38,800		
	0.00			· · · · ·			K Mg	LT LT	375.000 500.000		
	0.00						MN	LT	2.750		
	0.00 0.00						NA	LT	500.000		
	0.00						NI 82	LT LT	34.300 38.000		
	0.00						v	LT	11,000		•
	0.00			_			ZN	LT	21,100		
	0.00		WZQ	1	28- jan-1992		AG	LT	4.600		
	0.00						AL BA	LT LT	141.000 5.000		
	0.00						BE	ĹŤ	5.000		
	0.00						CA	LT	500.000	UGL	
	0.00						ED	LT	4.010		
	0.00						CO CR	LT LT	25.000 6.020		
	0.00						ເ ນ	LT	8.090		
	0.00						FE	LT	38.800	UGL	
	0.00 0.00						K	LŤ	375.000		
	0.00						MG MN	LT LT	500.000 2.750		
	0.00						NA.	LT	500.000	_	
	0.00						M1	LT	34,300		

OCMS O.00 ES WZQ 1 28-jan-1992 SS10 P8		QÇ Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Mcas. Boolean	Value	Units	Internal Standard Cod
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		осна	0.00	F.	1176		20.: 4002				40		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		QUMB		E2	MCA	•	50- Jan- 1335	2210	-				
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00													
0.00 WZR 04-feb-1992 AG LT 4.600 UBL W 0.00													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					WZR		04-feb-1992						υ
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													•
0.00 BE			0.00										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00									-	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									CA	LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									CD	LT	4_010	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									CO	LT	25.000	UGL	
0.00													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00													
0.00													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													u
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			_										•
0.00			0.00										
0.00			-								_		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00		WZŞ		12-feb-1992		_				
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									BA	LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	•								BE	LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									CA	ĻT	500.000	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	L.												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00	••												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			_										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00								•					
0.00			0.00				•						
O.00 VZU 24-feb-1992 AL			0.00										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00		•								
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00		¥ZU		24-feb-1992		AL,	LŢ	141.000	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					-	- 1			BA	LT	5.000	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										LT			
0.00 CC													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 FE													
0.00 K LT 375.000 UGL 0.00 NG LT 500.000 UGL 0.00 NN LT 2.750 UGL 0.00 NA LT 500.000 UGL 0.00 NI LT 34.300 UGL 0.00 S8 LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 V LT 11.000 UGL 0.00 WZV 04-mar-1992 AG LT 4.600 UGL W 0.00 NZV 04-mar-1992 AG LT 4.600 UGL 0.00 BA LT 5.000 UGL 0.00 BA LT 5.000 UGL 0.00 BA LT 5.000 UGL 0.00 GA LT 5.000 UGL													
0.00													
0.00													
0.00 NA LT 500.000 UGL 0.00 NI LT 34.300 UGL 0.00 S8 LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 ZN LT 21.100 UGL 0.00 WZV 04-mar-1992 AG LT 4.600 UGL U 0.00 LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													
0.00 NI LT 34.300 UGL 0.00 S8 LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 ZN LT 21.100 UGL 0.00 WZV 04-mar-1992 AG LT 4.600 UGL U 0.00 AL LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													
0.00 \$8 LT 38,000 UGL 0.00 V LT 11.000 UGL 0.00 ZM LT 21.100 UGL 0.00 WZV 04-mar-1992 AG LT 4.600 UGL U 0.00 AL LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													
0.00 V LT 11.000 UGL 0.00 ZN LT 21.100 UGL 0.00 WZV 04-mar-1992 AG LT 4.600 UGL U 0.00 AL LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL												-	
0.00 ZN LT 21.100 UGL 0.00 WZV 04-mar-1992 AG LT 4.600 UGL W 0.00 AL LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													
0.00 WZV 04-mar-1992 AG LT 4.600 UGL W 0.00 AL LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													
0.00 AL LT 141.000 UGL 0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL					WZV		04-mar-1992						u
0.00 BA LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													-
0.00 BE LT 5.000 UGL 0.00 CA LT 500.000 UGL													
0.00 CA LT 500,000 UGL													
A AA													
A** F1 A*** A**			0.00						Ф	LT			

-- ----

QC Type	Spike Amount			Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	UZV	1	04-mar-1992	SS10	CO	LT	25.000		
	0.00						ᅄ	LT LT	6.020 8.090		
	0.00						FE	LT	38.800		
	0.00						K	LŤ	375.000	UGL	
	0.00						MG MH	LŢ	500.000		
	0.00						NA NA	LT LT	2.750 500.000		
	0.00						NI	LŤ	34.300		
	0.00						SB	LŢ	38.000		
	0.00						TL V	LT LT	81.400 11.000		u
	0.00						ZN	ĹΤ	21.100		
	0.00		WZY		12-mar-1992		AG	LT	4.600		W
	0.00						AL BA	LT LT	141.000 5.000		
	0.00						BE	LT	5.000		
	0.00						CA	LT	500.000		
	0.00						œ ~	LT	4.010		
	0.00						CC CR	LT LT	25.000 6.020		
	0.00						œ.	LT	8.090	-	
	0.00						FE	LT	38.800		
	0.00						K Mg	LT LT	375.000 500.000		
	0.00						MN	LT	2.750		
	0.00						NA	LT	500.000	UGL	
	0.00						NI PB	LT	34.300 18.600		v
	0.00						SB	LT LT	38.000		•
	0.00			•			٧	LT	11.000	UGL	
	0.00		XCB	12	31-oct-1991	S801	ZN HG	LT LT	21.100 0.243		
	0.00		XCG	8	26-nov-1991	3601	XG	LT	0.243		
	0.00		XC1	6	05-dec-1991		HG	ĻT	0.243	UGL	
	0.00		XCQ XCR		30-jan-1992 06-feb-1992		HG HG	LT	0.243		
	0.00		XCS		14-feb-1992		HG	LT LT	0.243 0.243		
	0.00		XCT		20-feb-1992	•	HG	ĹŤ	0.243	-	
	0.00		XCX		09-mar-1992 13-mar-1992		HG	LT	0.243		
	0.00		XCZ		31-mar-1992		HG HG	ĻT LT	0.243 0.243		
	0.00			- 2	20-nov-1991	UN18	124TCE	3 LT	1.800	UGL	
	0.00						12DCLE		1.700		
	0.00			•			12DPH 12EPCH	, ND	2.000 3.000		· R S
	0.00						130CLE		1.700		•
	0.00						14DCLE		1.700		
	0.00						245TCF 246TCF		5.200 4.200		
	0.00						24DCL#		2.900		
	0.00						24DMPN	l LT	5.800	UGL	
	0.00 0.00						24DNP 24DNT	LT	21.000		
	0.00						26DNT	LT LT	4.500 0.790		
	0.00						2CLP	LT	0.990		
	0.00						2CNAP	LT	0.500		
	0.00						2MNAP 2MP	LT LT	1.700 3.900		
	0.00						2NAN IL		4.300		
	0.00						2NP	LT	3.700	UGL	
	0.00						330CBD 3NANTU	-	12.000		
	0.00						460N20		4.900 17.000		
	0.00						4BRPPE	LT	4.200	UGL	
	0.00						4CANIL	. LT	7.300	1101	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	F¢	YDF	2	20-nov-1991	1194.9	4CL3C	LT	/ 000		
45115	0.00		ADE.	-	20 1201 1771	OH IQ	4CLPPE	LT	4,000 5,100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP	LT	12,000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN	ND	5.100		R
	0.00						AENSLF	ND	9.200		R
	0.00						ALDRN ANAPNE	ND LT	4.700		R
	0.00						ANAPYL	ĹŤ	1.700 0.500		
	0.00						ANTRO	ĹŤ	0.500		
	0.00						B2CEXM	LT	1,500		
	0.00						BZCIPE	LT	5.300		
	0.00						B2CLEE	LT	1.900		
	0.00						82EHP	LT	4.800		
	0.00						BAANTR	LT	1.600		
	0.00						BAPYR B8FANT	lt Lt	4.700 5.400		
	0.00						BBHC	NED	4.000		R
	0.00						BBZP	LT	3.400		^
	0.00						BENSLF	ND	9.200		R
	0.00						BENZ1D	ND	10.000		Ř
	0.00						BENZOA	LŤ	13.000	UGL	
	0.00						8GHIPY	LT	6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY CL68Z	LT LT	2.400 1.600		
	0.00						CL6CP	LT	8.600		
	0.00						CL6ET	ĹŤ	1.500	_	
	0.00						DBAHA	LT	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LT	1.700		
	0.00						DEP	LT	2.000		_
	0.00						DLDRN DMP	ND	4.700		R
	0.00						DNBP	LT LT	1.500 3.700		
	0.00						DNOP	LT	15.000		
	0.00					_	ENDRN	ND	7.600		R
	0.00					•	ENDRNA	ND	8.000		R
	0.00						ENDRNK	ND	8.000		R
	0.00						ESFS04	ND	9.200		Ř
	0.00			•			FANT	LT	3.300		
	0.00			•			FLRENE	LT	3.700		_
	0.00						GCLDAN NCBD	ND LT	5.100		R
	0.00						KPCL	ND	3.400 2.000		R
	0.00						HPCLE	ND	5.000		R R
	0.00						ICDPYR	LT	8.600		•
	0.00						ISOPHR	LT	4.800		
	0.00						LIN	MD	4.000	UGL	R
	0.00						MEXCLR	ND	5.100		R
	0.00						NAP	LT	0.500		
	0.00 0.00						NB	LT	0.500		_
	0.00						NNDMEA NNDNPA	ND LT	2.000 4.400		R
	0.00						NNDPA	LT	3.000		
	0.00						PCB016	ND	21.000		R
	0.00						PCB221	NO	21.000		Ř
	0.00						PC8232	ND	21.000		Ř
	0.00						PC8242	MD	30.000		Ř
	0.00						PCB248	MD	30.000	UGL	Ř
	0.00						PCB254	ND	36.000		R
	0.00						PCB260	ND	36.000	UGL	R
	0.00						PCP	LT	18.000	UGL	

er er Galler

QCMS	7,	oc Type	Spike Amount	Lab	Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Code
0.00		QCMB	0.00	EŚ	XDE	2	20-nov-1991	UM18	PHANTS	1.7	0.500	HGI	
0.00 PPDDD ID						_							
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										MD			R
0.00 TXPHEN NO 36.000 UEL R													R
0.00 XDG										_			_
0.00 120CLB LT 1.700 UEL R 0.00 0.00 125PCR 2.000 UEL S 0.00 0.00 13DCLB LT 1.700 UEL S 0.00 0.00 14DCLB LT 1.700 UEL S 0.00 0.00 0.00 14DCLB LT 1.700 UEL S 0.00 0.00 0.00 0.24STEP LT 4.200 UEL S 0.00 0.00 0.00 0.24STEP LT 4.200 UEL S 0.00 0.00 0.00 0.00 0.24STEP LT 4.200 UEL S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.					YD:		10-004-1001						R
0.00 0.00 12DPH ND 2.000 UEL S 0.00 0.00 13DCLB LT 1.700 UEL 1.700					,,,,-		17-1004 1771						
0.00 0.00 135CLB LT 1.700 UEL \$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0													P
0.00 0.00 1.50CLS 1.T 1.700 USL 0.00 0.00 1.40CLS 1.T 1.700 USL 0.00 0.00 0.245TCP 1.T 4.200 USL 0.00 0.00 0.245TCP 1.T 4.200 USL 0.00 0.00 0.245TCP 1.T 5.200 USL 0.00 0.00 0.245TCP 1.T 5.200 USL 0.00 0.00 0.245TCP 1.T 5.200 USL 0.00 0.00 0.245TCP 1.T 5.200 USL 0.00 0.00 0.245TCP 1.T 4.500 USL 0.770 USL 0			0.00							•••			
0.00 0.00 0.461CP LT 4,200 UGL 0.00 0.00 0.240FP LT 5,200 UGL 0.00 0.00 0.240FP LT 5,200 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.										LT			·
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										LT	1.700	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 240NT LIT 21.000 UGL 0.00 240NT LIT 0.790 UGL 0.00 250NT LIT 0.790 UGL 0.00 260NT LIT 0.790 UGL 0.00 260NT LIT 0.790 UGL 0.00 260NT LIT 0.790 UGL 0.00 260NT LIT 0.790 UGL 0.00 260NT LIT 0.990 UGL 0.00 260NT LIT 0.990 UGL 0.00 UGL 0.													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 260H LT 0.790 U6L 0.00 2CLP LT 0.990 U6L 0.00 0.00 2CNAP LT 1.700 U6L 0.00 0.00 2NANTL LT 4.300 U6L 0.00 0.00 2NANTL LT 4.300 U6L 0.00 0.00 330CSD LT 12.000 U6L 0.00 0.00 330CSD LT 12.000 U6L 0.00 0.00 340ANTL LT 4.900 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 460NZC LT 17.000 U6L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.													
0.00							-						
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									2CLP				
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										_			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 460N2C 17 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 0.00 4CANIL LT 7.300 UGL 0.00 4CL3E LT 4.000 UGL 0.00 4CL3E LT 5.100 UGL 0.00 4CL9E LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 0.00 4MP LT 12.000 UGL 0.00 0.00 4MP LT 12.000 UGL 0.00 0.00 4MP LT 12.000 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.													
0.00									_				
0.00													
0.00 0.00 4CL3C L7 4.000 UGL 0.00 0.00 4APP LT 0.520 UGL 0.00 0.00 4ANNIL LT 5.200 UGL 0.00 0.00 4ANP LT 12.000 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.													
0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 12.000 UGL 0.00 4MP LT 12.000 UGL 0.00 0.00 4MP LT 12.000 UGL 0.00 0.00 4MP LT 12.000 UGL 0.00 0.00 ABHC ND 4.000 UGL R 0.00 0.00 ACLDAN ND 5.100 UGL R 0.00 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 AMAPNE LT 1.700 UGL 0.00 AMAPNE LT 1.700 UGL 0.00 AMAPNE LT 0.500 UGL 0.00 AMAPNE LT 0.500 UGL 0.00 AMAPNE LT 1.500 UGL 0.00 BECEMM LT 1.500 UGL 0.00 BECEME LT 1.500 UGL 0.00 BECEME LT 1.900 UGL 0.00 BECHE LT 1.900 UGL 0.00 BECHE LT 1.900 UGL 0.00 BERPH 110.000 UGL X 0.00 BAANTR LT 1.600 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAPPAR LT 4.700 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBPART LT 5.400 UGL 0.00 BBRANTR LT 1.600 UGL 0.00 BRANTR LT 1.600 UGL 0.00 BRANTR LT 1.600 UGL 0.00 BRANTR LT 1.000 UGL R 0.000 B									4CANIL	LT	7.300	UGL	
0.00													
0.00													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 ABHC ND 4.000 UEL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALORN ND 4.700 UGL R 0.00 ALORN ND 4.700 UGL R 0.00 ANAPRE LT 1.700 UGL R 0.00 ANAPRE LT 0.500 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 ANAPYL LT 1.500 UGL 0.00 BZCENM LT 1.500 UGL 0.00 BZCENM LT 1.500 UGL 0.00 BZCENM LT 1.500 UGL 0.00 BZCENM LT 1.500 UGL 0.00 BZCENM LT 1.500 UGL 0.00 BZCENM LT 1.600 UGL COUGL 0.00 BZCENM LT 1.600 UGL COUGL 0.00 BZCENM LT 1.600 UGL COUGL COUGL 0.00 BBAANTR LT 1.600 UGL COUGL 0.00 BBAANTR LT 5.400 UGL COUGL 0.00 BBFANT LT 5.400 UGL COUGL C													
C.00													•
0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 ANAPRE LT 1.700 UGL 0.00 ANAPRE LT 0.500 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 B2CLEE LT 1.500 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CLEE LT 1.600 UGL 0.00 B2CHP 110.000 UGL 0.00 BAANTR LT 5.400 UGL 0.00 BAFANT LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBHC ND 4.000 UGL R 0.00 BBHC ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 CLGET T 3.600 UGL 0.00 CLGET T 6.100 UGL 0.00 CLGET T 1.500 UGL 0.00 CLGET T 1.500 UGL 0.00 CLGET T 1.500 UGL 0.00 DBHA LT 6.500 UGL 0.00 DBHA LT 6.500 UGL			0.00										
O.00													
0.00 ANAPYL LT 0.500 UGL 0.00 ANTRC LT 0.500 UGL 0.00 B2CEM LT 1.500 UGL 0.00 B2CIPE LT 5.300 UGL 0.00 B2CIPE LT 1.900 UGL 0.00 B2CIPE LT 1.900 UGL 0.00 B2CIPE LT 1.600 UGL 0.00 B2CIPE LT 1.600 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAAYR LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBFANT LT 3.400 UGL 0.00 BBFSLF ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENSLF ND 10.000 UGL CR 0.00 BENSLF ND 10.000 UGL CR 0.00 BCRANT LT 0.870 UGL 0.00 BCRANT LT 0.870 UGL 0.00 CCRY LT 0.720 UGL 0.00 CCRY LT 2.400 UGL 0.00 CCRY LT 1.600 UGL 0.00 CCL6EZ LT 1.600 UGL 0.00 CCL6EZ LT 1.600 UGL 0.00 CCL6ET LT 1.500 UGL 0.00 CCL6ET LT 1.500 UGL 0.00 DBAHA LT 6.500 UGL 0.00 DBAHC ND 4.000 UGL R								•		ND	4.700	UGL	R
0.00 ANTRC LT 0.500 UGL 0.00 B2CEM LT 1.500 UGL 0.00 B2CIPE LT 5.300 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CHP 110.000 UGL X 0.00 BAANTR LT 1.600 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAANTR LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL R 0.00 BBHC ND 4.000 UGL R 0.00 BBNSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZD LT 3.400 UGL R 0.00 BENZD LT 3.400 UGL R 0.00 BENZD LT 3.400 UGL R 0.00 BENZD LT 3.400 UGL R 0.00 BENZD LT 3.400 UGL R 0.00 BENZD LT 3.400 UGL R 0.00 BENZD LT 13.000 UGL R 0.00 BENZD LT 13.000 UGL CLGE LT 0.870 UGL CLGE LT 0.720 UGL CLGE LT 0.720 UGL CLGE LT 1.600 UGL CLGE LT 1.700 UGL CLGE LT 1.700 UGL CLGE LT 1.700 UGL													
0.00 B2CEXM 1T 1.500 UGL 0.00 B2CIPE 1T 5.300 UGL 0.00 B2CIPE 1T 5.300 UGL 0.00 B2CIPE 1T 1.900 UGL 0.00 B2CIPE 1T 1.900 UGL 0.00 B2CIPE 1T 1.500 UGL 0.00 B2CIPE 1T 1.500 UGL 0.00 B2CIPE 1T 1.500 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBFANT LT 3.400 UGL 0.00 BENSLF ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENSLF LT 13.000 UGL 0.00 BCHIPY LT 6.100 UGL 0.00 BCHIPY LT 6.100 UGL 0.00 CCHEY LT 0.720 UGL 0.00 CCHEY LT 2.400 UGL 0.00 CCHEY LT 2.400 UGL 0.00 CCHEY LT 1.600 UGL 0.00 CCHEY LT 1.600 UGL 0.00 CCHEY LT 1.500 UGL 0.00 CCHEY LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL													
0.00 B2CIPE LT 5.300 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2EHP 110.000 UGL X 0.00 BAANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBHC MD 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZOA LT 33.400 UGL 0.00 BENZOA LT 13.000 UGL 0.00 BGHPY LT 6.100 UGL 0.00 BGHPY LT 6.100 UGL 0.00 BCALC LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6EZ LT 1.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL													
D.00 B2CLEE LT 1.900 UGL X													
0.00 BZEHP 110.000 UGL X 0.00 BAANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBHC ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENZCA LT 13.000 UGL 0.00 BENZCA LT 13.000 UGL 0.00 BGHPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL					-	**							
0.00 BAANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBHC ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENZCA LT 13.000 UGL 0.00 BENZCA LT 13.000 UGL 0.00 BGHPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL66P LT 1.600 UGL 0.00 CL66P LT 1.500 UGL 0.00 CL66F LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R			0.00										x
0.00 BAPYR LT 4.700 UGL 0.00 BBFANT LT 5.400 UGL 0.00 BBHC ND 4.000 UGL R 0.00 BBNSLF ND 9.200 UGL R 0.00 BENSLF ND 10.000 UGL R 0.00 BENZIO ND 10.000 UGL R 0.00 BENZIO LT 13.000 UGL 0.00 BGHPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL66P LT 8.600 UGL 0.00 CL66P LT 8.600 UGL 0.00 CL66F LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 1.700 UGL										LT			**
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									BAPYR		4.700	UGL	
0.00 BBZP LT 3.400 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGKIPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL6CP LT 1.500 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL										LŤ	5.400	UGL	
0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGHIPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.500 UGL 0.00 CL6ET LT 1.500 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL											4-000	UGL	R
0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGHIPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R											3.400	UGL	
0.00 BENZCA LT 13.000 UGL 0.00 BGHIPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL66P LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBANA LT 1.700 UGL 0.00 DBANA LT 1.700 UGL													
0.00 BGHTPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL66P LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBSFUR LT 1.700 UGL													ĸ
0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL66P LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL			0.00										
0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL											0.870	UGL	
0.00 CL68Z LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL													
0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL													
0.00 CL6ET LT 1.500 UGL 0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL													
0.00 DBANA LT 6.500 UGL 0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL													
0.00 DBHC ND 4.000 UGL R 0.00 DBZFUR LT 1.700 UGL													
0.00 DB2FUR LT 1.700 UGL													
													ĸ
0.00 DEP LT 2.000 UGL			0.00						DEP	ĹŤ			

- --

.

Same.

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Cod
QCMB	0.00	ES	XDG	2	19-nov-1991	IIM18	DLDRN	ND	4.700	Hel	R
40.10	0.00			-	15 1124 1551	Onto	DMP	LT	1.500		κ.
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15,000		
	0.00						ENDRN	MD	7.600	UGL	R
	0.00						ENDRNA		8.000		R
	0.00						ENDRNK		8.000		R
	0.00						ESFSO4 FANT	ND L.T	9.200		R
	0.00						FLRENE	LT	3.300 3.700		
	0.00						GCLDAN		5.100		R
	0.00						HCBD	LТ	3.400		•
	0.00						HPCL	ND	2.000	UGL	R
	0.00						KPCLE		5.000		R
	0.00						ICDPYR		8.600		
	0.00						ISOPHR	LT	4.800		_
	0.00						LIN	ND ND	4.000 5.100		R
	0.00						NAP	LT	0.500		R
	0.00						NB	ĹŤ	0.500		
	0.00						NNDMEA		2.000		R
	0.00						NNDNPA	LT	4.400		
	0.00						NNDPA		3.000		
	0.00						PCB016	ND	21.000		R
	0.00						PCB221	ND	21.000		R
	0.00						PCB232 PCB242	ND ND	21.000 30.000		R
	0.00						PC8248	ND	30.000		R R
	0.00						PC8254	ND	36.000		Ř
	0.00						PCB260	MD	36,000		Ř
	0.00						PCP	ĻT	18,000	UGL	
	0.00						PHANTR	LT	0.500		
	0.00						PHENOL	LT	9.200		
	0.00						PPOOD PPOOE	ND ND	4,000		R
	0.00						PPDDT	ND	4.700 9.200		R R
	0.00						PYR	ĹŤ	2.800	UGL	•
	0.00						TXPHEN	ND	36.000		R
	0.00					-	UNK633		10.000		\$
	0.00						UNK635		20.000		S
	0.00		VAU		20 1001		UNK636		20.000		S
	0.00		ХĎН		20-nov-1991		124TCB 12DCLB	LT	1.800		
	0.00			•	•		12DCLB	LT MD	1.700 2.000		B.
	0.00			• .			12EPCH	MU.	2.000		R e
	0.00						130CLB	LT	1.700		•
	0.00						14DCLB	ĹŤ	1.700		
	0.00						245TCP	LT	5.200	UGL	
	0.00						246TCP	LŢ	4.200		
	0.00						24DCLP	LT	2.900		
	0.00						24DMPN 24DMP	LT LT	5.800 21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						2CLP	LT	0.990		
	0.00						2CNAP	LT	0.500		
	0.00						2HHAP	LT	1.700	UGL	
	0.00						2MP	LT	3.900		
	0.00						ZNANIL	LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						33DCBD	LT	12.000		
	0.00						3NANIL 46DN2C	LT LT	4.900 17.000		
	0.00						48RPPE	LŤ	4.200		
	0.00						4CAN1L	ĹŤ	7.300		
	0.00						4CL3C	LT	4.000		

Salar.

QÇ Typo	Spike Amount			Sample	Analysis Date			Meas.		•.	Internal
17pe	MICCHIE			HURDER	Dete	Code	Name	ROOLEAN		Units	Standard Code
QCMB	0.00	ES	XDH	2	20-nov-1991	UN18	4CLPPE	LT	5,100	UGL	
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP	LT	12.000		_
	0.00						ABHC	ND	4-000		R
	0.00						ACLDAN AENSL F	ND ND	5.100 9.200		R R
	0.00						ALDRN	ND	4.700		Ř
	0.00						ANAPNE	ĹŤ	1,700		
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	LT	0.500		
	0.00						BZCEXM	LT LT	1.500 5.300	UGL	
	0.00						B2CLEE	LT	1,900		
	0.00						B2EHP		4.800		
	0.00						BAANTR	LT	1.600		
	0.00						BAPYR		4.700	UGL	
	0.00						BBFANT		5.400		_
	0.00						BBHC	ND	4.000		R
	0.00						B8ZP BENSLF		3.400 9.200		R
	0.00						BENZID	ND	10.000		R
	0.00						BENZOA		13.000		•
	0.00						BGHIPY	LT	6.100		
	0.00						BKFANT		0.870		
	0.00 0.00						BZALC	LT	0.720		
	0.00						CHRY CL6BZ	LT LT	2.400		
	0.00						CLOCP	LŤ	1.600 8.600		
	0.00						CL6ET	ĹΤ	1,500		
	0.00						DBAHA	LT	6,500		
	0.00						DBHC	ND	4.000		R
	0.00 0.00						DBZFUR	LT	1.700		
	0.00						DEP DIACAL	LT	2,000		
	0.00						DLDRN	NO	40.000 4.700		S R
	0.00						DMP	LT	1.500		N.
	0.00						DNBP	LT	3.700		
	0.00					-	DNOP	LT	15.000		
	0.00				-		ENDRN	MD	7.600		Ŗ
	0.00						ENDRNA ENDRNK	ND ND	8.000 8.000		R
	0.00		•				ESFS04	ND	9,200		R R
	0.00			:			FANT	LT	3,300		^
	0.00		•	` <u>-</u>			FLRENE	LT	3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00 0.00						HCBD	LT	3.400		_
	0.00						HPCLE	ND ND	2.000 5.000		R R
	0.00						ICDPYR	LT	8,600		ĸ
	0.00						ISOPHR	ĽŤ	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR	MD	5,100		R
	0.00						NAP	LT	0.500		
	0.00						NB NNDMEA	LT	0.500		
	0.00						NNDNPA	ND Lt	2.000 4.400		R
	0.00						NNDPA	LT	3.000		
	0.00						PCB016	ND	21.000	UGŁ	R
	0.00						PCB221	ND	21.000	UGL	R
	0.00						PCB232	ND	21,000		R
	0.00						PCB242	ND ND	30.000		R
	0.00						PC8248 PC8254	ND ND	30.000 36,000		Ř
	0.00						PCB254	ND ND	36.000		R R
	0.00						PCP	ĹŤ	18.000		•
								-			

QCMB	ernal ard Code
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.00	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.00 UNK641 4.000 UGL S 0.00 XDI 21-riov-1991 124TCB LT 1.800 UGL S 0.00 XDI 21-riov-1991 124TCB LT 1.700 UGL S 0.00 12DPH ND 2.000 UGL R 0.00 12DPH ND 2.000 UGL R 0.00 13DCLB LT 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 14DCLB LT 1.700 UGL S 0.00 14DCLB LT 1.700 UGL S 0.00 245TCP LT 5.200 UGL S 0.00 245TCP LT 5.200 UGL S 0.00 245MPH LT 5.800 UGL S 0.00 24DMPH LT 7.5800 UGL S 0.00 24DMPH LT 7.5800 UGL S 0.00 24DMPH LT 7.5800 UGL S 0.00 24DMP LT 7.5800 UGL S 0.00 24DMP LT 7.5800 UGL S 0.00 24DMP LT 7.5800 UGL S 0.00 24DMP LT 7.5800 UGL S 0.00 24DMP LT 7.5800 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 24DMP LT 7.7900 UGL S 0.00 33DCSD LT 1.7900 UGL S 0.00 33DCSD LT 1.7900 UGL S 0.00 44DMP LT 7.7300 UGL S 0.00 44DMP LT	
0.00 XDI 21-nov-1991 124TCE LT 1.800 UGL 0.00 XDI 21-nov-1991 124TCE LT 1.800 UGL 0.00 12DPH ND 2.000 UGL R 0.00 12DPH ND 2.000 UGL S 0.00 12EPCH 3.000 UGL S 0.00 13DCLB LT 1.700 UGL 0.00 13DCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 1.000 UGL 0.00 240NPN LT 1.000 UGL 0.00 240NPN LT 1.000 UGL 0.00 240NPN LT 3.900 UGL 0.00 240NPN LT 0.790 UGL 0.00 240NPN LT 0.790 UGL 0.00 240NPN LT 0.790 UGL 0.00 240NPN LT 1.700 UGL 0.00 240NPN LT 1.700 UGL 0.00 240NPN LT 1.700 UGL 0.00 33DCSD LT 1.700 UGL 0.00 33DCSD LT 1.700 UGL 0.00 33DCSD LT 1.700 UGL 0.00 33DCSD LT 1.700 UGL 0.00 46NPPN LT 4.200 UGL 0.00 46NPPN LT 5.100 UGL 0.00 44NPN LT 5.200 UGL 0.00 44NPN LT 5.200 UGL 0.00 44NNIL LT 4.200 UGL 0.00 44NNIL LT 7.300 UGL 0.00 44NNIL LT 5.200 UGL 0.00 44NNIL LT 5.200 UGL 0.00 44NNIL LT 5.200 UGL 0.00 44NNIL LT 5.200 UGL 0.00 ALDRIN LT 5.200 UGL 0.00 ALDRIN LT 5.200 UGL 0.00 ALDRIN NO 5.100 UGL R 0.00 ALDRIN NO 5.100 UGL R	
0.00 XDI 21-nov-1991 124TCB LT 1.800 UGL 0.00 12DCH ND 2.000 UGL R 0.00 12DPH ND 2.000 UGL R 0.00 12EPCH 3.000 UGL S 0.00 13DCLB LT 1.700 UGL 0.00 13DCLB LT 1.700 UGL 0.00 14DCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 4.200 UGL 0.00 24DKP LT 2.900 UGL 0.00 24DKP LT 5.800 UGL 0.00 24DNP LT 5.800 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 0.790 UGL 0.00 24DNT LT 0.790 UGL 0.00 24DNT LT 0.790 UGL 0.00 24DNT LT 0.500 UGL 0.00 24DNT LT 0.500 UGL 0.00 24DNT LT 1.700 UGL 0.00 24DNT LT 1.700 UGL 0.00 24DNT LT 1.700 UGL 0.00 33DCB LT 1.700 UGL 0.00 33DCB LT 1.700 UGL 0.00 33DCB LT 1.700 UGL 0.00 33DCB LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 1.700 UGL 0.00 44DN2C LT 5.100	
0.00 12DCLB LT 1.700 UGL 0.00 12DPH ND 2.000 UGL R 0.00 12EPCH 3.000 UGL S 0.00 13DCLB LT 1.700 UGL 0.00 13DCLB LT 1.700 UGL 0.00 14DCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 4.200 UGL 0.00 24DCLP LT 2.700 UGL 0.00 24DNP LT 5.800 UGL 0.00 24DNP LT 21.000 UGL 0.00 24DNP LT 21.000 UGL 0.00 24DNP LT 0.790 UGL 0.00 24DNP LT 0.790 UGL 0.00 24DNP LT 0.790 UGL 0.00 24DNP LT 0.790 UGL 0.00 24DNP LT 0.700 UGL 0.00 24DNP LT 1.700 UGL 0.00 25DNT LT 0.700 UGL 0.00 25DNT LT 0.700 UGL 0.00 32DNP LT 3.700 UGL 0.00 2MAAP LT 1.700 UGL 0.00 3NANIL LT 4.300 UGL 0.00 3NANIL LT 4.300 UGL 0.00 3NANIL LT 4.700 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46CN2C LT 17.000 UGL 0.00 46CN3C LT 5.100 UGL 0.00 44CN3C LT 5.100 UGL 0.00 44CN3C LT 5.100 UGL 0.00 44CN3C LT 5.100 UGL 0.00 44CN3C LT 5.100 UGL 0.00 44DN2 LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 5.200 UGL 0.00 ARNAP LT 0.520 UGL 0.00 ARNAP LT 0.520 UGL 0.00 ARNAP LT 0.520 UGL 0.00 ARNAP LT 0.520 UGL 0.00 UGL R	
0.00 12PPH ND 2.000 UGL R 0.00 12EPCH 3.000 UGL S 0.00 13DCL8 LY 1.700 UGL 0.00 14DCL8 LY 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 4.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 246DNP LT 5.800 UGL 0.00 240NP LT 5.800 UGL 0.00 240NP LT 5.800 UGL 0.00 240NP LT 4.500 UGL 0.00 240NP LT 4.500 UGL 0.00 240NP LT 4.500 UGL 0.00 26DNT LT 4.500 UGL 0.00 26DNT LT 0.790 UGL 0.00 26LP LT 0.990 UGL 0.00 26LP LT 0.900 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAP LT 3.900 UGL 0.00 27MAP LT 3.900 UGL 0.00 27MAP LT 3.900 UGL 0.00 37MAPIL LT 4.300 UGL 0.00 37MAPIL LT 4.300 UGL 0.00 37MAPIL LT 4.900 UGL 0.00 46ONZC LT 17.000 UGL 0.00 46ONZC LT 17.000 UGL 0.00 46ONZC LT 17.000 UGL 0.00 46CNZC LT 7.300 UGL 0.00 46CNZC LT 5.100 UGL 0.00 44MAP LT 0.520 UGL 0.00 44MAP LT 0.520 UGL 0.00 ARMAP LT 1.500 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 5.200 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ARMAP LT 0.520 UGL 0.00 ALDRM ND 4.700 UGL	
0.00 12EPCH 3.000 UGL S 0.00 13DCLB LY 1.700 UGL 0.00 14ACLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 240MP LT 5.800 UGL 0.00 240MP LT 5.800 UGL 0.00 240MP LT 5.800 UGL 0.00 240MP LT 0.790 UGL 0.00 240MT LT 0.790 UGL 0.00 260MT LT 0.790 UGL 0.00 260MT LT 0.500 UGL 0.00 26MAP LT 1.700 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAP LT 3.900 UGL 0.00 27MAP LT 3.900 UGL 0.00 27MAP LT 3.700 UGL 0.00 33DCBD LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 46M2C LT 17.000 UGL 0.00 46M2C LT 17.000 UGL 0.00 46M1L LT 7.300 UGL 0.00 46M1L LT 7.300 UGL 0.00 46M1L LT 7.300 UGL 0.00 4CM1L LT 7.300 UGL 0.00 4CM1L LT 7.300 UGL 0.00 4CM1L LT 7.300 UGL 0.00 4CM1L LT 7.300 UGL 0.00 4CM1L LT 5.100 UGL 0.00 4CM1L LT 5.200 UGL 0.00 4CM1L TT 5.200 UGL 0.00 4CM1L TT 5.200 UGL 0.00 4CM1L TT 5.20	
0-00 0.00 140CLB LT 1.700 UGL 0.00 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 0.00 240CLP LT 2.900 UGL 0.00 0.00 240MPN LT 5.800 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MT LT 4.500 UGL 0.00 240MT LT 0.790 UGL 0.00 260MT LT 0.990 UGL 0.00 26LP LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2MAAP LT 1.700 UGL 0.00 2MANP LT 3.900 UGL 0.00 2MANIL LT 4.300 UGL 0.00 2MANIL LT 4.300 UGL 0.00 2MANIL LT 4.300 UGL 0.00 3MANIL LT 4.900 UGL 0.00 3MANIL LT 4.900 UGL 0.00 460N2C LT 17.000 UGL 0.00 460N2C LT 17.000 UGL 0.00 460N2C LT 17.000 UGL 0.00 460N2C LT 4.000 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 460N2C LT 5.100 UGL 0.00 U	
0.00	
0.00 246TCP LT 4.200 UGL 0.00 240MP LT 5.800 UGL 0.00 240MP LT 5.800 UGL 0.00 240MP LT 5.800 UGL 0.00 240MP LT 21.000 UGL 0.00 240MT LT 4.500 UGL 0.00 260MT LT 0.790 UGL 0.00 26CMP LT 0.990 UGL 0.00 26CMP LT 0.500 UGL 0.00 26CMP LT 1.700 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAP LT 1.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46CM2C LT 17.000 UGL 0.00 46CM1L LT 7.300 UGL 0.00 46CM1L LT 7.300 UGL 0.00 46CM1L LT 7.300 UGL 0.00 46CM1L LT 7.300 UGL 0.00 46CM1L LT 5.100 UGL 0.00 46CM1L LT 5.100 UGL 0.00 46CM1L LT 5.100 UGL 0.00 4CMP LT 5.200 UGL 0.00 4MP LT 5.200 UGL 0.00 4MNP LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL R	
0.00 24DCLP LT 2.900 UGL 0.00 24DMPN LT 5.800 UGL 0.00 24DMPN LT 5.800 UGL 0.00 24DMPN LT 5.800 UGL 0.00 24DMP LT 4.500 UGL 0.00 24DMT LT 4.500 UGL 0.00 24DMT LT 0.790 UGL 0.00 26DMT LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2MMAP LT 1.700 UGL 0.00 2MMAP LT 3.900 UGL 0.00 2MMP LT 3.900 UGL 0.00 2MMP LT 3.900 UGL 0.00 2MMP LT 3.700 UGL 0.00 33DCSD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DM2C LT 17.000 UGL 0.00 46DM2C LT 17.000 UGL 0.00 46DM2C LT 17.000 UGL 0.00 4CAMIL LT 7.300 UGL 0.00 4CAMIL LT 7.300 UGL 0.00 4CLPE LT 5.100 UGL 0.00 4CLPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MNP LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ALDRN NO 4.700 UGL	
0.00 24DMPN LT 5.800 UGL 0.00 24DMP LT 21.000 UGL 0.00 24DMP LT 21.000 UGL 0.00 24DMT LT 4.500 UGL 0.00 26DMT LT 0.790 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CLAP LT 0.500 UGL 0.00 2MAAP LT 1.700 UGL 0.00 2MAAP LT 1.700 UGL 0.00 2MANIL LT 4.300 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33ANIL LT 4.900 UGL 0.00 33ANIL LT 4.900 UGL 0.00 46DM2C LT 17.000 UGL 0.00 46DM2C LT 17.000 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 5.200 UGL 0.00 4CLSC LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 AMP LT 0.520 UGL 0.00 AMANIL LT 5.200 UGL	
0.00 24DMP LT 21.000 UGL 0.00 24DMT LT 4.500 UGL 0.00 26DMT LT 0.790 UGL 0.00 2CLP LT 0.790 UGL 0.00 2CMAP LT 0.500 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2MANP LT 1.700 UGL 0.00 2MANIL LT 4.300 UGL 0.00 2MANIL LT 4.300 UGL 0.00 2MP LT 3.700 UGL 0.00 33DCSD LT 12.000 UGL 0.00 33DCSD LT 12.000 UGL 0.00 3MANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46CMIL LT 7.300 UGL 0.00 4CCMIL LT 7.300 UGL 0.00 4CCMIL LT 5.100 UGL 0.00 4CCMIL LT 5.100 UGL 0.00 4CCMIL LT 5.100 UGL 0.00 4CCMIL LT 5.100 UGL 0.00 ACCMIL LT 5.1000 UGL 0.00 ACCMIL LT 5.1000 UGL 0.00 ACCMIL LT 5.1000 UGL 0.00 ACCMIL LT 5.1000 UGL 0.00 ACCMIL LT 5.1000 UGL 0.00 ACCMIL LT 5.1000 UGL 0.00 ACCMIL TO TO TO TO TO TO TO TO TO TO TO TO TO	
0.00	
0.00 260NT LT 0.790 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2MAAP LT 1.700 UGL 0.00 2MAAP LT 3.900 UGL 0.00 2MANIL LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 2NANIL LT 4.300 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3MANIL LT 4.900 UGL 0.00 46DN2C LT 17,000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CLANIL LT 7.300 UGL 0.00 4CLANIL LT 5.100 UGL 0.00 4CLANIL LT 5.200 UGL 0.00 4CLANIL LT 5.100 UGL 0.00 4CLANIL LT 5.100 UGL 0.00 4CLANIL LT 5.100 UGL 0.00 4CLANIL LT 5.100 UGL 0.00 4CLANIL LT 5.200 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 12.000 UGL 0.00 4MP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 0.00 ABHC ND 4.000 UGL R 0.00 0.00 AENSLF ND 9.200 UGL R	
0.00	
0.00 2MAP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 2NANIL LT 4.300 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 ANP LT 12.000 UGL 0.00 ANP LT 12.000 UGL 0.00 ANP LT 12.000 UGL 0.00 ARNSLF ND 9.200 UGL R 0.00 ACLDAN ND 5.100 UGL R	
0.00	
0.00	
0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 4ERPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL9E LT 5.100 UGL 0.00 4CLPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ANNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL ND 4.000 UGL R	
0.00 33DCBD LT 12.000 UGL 0.00 3NANTL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANTL LT 5.200 UGL 0.00 4MANTL LT 5.200 UGL 0.00 ANP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R	
0.00 3 MANTL LT 4.900 LIGL 0.00 46DN2C LT 17,000 LIGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 ABHC ND 4.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R	
0.00 46DN2C LT 17,000 UGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPE LT 5.100 UGL 0.00 4NP LT 0.520 UGL 0.00 4NANIL LT 5.200 UGL 0.00 4NANIL LT 5.200 UGL 0.00 4NANIL LT 5.200 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ALDRN ND 9.200 UGL R	
0.00	
0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MP LT 12.000 UGL 0.00 ANP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 5.100 UGL R	
0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4NP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 5.100 UGL R	
0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4NP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 5.100 UGL R	
0.00 4MANIL LT 5,200 UGL 0.00 4NP LT 12,000 UGL 0.00 ABHC ND 4,000 UGL R 0.00 ACLDAN ND 5,100 UGL R 0.00 AENSLF ND 9,200 UGL R 0.00 ALDRN ND 4,700 UGL R	
0.00 4NP LT 12,000 UGL 0.00 ABHC ND 4,000 UGL R 0.00 ACLDAN ND 5,100 UGL R 0.00 AENSLF ND 9,200 UGL R 0.00 ALDRN ND 4,700 UGL R	
0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R	
0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN NO 4.700 UGL R	
0.00 ALDRN NO 4.700 UGL R	
71,44,000	
U.UU · ANAPRE (1 1 710 Mg)	
* II	
0.00 ANAPYL LT 0.500 UGL 0.00 ANTRC LT 0.500 UGL	
0.00 B2CEXM LT 1.500 UGL	
0.00 B2CIPE LT 5.300 UGL	
0-00 B2CLEE LT 1,900 UGL	
0.00 B2EHP 5.800 UGL	
0-00 BAAHTR LT 1.600 UGL	
0.00 BAPYR LT 4,700 UGL	
0.00 BBFANT LT 5.400 UGL 0.00 BBHC ND 4.000 UGL P	
U-00 BBHC ND 4.000 UGL R U-00 BBZP 1T 3,400 UGL	
U-DO BENSLF ND 9.200 UGL R 0-00 BENZID ND 10.000 UGL R	
0-00 BENZOA LT 13.000 UGL	
0-00 BGHIPY LT 6-100 UGL	
0.00 BKFANY LT 0.870 UGL	
0.00 BZALC LT 0.720 UGL	
0.00 CHRY LT 2.400 UGL	
0.00 CL68Z LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL	
0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL	
0.00 DBAHA LT 6.500 UGL	

-- ----

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00 0.00 0.00	ES	XDI	z	21-nov-1991	UM18	DBHC DBZFUR	ND LT	4.000	UGL	R
	0.00 0.00 0.00						DEP DLDRN DMP DNBP	LT MD LT LT	2.000 4.700 1.500 3.700	UGL UGL	R
	0.00 0.00 0.00						DNOP ENDRN ENDRNA ENDRNK	LT ND ND ND	15.000 7.600 8.000 8.000	ugl ugl	R R R
	0.00 0.00 0.00						ESFS04 FANT FLRENE	ND LT LT	9.200 3.300 3.700	UGL UGL	R
	0.00 0.00 0.00						GCLDAN HCBO HPCL HPCLE	ND LT ND ND	5.100 3.400 2.000 5.000	UGL	R R R
	0.00 0.00 0.00						ICOPYR ISOPHR LIN MEC6H5	LT LT ND	8.600 4.800 4.000 4.000	UGL UGL	R S
	0.00 0.00 0.00						MEXCLR NAP NB NNDMEA	ND LT LT ND	5.100 0.500 0.500 2.000	UGL UGL UGL	R R
	0.00 0.00 0.00						NNDNPA NNDPA PCB016	LT LT ND	4.400 3.000 21.000	UGL UGL UGL	R
	0.00 0.00 0.00 0.00						PCB221 PCB232 PCB242 PCB248	ND ND ND ND	21.000 21.000 30.000 30.000	UGL UGL UGL	R R R
	0.00 0.00 0.00 0.00						PCB254 PCB260 PCP PHANTR	ND ND LT LT	36.000 36.000 18.000 0.500	UGL UGL	R R
	0.00 0.00 0.00						PHENOL PPODD PPODE PPODT	LT ND ND ND	9.200 4.000 4.700 9.200	UGL UGL UGL	R R R
	0.00 0.00 0.00		XD1	:	26-nov-1991		PYR TXPHEN 124TCB	LT NAD LT	2.800 36.000 1.800	UGL UGL UGL	R
	0.00 0.00 0.00			**			12DCLB 12DPH 12EPCH 13DCLB	LT ND LT	1.700 2.000 4.000 1.700	UGL UGL UGL	R S
	0.00 0.00 0.00 0.00						14DCLB 245TCP 246TCP 24DCLP	LT LT LT LT	1.700 5.200 4.200 2.900	UGL UGL	
	0.00 0.00 0.00 0.00						24DMPN 24DMP 24DMT 260MT	LT LT LT LT	5.800 21.000 4.500 0.790	UGL UGL	
	0.00 0.00 0.00						2CLP 2CNAP 2MKAP 2MP	LT LT LT LT	0.990 0.500 1.700	UGL UGL	
	0.00 0.00 0.00						2NAN (L 2NP 33DCBD	LT LT LT	3.900 4.300 3.700 12.000	UGL UGL UGL	
	0.00 0.00 0.00						3MANIL 46DN2C 48RPPE 4CANIL	LT LT LT LT	4.900 17.000 4.200 7.300	ugl ugl	

QC Type	Spike Amount				Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
GCMB	0.00	ES	XDJ	2	26-nov-1991	UM18	4CL3C	LT	4.000		
	0.00 0.00						4CLPPE	LT LT	5.100 0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP	ĻŤ	12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN	ND	5.100		R
	0.00						AENSLF ALDRN	NID NID	9.200 4.700		R · R
	0.00						ANAPNE	ĹŦ	1.700		•
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRC	LT	0.500		
	0.00						B2CEXM B2CIPE	LT LT	1.500 5.300		
	0.00						BZCLEE	LT	1.900		
	0.00						BSEHP	LŤ	4.800		
	0.00						BAANTR	LT	1.600		
	0.00 0.00						BAPYR	LŤ	4.700		
	0.00						BBFANT BBHC	LT ND	5.400 4.000		R
	0.00						BBZP	ĹŤ	3.400		^
	0.00						BENSLF	ND	9.200	UGL	R
	0.00						BENZID	KD	10.000		R
	0.00						BENZOA BGHIPY	LT LT	13.000 6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LŤ	0.720		
	0.00						CHRY	LT	2.400	UGL	
	0.00						CL6BZ	LT	1.600		
	0.00						CL6CP CL6ET	LT LT	8.600 1.500		
	0.00						DBAHA	LT	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LŤ	1.700		
	0.00						DEP	LT	2.000		_
	0.00						DLDRN DNP	ND Lt	4.700 1.500		R
	0.00						DNBP	ĹŤ	3.700		
	0.00					•	DNOP	LT	15.000	UGL	
	0.00				•		ENDRN	ND	7.600		R
	0.00						ENDRNA ENDRNK		8.000 8.000		R R
	0.00		•				ESFS04	ND	9.200		Ř
	0.00						FANT	LT	3.300	UGL	
	0.00						FLRENE	LT	3.700		_
	0.00 0.00						GCLDAN HCBD	ND Lt	5.100 3.400		R
	0.00						HPCL	ND	2.000		R
	0.00						HPCLE	ND	5.000		Ř
	0.00						COPYR	LT	8.600		
	0.00						ISOPHR	LT	4.800		
	0.00						LIN MEC6H5	ND	4.000 5.000		R S
	0.00				•		MEXCLR	ND	5.100		Ř
	0.00						NAP	LT	0.500		
	0.00						NB	LT	0.500		_
	0,00 0.00						NNOMEA	MD Lt	2.000 4.400		R
	0.00						NNDRPA	ĹŤ	3.000		
	0.00						PCB016	ND	21.000		R
	0.00						PCB2Z1	ND	21,000		R
	0.00						PCB232		21.000		R
	0.00						PCB242 PCB248	ND ND	30.000 30.000		R R
	0.00						PCB254	ND	36.000		K R
	0.00						PCB260	ND	36.000		· R

Walter State

ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Boolean	Value	Units	Internal Standard Code
QCMB	0.00			•	24	14140					
WCMD	0.00	E 3	XUJ	2	26-nov-1991	UMIO	PCP PKANTR		18.000		
	0.00						PHENOL		0.500 9.200		
	0.00						PPDDD	ND	4.000		R
	0.00						PPDDE	ND	4.700		Ř
	0.00						PPDDT	ND	9.200		R
	0.00						PYR	LT	2.800	UGL	
	0.00						TXPHEN	ND	36.000		R
	0.00				4004		UNKS42		4.000		\$
	0.00		XDK		02-dec-1991		124TC8	LT	1.800		
	0.00						12DCLB 12DPH	LT ND	1.700 2.000		R
	0.00						13DCLB		1.700		K
	0.00						14DCLB		1.700		
	0.00						245TCP		5.200		
	0.00						246TCP	LT	4.200		
	0.00						24DCLP	LT	2.900	UGL	
	0.00						24DMPN	LT	5.800	UGL.	
	0.00						24DNP	LT	21.000		
	0.00						24DNT 26DNT	LT	. 4.500	UGL	
	0.00						26DNT	LT	0.790		
	0.00						2CLP 2CNAP		0.990 0.500		
	0.00						2MNAP		1.700		
	0.00						2MP	LT	3.900		
	0.00						2NANIL		4.300	-	
	0.00						2NP		3.700		
	0.00						330CBD	LT	12.000	UGL	
	0.00						SMANIL	LT	4.900	UGL.	
	0.00						46DN2C		17.000		
	0.00						4BRPPE		4.200		
	0.00 0.00						4CANIL		7.300		
	0.00						4CLPPE		4.000 5.100		
	0.00						40LPFE		0.520		
	0.00						4NANIL		5.200		
	0.00						4NP	LŤ	12,000		
	0.00						ABHC	ND	4.000	UGL	R
	0.00					-	ACLDAN		5.100	UGL	R
	0.00				_		AENSLF	MD	9.200		R
	0.00						ALDRN	WD	4.700	-	R
	0.00		-				ANAPNE	LT	1,700		
	0.00						ANAPYL	LT LT	0.500 0.500		
	0.00			· .			BZCEXM	LŤ	1.500		
	0.00						B2CIPE	ĹŤ	5.300		
	0.00						B2CLEE	LT	1,900		
	0.00						B2EHP	LT	4.800	UGL	
	0.00						BAANTR	LT	1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT	LT	5.400		
	0.00 0.00						BBHC	MD	4.000		R
	0.00						BBZP BENSLF	LT	3.400 9.200		
	0.00						BENZID	ND ND	10.000		R R
	0.00						BENZOA	ĹŤ	13.000		n.
	0.00						BGHIPY	LŤ	6,100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LŢ	0.720		
	0.00						CHRY	LT	2.400		
	0.00						CL6BZ	LT	1.600		
	0.00						CLACP	LT	8-600		
	0.00 0.00						CL6ET	LT	1.500		
	0.00						DBAHA	LT	6.500		•
	0.00						DBHC DBZFUR	ND LT	4.000 1.700		R
	7100						DOTION	-1	1.700	GUL	

-- ----

CCM6	QC Type					Analysis Date	Method Code			Value	Units	Internal Standard Code
0.00	****										•	
0.00	QCMB	0.00	ES	XDK	2	02-dec-1991	13418	NED	1.7	3 000	Het	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-01.0			~~	-	01 000 1771	4 110					D
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00										•
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									_			
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									•			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												ĸ
0.00 0.00 0.00 1									-			R
1.00										5.000	UGL	Ř
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												•
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											_	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									_			P
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											-	R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
D. 00												**
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								_				•
0.00 PPDDD ND 4.000 UGL R 0.00 PPDDE ND 4.700 UGL R 0.00 PPDDT ND 9.200 UGL R 0.00 PYR									-			
0.00 PPODE ND 4.700 UGL R 0.00 PPODT ND P.200 UGL R 0.00 TXPHEN ND 36.000 UGL R 0.00 XOQ 1 29-jan-1992 124TCB LT 1.800 UGL 0.00 120CLB LT 1.700 UGL R 0.00 12EPCH ND 2.000 UGL R 0.00 13DCLB LT 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 140CLB LT 1.700 UGL S 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240NPN LT 2.900 UGL 0.00 240NPN LT 2.900 UGL 0.00 240NPN LT 2.900 UGL 0.00 240NPN LT 2.900 UGL 0.00 240NPN LT 2.900 UGL 0.00 240NPN LT 3.900 UGL 0.00 260NT LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 3.900 UGL 0.00 2MNAP LT 3.900 UGL 0.00 2MNAP LT 3.900 UGL 0.00 2MNAP LT 3.700 UGL 0.00 2MNAP LT 3.700 UGL 0.00 3NANIL LT 4.300 UGL 0.00 3NANIL LT 4.300 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46NAPP LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CLBC LT 4.000 UGL 0.00 4CLBPE LT 4.000 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL 0.00 4CLBPE LT 5.100 UGL												_
0.00 PPDDT ND P.200 UGL R 0.00 PYR LT 2.800 UGL R 0.00 XDQ 1 29-jan-1992 124TCB LT 1.800 UGL R 0.00 XDQ 1 29-jan-1992 124TCB LT 1.800 UGL R 0.00 12DCLB LT 1.700 UGL R 0.00 12DPH MD 2.000 UGL R 0.00 13DCLB LT 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 14DCLB LT 1.700 UGL S 0.00 245TCP LT 5.200 UGL C 0.00 245TCP LT 2.900 UGL C 0.00 240MPN LT 2.900 UGL C 0.00 240MPN LT 21.000 UGL C 0.00 240MPN LT 21.000 UGL C 0.00 240MPN LT 3.700 UGL C 0.00 260MT LT 0.590 UGL C 0.00 26MAP LT 1.700 UGL C 0.00 26MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 27MAP LT 1.700 UGL C 0.00 33DCSD LT 12.000 UGL C 0.00 33MANIL LT 4.500 UGL C 0.00 4CANIL LT 7.300 UGL C 0.00 4CANIL LT												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 XDQ 1 29-jan-1992 124TCB LT 1.800 UGL 0.00 12DCLB LT 1.700 UGL 0.00 12DPH ND 2.000 UGL R 0.00 12EPCR 8.000 UGL S 0.00 13DCLB LT 1.700 UGL 0.00 13DCLB LT 1.700 UGL 0.00 14DCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 246CCP LT 4.200 UGL 0.00 246CLP LT 2.990 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 4.500 UGL 0.00 240NT LT 4.500 UGL 0.00 240NT LT 4.500 UGL 0.00 260NT LT 0.790 UGL 0.00 2CNAP LT 0.990 UGL 0.00 2CNAP LT 1.700 UGL 0.00 2CNAP LT 1.700 UGL 0.00 2MNAP LT 1.700 UGL 0.00 2MNAP LT 3.900 UGL 0.00 2MNAP LT 3.900 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL								PYR	LT			
0.00 120CH LT 1.700 UGL 0.00 120PH ND 2.000 UGL R 0.00 0.00 120PCH 8.000 UGL S 0.00 0.00 130CLB LT 1.700 UGL 0.00 140CLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MPN LT 4.500 UGL 0.00 240MT LT 4.500 UGL 0.00 260MT LT 0.790 UGL 0.00 260MT LT 0.790 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 3.900 UGL 0.00 2CMAP LT 3.900 UGL 0.00 2MAP LT 3.900 UGL 0.00 2MAP LT 3.900 UGL 0.00 2MAP LT 3.900 UGL 0.00 3MANIL LT 4.300 UGL 0.00 3MANIL LT 4.900 UGL 0.00 0.00 3MANIL LT 4.900 UGL 0.00 0.00 460MCC LT 17.000 UGL 0.00 0.00 460MCC LT 17.000 UGL						20 7 4000						R
0.00 12PH ND 2.000 UGL R 0.00 12EPCH 8.000 UGL S 0.00 13DCLB LT 1.700 UGL 0.00 14DCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 24DNPN LT 5.800 UGL 0.00 24DNPN LT 5.800 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 0.790 UGL 0.00 26DNT LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CLP LT 1.700 UGL 0.00 2CNAP LT 1.700 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MAP LT 3.900 UGL 0.00 2MP LT 3.700 UGL 0.00 3DNANIL LT 4.500 UGL 0.00 3DNANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 4CLPPE LT 7.300 UGL 0.00 UGL				XDQ	1	29- Jan-1992			_			
0.00 12EPCH 8.000 UGL \$ 0.00 13DCLB LT 1.700 UGL 0.00 14DCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 245TCP LT 4.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 24DMPN LT 5.800 UGL 0.00 24DMPN LT 5.800 UGL 0.00 24DMP LT 21.000 UGL 0.00 24DMT LT 4.500 UGL 0.00 24DMT LT 4.500 UGL 0.00 26DMT LT 0.790 UGL 0.00 26DMT LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2CMAP LT 3.900 UGL 0.00 2CMAP LT 3.900 UGL 0.00 3MANIL LT 4.300 UGL 0.00 3MANIL LT 4.300 UGL 0.00 3MANIL LT 4.700 UGL 0.00 3MANIL LT 4.900 UGL 0.00 4CMPC LT 17.000 UGL 0.00 4CMPC LT 17.000 UGL 0.00 4CMPC LT 17.000 UGL 0.00 4CMNC LT 17.000 UGL												D
0.00		- -		٠.								
0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 24DNPN LT 5.800 UGL 0.00 24DNP LT 21.000 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 0.790 UGL 0.00 26DNT LT 0.790 UGL 0.00 26LP LT 0.990 UGL 0.00 2CLP LT 0.500 UGL 0.00 2CNAP LT 1.700 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MANIL LT 3.900 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.700 UGL 0.00 3DNANIL LT 4.900 UGL 0.00 3DNANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 7.300 UGL								13DCLB	LT			
0.00 246TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MP LT 21.000 UGL 0.00 240MT LT 4.500 UGL 0.00 260MT LT 0.790 UGL 0.00 260MT LT 0.990 UGL 0.00 260MP LT 1.700 UGL 0.00 260MP LT 3.900 UGL 0.00 270MP LT 3.900 UGL 0.00 280P LT 3.900 UGL 0.00 280P LT 3.900 UGL 0.00 280P LT 3.700 UGL 0.00 330CBD LT 12.000 UGL 0.00 330CBD LT 12.000 UGL 0.00 460M2C LT 17.000 UGL 0.00 460M2C LT 17.000 UGL 0.00 460M2C LT 17.000 UGL 0.00 460M2C LT 17.000 UGL 0.00 460M2C LT 17.000 UGL 0.00 460M2C LT 17.000 UGL					· -							
0.00 240CLP LT 2.900 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MP LT 21.000 UGL 0.00 240MT LT 4.500 UGL 0.00 260MT LT 0.790 UGL 0.00 26CMP LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MANIL LT 3.900 UGL 0.00 2MANIL LT 3.900 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.700 UGL 0.00 3MANIL LT 4.300 UGL 0.00 3MANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL												
0.00 24DMPN LT 5.800 UGL 0.00 24DMP LT 21.000 UGL 0.00 24DMT LT 4.500 UGL 0.00 26DMT LT 0.790 UGL 0.00 26DMT LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 1.700 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.700 UGL 0.00 3DCBD LT 12.000 UGL 0.00 3DCBD LT 12.000 UGL 0.00 46DM2C LT 17.000 UGL 0.00 46DM2C LT 17.000 UGL 0.00 4CMAPPE LT 4.200 UGL 0.00 4CMAPPE LT 4.200 UGL												
0.00 240NT LT 4.500 UGL 0.00 260NT LT 0.790 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 460N2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL									_			
0.00 260NT LT 0.790 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2MNAP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL												
0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2MNAP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DPC LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL												
0.00 2CNAP LT 0.500 UGL 0.00 2MNAP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CNIL LT 7.300 UGL 0.00 4CNIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL												
0.00												
0.00 2MANIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 48RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL												
0.00 2MP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 48RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL												
0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 48RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL												
0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL												
0.00 46DN2C LT 17.000 UGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL												
0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL								46DN2C	LT	17.000	UGL	
0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL												
0.00 4CLPPE LT 5.100 UGL												

.. .---

ac Type	Amount	Lab	Lot	Number	Analysis Date	Code	Name	Meas. Boolean	Value	Units	Internal Standard Code
			•••			•••••					
QCMB	0.00	FS	XDQ	1	29- jan-1992	15410	4WANTI	LT	5,200	1101	
	0.00			•	july 1774	QIT TO	4NP		12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN	ND	5.100	UGL	R
	0.00						AENSLF		9.200		R
	0.00 0.00						ALDRN		4.700		R
	0.00						ANAPNE		1.700 0.500		
	0.00						ANTRO		0.500		
	0.00						B2CEXM		1.500		
	0.00						82CIPE		5.300	UGL	
	0.00						BSCLEE		1.900		
	0.00						B2EHP BAANTR		4.800 1.600		
	0.00						BAPYR		4.700		
	0.00						BBFANT		5.400		
	0.00						BBHC	ND	4.000	UGL	R
	0.00						BBZP		3.400		
	0.00						BENSLF		9.200		R
	0.00						BENZID BENZOA		10,000 13,000	–	R
	0.00						BGHIPY		6.100		
	0.00						BKFANT		0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY		2.400		
	0.00						CL6BZ CL6CP	LT LT	1.600 8.600		
	0.00						CL6ET	LT	1.500		
	0.00						DBAHA	ĹŤ	6.500		
	0.00						DBHC	ND	4.000	UGL	R
	0.00						DBZFUR	_	1.700		
	0.00						DEP DLDRN	LT ND	2.000		
	0.00						DMP	LT	4.700 1.500	-	R
	0.00						DNBP	ĹΪ	3.700		
	0.00						DNOP	LT	15.000	UGL	
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA ENDRNK	ND ND	8.000 8.000		R
	0.00						ESFS04	ND	9.200		R R
	0.00					•	FANT	ĹŤ	3.300		ĸ
	0.00						FLRENE	LT	3.700	UGL	
	0.00						GCLDAN	ND	5,100		R
	0.00			-			HC8D HPCL	LT ND	3.400 2.000		
	0.00						HPCLE	NO	5.000		R R
	0.00			•			ICOPYR	ĹŤ	8.600		•
	0.00						I SOPHR	LT	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR NAP	ND LT	5.100		R
	0.00						NB	LT	0.500 0.500		
	0.00						NNDMEA	ND	2.000		R
	0.00						NNDNPA	LT	4.400		**
	0.00						ANDPA	LT	3,000		_
	0.00						PCB016 PCB221	ND ND	21,000		R
	0.00						PCB232	ND ND	21,000 21,000		R R
	0.00						PCBZ42	ND	30,000		R R
	0.00						PCB248	ND	30.000		Ř
	0.00						PCB254	ND	36.000		R
	0.00						PCB260	MD	36.000		R
	0.00						PCP PHANTR	lt Lt	18,000 0,500		
	0.00						PHENOL	ET	9,200		
	0.00						PPDDD	MD	4.000		R

ð	ec Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Neas. Boolean	Value	Units	Internal Standard Co	ode
	асмв	0.00	E0	VD0	1	29- jan-1992	17410	PPDDE	150	. 200			
	acrib	0.00	E3	AD4	•	27- 3011- 1772	UM (G	PPDDT	ND ND	4.700 9.200		R R	
		0.00						PYR	LT	2.800		*	
		0.00						TXPHEN	ND	36.000		R	
		0.00						UNK542		5.000		ŝ	
		0.00		XDR		30- jan-1992		124TCB	LT	1.800			
		0.00						12DCLB	LT	1.700		_	
		0.00 0.00						120PH 13DCLB	NO	2.000		R	
		0.00						14DCLB	LT LT	1.700 1.700			
		0.00						245TCP	ĹŤ	5.200			
		0.00						246TCP	LT	4.200			
		0.00						24DCLP	LT	2.900			
		0.00						24DMPN	LT	5.800			
		0.00						24DNP 24DNT	LT LT	21.000			
		0.00						26DNT	LT	4.500 0.790			
		0.00						2CLP	LŤ	0.990			
		0.00						2CNAP	ĹΤ	0.500			
		0.00						2MNAP	LT	1,700			
		0.00						2MP	LT.	3.900			
		0.00						2NANIL	LT	4.300			
		0.00						2NP	LT	3.700			
		0.00						330CBD 3NANIL	LT LT	12.000 4.900			
		0.00						46DN2C	LT	17.000			
		0.00						4BRPPE	ĹŤ	4.200			
		0.00						4CANIL	LT	7.300			
		0.00						4CL3C	LT	4.000			
		0.00						4CLPPE		5.100			
		0.00 0.00						4MP	LT	0.520			
		0.00						4NANIL 4NP	LT LT	5.200 12.000			
		0.00						ABHC	MD	4.000		R	
		0.00						ACLDAN	ND	5.100		Ř	
		0.00						AENSLF	ND	9.200		R	
		0.00						ALDRN	ND	4.700		R	
		0.00 0.00						ANAPNE		1.700			
		0.00						ANAPYL ANTRC	LT LT	0.500 0.500			
		0.00						B2CEXM		1.500			
		0.00				•		B2CIPE	LT	5.300			
		0.00						B2CLEE	LT	1,900			
		0.00						BZEHP	LT	4_800	UGL		
		0.00			-			BAANTR	LT	1.600	UGL		
		0.00		-				BAPYR BBFANT	LT	4.700			
		0.00			, .			BBHC	LT ND	5.400 4.000			
		0.00						BBZP	LT	3.400		R	
		0.00						BENSLF	ND.	9.200		R	
		0.00						BENZID	ND	10.000		Ř	
		0.00						BENZOA	LT	13.000			
		0.00				-		BGHIPY	LT	6.100			
		0.00						BKFANT	LŤ	0.870			
		0.00						BZALC CHRY	LT LT	0.720 2.400			
		0.00						CL6BZ	LT	1,600			
		0.00						CL6CP	LT	8,600			
		0.00						CL6ET	ĻŤ	1.500			
		0.00						DBAHA	LT	6.500	UGL		
		0.00						DBHC	ND	4.000		R	
		0.00 0.00						DBZFUR	LT	1.700			
		0.00			•			DEP Dldrn	LT ND	2.000 4.700			
		0.00						DMP	LT	1.500		R	
		0.00						DNSP	LT	3.700	UGL		

-- ----

Q¢	Spike		_		Analysis	Nethod	Test	Meas.			Interna
Type	Amount	Lab	Lot	Number	Date	Code	Name	Boolean	Value	Units	Standard
QCMB	0.00	EC	XDR	1	70-i1003	18416	01100		45 000		
WUMD	0.00	E9	AUK	'	30- jan-1992	UMID	DNOP	LT ND	15.000		
	0.00						ENDRN Endrna	ИĎ	7.600 8.000		R R
	0.00						ENDRNK	ND	8.000		R
	0.00						ESFS04	ND	9.200		Ř
	0.00						FANT	LT	3.300		
	0.00						FLRENE	LT	3.700	UGL	
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400		_
	0.00						HPCLE	ND ND	2,000		R
	0.00						ICOPYR		5,000 8,600		R
	0.00						1SOPHR	ĽΫ	4,800		
	0.00						LIN	ND	4,000		R
	0.00						MEXCLR	ND	5.100		Ř
	0.00						NAP	LT	0.500	UGL	
	0.00						NB	LT	0,500		
	0.00						NNDMEA		2.000		R
	0.00						NNDNPA	LT	4.400		
	0.00						NNDPA	LT	3.000		_
	0.00						PCB016 PCB221	ND ND	21.000 21.000		.R
	0.00						PCB232	ND	21.000		R R
	0.00						PCB242	ND	30.000		Ř
	0.00						PCB248	ND	30,000		Ř
	0.00						PC8254	ND	36.000		R
	0.00						PC8260	ND	36.000		R
	0.00						PCP	LT	18.000		
	0.00						PHANTR	LT	0.500		
	0.00						PHENOL	LT	9.200		_
	0.00						PPDDD PPDDE	ND ND	4.000 4.700		R
	0.00						PPODT	NO	9.200		R R
	0.00						PYR	ĹĬ	2.800		•
	0.00						TXPHEN	ND	36.000		R
	0.00		XDS		11 - feb - 1992		124TCB	LT	1.800		
	0.00						120CLB	LT	1.700		
	0.00						12DPH	ND.	2.000		R
	0.00						12EPCK		7.000		S
	0.00						13DCLB	LT	1.700		
	0.00				-		14DCLB 245TCP	LT LT	1.700 5.200		
	0.00						246TCP	LT	4.200		
	0.00						24DCLP	LŦ	2.900		
	0.00						24DHPN	LT	5.800		
	0.00						24DNP	LT	21,000	UGL	
	0.00						24DNT	LŤ	4.500		
	0.00						26DNT	LŤ	0.790		
	0.00						2CLP	LŢ	0.990		
	0.00						2CNAP 2NNAP	LT LT	0.500		
	0.00						2MP	LT	1.700 3.900		
	0.00						2NANIL	LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						330CB0	LT	12.000		
	0.00						3NANIL	LT	4.900		
	0.00						46DN2C	LT	17,000	UGL	
	0.00						4BRPPE	LT	4.200		
	0.00						4CANIL	LT	7.300		
	0.00 0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT LT	5.100		
	0.00						4MP 4NANIL	LT LT	0.520 5.200		
	0.00						4MP	î.T	12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN	ND	5.100		Ř
											. •

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code				Units	Internal Standard Code
••••				•••••		*****					*************
QCMB	0.00	ES	XDS	1	11-feb-1992	UM18	AENSLF	ND	9.200		R
	0.00 0.00						ALDRN ANAPNE	ND Lt	4.700 1.700		R
	0.00						ANAPYL	LT	0.500	UGL	
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM B2CIPE	LT LT	1.500 5.300		
	0.00						B2CLEE	LT	1.900	UGL	
	0.00						BZEHP BAANTR	L? LT	4,800 1,600		
	0.00						BAPYR	LT	4.700		
	0.00 0.00						BBFANT	LŤ	5.400		_
	0.00						BBHC BBZP	NED L.T	4.000 3.400		R
	0.00						BENSLF	ND	9.200	UGL	R
	0.00						BENZID BENZOA	ND LT	10.000		R
	0.00						BGHIPY	LT LT	13.000 6.100		
	0.00						BKFANT	i,T	0.870	UGL	
	0.00						BZALC CHRY	LT LT	0.720		
	0.00						CLÓBZ	LT	2.400 1.600		
	0.00						CL6CP	LT	8.600	UGL	
	0.00						CL6ET DBAHA	LT LT	1.500 6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LT	1.700	UGL	-
	0.00						DEP DLDRN	LT ND	2.000 4.700		
	0.00						DMP	LT	1.500	UGL	R
	0.00						DNBP	LT	3.700	UGL	
	0.00						DNOP ENDRN	LT ND	15.000		_
	0.00						ENDRNA	ND	7.600 8.000		R R
	0.00						ENDRNK	ND	8.000	UGĻ	Ř
	0.00 0.00						ESFS04 FANT	ND LT	9.200 3.300		R
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	MD	5.100		R
	0.00						HCBD HPCL	LT ND	3.400 2.000		
	0.00				-		HPCLE	ND	5.000		R R
	0.00						1CDPYR	LT	8.600		•
	0.00 0.00			-			1SOPHR LIN	LT ND	4.800 4.000		R
	0.00			-			MEXCLR	ND	5.100		Ř
	0.00						NAP	LT	0.500		
	0.00						NB NNDMEA	LT ND	0.500 2.000	_	R
	0.00						NNDNPA	LT	4.400		•
	0.00						NNDPA	LT	3.000	_	_
	0.00						PCB016 PCBZZ1	ND ND	21.000 21.000		R R
	0.00						PC8232	ND	21.000		R R
	0.00						PC8242	MD	30.000		R
	0.00						PCB248 PCB254	ND ND	30.000 36.000		R R
	0.00						PC8260	ND	36,000	UGL	Ř
	0.00						PCP	LT	18.000		
	0.00 0.00						PHANTR PHENOL	LT LT	0.500 9.200		
	0.00						PPDDD	ND	4.000		R
	0.00						PPDDE	ND	4,700	UGL	R
	0.00						PPDOT PYR	ND Lt	9.200 2.800		R
	0.00						TXPHEN	ND	36,000		R

.

QC Type	Spike Amount	Lab 	Lot	Sample Number	Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code		_
QCMB	0.00	ES	XDT	1	12-feb-1992	11418	124108	LT	1.800	uel			
	0.00		Α.	•	1C 1CD 1772	G 410	120CL8	LT	1.700				
	0.00						120PK	ND	2.000		R		
	0.00 0.00						12EPCH 130CLB	LŤ	8.000 1.700		S		
	0.00						14DCLB	LT	1.700				
	0.00						245TCP	LT	5-200				
	0.00						246TCP 240CLP	LT LT	4.200 2.900				
	0.00						24DMPN	LT	5.800	UGL			
	0.00						24DNP 24DNT	LT	21.000 4.500				
	0.00						26DNT	LT LT	0.790				
	0.00						2CLP	LT.	0.990	UGL			
	0.00						2CHAP 2MNAP	LT LT	0.500 1.700				
	0.00						2MP	ĽŤ	3.900				
	0.00						SNAN I L	LT	4.300	UGL		•	
	0.00						2NP 330CB0	LT LT	3.700 12.000				
	0.00						3NAN1L	LT	4.900				
	0.00						46DN2C		- 17,000	UGL			
	0.00						4BRPPE 4CANIL	LT LT	4.200 7.300				
	0.00						4CL3C	LT	4.000				
	0.00						4CLPPE	LŢ	5.100				
	0.00						4MP 4NANIL	LT LT	0.520 5.200				
	0.00						4NP	LT	12.000	UGL			
	0.00						ABHC	ND	4.000		R		
	0.00						ACLDAN AENSLF	ND ND	5.100 9.200		R R		
	0.00						ALDRN	ND	4.700	UGL	Ř		
	0.00						ANAPNE	LT	1.700				
	0.00						ANAPYL ANTRC	LT LT	0.500 0.500				
	0.00						B2CEXM	LT	1.500	UGL			
	0.00						B2CIPE B2CLEE	LT LT	5.300 1.900				
	0.00						BZEHP	LŦ	4.800				
	0.00					•	BAANTR	LT	1.600				
	0.00						BAPYR BBFANT	LT LT	4.700 5.400				
	0.00						BBHC	ND	4.000		R		
	0.00						BBZP	LT	3.400	UGL	_		
	0.00			· .			BENSLF BENZID	ND ND	9.200 10.000		R R		
	0.00						BENZOA	LT	13.000	UGL			
	0.00						BGHIPY	LŤ	6.100				
	0.00						BKFANT BZALC	LT LT	0.870 0.720				
	0.00						CHRY	LT	2,400	UGL			
	0.00						CL6BZ CL6CP	LT LT	1.600 8.600	UGL			
	0.00						CLSET	LT	1.500				
	0.00						DRAHA	LT	6.500	UGL			
	0.00						DBHC DBZFUR	MD LT	4.000 1.700	UGL	R		
	0.00						DEP	LT LT	2.000				
	0.00						DLDRN	ND	4.700	UGL	R		
	0.00						DMP DNBP	LT LT	1.500 3.700				
	0.00						DNOP	LT	15.000				
	0.00						ENDRN	ND	7.600	UGL	R		
	0.00 0.00						ENDRNA	ND ND	8.000	UGL	R B		
	2.00						ENDRNK	ND	8.000	UUL	R		

---- -- .--

OCHB O.00 ES XOT 1 12-feb-1992 UN18 ESFSC4 MD 9,200 UGL R		QC Type	Spike Amount	lab	Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Code
0.00 FANT LT 3,300 UGL 0.00 GCLDAM ND 5,100 UGL 0.00 HPCL ND 5,100 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 5,000 UGL R 0.00 HPCL ND 6,000 UGL R 0.00 HPCL ND 6,000 UGL R 0.00 HPCL ND 6,000 UGL R 0.00 HPCR ND 7,000 UGL	AC '	QCMB	0.00	E\$	XDT	1	12-feb-1992	UM18	ESFS04		9.200	UGL	R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										LŦ	3.300	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													R
0.00 0.00 1.CPPTR LT													
0.00 0.00 1										7			
0.00 150PHR LT													^
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									LIN	ND			R
0.00 NB LT 0.500 UEL R 0.00 NNOMEA ND 2.000 UEL R 0.00 NNOMEA ND 2.000 UEL R 0.00 NNOMEA ND 2.000 UEL R 0.00 PCB21 ND 21.000 UEL R 0.00 PCB22 ND 21.000 UEL R 0.00 PCB23 ND 21.000 UEL R 0.00 PCB23 ND 21.000 UEL R 0.00 PCB23 ND 21.000 UEL R 0.00 PCB24 ND 30.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND 36.000 UEL R 0.00 PCB25 ND A.000 UEL R 0.00 P										ND	5.100	UGL	R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													_
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_	₹
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_	R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00							-			
0.00 -0.000 -0.00 -0.00 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00000 -0.00000000										ND	21.000	UGL	R
													R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00													
0.00													R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00													
0.00													R
0.00			0.00						PPDDE	ND			
O.00 TXPHEN NO 36.000 UGL R O.00 O.0													R
0.00 NOU 14-feb-1992 124TCB LT 1.800 UGL 1.700 UGL 1		→											_
0.00 12DCLB LT 1.700 UGL 0.00 UGL R 0.00 12DPH MD 2.000 UGL R 0.00 12PPCH 7.000 UGL S 0.00 UGL S 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 13DCLB LT 1.700 UGL S 0.00 14OCLB LT 1.700 UGL 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 12GDPH LT 5.800 UGL 1.700 UGL 0.00 12GDPH LT 5.800 UGL 1.700 UGL 0.00 12GDPH LT 5.800 UGL 1.700 UGL 0.00 12GDPH LT 1.700 UGL 0.00 12GDPH LT 1.700 UGL 0.00 12GDPH LT 0.790 UGL 0.00 12GDPH LT 0.790 UGL 0.00 12GDPH LT 0.790 UGL 0.00 12GDPH LT 0.790 UGL 0.00 12GDPH LT 0.700 UGL 0.00 12GDPH LT 1.700 UGL 0.00 12GDPH LT 1.700 UGL 0.00 12GDPH LT 1.700 UGL 0.00 12GDPH LT 3.7					VOL		16-feb-1002						R
12PPH ND	···.				AU.		14-160-1992						
0.00 12EPCH 7.000 UGL 8 0.00 13SCLB LT 1.700 UGL 0.00 14OCLB LT 1.700 UGL 0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 246TCP LT 5.800 UGL 0.00 240ELP LT 2.900 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MPN LT 5.800 UGL 0.00 240MPN LT 0.790 UGL 0.00 240MPN LT 0.790 UGL 0.00 240MPN LT 0.790 UGL 0.00 240MPN LT 0.790 UGL 0.00 240MPN LT 0.790 UGL 0.00 24MNPN LT 1.700 UGL 0.00 22MNAP LT 0.500 UGL 0.00 27MAP LT 1.700 UGL 0.00 27MAPN LT 1.700 UGL 0.00 27MAPN LT 1.700 UGL 0.00 27MAPN LT 1.700 UGL 0.00 37MAPN LT 1.700 UGL 0.00 37MAPN LT 1.700 UGL 0.00 440M2C LT 1.7000 UGL 0.00 440M2C LT 1.7000 UGL 0.00 440M2C LT 1.7000 UGL 0.00 440M2C LT 1.7000 UGL 0.00 440MPN LT 5.100 UGL 0.00 440MPN LT 5.200 UGL 0.00 440MPN LT 5.200 UGL 0.00 440MPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 5.200 UGL 0.00 ARPN LT 7.200 UGL													D
0.00 0.00 130CLB LT 1.700 UGL 0.00 0.00 140CLB LT 1.700 UGL 0.00 0.00 245TCP LT 5.200 UGL 0.00 0.00 240CLP LT 2.900 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	\$.00												
0.00 245TCP LT 5.200 UGL 0.00 246TCP LT 4.200 UGL 0.00 240CLP LT 2.900 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NPN LT 5.800 UGL 0.00 240NP LT 21.000 UGL 0.00 240NP LT 4.500 UGL 0.00 240NT LT 0.790 UGL 0.00 26NAP LT 0.990 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 1.700 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MAP LT 3.900 UGL 0.00 2MANIL LT 4.300 UGL 0.00 2MANIL LT 4.300 UGL 0.00 33DCBD LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3MANIL LT 4.900 UGL 0.00 46ON2C LT 17.000 UGL 0.00 46ON2C LT 17.000 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 5.200 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 5.100 UGL 0.00 4CL3C LT 5.200 UGL 0.00 4MAP LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 ARBIC ND 4.000 UGL R 0.00 ARBIC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R									13DCLB	ŁT			
0.00													
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0													
0.00 24DMPN LT 5.800 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 4.500 UGL 0.00 24DNT LT 0.790 UGL 0.00 26DNT LT 0.790 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2CNAP LT 1.700 UGL 0.00 2MNAP LT 1.700 UGL 0.00 2MNAP LT 3.900 UGL 0.00 2MNAIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46DN2C LT 17.000 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 4CANIL LT 5.100 UGL 0.00 ACANIL LT 5.200 UGL 0.00 ACANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ARBOR ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R													
0.00 24DNP LT 21.000 UGL 0.00 24DNT LT 4.500 UGL 0.00 26DNT LT 0.790 UGL 0.00 2CLP LT 0.790 UGL 0.00 2CLP LT 0.500 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2MNAP LT 1.700 UGL 0.00 2MNAP LT 3.900 UGL 0.00 2MNAP LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33DCBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 460N2C LT 17.000 UGL 0.00 460N2C LT 7.300 UGL 0.00 460N2C LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CRNIL LT 7.300 UGL 0.00 4CRNIL LT 7.300 UGL 0.00 4CLBC LT 4.000 UGL 0.00 4CLBC LT 4.000 UGL 0.00 4CLBC LT 5.100 UGL 0.00 4CLBC LT 1.700 UGL 0.00 4CLBC LT 1.700 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL LT 5.200 UGL 0.00 ARNIL R													
0.00 240NT LT 4.500 UGL 0.00 260NT LT 0.790 UGL 0.00 2CLP LT 0.990 UGL 0.00 2CNAP LT 0.500 UGL 0.00 2MARP LT 1.700 UGL 0.00 2MP LT 3.900 UGL 0.00 2MP LT 3.900 UGL 0.00 2NANIL LT 4.500 UGL 0.00 2NAP LT 3.700 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 460N2C LT 17.000 UGL 0.00 460N2C LT 7.500 UGL 0.00 462NIL LT 7.500 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 12.000 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL 0.00 ANANIL LT 7.500 UGL R													
0.00													
0.00 2CLP LT 0.990 UGL 0.00 2CMAP LT 0.500 UGL 0.00 2MAP LT 1.700 UGL 0.00 2MAP LT 3.900 UGL 0.00 2MAIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 460N2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MNP LT 12.000 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ARBIC MD 4.000 UGL 0.00 ARBIC MD 4.000 UGL 0.00 ACLDAN MD 5.100 UGL R 0.00 ACLDAN MD 9.200 UGL R 0.00 ALDRN MD 9.200 UGL R													
0.00 2CNAP LT 0.500 UGL 0.00 2MAAP LT 1.700 UGL 0.00 2MAAP LT 3.900 UGL 0.00 2MAANIL LT 4.300 UGL 0.00 2MAANIL LT 4.300 UGL 0.00 33DCBD LT 12.000 UGL 0.00 33NANIL LT 4.900 UGL 0.00 460N2C LT 17.000 UGL 0.00 460N2C LT 17.000 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CLAPPE LT 5.100 UGL 0.00 4CLAPPE LT 5.100 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL 0.00 ALDRN ND 4.700 UGL 0.00									2CLP	LT			
0.00 2MP LT 3.900 UGL 0.00 2NANIL LT 4.300 UGL 0.00 3NANIL LT 3.700 UGL 0.00 3NANIL LT 4.900 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 46RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 0.520 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ANANIL LT 5.200 UGL 0.00 ARBC MD 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 9.200 UGL R											0.500	UGL	
0.00													
0.00													
0.00 330CBD LT 12.000 UGL 0.00 3NANIL LT 4.900 UGL 0.00 46DN2C LT 17.000 UGL 0.00 48RPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 12.000 UGL 0.00 ARBC MD 4.000 UGL 0.00 ABHC MD 4.000 UGL R 0.00 ACLDAN MD 5.100 UGL R 0.00 ACLDAN MD 5.100 UGL R 0.00 ALDRN MD 9.200 UGL R 0.00 ALDRN MD 4.700 UGL R													
0.00 3NANIL LT 4.900 UGL 0.00 460N2C LT 17.000 UGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4NANIL LT 5.200 UGL 0.00 ARBC MD 4.000 UGL 0.00 ABHC MD 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACNANN ND 5.100 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 9.200 UGL R													
0.00 460N2C LT 17.000 UGL 0.00 4BRPPE LT 4.200 UGL 0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4NANIL LT 5.200 UGL 0.00 4NP LT 12.000 UGL 0.00 ABHC MD 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACNOWN ND 9.200 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R													
0.00 4CANIL LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 ANHC LT 12.000 UGL 0.00 ASHC MD 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 9.200 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R													
0.00 4CL3C LT 4.000 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4NANIL LT 5.200 UGL 0.00 4NP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R										LŤ			
0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R													
0.00													
0.00 4MANIL LT 5,200 UGL 0.00 4MP LT 12,000 UGL 0.00 ABHC ND 4,000 UGL R 0.00 ACLDAN ND 5,100 UGL R 0.00 AENSLF ND 9,200 UGL R 0.00 ALDRN ND 4,700 UGL R 0.00 ALDRN ND 4,700 UGL R 0.00 ANAPNE LT 1,700 UGL													
0.00 4NP LT 12.000 UGL 0.00 ABHC ND 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 ANAPNE LT 1.700 UGL													
0.00 ABHC ND 4,000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 4,700 UGL R 0.00 ANAPNE LT 1.700 UGL													
0.00 ACLDAN ND 5.100 UGL R 0.00 AENSLF ND 9.200 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 ANAPNE LT 1.700 UGL													
0.00 AENSLF ND 9,200 UGL R 0.00 ALDRN ND 4,700 UGL R 0.00 ANAPNE LT 1,700 UGL													
0.00 ALDRN ND 4.700 UGL R 0.00 ANAPNE LT 1.700 UGL			0.00										
0.00 ANAPNE LT 1.700 UGL													
0.00 ARAPYL LT 0.500 UGL											1.700	UGL	
			0.00						ANAPYL	LT	0.500	UGL	

Salarina Salarina Salarina

Ma.	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code		Meas. Boolean	Value	Units	Internal Standard Code
	QCMB	0.00	ĘS	XDU	1	14-feb-1992	UM18	ANTRO	LT	0.500	UGL	
		0.00						B2CEXM	LT	1.500		
		0.00						B2CIPE	LT	5.300	UGL	
		0.00						BSCLEE	LT	1.900		
		0.00						B2EHP	LT	4.800		
		0.00						BAANTR BAPYR	LT LT	1.600 4.700		
		0.00						BBFANT	ĹŤ	5.400		
		0.00						BBHC	ND	4.000		R
		0.00						BBZP	LT	3.400		
		0.00						BENSLF	ND	9.200		R
		0.00						BENZID BENZOA	ND LT	10,000 13,000		R
		0.00						BGHIPY	ĹŤ	6.100		
		0.00						BKFANT	ĹŤ	0.870		
		0.00						BZALC	ĻT	0.720		
		0.00						CHRY	LT	2.400		
		0.00						CL6BZ CL6CP	LT LT	1.600		
		0.00						CLEET	LT LT	8,600 1.500		
		0.00						DBAHA	LT	6.500		
		0.00						DBHC	ND	4.000		R
		0.00						DBZFUR	LT	1.700		
		0.00						DEP	LT	2.000		_
		0.00						DLDRN DMP	ND LT	4.700 1.500		R
		0.00						DNBP	LT	3.700		
		0.00						DNOP	LT	15,000		
		0.00						ENDRN	ND	7.600		R
		0.00						ENDRNA	ND	8.000		R
		0.00 0.00						ENDRNK	ND	8.000		R
n.		0.00						ESFS04 FANT	ND Lt	9.200 3.300		R
•		0.00						FLRENE	LT	3.700		
		0.00	ı					GCLDAN	ND	5.100		R
		0.00						HCBD	LT	3.400	UGL	
		0.00						HPCL	ND	2.000		R
		0.00 0.00						HPCLE ICDPYR	ND LT	5.000		R
		0.00						ISOPHR	LT	8.600 4.800		
		0.00						LIN	ND	4.000		R
		0.00				-		MEXCLR	ND	5,100		Ř
		0.00						NAP	LT	0.500		
		0.00		,	_			NB	LT	0.500		_
		0.00			:			NNDMEA NNDMPA	ND LT	2.000 4.400		R
		0.00	ı	-				NNDPA	LT	3.000		
		0.00						PCB016	ND	21.000		R
		0.00						PC8221	ND	21_000	UGL	R
		0.00						PCB232	ND	21.000		R
		0.00 0.00						PCB242 PCB248	ND	30.000		R
		0.00						PCB254	ND ND	30.000 36.000		R P
		0.00						PCB260	ND	36.000		R R
		0.00						PCP	ĻŤ	18.000		
		0.00						PHANTR	LT	0.500	UGL	
		0.00						PHENOL	LT	9.200		_
		0.00 0.00						PPDOD PPDOE	ND	4.000		R
		0.00						PPDDT	ND ND	4.700 9.200		R
		0.00				•		PYR	LT	2,800		R
		0.00						TXPHEN	ND	36,000		R
		0.00		XDW		18-feb-1992		124TCB	LT	1.800	UGL	••
		0.00						12DCLB	LT	1.700		
		0.00						12DPH	MD	2.000		R
		v.00						12EPCH		6.000	UGL	\$

_

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	XDW	1	18-feb-1992	UM18	13DCLB	LT	1.700	UGL	
	0.00						14DCLB	LT	1.700		
	0.00						14DCLB 245TCP 246TCP	LT	5.200		
	0.00						246TCP	LT	4.200		
	0.00			•			24DCLP 24DMPN		2.900 5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNP 24DNT 26DNT 2CLP 2CNAP 2MNAP	ĹŤ	4.500		
	9.00						26DNT	ĻT	0.790		
	0.00						2CLP	LT	0.990	_	
	0.00						ZUNAP ZMNAD	LĪ	0.500 1.700		
	0.00						2MP	น้า	3.900		
	0.00						ZNANIL	LT	4.300		
	0.00						2NP 33DCBD	LT	3.700		
	0.00						33DCBD	LT	12.000		
	0.00						3NANIL 46DN2C	LŢ	4.900		
	0.00						48RPPE		17.000 4.200		
	0.00						4CAN1L		7.300		
	0.00				•		4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP		0.520		
	0.00						4NANIL	_	5.200		
	0.00 0.00						ANP ABHC	LT ND	12.000 4.000		R
	0.00						ACLDAN		5.100		R
	0.00						AENSLF		9-200		Ř
	0.00						ALDRN		4.700		Ř
	0.00						ANAPNE		1.700		
	0.00 0.00						ANAPYL ANTRO		0.500		
	0.00						B2CEXM		0.500 1.500		
	0.00						BZCIPE		5.300		
	0.00						B2CLEE		1.900		
	0.00						BZEHP		4.800		
	0.00						BAANTR		1.600		
	0.00 0.00						BAPYR BBFANT	LT LT	4.700 5.400		
	0.00						BBHC		4.000		R
	0.00					•	BBZP		3.400		•
	0.00				-		BENSLF	ND	9.200		R
	0.00						BENZID		10.000		R
	0.00		•				BENZOA		13.000		
	0.00						BGHIPY BKFANT		6.100 0.870		
	0.00		•				BZALC	ĹŤ	0.720		
	0.00						CHRY	LT	2.400		
	0.00						CL6BZ	LT	1.600		
	0.00						CL6CP	LT	8.600		
	0.00						CL6ET	LT	1.500		
	0.00						DBAHA DBHC	LT ND	6.500 4.000		R
	0.00						DBZFUR		1.700		K
	0.00						DEP	LŤ	2.000		
	0.00						DLDRN	MD	4.700		R
	0.00						DMP	LT	1.500		
	0.00						DNBP DNOP	LT LT	3.700 15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA		8.000		R
	0.00						ENDRNK		8.000		Ř
	0.00						ESF\$04		9.200		Ř
	0.00						FANT	LT	3.300		
	0.00						FLRENE	LT	3.700		_
	0.00						GCLDAN	ND	5.100	UGL	R

·. 1		Spike Amount	Lab	Lot	Sample Kumber	Analysis Date	Method Code		Meas. Boolean	Value	Uni ts	Internal Standard Code		-	
	QCMB	0.00	ES	XDW	1	18-feb-1992	UM18	HCSD	LT ND	3.400					
		0.00						HPCL HPCLE	ND	2.000 5.000		R R			
		0.00						ICOPYR	LT	8,600	UGL	•			
		0.00						ISOPHR LIN	LT ND	4.800 4.000					
		0.00						MEXCLR	ND	5.100		R R			
		0.00						NAP	LT	0.500	UGL				
		0.00						NB NNDMEA	LT ND	0.50D 2.000		Ŕ			
		0.00						NNONPA	LT	4,400		•			
		0.00						NNOPA	LT	3.000		_			
		0.00						PCB016 PCB221	ND Di	21.000 21.000		R R			
		0.00						PCB232	ND	21.000	UGL	R	-		
		0.00						PC8242	MD	30.000		R			
		0.00						PC8248 PC8254	ND ND	30.000 36.000		R R			
		0.00						PCB260	ND	36,000	UGL	Ř			
		0.00						PCP PHANTR	LT LT	18.000 0.500					
-		0.00						PHENOL	LT	9.200					
		0.00						PPDDD	NO	4.000	UGL	R			
		0.00						PPDDE PPDDT	ND ND	4.700 9.200		R R			
		0.00						PYR	LT	2.800		K			
		0.00 0.00		XDX		25-4-1-4002		TXPHEN	ND	36,000	UGL	R			
		0.00		XUX		25-feb-1992		124TCB 12DCLB	LT LT	1.800 1.700					
		0.00						12DPH	ND	5-000		R			
		0.00						12EPCH		7.000		\$			
1		0.00						13DCLB 14DCLB	LT LT	1.700 1.700					
		0.00						245TCP	ĻT	5.200	UGL				
		0.00						246TCP	LT	4.200	UGL				
		0.00						24DCLP 24DMPN	LT LT	2.900 5.800					
		0.00						24DNP	LT	21.000	UG1.				
		0.00						24DNT 26DNT	LT	4.500					
		0.00					•	2CLP	LT LT	0.790 0.990					
		0.00				•		2CNAP	LT	0.500	UGL				
		0.00						2NNAP 2NP	LT LT	1.700 3.900					
		6.00			-			2NANIL	ĹŤ	4.300					
		0.00						2NP	LT	3.700					
		0.00						33DCBD 3NANIL	LT LT	12.000 4.900					
		0.00						46DN2C	ĹŤ	17.000	UGL				
		0.00						48RPPE	LT	4.200					
		0.00						4CANIL 4CL3C	LT LT	7.300 4.000					
		0.00						4CLPPE	LT	5,100	UGL				
		0.00 0.00						4MP	LŤ	0.520	UGL				
		0.00						4MANIL 4NP	LT LT	5.200 12.000					
		0.00						ABHC	MD	4.000	UGL	R			
		0.00						ACLDAN AENSLF	MD MD	5.100 9.200		R			
		0.00						ALMSET	ND ND	4.700		R R			
		0.00						ANAPNE	LT	1,700	UGL				
		0.00						AXAPYL ANTRC	LT LT	0.500 0.500					
		0.00						B2CEXM	LT	1.500					
		0.00						B2CIPE	LT	5.300	UGL				
		0.00						BZCLEE	LT	1.900	UGL				

-- ---

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Test Name	Meas. Boolean	Yalue	Units	Internal Standard Code
QCMB	0.00	FS	YUX	1	25-feb-1992	111412	ROFUD	17	4.800	Hei	
40.10	0.00			•	23 125 1772	511.5	B2EHP BAANTR	ŁT	1.600		
	0.00						BAPYR	ĹŤ	4.700		
	0.00						BBFANT	LT	5.400	UGL	
	0.00						BBHC	ND	4.000		R
	0.00						BBZP	LT	3.400		_
	0.00						BENSLF		9.200 10.000		R
	0.00						BENZID BENZOA		13.000		R
	0.00						BGHIPY		6.100		
	0.00						BKFANT	ĹŤ	0.870		
	0.00						BZALC	ŁT	0.720	UGL.	
	0.00						CHRY CL68Z CL6CP CL6ET DBAHA	LT	2.400		
	0.00						CL68Z	LT	1.600		
	0.00						CLOUP	LT LT	8.600 1.500		
	0.00						DRAHA	LT	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR		1.700		••
	0.00						DEP	LT	2.000	UGL	
	0.00						DLDRN	ND:	4.700		R
	0.00						DMP	LT	1.500		
	0.00						DNBP DNOP	LT LT	3.700	-	
	0.00						ENDRN	ND	15.000 7.600		R
	0.00						ENDRNA	_	8.000		Ř
	0.00						ENDRNK		8.000		Ŕ
	0.00						ESFS04	ND	9.200	UGL	R
	0.00						FANT	LT	3,300		
	0.00						FLRENE		3.700		_
	0.00						GCLDAN HCBD	ND LT	5.100 3.400		R
	0.00						HPCL	ND	2.000	UGL	R
	0.00						HPCLE	ND	5.000	INC:	Ř
	0.00						ICOPYR		8,600		•
	0.00						I SOPHR	LT	4.800		
	0.00						LIN	ND	4.000		R
	0.00				•		MEXCLR		5.100		R
	0.00						nap NB	LT LT	0.500		
	0.00					•	NNDMEA		0.500 2.000		R
	0.00				-		NNDNPA		4.400		•
	0.00						NNDPA	LT	3.000		
	0.00		•				PCB016	ND	21.000	UGL	R
	0.00			:					21.000	UGL	R
	0.00			·			PCB232	MD	21.000		R
	0.00						PC8242 PC8248	ND	30.000		R
	0.00						PC8254	ND ND	30.000 36.000		R
	0.00						PCB260	MD	36.000	. –	R R
	0.00						PCP	LT	18.000		Α
	0.00						PHANTR	LT	0,500		
	0.00						PHENOL	LT	9.200		
	0.00						PPDDD	MD	4.000		R
	0.00						PPDDE	MD	4.700		R
	0.00						PPDDT PYR	MD LT	9.200 2.800		R
	0.00						TXPHEN	ND	36.000		R
	0.00		XDY		04-mar-1992		124TCB	LT	1.800		14
	0.00						12DCLB	LT	1.700		
	0.00						120PH	ND	2.000		R
	0.00						12EPCH		4.000		S
	0.00						13DCLB	LT	1.700		
	0.00						14DCLB	LT	1.700		
	0.00						245TCP 246TCP	LT LT	5.200		
	3.00						24016	LI	4.200	UGE	

γ.	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Cod
	QCMS	0.00	ES	XDY	1	04-mer-1992	UM18	24DCLP	LT	2,900	UGL	
		0.00				•		24DMPN		5,800		
		0.00						24DNP	LT	21.000		
		0.00						24DNT	LŤ	4.500	UGL	
		0.00						26DNT	LT	0.790		
		0.00						SCLP	LT	0.990		
		0.00						2CNAP	ĻŢ	0.500		
		0.00						2MNAP 2MP	LT	1.700 3.900		
		0.00						2MANIL	LT LT	4.300		
		0.00				-		2NP	ĹŤ	3.700		
		0.00						330CBD		12.000		
		0.00						3MP	ND	3.900		R
		0.00						3NANIL	LT	4,900	UGL	
		0.00						46DN2C		17.000		
		0.00						48RPPE		4.200		
		0.00						4CANIL		7.300		
		0.00						4CL3C	LT	4.000		
		0.00						4CLPPE 4MP	LT LT	5.100		
		0.00						4MANIL		0.520 5.200		
		0.00						4NP	LT.	12.000		
		0.00						ABHC	ND	4.000		R
		0.00						ACLDAN		5.100		Ř
		0.00						AENSLF		9.200		Ř
		0.00						ALDRN	ND	4.700		R
		0.00						ANAPNE		1.700		
		0.00						ANAPYL		0.500		
		0.00						ANTRO	LT	0.500		
		0.00						BZCEXM		1.500		
		0.00						B2CLEE		5.300		
		0.00						B2EHP	LT LT	1,900 4,800		
		0.00						BAANTR		1.600		
		0.00						BAPYR	ίŤ	4.700		
		0.00						BBFANT		5.400		
		0.00						BBHC	ND	4.000		R
		0.00						BBZP	LT	3.400	UGL	
		0.00						BENSLF	ND	9.200		R
		0.00						BENZID		10.000		R
		0.00					•	BENZOA		13.000		
		0.00 0.00						BGHIPY		6.100		
		0.00						BKFANT BZALC	LT LT	0.870 0.720		
		0.00		•				CHRY	LT	2.400		
		0.00						CL6BZ	ĹŤ	1.600		
		0.00		•	·			CL6CP	ĹŤ	8,600		
		0.00						CL6ET	LT	1.500		
		0.00						DBAKA	LT	6,500		
		0.00						DBHC	ND	4.000	UGL	R
		0.00						DBZFUR		1.700		
		0.00						DEP	LT	2.000		
		0.00						DLDRN	ND	4.700		R
		0.00						DMP DNBP	LŤ LT	1.500 3.700		
		0.00						DNOP	LT	15.000		
		0.00						ENDRN	ND	7.600		R
		0.00						ENDRNA		8.000		Ř
		0.00						ENDRNK		8.000		Ŕ
		0.00						ESFS04		9.200		Ř
		0.00						FANT	LT	3.300	UGL	
•		0.00						FLRENE		3.700		
		0.00						GCLDAN		5.100		R
		0.00						HCBD	LT	3.400		_
		0.00 0.00						HPCL	ND	2.000		R
		0.00						HPCLE	ND	5.000	UGL	R

à	qc Type					Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
	QCMB	0.00	ES	XDY	1	04-mar-1992	UM18	ICOPYR	LT	8.600	uci	
		0.00		_				ISOPHR		4.800		
		0.00						LIN	MD	4.000		R
		0.00						MEXCLR	ND	5.100	UGL	R
		0.00						NAP	LT	0.500		
		0.00						NB	LT	0.500		
		0.00						NNDMEA		2.000		R
		0.00						NNDNPA		4-400		
		0.00						NNDPA	LT	3.000		_
		0.00						PCB016 PCB221	ND ND	21.000 21.000		R R
		0.00						PCB232		21.000		R R
		0.00						PCB242		30.000		Ř
		0.00						PCB248		30,000		R
		0.00						PCB254	ND	36.000		R
		0.00						PCB260		36,000	UGL	R
		0.00						PCP		18.000		
		0.00						PHANTR		0.500		
		0.00						PHENOL	LT	9.200		
		0.00						PPDDD	ND	4.000		R
		0.00						PPDDE PPDDT	ND	4.700 9.200		R
		0.00						PYR	ND LT	2.800		R
		0.00						PYRDIN		5.200		R
		0.00						TXPHEN		36.000		Ř
		0.00		XEG	7	15-nov-1991	JS16	AG	LT	0.589		•
		0.00						AL		2190.000		W
		0.00						BA		6.230		Ÿ
		0.00						BE	LT	0.500		
		0.00						CA		11100.000		W
		0.00						æ	LT	0.700		
		0.00						co	LT	1.420		W
		0.00						CR		6.940		
		0.00						CU FE		1.580		
		0.00						K		2020.000 315.000		¥
		0.00						MG		1680.000		u u
		0.00						MN		8.050		ū
		0.00						NA		2960.000		ũ
		0.00						NI		1.900	_	-
		0.00						PB	LT	10.500		u
		0.00						SB	LT	7.140		Ü
		0.00						TL	LT	6.620	UGG	
		0.00			-			٧		6.230		¥
		0.00						ZN		9.880	UGG	
		0.00		XEN	6.	11-dec-1991		AG	LT	0.589		
		0.00						AL		1560.000		¥
		0.00						BA		6.620		W
		0.00						BE	LT	0.500		
		0.00						CA CD	LT	11500.000 0.700		¥
		0.00						æ	LT	1.420		w
		0.00						CR		5.220		•
		0.00						ä		1.830		
		0.00						FE		1860.000		¥
		0.00						K		399.000		Ñ
		0.00						MG		1680,000		Ÿ
		0.00						MN		8.300	UGG	Ū
		0.00						NA		3050.000	UGG	¥
		0.00						MI	ĻŦ	1.710		
		0.00						PB	LT	10.500		W
		0.00						SB	LT	7.140		W
		0.00						TL	LT	6.620		
		0.00						٧		5.710		W
		0.00 0.00		XEU	1	17-feb-1992		ZN AG	LT	9.330 9.589		
											1100	

A September 1

ec Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
OCMB.	0.00		ve:	4	47 4-6 4000						
QCMB	0.00	F2	XEU	1	17-feb-1992	JS 16	AL Ba	LT	216.000 5.180		¥
	0.00						BE	ĹŤ	0.500		w
	0.00						ÇA		1250.000		u
	0.00						CD	LT	0.700		
	0.00						co	LŢ	1.420		¥
	0.00						CR CU	LT LT	4.050 0.965		
	0.00						FE	•.	228.000		¥
	0.00						K	LT	100.000		¥
	0.00 0.00			-			MG MN		193.000		W
	0.00						NA NA	LT	2.050 371.000		u u
	0.00						NI	LT	1.710		-
	0.00						P8	LT	10.500		u
	0.00						S8 TL	LT	7.140		W
	0.00						v.	LT LT	6.620 3.390		v
	0.00						ZN	LŤ	8.030		-
	0.00		XEV		21-feb-1992		AG	LT	0.589		
	0.00						AL		147.000		¥
	0.00						BA Be	LT LT	5.180 0.500		¥
	0.00						CA	. .	1190.000		v
	0.00						CD CD	LT	0.700	UGG	-
	0.00						œ	LT	1.420		u
	0.00						CR CU	LT LT	4.050 0.965		
	0.00						FE		194.000	UGG	W
	0.00						K	LT	100,000	UGG	ũ
	0.00						MG		169.000		ų.
	0.00						MN NA	LT	2.050 355.000		N N
	0.00						NI	LT	1.710		•
	0.00						PB	LT	10.500		¥
	0.00						SB	LT	7.140		W
	0.00						TL V	LT LT	6.620 3.390		U
	0.00						ZN	ĹΪ	8.030		•
	0.00		XFI	7	05-nov-1991	LW12	135TNB	LT	0.488		J
	0.00					•	13DNB	LT	0.496		j
	0.00						246TNT 24DNT	LT LT	0.456 0.424		j
	0.00						26DNT	LT	0.524		j
	0.00			-	•		2NT	LT	0.307		J
	0.00						HPOX	LT	0.666		j
	0.00						NB RDX	LT LT	2.410 0.587		7
	0.00						TETRYL	ĽΤ	0.731		j
	0.00 0.00		XGF	1	07-nov-1991	00	PH		5.980		
	0.00		XGD XGR		11-nov-1991 04-nov-1991		PH TOC		5.610 120.000		
	0.00		XGS	4	24-nov-1991		TOC	LT	1000,000		
	0.00		XGT	5	04-dec-1991		TOC	LT	1000.000		
	0.00		XCU	4	01-nov-1991		TOX	LT	10,000		
	0.00		XGV	6	13-nov-1991 18-nov-1991	JD19	TOX As	LT	10,000 0,698		
	0.00		XJK	ĭ	13-dec-1991	SU 17	AS		0.745		
	0.00		XJR		13-feb-1992		A\$	LT	0.250		
	0.00		XJT		02-mar-1992		AS	LT	0.250	UGG	
	0.00		XXD	6	20-nov-1991	UW32	135TNB 13DNB	LT	0.449		
	0.00						246TNT	LT LT	0.611 0.635		
	0.00						24DNT	LT	0.064		
	0.00 0.00						26DNT	LT	0.074		
	Ų.QU						2NT	LT	0.406	UGL	

qc Type	Spike Amount	Lab	Lot		Analysis Date	Code	Name	Meas, Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	XKD	6	20-nov-1991	UW32	HMX	LT	1.210		
	0.00						NB RDX	LT LT	0.645		
	0.00						TETRYL	LT LT	1.170 2.490		
	0.00		XKL	1	28- jan-1992		135TNB	LT	0.449		
	0.00						13DNB	LT	0.611		
	0.00						246TNT	LT	0.635		
	0.00						24DXT	LŢ	0.064		
	0.00						26DNT 34DNT	LT	0.074 5.040		т
	0,00						HMX	LT	1.210		•
	0.00						NB	LT	0.645		
	0.00						RDX	LT	1.170		
	0.00		XKH		05-feb-1992		TETRYL 135TNB	LT LT	2.490	-	
	0.00		ARA		UJ-16D-1772		130NB	LT LT	0.449 0.611		
	0.00						246TNT	ĹŤ	0.635		
	0.00						24DNT	LT	0.064		
	0.00						26DNT	LT	0.074		
	0.00						34DNT		5.120		ī
_ +	0.00						HMX NB	LT LT	1.210 0.645		
	0.00						RDX	ũτ	1,170		
	0.00						TETRYL	LT	2.490		
	0.00		XKN		06-feb-1992		135TNB	LT	0.449		
	0.00						13DNB	LT	0.611		
	0.00						246TNT 24DNT	LT LT	0.635 0.064		
	0.00						26DNT	ĹŤ	0.074		
	0.00						2NT	ĹŤ	0.406		W
	0.00						34DNT		4.790	UGL	Ť
	0.00						HMX	LT	1.210		
	0.00 0.00						NB RDX	lt Lt	0.645		
	0.00						TETRYL	LT	1.170 2.490		
	0.00		XXO		17-feb-1992		135TNB	LŤ	0.449		
	0.00						13DNB	LŢ	0.611		
	0.00						246TNT	LŤ	0.635		
	0.00						24DNT 26DNT	LT LT	0.064 0.074		
	0.00					•	2NT	น้า	0.406	-	u
	0.00				•		HMX	LT	1.210		"
	0.00						NB	LT	0.645		
	0.00		•	_			RDX	LŤ	1.170		
	0.00		XKP	• 	18-feb-1992		TETRYL 135TNB	LT LT	2.490 0.449		
	0.00				10 102 1770		130NB	เ้า	0.611		
	0.00						246TNT	LT	0.635		
	0.00						24DNT	LT	0.064		
	0.00						26DNT 2NT	LT	0.074		
	0.00						34DNT	LT	0.406 5.350		W T
	0.00						HMX	ŁT	1.210		•
	0.00						NB	LT	0.645		
	0.00						RDX	LT	1.170		
	0.00		XKQ		19-feb-1992		TETRYL	LT	2.490		
	0.00		AAW.		17-16J-1792		135TNB 13DNB	LT LT	0.449 0.611		
	0.00						246TNT	ĹŤ	0.635		
	0.00						24DNT	ĻŤ	0.064		
	0.00						26DNT	LT	0.074		
	0.00						34DNT		5.410		7
	0.00						HMX NB	LT LT	1.210		
	0.00						RDX	LT	0.645 1.170		
	0.00						TETRYL	ĻŤ	2_490		

177 A. 19,0 844

4.25

OCNB O.00 ES XKT O.4-mar-1992 UM32 135TNB LT O.449 UGL	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas.	Value	llníte	Internal
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	OCUD	0.00		w.		0/ 4000						
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	UCMB			XKI	1	U4-MAC-1992	UN32					
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									-			
0.00								ЖB				
0.00 XKV 13-mar-1992 135TNB LT 0.449 UGL 13DNB LT 0.611 UGL 0.00 246TNT LT 0.635 UGL 0.00 246TNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.074 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 120DNT LT 0.645 UGL 0.00 120DNT LT 0.645 UGL 0.00 120DNT LT 0.645 UGL 0.00 126DNT LT 0.645 UGL 0.00 126DNT LT 0.645 UGL 0.00 126DNT LT 0.645 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 126DNT LT 0.064 UGL 0.00 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 126DNT LT 0.060 UGL 0.00 UGL 0.00 126DNT LT 0.060 UGL 0.00 UGL 0.00 126DNT LT 0.060 UGL 0.00 UGL												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				XKV		13-mar-1992						
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										0.611	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									_			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00							LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 XKW 16-mar-1992 135TNB LT 0.449 UGL 0.00 13DNB LT 0.611 UGL 0.00 246TNT LT 0.635 UGL 0.00 240NT LT 0.664 UGL 0.00 260NT LT 0.074 UGL 0.00 NB LT 1.210 UGL 0.00 NB LT 1.210 UGL 0.00 NB LT 1.770 UGL 0.00 NB LT 1.770 UGL 0.00 XLC 2 15-nov-1991 UM20 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 0.500 UGL 0.00 CC2AVE LT 0.590 UGL 0.00 CC2AVE LT 0.590 UGL 0.00 CC2AVE LT 0.500 UGL 0.00 CC2AVE LT 0.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC2AVE LT 1.500 UGL 0.00 CC3AVE LT 1.500 UGL												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								TETRYL	LT	2.490	UGL	
				XKW		10-mar-1992						
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
TETRYL LT		0.00							LT			
0.00 XLC 2 15-nov-1991 UM20 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 CCH3CL LT 1.900 UGL 0.00 CCH3CL LT 1.400 UGL 0.00 CCL3F LT 1.400 UGL												
0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 CCH3C LT 1.900 UGL				XLC	2	15-nov-1991	UH20					
0.00 110CLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLM ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 BRDCLM LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H3CL LT 1.900 UGL						•	•	112TCE	LT	1.200	UGL	•
0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACRYLO MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H5CL LT 1.900 UGL 0.00 CCH3F LT 1.400 UGL 0.00 CCL3F LT 1.400 UGL												
0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H5CL LT 1.900 UGL 0.00 CCH5CL LT 1.900 UGL 0.00 CCH5CL LT 1.900 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL3F LT 1.400 UGL		0.00										
0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLM ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H5CL LT 1.900 UGL 0.00 CCH5C LT 1.900 UGL 0.00 CCH5 LT 1.400 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL												
0.00 ACET LT 13.000 UGL 0.00 ACROLM ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 CCH3CL LT 1.900 UGL 0.00 CCH3C LT 1.900 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL3F LT 1.400 UGL												
0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL 0.00 C2H5CL LT 0.500 UGL 0.00 C6H6 LT 0.500 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL												
0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL 0.00 C6H6 LT 0.500 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL										_		
0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL 0.00 C6H6 LT 0.500 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL												K
0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL 0.00 C6H6 LT 0.500 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL							•			0.580	UGL	
0.00 C2HSCL LT 1.900 UGL 0.00 C6H6 LT 0.500 UGL 0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL												
0.00 CCL3F LT 1.400 UGL 0.00 CCL4 LT 0.580 UGL		0.00		,								
0.00 CCL4 LT 0.580 UGL					:				_			
				-								
		0.00						CH2CL2	LT	2.300	UGL	
0.00 CH3BR LT 5.800 UGL 0.00 CH3CL LT 3.200 UGL												
0.00 CHBR3 LT 2.600 UGL		0.00										
0.00 CHCL3 L7 0.500 UGL 0.00 CL28Z ND 10.000 UGL W												_
0.00 CL2BZ ND 10.000 UGL R 0.00 CLC6H5 LT 0.500 UGL												R
0.00 CS2 LT 0.500 DGL								ÇS2	LŤ	0.500	UGL	
0.00 DBRCLM LT 0.670 UGL 0.00 ETC6H5 LT 0.500 UGL												
0.00 MEC645 LT 0.500 UGL		0.00										
0.00 MEK LT 6.400 UGL								MEK	LT	6.400	UGL	
0.00 MIBK LT 3.000 UGL 0.00 MNBK LT 3.600 UGL												
0.00 STYR LT 0.500 UGL		0.00						STYR	LT			
0.00 T13DCP LT 0.700 UGL									LT	0.700	UGL	
0.00 TCLEA LT 0.510 UGL 0.00 TCLEE LT 1.600 UGL												
0.00 TRCLE LY 0.500 UGL		0.00						TRCLE	LT	0.500	UGL	
0.00 XYLEN LT 0.840 UGL		0.00						XYLEN	LT	0.840	UGL	

qc Type					Analysis Date		Test Name			Units	Internal Standard Code
					***************************************			•			
00110			=		22 1 422		4445				
QCMB	0.00	F2	XLO	1	22- jan-1992	UNZU	111TCE 112TCE		0.500 1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE	LT	0.680	UGL	
	0.00						12DCE 12DCLE		0.500 0.500		
	0.00						12DCLP		0.500		
	0.00						SCLEAE		0.710		
	0.00						ACET ACROLN		13.000 100.000		
	0.00						ACRYLO		100.000		R R
	0.00						BRDCLM		0.590		
	0.00						C13DCP C2AVE		0.580 8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL	LT	1.900	UGL	
	0.00						CGH6 CCL3F	LT	0.500		
	0.00						CCL4		1.400 0.580		
	0.00						CH2CL2	LT	2.300		
	0.00 0.00						CH3BR		5.800		
	0.00						CH3CL CH8R3		3.200 2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ CLC6H5	ND	10.000		R
	0.00						CS2		0.500 0.500		
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500		
	0.00						MEC6H5 MEK	LT LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T13DCP	LT LT	0.500 0.700	_	
	0.00							LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00 0.00						TRCLE		0.500 0.840		
	0.00		XLP		29- Jan-1992	•	111TCE		6.700		
	0.00						112TCE		1.200	_	
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00			:			12DCE	ĹŤ	0.500		
	0.00		-				12DCLE	LT	0.500		
	0.00			·			12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET		41.000		
	0.00						ACROLN	ND	100.000		R
	0.00 0.00						ACRYLD BRDCLM	ND LT	100.000 0.590		R
	0.00						C13DCP	ĹŤ	0.580		
	0.00						C2AVE	LT	8.300		
	0.00 0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	LŦ	0.500		
	0.00						CCL3F	LT	1.400	UGL	
	0.00 0.00						CCL4 CH2CL2	LT LT	0.580 2.300		
	0.00						CH3BR	ĹŤ	5.800		
	0.00						CH3CL	LT	3.200	UGL	
	0.00						CHBR3 CHCL3	LT	2.600 0.930		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500	UGL	
	0.00						CS2	LT	0.500	UGL	

qc Type	Spike Amount	Lab	Lot		Analysis Date	Method Code	Name		Value	Units	Internal Standard Code
QCMB	0.00	ES	XLP	1	29-jan-1992	UN20	DBRCLM ETC6H5	LT LT	0.670 0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400	UGL	
	0.00						MIBK	LT LT	3.000 3.600		
	0.00						STYR	LT	0.500		
	0,00						T13DCP		0.700	UGL	
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN	ĹŤ	0.840		
	0.00		XTG		03-feb-1992		111TCE	LT	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500	UGL	
	0.00						12DCLE	LŢ	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	LT	13.000		
	0.00 0.00						ACROLN		100.000		R
	0.00						ACRYLO BRDCLM	ND LT	100.000 0.590		R
	0.00						C13DCP		0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						COHO	LT	0.500		
	0.00						CCL3F	LT	1.400	UGL	
	0.00						CCL4	LT	0.580		
	0.00						CHZCL2 CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LŤ	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CXCL3 CL2BZ	LT ND	0.500 10.000		R
	0.00						CLC6H5	LT	0.500		κ.
	0.00					•	CS2	LT	0.500	UGL	
	0.00				-		DBRCLM ETC6H5	LT LT	0.670 0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00 0.00						MIBK	LT	3.000		
	0.00		•	•			MNBK STYR	LT LT	3.600 0.500		
	0.00						T13DCP	LT	0.700		
	0.00 0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN	ĹΪ	0.840		
	0.00		XLR		04 - feb - 1992		111TCE	LT.	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500	UGL	
	0.00						12DCLE 12DCLP	LT	0.500		
	0.00						2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	ĹŤ	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLM	ND LT	100.000 0.590		R
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE	LT	8.300	UGL	
	0.00						C2H3CL	LT	2.600	UGL	

qc Type	Spike Amount	Lab	Lot	Number	Analysis Date	Code	Test Name	Boolean	Value	Units	Internal Standard Code
QCMB	0 00	EC	YI D	1	04 - feb - 1992	18920	COURCI	i T	1 000	110	
40115	0.00		~-~	•	04 1CD 1772	OHEO	C6H6		1.900 0.500		
	0.00						CCL3F	ĹŤ	1.400	UGL	
	0.00						CCL4	LT	0.580	UGL	
	0.00						CH2CL2	LŤ	2.300	UGL	
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL CHBR3 CHCL3	LT	3.200		
	0.00						CHRK2	LT LT	2.600		
	0.00						CL2BZ	ND	0.500 10.000		R
	0.00						CLC6H5	LT	0.500		K
	0.00								0.500		
	0.00						CS2 DBRCLM	LT	0.670	UGL.	
	0.00						ETC6H5	LT	0.500		
	0.00							LT	0.500		
	0.00						MEK Hibk	LT LT	6.400	UGL	
	0.00						MNBK		3.000 3.600		
- <u>.</u>	0.00						STYR	ĹŤ	0.500		
	0.00						T13000	1 T	0.700		
	0.00						TCLEA		0.600	UGL	
	0.00						TCLEE	17 17 17	1.600 0.500	UGL	
	0.00						TRCLE	LT			
	0.00		XLS		04-4-b-1000		XYLEN	LT	0.840		
	0.00		YLS		06-feb-1992		1111105	LT	0.500		
	0.00						112TCE 11DCE	LT	1.200 0.500	UGL	
	0.00						11DCLE	ĹŤ	0.680	UGL	
	0.00						12DCE		0.680 0.500	UGL	
	0.00						12DCLE		0.500 0.500	UGL	
	0.00						12DCLP				
	0.00						SCLEVE		0.710	UGL	
	0.00						ACET ACROLN		13.000 100.000	UGL	
	0.00						ACRYLO		100,000		R R
	0.00						BRDCLM		0.590	LIGL	•
	0.00						C13DCP		0.580	UGL	
	0.00					•	C2AVE	LT LT	8.300	UGL	
	0.00						CZH3CL	LT	2,600		
	0.00						CSHSCL C6H6	LT LT	1.900	UGL	
	0.00		Ĺ.,	-			CCI 3F	LT	0.500 1.400	UGL	
	0.00			•			CCL3F CCL4	LT	0.580	1101	
	0.00		•	**			CH2CL2	ĹΤ	2.300	UGL	
	0.00							LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500		_
	0.00						CLC6H5	ND Lt	10.000 0.500		R
	0.00						CS2	ĹŤ	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	ŁT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK STYR	LT LT	3.600		
	0.00						T130CP	LT	0.500 0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	ĻŤ	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		v		47 4 1		XYLEN	LT	0.840		
	0.00		XLT		07-feb-1992		111TCE	LT	0.500	_	
	0.00 0.00						112TCE	LŤ	1.200		
	0.00						11DCE	LT	0.500	UGL	

. 43(1)

qc Type	Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name		Value	Units	Interna Standard	il Code
QCMB		ES	XLT	1	07- feb-1992	UH20			0.680	UGL		
	0.00						12DCE		0.500			
	0.00						12DCLE		0.500			
	0.00						12DCLP 2CLEVE		0.500 0.710			
	0.00						ACET		13.000			
	0.00						ACROLN	ND	100.000		R	
	0.00						ACRYLO	ND	100,000		R	
	0.00						BRDCLM	LT	0.590			
	0.00						C13DCP C2AVE	LT 17	0.580 8.300			
	0.00						CZH3CL	LT	2.600			
	0.00						C2H5CL		1.900			
	0.00						C6H6 CCL3F	LT	0.500	UGL		
	0.00						CCL3F	LT	1.400			
	0.00						CCL4		0.580			
	0.00						CH3RR	LT I T	2.300 5.800			
_	0.00						CH3CL	LT	3,200	UGL		
	0.00						CHBR3	LT	2.600	UGL		
	0.00						CH3BR CH3CL CHBR3 CHCL3	LT	0.500	UGL		
	0.00						CLZBZ	ND	10.000		R	
	0.00						CLC6H5		0.500			
	0.00						CS2 DBRCLM		0.500			
	0.00						ETC6H5		0.670 0.500			
	0.00						MEC6H5		0.500			
	0.00						MEK	LT	6.400			
	0.00						WISK		3.000			
	0.00						MHBK Styr	LŢ	3.600			
	0.00						T13DCP		0.500 0.700			
	0.00						TCLEA		0.510			
	0.00						TCLEE		1.600			
	0.00						TROLE		0.500	UGL		
	0.00		9 111		13 4-4 1000		XYLEN		0.840			
	0.00 0.00		XLU		12-feb-1992		111TCE 112TCE		0.500 1.200			
	0.00					•	11DCE		0.500			
	0.00						11DCLE		0.680			
	0.00						12DCE	LT	0.500			
	0.00			:			12DCLE		0.500			
	0.00						120CLP		0.500			
	0.00						SCLEVE ACET	LT LT	0.710 13.000			
	0.00						ACROLN		100.000		R	
	0.00						ACRYLO		100.000		Ř	
	0.00						BRDCLM		0.590	UGL		
	0.00						C13DCP	LT	0.580			
	0.00						C2AVE C2H3CL	LT LT	8.300			
	0.00						CZH5CL	LT	2.600 1.900			
	0.00						C6H6	ίť	0.500			
	0.00						CCL3F	LT	1.400			
	0.00						CCL4	LT	0.580			
	0.00						CH2CL2		2.300			
	0.00						CH3BR	LT	5.800			
	0.00						CH3CL CHBR3	LT LT	3.200 2.600			
	0.00						CHCL3	LT	0.500			
	0.00						CL28Z	NO	10.000		R	
	0.00						CLC6H5	LT	0.500	UGL		
	0.00						CS2	ĻT	0.500			
	0.00 0.00						DBRCLM		0.670			
	0.00						ETC6H5 MEC6H5	LT LT	0.500 0.500			
	2.40						COND	LI	0.500	VUL		

QC Type	Spike Amount	Lab	Lot	Sample Number	Anelysis Date		Hame	Boolean	Value		Internal Standard Code
€CMB	0.00	ES	XLU	1	12-feb-1992	UM20	MEK MIBK	LT	6-400		
	0.00						WNBK	LT LT	3.000 3.600		
	0.00						STYR	ĹŤ	0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA TCLEE		0.510 1.600		
	0.00						TRCLE	1.T	0.500		
	0.00				34 4-L 400D		XYLEN		0.840		
	0.00 0.00		XLV		21-feb-1992		111TCE 112TCE		0.500 1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE 12DCLE		0.500 0.500		
	0.00						12DCLP		0.500		
	0.00						SCLEAE		0.710		
	0.00						ACET ACROLN		13.000 100.000		R
-	0.00						ACRYLO		100.000		Ř
	0.00						BRDCLM		0.590		
	0.00						C13DCP C2AVE		0.580 8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL		1.900	_	
	0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580	UGL	
	0.00						CH2CL2 CH3BR		2.300		
	0.00						CH3CL		5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL282	LT	0.500		_
	0.00						CLC6H5	ND LT	10.000 0.500		R
	0.00						CS2	LT	0.500	UGL	
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5	LŤ	0.500	UGL	
	0.00						MEK	LT	6.400		
	0.00		,				M18K MNBK	LT LT	3,000 3,600		
	0.00		. '	· " :			STYR	ĻT	0.500		
	0.00 0.00			7 -			T13DCP TCLEA	LT LT	0.700		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500	UGL	
	0.00 0.00		XLW		26-feb-1992		XYLEN 111TCE	LT LT	0.840 0.500		
	0.00		,,		20 (00 1372		112TCE	ĹŤ	1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE 12DCE	LT LT	0.680 0.500		
	0.00						12DCLE	ĹŤ	0.500		
	0.00						120CLP	LT	0.500		
	0.00						2CLEVE ACET	LT LT	0.710 13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100,000		R
	0.00				•		BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	ĻŤ	1.400		

QC Type	Amount	Lab	Lot	Number	Analysis Date	Method Code	Name	Meas. Boolean	Value	Units	Internal Standard Cod
QCM3	0.00	EQ	Y i u	1	26-feb-1992	18420	CCL4	LT	0 500		
40.10	0.00		~~#	•	LO 14D-177E	UNIEU	CH2CT5		0.580 2.300	_	
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCF2		1.800		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5	-	0.500	_	
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	-	0.500		
	0.00						MEC6H5	LT	0.500	_	
	0.00						MEK	ĹŤ	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	_	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN		0.840	_	
	0.00		XLX		28-feb-1992		111TCE		0.500		
	0.00						112TCE		1.200		
	0.00						11DCE		0.500	UGL	
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP 2CLEVE		0.500		
	0.00						ACET		0.710 13.000		
	0.00						ACROLN	_	100.000		R
	0.00						ACRYLO		100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580	UGL	
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL C6H6	i.T LT	1.900 0.500		
	0.00				-	-	CCL3F	ĹŤ	1.400	_	
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR	LT	5.800	UGL	
	0.00						CH3CL	LT	3.200		
	0.00			-			CHBR3	LT	2.600		
	0.00						CHCL3 CL28Z	LT	0.500		_
	0.00						CLC6H5	ND Lt	10.000 0.500		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	ĹŤ	0.500		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP TCLEA	LT LT	0.700 0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00						UNK208		10.000		\$
	0.00						XYLEN	LT	0.840	UGL	_
	0.00		XLY		04-mar-1992		111TCE	LT	0.500		
	0.00 0.00						112TCE	LT	1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LŢ	0.680		
	Ψ, 60						120CE	LŢ	0.500	UGL	

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	XLY	1	04-mar-1992	UM20	120CLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	ĹŤ	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	ĹΫ	8.300		
	0.00						CZH3CL	LT	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900		
	0.00						CCL3F	LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00 0.00						CH3BR CH3CL	LT	5.800		
	0.00						CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3	ĹΫ	. 0.500		
	0.00						CL2BZ	ND	10.000	UGL	R
	0.00						CLC6H5	LT	0.500		
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6K5	LT	0.500		
	0.00						MEC6H5	LT	0.500	UGL	
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT LT	3,000 3,600		
	0.00						STYR	LT	0.500		
	0.00						T130CP	LT	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE UNK208	LT	0.500 5.000		s
	0.00						XATEN	LT	0.840		3
	0.00		XCD	6	09-dec-1991	SD09	TL	LŤ	6.990		
	0.00 0.00		XOH 10X	1	31-jan-1992		TL	LT	6.990		
	0.00		XOI		04-feb-1992 13-feb-1992	•	TL TL	LT LT	6.990 6.990		
	0.00		XOL		20-feb-1992		TL	LT	6.990		
	0.00		XOM		04-mer-1992		TL	i.T	6.990		
	0.00		XOP.		12-mar-1992		TL 	LT	6.990		
	0.00		XOR	··· ·8	25-mar-1992 06-dec-1991	\$022	TL AS	LT LT	6.990 2.540		
	0.00		XPV	ĩ	29- jan-1992	****	AS	LT	2.540		
	0.00		XPU		06-feb-1992		AS	LT	2.540	UGL	
	0.00		XPX		12-feb-1992		AS	LT	2.540		
	0.00 0.00		XPZ XQH		21-feb-1992 21-jan-1992	1110	AS 111TCE	LT LT	2.540 0.004		
	0.00				, (,,,	E417	112TCE	ĹŤ	0.005		
	0.00						11DCE	LT	0.004		
	0.00						11DCLE	LT	0.002		
	0.00 0.00						120CE 120CLE	LT	0.003		
	0.00						12DCLP	LT LT	0.002 0.003		
	0.00						2CLEVE	ND	0.010		R
	0.00						ACET	LT	0.017		
	0.00 0.00						ACROLN	ND	0.100		R
	0.00						ACRYLO BRDCLM	ND Lt	0.100 0.003		R
	0.00						C13DCP	ĹŤ	0.003		
	0.00						CZAVE	LT	0.003	UGG	
	0.00						C2H3CL	LT	0.006		
	0.00						C2H5CL C6H6	LT LT	0.012 0.002		
	0.00						CCL3F	ĹŤ	0.002		

 $w_{N}(z) > 0$

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Test Name	Boolean	Value		Internal Standard Code
QCMB	0.00	ES	XOX	1	21 - ian - 1992	I M10	CCI &	l Y	0.007	uce	
	0.00		71411	•	21 • jan • 1992	CMIP	CH2CL2	LT	0.012		
	0.00						CH3BR	ίτ	0.006		
	0.00						CH3CL	LT	0.009	UGG	
	0.00						CHBR3	LT	0.007	UGG	
	0.00							LT	0.001		
	0.00						CL2BZ	ND	0.100		Ř
	0.00						CLC6H5 CS2		0.001		
	0.00						DBRCLM	LT	0.004 0.003		
	0.00						ETC6H5		0.002		
	0.00						MEC6H5		0.001		
	0.00						MEK	LT	0.070		
	0.00						MIBK	LT	0.027		
	0.00						MNBK	LT	0.032		
	0.00						STYR	LŤ	0.003		
	0.00						T13DCP	LT LT	0.003 0.002		
- -	0.00						TCLEE	LT	0.001		
	0.00						TRCLE	LŤ	0.003		
	0.00						UNK112		0.004		S
	0.00						XYLEN	LT	0.002		
	0.00		XQL		12-feb-1992		111TCE		0.004		
	0.00						112TCE		0.005		
	0.00						11DCE 11DCLE	LT	0.004		
	0.00						12DCE		0.002 0.003		
	0.00						12DCLE		0.002		
	0.00						120CLP		0.003		
	0.00						2CLEVE		0.010		R
	0.00						ACET	LT	0.017		
	0.00						ACROLN		0.100		R
	0.00						ACRYLO		0.100		R
	0.00						BRDCLM C13DCP		0.003 0.003		
	0.00						C2AVE	ĽŤ	0.003		
	0.00						C2H3CL		0.006		
	0.00					•	C2H5CL	LT	0.012		
	0.00						C6H6_	LT	0.002		
	0.00						CCL3F	LŢ	0.006		
	0.00						CCL4 CH2CL2	LT	0.007		
	0.00						CH3BR	LT LT	0.012 0.006		
	0.00						CH3CL	LT	0.009		
	0.00							LT	0.007		
	0.00						CHCL3	LT	0.001		
	0.00						CLZBZ	ND	0.100		R
	0.00						CLC6H5	LT	0.001		
	0.00						CS2	LT	0.004		
	0.00						DBRCLM ETC6H5	LT LT	0.003 0.002		
	0.00						MEC6H5		0,001		
	0.00						MEK	ĹŤ	0.070		
	0.00						HIBK	LT	0.027		
	0.00						MNBK	17	0.032		
	0.00						STYR	LT	0.003		
	0.00						T13DCP	LŤ	0.003		
	0.00						TCLEA	LT	0.002		
	0.00						TCLEE	LŤ	0.001		
	0.00						XATEN	LT LT	0.003 0.002		
	0.00		XOM		24-feb-1992		111TCE		0.002		
	0.00		-		·- ·		112TCE		0.005		
	0.00						11DCE	LT	0.004		
	0.00						11DCLE		0.002		
	0.00						12DCE	LT	0.003	UGG	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	XQM	1	24-feb-1992	LN19	12DCLE	LT	0.002	UGG	
	0.00						12DCLP	ĹŤ	0.003		
	0.00						2CLEVE	ND	0.010		R
	0.00						ACET ACROLN	LT ND	0.017 0.100		R
	0.00						ACRYLO	_	8.100		Ř
	0.00						BRDCLM	LT	0.003	UGG	-
	0.00						C13DCP	LT	0.003		
	0.00						C2AVE C2H3CL	LT LT	0.003 0.006		
	0.00						C2H5CL	ĹŤ	0.012		
	0.00						C6H6	LT	0.002		
	0.00 0.00						CCL3F CCL4	LT	0.006		
	0.00						CH2CL2	LT LT	0.007 0.012		
	0.00						CH3BR	LT	0.006		
	0.00						CH3CL	LT	0.009	-	
	0.00						CHBR3	LT	0.007		
	0.00						CHCL3	LT ND	0.001 0.100		R
	0.00						CLC6H5	LT	0.001		•
	0.00						CS2	LT	0.004		
	0.00						DBRCLN ETC6H5	LT LT	0.003 0.002		
	0.00						MEC6H5	LT	0.002		
	0.00						MEK	LT	0.070		
	0.00						MIBK	LT	0.027		
	0.00						MNBK Styr	LT LT	0.032 0.003		
	0.00						T13DCP		0.003		
	0.00						TCLEA	LT	0.002	UGG	
	0.00						TCLEE	ĻŢ	0.001		
	0.00						TRCLE	LT LT	0.003 0.002		
	0.00		XQ\$		12-mar-1992		111TCE	LT	0.004		
	0.00						112TCE	LT	0.005		
	0.00						11DCE	LT	0.004		
	0.00				-	•	11DCLE 12DCE	LT LT	0.002 0.003		
	0.00						12DCLE	LT	0.002		
	0.00						12DCLP	LT	0.003		_
	0,00 0.00						2CLEVE ACET	ND LT	0.010 0.017		R
	0.00			· .			ACROLN	ND	0.100		R
	0.00						ACRYLO	ND	0.100		R
	0.00						BRDCLM C13DCP	LT LT	0.003 0.003		
	0.00						CZAVE	LT	0.003		
	0.00						C2H3CL	LT	0.006		
	0.00						C2H5CL	LT	0.012		
	0.00						CGH6 CCL3F	LT LT	0.002 0.006		
	0.00						CCL4	ĹŤ	0.007		
	0.00						CH2CL2	LT	0.012		
	0.00						CH3BR	ŁŤ	0.006		
	0.00 0.00						CH3CL	LT	0.009		
	0.00						CHCL3	LT LT	0.007 0.001		
	0.00						CL2BZ	MD	0.100		R
	0.00						CLC6H5	LT	0.001		
	0.00						CSŽ	LT	0,604		
	0.00						DBRCLM ETC6H5	LT LT	0.003 0.002		
	0.00						MEC6H5	LT	0.001	UGG	
	0.00						MEK	LT	0.070	UGG	
	0.00						MIBK	LT	0.027	UGG	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
⊕CMB	0.00	ES	XQS	1	12-mar-1992	LH19	MNBK	LT	0.032	UGG	
	0.00						STYR	LT	0.003	UGG	
	0.00						T13DCP	LT	0.003		
	0.00						TCLEA	LŢ	0.002		
	0.00						TCLEE	LT LT	0,001 0.003		
	0.00						XYLEN	ĹŤ	0.002		
	0.00		XSB	6	16-dec-1991	JD15	SE		0.288		
	0.00		XSI	1	14-feb-1992		SÉ	ĻT	0.250		
	0.00		XSK		21-feb-1992		SE	LŢ	0.250		
	0.00		XSS		05-mar-1992		SE	LT	0.250		
	8.00		XSZ		12-mar-1992 27-mar-1992		se se	LT LT	0.250 0.250		
	0.00		XTG		31- jan-1992	SD21	SE	ĹŤ	3.020		
	0.00		XTH		05-feb-1992		SE	ĹŤ	3.020		
	0.00		XT1		12-feb-1992		SE	LT	3.020	UGL	
	0.00		XTK		21-feb-1992		SE	LT	3.020		
	0.00		XTL		03-mar-1992		SE SE	LT	3.020		
	0.00		XTQ		13-mar-1992 26-mar-1992		SE SE	LT LT	3.020		
	0.00		XTR		07-apr-1992		5E	LT	3.020 3.020		
	0.00		XVC		03-dec-1991	00	PH		7.110	UGL	
	0.00		XVK		21- jan- 1992		PH		6.590		
	0.00		XVL		22- jan-1992		TOX	LT	10.000		
	0.00		XVM		08-feb-1992		TOC	LT	1.000	UGL	
	0.00		XVS		10-feb-1992 12-feb-1992		PH		6.770		
	0.00		XVU		30-jan-1992		PH Ph		6.500 6.570		
	0.00		XVV		03-feb-1992		PH		7.030		ĸ
	0.00		XVW		02-feb-1992		PH		6.990		ĸ
	0.00		XVX		07-feb-1992		PH		6.930		ĸ
	0.00		XVY		03-feb-1992		TOX		0.029		
	0.00 0.00		XVZ		10-feb-1992		TOX	LT	10.000		
	0.00		XIVC		30- jan-1992 04-feb-1992	SD20	PB PB	LT LT	1.260 1.260		
	0.00		XLD		12-feb-1992		PB	LT	1.260		
	0.00		XWF		21-feb-1992		PB	LT	1.260		•
	0.00		XWG		06-mar-1992		PB	LT	1.260		•
	0.00		XAT		17-mar-1992		PS .	LT	1.260		
	0.00 0.00		XXB		26-mar-1992 31-jan-1992	TF22	PB Nit	LT	1.260		
	0.00		YAS	_	14-feb-1992		135TNB	LT LT	10.000 0.488		
	0.00						13DNB	LŤ	0.496		
	0.00						246TNT	LT	0.456		
	0.00						24DNT	LT	0.424		
	0.00						26DNT	LT	0.524		
	0.00						HMX	LT	0.666		
	0.00						NB RDX	LT LT	2.410 0.587		
	0,00						TETRYL	ĹΪ	0.731		
	0.00		HAY		06-mar-1992		135TNB	ĹŤ	0.488		
	0.00						13DNB	LT	0.496	UGG	
	0.00						246TNT	LT	0.456		
	0.00						24DNT 26DNT	LT	0.424		
	0.00						HMX	LT LT	0.524 0.666		
	0.00						NB	ĹŤ	2.410		
	0.00						RDX	ĹŤ	0.587		
	0.00						TETRYL	LT	0.731		
	0.00		LAY		07-mar-1992		135THB	LT	0.488		
	0.00						130NB	LT	0.496		W
	0.00						246TNT 24DNT	LT 2.T	0.456		
	0.00						26DNT	lt Lt	0.424 0.524		U
	0.00						HMX	ίτ	0.566		W W
	0.00						MB	LT	2.410		-

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	YAJ	1	07-mar-1992	LW12	RDX	LT	0.587		
	0.00 0.00		YAL		11-mar-1992		TETRYL	LŢ	0.731		W
	0.00		IAL		I I - IIISI - 1995		135TNB 13DNB	LT LT	0.488 0.496		
	0.00						246TNT		0.456		
	0.00						24DNT	LT	0.424		
	0.00						26DNT	LŤ	0.524		
	0.00						NB HMX	LT LT	0.666 2.410		
	0.00						RDX	LT	0.587		
	0.00		v=-		40 4 4 4000		TETRYL	LT	0,731	_	
	0.00		YCA		12-feb-1992 25-feb-1992	SD23	AG AG	LT LT	0.250 0.250		
	0.00		YCC		03-mar-1992		AG	LT.	0.250		
	0.00		YCF		12-mar-1992		AG	ĹŤ	0.250		
	0.00		YCH		24-mar-1992		AG	LT	0.250		
	0.00		YEA YEB		13-feb-1992	00	TOX	LT	10.000	UGL	
-	0.00		YED		06-mar-1992 18-feb-1992		PH TPHC		6.200 2.590	Lice	
	0.00		YEE		17-feb-1992		PH		6.400	000	
	0.00		YEF		21-feb-1992		PH		6.240		
	0.00		YEG		24-feb-1992		PH		6.010		
	0.00		YEI		27-feb-1992 28-feb-1992		PH TOX	LT	6.030 10.000	Hel	
	0.00		LBY		02-mar-1992		TOX	۲.	0.055		
	0.00		YEK		03-mar-1992		TOC	LT	1000.000		
	0.00		AET		05-mar-1992		PH		5.940		
	0.00		AEM		15-feb-1992 21-feb-1992		TOX	LT	0.100		
	0.00		YEO		06-mar-1992		TOX	LT LT	10.000 10.000		
	0.00		YEP		12-маг-1992		TOX	LT	10.000		
	0.00		YEQ		24-mar-1992		TOC	LT	1000.000		
	0.00		YER		12-mar-1992		PH		6.560		
	0.00		YEZ		31-oct-1991 17-feb-1992		PH PH		6.580 6.770		
	0.00		YGG		12-mar-1992	JS16	AG	LT	0.589	UGG	
	0.00						AL		103.000	UGG	¥
	0.00					•	BA	LT	5.180		¥
	0.00						BE CA	LT	0.500 1120.000		u
	0.00						⊞	LT	0.700		•
	0.00		-				CO	LT	1.420		W
	0.00						CR	LT	4.050		
	0.00						CU Fe	LT	0.965 175.000		
	0.00						K.	LT	100.000		W
	0.00						MG		164.000		น ี
	0.00						MN	ĻT	2.050		W
	0.00						NA II	LT	294.000	_	¥
	0.00						PB PB	LT	1.710 10.500		u
	0.00						SB	LT	7.140		Ü
	0.00						TL	LT	6.620		
	0.00						V	LT	3.390		¥
	0.00		YGL		26-mar-1992		ZN AG	LT LT	8.030 0.589		
	0.00						AL.	••	130.000		¥
	0.00						BA	LT	5.180	UGG	Ÿ
	0.00						BE	LT	0.500		
	0.00						CA CD	LŤ	1180.000		¥
	0.00						8	LT	0.700 1.420		· u
	0.00						CR	ĹŤ	4.050		-
	0.00						CU	LT	0.965	UGG	
	0.00						FE	, -	184.000		W
	0.00						K	ŁT	100.000	UGG	¥

Q¢ Type	Spike Amount	Lab	Lot		Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	EG	ACI	1	26-mar-1992	1014	W.C.		4/7 000		
-6170	0.00		700	•	20 - Mai - 1776	1210	MG Mk	LT	167.000 2.050		¥
	0.00						NA NA	LI	316.000		W
	0.00						MI	LT	1.710		•
	0.00						PB	LT	10,500		W
	0.00						SB	LT	7.140	UGG	¥
	0.00						TL.	LT	6.620		
	0.00						V	LT	3.390		¥
	0.00 0.00		YHE		06-mar-1992	1901	ZN	LT	8.030		
	0.00		YHF		12-mar-1992		HG HG	LT LT	0.050 0.050		
	0.00		YHK		28-mar-1992		HG	LT	0.050		
	0.00		YIA		03-mar-1992			LŤ	2.540		
	0.00		AID		12-mar-1992		AS	LT	2.540		
	0.00		YIF		31-mar-1992		AS	LT	2.540	UGL	
	0.00		YIG		07-apr-1992		AS	LT	2.540		
	0.00		YJC		10-mar-1992	UM18	124TCB		1.800		
	0.00 0.00						120CLB 120PH	LT	1.700		_
	0.00						13DCLB	ND Lt	2.000 1.700		R
	0.00						14DCLB	LT	1.700		
	0.00						2451CP		5.200		
	0.00						246TCP	LT	4.200		
	0.00						24DCLP		2.900	UGL	
	0.00						24DMPN		5.800		
	0.00 0.00						240NP	LĬ	21.000		
	0.00						24DNT 26DNT	LT LT	4.500 0.790		
	0.00						2CLP	LT	0.790		
	0.00						2CNAP		0.500		
	0.00						2MNAP	LT	1,700		
	0.00						2MP	LT	3.900		
	0.00						ZNANIL	LT	4.300		
	0.00				1		2NP	LT	3.700		
	0.00				· · · · · · · · · · · · · · · · · · ·		330CBD	LT	12.000		
	0.00						3NANIL 46DN2C	LT LT	4.900 17.000		
	0.00						4BRPPE	LT	4.200		
	0.00						4CAN1L	ĹŤ	7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00			•			4NP ABHC	LT ND	12.000 4.000		_
	0.00						ACLDAN	ND	5.100		R R
	0.00						AENSLF	ND	9.200		R
	0.00						ALDRN	ND	4,700		Ř
	0.00						ANAPNE	1.T	1.700		
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	ĻŢ	0.500		
	0.00 0.00						B2CEXM	LT	1.500		
	0.00			•			B2CLEE	LT	5.300		
	0.00						B2CLEE	LT LT	1.900 4.800		
	0.00						BAANTR	LT	1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT	LT	5.400		
	0.00						B8HC	ND	4.000		R
	0.00						BBZP	LT	3.400		
	0.00						BENSLF	ND	9.200		R
	0.00						BENZID	ND LT	10,000		R
	0.00						BGHIPY	LT LT	13.000 6.100		
	0.00						BKFANT	ĹŤ	0.870		
	0.00						BZALC	ĹŤ	0.720		
	_						~ · · · · · · ·		41.14		

ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Co
0545			u 10		40 4000						
GCMB	0.00	E5	A1C	1	10-mar-1992	UKIS	CHRY	LT	2.400		
	0.00 0.00						CL6BZ	LT	1.600		
	0.00						CL6CP	11	8.600		
	8.00						CL 6ET DBAHA	LT LT	1.500 6.500		
	0.00						DBHC	ND	4.000		
	0.00						DBZFUR		1.700		R
	0.00						DEP	LT	2.000		
	0,00						DIACAL	••	4.000		s
	0.00						DLDRN	ND	4.700		Ř
	0.00						DMP	LT	1.500		•
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000	UGL	
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA	MD	8.000	UGL	R
	0.00						ENDRNK		8.000		R
	0.00						ESFS04	ND	9.200		R
	0.00						FANT	LT	3.300		
	0.00						FLRENE		3.700		
	0.00 0.00						GCLDAN	MD	5.100		R
	0.00						HCBD	LŤ	3.400		_
	0.00						HPCL HPCLE	MD MD	2.000 5.000		Ŕ
	0.00						ICDPYR		8.600		R
	0.00						ISOPHR	-	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR	ND	5.100		Ŕ
	0.00						NAP	LT	0.500		•
	0.00						NB	LT	0.500		
	0.00						NNOMEA	ND	2.000		R
	0.00						NNDNPA	LT	4.400	UGL	
	0.00						NNDPA	LT	3,000	UGL	
	0.00						PC8016	MD	21.000	UGL	R
	0.00						PCB221	ND	21.000		R
	0.00						PCB232	ND	21.000		R
	0.00						PCB242	ND	30.000		R
	0.00						PCB248	ND	30.000		R
	0.00					•	PC8254	ND	36.000		R
	0.00						PCB260	MD	36.000		R
	0.00						PCP	LŢ	18.000		
	0.00						PHANTR PHENOL		0.500		
	0.00						PPDDD	LT ND	9.200 4.000		
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT	MD	9.200		R
	0.00						PYR	LT	2.800		R
	0.00						TXPHEN	ND	36.000		R
	0.00						UNK527		4.000		ŝ
	0.00		YJD				124TCB	LT	1.800		
	0.00						12DCLB	LT	1.700		
	0.00						120PH	ND	2.000	UGL	R
	0.00						12EPCH		6.000	UGL	S
	0.00						13DCLB	LT	1.700	UGL	_
	0.00						14DCLB	LT	1.700		
	0.00						245TCP	LT	5.200		
	0.00						2461 CP	LT	4.200		
	0.00						24DCLP	LT	2.900		
	0.00						24DMPN	LT	5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNT	LŢ	4.500		
	0.00						26DNT	LT	0.790		
	0.00 0.00						2CLP	LT	0.990		
	0.00						2CNAP	LT	0.500		
	0.00						2MNAP 2MP	LT	1.700	UGL	
	0.00						ZNANIL	LŢ	3.900		
	Ψ,00						EMAN!L	LT	4.300	التال	

WE SHAW

gc Type	Amount	Lab	Lot	Number	Analysis Date		Name		Value	Units	Internal Standard C
QCMB	0.00	FS	Y.JD	1	10-mar-1992	11410	2NP	LT	7 700	, 161	
	0.00			•	10 Mai 1772	OA 10	330CBD		3.700 12.000		
	0.00						SHANIL		4.900		
	0.00						46DN2C	LT	17.000		
	0.00						48RPPE		4.200		
	0.00 0.00						4CANIL		7.300		
	0.00						4CL3C 4CLPPE	LT LT	4.000 5.100		
	0.00						4MP	LT	0.520		
	0.00	•					4NANIL		5.200		
	0.00						4NP	ĻT	12.000	UGL	
	0.00						ABHC	ND	4,000		R
	0.00 0.00						ACLDAN		5.100		R
	0.00						AENSLF ALDRN		9.200 4.700		R R
	0.00						ANAPNE		1.700		ж.
	0.00						ANAPYL		0.500		
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM		1.500		
	8.00						B2CIPE	-	5.300		
	0.00						B2CLEE		1.900		
	0.00						B2EHP BAANTR		4.800 1.600		
	0,00						BAPYR		4,700		
	0.00						BBFANT	_	5.400		
	0.00						BBHC	ND	4.000	UGL	R
	0.00						BBZP		3.400		
	0.00 0.00						BENSLF		9.200		R
	0.00						BENZIO BENZOA		10.000 13.000		R
	0.00						BGHIPY		6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LT	0.720	UGL	
	0.00						CHRY	LT	2,400		
	0.00 0.00						CL68Z	LT	1.600		
	0.00						CL6CP CL6ET	LT LT	8.600 1.500		
	0.00						DBAHA	LT	6.500		
	0.00					•	DBHC	ND	4.000		R
	0.00						DBZFUR	LT	1.700		
	0.00						DEP	LT	2.000		
	0.00 0.00						DLDRN	NO	4-700		R
	0.00						DMP DNBP	LT LT	1.500 3.700		
	0.00			•			DNOP	ĹŦ	15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA	ND	8.000		R
	0.00						ENDRNK	ND	8.000		R
	0.00 0.00						ESFS04	ND	9.200		R
	0.00						FANT FLRENE	LT LT	3.300 3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400		•
	0.00						HPCL	ND	2.000	ŲGL	R
	0.00						MPCLE	ND	5.000		R
	0.00 0.00						ICDPYR	LT	8.600		
	0.00						ISOPHR LIM	LT No	4.800		
	0,00						HEXCLR	ND ND	4.000 5.100		R R
	0.00						NAP	LT	0.500		~
	0.00						NB	ĽΪ	0.500		
	0.00						NNDMEA	ND	2.000	UGL	R
	0.00						NNDNPA	LT	4.400		
	0.00 0.00						NADPA	LT	3.000		_
	0.00						PC8016	ND	21.000		R
	00						PCB221	ND	21.000	UOL	Ŕ

ec Type	Spike Amount				Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	E\$	YJD	1	10-mar-1992	UM18	PC8232	ND	21.000	UGL	R
	0.00						PCB242		30.000		R
	0.00						PC8248	ND	30.000	UGL	Ŕ
	0.00						PC8254	ND	36,000		R
	0.00 0.00						PC8260 PCP		36.000		R
	0.00						PHANTR	LT LT	18.000 0.500		
	0.00						PHENOL	ĹŤ	9.200		
	0.00						PPDDD	ND	4,000		R
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT	ND	9.200		R
	0.00						PYR	LT	2.800		_
	0.00						TXPHEN UNK675	ND	36.000 7.000		R S
	0.00		YJF		12-mar-1992		124TC8	LT	1.800		3
	0.00						12DCLB		1,700		
	0.00						12DPH	ND	2.000		R
	0.00						12EPCH		6.000		S
	0.00						13DCLB		1.700		
	0.00						14DCLB 245TCP		1.700		
	0.00						2451CP		5.200 4,200		
	0.00						24DCLP		2.900		
	0.00						24DMPN		5.800		
	0.00						24DNP		21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						SCLP	LŢ	0.990		
	0.00						2CNAP 2MNAP	LT LT	0.500 1.700		
	0.00						2NP	LT	3.900		
	0.00						2NANIL	LT	4.300	-	
	0.00						2NP	LT	3,700		
	0.00						33DCBD		12.000	UGL	
	0.00						3HANIL	LT	4.900		
	0.00						46DN2C 48RPPE		17.000		
	0.00						4CANIL	LT LT	4.200 7.300		
	0.00					•	4CL3C	ίŤ	4.000		
	0.00						4CLPPE		5.100		
	0.00						4MP	ĹŤ	0.520		
	0.00						4NANIL		5.200		
	0.00						4NP	LT	12.000		
	0.00		-				ABHC	MD	4.000		<u>R</u>
	0.00 0.00						ACLDAN AENSLF	ND ND	5.100 9.200		R R
	0.00						ALDRN	ND	4.700		R
	0.00						ANAPNE	LT	1.700		•
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	LŦ	0.500		
	0.00						B2CEXM	LT	1.500		
	0.00						BZCIPE	LT	5.300		
	0.00						B2CLEE B2EHP	LT LT	1.900		
	0.00						BAANTR	LT	4.800 1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT	ĽΫ	5.400		
	0.00						BBHC	ND	4.000		R
	0.00						BBZP	LT	3.400	UGL	
	0.00						BENSLF	MD	9.200		R
	0.00						BENZID	MD	10.000		R
	0.00						BENZOA	LT	13.000		
	0.00						BGHIPY BKFANT	LT LT	6.100 0.870		
	0.00						BZALÇ	ĹŤ	0.720		
	0.00						CHRY	ĹΤ	2.400		

......

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Co
QCMB	0.00	ES	YJF	1	12-mar-1992	UN18	CL6BZ	LT	1.600		
	0.00						CL6CP CL6ET	LT	8.600 1.500		
	0.00						DBAHA	LT LT	6.500		
	0.00						DBHC	ND	4,000		R
	0.00						DBZFUR	LT	1,700	UGL	.,
	0.00						DEP	LT	2.000		
	0.00						DLDRN DMP	ND LT	4.700 1.500		R
	0.00						DNBP	LT	3,700		
	0.00						DNOP	LT	15,000	UGL	
	0.00						ENDRN	ND	7,600		R
	0.00 0.00						ENDRNA ENDRNK	NID NID	8,000		R
	0.00						ESFS04	ND	8.000 9.200		R R
	0.00						FANT	LT	3.300		
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	ND	5.100		Ŕ
	0.00						HCBD HPCL	LT ND	3,400 2,000		ь
	0.00						HPCLE	ND	5.000		R R
	0.00						ICDPYR		8.600		,,
	0.00						ISOPHR	LT	4.800		
	0.00						LIN MEXCLR	ND	4-000		R
	0.00						NAP	ND Lt	5,100 0,500		R
	0.00						NB	LT	0.500		
	0.00						NNDHEA	NO	2.000		R
	0.00						NNDNPA		4,400		
	0.00						NNDPA	LT	3,000		
	0.00						PC8016 PCB221	ND ND	21.000 21.000		R R
	0.00						PC8232	ND	21,000		Ŕ
	0.00						PCB242	ND	30.000		R
	0.00						PCBZ48		30.000		R
	0.00						PCB254 PCB260	ND ND	36,000 36,000		R R
	0.00						PCP	ĹŤ	18,000		
	0.00						PHANTR	LT	0,500		
	0.00					•	PHENOL	LT	9,200		
	0.00						PPDDDE PPDDE	ND	4.000		R
	0.00						PPDDT	ND ND	4.700 9.200		R R
	0.00						PYR	LT	2,800		•
	0.00						TXPHEN	ND	36,000		R
	0.00 0.00		YJI		01-apr-1992		124TC8	LT	1.800		
	0.00						12DCLB 12DPH	LT ND	1,700 2,000		R
	0.00						130CLB	ĹŤ	1.700		
	0.00						14DCLB	LT	1.700	UGL	
	0.00						245TCP	LT	5.200		
	0.00						246TCP 24DCLP	LT LT	4.200		
	0.00						24DMPN	LT	2.900 5.800		
	0.00						24DNP	ĹŤ	21.000		
	0.00						24DNT	LŤ	4.500		
	0.00						26DNT	LT	0.790	UGL	
	0.00						2CLP 2CNAP	LT LT	0.990 0.500	UGL	
	0.00						2MNAP	LT.	1,700		
	0.00						2MP	LT	3.900		
	0.00						2NANTL	`LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						330CBD 3NAN1L	LT LT	12.000 4.900		¥
	9.00						46DN2C		17.000		

ас Туре	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Name	Boolean	Value		Internal Standard Code
QCMB	0.00	ES	Ali	1	01-apr-1992	UM18			4.200		
	0.00						4CANIL 4CL3C	L1 17	7.300 4.000		
	0.00						4CLPPE		5.100		
	0.00						4HP	LT	0.520	UGL	
	0.00						4NAN1L		5.200		
	0.00						ANP ABHC	ND	12.000 4.000		•
	0.00						ACLDAN	ND	5.100		R R
	0.00						AENSLF		9.200		Ř
	0.00						ALDRN		4.700		R
	0,00						ANAPNE ANAPYL		1.700		
	0.00						ANTRO		0.500 0.500		
	0.00						B2CEXM		1.500		
	0.00						BZCIPE	LT	5.300	UGL	
	0.00						B2CLEE		1.900		
	0.00						B2EHP BAANTR		4.800 1.600		u u
	0.00						BAPYR		4.700		ū
	0.00						BSFANT	LT	5.400		Ÿ
	0.00						BBHC	ND	4.000		R
	0.00						BSZP BENGLE		3.400 9.200		V
	0.00						BENSLF BENZID	ND	10.000		R R
	0.00						BENZOA	ŁT	13.000		•
	0.00						BCHIPY	LT	6.100		u
	0.00						BKFANT		0.870		¥
	0.00						BZALC CHRY		0.720 2.400		
	0.00						CL6BZ	17	1.600		¥
	0.00						CL6BZ CL6CP	LŤ	8,600		
	0.00						CL6ET	LT	1.500		
	0.00						DBAHA	LT	6.500		u
	0.00						DBHC DBZFUR		4.000 1.700		R
	0.00						DEP	ĹŤ	2.000		
	0.00						DLDRN	MD	4.700		2
	0.00						DMP	LT	1.500		
	0.00					•	DNBP DNOP	LT LT	3.700 15.000		
	0.00						ENDRN		7.600		u R
	0.00						ENDRNA		8.000		Ř
	0.00		٠.				ENDRNK	ND	8.000	UGL	R
	0.00			•			ESFS04 FANT	ND	9.200		R
	0.00			•			FLRENE	LT LT	3.300 3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400	UGL	
	0.00						HPCL	ND	2.000		R
	0.00						HPCLE ICOPYR	ND LT	5.000 8.600		R
	0.00						ISOPHR	LŤ	4.800		u
	0.00						LIN	ND	4.000		R
	0.00						MESTOX		2.000		\$
	0.00						MEXCLR NAP	ND LT	5.100		R
	0.00						NB	LT	0.500 0.500		
	0.00						NHDMEA	ND	2.000		R
	0.00						NNDNPA	LT	4.400	UGL	**
	0.00						NNDPA	LT	3.000		
	0.00 0.00						PCB016 PCB221	ND ND	21.000		R
	0.00						PCB232	ND ND	21.000 21.000	-	R R
	0.00						PCB242	ND	30.000		K R
	0.00						PCB248	ND	30.000		Ř

ac Type	Spike Amount	Leb	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	Ee.	v 17		011003	1 me 4 D	5000F/		5		_
WLITD	0.00	E3	141	,	01-apr-1992	UMIG	PCB260		36.000		R
	0.00						PCP	LT	36.000 18.000		R
	0.00						PHANTR		0.500		
	0.00						PHENOL.	ĹŤ	9.200		
	0.00						PPDDD	ND	4,000		R
	0.00						PPDDE	ND	4,700	UGL	R
	0.00						PPDDT	ND	9.200		Ŕ
	0.00						PYR	LT	2.800		ň
	0.00		YKB		06-mar-1992	In10	TXPHEN AS	NID Lt	36.000 0.250		R
	6.00		YKC		12-mar-1992	9017	AS	LT	0.250		
	0.00		YK!		27-mar-1992		AS	ίτ	0.250		
	0.00		YLA		17-mar-1992	LM18	124TCB	LT	0.040		
	0.00						12DCLB	LT	0.110	UGG	
	0.00						120PK	ND	0.140		R
	0.00						12EPCH		0.300		S
	0.00						13DCLB	LT	0.130		
	0.00						14DCLB 245TCP	LT LT	0.098 0.100		
	0.00						246TCP	ίŤ	0.170		
	0.00						24DCLP	ĹŤ	0.180		
	0.00						24DMPN	LT	0.690		
	0.00						24DNP	LT	1.200	UGG	
	0.00						24DNT	LT	0.140		
	0.00						26DNT	LT	0.085		
	0.00						2CLP	LT	0.060		
	0.00						2CNAP 2MNAP	LT LT	0.036 0.049		
	0.00						2MP	ĹΤ	0.029		
	0.00						2NANIL	ĹŤ	0.062		
	0.00						2NP	LT	0.140		
	0.00						330 CBD	LT	6.300		
	0.00						3NANIL	LT	0.450		
	0.00 0.00						460N2C	LŤ	0.550		
	0.00						48RPPE 4CANIL	LT LT	0.033 0.810		
	0.00						4CL3C	LT	0.095		
	0.00						4CLPPE	ĹŤ	0.033		
	0.00					_	4MP	LT	0.240	UGG	
	0.00					-	4MANIL	LT	0.410		
	0.00						4NP	LT	1-400		
	0.00						ABHC	ND	0.270		R
	0.00			•			ACLDAN AENSL F	ND ND	0.330 0.620		R R
	0.00						ALDRN	ND	0.330	ucc	Ř
	0.00						ANAPNE	ίī	0.036		^
	0.00						ANAPYL	LT	0.033		
	0.00						ANTRO	LT	0.033	UGG	
	0.00						B2CEXM	LT	0.059		
	0.00 0.00						B2C1PE	ŁT	0.200		
	0.00						B2CLEE	LT	0.033		
	0.00						B2EKP BAANTR	LT LT	0.620 0.170		
	0.00						BAPYR	LT	0.250	UGG	
	0.00						BBFANT	LT	0.210		
	9.00						BBHC	ND	0.270		R
	0.00						BBZP	LT	0.170		==
	0.00						BENSLF	ND	0.620		R
	0.00						BENZID	ND	0.850		R
	0.00 0.00						BENZOA	ND	6.100		R
	0.00						BGHIPY	LT (T	0.250		
	0.00						BKFANT BZALC	LT LT	0.066 0.190		
	0.00						CHRY	LT	0.120		
	0.00						CL6BZ	ĹŤ	0.033		

ac Type	Spike A moun t	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
										•	
QCMB	0.00	E E	v	4	17-mar-1992		01 (00				
ACMD	0.00	E-9	ILA	•	17-1481 1772	LMIO	CL6CP CL6ET	LT LT	6.200 0.150		
	0.00						DBAHA	LT	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR	LT	0.035	UGG	
	0.00						DEP	LT	0.240		_
	0.00						DLDRN DMP	ND LT	0.310 0.170		R
	0.00						DNBP	ĹŤ	0.061		
	0.00						DNOP	LT	0.190	UGG	
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA ENDRNK	ND ND	0.530		R
	0.00						ESFS04	ND	0.530 0.620		R R
	0.00						FANT	ĹŤ	0.068		•
	0.00						FLRENE	LT	0.033		
	0.00 0.00						GCLDAN	ND	0.330		Ř
	0.00						HCBD HPCL	LT ND	0.230 0.130		R
	0.00						HPCLE	ND	0.330		Ř
	0.00						ICOPYR	LT	0.290		
	0.00						ISOPHR	LT	0.033		
	0.00						LIN MEXCLR	MD ND	0.270		R R
	0.00						NAP	LT	0.330 0.037		R
	0.00						NB	LT	0.045		
	0.00						NADMEA	ND	0.140	UGG	R
	0.00						NNDNPA	LT	0.200		
	0.00						NNDPA PCB016	LT ND	0.190 1.400		R
	0.00						PCB221	ND	1.400		R
	0.00						PCB232	NED	1.400		Ř
	0.00						PCB242	ЖD	1.400		R
	0.00 0.00						PC8248 PC8254	NĎ	2.000		R
	0.00						PCB254	ND ND	2.300 2.600		R R
	0.00						PCP	ίŤ	1.300		•
	0.00						PHANTR	LT	0.033		
	0.00						PHENOL	LT	0.110		
	0.00					•	PPDDD PPDDE	ND ND	0.270 0.310		R
	0.00				•		PPDDT	ND	0.310		R R
	0.00						PYR	LT	0.033		•
	0.00		•				TXPHEN	ND	2.600		R
	0.00 0.00		YLC		23-mar-1992		UNK652 124TCB	LT	0.500		\$
	0.00		ILLG	٠.	2J-Mg1 - 1772		120CLB	Li	0.040 0.150		
	0.00						120PH	ND	0.140		R
	0.00						13DCLB	LT	0.130	UGG	
	0.00						14DCLB	LT	0.098		
	0.00						245TCP 246TCP	LT LT	0.100 0.170		
	0.00						24DCLP	LT	0.170		
	0.00						24DMPN	LT	0.690		
	0.00						24DNP	LT	1.200	UGG	
	0.00						24DNT	LT	0.140		
	0.00						26DNT 2CLP	LT LT	0.085 0.060		
	0.00						2CNAP	LT	0.036		
	0.00						2MNAP	LT	0.049	-	
	0.00						2MP	LT	0.029		
	0.00 0.00						2NANIL 2NP	LT	0.062		
	0.00						330 CBO	LT LT	0.140 6.300		
	0.00						3NANIL	ĹŤ	0.450		
	0.00						460N2C	LT	0.550		

QC Type	Spike Amount	Lab	Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Cod
OCMB	0.00	ES	YLC	1	23-mar-1992	LM18	4BRPPE	LT	0.033	UGG	
	0.00						4CANIL	-	0.810		
	0.00						4CL3C	LT	0.095		
	0.00						4CLPPE 4MP		0.033		
	0.00						4MANIL	LT LT	0.240 0.410		
	0.00						4NP	ĹŤ	1.400		
	0.00						ABHC		0.270		R
	0.00						ACLDAN		0.330		R
	0.00						AENSLF		0.620	UGG	R
	0.00						ALDRN		0.330		R
	0.00						ANAPNE		0.036		
	0.00						ANTRO	LT	0.033 0.033		
	0.00						B2CEXM		0.059		
	0.00						BECIPE		0.200		
	0.00						B2CLEE	LT	0.033	UGG	
	0.00						BZEHP	LŢ	0.620		
	0.00 0.00						BAANTR		0.170		
	0.00						BAPYR BBFANT	LT	0.250		
<u> </u>	0.00						BBHC	LT ND	0.210 0.270		R
	0.00						BBZP	LT	0.170		ĸ
	0.00						BENSLF	-	0,620		R
	0.00						BENZID	ND	0.850		R
	0.00						BENZOA		6.100		R
	0.00						BCHIPY		0.250		
	0.00						SKFANT		0.066		
	0.00						BZALC	LT LT	0.190 0.120		
	0.00						CL6BZ	ĹŤ	0.033		
	0.00						CL6CP	LŤ	6.200		
	0.00						CL6ET	LT	0.150		
	0.00						DBAHA	LŤ	0.210		
	0.00						DBHC	ND	0.270		R
	0.00						DBZFUR		0.035		
	0.00						DEP DLDRN	LT ND	0.240 0.310		R
	0.00						DMP	LT	0.170		•
	0.00						DNBP	LT	0.061		
	0.00					-	DNOP	LT	0.190	UGG	
	0.00						ENDRN	ND	0.450		R
	0.00						ENDRNA		0.530		R
	0.00						ENDRNK ESFS04		0.530 0.620		R
	0.00						FANT	LT	0.020	HEG	R
	0.00						FLRENE		0.033		
	0.00						GCLDAN		0.330		R
	0.00						HCBD	LT	0.230		
	0.00						HPCL	ND	0.130		R
	0.00						HPCLE	ND	0.330		R
	0.00						1CDPYR 1SOPHR		0.290		
	0.00						LIM	LT ND	0.033 0.270		R
	0.00						MEXCLR		0.330		R
	0.00						NAP	LT	0.037		•
	0.00						N8	ĹŤ	0.045		
	0.00						NNDMEA		0.140		R
	0.00						NNDNPA	-	0.200		
	0.00 0.00						NNDPA	LT	0.190		_
	0.00						PCB016 PCB221		1.400		R
	0.00						PCB221		1.400 1.400		R R
	0.00						PC8242		1.400		R
	0.00						PCB248		2.000		Ř
	0.00						PCB254		2.300		Ř
								_			

ec Type	Spike Amount	Lab			Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCMB	0.00	ES	YLC	1	23-mar-1992	1 K18	PC8260	ND.	2.600	1100	R
	0.00			•		4	PCP	ĹŤ	1,300		^
	0.00						PHANTR	ĹŤ	0.033		
	0.00						PHENOL	LT	0.110		
	0.00						PPDDD	NO	0.270		R
	0.00						PPDDE PPDDT	ND	0.310	UGG	R
	0.00						PYR	ND LT	0.310 0.033		R
	0.00						TXPHEN	ND	2.600		R
	0.00						UNK651		1.000		ŝ
	0.00						UNK660		0.700		S
	0.00		YMA		10-mar-1992	UH20	111TCE	LT	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00						12DCE	LT	0.500		
	0.00						120CLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET	ĻT	13.000		
	0.00						ACROLN	MD	100.000		R
	0.00						ACRYLO BROCLM	NED LT	100.000 0.590		R
	0.00						C13DCP	LT	0.580		
	0.00						CZAVE	LŤ	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4 CK2CL2	LT LT	0.580 2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LŤ	2.600		
	0.00						CHCL3	LT	0.500	UGL	
	0.00						CL2BZ	ND	10.000		R
	0.00 0.00						CLC6H5	LŤ	0.500		
	0.00						CSZ DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	ĹŤ	0.500		
	0.00					•	NEC6H5	ŁT.	0.500		
	0.00						MEK	LT	6,400	UGL	
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP TCLEA	LT LT	0.700 0.510		
	0.00						TCLEE	ĹΪ	1,600		
	0.00						TRCLE	ĹŤ	0.500		
	0.00						XYLEN	LT	0.840		
	0.00		YMB		11-mar-1992		111TCE	LT	0.500		¥
	0.00						112TCE	LT	1.200		¥
	0.00						11DCE	LT	0.500		
	0.00						11DCLE 12DCE	LT LT	0.680 0.500		¥
	0.00						12DCLE	LT	0.500		u u
	0.00						12DCLP	ĹŤ	0.500		ű
	0.00						2CLEVE	LŤ	0.710		ū
	0.00						ACET	LT	13.000	UGL	ũ
	0.00						ACROLN	ND	100.000	UGL	R
	0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM	LT LT	0.590		u
	0.00						C13DCP C2AVE	lt Lt	0.580 8.300		¥
	0.00						C2H3CL	LT	2.600		u u
	0.00						C2H5CL	ĹΤ	1.900		Ū

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Cod
QCMB	0.00	FS	YMER	1	11-mar-1992	(M20	C6H6	ŁT	0.500		
	0.00		1176	•	11 1001 - 1772	UNES	CCL3F	LT	1.400		¥
	0.00						CCL4	ĹŤ	0.580		ű
	0.00						CHZCLZ		2,300		ů
	0.00						CH3BR		5.800		Ÿ
	0.00						CH3CL	LT	3.200	UGL	ũ
	0.00						CH3CL CHBR3	ĹŤ	2.600		Ÿ
	0.00						CHCL3	LT	0.500		Ü
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5		0.500		
	0.00						C2S		0.500		W
	0.00						DBRCLM		0.670		W
	0.00						ETC6H5		0,500		¥
	0.00						MEC6H5	-	0.500		
	0.00						MEK	LT	6.400		¥
	0.00						MIBK	LT	3.000		¥
	0.00						CTYP	1.7	3.600 0.500		u
	0.00						STYR T130CP	L T	0.700		w W
	0.00						TCLFA	i T	0.510		Ÿ
	0.00						TCLEE	ίŤ	1.600	ugl	Ÿ
	0.00						TRCLE	LT	0.500		•
	0.00						TCLEA TCLEE TRCLE XYLEN	LT	0.840		¥
	0.00		YOC		27-mar-1992	SS10	AL	LT	141.000		
	0.00						BA	LT	5.000	UGL	
	0.00						BE	ĻT	5.000	UGL	
	0.00						CA	LŤ	500,000	UGL	
	0.00						CD .	LT	4.010	UGL	
	0.00						CO	LT	25.000		
	0.00 0.00						CR	LT	6.020		
	0.00						ໝ	LT	8-090		
	0.00						F€	LT	38.800		
	0.00						K Ng	LT	375.000		
	0.00						MN	LT LT	500.000 2.750		
	0.00						NA	LT	500.000		
	0.00						NI	ĹŤ	34.300		
	0.00						SB	ĹŤ	38,000		
	0.00						Ÿ	ĹŤ	11.000		
	0.00						ZN	LT	21.100		
	0.00		YOF		07-apr-1992	•	AG	LT	4.600		
	0.00						BA	LT	5,000	UGL	
	0.00						CD	LT	4.010	UGL	
	0.00		•	•			CR	LT	6,020	UGL	
	0.00						PB	LT	18.600		
	0.00		YRB		27-mar-1992	UH13	CLDAN	LT	0.265		w
	0.00 0.00						ENDRN	LT	0.024		
	0.00						HPCL	LT	0.042		
	0.00						LIN	LT	0.051		
	0.00						MEXCLR TXPHEN	LT LT	0.057 1.350		
	0.00		YUC		24-mar-1992	00	PH	LI	6,540	UGL	¥
	0.00		YUD		17-mar-1992	00	TOX	LT	10.000	uci	
	0.00		YVA		03-apr-1992	SB01	HG	LT	0.243		
GCRB	0.00		TGI		12-sep-1990	\$\$10	AG	ĹŤ	4.600		
	0.00					****	BA		27,500		
	0.00						BE	LT	5.000		
	0.00						CD	LT	4.010		
	0.00						CR	ĹŤ	6.020		
	0.00						NI	LT	34.300		
	0.00			_			SB	LT	38.000		
	0.00		THE	8	28-aug-1990	UW14	246TNT	LT	0.588		
	0.00						24DNT	LT	0.612		
	0.00						26DNT	LT	1.150	_	
	0.00						HMX	LT	1.650		
	0.00						RDX	LT	2.110	UGL	

QC Type	Spike Amount	Lab		Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCRB	0.00	Ee	THE	8	28-aug-1990	10147	TETRUI		0.554		
ACKD	0.00	EJ	VKW		30-sep-1991		TETRYL AL	LT LT	0.556 141.000		
	0.00			9	30 GCP 1331	33.0	AL	ĹŤ	141.000		
	0.00			10			AL		169,000		
	0.00			8			BA		17.800		
	0.00			9			BA		17.000		
	0.00			10			BA		22.200		
	0.00			8			BE	LT	5.000		
	0.00 0.00			9 10			BE Be	LT LT	5.000		
	0.00			8			CA	Li	5.000 10900.000		
	0.00			9			CA		11600.000		
	0.00			10			CA		11400.000		
	0.00			8			CD	ŁT	4.010	UGL	
	0.00			9			CD .	LT	4.010		
	0.00			10			æ	LT	4.010		
	0.00			8 9			œ ~	LT	25,000		
	0.00			10			co	LT	25.000 25.000		
	0.00			8			CR	ĹŤ	6.020		
	0.00			9			CR	ĹŤ	6.020		
	0.00			10			CR	LT	6.020		
	0.00			8			αÚ	LT	8.090	UGL	
	0.00			9			ĊU.	LT	8.090		
	0.00			10 8			CU	LŦ	8.090		
	0.00			9			FE Fe		252,000 988,000		
	0.00			1Ó			FE		4290.000		
	0.00			8			K		1690.000		
	0.00			9			K		2400.000		
	0.00			10			K		2790.000		
	0.00			8			MG		4780.000		
	0.00			9 10			MG		4950.000		
	0.00			8			MG MN		5000.000 25.000		
	0.00			9			MN		38.500		
	0.00			10			MN		36.100		
	0.00			8			MA		4410.000		
	0.00			9			KA		4540.000		
	0.00			10		-	NA .		4590.000		
	0.00			8	-		NI	LT	34.300		
	0.00			10			IN En	LT LT	34.300 34.300		
	0.00			. 8			SB	ĹŤ	38.000	_	
	0.00			. 9			SB	LT	38.000		
	0.00			10			\$8	LT	38.000	UGL	
	0.00			8			٧	LT	11.000		
	0.00			9			Ä	LT	11.000		
	0.00			10 &			V 74	LT	11.000		
	0.00			9			ZN ZN	LT LT	21.100 21.100		
	0.00			10			ZN		24,100		
	0.00		WZJ	14	05-dec-1991		AL		159.000		
	0.00						BA		13.400	UGL	
	0.00				r		BE	LT	5.000		
	0.00						CA		12000.000		
	0.00						8 8	LT LT	4.010 25.000		
	0.00						CR CR	LT	6.020		
	0.00						£	LT	8.090		
	0.00						FE		367.000		
	0.00						K		1570.000	UCL	
	0.00						MG		5440.000		
	0.00						MM		11.900		
	0.00						NA N I		5260.000		
	v						NI	LT	34.300	OG),	

qc Type	Spike Amount	Lab	Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Code
										*	
QCRS	0.00	E\$	MZJ	14	05-dec-1991	SS10	SB	LT	38,000	UGL	
	0.00						V	LT	11.000		
	0.00		ODE	9	241001		ZN		25.000		
	0.00		OGW	7	26-sep-1991 04-oct-1991		NQ NG	LT LT	30.900 10.000		
	0.00		RCN	14	09-oct-1991	112	PHENLO	LT	7.120		
	0.00			15			PHENLC		7.120		
	0.00		RDQ		26-sep-1991	TF27			53.500		
	0.00		~~~	48	27 1001		P04	LT	13.300		
	0.00		SKK	12 13	27-sep-1991	TF26	NSKJET NSKŽET		219.000 886.000		
	0.00		SNP		15-sep-1990	\$801		Ł T	0.243		
	0.00		SQU		30-aug-1990		HG 111TCE	ĹŤ	0.500		
	0.00						1127CE	LT	1.200	UGL	
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE 12DCLE	LT LT	0.500 0.500		
	0.00						120CLP		0.500		
	0.00						SCLEVE	LŤ	100.000		G
	0.00						ACET	ĹŤ	13.000		•
	0.00						ACROLN		100,000		R
	0.00 0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL	ĹΤ	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LT	1.400		
	0.00						CHSCFS		0.580 2.300		
	0.00						CH3BR	ĽŤ	5.800		
	0.00						CH3CL	LT	3,200		
	0.00						CHBR3	LT	2.600	UGL	
	0.00						CHCF3	LT	0.500		_
	0.00						CL2BZ CLC6H5	ND LT	10.000 0.500		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM		0.670		
	0.00				-	•	ETC6H5	LT.	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00 0.00						MEK	LT	6.400		
	0.00						MIBK	LT LT	3.000 3.600		
	0.00			1-4			STYR	ĹΪ	0.500		
	0.00			•			T13DCP	LT	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE Xylen	LT LT	0.500 0.840		
	0.00		SRR	8	11-sep-1990	LM18	124TCB	LT	1.800	UGL	
	0.00					••••	12DCLB	ίŤ	1.700		
	0.00						12DPH	NED	2.000	UGL	R
	0.00						13DCLB	LT	1.700		
	0.00						14DCLB	LT	1.700		
	0.00						245TCP 246TCP	LT LT	5.200 4.200		
	0.00						24DCLP	LT	2,900		
	0.00						24DMPN	ĹΤ	5.800		
	0.00						24DNP	LT	21.000	UGL	
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						2CLP 2CNAP	LT LT	0.990 n.500		
	0.00						2MNAP	LT	0.500 1.700		
									,.,	-	

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name	Heas. Boolean	Value	Units	Internal Standard Code
0000	0.00		400	•	11 1000						
QCRB	0.00	E2	SRR	8	11-sep-1990	UM18	ZMP ZNANIL	LT LT	3.900 4.300		
	0.00						2NP	LT	3.700		
	0.00						330CB0	LT	12.000		
	0.00						3NANIL	LT	4.900		
	0.00						46DNZC 4BRPPE	LT LT	17.000		
	0.00						4CANIL		4.200 7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100	UGL	
	0.00						4MP	LT	0.520		
	0.00						4NANIL 4NP	LŤ LT	5.200 12.000		
	0.00						ABRC	ND	4.000		R
	0.00						ACLDAN	ND	5.100		R
	0.00						AENSLF		9.200		R
	0.00 0.00						ALDRN ANAPNE	ND Lt	4.700		R
	0.00						ANAPYL	LT	1.700 0.500		
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM	LT	1.500		
	0.00						B2C1PE	LT	5.300		
	0.00						B2CLEE B2EHP	LT LT	1.900 4.800		
	0.00						BAANTR	LT	1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT	LT	5.400		
	0.00						BBHC	MD	4.000		R
	0.00						BBZP BENSLF	LT ND	3.400 9.200		R
	0.00						BENZID	ND ND	10.000		R
	0.00						BENZOA	LT	13.000		•
	0.00						BGHIPY	LT	6.100		
	0.00						BKFANT	LŢ	0.870		
	0.00						BZALC CHRY	LT LT	0.720 2.400		
	0.00						CL6BZ	ίτ	1.600		
	0.00						CLACP	ŁT	8.600		
	0.00						CLÓET	LT	1.500		
	0.00					•	DBAKA DBKC	LT ND	6.500		
	0.00				•		DBZFUR	LT	4.000 1.700		R
	0.00						DEP	LT	2.000		
	0.00		•				DLDRN	ND	4.700	UGL	R
	0.00						DMP	ĻT	1.500		
	0.00						DNBP	LT LT	3.700 15.000		
	0.00						ENDRN	ND	7,600		R
	0.00						ENDRNA	ND	8.000		R
	0.00 0.00						ENDRNK	ND	8.000		R
	0.00						ESFS04 FANT	ND LT	9.200 3.300		R
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400		
	0.00						HPCL	MD	2.000		R
	0.00 0.00						HPCLE ICDPYR	ND LT	5.000 8.600		R
	0.00						ISOPHR	LT	4.800		
	0.00						LIN	ND	4.000		R
	0.00						MEXCLR	ND	5.100	UGL	Ř
	0.00						NAP	LT	0.500		
	0.00						NB NNDMEA	LT ND	0.500 2.000		ъ,
	0.00						NNONPA	LT	4.400		R
	0.00						NNDPA	LT .	3.000		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
				_							
QCRB	0.00	52	\$RR	8	11-sep-1990	UM18		ND	21.000		R
	0.00						PCBZZ1	ND	21.000	UGL	R
	0.00						PCB232 PCB242	MD DK	21.000		R
	0.00						PCB248	ND	30.000 30.000		R R
	0.00						PC8254	ND	36.000		R
	0.00						PCB260	ND	36,000		Ř
	0.00						PCP	LT	18,000		**
	0.00						PHANTR	LT	0.500		
	0.00						PHENOL	LT	9.200	UGL	
	0.00						PPDDD	ND	4.000		R
	0.00						PPDDE	MD	4.700		R
	0.00						PPODT	ND	9.200		R
	0.00						PYR Txphen	LT ND	2,800 36,000		
	0.00		SSU	14	13-sep-1990	FM18		ND	6,100		R R
	0.00			15	15 dop 1770	41110	BENZOA		6.100		Ř
	0.00			17			BENZOA	ND	6,100		Ř
	0.00		TCL	22	27-sep-1990	SD22		LT	2.540		
	0.00		TFJ	_	_	SD21	SE,	LT.	3.020		
<u> </u>	0.00		TLB		01-oct-1990		TL	LT	6.990	UGL	
	0.00		TUA			SDZO	PB		1.840		
	0.00		UFW	14	08-oct-1991	TT10	CL		3560.000		
	0.00			15			\$04 CL	LT	10000.000		
	0.00			1.5			S04	LT	3560.000 10000.000		
	0.00		UOY	31	18-jul-1991	SD 23		LT	0.250		
	0.00		UOZ	9	,		AG	LT	0.250		
	0.00		UQV	7	09- Jul-1991	TF22			650.000		
	0.00		DOM				NIT		700,000	UGL	
	0.00		UXY	31	23-jul-1991	SD20	PB	LT	1.260		
	0.00		UXZ		17- jul - 1991		PB	LT	1.260		
	0.00		VIS	3	03- Jul - 1991	UM18	124TCB		1.800		
	0.00						120CLB 120PH	LT MD	1.700 2.000		R
	0.00						130CLB	LT	1,700		ĸ
	0.00						14DCLB		1.700		
	0.00						245TCP		5.200		
	0,00						246TCP	LT	4.200	UGL	
	0.00						24DCLP		2,900		
	0.00						24DMPN	LT	5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNT 26DNT	LT LT	4.500 0.790		
	0.00			-			2CLP	ĹŤ	0.790		
	0.00						2CNAP	ĹŤ	0.500		
	0.00						2MNAP	LT	1.700		
	0.00						2MP	LŤ	3.900		
	0.00						ZNANIL	LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						33DCBD	LT	12.000		
	0.00						3NANIL 46DN2C	LŤ	4.900		
	0.00						48RPPE	LT LT	17.000 4.200		
	0.00						4CANIL	ĻŤ	7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP	LT	12.000		_
	0.00 0.00						ABHC	ND	4.000		R
	0.00						ACLDAN AENSLF	ND	5.100		R
	0.00						ALDRN	ND ND	9.200 4.700		R R
	0.00						ANAPNE	LT	1.700		R.
	0.00						ANAPYL	LT	0.500		
								-	, J •		

oc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
0000				3	07 - 1.4 - 1001						
QCRB	0.00	E9	A12	3	03- jul - 1991	UMIO	B2CEXM	LT LT	0.500 1.500		
	0.00						B2CIPE	ĹŤ	5.300		
	0.00						B2CLEE	LT	1.900		
	0.00						B2EHP	LŢ	4.800		
	0.00						BAANTR	LŤ	1.600		
	0.00						BAPYR BBFANT	LT LT	4.700 5.400		
	0.00						BBHC	ND	4,000		R
	0.00						BBZP	LT	3.400		
	0.00						BENSLF		9.200		R
	0.00						BENZID BENZOA	ND Lt	10,000		R
	0.00						BGHIPY		13.000 6.100		
	0.00						BKFANT	ĹΤ	0.870		
	0.00						BZALC	LT	0.720	UGL	
	0.00						CHRY	LT	2.400		
	0.00						CL68Z CL6CP	LT LT	1.600 8.600		
	0.00						CLGET	LT.	1.500		
	0.00						DBAHA	LT	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR	LŢ	1.700		
	0.00						DEP DLDRN	LT ND	2.000 4.700		R
	0.00						DMP	LT	1.500		R.
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000		
	0.00						ENDRN	ND ND	7.600		R
	0.00						ENDRNA ENDRNK		8.000 8.000		R R
	0.00						ESFS04	ND	9.200		Ř
	0.00						FANT	LT	3.300		~
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD HPCL	ŁT ND	3.400 2.000		R
	0.00						HPCLE	ND	5.000		Ř
	0.00						ICOPYR		8.600	UGL	
	0.00						ISOPHR	LT	4.800		_
	0.00 0.00						LIN MEXCLR	ND ND	4.000 5.100		R R
	0.00						NAP	LT	0.500		•
	0.00		•				NB	ĹŤ	0.500		
	0.00						NNDMEA	MD	2.000		R
	0.00 0.00		•	•			NNDNPA	LŢ	4.400		
	0.00						NNDPA PCB016	LT ND	3.000 21.000		R
	0.00						PCB221	MD	21.000		Ř
	0.00						PCB232	ND	21.000		Ř
	0.00						PCB242	MD	30.000		R
	0.00 0.00						PCB248	ND	30.000		R
	0.00						PCB254 PCB260	ND ND	36,000 36,000		R R
	0.00						PCP	LT	18.000		•
	0.00						PHANTR	LT	0.500	UGL	
	0.00						PHENOL	LT	9.200		_
	0.00						PPDDD	ND	4.000 4.700		R
	0.00						TQQqq	ND ND	9.200		R R
	0.00						PYR	ŁT	2.800		Α
	0.00						TXPHEN	ND	36.000	UGL	R
	0.00		VIT				124TCB	LT	1.800		
	0.00						120CL8	LT	1.700		_
	0.00						120PH 130CLB	ND LT	2.000 1.700		R
	2.00								1.700	W.L	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Hethod Code		Meas. Soolean	Value	Units	Internal Standard Code
QCRB	0.00	ES	VIT	3	03 - jul - 1991	LM18	14nci B	LT	1,700	urei	
	0.00			-	,	••	245TCP		5.200		
	0.00						246TCP		4,200		
	0.00						24DCLP		2.900	UGL	
	0.00						24DMPN		5.800		
	0.00 0.00						24DNP	LT	21.000		
	0.00						24DNT 26DNT	LT LT	4.500 0.790		
	0.00						2CLP	LT	0.990		
	0.00						2CNAP	ĹŤ	0.500		
	0.00						ZMNAP	LT	1.700	UGL	
	0.00						2MP	LT	3.900		
	0.00						2NANIL	LT	4.300		
	0.00						2NP 33DCBD	LT LT	3.700		
	0.00						3HANIL		12.000 4.900		
	0.00						46DN2C	ĹŤ	17.000		
	0.00						4BRPPE	LT	4,200		
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C	LT.	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP 4MANIL	LT LT	0.520		
	0.00						4NP	LT	5,200 12,000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN		5,100		Ř
	0.00						AENSLF	ND	9.200		R
	0.00						ALDRN	ND	4.700		R
	0.00 0.00						ANAPNE	LT	1.700		
	0.00						AXAPYL	LT	0.500		
	0.00						ANTRC B2CEXM	LT LT	0.500 1.500		
	0.00						BZCIPE	LT	5.300		
	0.00						BZCLEE	LT	1.900		
	0.00						B2EHP	LT	4.800		
	0.00						BAANTR	LT	1.600		
	0.00						BAPYR	LŢ	4.700		
	0.00						BBFANT BBHC	LT ND	5.400 4.000		R
	0.00						BBZP	LT	3.400		
	0.00					•	BENSLF	ND	9.200		R
	0.00						BENZID	ND	10.000		R
	0.00						BENZQA	ĻT	13.000		
	0.00						BGHIPY	LŢ	6,100		
	0.00						8KFANT BZALC	LT LT	0.870		
	0.00						CHRY	LT	0.720 2.400		
	0.00						CL6BZ	ĹŤ	1,600		
	0.00						CL6CP	LT	8,600		
	0.00						CLSET	LT	1,500		
	0.00						DBAHA	LT	6.500		
	0.00						DBHC	MD	4.000		R
	0.00						DBZFUR DEP	LT LT	1.700		
	0.00						DLDRN	ND	2.000 4.700		R
	0.00						DMP	LT	1.500		^
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000	UGL	
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA	ND MD	8.000		R
	0.00						ENDRNK ESFSO4	NED NED	8.000 9.200		R
	0.00						FANT	LT	3.300		R
	0.00						FLRENE	LT	3,700		
	9.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400		

QC	Spike			Sample	Analysis	Method	Test	Meas.			Internal
Type	Amount	Lab	Lot	Number	Date	Code	Name	Boolean	Value	Units	Standard Code
				•••••			••			•	
QCRB	0.00	ES	VIT	3	03-jul-1991	UN18	HPCL	ND	2.000	tigi	R
	0.00				•		HPCLE	ND	5.000		Ř
	0.00						1CDPYR		8.600		
	0.00 0.00						ISOPHR	LT NO	4.800		_
	0.00						LIN MEXCLR	NED NED	4.000 5.100		R R
	0.00						NAP	LT	0.500		n
	0.00						ЯB	LŤ	0.500		
	0.00						NNDMEA		2.000		R
	0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016	ND	21.000		R
	0.00				•		PCB221	ND	21.000		Ř
	0.00						PCB232	ND	21.000		R
	0.00						PCB242 PCB248	ND	30.000		R
	0.00						PCB254	ND ND	30.000 36.000		R R
	0.00						PCB260	ND	36.000		R
	0.00						PCP	LT	18.000		••
	0.00						PHANTR		0.500		
	0.00						PHENOL	LT ND	9.200		_
	0.00						PPDDE	ND	4.000 4.700		R R
	0.00						PPDDT	ND	9.200		R
	0.00						PYR	LT	2.800	UGL	
	0.00						TXPHEN	ND	36.000		R
	0.00						UNK644 UNK645		10.000		5
	0.00		VXX	29	16-jul-1991	SS10	AL	LT	7.000 141.000		S
	0.00						BA .		22.200		
	0.00						BE	LT	5.000		
	0.00						CA		10100.000		
	0.00						8	LT LT	4.010 25.000		
	0.00						CR	LT	6.020		
	0.00						a	ĹŤ	8.090		
	0.00						FE		183.000		
	0.00						K		1310.000		
	0.00						MG MX		4430.000 29.800		
	0.00					•	KA		3390.000		
	0.00						NI	LŤ	34.300		
	0.00						SB	LT	38.000		
	0.00						V ZN	LT LT	11.000 21.100		
	0.00		VKC	10	17-jul-1991		AL	LT	141.000		
	0.00						BA		20.600		
	0.00						BE	LT	5.000	UGL	
	0.00						CA		10100.000		
	0.00						8	LT LT	4.010		
	0.00						CIR .	LT	25.000 6.020		
	0.00						ä	ĹŤ	8.090		
	0.00						FE		143.000		
	0.00						K		684.000		
	0.00						MG NN		4410,000 30,300		
	0.00						NA.		3340.000		
	0.00						NI	LT	34.300		
	0.00						SB	LT	38.000	UGL	
	0.00 0.00						V 7	LT	11.000		
	0.00		VLK	28	18-jul-1991	SB01	ZN HG	LT LT	21.100 0.243		
	0.00		VLL	9	17- jul-1991	900 i	HG	LŤ	0.243		
	0.00		VLT	7	13-sep-1991		HG	LT	0.243		
	0.00			8			HG	LT	0.243	UGL	

	0-21-			a 1.						
QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Heas.	Malua	Internal Units Standard Code
****				*****			****	POO(4EE)		units standard code
QCRB	0.00	ES			13-sep-1991	\$801	HG	LT	0.243	
	0.00		VLX	15	08-oct-1991		HG	LT	0.243	
	0.00			22	40 1-1 4004		HG	LT	0.243	
	0.00		VOI	7	10-jul-1991	UW14	135TNB 130NB	LT LT	0.626	
	0.00						246TNT	LT	0.519 0.588	
	0.00						24DHT	ĹΤ	0.612	
	0.00						26DNT	LT	1.150	
	0.00						HMX	LŢ	1.650	UGL
	0.00						NB	LŤ	1.070	
	0.00						RDX TETRYL	LT LT	2.110 0.556	
	0.00		VOJ				135TNB		0.626	
	0.00						13DNB	LT	0.519	
	0.00						246TNT		0.588	= = :
	0.00						24DNT	LT	0.612	
	0.00						260NT HMX	LT LT	1.150 1.650	
	0.00						NB.	LŤ	1.070	
	0.00						RDX	LT	2.110	
	0.00						TETRYL		0.556	UGL
	0.00		VOL	27	24-jul-1991		135TNB		0.626	
	0.00						130NB		0.519	
	0.00						246THT 24DHT	LT LT	0.588 0.612	
	0.00						26DNT	LŤ	1.150	
	0.00						HMX	LŤ	1.650	
	0.00						NB	ĻŢ	1.070	
	0.00						RDX	LT	2.110	
	0.00		VRI	31	17- jul - 1991	9009	TETRYL TL	LT LT	0.556 6.990	
	0.00		VRJ	9	,		ŤĹ	ĹŤ	6.990	
	0.00		VRR	7	25-oct-1991		TL	LT	6.990	
	0.00			8			TL	LT	6.990	
	0.00		VRU	9 15			TL	LT	6.990	
	0.00		AKO	22			TL TL	LT LT	6.990 6.990	
	0.00		VTF	31	19-jul-1991	SD22	AS	ĹŤ	2.540	
	0.00		VTG		22- jul-1991		AS	LT	2.540	
	0.00		VTP		25-oct-1991	-	AS	LT	2.540	
	0.00			25 26	•		AS	LŢ	2.540	
	0.00		VTT		26-oct-1991		AS AS	LT LT	2.540 2.540	
	0.00			22			AS	ĹŤ	2.540	
	0.00		VYC		17- Jul-1991	SD21	SE	ĹŤ	3.020	
	0.00		VYD	9			SE	LT	3.020	
	0.00 0.00		YYH	7 8	24-oct-1991		SE	LT	3.020	
	0.00			ş			SE SE	LT LT	3.020 3.020	
	0.00		vyq	15			SE	LT	3.020	
	0.00			22			SE	LT	3.020	
	0.00		VYZ	13	06-dec-1991		SE	LT	3.020	
	0.00 0.00		VZA VZB	4 .	28- jun-1991	00	TOX		217.000	
	0.00		VZF	2	24-jun-1991		TOX PH		145.000 5.310	UGL
	0.00		VZG	_	,		PH		5.490	
	0.00		VZK	5	17- jul - 1991		TOC		3210.000	UGL
	0.00		VZL	40	** ***		TOC		2520.000	
	0.00		WAA	10	29- jun-1991	UM20	111TCE	LT	0.500	
	0.00						112TCE 11DCE	LT LT	1.200	_
	0.00						110CE	LT	0.500 0.680	
	0.00						12DCE	ĹŤ	0.500	
	0.00						120CLE	LT	0.500	UGL
	0.00						120CLP	LT	0.500	
	0.00						2CLEVE	LT	0.710	UGL

ac Type	Spike Amount	Lab	Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCRB	0.00	ES	WAA	10	29- jun-1991	UN20	ACET	LŢ	13.000	LIGL	
	0.00				•		ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE C2H3CL	LT LT	8.300 2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0,00						CCL3F	LT	1,400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR CH3CL	LT	5.800		
	0.00						CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3	LT	0.500		
	0,00						CL28Z	ND	10.000		R
	0.00						CLC6H5	LŢ	0.500		
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	ĻŢ	0.670	UGL	
	0.00						ETC6H5	LT	0.500		
	0.00 0.00						MEC6H5 MEK	LT LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	ĹŤ	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT LT	0.500 0.840		
	0.00		WAB	7	30-jun-1991		111TCE		0.500		
	0.00			•	,		112TCE	ĹŤ	1.200	UGL	
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	LT	13.000		
	0.00					•	ACROLN	ND	100.000		R
	0,00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C130CP	LT	0.580		
	0.00 0.00			••			CZAVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	ĹŤ	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2,300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CT	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT ND	0.500 10.000		
	0.00						CLC6H5	LT	0.500		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670	UGL	
	0.00						ETC6H5	LT	0.500	UGL	
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MNBK MIBK	LT LT	3.000 3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP	ĹŤ	0.700		
									350		

QÇ Type	Spike Amount	Lab	Lot	Sample Number		Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCRB	0.00	ES	WAB	7	30-jun-1991	UM20	TCLEA	ĹŢ	0.510	UGL	
	0.00				• • • • • • • • • • • • • • • • • • • •		TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		WAV	6	02-sep-1991		XYLEN	LT	0.840		
	0.00		MMA	ь	uc-sep-1991		111TCE 112TCE		0.500 1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00			•			ACET	LT	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDCLM	T.L	0.590		
	0.00						C13DCP C2AVE	LT LT	0.580 8.300		
	0.00						C2H3CL	ĹŢ	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00 0.00						CCL3F	LT	1.400		
	0.00						CCL4 CH2CL2	LT LT	0.580 2.300	_	
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCF3	1.T	0.500		_
	0.00						CL28Z CLC6H5	ND Lt	10.000 0.500	_	R
	0.00						CS2		1.470		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT LT	6.400 3.000		
	0.00						NNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP	LT	0.700		
	0.00					•	TCLEA TCLEE	LT LT	0.518		
	0.00				•		TRCLE	LT	1.600 0.500		
	0.00						XYLEN	ĹΫ	0.840		-
	0.00		MYN	3	03-sep-1991		111TCE		1.780		
	0.00						112TCE	LT	1.200		
	0.00			` .			11DCE 11DCLE	LŢ LŢ	0.500 0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	ĻŢ	0.500		
	0.00						120CLP	LT	0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ZE1HXL ACET	1.4	8.000		\$
	0.00						ACROLN	LT ND	13.000 100.000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDÇLM	LT	0.590	UGL	
	0.00						C13DCP	LT	0.580		
	0.00 0.00						C2AVE C2H3CL	LT LT	8.300		
	0.00						C2H5CL	LT	2.600 1.900		
	0.00						COHO	LŢ	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00 0.00						CH2CL2 CH3BR	-	2.300		
	0.00						CH3CF	LT LT	5.800 3.200		
							21126F	-1	3.200	JUL	

qc Type					Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code
ACC.	0.00				02 4004						•
QCRB	0.00	ES	MAM	•	03-sep-1991	UMZU	CHBR3 CHCL3	LT	2.600		
	0.00						CL2BZ	MG.	0.500		
	0.00						CLC6H5		10.000 0.500		R .
	0,00						CSZ	ĹŤ	0.500		
	0.00						DBRCLM		0.670	UGL.	
	0.00						ETC6N5		0.500	UGL	
	0.00						MEC6H5		0.500		
	0.00						MEK	ĻŢ	6.400		
	0.00						MIBK MIBK	LT	3.000 3.600		
	0.00						STYR		0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE		0.500		
	0.00			10	0/		XYLEN		0.840		
	0.00			10	04-sep-1991		111TCE 112TCE		0.500		
	0.00						11DCE		1.200 0.50 0		
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						120CLE		0.500		
	0.00						12DCLP		0.500		
	0.00						SCLEVE		0.710		
	0.00						ACET		13.000		_
	0.00						ACROLN ACRYLO		100.000 100.000		R
	0.00						BRDCLM		0.590		R
	0.00						C13DCP	ĹŤ	0.580		
	0.00						C2AVE		8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL		1.900	UGL	
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4 CH2CL2	LT LT	0.580 2.300		
	0.00						CH3BR	ĹŤ	5.800		
	0.00						CH3CL	ĹŤ	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500	UGL	
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00			:			CS2 DBRCLM	LT LT	0.500 0.670		
	0.00			1			ETC6H5	LT	0.500		
	0.00						MEC6HS		0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LŤ	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT LT	0.510		
	0.00						TRCLE	LT	1.600 0.500		
	0.00						XYLEN	LT	0.840		
	0.00		WEI	7	24-oct-1991	SD20	PB		2.060		
	0.00			8			PB		5.970	UGL	
	0.00			9			PB		1-410		
	0.00		WEL	15 22	25-oct-1991		PB	LT	1.260		
	0.00		(JEI)	22 13	10-dec-1991		PB PB	LT	1.260		
	0.00		WEU		27-oct-1991	5023	PB AC	1.7	4.340 0.250		
	0.00		-11	25			AG	LT LT	0.250		
	0.00			26			AG	ĹŦ	0.250		
	0.00		WFL	15	25-oct-1991		AG	LŤ	0.250		

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
										•	•
QCRB	0.00	ES	WFL	22	25-oct-1991	SD23	AG	LT	0.250		
	0.00		WFU	2	06-dec-1991 09-sep-1991		AG	LT	0.250		
	0.00		WIJ	3	na-seb-1881	UMIB	124TCB	LT	1.800		
	0.00						1200LB 120PH	LT ND	1,700 2,000		R
	0.00						13DCLB	LT	1.700		Α
	0.00						14DCLB		1.700		
	0.00						245TCP	LT	5.200		
	0.00						246TCP		4.200		
	0.00						24DCLP 24DMPN	LT LT	2.900 5.800		
	0.00						24DNP	LT	21.000		
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						SCFb	LT	0.990		
	0.00						2CNAP 2MNAP	LT LT	0.500 1.700		
	0.00						2MP	LT	3.900		
	0.00						2NANIL	ĹŤ	4.300		
	0.00						2NP	ĹŤ	3.700		
	0.00						33DCBD	LT	12.000		
	0.00						3NANIL		4.900		
	0.00						460N2C	LT	17.000		
	0.00						4BRPPE 4CAN1L	LT LT	4.200 7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE	LT	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00 0.00						4NP	LT	12.000		
	0.00						ABHC ACLDAN	ND ND	4.000 5.100		R R
	0.00						AENSLF	NED	9.200		R R
	0.00						ALDRN	ND	4.700		Ř
	0.00						ANAPNE	ĻT	1.700		
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRC B2CEXM	LT	0.500		
	0.00						B2CIPE	LT LT	1.500 5.300		
	0.00					_	B2CLEE	LT	1.900		
	0.00					•	BZEHP	LT	4.800	UGL	
	0.00						BAANTR		1.600		
	0.00						BAPYR	LT	4.700		
	0.00			:			BBFANT BBHC	LT ND	5.400 4.000		
	0.00			·			882P	TL	3.400		R
	0.00			•			BENSLF	ND	9.200		R
	0.00						BENZID	ND	10.000		Ř
	0.00						BENZOA	LT	13.000		
	0.00						BCHIPY	LT	6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALÇ Chry	LT LT	0.720 2.400		
	0.00						CL6BZ	ĹŤ	1.600		
	0.00						CL6CP	ĻŤ	8.600		
	0.00						CLAET	LT	1.500	UGL	
	0.00						DBAHA	LT	6.500		_
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR DEP	LT LT	1.700 2.000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP	LT	1.500		~
	0.00						DNBP	LT	3.700	UGL	
	0.00						DNOP	LT	15.000		
	0.00						ENDRN	MD	7.600		R
	0.00						ENDRNA	ND	8.000	UGL	R

ac Type	Spike Amount	Lab	Lot	\$ample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code	
				_					***************************************	••••		
QCRB	0.00	ES	HIJ	3	09-sep-1991	UM18	ENDRKK ESFSO4	ND ND	8.000 9.200		R	
	0.00						FANT	LT	3.300		R	
	0.00						FLRENE	LT	3.700			
	0.00						GCLDAN	ND	5.100		R	
	0.00						HCBD HPCL	LT ND	3.400 2.000		R	
	0.00						HPCLE	ND	5.000		R	
	0.00						ICOPYR	LT	8.600	UGL		
	0.00						ISOPHR	LT	4.800			
	0.00						LIN MEXCLR	ND Di	4.000 5.100		R R	
	0.00						NAP	LT	0.500		•	
	0.00						N O	LT	0.500		_	
	0.00						NNDMEA NNDNPA	MD LT	2.000 4.400		R	
	0.00						NNDPA	ĹΤ	3.000			
	0.00						PC8016	ND	21.000	UGL	R	
	0.00						PCB221 PCB232	NED NED	21.000		R	
	0.00						PCB242	NAD NAC:	21.000 30.000		R R	
	0.00						PCB248	ND	30.000		Ř	
	0.00						PC8254	ND	36.000		R	
	0.00						PCB260 PCP	ND LT	36.000 18.000		R	
	0.00						PHANTE	ĹŤ	0.500			
	0.00						PHENOL	LT	9.200	UGL		
	0.00						PPODD	ND	4.000		R	
	0.00						PPDDE	NID NID	4.700 9.200		R R	
	0.00						PYR	ĹŤ	2.800			
	0.00						TXPHEN	ND	36.000		R	
	0.00		WIK		10-sep-1991		UNK620 124TCB	1.7	100.000		\$	
	0.00		MIK		10-3ep-1991		12DCLB	LT LT	1.800 1.700			
	0.00						12DPH	ND	2,000		R	
	0.00						13DCLB	LT	1.700			
	0.00 0.00						14DCLB 245TCP	LT LT	1.700 5.200			
	0.00					,	246TCP	ĹΤ	4.200			
	0.00						24DCLP	LT	2.900			
	0.00						24DMPN 24DNP	LT LT	5.800			
	0.00						24DNT	LT	21.000 4.500			
	0.00			. ,			26DNT	LT	0.790			
	0.00			-			2CLP	LT	0.990			
	0.00						2CNAP 2MNAP	LT LT	0.500 1.700			
	0.00						2MP	ii ั	3.900			
	0.00						2NANIL	LT	4.300	UGL		
	0.00						2NP 33DCBD	LT LT	3.700			
	0.00						3NANIL	LT	12.000 4.900			
	0.00						46DNZC	LT	17.000			
	0.00						48RPPE	LT	4.200			
	0.00						4CANIL 4CL3C	LT LT	7.300 4.000			
	0.00						4CLPPE	LT	5.100			
	0.00						4MP	LT	0.520	UGL		
	0.00						4NANIL 4NP	LT	5_200			
	0.00						ABHC	LT ND	12.000 4.000		R	
	0.00						ACLDAN	NO	5.100	UGL	Ř	
	0.00						AENSLF	ND	9.200		R	
	0.00						ALDRN ANAPNE	ND LT	4.700 1.700		R	
	7.75								1.700			

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name	Meas. Boolean	Value	Units	Internal Standard Code
QCRB	0.00	ES	MIK	3	10-sep-1991	UH18			0.500		
	0.00						ANTRC		0.500		
	0.00						BZCEXM		1.500		
	0.00						B2CIPE B2CLEE	LT LT	5.300 1.900		
	0.00						B2EHP		4.800		
	0.00						BAANTR		1.600		
	0.00						BAPYR	LT	4.700	UGL	
	0.00						BBFANT	LT	5.400		
	0.00						BBHC	ND	4.000		R
	0.00						BBZP BENSLF	LT ND	3.400 9.200		8
	0.00						BENZID		10.000		R R
	0.00						BENZOA		13.000		••
	0.00						BCHIPY	LT	6.100	UGL	
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY CL6BZ	LT LT	2.400 1.600		
	0.00						CL6CP		8.600		
	0.00						CL6ET		1.500		
	0.00						DBAHA	ĻŤ	6.500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR		1.700		
	0.00						DEP DLDRN	LT ND	2.000 4.700		R
	0.00						DMP	ĹŤ	1.500		
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000		
	0.00 0.00						ENDRN	ND	7.600	–	R
	0.00						ENDRNA ENDRNK		8.000		R
	0.00						ESFS04		8.000 9.200		R R
	0.00						FANT	LT	3.300		•
	0.00						FLRENE	LT	3,700		
	0.00						GCLDAN	MD	5.100		R
	0.00						HCBD	LT	3.400		_
	0.00						HPCLE	ND ND	2.000 5.000		R R
	0.00						ICOPYR	LT	8.600		•
	0.00				-		I SOPHR	LT	4.800		
	0.00						LIN	MD	4,000		R
	0.00						MEXCLR		5.100		R
	0.00						nap NB	LT LT	0.500 0.500		
	0.00						NNDMEA	NED	2.000		R
	0.00						NNDNPA	LT	4.400		•
	0.00						NNDPA	LT	3.000	UGL	
	0.00						PCB016	XD	21.000		R
	0.00 0.00						PCB221	MD	21.000		R
	0.00						PCB232 PC8242	ND Civi	21,000 30,000		R
	0.00						PC8248	ND	30.000		R R
	0.00						PC8254	ND	36,000		Ř
	0.00						PCB260	ND	36.000		R
	0.00						PCP	LT	18,000		
	0.00						PHANTR	LT	0.500		
	0.00						PHENOL	LT CM	9.200 4.000		ъ
	0.00						PPODE	ND	4.700		R R
	0.00						PPDDT	ND	9.200		Ř
	0.00						PYR	LT	2.800	UGL	
	0.00 0.00						TXPHEN	ND	36,000		R
	0.00		WIL		23-sep-1991		UNK621 124TCB	LT	200,000		S
	0.00				ep 1771		120CLB	LT	1.800 1.700		
									1,700	AGE	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Code
•			•••	••••	******					•••••	
QCRB		ES	WIL	3	23-sep-1991	UM18			2.000		R
	0.00						13DCLB		1.700		
	0.00						14DCLB		1.700		
	0.00						245TCP		5,200		
	0.00						246TCP 24DCLP		4.200 2.900		
	0.00							LT	5.800		
	0.00						24DNP		21,000		
	0.00						24DNT	ĹŤ	4.500		
	0.00						26DNT	LT LT	0.790		
	0.00						2CLP	ĻŢ	0.990		
	0.00						2CNAP		0.500		
	0.00						2MNAP 2MP		1.700		
	0.00						2MANIL		3.900 4.300		
	0.00						2NP		3.700		
	0.00						33DCBD		12.000		
	0.00						3NANIL		4.900		
	0.00								17.000		
	0.00						4BRPPE	LT	4.200	UGL	
	0.00						4CANIL		7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE		5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL		5.200 12.000		
	0.00						ANP ABHC	ND	4.000		R
	0.00						ACLDAN	ND	5.100		Ř
	0.00						AENSLF		9.200	UGL	Ř
	0.00						ALDRN	ND LT	4.700		R
	0.00						ANAPNE				
	0.00						ANAPYL		0.500		
	0.00						ANTRO		0.500		
	0.00						B2CEXM B2CIPE		1.500		
	0.00						B2CLEE		5.300 1.900		
	0.00						BZEHP		4.800		
	0.00						BAANTR		1.600		
	0.00						BAPYR		4.700		
	0.00					•	BBFANT	LT	5.400		
	0.00						BBHC		4.000	UGL	R
	0.00						BBZP		3,400		
	0.00			-			BENSLF		9.200		R
	0.00						BENZID BENZOA	ND LT	10.000 13.000		R
	0.00			· .			BEHTON	LT	6.100		
	0.00						BKFANT	ĽŤ	0.870		
	0.00						BZALC	LŤ	0.720		
	0.00						CHRY	LT	2.400	UGL	
	0.00						CL68Z	LT	1.600		
	0.00						CL6CP	LT	8.600		
	0.00						CL6ET	LT	1.500		
	0.00						DBAHA	LĪ	6.500		_
	0.00						DBXC DBZFUR	MD LT	4.000 1.700		R
	0.00						DEP	ĹŤ	2.000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP	LT	1.500		•
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000	UGL	
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA	ND	8.000		R
	0.00						ENDRNK	ND	8.000		R
	0.00						ESFS04	ND	9.200		R
	0.00						FANT FLRENE	LT LT	3.300 3.700		
	J. VV						FUEWE	E1	3.700	JUL	

 $\cdots_{Y_{\mathbf{n}} \not\subseteq Y_{\mathbf{n}}}.$

QC	Spike			Sample	Analysis	Method	Test	Heas.			Internai
Type	Amount	l,ab	Lot	Number	Date	Code		Boolean	Value	Uni ts	Internal Standard Code

QCRB	0.00	EŚ	WIL	3	23-sep-1991	1912	GCLDAN	ND	5.100	LICE	
-4	0.00			•	ш оср ())	Office	HCBD	LT	3.400		R
	0.00						HPCL	ND	2.000		R
	0.00						HPCLE		5,000		R
	0.00						ICOPYR		8.600		
	0.00						I SOPHR	LT ND	4.800 4.000		R
	0.00						MEXCLR	ND	5.100		R
	0.00						NAP	ĻT	0.500		
	0.00						NB	LT	0.500		_
	0.00						NNDNEA NNDNPA	ND Lt	2.000 4.400		R
	0.00						NNDPA	LT	3.000		
	0.00						PCB016	ND	21.000		R
	0.00						PC8221	ND	21,000		R
	0.00						PCB232 PCB242	ND	21,000		R
	0.00						PCB248	ND ND	30.000 30.000		R R
	0.00						PCB254	ND	36.000		R
- +	0.00						PC8260	ND	36.000	UGL	Ř
	0.00						PCP	ŁT	18.000		
	0.00						PHANTR PHENOL	LT LT	0.500 9.200		
	0.00						PPDDD	ND	4.000		R
	0.00						PPDDE	ND	4.700		Ř
	0.00						PPDDT	ND	9.200		R
	0.00						PYR TXPHEN	LT	2.800		
	0.00						UNK619	ND	36.000 300.000		Ř S
	0.00						UNK628		10.000		S
	0.00		WIP	7	11-oct-1991		124TCB	LT	1.800		•
	0.00						12DCLB	LT	1.700		
	0.00						120PH	ND	2.000		R
	0.00						13DCL8 14DCLB	LT LT	1.700 1.700		
	0.00						245TCP	ĹŤ	5.200		
	0.00						246TCP	LT	4.200	UGL.	
	0.00 0.00						24DCLP	LT	2.900		
	0.00					•	24DMPN 24DMP	LT LT	5.800 21.000		
	0.00						24DNT	ĹĬ	4.500		
	0.00						26DNT	LT	0.790		
	0.00		•				2CLP	LT	0.990		
	0.00						2CNAP 2MNAP	LT	0.500		
	0.00						2NP	LT LT	1.700 3.900		
	0.00						ZNANIL	LT	4.300		
	0.00						2NP	LT	3.700	_	
	0.00 0.00						33DCBD	ĻŢ	12.000		
	0.00						3NANIL 46DN2C	LT LT	4.900 17.000		
	0.00						4BRPPE	LT	4,200		
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C	LT	4.000	UGL	
	0.00						4CLPPE	LT	5.100		
	0.00						4MP 4MANIL	LT LT	0.520 5.200		
	0.00						4NP	LT	12.000		
	0.00						ABHC	ND	4.000	UGL	R
	0.00						ACLDAN	ND	5.100		R
	0.00						AENSLF ALDRN	ND ND	9,200		R
	0.00						ANAPNE	LT	4.700 1.700		R
	0.00						AXAPYL	LT	0.500		
	0.00						ANTRO	LT	0.500	UGL	
	0.00						B2CEXM	LT	1.500		

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCRB	0.00	ES	WIP	7	11-oct-1991	UN18	B2CIPE	LT	5.300	ugl	
	0.00						B2CLEE	LŤ	1.900	UGL	
	0.00						B2EHP		4.800		
	0.00						BAANTR BAPYR	LT LT	1.600 4.700		
	0.00						BBFANT	LT	5.400		
	0.00						BBHC	ND	4.000		R
	0.00						BBZP Benslf		3.400 9.200		R
	0.00						BENZID	ND	10.000		Ř
	0.00						BENZOA		13.000		
	0.00						BGHIPY BKFANT	LT LT	6.100 0.870		
	0.00						BZALC	LŦ	0.720		
	0.00						CHRY	LT	2.400	UGL	
	0.00						CLÓBZ	LT	1.600		
	0.00						CL6CP CL6ET	LT LT	8.600 1.500		
	0.00						DBAHA	ĹŤ	6.500	UGL	
-	0.00						DBHC	ND	4.000		R
	0.00 0.00						DBZFUR DEP	LT LT	1.700 2.000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP	LT	1.500	UGL	
	0.00						DNBP	LT	3.700		
	0.00						DNOP ENDRN	LT ND	15.000 7.600		R
	0.00						ENDRNA	ND	8.000		Ř
	0.00						ENDRNK	ND	8.000	UGL	R
	0.00						ESFSO4 FANT	NED LT	9.200		R
	0.00						FLRENE	LT	3.300 3.700		
	0.00						GCLDAN	ND	5.100		R
	0.00						HCBD	LT	3.400		_
	0.00						HPCLE	ND ND	2.000 5.000		R R
	0.00						ICOPYR	LT	8.600		•
	0.00						ISOPHR	LT	4.800	_	_
	0.00					•	LIN MEXCLR	ND ND	4.000 5.100		R R
	0.00						NAP	LT	0.500		K
	0.00						NB	LT	0.500	UGL	
	0.00 0.00						KNOMEA	ND	2.000		R
	0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016	MD	21.000		R
	0.00						PCB221	ND	21.000		R
	0.00						PCB232 PCB242	ND ND	21.000 30.000		R R
	0.00						PCB248	ND	30.000		Ŕ
	0.00						PCB254	ND	36.000		R
	0.00						PCB260	ND	36.000		R
	0.00						PCP PHANTR	LT LT	18.000 0.500		
	0.00						PHENOL	LT	9.200		
	0.00						PPDDD	ND	4.000		R
	0.00						PPDDE PPDDT	ND ND	4.700 9.200	_	2
	0.00						PYR	LT	9.200 2.800		R
	0.00			_			TXPHEN	ND	36.000	UGL	R
	0.00 0.00		WLX	8	11-sep-1991	UW32	135TNB	£Ť	0.449		
	0.00						13DNB 246TNT	LT LT	0.611 0.635		
	0.00						24DNT	LT	0.064		
	0.00						26DNT	LT	0.074	UGL	
	0.00						HIMOX	LT	1.210	UGL	

qc Type	Spike Amount	l.ab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
				_		 -					
QCRB	0.00	ES	HLH	8	11-sep-1991	UW32	NB	LT	0.645		
	0.00						RDX TETRYL	LT LT	1.170 2.490		
	0.00		WL1	11	13-sep-1991		135TNB	LT	0.449		
	0.00				•		13DNB	LT	0.611		
	0.00						246THT	LT	0.635		
	0.00						24DNT 26DNT	LT LT	0.064 0.074		
	0.00						HNX	ĹŤ	1.210		
	0.00						NB	LT	0.645		
	0.00						RDX	LT	1,170		
	0.00		CH M	14	01-oct-1991		TETRYL 1351NB	LT LT	2.490		
	0.00		MCM	17	01 000-1991		1301RB	LT	0.449 0.611		
	0.00						246TNT	LT	0.635		
	0.00						24DNT	LT	0.064	UGL	
	0.00						26DNT	LT	0.074		
	0.00						HMX NB	LT LT	1.210 0.645		u
_	0.00						RDX	LT	1.170		U
	0.00						TETRYL	LT	2.490		
	0.00		WNE		22-sep-1991	TF22	NIT		5500.000		
	0.00 0.00		LITE	34 23	25-sep-1991	18420	NIT	. •	1800.000		
	0.00		416	23	23-8eb-1331	UM20	111TCE 112TCE	LT LT	0.500 1.200		
	0.00						11DCE	เ้า	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500		
	0.00						120CLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	MD	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0,590 0,580		
	0.00						C2AVE	ĹŤ	8.300		
	0.00						C2H3CL	LT	2.600	UGL	
	0.00					•	C2H5CL	LT	1.900		
	0.00				-		C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00			-			CH2CL2	LT	2.300		
	0.00						CH3BR	LT	5.800		
	0.00			7			CH3CL CHBR3	LT LT	3.200		
	0.00						CHCL3	LT	2.600 0.500		
	0.00						CLZBZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CS2		2.040		
	0.00						DBRCLN ETC6H5	LT LT	0.670 0.500		
	0.00						MEC6H5	ĹŤ	0.500		
	0.00						MEK	ĹΪ	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA	LT	0.700		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		LITP	17	25-oct-1991		XYLEN	LT	0.840		
	0.00		#1X	**	2J-W-(-1771		111TCE 112TCE	LT LT	0.500 1.200		
	0.00						11DCE	ĹŤ	0.500		
	0.00						11DCLE	LT	0.680		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCRB	0.00	Ee	LITE	17	25-oct-1991	111120	12000	. •	0.500		
- LAD	0.00	LJ	WIR	''	23-001-1991	UMZU	120CE 120CLE	LT.	0.500 0.500		
	0.00						12DCLP		0.500		
	0.00						2CLEVE		0.710		
	0.00						ACET	LT	13,000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO		100,000		R
	0.00						BRDCLM		0.590		
	0.00						C13DCP C2AVE		0.580 8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL		1,900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR CH3CL		5.800 3.200		
	0.00						CHBR3		2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CS2	_	0.500		
	0.00						DBRCLM		0.670		
	0.00 0.00						ETC6H5		0.500		
	0.00						MEC6H5	LT LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNRK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700	UGL	
	0.00						TCLEA		0.510		
	0.00 0.00						TCLEE		1.600		
	0.00						TRCLE		0.500 0.840		
	0.00		WIT	10	01-nov-1991		111TCE	LŤ	0.500		
	0.00						112TCE		1.200		
	0.00						11DCE	LT	0.500		
	0.00					-	11DCLE		0.680		
	0.00				-		12DCE		0.500		
	0.00						120CLE		0.500		
	9.00						12DCLP 2CLEVE		0.500		
	0.00						ACET	LT	0.710 13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE	LŤ	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600		
	0.00						COH6	LT.	1.900 0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2		2.300		
	0,00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LŤ	2.600		
	0.00						CHCL3 CL28Z	ND	1.540		D
	0.00						CLC6H5	LT	10.000 0.500		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT	0.500	UGL	
	0.00						MEK	LT	6.400	UGL	

qc Type	Spike Amount	Lab	Lot	Kumber	Analysis Date	Method Code		Meas, Boolean	Value	Units	Internal Standard Code
QCRB	0.00	FS	שדד	10	01-nov-1991	HMOU	MIBK	LT	7 000	1101	
-010	0.00				01 100 1771	DITED	MNBK	LT	3.000 3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0,00						XYLEN		0.840		
	0.00			14			111TCE		0.500		
	0.00						112TCE		1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE 12DCE	LT LT	0.680 0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP		0.500		
	0.00						2CLEVE	LT	0.710		
	0.00 0.00						ACET	LT	13.000		_
	0.00						ACROLN ACRYLO	ND ND	100,000 100,000		R R
	0.00						BRDCLM		0.590		K.
	0.00						C13DCP		0.580		
	0.00						C2AVE	LT	8.300		
	0.00						CZH3CL	LT	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900 0,500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4		0.580		
	0.00						CH2CL2		2.300	UGL	
	0.00						CH3BR	LT	5.800		
	0.00 0.00						CHECK	LT	3.200		
	0.00						CHCL3	LT LT	2.600 0.500		
	0.00						CLZBZ	ND	10.000		R
	0.00						CLC6H5	ĻT	0.500	UGL	
	0.00						CS2	LT	0.500		
	0.QQ 0.QQ						DBRCLM		0.670		
	0.00						ETC6H5 MEC6H5	LT LT	0.500 0.500		
	0.00						MEK	ĹŤ	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3,600		
	0.00 0.00		•				STYR	LT	0,500		
	0.00			-			T13DCP	LT LT	0.700 0.510		
	0.00			``			TCLEE	ĹŤ	1,600		
	0.00						TRCLE	LT	0.500		
	0.00						XYLEN	LT	0.840		
	0.00 0.00		UTY	7	08-nov-1991		111TCE 112TCE	LT	0.500		
	0.00						11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	ĹŤ	0.680		
	0.00						12DCE	LT	0.500	UGL	
	0.00						12DCLE	LT	0.500		
	0.00 0.00						12DCLP 2CLEVE	LT LT	0.500		
	0.00						ACET	LT	0.710 13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00 0.00						C13DCP	LT	0.580		
	0.00						CZAVE CZH3CL	LT LT	8.300 2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400	UGL	
	0.00						CCL4	LT	0.580	UGL	

	<u> </u>
7.E	1.5
T.	233
7	

QCRB	QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name	Meas. Boolean	Value	Units	Internal Standard Code
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	OCDB	0.00	e.	LITY	7	00	14420	evael a				
0.000 CHSC. LT 3.200 UEL CHSC. LT 3.200 UEL CHC.3 LT 0.500 UEL C	GCKB		62	WII	,	00-104-1441	UMZU					
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								CL2BZ	ND			•
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00										•
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								CS2	LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										0.670	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00												
0.00												
0.00												
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								TCLEE	LT			
0.00		_						TRCLE	LT			
0.00									LT			
0.00 W/A 6 20-sep-1991 PH 7.500 0.00 W/A 16 22-oct-1991 SS10 AL LT 141,000 UGL 0.00 CA 18.000 UGL 0.00 UGL 0.00 CA 9960,000 UGL 0.00 CD LT 4.010 UGL 0.00 CD LT 25.000 UGL 0.00 CD LT 8.090 UGL 0.00 UGL 0.00 CD LT 8.090 UGL 0.00 UGL 0.00 CD LT 8.090 UGL 0.00 UGL						25-sep-1991	00					
0.00 MZA 16 22-oct-1991 SS10 AL LT 141.000 UGL 0.00						20					UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					16	22-cot-1001	0040					
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				HAA	,0	22-001-1991	2210		Li	_		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									17			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00									LT			
0.00		0.00										
0.00									LT	6.020	UGL	
No.												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									LT			
O.00												
0.00 23 AL 246.000 UGL 0.00 BA 88.100 UGL 0.00 CA 9860.000 UGL 0.00 CD LT 4.010 UGL 0.00 CD LT 4.010 UGL 0.00 CD LT 25.000 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 CD LT 8.090 UGL 0.00 UGL 0.00 CD LT 8.090 UGL 0.00 UGL 0.00 CD LT 1.000 UGL 0.00 CD LT 1.000 UGL 0.00 CD LT 1.000 UGL 0.00 CD LT 8.000 UGL 0.00 UGL 0.00 CD LT 8.000 UGL 0.00 UGL 0.00 CD LT 8.000 UGL 0.00 UGL 0.00 CD LT 8.000 UGL 0.00 UGL 0.00 CD LT 8.000 UGL 0.00 UGL 0.00 CD LT 8.000 UGL 0.00 UGL 0.00 CD LT 8.000 UGL							•	٧	LT			
0.00 BA 88.100 UGL 0.00 CA 9860.000 UGL 0.00 CD LT 5.000 UGL 0.00 CD LT 4.010 UGL 0.00 CD LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 CU LT 8.090 UGL 0.00 UGL									LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					23							
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				-								
0.00					-				Li			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00						CO				
0.00 FE 385.000 UGL 0.00 K 2040.000 UGL 0.00 MG 4470.000 UGL 0.00 MM 136.000 UGL 0.00 MA 4310.000 UGL 0.00 MI LT 34.300 UGL 0.00 SB LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 V LT 11.000 UGL 0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA 11600.000 UGL 0.00 CA 11600.000 UGL 0.00 CC LT 25.000 UGL 0.00 CC LT 25.000 UGL 0.00 CC LT 25.000 UGL												
0.00 K 2040.000 UGL 0.00 MG 4470.000 UGL 0.00 MM 136.000 UGL 0.00 MM 136.000 UGL 0.00 MI LT 34.300 UGL 0.00 SB LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 V LT 21.100 UGL 0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 BE LT 5.000 UGL 0.00 GA 11600.000 UGL 0.00 CA 11600.000 UGL 0.00 CC LT 25.000 UGL 0.00 CC LT 25.000 UGL 0.00 CC LT 25.000 UGL 0.00 CC LT 6.020 UGL								cu	LT	8.090	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 MN 136.000 UGL 0.00 NA 4310.000 UGL 0.00 NI LT 34.300 UGL 0.00 SB LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 VZS 17 12-feb-1992 AL 151.000 UGL 0.00 BA 20.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CC LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CR LT 6.020 UGL												
0.00												
0.00 NI LT 34.300 UGL 0.00 SB LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 BE LT 5.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CC LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CR LT 6.020 UGL												
0.00 SB LT 38.000 UGL 0.00 V LT 11.000 UGL 0.00 ZN LT 21.100 UGL 0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 BE LT 5.000 UGL 0.00 GA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CC LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CR LT 6.020 UGL									ΙŤ			
0.00 V LT 11.000 UGL 0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CC LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CR LT 6.020 UGL 0.00 CR LT 6.020 UGL												
0.00 WZS 17 12-feb-1992 AL 151.000 UGL 0.00 BE LT 5.000 UGL 0.00 CA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CD LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CU 11.800 UGL								٧				
0.00 BA 20,000 UGL 0.00 BE LT 5,000 UGL 0.00 CA 11600,000 UGL 0.00 CD LT 4,010 UGL 0.00 CD LT 25,000 UGL 0.00 CR LT 6.020 UGL 0.00 CU 11,800 UGL									LT	21.100	UGL	
0.00 BE LT 5.000 UGL 0.00 CA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CO LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CU 11.800 UGL				WZS	17	12-feb-1 99 2				151.000	UGL	
0.00 CA 11600.000 UGL 0.00 CD LT 4.010 UGL 0.00 CD LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CU 11.800 UGL												
0.00 CD LT 4.010 UGL 0.00 CD LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CU 11.800 UGL									LT			
0.00 CO LT 25.000 UGL 0.00 CR LT 6.020 UGL 0.00 CU 11.800 UGL									1.7			
0.00 CR LT 6.020 UGL 0.00 CU 11.800 UGL												
0.00 CU 11.800 UGL												
		0.00										
		0.00										

ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test Name	Boolean	Value	Units	Internal Standard Code
QCRB		Eş	wzs	17	12-feb-1992	S\$10	ĸ		1960.000		
	0.00						MG		4320.000		
	0.00						MH		16.900		
	0.00						NA NI	LT	4120-000		
	0.00						28	LT	34.300 38.000		
	0.00						v	LT	11.000		
	0.00						ZN		25.500		
	0.00		WZV	10	04-mar-1992		AL		168.000		
	0.00						BA		19.700		
	0.00						BE	LT	5.000		
	0.00						CA CD	LT	10700.000		
	0.00						æ	LT	4.010 25.000		
	0.00						CR	LT	6.020	-	
	0.00						a	LT	8.090		
	0.00						FÉ		309.000		
	0.00						K		1040.000		
	0.00						MG		4080.000		
	0.00						MN		28.200		
	0.00						na Ni	LT	4030.000 34.300		
	0.00						SB	LT	38.000		
	0.00						Ÿ	LT	11.000		
	0.00						ŽN	LT	21.100		
	0.00			14			AL.	LT	141.000		
	0.00						BA		18.500		
	0.00						BE	LT	5.000	UGL	
	0.00						CA	1.7	14100.000		
	0.00						8	LT LT	4.010 25.000		
	0.00						CR	LT	6.020		
	0.00						cu		19.000		
	0.00						fΕ		324.000	UGL	
	0.00						K		1670.000		
	0.00 0.00						MG		4540.000		
	0.00						HA HA		18.100 4480.000		
	0.00						NI	LT	34.300		
	0.00				,	•	SB	LT	38.000		
	0.00						٧	ĻŤ	11.000		
	0.00						ZN		112.000		
	0.00		XCG		26-nov-1991	\$B01	HG	ĻŢ	0.243		
	0.00			16 9	14 · feb-1992 09-mar-1992		HG .	LŢ	0.243		
	0.00		×	13	O)-Maj- (992		HG HG	LT LT	0.243 0.243		
	0.00		XCZ		31-mar-1992		HG	ĹŤ	0.243		
	0.00			8			HG	LT	0.243		
	0.00		XDE	3	20-nov-1991	UM18	124TC8	LT	1.800		
	0.00						12DCLB	LT	1.700		
	0.00						12DPH	NO.	2.000		R
	0.00						13DCLB 14DCLB	LT	1.700		
	0.00						245TCP	LT LT	1.700 5.200		
	0.00						246TCP		4.200		
	0.00						24DCLP	ĹŤ	2.900		
	0.00						24DMPN	LT	5.800		
	0.00						24DNP	LT	21.000	UGL	
	0.00						24DNT	LT	4.500		
	0.00						26DNT	LT	0.790		
	0.00						2CLP 2CNAP	LT LT	0.990 0.500		
	0.00						2MNAP	ĹŤ	1.700		
	0.00						2MP	ĹŤ	3.900		
	0.00						2NAN I L	LT	4.300		•
	0.00						2NP	ŁT	3.700	UGL	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code	Name	Meas. Boolean		Uni ts	Internal Standard Cod

QCRB	0.00	ES	XDE	3	20-nov-1991	UM18	330 CBD	LT	12.000	UGL	
	0.00						3MANIL	LT	4.900	UGL	
	0.00						46DN2C	LT	17.000		
	0.00 0.00						4BRPPE 4CANIL		4.200 7.300		
	0.00						4CL3C	LŤ	4.000		
	0.00						4CLPPE		5.100		
	0.00						4MP 4NANIL	LT LT	0.520 5.200		
	0.00						4NP	ĽŤ	12.000		
	0.00						ABHC	ND	4.000		R
	0.00 0.00						AÇLDAN AENSLF	ND ND	5.100 9.200		R R
	0.00						ALDRN	ND	4.700		R
	0.00						ANAPHE		1.700		
	0.00						ANAPYL	LT LT	0.500 0.500		
	0.00						BZCEXM		1.500		
	0.00						82CIPE		5.300	UGL	
	0.00						B2CLEE		1.900		
	0.00						BZEHP BAANTR	_	4.800 1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT		5.400		_
	0.00						BBHC BBZP	ND LT	4.000 3.400		R
	0.00						BENSLF		9.200	UGL	R
	0.00						BENZID		10.000		R
	0.00						BENZOA		13.000 6.100		
	0.00						BKFANT		0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY CL6BZ	LT LT	2.400 1.600		
	0.00						CL6CP	LT	8,600		
	0.00						CL6ET	LT	1.500		
	0.00						DBAHA DBHC	LT ND	6.500 4.000		R
	0.00						DBZFUR		1.700		•
	0.00						DEP	LT	2-000		
	0.00						DLDRN DMP	ND LT	4.700 1.500		R
	0.00		•	_			DNBP	LT	3.700		
	0.00			• • .			DNOP	LT	15.000		
	0.00			·-			ENDRN ENDRNA	ND ND	7.600 8.000		R
	0.00						ENDRNK		8.000		R R
	0.00						ESFS04	ND	9.200		R
	0.00						FANT FLRENE	LT LT	3.300		
	0.00						GCLDAN	ND	3.700 5.100		R
	0.00						HCBD	LT	3.400	UGL	-
	0.00						HPCLE	MD	2,000		R
	0.00						ICDPYR	ND LT	5.000 8.600		R
	0.00						ISOPHR	LT	4.800		
	0.00						LIM	ND	4.000		R
	0.00						MEXCLR NAP	ND Lt	5.100 0.500		R
	0.00						ИВ	ĹŤ	0.500		
	0.00						NADMEA	NO	2.000		R
	0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016	ND	21,000		R
	0.00						PCB221	ND	21.000	UGL	Ř
	0,00						PCB232	ND	21.000	NCT	R

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
2000	0.00			-	20 1001				==		
QCRB	0.00	ES	XDE	3	20-nov-1991	UM18	PCB242		30,000		R
	0.00						PCB248 PCB254	ND ND	30,000 36,000		R
	0.00						PCB260	ND	36.000		R R
	0.00						PCP	LŤ	18.000		K
	0.00						PHANTE	LT	0.500		
	0.00						PHENOL	ĹŤ	9.200		
	0.00						PPDOO	ND	4,000		· R
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT	ND	9.200		R
	0.00						PYR	LT	2.800	UGL	
	0.00						TXPHEN	ND	36,000		R
	0.00						UNK620		40.000		S
	0.00			4			124TCB	-	1.800		
	0.00						12DCLB		1.700		_
	0.00 0.00						120PH	ND	2.000		R
	0.00						13DCLB	LT	1.700		
	0.00						14DCLB		1.700		
	0.00						245TCP 246TCP		5.200		
	0.00						24DCLP		4.200 2.900		
	0.00						24DMPN		5.800		
	0.00						24DNP	ĹŤ	21.000		
	0.00						24DNT	ĹŤ	4.500		
	0.00						26DNT	ĹΤ	0.790		
	0.00						2CLP	LT.	0.990		
	0.00						ZCNAP	LT	0.500		
	0.00						2MNAP	LT	1.700		
	0.00						2MP		3.900		
	0.00						TIHAKS	LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						330CB0		12.000		
	0.00						3NANIL	LT	4.900		
	0.00						46DN2C		17.000		
	0.00						4BRPPE 4CANIL	LT LT	4.200 7.300		
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE		5,100		
	0.00						4HP	LT	0.520		
	0.00						4NANIL		5.200		
	0.00						4NP	LŤ	12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN	MD	5.100	UGL	R
	0.00						AENSLF	ND	9.200	UGL	R
	0.00			·			ALDRN	ND	4.700		R
	0.00						ANAPNE	LT	1.700		
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM		1.500		
	0.00						B2CIPE B2CLEE	LT LT	5.300		
	0.00						82EHP	LT	1.900 4.800		
	0.00						BAANTR		1.600		
	0.00						BAPYR	LŤ	4.700		
	0.00						BBFANT	ĹŤ	5.400		
	0.00						BBHC	ND	4.000		R
	0.00						BBZP	LT	3.400		-
	0.00						BENSLF	ND	9.200		R
	0.00						BENZID	ND	10.000	_	Ř
	0.00						BENZOA	LT	13.000		-
	0.00						BGHIPY	.LT	6.100	UGL	
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY	LT	2.400		
	0.00						CL6BZ	LT	1.600		
	0.00						CL6CP	LT	8,600	UGL	

QC .	Spike			Sample	Analysis						Internal
Type	Amount	Lab	LOT	MUMBer	Date	Code	Name	Boolean	Value	Units	Standard Code
	_										
QCRB	0.00	ES	XDE	4	20-nov-1991	UM18	CLSET	LT	1.500	LIGI	
	0.00						DBAHA	LT	6,500		
	0.00						DBHC	ND	4.000		R
	0.00						DBZFUR		1,700		
	0.00						DEP DLDRM	LT ND	2.000 4.700		R
	0.00						DMP	ĹŤ	1,500		•
	0.00						DNBP	LT	3.700		
	0.00						DNOP	LT	15.000		
	0.00						ENDRNA ENDRNA	NED NED	7.600 8.000		R
	0.00			•			ENDRNK		8.000		R R
	0.00						ESFS04	ND	9.200		Ř
	0.00						FANT	LT	3.300		
	0.00						FLRENE		3.700		_
	0.00 0.00						GCLDAN HCBD	ND Lt	5.100 3.400		R
	0.00						HPCL	ND:	2.000		R
	0.00						HPCLE		5.000		Ř
<u> </u>	0.00						1COPYR		. 8.600		
	0.00 0.00						ISOPHR		4.800		_
	0.00						LIN MEXCLR	NID NIC	4.000 5.100		R R
	0.00						NAP	LT	0.500		n.
	0.00						NB	ĻŢ	0.500		
	0.00						NNDMEA		2.000		R
	0.00 0.00						NNDNPA NNDPA	LT LT	4.400 3.000		
	0.00						PCB016		21.000		R
	0.00						PCB221	ND	21.000		R R
	0.00						PC8232		21.000		R
	0.00 0.00						PCB242 PCB248	ND ND	30,000		R
	0.00						PCB254	NID NID	30.000 36.000		R R
	0.00						PCB260	MO	36.000		Ř
	0.00						PCP	LT	18.000	UGL	
	0.00						PHANTR	LT	0.500		
	0.00 0.00						PHENOL	L? Nid	9.200 4.000		•
	0.00						PPDDE	ND	4.700		R R
	0.00						PPODT	ND	9.200		Ř
	0.00						PYR	LT	2.800		
	0.00			:			TXPHEN UNK620	NO	36.000		R
	0.00		XDG	9	19-nov-1991		124TCB	LT	80.000 1.800		S
	0.00			-			12DCLB	LT	1.700		
	0.00						1ZDPH	MD	2.000	UGL	R
	0.00 0.00						13DCLB	LT	1.700		
	0.00						14DCLB 245TCP	LT LT	1.700 5.200		
	0.00						246TCP	ĹŤ	4.200		
	0.00						24DCLP	LT	2,900		
	0.00			•			24DMPN	LT	5.800		
	0.00 0.00						24DNP 24DNT	LT	21.000		
	0.00						26DNT	LT LT	4.500 0.790		
	0.00						2CLP	ĹŤ	0.990		
	0.00						2CNAP	LT	0.500	UGL	
	0.00						ZMNAP	LT A.T	1.700		
	0.00						2MP 2MANIL	LT LT	3.900 4.300		
	0.00						2NP	LT	3.700		
	0.00						33DCBD	LT	12.000	UGL	
	0.00						3NAN1L	LT	4.900	UGL	
	0.00						46DN2C 4BRPPE	LT	17.000		
	V.00						-prrr	£T.	4.200	UGL	

qç Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
									***********	****	
QCRB	0.00	ES	XDG	9	19-nov-1991	UM18	4CANIL	LT	7.300	UGL	
	0.00						4CL3C	LT	4.000	UGL	
	0.00						4CLPPE	LT	5,100		
	0.00						4MP 4NANIL	LT LT	0.520 5.200		
	0.00						4NP	LŤ	12.000		
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN AENSLF	NED NED	5.100 9.200		R R
	0.00						ALDRN	ND	4.700		R R
	0.00						ANAPNE	LT	1.700	UGL	•-
	0.00 0.00						ANAPYL ANTRC	LT LT	0.500		
	0.00						B2CEXM	LT	0.500 1.500		
	0.00						B2CIPE	LT	5.300		
	0.00						B2CLEE	LT	1.900		
	0.00						BZEHP BAANTR	LT LT	4.800 1.600		
	0.00						BAPYR	ĹΪ	4.700		
	0.00			•			BBFANT	LT	5.400		
	0.00						B8HC B8ZP	MD	4.000		R
	0.00						BENSLF	LT ND	3.400 9.200		R
	0.00						BENZID	ND	10.000		Ř
	0.00						BENZOA	LT	13.000		
	0.00 0.00						BGHIPY BKFANT	LT LT	6.100 0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY	LT	2.400	UGL	
	0.00						CL6BZ CL6CP	LT	1.600		
	0.00						CLGET	LT LT	8,600 1,500		
	0.00						DBAHA	LT	6.500		
	0.00						DBHC	ND	4-000		R
	0.00						DBZFUR DEP	LT LT	1,700 2,000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP	LT	1.500		
	0.00					•	DNBP DNOP	LT LT	3.700 15.000		
	0.00						ENDRN	MD	7.600		R
	0.00						ENDRNA	ND	8.000		Ř
	0.00 0.00		•				ENDRNK	ND	8.000		R
	0.00			•			ESFS04 FANT	ND Lt	9.200 3.300		R
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	MD	5.100		R
	0.00						HCBD HPCL	LT ND	3.400 2.000		R
	0.00						HPCLE	ND	5.000		R ·
	0.00						HXADOE		7.000	UGL	Š
	0.00						ICDPYR ISOPHR	LT LT	8.600		
	0.00						LIN	ND.	4.800 4.000		R
	0.00						MEXCLR	ND	5.100	UGL	Ř
	0.00						NAP	LT	0.500		
	0.00						NB NNDMEA	LT ND	0.500 2.000		R
	0.00						NNONPA	LT	4.400		•
	0.00						NNDPA	LŤ	3.000	UGL	
	0.00						PCB016 PCB221	NED NED	21.000		R
	0.00						PC8232	ND ND	21.000 21.000		R R
	0.00						PCB242	NO	30.000		Ř
	0.00 0.00						PCB248	ND	30.000		R
	V.00						PCB254	MD	36.000	UGL	R

QC Type				Sample Number	Analysis Date		Name		Value	Units	Internal Standard Code
•									***********		
QCRB	0.00	ES	XDG	9	19-nov-1991	UH18	PCB260	ND	36.000	UGL	R
	0.00						PCP	LT	18,000	UGL	
	0.00						PHANTR		0.500		
	0.00						PHENOL	LT ND	9.200		
	0.00						PPDDE	ND ND	4.000 4.700		R R
	0.00						PPDDT	ND	9.200		Ř
	0.00						PYR	LT	2.800		
	0.00						TXPHEN	ND	36.000		R
	0.00						UNK620 UNK629		200.000		Ş
	0.00						UNK675		10.000 90.000		S S
	0.00						UNK691		30.000		Š
	0.00		XDJ	5	26-nov-1991		124TCB	LT	1.800	-	•
	0.00						12DCLB		1.700		
	0.00						12DPH	MD	2.000		R
	0.00						13DCLB 14DCLB	LT LT	1.700 1.700		
	0.00						245TCP		5.200		
	0,00						246TCP		4.200		
	0.00						24DCLP		2.900		
	0.00						24DMPN		5.800		
	0.00						24DNP		21.000		
	0.00 0.00						24DNT 26DNT	L?	4.500		
	0.00						2CLP	LT LT	0.790 0.990		
	0.00						2CNAP		0.500		
	0.00						ZHNAP		1.700		
	0.00						2MP	LT	3.900		
	0.00						2NAN1L		4.300		
	0.00						2NP 33DCBD		3.700		
	0.00						SNANIL		12.000 4.900		
	0.00						46DNZC		17.000		
	0.00						4BRPPE		4.200		
	0.00						4CANIL	LT	7.300		
	0.00						4CL3C	LT	4-000		
	0.00						4CLPPE 4MP	LT LT	5.100 0.520		
	0.00				-		4NANIL	LT	5.200		
	0.00						4NP	LŤ	12.000	-	
	0.00						ABHC	ND	4.000		R
	0.00						ACLDAN		5.100		R
	0.00			٠.			AENSLF	ND	9.200		R
	0.00			•			ALDRN ANAPNE	ND Lt	4.700 1.700		R
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	LŤ	0.500		
	0.00						B2CEXM	LT	1.500	UGL	
	6.00						B2CIPE	LT	5.300		
	0.00						B2CLEE	LT	1.900		
	0.00						BZEHP BAANTR	LT LT	4.800 1.600		
	0.00						BAPYR	LT	4.700		
	0.00						BBFANT	LT	5.400		
	0.00						BBHC	ND	4.000	UGL	R
	0.00						BBZP	LT	3.400		
	0.00 0.00						BENSLF	ND	9.200		R
	0.00						BENZID BENZOA	ND Lt	10.000 13.000		R
	0.00						BGHIPY	LT	6.100		
	0.00						BKFANT	LT	0.870		
	0.00						BZALC	LT	0.720		
	0.00						CHRY	LT	2.400		
	0.00						CL68Z	LT	1.600		
	0.00						CL6CP	LT	8.600	UGL	

priins Nagar

\$5.00

QC	Spike			Sample	Analysis	Method	Test	Meas,			Internal
Type	Amount	Lab	Lot	Number		Code		Boolean	Value	Units	Internal Standard Code
CODO	0.00		v.		36 1001						
QCRB	0.00	E2	XD3	5	26-nov-1991	UM18	CL6ET DBAHA	LT LT	1.500		
	0.00						DBHC	ND	6.500 4.000		R
	0.00						DBZFUR	LT	1.700		•
	0.00						DEP	LT	2.000	UGL	
	0.00						DLDRN	ND	4.700		R
	0.00						DMP DNBP	LT	1.500 3.700		
	0.00						DNOP	LT LT	15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA	ND	8.000		R
	0.00						ENDRNK		8.000		R
	0.00						ESFS04	ND	9.200		R
	0.00						FANT FLRENE	LT LT	3.300 3.700		
	0.00						GCLDAN	ND	5,100		R
	0.00						HCBD	LT	3.400		κ.
	0.00						HPCL	ND	2.000	UGL	R
	0.00						HPCLE	ND	5.000		Ř
- +	0.00						ICDPYR		8.600		
	0.00						ISOPHR LIN	LT ND	4.800 4.000		
	0.00						MEXCLR	ND ND	5.100		R R
	0.00						NAP	LT	0.500		•
	0.00						NB	LT	0.500	UGL	
	0.00						NNDMEA	ND	2.000		R
	0.00						NXDNPA NXDPA	LT LT	4.400		
	0.00						PCB016	ND ND	3.000 21.000		R
	0.00						PC8221	ND	21.000		R
	0.00						PCB232	ND	21.000		Ř
	0.00						PCB242	ND	30.000		R
	0.00						PCB248 PCB254	ND	30.000		R
	0.00						PCB260	ND DN	36,000 36,000		R R
	0.00						PCP	LT	18.000		•
	0.00						PHANTR	LT	0.500		
	0.00						PHENOL	LT	9.200		
	0.00					•	PPDDD	ND	4.000		R
	0.00						PPDDE PPDDT	ND ND	4.700 9.200		R
	0.00						PYR	LT	2.800		R
	0.00						TXPHEN	ND	36,000		R
	0.00			•			UNK617		70.000	UGL	S
	0.00		XDA	8	18-feb-1992		124TCB	LT	1.800		
	0.00						12DCLB 12DPH	LT ND	1.700		_
	0.00						13DCLB	LT	2.000 1.700		R
	0.00						14DCLB	ĹŤ	1.700		
	0.00						245TCP	LT	5.200	UGL	
	0.00						2461CP	LT	4.200		
	0.00						24DCLP 24DNPN	LT LT	2,900		
	0.00						24DNP	LT	5.800 21.000		
	0.00						24DNT	ΪŤ	4.500		
	0.00						260NT	LT	0.790		
	0.00						2CLP	LT	0.990		
	0.00						SCHAP SCHAP	LT	0.500		
	0.00						2MNAP 2MP	LT LT	1.700 3.900		
	0.00						2NANIL	LT	4.300		
	0.00						2NP	LT	3.700		
	0.00						33DCBD	LT	12.000	UGL	
	0.00						3NANIL	LT	4.900		
	0.00 0.00						46DN2C	LT	17.000		
	0.00						48RPPE	LT	4.200	UGL	

ic Spe	Amount	Lab	Lot	Sample Number	Analysis Date	Method Code			Value		Internal Standard Code
CRB	0.00	ES	XDY	8	18-feb-1992	UM18	4CANIL	LT	7.300	ugl	
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE		5.100		
	0.00 0.00						4HP	LT	0.520		
	0.00						4NANIL 4NP	LT LT	5.200 12.000		
	0.00						ABHC	ЖĎ	4.000		R
	0.00						AÇLDAN		5.100		R
	0.00						AENSLF		9,200		R
	0.00						ALDRN ANAPNE		4.700 1.700		R
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	_	0.500		
	0.00						82CEXM		1.500		
	0.00						B2CIPE		5.300		
	0.00						B2CLEE B2EHP		1.900 4.800	_	
	0.00						BAANTR		1.600		
	0.00						BAPYR	LT	4.700		
 	0.00						BBFANT		5.400		_
	0.00 0.00						BBHC BBZP	ND LT	4.000 3.400		R
	0.00						BENSLF	_	9.200		R
	0.00						BENZID		10.000		Ř
	0.00						BENZOA		13.000		
	0.00 0.00						BGHIPY		6.100		
	0.00						BKFANT BZALC		0.870 0.720		
	0.00						CHRY		2.400		
	0.00						CL6BZ	LT	1.600		
	0.00						CL6CP	_	8.600		
	0.00 0.00						CL6ET	LT LT	1.500		
	0.00						DBAHA DBHC	ND	6.300 4.000		R
	0.00						DBZFUR		1.700		•
	0.00						DEP	LT	2.000		
	0.00						DLDRN	ND	4.700		R
	0.00						DMP DMBP	LT LT	1.500 3.700		
	0.00				-		DNOP	LT	15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA		8.000		R
	0.00			:			ENDRNK		8.000		R
	0.00						ESFSO4 FANT	ND LT	9.200 3.300		R
	0.00						FLRENE	LT	3.700		
	0.00						GCLDAN	ND	5.100	UGL	R
	0.00						HCBD	LT	3.400	UGL	_
	0.00						HPCLE	ND ND	2.000		R
	0.00						ICOPYR	ND LT	5.000 8.600		R
	0.00						ISOPHR	LT	4.800		
	0.00						LIM	MD	4.000		R
	0.00						MEXCLR		5.100		R
	0.00						NAP NB	LT LT	0.500 0.500		
	0.00						NNDMEA	ND	2.000		R
	0.00						HNDNPA	LT	4.400		•
	0.00						MNDPA	LT	3.000	UGL	
	0.00						PCB016	ND	21.000		R
	0.00						PC8221 PC8232	ND ND	21.000		R
	0.00						PC8242	ND ND	21.000 30.000		R R
	0.00						PCB248		30.000		Ř
	0.00						PCB254	ND	36_000	UGL	R
	0.00						PCB260	ND	36.000	UGL	R

CARB	ac Type	Spike Amount	Lab	Lot	Number		Method Code		Meas. Soolean	Value	Units	Internal Standard Code
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0						•		****				
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	OCRR	0.00	= 0	YDU	8	18-fab-1002	18419	DCD		10.000		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				AUN	•	10-160-1772	UNID					
0.00		0.00										
0.00									ND	4.000	UGL	R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									-			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		_										R
0.00 XDY 6 05-mar-1992 124CEB LT 1.800 UEL 0.00 0.00 12DCLB LT 1.700 UGL 0.00 0.00 12DCLB LT 1.700 UGL 0.00 0.00 13DCLB LT 1.700 UGL 0.00 0.00 13DCLB LT 1.700 UGL 0.00 0.00 14DCLB LT 1.700 UGL 0.00 0.00 14DCLB LT 1.700 UGL 0.00 0.00 12ASTED LT 4.200 UGL 0.00 0.00 12ASTED LT 4.200 UGL 0.00 0.00 12ASTED LT 4.200 UGL 0.00 0.00 12ASTED LT 4.200 UGL 0.00 0.00 12ASTED LT 4.200 UGL 0.00 0.00 12ASTED LT 4.200 UGL 0.00 0.00 0.00 12ASTED LT 4.500 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.												
0.00 0.00 12DCHB LT 1,700 UGL R 0.00 0.00 13DCHB LT 1,700 UGL R 0.00 0.00 14DCLB LT 1,700 UGL R 0.00 0.00 2245TCP LT 5,200 UGL 0.00 0.00 2245TCP LT 4,200 UGL 0.00 0.00 2245TCP LT 2,900 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.				vnv	4	05 .man - 1003						S
0.00 0.00 13DCLB LT 1.700 UGL R 0.00 14DCLB LT 1.700 UGL R 0.00 14DCLB LT 1.700 UGL R 0.00 0.00 245TCP LT 4.200 UGL R 0.00 0.00 0.245TCP LT 4.200 UGL R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.				λυ ι	Ü	U3-1RB17-1992						
0.00 0.00 13DCLB LT 1.700 UGL 0.00 0.00 14DCLB LT 1.700 UGL 0.00 0.00 245TCP LT 4.200 UGL 0.00 0.00 246TCP LT 2.900 UGL 0.00 0.00 24DLP LT 2.900 UGL 0.00 0.00 24DNP LT 5.800 UGL 0.00 0.00 24DNP LT 4.500 UGL 0.00 0.00 24DNP LT 4.500 UGL 0.00 0.00 24DNP LT 4.500 UGL 0.00 0.00 24DNP LT 0.990 UGL 0.00 0.00 0.00 12DNP LT 0.990 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.												2
0.00 0.00 0.00 0.00 0.00 0.00 0.245TCP LT									LT	1_700	ŲGL	•
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00		_										
0.00 0.00 240NT LT 0.790 UBL 0.00 0.00 250NP LT 0.790 UBL 0.00 0.00 26NAP LT 0.500 UBL 0.00 0.00 26NAP LT 1.700 UBL 0.00 0.00 28NAP LT 1.700 UBL 0.00 0.00 28NP LT 3.990 UBL 0.00 0.00 28NP LT 3.700 UBL 0.00 0.00 28NP LT 3.700 UBL 0.00 0.00 330CBD LT 12.000 UBL 0.00 0.00 330CBD LT 12.000 UBL 0.00 0.00 330CBD LT 17.000 UBL 0.00 0.00 46ONEC LT 17.000 UBL 0.00 0.00 46ONEC LT 17.000 UBL 0.00 0.00 46ONEC LT 17.000 UBL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.												
0.00												
0.00 2CLP												
C.00												
0.00												
0.00 2NANIL LT 4.300 UGL 0.00 2NP LT 3.700 UGL 0.00 330CSD LT 12.000 UGL 0.00 3MANIL LT 4.900 UGL 0.00 3MANIL LT 4.900 UGL 0.00 4GNPPE LT 7.300 UGL 0.00 4GRPPE LT 7.300 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 5.000 UGL 0.00 4CLPPE LT 5.000 UGL 0.00 4CLPPE LT 5.000 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 4MANIL LT 5.200 UGL 0.00 ACLDAN MD 5.100 UGL R 0.00 ACLDAN MD 5.100 UGL R 0.00 ALDRN MD 4.700 UGL R 0.00 ALDRN MD 4.700 UGL R 0.00 ANAPPL LT 1.700 UGL 0.00 ANAPPL LT 1.700 UGL 0.00 ANAPPL LT 1.500 UGL 0.00 ANAPPL LT 1.500 UGL 0.00 BCCEM LT 1.500 UGL												
0.00 2NP LT 3.700 UGL 0.00 330cBD LT 12.000 UGL 0.00 34MAN1L LT 4.900 UGL 0.00 45M2PE LT 17.000 UGL 0.00 45M2PE LT 4.200 UGL 0.00 46CL3C LT 4.000 UGL 0.00 4CL3C LT 4.000 UGL 0.00 4CL3C LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 5.200 UGL 0.00 4MP LT 15.200 UGL 0.00 4MP LT 15.000 UGL 0.00 4MP LT 15.000 UGL 0.00 4MP LT 12.000 UGL 0.00 4MP LT 12.000 UGL 0.00 UGL 0.00 4MP LT 17.000 UGL 0.00 LG R 0.00 4MP LT 17.000 UGL 0.00 LG R 0.00 ABBIC MD 4.000 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ACLDAN ND 5.100 UGL R 0.00 ALDRN MD 4.700 UGL R 0.00 ALDRN MD 4.700 UGL R 0.00 ALDRN MD 4.700 UGL R 0.00 ANAPYL LT 0.500 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 B2CEMN LT 1.500 UGL 0.00 B2CEMN LT 1.500 UGL 0.00 B2CEMN LT 1.500 UGL 0.00 B2CEMN LT 1.500 UGL 0.00 B2CEMN LT 1.500 UGL 0.00 B2CEMN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.600 UGL 0.00 B2CENN LT 1.600 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.600 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 B2CENN LT 1.500 UGL 0.00 LT.66T LT 1.500 UGL 0.00 LT.66T LT 1.500 UGL								_				
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00												
0.00									-			
0.00												
0.00 0.00 4CLPPE LT 5.100 UGL 0.00 4CLPPE LT 5.100 UGL 0.00 4MP LT 0.520 UGL 0.00 4MP LT 12.000 UGL 0.00 4MP LT 12.000 UGL 0.00 0.00 4MP LT 12.000 UGL 0.00 0.00 ABHC MD 4.000 UGL R 0.00 0.00 ACLDAN ND 5.100 UGL R 0.00 0.00 ACLDAN ND 5.100 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 ALDRN ND 4.700 UGL R 0.00 ALDRN LT 1.700 UGL R 0.00 ANAPYL LT 0.500 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 ANAPYL LT 1.500 UGL 0.00 B2CEPE LT 5.300 UGL 0.00 B2CEPE LT 5.300 UGL 0.00 B2CEPE LT 1.900 UGL 0.00 B2CEPE LT 1.900 UGL 0.00 B2CHP LT 1.600 UGL 0.00 B2CHP LT 5.300 UGL 0.00 B2CHP LT 5.400 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R 0.00 UGL R												
0.00												
0.00								4CLPPE	_	5.100	UGL	
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
0.00 ALDRN ND 4.700 UGL R 0.00 ANAPNE LT 1.700 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 ANTRC LT 0.500 UGL 0.00 B2CEM LT 1.500 UGL 0.00 B2CEE LT 1.500 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CHP LT 4.800 UGL 0.00 B2CHP LT 4.800 UGL 0.00 B2ANTR LT 1.600 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAANTR LT 5.400 UGL 0.00 BAANTR LT 5.400 UGL 0.00 BARYR LT 4.700 UGL 0.00 BSFANT LT 5.400 UGL 0.00 BSFANT LT 5.400 UGL 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 4.000 UGL R 0.00 BBRC ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 CELET ND 9.200 UGL R 0.00 CELET ND 9.200 UGL R 0.00 CELET ND 0.720 UGL CELET ND 0.000 UGL CELET						•				5.100	UGL	
0.00 ANAPME LT 1.700 UGL 0.00 ANAPYL LT 0.500 UGL 0.00 ANTRC LT 0.500 UGL 0.00 B2CEXM LT 1.500 UGL 0.00 B2CIPE LT 5.300 UGL 0.00 B2CIPE LT 5.300 UGL 0.00 B2CHP LT 4.800 UGL 0.00 B2CHP LT 4.800 UGL 0.00 B2CHP LT 4.800 UGL 0.00 BANTR LT 1.600 UGL 0.00 BANTR LT 5.400 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BSFANT LT 5.400 UGL 0.00 BSHC ND 4.000 UGL R 0.00 BSHC ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 BENSLD ND 10.000 UGL R 0.00 CUGL NT 13.000 UGL NC NC NC NC NC NC NC NC NC NC NC NC NC												
0.00 ANAPYL LT 0.500 UGL 0.00 B2CEXM LT 1.500 UGL 0.00 B2CIPE LT 5.300 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2CHEE LT 1.600 UGL 0.00 B2CHEE LT 1.600 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAANTR LT 5.400 UGL 0.00 BAANTR LT 5.400 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BBHC ND 4.000 UGL R 0.00 BBHC ND 4.000 UGL R 0.00 BBRSP LT 3.400 UGL 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLOA LT 13.000 UGL R 0.00 BENSLOA LT 13.000 UGL 0.00 BENSLOA LT 13.000 UGL 0.00 CHAY LT 0.870 UGL 0.00 CHAY LT 2.400 UGL 0.00 CHAY LT 2.400 UGL 0.00 CHAY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL				•								K
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 B2CIPE LT 5.300 UGL 0.00 B2CLEE LT 1.900 UGL 0.00 B2EHP LT 4.800 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BSFANT LT 5.400 UGL 0.00 BSFANT LT 5.400 UGL R 0.00 BSHC ND 4.000 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGH1PY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 CHRY LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.500 UGL 0.00 CL6CP LT 8.600 UGL					·					0.500	UGL	
0.00 B2CLEE LT 1.900 UGL 0.00 B2HP LT 4.800 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BSFANT LT 5.400 UGL 0.00 BSFANT LT 5.400 UGL R 0.00 BBRZP LT 3.400 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGH1PY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BKFANT LT 0.870 UGL 0.00 CHRY LT 2.400 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.500 UGL 0.00 CL6CP LT 8.600 UGL												
0.00 B2EHP LT 4.800 UGL 0.00 BAANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 B8FANT LT 5.400 UGL 0.00 B8HC ND 4.000 UGL R 0.00 BBZP LT 3.400 UGL 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGHPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BKFANT LT 0.870 UGL 0.00 CHRY LT 2.400 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL												
0.00 BANTR LT 1.600 UGL 0.00 BAPYR LT 4.700 UGL 0.00 BSFANT LT 5.400 UGL 0.00 BSHC ND 4.000 UGL R 0.00 BBZP LT 3.400 UGL 0.00 BENSLF NO 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGH1PY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BKFANT LT 0.870 UGL 0.00 CHRY LT 2.400 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6CP LT 8.600 UGL		0.00										
0.00 BSHC ND 4.000 UGL R 0.00 BBHC ND 4.000 UGL R 0.00 BBZP LT 3.400 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGHIPV LT 6.100 UGL 0.00 BGHIPV LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6GP LT 8.600 UGL 0.00 CL6GP LT 8.600 UGL 0.00 CL6GP LT 1.500 UGL									LT	1.600	UGL	
0.00 BBHC ND 4.000 UGL R 0.00 BBZP LT 3.400 UGL 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGH1PY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BKFANT LT 0.870 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6CF LT 1.500 UGL												
0.00 BBZP LT 3.400 UGL R 0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL R 0.00 BGH1PY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL												-
0.00 BENSLF ND 9.200 UGL R 0.00 BENZID ND 10.000 UGL R 0.00 BENZOA LT 13.000 UGL 0.00 BGH1PY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL68Z LT 1.600 UGL 0.00 CL66Z LT 1.600 UGL 0.00 CL66P LT 8.600 UGL 0.00 CL66F LT 1.500 UGL 0.00 DBARA LT 6.500 UGL		0.00										ĸ
0.00 BENZOA LT 13.000 UGL 0.00 BGHIPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6CP LT 1.500 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL									ND	9.200	UGL	R
0.00 BGHIPY LT 6.100 UGL 0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL												R
0.00 BKFANT LT 0.870 UGL 0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL												
0.00 BZALC LT 0.720 UGL 0.00 CHRY LT 2.400 UGL 0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL		0.00										
0.00 CL6BZ LT 1.600 UGL 0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL								BZALC	LT	0.720	UGL	
0.00 CL6CP LT 8.600 UGL 0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL												
0.00 CL6ET LT 1.500 UGL 0.00 DBARA LT 6.500 UGL												
0.00 DBARA LT 6.500 UGL												
								DBARA				
		0.00						DBHC	ND	4.000	UGL	R

CCR8	ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
0.00	OCRR	0.00	FS	YD Y	6	05-mars 1002	10418	ND7511D	1.9	1 700	1101	
0.00	4010			~~ .	Ū	03 1111 - 1772	ONTO					
0.00								_				P
0.00 DNOP T 15.000 LEI R C C C C C C C C C												**
0.00 EMBRM MD												
D.00												_
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00							-			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								FANT	LT			
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										_	_	0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00										
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									LT	8.600	UGL	
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											_	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												ĸ
NADMER MD												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								NXDMEA				R
O.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												_
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
D.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
O.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
D.00								_			–	
0.00 PPDOE ND 4.700 UGL R 0.00 PPPOT ND P.200 UGL R 0.00 PYR												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											. –	
TXPHEN ND 36,000 UGL R												R
0.00 XKQ 12 19-feb-1992 UW32 135TNB LT 0.449 UGL 0.00 120NB LT 0.611 UGL 0.00 246TNT LT 0.635 UGL 0.00 246TNT LT 0.064 UGL 0.00 266NT LT 0.074 UGL 0.00 MMX LT 1.210 UGL 0.00 MB LT 0.645 UGL 0.00 RDX LT 1.170 UGL 0.00 XLU 7 12-feb-1992 UM20 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 110CLE LT 0.500 UGL 0.00 12CCE LT 0.500 UGL 0.00 12CCE LT 0.500 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 0.590 UGL 0.00 ACEY LT 0.590 UGL 0.00 CC2ASCL LT 0.590 UGL 0.00 CC2ASCL LT 0.590 UGL 0.00 CC2ASCL LT 8.300 UGL 0.00 CC2ASCL LT 8.300 UGL												D
0.00		0.00		XKG	12	19-feb-1992	UW32					•
24DNT									LŤ	0.611	UGL	
Construction Cons												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0					1.							
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 XLU 7 12-feb-1992 UM20 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACEYLO MD 100.000 UGL R 0.00 ACEYLO MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL										1.170	UGL	
0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROKIN MD 100.000 UGL R 0.00 ACROKIN MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL				w	~	83 6-L 4000						
0.00 11DCE LT 0.500 UGL 0.00 11DCLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 C13DCP LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL				XLU	-	12-1eb-1992	UMZO					
0.00 110CLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 1.900 UGL												
0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 1.900 UGL												
0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL								12DCE	LT			
0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												
0.00 ACET LT 13.000 UGL 0.00 ACROLN MD 100.000 UGL R 0.00 ACRYLO MD 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												
0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 SRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												
0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												P
0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL		0.00										
0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL									LT	0.590	UGL	
0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												
0.00 C2H5CL LT 1.900 UGL												

140 gg (

QC Type	Spike Amount	Lab		Sample Number	Analysis Date		N ame		Value	Units	Internal Standard Cod
QCRB	0.00	ES	XLU	7	12-feb-1992	UH20			1.400		
	0.00						CCL4 CH2CL2		0.580		
	0.00						CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3		2,600		
	0.00						CHCL3		0.500		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5		0.500		
	0.00						CS2	LŤ	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5		0.500		
	0.00						HEK	ĹŤ	6.400		
	0.00						MIBK	LT	3,000		
	0.00						MNBK		3.600		
	0.00						STYR		0.500		
	0.00						T13DCP TCLEA		0.700		
	0.00						TCLEA	17	0.510 1.600		
	0.00						TCLEE TRCLE	LT	0.500		
	0.00						XYLEN	LŤ	0.840		
	0.00		XLW	8	26-feb-1992		111TCE		0.500		
	0.00						112TCE		1.200		
	0.00 0.00						11DCE		0.500		
	0.00						11DCLE 12DCE		0.680 0.500		
	0.00						120CLE		0.500		
	0.00						120CLP		0.500		
	0.00						2CLEVE		0.710		
	0.00						ACET		13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDCLM C13DCP		0.590 0.580		
	0.00						CZAVE		8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL		1.900		
	0.00					•	C6H6	LT	0.500		
	0.00				·		CCL3F CCL4	LŢ	1.400		
	0.00						CH2CL2	_	0.580 2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	ĹŤ	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL28Z	MD	10.000		R
	0.00						CLC6H5 CS2	LT LT	0.500		
	0.00						DBRCLM	LT	0.500 0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400	UGL	
	0.00 0.00						MIBK	LT	3.000		
	0.00						MNBK STYR	LT	3.600		
	0.00						T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA	LŤ	0.510		
	0.00						TCLEE	ĻŤ	1.600		
	0.00						TRCLE	LT	0.500		
	0.00			~	00 4. 4054		XYLEN	LT	0.840		
	0.00		XOD	7 16	09-dec-1991	2009	TL Ti	LT	6.990		
	0.00		XOM	9	13-feb-1992 04-mar-1992		TL TL	LT LT	6.990		
	0.00		~~1	13	V-F HAM - 1776		TL	LT	6.990 6.990		
	0.00		XOR	7	25-mar-1992		TL	ĹŤ	6.990		

QC	Spike			Sample	Analysis	Method	Tect	Meas.			Internal
	•	Lab	Lot	Number		Code		Boolean	Value	Units	Standard Code
				•••••	***********				******		
QCRS	0.00	re	XOR	8	25-mar-1992	55.00	*1				
CKD	0.00	E3	XPC	13	06-dec-1991	SD09 SD22	TL AS	LT LT	6.990 2.540		
	0.00		XPX	16	12-feb-1992		AS	LT	2.540		
	0.00		XTI			SD21	SE	LT	3.020	UGL	
	0.00		XTL	11	03-mar-1992		SE	LT	3.020		
	0.00		ртх	15 7	26-mar-1992		SE SE	LT LT	3.020 3.020		
	0.00		~!=	8	20 1401 1772		SE	LT	3.020		
	0.00		XVM		08-feb-1992	90	TOC	• • • • • • • • • • • • • • • • • • • •	2.270		
	0.00		XVS	5	10-feb-1992		PH		_6.910		
	0.00		XVZ X⊌D	11 27	12-feb-1992	60.30	TOX	1.7	124.000		
	0.00		XWG	11	06-mar-1992	3020	PB PB	LT LT	1.260 1.260		
	0.00			15			PB		4.230		
	0.00		XWL		26-mar-1992		PB		1.950		
	0.00		V04	8	12-4-1-1002		PB	LT	1.260		
	0.00		YCA	16 9	12-feb-1992 03-mar-1992	SD23	AG AG	LT LT	0.250		
	0.00		100	13	43-MM: - 1772		AG	LT	0.250 0.250		
	0.00		YCH		24-mar-1992		AG	ĹŤ	0.250		
	0.00			8			AG	LT	0.250		
	0.00		YEG	.5	24-feb-1992	00	PH		7.410		
	0.00		YEX	11 9	03-mar-1992 21-feb-1992		TOC		1340.000 23.100		
	0.00		YIA	11	03-mar-1992	SD22	AS	LT	2.540		
	0.00			15			AS	LT	2.540		
	0.00		AIL	_	31-mar-1992		AS	LT	2.540		
	0.00 0.00		YJC	8	10-mar-1992	1840	AS	LT	2.540		
	0.00		134	č	10-1881-1942	UMIO	124TC8 12DCL8		1.800 1.700		
	0.00						12DPH		2.000		R
	0.00						13DCLB		1.700		
	0.00						14DCLB		1.700	UGL	
	0.00						245TCP 246TCP		5.200		
	0.00						24DCLP		4,200 2,900		
	0.00						24DMPN		5,800		
	0.00						24DNP	LT	21.000		
	0.00					•	24DNT	LT	4.500		
	0.00						26DNT 2CLP	LT LT	0.790 0.990		
	0.00						2CNAP	ĹΪ	0.500		
	0.00						2MNAP	LT	1.700		
	0.00						2MP	LT	3.900		
	0.00			-			ZNANIL ZNP	LT LT	4.300 3.700		
	0.00						33DCBD	LT LT	12.000		
	0.00						3KAHIL	LT	4.900		
	0.00						46DN2C	ŁT	17.000		
	0.00 0.00						4BRPPE	LT	4.200		
	0.00						4CANIL 4CL3C	LT LT	7.300 4.000		
	0.00						4CLPPE	ir	5.100		
	0.00						4MP	LT	0.520		
	0.00						4NANIL	LT	5.200		
	0.00						4NP ABHC	LT ND	12.000		
	0.00						ACLDAN	ND	4.000 5.100		R R
	0.00						AENSLF	ND	9.200		R
	0.00						ALDRN	ND	4.700	UGL	Ř
	0.00						ANAPNE	LT	1.700		
	0.00 0.00						ANAPYL ANTRC	LT LT	0.500		
	0.00						B2CEXM	LT	0.500 1.500		
	0.00						B2CIPE	ĻŤ	5.300		
	0.00						B2CLEE	ĹŤ	1.900		

QC Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code	Test Name	Meas. Boolean	Value	Units	Internal Standard Code
				_	45 - 4600						
QCRB	0.00 0.00	£S	TJC	4	10-mar-1992	UM18			4.800		
	0.00						BAANTR BAPYR		1.600 4.700		
	0.00						BBFANT		5.400		
	0,00						BBHC	ND	4.000		R
	0.00						BBZP	LT	3,400		
	0.00						BENSLF		9.200	UGL	R
	0.00						BENZID		10,000		R
	0.00						BENZOA		13.000		
	0.00						BGHIPY BKFANT	-	6.100		
	0.00						BZALC	LT	0.870 0.720		
	0.00						CHRY		2.400		
	0.00						C1.687	i T	1.600		
	0.00						CL6CP	LT	8.600		
	0.00						CL6ET DBAKA	LT	1.500	UGL	
	0.00						DBAHA	LT	6,500	UGL	
	0.00						DBHC		4,000		R
	0.00						DBZFUR		1.700		
~ ~	0.00						DEP	LT	2.000 4.700	UGL	_
	0.00						DLDRN DMP	ND	4.700 1.500	UGL	R
	0.00						DNBP	LT LT	3.700		
	0.00						DNOP	LT	15.000		
	0.00						ENDRN	ND	7.600		R
	0.00						ENDRNA		8,000		Ř
	0.00						ENDRNK	ND	8.000		R
	0.00						ESFS04	ND	9.200		R
	0.00						FANT		3.300		
	0.00						FLRENE		3.700		_
	0.00						GCLDAN		5.100		R
	0.00						HCBD	LT ND	3.400		
	0.00						HPCL HPCLE		2.000 5.000		R R
	0.00						ICDPYR		8,600		^
	0.00						ISOPHR		4.800	UGL	
	0.00						LIN	MD	4,000		R
	0.00						MEXCLR	ND	5,100		R
	0.00						NAP	LT	0.500		
	0.00				-		NB	LT	0.500		_
	0.00						NNDMEA		2.000		R
	0.00						NNDNPA		4.400		
	0.00			:			NNDPA PCB016	LT ND	3.000 21.000		R
	0.00						PCB221	NO	21.000		R
	0.00						PCB232	ND	21,000		Ř
	0.00						PCB242	ND	30.000		R
	0.00						PC8248	ND	30,000	UGL	R
	0.00						PCB254	ND	36.000		R
	0.00						PC8260	ND	36,000		R
	0.00						PCP	LT	18.000		
	0.00						PHANTR PHENOL	LT LT	0.500		
	0.00						PPDDD	ND	9.200 4.000		R
	0.00						PPDDE	ND	4.700		R
	0.00						PPDDT	NO	9.200		R
	0.00						PYR	LT	2.800		
	0.00			_			TXPHEN	ND	36.000		R
	0.00		ILY	6	01-apr-1992		124TCB	ŁT	1.800		
	0.00						12DCLB	LT	1.700		
	0.00						130CLB	LŢ	1.700		
	0.00						140CLB	LT LT	1.700		
	0.00						2451CP 2461CP	L? LT	5.200 4.200		
	0.00						24DCLP	LT	2.900		
	0.00						24DMPN	ίŤ	5.800		
									2.000		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
ocrs	0.00	ES	ILY	6	01-apr-1992	IM18	24DNb	1.7	21.000	HC1	
-01.0	0.00			•	· · · · · · · · · · · · · · · · · · ·	W 110	24DNT	LT	4,500		
	0.00						26DNT	LT	0.790		
	0.00						2CLP	LT	0.990	UGL	
	0.00						SCHAP	LT	0.500	UGL	
	0.00						2MNAP	LT	1.700		
	0.00						2MP	LT	3.900		
	0.00						2NANIL 2NP	LT LT	4.300 3,700		
	0.00						3NANIL		4.900		
	0.00						46DN2C		17.000		
	0.00						4BRPPE		4,200		
	0.00						4CANIL		7.300	UGL	
	0.00						4CL3C	LT	4.000		
	0.00						4CLPPE		5.100		
	0.00						4MP 4NANIL	LT LT	0.520		
	0.00						4NP	LT	5.200 12.000		
	0.00						ABHC		4.000		R
	0.00						AENSLF		9.200		Ř
	0.00						ALDRN	ND	4.700		Ř
	0.00						ANAPNE	LT	1.700		
	0.00						ANAPYL	LT	0.500		
	0.00						ANTRO	LT	0.500		
	0.00						B2CEXM B2CIPE		1.500 5.300		
	0.00						B2CLEE	LT	1.900		
	0.00						BBHC	ND.	4.000		R
	0.00						BENSLF		9.200	UGL	Ř
	0.00						BENZOA		13.000		
	0.00						BZALC	LT	0.720		
	0.00						CL68Z	LT	1.600		
	0.00 0.00						CL6CP	LT	8.600		
	0.00						CL6ET DBHC	LT ND	1.500 4.000		R
	0.00						DBZFUR	LT	1.700		ĸ
	0.00						DEP	LT	2.000		
	0.00						DLDRN	ND	4.700	UGL	R
	0.00					•	DMP	ĻT	1.500		
	0.00				•		DNBP		3.700		
	0.00					•	ESF\$04	ND	9.200		R
	0.00						FANT	LT LT	3.300		
	0.00						FLRENE HCBD	LT	3.700 3.400		
	0.00			·			HPCL	ND	2.000		R
	0.00						HPCLE	MD	5.000		Ř
	0.00						ISOPHR	LT	4.800	UGL	
	0.00						LIN	ND	4.000		R
	0.00						NAP	LT	0.500		
	0.00						NB	LT	0.500		_
	0.00						NNDMEA	ND Lt	2.000 4.400		R
	0.00						NNDPA	LT	3.000		
	0.00						PCB016	ND	21.000		R
	0.00						PCB221	ND	21.000		Ř
	0.00						PC8232	ND	21.000		R
	0.00						PCB242	HD	30.000		R
	0.00						PCB248	MD	30.000		R
	0.00						PCB254	MD	36.000		R
	0.00						PCB260 PCP	ND	36,000		R
	0.00						PHANTR	LT LT	18.000 0.500		
	0.00						PHENOL	LT	9.200	_	
	0.00						PPDDD	ND	4.000		R
	8.00						PPDDE	ND	4.700		Ř
	0.00						TXPHEN	ND	36.000		R

QCR8 0.00 ES YOC 8 27-mar-1992 SS10 AL LT 141.000 UG 0.00 BA 19.800 UG 0.00 BE LT 5.000 UG 0.00 CA 13000.000 UG 0.00 CD LT 4.010 UG 0.00 CD LT 25.000 UG 0.00 CR LT 6.020 UG 0.00 CU 26.500 UG 0.00 UG 0.00 K 930.000 UG 0.00 UG 0.00 MG 4200.000 UG 0.00 UG 0.00 MA 4080.000 UG 0.00 UG 0.00 NA 4080.000 UG 0.00 UG 0.00 SB LT 38.000 UG 0.00 SB LT 38.000 UG 0.00 V LT 11.000 UG	Internal nits Standard Code
0.00 BE LT 5.000 UG 0.00 CA 13000.000 UG 0.00 CD LT 4.010 UG 0.00 CD LT 25.000 UG 0.00 CR LT 6.020 UG 0.00 CU 26.500 UG 0.00 FE 205.000 UG 0.00 K 930.000 UG 0.00 MG 4200.000 UG 0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 CA 13000.000 UG 0.00 CD LT 4.010 UG 0.00 CD LT 25.000 UG 0.00 CR LT 6.020 UG 0.00 CU 26.500 UG 0.00 FE 205.000 UG 0.00 K 930.000 UG 0.00 MG 4200.000 UG 0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 CD LT 25.000 UG 0.00 CR LT 6.020 UG 0.00 CU 26.500 UG 0.00 FE 205.000 UG 0.00 K 930.000 UG 0.00 MG 4200.000 UG 0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 CR LT 6.020 UG 0.00 CU 26.500 UG 0.00 FE 205.000 UG 0.00 K 930.000 UG 0.00 MG 4200.000 UG 0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 CU 26.500 UG 0.00 FE 205.000 UG 0.00 K 930.000 UG 0.00 MG 4200.000 UG 0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 FE 205.000 UG 0.00 K 930.000 UG 0.00 MG 4200.000 UG 0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 MG 4200.000 UG 0.00 HN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	3L
0.00 MN 15.100 UG 0.00 NA 4080.000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 NA 4080_000 UG 0.00 NI LT 34.300 UG 0.00 SB LT 38.000 UG	
0.00 SB LT 38,000 UG	
	3L
A-00 & F) 11-(UR) CIN	
0.00 ZN 113,000 UG	
0.00 9 AL LT 141.000 UG	
0.00 BA 17.200 UG	
0.00 BE LT 5.000 UG CA 13300.000 UG	
0-00 CD LT 4-010 UG	
0.00 CO LT 25.000 UG	
0.00 CR LT 6.020 UG	
0.00 CU 25.300 UG 0.00 FE 258.000 UG	
0.00 K 1400.000 UG	
0.00 MG 4100,000 UG	
0.00 MM 9,900 UG 0.00 NA 3890,000 UG	
0.00 NA 3890.000 UG 0.00 NI LY 34.300 UG	
0.00 SB LT 38.000 UG	
0.00 Y LT 11.000 UG	GL C
0.00 78.800 UG QCTB 0.00 SQU 3 30-aug-1990 UN20 111TCE LT 0.500 UG	
QCTB 0.00 SQU 3 30-aug-1990 UN20 111TCE LT 0.500 UG 0-00 112TCE LT 1.200 UG	
0.00 11DCE LT 0.500 UG	
0.00 11DCLE LT 0.680 UG	
0.00 . 120CE LT 0.500 UG 0.00 . 120CLE LT 0.500 UG	
0.00 120CLP LT 0.500 UG	
0.00 2CLEVE LT 100.000 UG	
0.00 ACET LT 13.000 UG	
0.00 ACROLN ND 100.000 UG 0.00 ACRYLO ND 100.000 UG	
0-00 BRDCLM LT 0.590 UG	
0.00 C13DCP LT 0.580 UG	GL
0.00 C2AVE LT 8.300 UG	
0.00 C2H3CL LT 2.600 UG 0.00 C2H5CL LT 1.900 UG	
0.00 C6H6 LT 0.500 UG	
0.00 CCL3F LT 1.400 UG	iL .
0.00 CCL4 LT 0.580 UG 0.00 CH2CL2 LT 2.300 UG	
0.00 CH2CL2 LT 2.300 UG 0.00 CH3BR LT 5.800 UG	
0.00 CH3CL LT 3.200 UG	
0.00 CHBR3 LT 2.600 UG	SL.
0.00 CHCL3 LT 0.500 UG 0.00 CL2BZ ND 10.000 UG	_
C.00 CL2BZ ND 10.000 UG C.00 CLC6H5 1.T 0.500 UG	
0.00 CS2 LT 0.500 UG	
0.00 DBRCLM LT 0.670 UG	SL.
0.00 ETC6H5 LT 0.500 UG 0.00 MFC6H5 LT 0.500 UG	
0.00 MEC LT 0.500 UG 0.00 MEK LT 6.400 UG	
0.00 MISK LT 3.000 UG	

ec Type					Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	sou	3	30-aug-1990	UN20	MNBK	LT	3,600	ucı	
	0.00			•		4.14.0	STYR	ĹŤ	0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA	LT	0.510	UGL	
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE Xylen	LT LT	0.500		
	0.00		WAA	7	29-jun-1991		111TCE	LT	0.840 0.500		
	0.00			•			11ZTCE		1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500		
	0.00						120CLE 120CLP		0.500		
	0.00						SCFEAE	LT	0.500 0.710		
	0.00						ACET	LT	13.000	UGL	
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO		100.000	UGL	R
	0.00						BRDCLM	LT	0.590		
 .	0.00						C13DCP	LT	0.580		
	0.00						C2AVE C2H3CL	LT LT	8.300 2.600		
	0.00						CZHSCL	ĹŤ	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4		0.580		
	0.00						CH2CL2		3.580		
	0.00						CH3BR CH3CL	LT LT	5.800 3.200	UGL	
	0.00						CHBR3	ĹŤ	2.600		
	0.00						CHCL3	ĻŤ	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						C\$2	LT	0.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670 0.500		
	0.00						MEC6H5	ĹŤ	0.500		
	0.00						MEK	LT	6.400	UGL	
	0.00					-	MIBK	LT	3.000		
	0.00				,		MNBK		3.600		
	0.00						STYR T13DCP	LT LT	0.500		
	0.00			-			TCLEA	LT	0.700 0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE		0.500	UGL	
	0.00				70 : 1001		XYLEN	LT.	0.840		
	0.00 0.00		WAB	6	30- jun-1991		111TCE	LT	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	ĹΤ	0.680		
	0.00						12DCE	ĹŤ	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET ACROLN	£T ND	13.000		
	0.00						ACRYLO	ND ND	100.000 100.000		R R
	0.00						BRDCLM	LT	0.590		•
	0.00						C13DCP	LT	0.580		
	0.00						CSAVE	LT	8.300		
	0.00						C2H3CL	LŢ	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	ĹΤ	0.580		
	0.00						CHSCFS		3.300		•

QC Type	Spike Amount		Lot	Humber	Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	FS	UAR	6	30- jun-1991	18420	CUTOD	1.7	E 900	1101	
40.5	0.00	LJ	HALL .	•	30 344: 1991	UMZU	CH3CL	LT	5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500	-	
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5	LT	0.500	UGL	
	0.00						CS2	LT	0.500		
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500		
	0.00 0.00						MEC6H5		0.500		
	0.00						MEK	LT LT	6.400 3.000		
	0.00						WNBK		3.600		
	0.00						STYR	LŤ	0.500		
	0.00						T13DCP	ĹΤ	0.700		
	0.00						TCLEA		0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0,500	UGL	
	0.00			_			XYLEN	LT	0.840	UGL	
	0.00		WAV	5	02-sep-1991		111TCE		0.500		
	0.00						112TCE		1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE	LŢ	0.680		
	0.00						120CE 120CLE	L(0.500 0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET		13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000	UGL	R
	0.00						BRDCLM	LT	0.590	UGL	
	0.00						C13DCP		0.580		
	0.00						CZAVE		8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL		1.900 0.500		
	0.00						C6H6 CCL3F	LT	1.400		
	0.00						CCL4		0.580		
	0.00						CH2CL2	LT	2,300		
	0.00						CH3BR CH3CL	LT	5.800	UGL	
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3		2.600		
	0.00						CHCL3	LT	0.500		_
	0.00			٠.			CL28Z CLC6H5	ND LT	10.000 0.500		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500		
	6.00						MEC6K5	ĹŤ	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600	UGL	
	0.00						STYR	LT	0.500		
	0.00						T13DCP	LT	0.700		
	0.00 0.00						TCLEA	ĻŢ	0.510		
	0.00						TCLEE	LŢ	1.600		
	0.00						TRCLE	LT LT	0.500		
	0.00		WAW	4	03-sep-1991		1117CE	LT	0.840 0.500		
	0.00			•	p,		112TCE	LT	1.200		
	0.00						11DCE	น้า	0.500		
	0.00						11DCLE	ĽΤ	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500	UGL	
	0.00						12DCLP	ŁT	0.500		
	0.00						SCTEAE	LT	0.710	UGL	

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	WALI	4	03-sep-1991	UM20	ACET	LT	13.000	UGL	
	0.00						ACROLN	ND	100.000	UGL	R
	0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	LT	8.300		
	0.00						CZH3CL	LT	2.600	UGL	
	0.00						C2H5CL C6H6	LT	1.900		
	0.00						CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	ĹŤ	0.580		
	0.00						CH2CL2		2.300		
	0.00 0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3	ĹŤ	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL28Z	ND	10.000		R
	0.00						CLC6H5 CS2	LT LT	0.500 0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500	UGL	
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT LT	6.400 3.000		
	0.00						MNBK	ĹŤ	3.600		
	0.00						STYR	· LT	0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA TCLEE	LT LT	0.510 1.600		
	0.00						TRCLE	LT	0.500		
	0.00			-	4004		XYLEN	LT	0.840		
	0.00		WAX	3	09-sep-1991		111TCE 112TCE	LT LT	0.500 1,200		
	0.00						11DCE	£T	0.500		
	0.00						11DCLE	LT	0.880		
	0.00						12DCE	LT	0.500		
	0.00						120CLE 120CLP	LT LT	0.500 0.500		
	0.00						2CLEVE	ĹŤ	0.710		
	0.00						ACET	LT	13.000	UGL	
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLM	ND LT	100.000 0.590		R
	0.00						C130CP	LT	0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0,580		
	0.00						CH2CL2	LT LT	2.300 5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600	UGL	
	0.00						CHCL3	LT	0.500		_
	0.00						CL28Z CLC6H5	ND LT	10.000 0.500		R .
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670	UGL	
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT LT	0.500 6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600	UGL	
	0.00						STYR	LT	0.500		
	0.00						T13DCP	LT	0.700	UGL	

QC Type	Spike Amount	Lab	Lat	Sample Number	Anmlysis Date	Method Code		Meas.	Value	llnita	Internal Standard Code
									721GE	s	Stardard Code
QCTB	0.00	ES	WAX	3	09-sep-1991	UN20	TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN	ίτ	0.840		
	0.00			4			111TCE		0.500	UGL	
	0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00						120CE	LT	0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	ĻŤ	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLM		100.000 0.590		R
	0.00						C130CP	LT	0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	ĻT	1.400	UGL	
	0.00 0.00						CCL4	LŢ	0.580		
	0.00						CH2CL2 CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL28Z	LT ND	0.500 10.000		R
	0.00						CLC6H5	LT	0.500		•
	0.00						CS2	LT	0.500	UGL	
	0.00						DBRCLM ETC6H5		0.670		
	0.00						MEC6H5	LT LT	0.500 0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3,000		
	0.00						MNBK STYR	LT LT	3.600 0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00		•	-			XYLEN	ĹŤ	0.840		
	0.00			. 5			1117CE	LT	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT.	0.500	UGL	
	0.00						120CLE 120CLP	LT LT	0.500		
	0.00						SCLEVE	LT	0.500 0.710		
	0.00						ACET	ĻT	13,000	UGL	
	0.00 0.00						ACROLN	MD	100.000		R
	0.00						ACRYLO BRDCLM	MD LT	100.000 0.590		R
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE	LT	8.300	UGL	
	0.00						C2K3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	ĹŤ	0.500		
	0.00						CCL3F	LT	1.400	UGL	
	0.00						CCL4 CH2CL2	LT LT	0.580		
	0.00						CH3BR	LT	2.300 5.800		
	0.00						CH3CL	LT	3.200	UGL	
	0.00						CHBR3	LT	2.600		

qc Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Cod
QCTB	0.00	ce	WAX	5	09-sep-1991	1M20	CHCL3	LT	S 500		
-0,5	0.00	Ęū	-	-	07 acp 1771	UMZU	CL2BZ	ND	0.500 10.000		R
	0.00						CLC6H5		0.500		
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5		0.500		
	0:00						MEK	LŢ	6.400		
	0.00						M18K	LT LT	3.000		
	0.00						STYR	LT	3.600 0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600	UGL	
	0.00			•			TRCLE	LT	0.500		
	0.00		LITE	,	20 1001		XYLEN	LT	0.840		
	0.00 0.00		WTD	4	20-sep-1991		1111CE		0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE	ĹΤ	0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP		0.500	UGL	
	0.00						SCLEAE		0.710		
	0.00						ACET	LT	13.000		_
	0.00						ACROLN		100.000		R
	0.00						ACRYLO BRDCLM		100.000 0.590		R
	0.00						C13DCP		0.580		
	0.00						C2AVE	ĹŤ	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00		-				Сене	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00 0.00						CCL4 CH2CL2	LT	0.580		
	0.00						CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	ĹŤ	3.200		
	0.00					•	CHBR3	ĹŤ	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5		0.500		
	0.00 0.00			-			CS2	LT	0.500		
	0.00			٠			DBRCLM ETC6H5	LT LT	0.670		
	0.00						MEC6H5	ίτ	0.500 0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	ŁŦ	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE TRCLE	LT LT	1,600		
	0.00						XYLEN	LT	0.500 0.840		
	0.00			5			111TCE		0.500		
	0.00			-			112TCE		1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE		0.680		
	0.00						120CE	LT	0.500		
	0.00						120CLE		0.500		
	0.00						120CLP		0.500		
	0.00						SCLEVE	LT LT	0.710		
	0.00						ACROLN	ND	13.000 100.000		D
	0.00						ACRYLO		100.000		R R
								178		446	D.

qc Type	Spike Amount	Lab			Analysis Date		Test Name	Meas. Boolean	Value	Units	Internal Standard Code
					•						
CCTD	0.00				30 4004						
QCTB	0.00	£\$	810	5	20-sep-1991	UM20	C13DCP	LT LT	0.590 0.580		
	0.00						CZAVE	LT	8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL	ίŤ	1.900		
	0.00						COHO	LT	0.500	UGL	
	0.00						CCL3F	LŢ	1.400		
	0.00 0.00						CCL4	LŤ	0.580		
	0.00						CHZCLZ CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	ĹŤ	3.200		
	0.00						CHBR3	LT	2,600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ_	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CSZ	LŢ	0.500		
	0.00						DBRCLM ETC6H5		9.670 0.500		
	0.00						MEC6H5		0.500		
	0.00						MEK	ĹŤ	. 6.400		
	0.00						MIBK	LT	3,000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP TCLEA	LT LT	0.700 0.510		
	0.00						TCLEE	LT	1,600		
	0.00						TRCLE		0.500		
	0.00						XYLEN	LT	0.840		
	0.00		WTE	9	24-sep-1991		111TCE	LT	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE	ĻŢ	0.500		
	0.00						11DCLE 12DCE	LT	0.680		
	0.00						12DCLE	LT LT	0.500 0.500		
	0.00						12DCLP	ĹŤ	0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00					-	ACRYLO	ND	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	ĹŤ	8.300		
	0.00			-			C2H3CL	ĹŤ	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4 CH2CL2	LT LT	0.580 2. 30 0		
	0.00						CH3BR	LT	2.300 5.800		
	0.00						CH3CL	ίŤ	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5 CS2	LT	0.500		
	0.00						DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400	UGL	
	0.00						MIBK	LT	3,000		
	0.00						MNBK	LŢ	3.600		
	0.00						STYR T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	ĹŤ	0.500		

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date		Name	Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	E\$	MIE		24-sep-1991	UN20			0.840		
	0.00			10			111TCE		0.500		
	0.00						112TCE 11DCÉ		1.200		
	0.00						11DCLE		0.500 0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP		0.500		
	0.00						ZCLEVE	LT	0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDCLN C13DCP		0.590 0.580		
	0.00						CZAVE		8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL		1.900		
	0.00						C6H6	LT	0.500	UGL	
	0.00						CCL3F		1.400		
	0.00						CCL4		0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL		3.200 2,600		
	0.00						CHBR3 CHCL3	LT	0.500		
	0.00						CLZBZ	ND	10.000		R
	0.00						CLC6H5		0.500		
	0.00						C\$2	LT	0.500		
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500		
	0.00 0.00						MEC6H5		0.500		
	0.00						MIBK	LT LT	6.400 3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP	LT	0.700	UGL	
	0.00						TCLEA		0.510		
	0.00						TCLEE		1.600		
	0.00					•	TRCLE		0.500		
	0.00 0.00		WTH	8	02-oct-1991		XYLEN 111TCE		0.840 0.500		
	0.00			•	02 · 00 C · 1991		112TCE		1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE		0,500		
	0.00						12DCLP		0.500		
	0.00						2CLEVE ACET	LT LT	0.710 13.000		
	0.00						ACROLN	ND:	100.000		
	0.00						ACRYLO		100.000		Ř R
	0.00						BRDCLM		0.590		•
	0.00						C13DCP		0.580		
	0.00						C2AVE	LT	8_300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL		1.900		
	0.00 0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2		4.720		
	0.00						CH3BR	LŦ	5.800		
	0.00						CH3CL	LT	3.200	UGL	
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500		_
	0.00 0.00						CL2BZ CLC6H5	ND	10,000		R
	v.00						CLUGAS	LŤ	0.500	COL	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Test	Meas.			nternal Indard Code
								20000		OH 12 316	TANGE COOP
				_							
QCTB	0.00	ES	WTH	8	02-oct-1991	UM20	CS2	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	-	3.000	UGL	
	0.00						MNBK	LT	3.600		
	0.00						STYR T130CP	LT LT	0.500 0.700		
	0.00						TCLEA		0.510		
	0.00						TCLEE		1.600		
	0.00						TRCLE		0.500		
	0.00		WTL	14	16-oct-1991		XYLEN		0.840		
	0.00		#1L	17	10-001-1991		111TCE 112TCE	LT LT	0.500 1.200		
	0.00		•				11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE		0.500		
	0.00						120CLE	LT	0.500		
	0.00						12DCLP 2CLEVE		0.500 0.710		
	0.00						ACET		13.000		
	0.00						ACROLN		100_000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDCLM C13DCP	-	0.590 0.580		
	0.00						C2AVE		8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C686	LT	0.500		
	0.00						CCL3F CCL4	LT LT	1.400 0.580		
	0.00						CHZCL2		2.300		
	0.00						CH3BR	ĹŤ	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT ND	0.500 10.000		R
	0.00						CLC6H5	LT	0.500		•
	0.00				-		C\$2	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00 0.00						ETC6H5	LT	0.500		
	0.00			•			MEC6H5 MEK	LT LT	0.500 6.400		
	0.00		-	·			MIBK	ĹŤ	3,000		
	0.00						MNBK	LT	3.600	UGL	
	0.00						STYR	LT	0.500		
	0.00						T13DCP	LT LT	0.700 0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	ĹŤ	0.500		
	0.00						XYLEN	LT	0.840	UGL	
	0.00			21	17-oct-1991		111TCE	LT	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	ĹŤ	0.680		
	0.00						120CE	LT	0.500	UGL	
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT A.T	0.500		
	0.00						SCLEAE	LT LT	0.710 13.000		
	0.00						ACROLN	ND	100,000		R
	0.00						ACRYLO	ND	100.000	-	Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LŤ	0.580		
	0.00						C2AVE	r1	8,300	UGL	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Code	Name	Boolean	Value	Units	Internal Standard Code
			•-•	*****					*		
QCTB	0.00	ES	WTL	21	17-oct-1991	UM20	C2H3CL	LT	2,600	ugt	
	0.00						C2H5CL		1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LT LT	1.400 0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR		5.800		
	0.00						CH3CL	LT LT	3.200		
	0.00						CHBR3 CHCL3	LT	2.600 0.500		
	0.00						CL2BZ	_	10.000		R
	0.00						CLC6H5	_	0.500		
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5		0.500		
	0.00						MEC6H5		0.500	UGL	
	0.00						MIBK	LT LT	6.400 3.000		
	0.00						MNBX	LT	3.600		
	0.00						STYR	ĹŤ	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA TCLEE	LT LT	0.510 1.600		
	0.00						TRCLE		0.500		
	0.00						XYLEN		0.840	UGL	
	0.00 0.00		WTN	24	18-oct-1991		111TCE 112TCE		0.500		
	0.00						11DCE		1.200 0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						120CLE 120CLP		0.500 0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROLN ACRYLO		100.000		R
	0.00						BRDCLM		100.000 0.590		R
	0.00						C13DCP		0.580		
	0.00					•	C2AVE	LT	8.300		
	0.00				•		C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2 CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LŤ	3.200		
	0.00 0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT ND	0.500 10.000		R
	0.00						CLC6H5	LT	0.500		В.
	0.00						CS2	LT	8.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670		
	0.00						NEC6H5	LT	0.500 0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK Styr	LT LT	3.600 0.500		
	0.00						T13DCP	LT	0.700		
	0.00						TCLEA	LT	0.510	UGL	
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT LT	0.500 0.840		
	0.00		WTR	16	25-oct-1991		111TCE	LT	0.500		
	0.00						112TCE	LT	1.200	UGL	

QC Type	Spike Amount	Lab	Lot		Date	Method Code	Name	Neas. Boolean	Value	Units	Internal Standard Code
QСТВ		ES	WTR	16	25-oct-1991	UM20	11DCE		0.500		
	0.00						11DCLE		0.680		
	0.00						120CE	LT	0.500		
	0.00						12DCLE 12DCLP		0.500		
	0.00						SCLEVE		0.500 0.710		
	0.00						ACET		13,000		
	0.00						ACROLN		100,000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM		0.590		
	0.00						C130CP		0.580		
	0.00 0.00						CZAVE	LT	8.300		
	0.00						C2H3CL C2H5CL		2.600 1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	ĹŤ	1,400		
	0.00						CCL4		0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR	LT	5.800	UGL	
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3 CL2BZ	LT	0.500		
	0.00						CLC6H5	ND Lt	10.000 0.500		Ř
	0.00						CS2	LT	0.500		
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500		
	0.00						MEC6H5	LT	0.500	UGL	
	0.00						MEK	LT	6,400		
	0.00 0.00						HIBK	LT	3.000		
	0.00						MN8K STYR	LT	3.600		
	0.00						T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA	ĹΤ	0.510		
	0.00						TCLEE	ĹŤ	1.600		
	0.00						TRCLE	LT	0.500	UGL	
	0.00			_			XYLEN	LT	0.840		
	0.00		WTT	3	01-nov-1991		111TCE		0.500		
	0.00					•	112TCE 11DCE		1.200		
	0.00						11DCLE	LT LT	0.500 0.680		
	0.00						12DCE	ĹŤ	0.500		
	0.00			-			12DCLE		0.500		
	0.00						12DCLP		0.500		
	0.00						2CLEVE	L.T	0.710	UĞL	
	0.00						ACET	LT	13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO		100.000		R
	0.00						BRDCLM C13DCP		0.590 0.580		
	0.00						C2AVE	ĹŤ	8.300		
	0.00						C2H3CL		2.600		
	0.00						CZH5CL		1,900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00 0.00						CCL4	LT	0.580		
	0.00						CH2CL2		2.300		
	0.00						CH38R CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5		0.500		-
	0.00						CS2	LT	0.500	UGL	
	0.00						DBRCLM		0.670		
	0.00						ETC6H5	LT ·	0.500	UGL	

QC Type						Method Code	Name	Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	WTT	3	01-nov-1991	UM20	MEC6H5		0.500		
	0.00						MEK	LŢ	6.400		
	0.00						MIBK	LT	3.000	-	
	0.00						MNBK Styr	LT LT	3,600 0,500		
	0.00						T13DCP		0.700		
	0.00						TCLEA		0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE		0.500		
	0.00			,			XYLEN		0.840		
	0.00			4			111TCE		0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE		0.710		
	0.00						ACET	LT	13,000		
 -	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLM		100.000		R
	0.00						C13DCP		0.590 0.580		
	0.00						CZAVE		8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1.400		
	0.00 0.00						CCL4		0.580		
	0.00						CH2CL2 CH3BR		2.300		
	0.00						CH3CL	LT	5.800 3.200		
	0.00						CHBR3		2.600		
	0.00						CHCL3		0.500	_	
	0.00						CL2BZ	MD	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670		
	0.00				,	•	MEC6H5	LT LT	0.500 0.500		
	0.00						WEK	เร่	6.400		
	0.00						HIBK	ίŤ	3.000		
	0.00		٠.				MNBK	ίŤ	3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00 0.00						TCLEE	LŢ	1.600		
	0.00						TRCLE	LT	0.500 0.840		
	0.00			5			111TCE	LT LT	0.500	_	
	0.00			•			112TCE	LT	1,200		
	0.00						11DCE	ĹŤ	0.500		
	0.00						11DCLE	ĹŤ	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						SCLEVE	LT	0.710		
	0.00						ACET ACROLN	LT ND	13.000 100.000		ъ
	0.00						ACRYLO	MD	100,000		R R
	0.00						BRDCLM	LT	0.590		Α
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE	ĻŤ	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500	UGL	

ac Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name	Boolean	Value		Internal Standard Code
QCTB	0.00	ES	WTT	5 .	01-nov-1991	UM20	CCI 3F	1.7	1,400	1161	
	0.00			-			CCL4	LT	0.580		
	0.00				01-nov-1991		CH2CL2	LT	2.300 5.800		
	0.00						CH38R	ŁT	5.800	UGL	
	0.00						CH3CL	LT LT LT LT	3.200 2.600	UGL	
	0.00						CHBR3	LT	2.600 0.500		
	0.00						CL2RZ	ND	10.000	LICE	R
	0.00						CLC6H5	LT	0.500	UGL	•
	0.00						CS2		0.500	UGL	
	0.00						DBRCLM	LŢ	0.670	UGL	
	0.00						ETC6H5		0.500	UGL	
	0.00						MEC6H5 MEK		0.500 6.400	UGL	
	0.00						MISK	LT	3.000	HGL	
	0.00						MNBK WIBK	ĹŤ	3,600	UGL	
	0.00						STYB	17	0.500	UGL	
	0.00						T13DCP	LT	0.700	UGL	
	0.00						TCLEA	LT	0.510		
	0.00 0.00						T13DCP TCLEA TCLEE TRCLE	LT	1.600 0.500	UCL	
	0.00						XYLEN	LT LT	0.500 6.840	UGL	
	0.00			11			111TCE	LT	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						SCLEVE	LT LT	0.500 0.710	UGL	
	0.00						ACET	ĹŤ	13.000	LIGI	
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO		100,000		R
	0.00						BRDCLM		0.590		
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE C2H3CL	LT LT	8.300 2.600		
	0.00						C2H5CL		1.900		
	0.00					-	C6H6	LT	0.500		
	0.00				-		CCL3F CCL4	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00		-				CH2CL2		2.300	UGL	
	0.00			:			CH3BR CH3CL	LT LT	5.800 3.200	UGL	
	0.00			1				ĹŤ	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CSZ	LT	0.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670		
	0.00						MEC6H5	LT	0.500 0.500		
	0.00						MEK	ĹŤ	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP	LT	0.700		
	0.00						TCLEA	LT LT	0.510 1.600		
	0.00						TRCLE	LŤ	0.500		
	0.00						XYLEN	ĹŤ	0.840		
	0.00			12			111TCE	LT	0.500	UGL	
	0.00						112TCE	LT	1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LT	0.500	UGL	

qc Type					Analysis Date	Code	Name	Bool ean	Value	Units	Internal Standard Code
		•••									
QCTB	0.00	ES	WTT	12	01-nov-1991	UM20	12DCLE	LT	0.500	LINCE	
	0.00				1.61 1771	4.20	120CLP		0.500		
	0.00						2CLEVE		0.710		
	0.00						ACET		13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO BRDCLM		100.000 0.590		R
	0.00						C13DCP	_	0.580		
	0.00						C2AVE		8.300		
	0.00						C2H3CL	-	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	ĹŤ	1.400		
	0.00						CCL4	LT	0.580	UGL	
	0.00						CH2CL2		2.300		
	0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3		2.600		
	0.00						CHCL3		0.500		
	0.00						CL2BZ		10.000		R
	0.00 0.00						CLC6H5 CS2	LT LT	0.500		
	0.00						DBRCLM		0.500 0.670		
	0.00						ETC6H5		0.500		
	0.00						MEC6H5	LT	0.500	UGL.	
	0.00						MEK	Lĭ	6.400		
	0.00						MIBK	LT LT	3.000 3.600		
	0.00						STYR	LT	0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA		0.510		
	0.00						TCLEE		1.600		
	0.00						TRCLE XYLEN	LT LT	0.500 0.840		
	0.00			13			111TCE	ĹŤ	0.500		
	0.00						112TCE	LT	1.200	UGL	
	0.00 0.00						11DCE	LŢ	0.500		
	0.00						11DCLE 12DCE		0.680 0.500		
	0.00						12DCLE	ĹŤ	0.500		
	0.00						12DCLP		0.500	UGL	
	0.00						2CLEVE		0.710		
	0.00		-	•			ACET ACROLN	LT MD	13.000 100.000		
	0.00		- '				ACRYLO	ND	100,000		R R
	0.00						BRDCLM	LT	0.590		••
	0.00						C13DCP	LT	0.580		
	0.00 0.00						C2AVE C2H3CL	LT LT	8.300 2.600		
	0.00						CZHSCL	ĹŤ	1.900		
	0.00						C6H6	LŤ	0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CLZ CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600	UGL	
	0.00						CHCL3	LT	0.500		_
	0.00						CL28Z CLC6H5	ND Lt	10.000		R
	0.00						CS2	LT	0.500 0.500		
	0.00						DBRCLM	ĹŤ	0.500		
	0.00						ETC6H5	LT	0.500	UGL	
	0.00						MEC6H5	LT	0.500		
	0.00						MEK M18K	LT LT	6.400		
	5.00						MT DAY	LI	3.000	UUL	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code		Heas. Boolean	Value	Units	Internal Standard Code
QCTB		ES	¥TT	13	01-nov-1991	UM20	MNBK		3,600		
	0.00						STYR	LT	0.500		
	0.00						T130CP		0.700		
	0.00						TCLEA	LT LT	0.510 1.600		
	0.00						TRCLE	LT	0.500		
	0.00						XYLEN	LT	0.840		
	0.00		WTW	15	06-nov-1991		111TCE		0.500		
	0.00						112TCE	LT	1.200		
	0.00						110CE	LT	0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE 12DCLE	LT LT	0.500 0.500		
	0.00						120CLP		0,500		
	0.00						2CLEVE		0.710		
	0.00						ACET	ĹT	13.000	UGL	
	0.00						ACROLN		100.000		R
	0.00						ACRYLO		100.000	UGL	R
	0.00						BRDCLM		0.590		
	0.00						C13DCP		0.580	UGL	,
	0.00						C2AVE C2H3CL	LT LT	8.300 2.600	UGL	
	0.00						C2H5CL	ĹŤ	1.900		
	0.00						C6H6	LŤ	0.500		
	0.00						CCL3F		1,400		
	0.00						CCL4		0.580	UGL	
	0.00						CH2CL2		2.300		
	0.00 0.00						CH3BR		5.800		
	0.00						CH3CL CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3		0,500		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5	LT	0.500		. **
	0.00						CSŽ	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5 MEC6H5	LT LT	0.500		
	0.00						WEK	LT	0.500 6.400		
	0.00						MIBK	ĹŤ	3.000		
	0.00						MNSK	ĻT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT	0.510	UGL	
	0.00						TCLEE	LT	1.600 0.500		
	0.00						TRCLE	LT ET	0.840		
	0.00		WTX	7			111TCE	LT	0.500		
	0.00						112TCE	LT	1,200		
	0.00						11DCE	LT	0.500	UGL	
	0.00						11DCLE	LT	0.680		
	0.00						120CE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	ĹŤ	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590	UGL	
	0.00						C13DCP	LT	0,580	UGL	
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	ĹŤ	2.300		
								,			

ec Type	Spike Amount	Lab	Lot	Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	MIX	7	06-nov-1991	UM20		ŁT	5.800		
	0.00 0.00						CH3CL	LT	3.200		
	0.00						CHBR3 CHCL3	LT LT	2.600 0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		•
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5	LT LT	0.670		
	0.00						MEC6H5	ĹŤ	0.500 0.500		
	0.00						MEK	ĻŤ	6.400		
	0.00						M18K	LT	3,000		
	0.00						MNBK STYR	LT	3.600		
	0.00						T130CP	LT LT	0.500 0.700		
	0.00						TCLEA	LŤ	0.510		
	0.00						TCLEE	LT	1.600		
	0.00 0.00						TRCLE	LT	0.500		
- -	0.00			8			XYLEN 111TCE	LT LT	0.840 0.500		
	0.00			-			112TCE	LT	1.200		
	0.00						11DCE	LT	0.500	UGL	
	0.00						11DCLE	LT	0.680		
	0.00						12DCE 12DCLE	LT LT	0.500 0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVÉ	LT	0.710	UGL	
	0.00						ACET	LT	13.000		
	0.00						ACROLN ACRYLO	ND ND	100,000 100,000		R
	0.00						BRDCLM	LT	0.590		R
	0.00						C13DCP	ĹŤ	0.580		
	0.00						CZAVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600		
	0.00						C6H6	LT	1.900 0.500		
	0.00						CCL3F	ĹŤ	1.400		
	0.00						CCL4	LT	0.580		
	0.00 0.00					•	CH2CL2 CH3BR	LT LT	2.300		
	0.00						CH3CL	LT	5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00			-			CHCL3	LT	0.500		
	0.00		-				CL2BZ CLC6H5	ND LT	10.000 0.500		R
	0.00						C2S	LŦ	0.500		
	0.00						DBRCLM	ĻŤ	0.670		
	0.00						ETC6H5	LT	0.500		
	0.00 0.00						MEC6H5	LT	0.500		
	0.00						MIBK	LT LT	6.400 3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP TCLEA	LT	0.700		
	0.00						TCLEA	LT LT	0.510 1.600		
	0.00						TRCLE	ĹŤ	0.500		
	0.00		v	4.	4E 4004		XYLEN	LT	0.840	UGL	
	0.00 0.00		XLC	11	15-nov-1991		111TCE	LT	0.500		
	0.00						112TCE 11DCE	LT LT	1.200 0.500		
	0.00						11DCLE	LŦ	0.680		
	0.00						120CE	LT	0,500	UGL	
	0.00						120CLE	LŤ	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500		
	•						COLETE	-1	0.710	JUL	

· (4835-*

QC Type				Number		Code	Name			Units	Internal Standard Code
			• • •								
QCTB	0.00	FQ	VI C	11	15-nov-1991	1 W 20	ACET	LT	13.000	I I I I	
	0.00		~	• • •	13 100 1371	UMEU	ACROLN	ND	100.000		R
	0.00						ACRYLO		100.000		Ř
	0.00						BRDCLM	LT	0,590		
	0.00						C13DCP C2AVE	LT LT	0.580 8.300		
	0.00						C2H3CL	LT	2,600		
	0.00						C2H5CL	LT	1.900	UGL	
	0.00 0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LT LT	1.400 0.580		
	0.00						CH2CL2	ĹŤ	2.300		
	0.00						CH38R	LT*	5.800		
	0.00 0.00						CH3CL CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL28Z	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						C\$Z DBRCLM	LT LT	0.500 0.670		
_ +	0,00						ETC6H5	ίť	0.500		
	0.00						MEC6H5	ŁŤ	0.500	UGL	
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT LT	3.000 3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0_700		
	0.00						TCLEA	LŤ	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN	LT	0.840		
	0.00			12			111TCE		0.500		
	0.00						112TCE 11DCE	LT LT	1.200		
	0.00						11DCLE	LT	0.500 0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500 0.710		
	0.00						ACET	LŤ	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00		•	_			ACRYLO	ND	100.000		R
	0.00						BRDCLM C130CP	LT LT	0.590 0.580		
	0.00						CZAVE	LT	8.300	UGL	
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	LT	1.400		
	0.00						CCL4	LT	0.580	UGL	
	0.00 0.00						CHZCLZ	L7	2.300		
	0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3	ĹŤ	2.600		
	0.00						CHCL3	ŁŢ	0.500		
	0.00						CLZBZ CLC6H5	ND	10.000		R
	0.00						CSS	LT LT	0.500 0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500	UGL	
	0.00						MEC6H5	LT	0.500		
	0.00						MIBK	lt Lt	6.400 3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR	LT	0.500	UGL	
	0.00						T13DCP	LŤ	0.700	UGL	

ac Type	Spike Amount	Lab	Lot		Analysis Date	Method Code	Name	Meas. Boolean	Value		Internal Standard Code
QCTB	0.00	ES	XLC	12	15-nov-1991	UM20	TCLEA	LŢ	0.510	. –	
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00			_			XYLEN	LT	0.840	UGL	
	0,00		XTO	3	22- jan-1992		111TCE 112TCE		0.500		
	0.00						11DCE	_	1.200 0.500		
	0.00						11DCLE		0.680	UGL	
	0.00						12DCE 12DCLE		0.500 0.500		
	0.00						12DCLP		0.500		
	0.00 0.00						SCLEVE		0.710		
	0.00						ACET ACROLN		13.000 100.000		R
	0.00						ACRYLO	ND	100_000	UGL	Ř
	0.00						BRDCLM		0.590		
	0.00						C13DCP C2AVE		0.580 8.300		
	0.00						C2H3CL	LT	2.600	UGL	
	0.00						C2H5CL C6H6	LT LT	1.900		
	0.00						CCL3F		0.500 1.400		
	0.00						CCL4	LT	0.580	UGL	
	0.00						CH2CL2 CH3BR		2.300 5.800		
	0.00						CH3CL		3.200		
	0.00						CHBR3		2,600		
	0.00						CHCL3 CL2BZ		0.500 10.000		R
	0.00						CTC9H2		0.500		•
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5	LŤ	0.500		
	0.00						MEK	LT	6.400		
	0.00						MN8K M18K	LT LT	3.000 3.600		
	0.00						STYR	LT	0.500	UGL	
	0.00					-	T13DCP TCLEA		0.700		
	0.00						TCLEE		0.510 1.600		
	0.00						TRCLE	LT	0.500	UGL,	
	0.00		XLP		29-jan-1992		XYLEN 111TCE	LT LT	0.840 0.500		
	0.00		ne,	-	L/ Jul 1//L		112TCE	ĹŤ	1.200		
	0.00						11DCE	LT	0.500	UGL.	
	0.00						11DCLE 12DCE	LT LT	0.680 0.500		
	0.00						12DCLE	LT	0.500		
	0.00						120CLP	LŢ	0.500		
	0.00						2CLEVE ACET	LT LT	0.710 13.000		
	0.00						ACROLN	ND	100.000	UGL	R
	0.00						ACRYLO BRDCLM	ND	100.000		R
	0.00						C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	LT	8.300	UGL	
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						COHO	LT	0.500		
	0.00						CCL3F	LT	1.400	UGL	
	0.00 0.00						CCL4 CH2CL2	LT LT	0.580 2.300		
	0.00						CH3BR	LT	5,800		
	0.00						CH3CL	LT	3.200	UGL	
	0.00						CHBR3	LT	2.600	UGL	

QC	Spike			Sample	Analysis			Meas.			Internal
Туре	Amount	Lab	Lot	Number	Date	Code		Bool ean	Value	Units	Standard Code
QCTB	0.00	ES	XLP	4	29-jan-1992	UM20	CHCL3	LT	0.500	UGL	
	0.00				-		CL2BZ	ND	10.000		R
	0.00						CLC6H5	LT	0.500		
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	ĹŤ	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT LT	3.000 3.600		
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT LT	1.600 0.500		
	0.00						XYLEN	LT	0.840		
	0.00		XLQ	9	03-feb-1992		111TCE	ĹŤ	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE		0.500		
	0.00						12DCE	LT LT	0.680		
	0.00						12DCLE	LT	0.500		
	0.00						120CLP		0.500		
	0.00						2CLEVE ACET	LT LT	0.710 13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580		
	0.00						CZAVE CZH3CL	LT LT	8,300 2,600		
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6	LT	0.500	UGL	
	0.00						CCL3F	LĪ	1.400		
	0.00						CCL4 CHZCLZ	LT LT	0.580 2.300		
	0.00						CH3BR	ĹŤ	5.800		
	0.00						CH3CL	LT	3,200		
	0.00					•	CHCL3	LT	2.600		
	0.00						CL2BZ	LT ND	0.500 10.000		R
	0.00						CLC6H5	ĹŤ	0.500		•
	0.00			:			CS2	LT	0.500		
	0.00			٠.,			DBRCLM	LT	0.670		
	0.00						ETC6H5 MEC6H5	LT LT	0.500 0.500		
	0.00						MEK	ĹΪ	6.400		
	0.00						M18K	LT	3_000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T130CP	LT LT	0.500 0.700		
	0.00						TCLEA	ĹŤ	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00		XLS	2	06-feb-1992		XYLEN 111TCE	LT LT	0.840 0.500	UGL UGI	
	0.00						112TCE	ĹŤ	1.200		
	0.00						11DCE	LŢ	0.500	UGL	
	0.00						11DCLE	LT	0.680		
	0.00						12DCE 12DCLE	LT LT	0.500 0.500		
	0.00						120CLP	LT	0.500		
	0.00						2CLEVE	LT	0.710	UGL	
	0.00						ACET ACROLN	LT NED	13.000		_
	0.00						ACRYLO	NO.	100.000 100.000		R R

-- ----

QC Type	Amount	Lab	Lot	Number	Analysis Date	Method Code	Test Name	Bool ean	Value		Internal Standard Code
QCT8		ES	XLS	2	06-feb-1992	UN20	BRDCLM	LT	0.590	UGL	
	0.00						C130CP	LT	0.580		
	0.00 0.00						CZAVE	L.T	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						СбНб	LT	0.500		
	0.00						CCL3F	LT LT LT	1.400		
	0.00						CCL4	1.T	0.580	UGL	
	0.00						CHIRR	L1 1 T	2.300 5.800		
	0.00						CH3CL	LT LT LT LT ND LT	3.200	UGL	
	0.00						CHBR3	LT	2.600	UGL	
	0.00						CHCL3	LT	0.500	UGL	_
	0.00 0.00						CLZBZ	ND I T	10.000		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	L T	0.670		
	0.00						ETC6H5	LT LT	0.500	UGL	
	0.00						MEC945	LT	0.500		
	0.00						MISK	LT LT LT LT	6.400 3.000		
	0.00						MNBK	LT	3.600		•
	0.00						STYR	LT	0.500	UGL	
	0.00						T13DCP	LT LT	0.700	UGL	
	0.00						TOLER	Lī	0.510	UGL	
	0.00						TRCLE	LT LT LT	1.600 0.500	UGL	
	0.00						XYLEN	LT	0.840	UGL	
	0.00		XLT		07-feb-1992		111TCE	LT	0.500		
	0.00 0.00						112TCE	LT LT	1.200 0.500	UGL	
	0.00						11DCLE		0.680		
	0.00						12DCE	LT	0.500	—	
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE		0.500		
	0.00				-		ACET		0.710 13.000		
	0.00						ACROUN	ND	100.000		R
	0.00					•	ACRYLO	ND	100.000		R
	0.00 0.00						BRDCLM C130CD	LT	0.590 0.580		
	0.00						C2AVE	LT LT	8.300		
	0.00			:			C2AVE C2H3CL	LT	2.600		
	0.00			·			C2H5CL	LŤ	1_900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LT	2.910 0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR	LT	5.800	UGL	
	0.00						CH3CL	LT	3.200		
	0.00 0.00						CHBR3	LT LT	2.600 0.500		
	0.00						CL28Z	ND	10.000		R
	0.00						CLC6H5	LT	0.500		•
	0.00						CS2	LT	0.500		
	0.00						DBRCLN	LT	0.670		
	0.00						ETC6H5 MEC6H5	LT LT	0.500 0.500		
	0.00						MEK	LŤ	6,400		
	0.00						MIBK	LT	3.000	UGL	
	0.00						MNBK	LT	3.600		
	0.00 0.00						STYR T130CP	LT LT	0.500		
	0.00						TCLEA	LT	0.700 0.510		
	0.00						TCLEE	ĹŤ	1.600		
	0.00						TRCLE	LT	0.500		

Neg ga

 $S_{\mathbf{w}_{1}}(t) \in \mathbb{R}^{n}$

QC	Spike			Sample	Analysis	Method	Test	Heas.			Internal
Type		Lab	Lot	Number		Code		Boolean	Value	Units	Standard Code
				•••••		•	••••	•••••			**********
		_		_							
QÇTB	0.00	ES	XLT	2	07-feb-1992	UM20			0.840		
	0.00			3			111TCE		0.500		
	0.00						112TCE 11DCE	_	1.200		
	0.00						11DCLE		0.500 0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE	LT	0.710		
	0.00 0.00						ACET		13.000		_
	0.00						ACROLN ACRYLO	ND ND	100,000 100,000		R R
	0.00						BRDCLM		0.590		ĸ
	0.00						C130CP	LT	0.580		
	0.00						CZAVE	LT	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL		1.900		
	0.00 0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LT	1.700 0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCF3	LT	0.500		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5	LT LT	0.500		
	0.00						DBRCLM		0.500 0.670		
	0.00						ETC6H5	-	0.500		
	9.00						MEC6H5		0.500		
	0.00						WEK	ĻT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600		
	0.00						STYR T13DCP	LT LT	0.500		
	0.00						TCLEA	LT	0.700 0.510		
	0.00						TCLEE		1.600		
	0.00						TRCLE		0.500		
	0.00			_			XYLEN		0.840	UGL	
	0.00		XTU	2	12-feb-1992		111TCE		0.500		
	0.00 0.00		•				112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500		
	0.00			•			12DCE		0.680 0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						SCLEAE	LT	0.710	UGL	
	0.00						ACET	LŢ	13.000		
	0.00 0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLM	ND Lt	100.000 0.590		R
	0.00						C130CP	ĹŤ	0.580		
	0.00						C2AVE	ĹŤ	8.300		
	0.00						C2H3CL	ĹŤ	2.600		
	0.00						C2X5CL	LT	1,900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F		3.010		
	0.00						CCL4 CH2CL2	LT	0.580		
	0.00						CHZCLZ CH3BR	LT LT	2.300 5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	ĹŤ	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	MD	10.000	UGL	R
	0.00						CLC6H5	LT	0.500	UGL	

QC Type	Amount	Ļab	Lot	Number	Analysis Date	Hethod Code	Name	Boolean	Value		Internal Standard Code
QCTB	0.00	ES	XLU	2	12-feb-1992	UN20	CSZ	LT	0.500	UGL	
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500		
	0.00						MEC6H5		0.500 6.400	UGL	
	0.00						MIBK	LT	3.000	ugi	
	0.00						MNBK	LT LT	3.600	UGL	
	0.00								0.500	UCL	
	0.00						T13DCP	LT.	0.700		
	0.00						T13DCP TCLEA TCLEE TRCLE XYLEN	L1	0.510 1.600	UGL	
	0.00						TRCLE	LT	0.500	UGL	
	0.00						XYLEN	ĹŤ	0.840	UGL	
	0.00			3			11116	LI	0.500	UGL	
	0.00						112TCE	LT	1.200		
	0.00						110CE	LT LT	0.500 0.680		
	0.00						120CE	17	0.500		
	0.00						12DCE 12DCLE	ĹŤ	0.500		
	0.00						12DCLP 2CLEVE	LT	0.500		
	0.00						SCLEAE	LT	0.710		
	0.00						ACET	LT ND	13.000		_
	0.00						ACRYLO	MD MD	100.000 100.000		R R
	0.00						BRDCLM	ίτ	0.590		•
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE	LT LT	8.300		
	0.00						CZK3CL	LT	2.600		
	0.00						C6H6	LT LT	1.900 0.500		
	0.00						CCL3F	•	2.710		
	0.00						CCL3F CCL4	LT	0.580		
	0.00						CHZCLZ	LT	2.300		
	0.00 0.00						CH3BR CH3CL	LŤ LT	5.800		
	0.00						CHBR3		3.200 2.600		
	0.00						CHCL3		0.500		
	0.00						CL2BZ		10.000		R
	0.00					•	CLC6H5		0.500		
	0.00						CSS	LT LT	0.500 0.670		
	0.00						ETC6H5	LT	0.500		
	0.00			-			MEC6H5		0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	ĻŢ	3.000		
	0.00						MNBK Styr	LT LT	3.600 0.500		
	0.00						T130CP	ĻŤ	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600	UGL,	
	0.00						TRCLE	LT	0.500		
	0.00		XLV		21-feb-1992		XYLEN 111TCE	LT LT	0.840 0.500		
	0.00		AL 1		L1 165 1772		112TCE	LT	1.200		
	0.00						11DCE	ĹŤ	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	ĻŢ	0.500		
	0.00						12DCLE 12DCLP	LT LT	0.500 0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET	LT	13.000		
	0.00						ACROLN	ND	100,000	UGL	R
	0.00 0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM C13DCP	LT LT	0.590 0.580		
	0.00						C2AVE	LT	8.300		
									0.500	30L	

ac Type	Amount	Lab	Lot	Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
											••••
QCTB		ES	XLV	3	21-feb-1992	UM20			2.600	UGL	
	0.00						C2H5CL	LT	1.900		
	0.00						C6H6 CCL3F	LT	0.500		
	0.00						CCL4		2.000 0.580		
	0.00						CH2CL2		2.300		
	0.00						CH3BR		5.800		
	0.00						CH3CL		7.670		
	0.00						CHBR3 CHCL3		2.600 0.500		
	0.00						CL2BZ		10.000		R
	0.00						CLC6H5	LŤ	0.500		
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5		0.500		
	0.00						MEK		6.400		
	0.00						MIBK	LT	3.000		
	0.00 Q.00						MNBK	LT	3.600		
<u> </u>	0.00						STYR T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA		0.510		
	0.00						TCLEE		1.600	UGL	
	0.00						TRCLE		0.500		
	0.00			8			XYLER 111TCE		0.840 0.574		
	0.00			•			112TCE		1.200		
	0.00						11DCE		0.500		
	0.00						11DCLE		0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE 12DCLP	LT	0.500 0.500		
	0.00						2CLEVE		0.710		
	0.00						ACET		13.000		
	0.00						ACROLN		100.000		R
	0.00						ACRYLO BRDCLM		100.000 0.590		R
	0.00						C130CP		0.580		
	0.00					•	C2AVE	ĻŤ	8.300		
	0.00						C2H3CL		2.600		
	0.00						C2H5CL	LT LT	1.900		
	0.00		•				CCL3F	LT	0.500 1.400		
	0.00						CCL4	LŦ	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH38R	LT	5.800		
	0.00						CH3CL CHBR3	LT LT	3.200 2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	ND	10.000	UGL	R
	0.00						CLC6H5	LŢ	0.500		
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	ĹŤ	0.500		
	0.00						MEC6H5	ĹŤ	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						NNBK STYR	LT LT	3.600 0.500		
	0.00						T13DCP	ĹŤ	0.700		
	0.00						TCLEA	LT	0.510	UGL	
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT LT	0.500 0.840		
	0.00			9			111TCE	ĹŤ	0.500		
	0.00						112TCE	LT	1.200		

qc Type	Spike Amount	Lab		Sample Number	Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	XLV	9	21-feb-1992	UM20	11DCE	LT	0.500	ugi	
	0.00						11DCLE	ĹŤ	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE ACET	LT LT	0.710 13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590		.,
	0.00						C13DCP	LT	0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL C2H5CL	LT LT	2.600 1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F	LT	1,400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	ĻŢ	2.300		
	0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LŤ	0.500		
	0.00						CL28Z	ND	10.000		R
	0.00						CLC6H5	ĻŢ	0.500		
	0.00						CS2 DBRCLM	LT LT	0.500 0.670		
	0.00						ETC6H5	LT	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						MEK	LT	6.400		
	0.00						MIBK	LŢ	3.000		
	0.00						MNBK STYR	LT LT	3.600 0.500		
	0.00						T13DCP	ĹŤ	0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00			10			XYLEN 111TCE	LT LT	0.840 0.500		
	0.00					•	112TCE	ĹŤ	1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LT	0.680		
	0.00						12DCE	LĪ	0.500		
	0.00			·			12DCLE 12DCLP	LT LT	0.500 0.500		
	0.00						2CLEVE	LT	0.710		
	0.00						ACET	LT	13,000	UGL	
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLM	ND Lt	100.000 0.590		R
	0.00						C130CP	ĹŤ	0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						CZHSCL	LŢ	1,900		
	0.00						C6H6 CCL3F	LT LT	0.500 1.400		
	0.00						CCL4	ĹŤ	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR	LŢ	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3 CHCL3	LT LT	2.600 0.500		
	0.00						CL2BZ	NO	10.000		R
	0.00						CLC6H5	LT	0.500	UGL	••
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LŦ	0.500	Jفال	

ACMS.

Type Amount Lab Loft Number	QC Type	Spike Amount	Lab	Lat	Sample Number	Analysis Date	Method Code		Meas.	Value	lini te	Internal Standard Code
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		•									••••	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	QÇTB		ES	XLV	10	21-feb-1992	UNZ0					
0.00												
0.00 STYR										=		
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										0.500	WGL.	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 TRCLE												
0.00												
0.00 0.00 1120CE LT 0.500 UGL 0.00 0.00 1120CE LT 0.500 UGL 0.00 0.00 1120CE LT 0.500 UGL 0.00 0.00 0.00 1120CE LT 0.500 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.					_				LT	0.840	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				XLW	5	26-feb-1992						
0.00												
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 ACET LT 13.000 UGL R 0.00 ACROLN ND 100.000 UGL R 0.000 ACROLN ND 100.000 UGL R 0.000 0.000 C130CP LT 0.580 UGL 0.000 C2AVE LT 8.300 UGL 0.000 C2AVE LT 8.300 UGL 0.000 C2AVE LT 8.300 UGL 0.000 C2AVE LT 1.900 UGL 0.000 C2AVE LT 1.900 UGL 0.000 C2AVE LT 1.900 UGL 0.000 C3AVE LT 1.900 UGL 0.000 C4AVE LT 1.900 UGL 0.000 C6AVE LT 1.900 UGL 0.000 C6AVE LT 1.900 UGL 0.000 C6AVE LT 2.800 UGL 0.000 CGAVE LT 3.200 UGL 0.000 CGAVE LT 3.200 UGL 0.000 CGAVE LT 5.800 UGL 0.000 CGAVE LT 3.200 UGL 0.000 UGL 0.000 UGL 0.000 UGL 0.000 UGL 0.000 UGL 0.000 UGL 0.000 UGL 0.000 UGL												
0.00 0.00 0.00 0.130cP LT 0.500 UGL 0.00 0.00 0.24XE LT 8.300 UGL 0.00 0.00 0.24SCL LT 2.600 UGL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.												R
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
CAME												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0												
0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00										1.900	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		_										
0.00 CHBR3 LT 2.600 UGL 0.00 CHCL3 LT 0.500 UGL 0.00 CLC6H5 LT 0.500 UGL 0.00 CLC6H5 LT 0.500 UGL 0.00 CLC6H5 LT 0.500 UGL 0.00 CS2 LT 0.500 UGL 0.00 CS2 LT 0.500 UGL 0.00 CS2 LT 0.500 UGL 0.00 CS2 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 MECH5 LT 0.500 UGL 0.00 TISSEP LT 0.500 UGL 0.00 TISSEP LT 0.500 UGL 0.00 TISSEP LT 0.500 UGL 0.00 TICLEE LT 0.500 UGL 0.00 TICLEE LT 1.600 UGL 0.00 TICLEE LT 0.50					•					5.800	UGL	
0.00 CRCL3 LT 0.500 UGL 0.00 CL28Z MD 10.000 UGL R CL26K5 LT 0.500 UGL CS2 LT 0.500 UGL CS2 LT 0.500 UGL CS2 LT 0.500 UGL CS2 LT 0.500 UGL CS2 LT 0.500 UGL CS3 LT 0.500 UGL CS3 LT 0.500 UGL CS4 LT 0.500 UGL CS5 LT 0.500 UGL CS5 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS6 LT 0.500 UGL CS7 LT 0.500 UGL CS7 LT 0.500 UGL CS7 LT 0.500 UGL CS7 LT 0.500 UGL CS7 LT 0.500 UGL CS7 LT 0.500 UGL CS7 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS8 LT 0.500 UGL CS9 UGL CS												
0.00												
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0												R
0.00									LT	0.500	UGL	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		_										
0.00 MECAHS LT 0.500 UGL 0.00 MEK LT 6.400 UGL 0.00 MEK LT 3.000 UGL 0.00 MIBK LT 3.000 UGL 0.00 MIBK LT 3.600 UGL 0.00 STYR LT 0.500 UGL 0.00 T13DCP LT 0.700 UGL 0.00 TCLEA LT 0.510 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TCLEE LT 0.500 UGL 0.00 TCLEE LT 0.500 UGL 0.00 TTLEE LT 0.500 UGL		_										
0.00 MEK LT 6.400 UGL 0.00 MISK LT 3.000 UGL 0.00 MNBK LT 3.600 UGL 0.00 STYR LT 0.500 UGL 0.00 TYTAGE LT 0.700 UGL 0.00 TCLEA LT 0.510 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TCLEE LT 0.500 UGL 0.00 TCLEE LT 0.500 UGL 0.00 TCLEE LT 0.500 UGL 0.00 TTLEE LT 0.500 UGL								_				
0.00									LT			
0.00 STYR LT 0.500 UGL 0.00 T130CP LT 0.700 UGL 0.00 TCLEA LT 0.510 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TRCLE LT 0.500 UGL 0.00 XYLEN LT 0.840 UGL 0.00 XYLEN LT 0.500 UGL 0.00 6 111TCE LT 0.500 UGL 0.00 112CE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACROLN ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C2AYE LT 8.300 UGL 0.00 C2AYE LT 8.300 UGL				•								
0.00 T130CP LT 0,700 UGL 0.00 TCLEA LT 0.510 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TRCLE LT 0.500 UGL 0.00 XYLEN LT 0.840 UGL 0.00 6 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 110CE LT 0.500 UGL 0.00 110CE LT 0.500 UGL 0.00 110CLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12CLE LT 0.500 UGL 0.00 T2CLE LT 0.500 UGL 0.00 ACRT LT 13.000 UGL 0.00 ACRT LT 13.000 UGL 0.00 ACRYLO NO 100.000 UGL R 0.00 ACRYLO NO 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C2AVE LT 8.300 UGL					:							
0.00 TCLEE LT 0.510 UGL 0.00 TCLEE LT 1.600 UGL 0.00 TRCLE LT 0.500 UGL 0.00 XYLEN LT 0.840 UGL 0.00 6 111TCE LT 0.500 UGL 0.00 11DCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCE LT 0.680 UGL 0.00 11DCLE LT 0.680 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 ACET LT 13.000 UGL 0.00 ACET LT 13.000 UGL 0.00 ACRYLO ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C2AVE LT 0.590 UGL 0.00 C2AVE LT 8.300 UGL		_		•								
0.00 TRCLE LT 0.500 UGL 0.00 XYLEN LT 0.840 UGL 0.00 6 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 ACET LT 0.500 UGL 0.00 ACET LT 13.000 UGL 0.00 ACRYLO ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCUM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL									LT	0.510	UGL	
0.00												
0.00 6 111TCE LT 0.500 UGL 0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCLE LT 0.500 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C2AVE LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL												
0.00 112TCE LT 1.200 UGL 0.00 11DCE LT 0.500 UGL 0.00 11DCLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL					6							
0.00 110CLE LT 0.680 UGL 0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL								112TCE	LT	1.200	UGL	
0.00 12DCE LT 0.500 UGL 0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL												
0.00 12DCLE LT 0.500 UGL 0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL												
0.00 12DCLP LT 0.500 UGL 0.00 2CLEVE LT 0.710 UGL 0.00 ACET LT 13.000 UGL 0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H3CL LT 1.900 UGL												
0.00								12DCLP	LŤ	0.500	UGL	
0.00 ACROLN ND 100.000 UGL R 0.00 ACRYLO ND 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL										0.719	UGL	
0.00 ACRYLO NO 100.000 UGL R 0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												
0.00 BRDCLM LT 0.590 UGL 0.00 C130CP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL												
0.00 C13DCP LT 0.580 UGL 0.00 C2AVE LT 8.300 UGL 0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL		0.00										~
0.00 C2H3CL LT 2.600 UGL 0.00 C2H5CL LT 1.900 UGL										0.580	UGL	
0.00 CZH5CL LT 1.900 UGL												
11,00 005												

ec Type	Spike Amount		Lot		Analysis Date	Method Code		Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	XLU	6	26-feb-1992	UM20	CCL3F	ĻT	1.400	UGL	
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2.300		
	0.00						CH3BR CH3CL	LT LT	5.800 3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	ĹŤ	0.500		
	0.00						CL2BZ	ND	10.000		Ř
	0.00						CLC6H5	LT	0.500	UGL	
	0.00						CS2	LT	0.500		
	0.00 0.00						DBRCLM ETC6H5	LT LT	0.670		
	0.00						MEC6H5	ĹŤ	0.500 0.500		
	0.00						WEK	ίŤ	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600	UGL	
	0.00						STYR	LT	0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA	LT LT	0.510 1.600	-	
	0.00						TRCLE	LT	0.500		
	0.00						UNK167		6.000		s
	0.00			_			XYLEN	LT	0.840		_
	0.00			7			111TCE	LT	0.500		
	0.00						112TCE	LT	1.200		
	0.00 0.00						11DCE 11DCLE	LT LT	0.500		
	0.00						12DCE	LT	0.680 0.500		
	0.00						12DCLE	LT	0.500	_	
	0.00						12DCLP	LT	0.500		
	0.00						2CLEVE	LT	0.710	UGL	
	0.00						ACET	LT	13_000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO BRDCLN	ND LT	100.000 0.590		R
	0.00						C13DCP	LT	0.580		
	0.00						CSAVE	LT	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00					-	C2H5CL	LT	1.900	UGL	
	0.00				-		C6H6	LT	0.500		
	0.00						CCL3F	LT LT	1.400		
	0.00		•				CH2CL2	LT	0.580 2.300		
	0.00			•			CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	LT	0.500		
	0.00 0.00						CL2BZ CLC6H5	ND	10.000		R
	0.00						C\$2	LT LT	0.500 0.500		
	0.00						DBRCLM	ĹŤ	0.570		
	0.00						ETC6H5	ĻT	0.500		
	0.00						MEC6H5	LT	0.500		
	0.00						HEK	LT	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT LT	3.600		
	0.00						STYR T13DCP	LT LT	0.500 0.700		
	0.00						TCLEA	ĹŤ	0.700		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	LT	0.500		
	0.00						XYLEN	LT	0.840		
	0.00		XLY	17	04-mar-1992		111TCE	LT	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE 11DCLE	LT LT	0.500 0.680		
	0.00						IUULE		0.000	CAL	

Walley Wall

QC Type	Spike Amount			Sample Number	Analysis Date	Çode		Meas. Boolean	Value	Units	Internal Standard Coo
QCTB	0.00	ES	XLY	17	04-mar-1992	UM20	120CE	LŤ	0.500	UGL.	
	0.00						12DCLE		0.500		
	0.00						12DCLP		0.500		
	0.00						SCLEVE		0.710		
	0.00						ACET		13.000		_
	0.00						ACROLN ACRYLO		100,000 100,000		R
	0.00						BRDCLM		0.590		R
	0.00						C130CP		0.580		
	0.00						CZAVE	LT	8.300		
	0.00						C2H3CL	LT	2.600		
	0.00						C2H5CL		1.900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F		2.810		
	0.00						CCL4 CH2CL2		0.580 2.300		
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3	LT	2,600		
-	0.00						CHCL3	LT	. 0.500	UGL	
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5		0.500		
	0.00						CS2	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500		
	0.00						MEC6H5		0.500		
	0.00						MEK	ĹŤ	6.400		
	0.00						MIBK	LT	3.000		
	0.00						MNBK	LT	3.600	UGL	
	0.00						STYR	LT	0.500		
	0.00					-	T13DCP		0.700		
	0.00						TCLEA TCLEE	LT	0.510		
	0.00						TRCLE	LT LT	1.600 0.500		
	0.00						XYLEN	ίŤ	0.840		
	0,00			18			111TCE		0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE	LT	0.500		
	0.00					•	11DCLE		0.680		
	0.00						12DCE 12DCLE	LT	0.500		
	0.00						12DCLP		0.500 0.500		
	0.00		•	-			2CLEVE		0.710		
	0.00						ACET	ĻŤ	13.000		
	0.00						ACROLN	ND	100.000		R
	0.00						ACRYLO	ND	100.000		R
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580		
	0.00						CZAVE C2H3CL	LT LT	8.300		
	0.00						C2H5CL	LT	2.600 1.900		
	0.00						C6H6	ίť	0.500		
	0.00						CCL3F	ĹŤ	1.400		
	0.00						CCL4	LT	0.580		
	0.00						CH2CL2	LT	2.300	UGL	
	0.00						CH3BR	LT	5.800		
	0.00						CH3CL	LT	3.200		
	0.00						CHBR3 CHCL3	LT LT	2.600		
	0.00						CL2BZ	ND	0.500 10.000		В
	0.00				•		CLC6H5	LT	0.500		R
	0.00						CS2	LT	0.500		
	0.00						DBRCLM	LT	0.670		
	0.00						ETC6H5	LT	0.500	UGL	
	0.00						MEC6H5	LT	0.500		
	0.00						HEK	LT	6.400	UGL	

QC Type	Spike Amount	Lab	Lot	Sample Number	Analysis Date	Method Code	Name	Boolean	Value	Units	Internal Standard Code
				4.5							•
QCTB	0.00	£2	XLT	18	04-mar-1992	UH20	MIBK Mnbk	LT	3.000		
	0.00						STYR		3.600 0.500		
	0.00						T13DCP		0.700		
	0.00						TCLEA		0.510		
	0.00						TCLEE		1,600		
	0.00						TRCLE		0.500		
	0.00						XYLEN	LT	0.840		
	0.00			19			111TCE		0.500		
	0.00						112TCE 11DCE		1.200		
	0.00						11DCLE		0.500 0.680		
	0.00						12DCE		0.500		
	0.00						12DCLE		0.500		
	0.00						12DCLP		0.500		
	0.00						2CLEVE		0.710	UGL	
	0.00						ACET	LT	13.000		
	0.00						ACROLN		100.000		R
	0.00 0.00						ACRYLO		100.000		R
	0.00						BRDCLM C13DCP		0.590 0.580		
	0.00						C2AVE	LT	8.300		
	0.00						C2H3CL		2.600		
	0.00						CZH5CL	LT	1,900		
	0.00						C6H6	LT	0.500		
	0.00						CCL3F CCL4	LŤ	1.400		
	0.00						CCL4	LŢ	0.580		
	0.00						CH2CL2 CH3BR	LT LT	2,300 5,800		
	0.00								3.200		
	0.00						CH3CL CHBR3	ĹŤ	2.600		
	0.00						CHCL3	LT	0.500		
	0.00						CL2BZ	MD	10.000	UGL	R
	0.00						CLC6H5	LT	0.500		
	0.00						CSZ	LT	0.500		
	0.00						DBRCLM ETC6H5		0.670 0.500	UGL	
	0.00						MEC6H5		0.500		
	0.00						MEK	ίτ	6.400		
	0.00						MIBK	LT	3.000	UGL	
	0.00						MNBK	LT	3.600	UGL	
	0.00						STYR		0.500	UGL	
	0.00			:			T13DCP		0.700		
	0.00		-				TCLEA TCLEE	LT LT	0.510		
	0.00			·			TRCLE	ĹŤ	1.600 0.500		
	0.00						XYLEN	ίτ	0.840		
	0.00		YMA	5	10-mar-1992		111TCE	ĹŤ	0.500		
	0.00						112TCE	LT	1.200		
	0.00						11DCE	LT	0.500		
	0.00						11DCLE	LŦ	0.680		
	0.00						12DCE	LT	0.500		
	0.00						12DCLE	LT	0.500		
	0.00						12DCLP 2CLEVE	LT LT	0.500		
	0.00						ACET	ĹŤ	0.710 13.000		
	0.00						ACROLN	NED	100.000		R
	0.00						ACRYLO	ND	100.000		Ř
	0.00						BRDCLM	LT	0.590		
	0.00						C13DCP	LT	0.580		
	0.00						CZAVE	LŢ	8.300		
	0.00						CZH3CL CZH5CL	LT LT	2.600		
	0.00						C6H6	LT	1.900 0.500		
	0.00						CCL3F	ĹŤ	1.400		
	0.00						CCL4	LT	0.580		

4.322

QC Type	Spike Amount				Analysis Date			Meas. Boolean	Value	Units	Internal Standard Code
QCTB	0.00	ES	YMA	5	10-mar-1992	UM20	CHZCLZ	LT	2.300	UGL	
	0.00		****	-			CH3BR	LT	5.800		
	0.00						CH3CL	ĹŤ	3.200		
	0.00						CHBR3	LT	2.600		
	0.00						CHCL3	ĽŤ	0.500		
	0.00						CL2BZ	ND	10.000		R
	0.00						CLC6H5		0.500		••
	0.00						CS2	LT	0.500		
	0.00						DBRCLM		0.670		
	0.00						ETC6H5		0.500		
	0.00						MEC6H5		0.500		
	0.00						MEK	ĹΪ	6,400		
	0.00						MIBK	ĹŤ	3.000		
	0.00						MNBK	ĹŤ	3.600	-	
	0.00						STYR	ĹŤ	0.500		
	0.00						T 13DCP		0.700		
	0.00						TCLEA	LT	0.510		
	0.00						TCLEE	LT	1.600		
	0.00						TRCLE	ĹŤ	0.500		
									0.840		
	. 0,00						XYLEN	LT	0.040	JUL	

MATRIX SPIKE SAMPLE RESULTS

				Sample	•	Sample	Analysis		1	Measured	Percent
SiteID	FieldID	Meth	Lot	No.	Name	Date	Date_	<u>Units</u>	Spiked Conc.	Value	ISC Recovery
									1		_
	RADW*1	SB01	SMP	004	MERCURY	21-aug-1990	15-sep-1990	UGL	2,500	2.060	82.4
				007	MERCURY	-	15-sep-1990		2,500	2.240	89.6
		SD09	TIR		THALLIUM		01-oct-1990		10.000	11.800	118.0
		000,		005	THALLIUM		01-oct-1990		10.000	11.700	117.0
		SD20	TISA		LEAD		01-oct-1990		45.000	47,200	104.9
		3014	, 4,,	005	LEAD		01-oct-1990		45.000	44.700	99.3
		SD21	TFJ		SELENIUM	-	27-sep-1990		37.500	40.800	108.8
		W.	•••	005	SELENIUN	_	27-sep-1990		37.500	40.400	107.7
		SD22	TCI		ARSENIC	- ·	27-sep-1990		37.500	42.300	112.8
		30 L L	104	005	ARSENIC		27-sep-1990		37.500	40,900	109.1
		UM18	200		2,4,6-TRIBROMOPHENOL		11-sep-1990		100.000	61,100	61.1
		OH IV		008	2-FLUOROBIPHENYL	-	11-sep-1990		50.000	39.300	78.6
				800	2-FLUOROPHENOL	-	11-sep-1990		100.000	102,000	102.0
				008	NITROBENZENE-D5		11-sep-1990		50.000	39.100	78.2
				008	PHENOD6		11-sep-1990		100.000	104.000	104.0
				008	TERPHENYL - D14	_	11-sep-1990		50.000	41.000	82.0
		UM20	SQU		1,2-DICHLOROETHANE-D4		30-eug-1990		50.000	59.000	118.0
				004	4-BROMOFLUOROBENZENE		30-eug-1990		50.000	46.800	93.6
				004	TOLUENE-D8		30-aug-1990		50.000	46.200	92.4
	RADW*6			003	1,2-DICHLOROETHANE-D4	- ·	30-aug-1990		50.000	60.200	120.4
				003	4-BROMOFLUOROBENZENE	22-aug-1990	30-aug-1990) UGL	50.000	40.500	81.0
				003	TOLUENE-D8	22-aug-1990	30-aug-1990	UGL	50.000	41.500	83.0
	RDDW*1	00	VZA	002	TOTAL ORGANIC HALOGENS		28- jun-1991		250,000	250.000	100.0
			VZK	002	TOTAL ORGANIC CARBON	21- jun-1991	17- jul - 1991	UGL	20000.000	19200.000	96.0
				003	TOTAL ORGANIC CARBON	21- jun-1991	17- jul - 1991	UGL	20000.000	18600.000	93.0
		TF22	UQV	004	NITRITE, NITRATE	21- jun- 1991	09-jul-1991	UGL	150.000	150.000	100.0
				005	NITRITE, NITRATE	21- jun-1991	09- jul-1991	UGL	150.000	150.000	100.0
		UH18	VIS	003	2,4,6-TRIBROMOPHENOL	21- jun- 1991	03-jul-1991	UGL	100.000	77.8 00	77.8
				003	2-FLUOROBIPHENYL	21 - jun - 1991	03 - jul - 1991	UGL	50.000	49.400	98.8
				003	2-FLUOROPHENOL	21-jun-1991	03 - jul - 1991	UGL	100.000	108.000	108.0
				003	NITROBENZENE-DS	21~ jun-1991	03 - jul - 1991	UGL	50.000	55.600	111.2
				003	PHENOD6	•	- 03 - jul - 199 1		100.000	106.000	106.0
				003	TERPHENYL - D14		03- jul - 1991		50.000	54.700	109.4
		UM20	WAA		1,2-DICHLOROETHANE-D4		29 - Jun - 1991		50.000	56.800	113.6
				010	4-BROMOFLUOROBENZENE		29 - Jun- 1991		50.000	45.900	91.8
				910	TOLUENE-D8		29- jun-1991		50.000	47.200	94.4
	RDDW*2	00		002	TOTAL ORGANIC HALOGENS		28- jun-1991		250.000	279.000	111.6
			VZL	002	TOTAL ORGANIC CARBON		17- jul - 1991		20000.000	22000.000	110.0
				003	TOTAL ORGANIC CARBON	•	17-jul-1991		20000.000	22000.000	110.0
		TF22	DOM		NITRITE, NITRATE		09- jul - 1991		150.000	140.000	93.3
		-		005	NITRITE, NITRATE		09- jul - 1991		150.000	150.000	100.0
		UM18	VĮT		2,4,6-TRIBROMOPHENOL		03-jul-1991		100.000	70.600	70.6
				003	2-FLUOROBIPHENYL		03 - jul - 1991		50.000	35.900	71.8
				003	2-FLUOROPHENOL		03-jul-1991		100.000	92.800	92.8
				003	NITROBENZENE-D5		03-jul-1991		50.000	36.700	73.4
				003	PHENOD6		03- jul - 1991		100.000	98.000	98.0
				003	TERPHENYL - D14	21- Jun-1991	03- jul-1991	UGL	50.000	45.600	91.2

				Samol	e	Sample	Analysis	<u> }</u>	Keesured	Percent
SiteID	FieldID	Meth		•	Капе	Date	Date Unit	s Spiked Conc.	. Value	ISC Recovery
271111								ŧ		
	RDDW*2	UM20	UAR	ስበፖ	1.2-DICHLOROETHANE-D4	21- jun-1901	30-jun-1991 UGL	50,000	54.500	109.0
	KDUW Z	OFIZO		007	4-BROMOFLUOROBENZENE		30- Jun-1991 UGL		45.900	91.8
				007	TOLUENE-D8	•	30-jun-1991 UGL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45.300	90.6
	RDDU*4			007		•	29-jun-1991 UGL		55.600	111.2
	KUUM"4		WAA		1,2-D1CHLOROETHANE-D4		29-jun-1991 UGL		45.000	90.0
				007	4-BROMOFLUOROBENZENE		29-jun-1991 UGL 29-jun-1991 UGL		46.200	
	DOOL ME			007	TOLUENE-D8		30-jun-1991 UGL	_	54.500	109.0
	RDDW*5		MVR	006	1,2-DICHLORGETHANE-D4		1 30-jun-1991 UGL 1 30-jun-1991 UGL		45.900	91.8
				006	4-BROMOFLUOROBENZENE		1 30-jun-1991 UGL		46.200	92.4
				006	TOLUENE-D8				53.300	106.6
	RDFQC*1		WAV	005	1,2-DICHLORGETHANE-D4	_	02-sep-1991 UGL		44.100	88.2
				005	4-BRONOFLUOROBENZENE		02-sep-1991 UGL			
				005	TOLUENE-D8		02-sep-1991 UGL		46.200	92.4
	RDFQC*10	l	WTR	016	1,2-DICHLOROETHANE-D4		25-oct-1991 UGL		61.300	
				016	4-BRONOFLUOROBENZENE		25-oct-1991 UGL		44.100	88.2
				016	TOLUENE-D8		25-oct-1991 UGL		45.300	90.6
	RDFQC*11		WIT	005	1,2-DICHLOROETHANE-D4		01-nov-1991 UGL		57.900	115.8
				005	4-BRONOFLUOROBENZENE		01-nov-1991 UGL		45.000	
				005	TOLUENE-D8		1 01-nov-1991 UGL		46.200	
	RDFQC*12	:		004	1,2-D1CHLOROETHANE-D4		1 01-nov-1991 UGL	· · · · · · · · · · · · · · · · · · ·	57.900	
				004	4-BROMOFLUOROBENZENE	===	1 01-nov-1991 UGL		45.000	
				004	TOLUENE-D8		i 01-nov-1991 UGL		46.200	
	RDFQC*13	i		013	1,2-D1CHLOROETHANE-D4		l 01-nov-1991 UGL		56.800	
				013	4-BROMOFLUOROBENZENE		l 01-nov-1991 UGL		44.100	
				013	TOLUENE-DB		l 01-nov-1991 UGL		45.300	
	RDFQC*14	,	WTX	007	1,2-DICHLOROETHANE-D4		06-nov-1991 UGL		53.300	
				007	4-BROMOFLUOROBENZENE		06-nov-1991 UGL		45.000	
				007	TOLUENE-D8		l 06-nov-1991 UGL	_	47.200	
	RDFQC*15		WTW	015	1,2-DICHLOROETHANE-D4		l 06-nov-1991 UGL		64.700	
				015	4-BROMOFLUOROBENZENE		l 06-nov-1991 UGL		45.000	
				015	TOLUENE-D8	04-nov-1991	l 06-nov-1991 UGL	50.000	45.300	
	RDFQC*16	UH18	MIJ	003	2,4,6-TRIBROMOPHENOL	20-aug-1991	l 09-sep-1991 UGL	. 100.000	73.800	
				003	2-FLUOROBIPHENYL	20-aug-1991	l 09-sep-1991 UGL	. 50.000	46.000	
				003	2-FLUOROPHENOL	20-aug-1991	l 09-sep-1991 UGL	. 100.000	102.000	
				003	NITROBENZENE-D5	20-aug-1991	1 09-sep-1991 UGL	50.000	52,100	104.2
				003	PHENOD6	20-aug-1991	l 09-sep-1991 UGL	100.000	100.000	100.0
				003	TERPHENYL - D14	20-aug-1991	l 09-sep-1991 UGL	50.000	51.300	102.6
		UH20	WAV	006	1,2-DICHLOROETHANE-D4	20-aug-1991	i 02-sep-1991 UGL	50.000	54.500	109.0
				006	4-BROMOFLUOROBENZENE	20-aug-1991	02-sep-1991 UGL	50.000	45.900	91.8
				006	TOLUENE-D8	20-aug-1991	02-sep-1991 UGL	50.000	48.100	96.2
	RDFQC*17	UM18	WIK	003	2,4,6-TRIBROMOPHENOL	22-aug-1991	10-sep-1991 UGL	100.000	75.400	75.4
				003	2-FLUOROBIPHENYL	22-aug-1991	l 10-sep-1991 UGL	50.000	43.800	87.6
				003	2-FLUOROPHENOL		10-sep-1991 UGL		108.000	108.0
				003	NITROBENZENE-D5		10-sep-1991 UGL		50.900	101.8
				003	PHENOD6	_	10-sep-1991 UGL		104.000	104.0
				003	TERPHENYL - D14		10-sep-1991 UGL		46.700	93.4
		UM20	MAN		1,2-D1CHLOROETHANE-D4	_	03-sep-1991 UGL		51.100	102.2
			*******	003	4-BROMOFLUOROBENZENE		03-sep-1991 UGL		43.200	86.4
				003	TOLUENE-D8		03-sep-1991 UGL		48.100	96.2
				000	I VEVERE DU	LL aug 1771	5-p 1771 OGL	. 50.000		, VIL

			:	Semple	1	Sample	Analysis		1	Measured	Percent
SitelD	FieldID	Meth			Name	Date		Jni ts	Spiked Conc.	Value	ISC Recovery
01,010	7.030.0	110011	200	****	Traine _				<u> </u>		
	RDFQC*17	111/32		nna	34DNT	22_mig-1001	11-sep-1991		4.940	5.020	T 101.6
	RDFQC*18				* ·- ·· ·		23-sep-1991		100.000	75.400	75.4
	IMLAC. 10	URIO	MIC	003	2,4,6-TRIBROMOPHENOL		23-sep-1991		50.000	53.900	107.8
				003	2-FLUOROBIPHENYL		23-sep-1991		100,000	110.000	110.0
					2-FLUOROPHENOL	_			50.000	54.400	108.8
				003	N1TROBENZENE-D5		23-sep-1991		100.000	106.000	106.0
				003	PHENOD6		23-sep-1991 23-sep-1991		50.000	51.300	102.6
		18120			TERPHENYL - D14		04-sep-1991		50.000	51.100	102.2
		UM20	MAM	010	1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE		04-sep-1991		50.000	42.300	84.6
				010			04-sep-1991		50.000	42.500	85.0
		UW32	1 H T		TOLUENE-D8		13-sep-1991		4.940	5.240	
	00500410				34DNT		20-nov-1991		100.000	65.900	65.9
	RDFQC*19	UMIO	XDE	003	2,4,6-TRIBROMOPHENOL		20-nov-1991		50.000	51.600	103.2
				003	2-FLUOROBIPHENYL		20-nov-1991		100.000	92.800	92.8
				003	2-FLUOROPHENOL NITROBENZENE-D5		20-nov-1991		50.000	41.400	82.8
				003	PHENOD6		20-nov-1991		100.000	94.000	94.0
				003	TERPHENYL - D14		20-nov-1991		50.000	60.400	120.8
		UM20	LFTD		1,2-DICHLOROETHANE-D4		25-oct-1991		50.000	61.300	122.6
		UFIEU	W ! K	017	4-BROMOFLUOROBENZENE		25-oct-1991		50.000	44.100	88.2
				017	TOLUENE-D8		25-oct-1991		50.000	44.300	88.6
	RDFQC*2		WAW		1,2-D1CHLOROETHANE-D4		03-sep-1991		50.000	52.200	104.4
	KDI 40 Z		*****	004	4-BRONOFLUOROBENZENE		03-sep-1991		50.000	43.200	86.4
				004	TOLUENE-D8		03-sep-1991		50.000	45.300	90.6
	RDFQC*20	B1M18	YDE		2,4,6-TRIBROMOPHENOL	_	20-nov-1991		100.000	51.600	51.6
	KD140 20		~~~	004	2-FLUOROBIPHENYL		20-nov-1991		50,000	48.300	96.6
				004	2-FLUOROPHENOL		20-nov-1991		100.000	88.300	88.3
				004	NITROBENZENE-D5		20-nov-1991		50.000	35.500	71.0
				004	PHENOD6	24-oct-1991	20-nov-1991	UGL	100.000	84.000	84.0
				004	TERPHENYL - D14	24-oct-1991	20-nov-1991	UGL	50.000	58.100	116.2
		UM20	WIT	010	1,2-DICHLOROETHANE-D4	24-oct-1991	01-nov-1991	UGL	50.000	59.000	118.0
				010	4-BROMOFLUOROBENZENE	24-oct-1991	01-nov-1991	UGL	50.000	45.900	91.8
				010	TOLUENE-D8	24-oct-1991	81-nov-1991	UGL	50.000	46.200	92.4
	RDFQC*21	UK18	XDG	009	2,4,6-TRIBROMOPHENOL	25-oct-1991	19-nov-1991	UGL	100.000	73.800	73.8
				009	Z-FLUOROBIPHENYL	25-oct-1991	19-nov-1991	UGL	50.000	43.800	87.6
				009	2-FLUOROPHENOL	25-oct-1991	19-nov-1991	UGL	100.000	85.200	85.2
				009	NITROBENZENE-D5	25-oct-1991	19-nov-1991	UGL	50.000	36,70 0	73.4
				009	PHENOO6	25-oct-1991	19-nov-1991	UGL	100.000	88.000	88.0
				009	TERPHENYL - D14	25-oct-1991	19-nov-1991	UGL	50.000	54.700	109.4
		UM20	WTT	014	1,2-DICHLOROETHANE-D4	25-oct-1991	01-nov-1991	UGL	50.000	56,800	113.6
				014	4-BROMOFLUOROBENZENE	25-oct-1991	01-nov-1991	UGL	50.000	44.100	88.2
				014	TOLUENE-D8	25-oct-1991	01-nov-1991	UGL	50.000	43.400	86.8
	RDFQC*22	UM18	XD1		2,4,6-TRIBROMOPHENOL		26-nov-1991		100.000	46.000	46.0
				005	2-FLUOROBIPHENYL	02-nov-1991	26-nov-1991	UGL	50.000	33.700	67.4
				005	2-FLUOROPHENOL	_	26-nov-1991		100,000	88,300	88.3
				005	NITROBENZENE-D5		26-nov-1991		50.000	34.300	68.6
				005	PHENOD6	· · · · · · · · · · · · · · · · · ·	26-nov-1991		100.000	74.000	74.0
				005	TERPHENYL - D14		26-nov-1991		50.000	30.800	61.6
		UM20	WY	007	1,2-DICHLOROETHANE-D4	02-nov-1991	08-nov-1991	UGL	50.000	57.900	115.8

SiteID FieldID Meth Lot No. Name Date Date Units Solked Cong. Value	Percent
RDFQC*22 UM20 WITY 007 4-BROMOFLUOROBENZENE 02-nov-1991 UGL 50.000 43.400 RDFQC*24 UM18 Y12 002 2,4,6-TRIBROMOPHENDL 25-feb-1992 10-mar-1992 UGL 50.000 43.400 002 2-FLUOROPHENDL 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 2-FLUOROPHENDL 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 2-FLUOROPHENDL 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 WITROBENZENE-05 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 WITROBENZENE-05 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 WITROBENZENE-05 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 WITROBENZENE-05 25-feb-1992 10-mar-1992 UGL 50.000 43.800 002 WITROBENZENE 07-nov-1991 15-nov-1991 UGL 50.000 43.800 002 WITROBENZENE 07-nov-1991 15-nov-1991 UGL 50.000 57.900 002 WITROBENZENE 07-nov-1991 15-nov-1991 UGL 50.000 57.900 003 10-ULENE-08 07-nov-1991 15-nov-1991 UGL 50.000 44.200 003 4-BROMOFLUOROBENZENE 15-jan-1992 UGL 50.000 45.000 003 4-BROMOFLUOROBENZENE 15-jan-1992 UGL 50.000 45.000 003 4-BROMOFLUOROBENZENE 15-jan-1992 UGL 50.000 45.000 003 4-BROMOFLUOROBENZENE 15-jan-1992 UGL 50.000 45.000 003 4-BROMOFLUOROBENZENE 15-jan-1992 UGL 50.000 45.000 003 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 45.000 003 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 004 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1992 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1992 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 4-BROMOFLUOROBENZENE 07-nov-1991 UGL 50.000 44.100 005 10-WENDE 08-005	ISC Recovery
RDFQC*24 UM18 YJC 002	
RDFQC*24 UM18 YJC 002	90.0
RDFQC*24 UM18 YJL 002 2, 4,6-TE1BROMDPHENOL 25-feb-1992 10-mar-1992 UGL 50,000 43,800 002 2-FLUOROBIPHENYL 25-feb-1992 10-mar-1992 UGL 50,000 43,800 002 9 HENDOG 25-feb-1992 10-mar-1992 UGL 50,000 48,000 002 9 HENDOG 25-feb-1992 10-mar-1992 UGL 50,000 48,000 002 9 HENDOG 25-feb-1992 10-mar-1992 UGL 50,000 48,000 002 17 RPRHENYL 104 25-feb-1992 10-mar-1992 UGL 50,000 56,900 002 17 RPRHENYL 104 25-feb-1992 10-mar-1992 UGL 50,000 56,900 003 1,2-01CKLOROETHANE-04 07-nov-1991 15-nov-1991 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 45,000 003 10-mar-1992 UGL 50,000 46,200 003 10-mar-1992 UGL 50,000 46,200 003 10-mar-1992 UGL 50,000 46,200 003 10-mar-1992 UGL 50,000 46,200 003 10-mar-1992 UGL 50,000 46,200 004 4-BROMOFLUOROBENZENE 15-jan-1992 UGL 50,000 55,600 004 4-BROMOFLUOROBENZENE 26-jan-1992 UGL 50,000 46,200 004 12-01CHOROETHANE-04 26-jan-1992 UGL 50,000 55,600 004 10-mar-1992 UGL 50,000 46,200 005 1,2-01CHOROETHANE-04 26-jan-1992 UGL 50,000 46,200 005 1,2-01CHOROETHANE-04 27-may-1992 UGL 50,000 46,200 005 1,2-01CHOROETHANE-04 27-may-1991 UGL 50,000 46,200 005 1,2-01CHOROETHANE-04 27-may-1991 UGL 50,000 46,200 005 1,2-01CHOROETHANE-04 27-may-1991 UGL 50,000 46,200 005 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-1991 UGL 50,000 46,200 003 10-ULENE-0B 27-may-199	86.8
002 2-FLUOROBIPHENYL 25-feb-1992 10-mar-1992 UGL 50,000 43,800 002 11TROBERMENOL 25-feb-1992 10-mar-1992 UGL 50,000 49,700 002 11TROBERMENOL 25-feb-1992 10-mar-1992 UGL 50,000 49,700 002 11TROBERMENOL 25-feb-1992 10-mar-1992 UGL 50,000 49,700 002 12-methol 005 12-methol 005 12-methol 005 12-methol 005	61.1
OOZ C_FLUGROPHERION 25-feb-1992 IO-mar-1992 UGL 100.000 88.300 002 NITROBENZENE-D5 25-feb-1992 IO-mar-1992 UGL 50.000 49.700 002 TERPHENYL - D14 25-feb-1992 IO-mar-1992 UGL 50.000 84.000 86.900 003 003 004 005 004 004 005 005 004 005 005 004 005	87.6
No. No.	88.3
### PRINCE 100,000 84,000 84,000 85,000 86,000	99.4
TERPHENYL - D14 25-feb-1992 10-mar-1992 UGL 50.000 56.900	84.0
RDFQC*26 UM20 XLC 011 1,2-DICHLOROETHANE-D6 07-nov-1991 15-nov-1991 UGL 50.000 45.000 011 4-8ROMOFLUOROBENZENE 07-nov-1991 15-nov-1991 UGL 50.000 45.000 46.200	113.8
011 4-BRONDFLUGROBENZENE 07-nov-1991 15-nov-1991 UGL 50.000 45.000	115.8
TOLUENE-D8	90.0
RDFQC*27	92.4
A BROMOFILIOROBENZENE 15- jan-1992 22- jan-1992 UGL 50.000 45.000	102.2
No. No.	90.0
RDFQC*28	92.4
004 4-BROMOFLUOROBENZENE 24-jan-1992 29-jan-1992 UGL 50.000 44.100	111.2
RDFQC*29	88.2
RD FQC*29	92.4
005 4-BROMOFLUOROBENZENE 03-mar-1992 10-mar-1992 UGL 50.000 44.100	111.2
RDFQC*3	88.2
RDFQC*3	92.4
Note	122.6
RDFQC*30 XLC 012 1,2-DICHLOROETHANE-D4 08-nov-1991 15-nov-1991 UGL 50.000 44.100 012 4-BROMOFLUOROBENZENE 08-nov-1991 15-nov-1991 UGL 50.000 44.100 012 TOLUENE-D8 08-nov-1991 15-nov-1991 UGL 50.000 45.300 RDFQC*4 WAX 004 1,2-DICHLOROETHANE-D4 27-aug-1991 09-sep-1991 UGL 50.000 62.400 004 4-BROMOFLUOROBENZENE 27-aug-1991 09-sep-1991 UGL 50.000 48.600 004 TOLUENE-D8 27-aug-1991 09-sep-1991 UGL 50.000 49.100 RDFQC*5 005 1,2-DICHLOROETHANE-D4 28-aug-1991 09-sep-1991 UGL 50.000 60.200 005 4-BROMOFLUOROBENZENE 28-aug-1991 09-sep-1991 UGL 50.000 47.700 005 TOLUENE-D8 28-aug-1991 09-sep-1991 UGL 50.000 49.100 RDFQC*6 WTL 014 1,2-DICHLOROETHANE-D4 08-oct-1991 16-oct-1991 UGL 50.000 45.300 014 TOLUENE-D8 08-oct-1991 16-oct-1991 UGL 50.000 45.300 RDFQC*7 WTN 008 1,2-DICHLOROETHANE-D4 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 42.300 RDFQC*8 WTN 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 47.700	97.2
012 4-BROMOFLUOROBENZENE 08-nov-1991 15-nov-1991 UGL 50.000 44.100 012 TOLUENE-D8 08-nov-1991 15-nov-1991 UGL 50.000 45.300 RDFQC*4 WAX 004 1,2-DICHLOROBENZENE 27-aug-1991 09-sep-1991 UGL 50.000 62.400 004 4-BROMOFLUOROBENZENE 27-aug-1991 09-sep-1991 UGL 50.000 48.600 005 1,2-DICHLOROBENZENE 28-aug-1991 09-sep-1991 UGL 50.000 60.200 005 4-BROMOFLUOROBENZENE 28-aug-1991 09-sep-1991 UGL 50.000 47.700 005 TOLUENE-D8 28-aug-1991 09-sep-1991 UGL 50.000 47.700 005 TOLUENE-D8 28-aug-1991 09-sep-1991 UGL 50.000 49.100 005 TOLUENE-D8 28-aug-1991 09-sep-1991 UGL 50.000 49.100 004 4-BROMOFLUOROBENZENE 08-oct-1991 16-oct-1991 UGL 50.000 45.900 005 TOLUENE-D8 08-oct-1991 16-oct-1991 UGL 50.000 45.900 006 TOLUENE-D8 08-oct-1991 16-oct-1991 UGL 50.000 45.300 007 TOLUENE-D8 08-oct-1991 10-oct-1991 UGL 50.000 47.700 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 47.300	100.0
RDFQC*4	113.6
RDFQC*4 WAX 004 1,2-DICHLOROETHANE-D4 27-aug-1991 09-sep-1991 UGL 50.000 62.400 004 4-BROMOFLUOROBENZENE 27-aug-1991 09-sep-1991 UGL 50.000 48.600 004 TOLUENE-D8 27-aug-1991 09-sep-1991 UGL 50.000 49.100 RDFQC*5 005 1,2-DICHLOROETHANE-D4 28-aug-1991 09-sep-1991 UGL 50.000 60.200 005 4-BROMOFLUOROBENZENE 28-aug-1991 09-sep-1991 UGL 50.000 47.700 005 TOLUENE-D8 28-aug-1991 09-sep-1991 UGL 50.000 49.100 RDFQC*6 WTL 014 1,2-DICHLOROETHANE-D4 08-oct-1991 16-oct-1991 UGL 50.000 51.100 014 4-BROMOFLUOROBENZENE 08-oct-1991 16-oct-1991 UGL 50.000 51.100 014 TOLUENE-D8 08-oct-1991 16-oct-1991 UGL 50.000 45.300 RDFQC*7 WTH 008 1,2-DICHLOROETHANE-D4 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 42.300 RDFQC*8 WTN 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 10-oct-1991 18-oct-1991 UGL 50.000 61.300 008 TOLUENE-D8 10-oct-1991 18-oct-1991 UGL 50.000 61.300	88.2
D04 4-BROMOFLUOROBENZENE 27-aug-1991 09-sep-1991 UGL 50.000 48.600	90.6
RDFQC*5	124.8
RDFQC*5 005 1,2-DICHLOROETHANE-D4 28-aug-1991 09-sep-1991 UGL 50.000 60,200 005 4-BROMOFLUOROBENZENE 28-aug-1991 09-sep-1991 UGL 50.000 47.700 005 TOLUENE-D8 28-aug-1991 09-sep-1991 UGL 50.000 49.100 Proceedings of the control of t	97.2
005 4-BROMOFLUOROBENZENE 28-aug-1991 09-sep-1991 UGL 50.000 47.700	98.2
RDFQC*6 WTL 014 1,2-DICHLOROETHANE-D4 08-oct-1991 09-sep-1991 UGL 50.000 49.100	120.4
RDFQC*6 WTL 014 1,2-DICHLOROETHANE-D4 08-oct-1991 16-oct-1991 UGL 50.000 51.100 014 4-BROMOFLUOROBENZENE 08-oct-1991 16-oct-1991 UGL 50.000 45.900 014 TOLUENE-D8 08-oct-1991 16-oct-1991 UGL 50.000 45.300 RDFQC*7 WTH 008 1,2-DICHLOROETHANE-D4 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 44.300 RDFQC*8 WTM 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUOROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	95.4
014 4-BROMOFLUCROBENZENE 08-oct-1991 16-oct-1991 UGL 50.000 45.900 014 TOLUENE-D8 08-oct-1991 16-oct-1991 UGL 50.000 45.300 A5.300 RDFQC*7 WTH 008 1,2-DICHLOROETHANE-D4 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUCROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 44.300 RDFQC*8 WTM 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUCROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	98.2
014 TOLUEME~D8 08-oct-1991 16-oct-1991 UGL 50.000 45.300 RDFQC*7 WTH 008 1,2-DICHLOROETHANE-D4 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 44.300 RDFQC*8 WTM 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUOROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	102.2
RDFQC*7 WTH 008 1,2-DICHLOROETHANE-D4 26-sep-1991 02-oct-1991 UGL 50.000 57.900 008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 44.300 RDFQC*8 WTM 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUOROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	91.8
008 4-BROMOFLUOROBENZENE 26-sep-1991 02-oct-1991 UGL 50.000 42.300 008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 44.300 RDFQC*8 WTW 024 1,2-DICHLOROETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUOROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	90.6
008 TOLUENE-D8 26-sep-1991 02-oct-1991 UGL 50.000 44.300 RDFQC*8 WTW 024 1,2-DICHLORDETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUGROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	115.8
RDFQC*8 WTW 024 1,2-DICHLORDETHANE-D4 10-oct-1991 18-oct-1991 UGL 50.000 61.300 024 4-BROMOFLUGROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	84.6
024 4-BROMOFLUGROBENZENE 10-oct-1991 18-oct-1991 UGL 50.000 47.700	88.6
	122.6
73/ TOLIPHE NO 10 40	95.4
	98.2
RDFQC*9 WTL 021 1,2-DICHLOROETHANE-D4 09-oct-1991 17-oct-1991 UGL 50.000 49.900	99.8
021 4-BRONOFLUOROBENZENE 09-oct-1991 17-oct-1991 UGL 50.000 45.000	90.0
021 TOLUENE-D8 09-oct-1991 17-oct-1991 UGL 50.000 44.300	88.6
RDWA*10 TF22 WNE 004 MITRITE, MITRATE 19-sep-1991 22-sep-1991 UGL 25000.000 28000.000	112.0
006 NITRITE, NITRATE 19-sep-1991 22-sep-1991 UGL 25000.000 31000.000	
UM18 WIP 007 2,4,6-TRIBROMOPHENOL 19-sep-1991 11-oct-1991 UGL 100.000 65.900	65.9
007 2-FLUOROBIPHENYL 19-sep-1991 11-oct-1991 UGL 50.000 49.400	98.8

			Sa	nple		Sample	Analysia	5			Measured	Percent
iteID	FieldID	Meth Lo	t No	j	Name	Date	Date		<u>Units</u>	Spiked Conc.	<u> Value</u>	ISC Recovery
									1			
	RDWA*10	UM18 W	P O	07	2-FLUOROPHENOL	19-sep-1991	11-oct-	1991	UGL	100.000	107.000	107.0
				07	NITROBENZENE-D5	19-sep-1991				50.000	45.000	90.0
					PHENOD6	19-sep-1991				100.000	100.000	100.0
				7	TERPHENYL - D14	19-sep-1991				50.000	58.100	116.2
		UM20 W	-		1,2-DICHLOROETHANE-D4	19-sep-1991				50.000	56.800	113.6
		UMAU W		23	4-BROMOFLUOROBENZENE	19-sep-1991				50.000	46.800	93.6
				23 23	TOLUENE-D8	19-sep-1991				50.000	47.200	94.4
		15/72 19				19-sep-1991				4.940	4.430	
	0014435	UW32 WI			34DNT	17-sep-1991				50.000	53.300	106.6
	RDWA*25	UMZU W			1,2-DICHLOROETHANE-D4	17-sep-1991				50.000	49.500	99.0
			_	05	4-BROMOFLUOROBENZENE	17-sep-1991				50.000	47.200	94.4
				25	TOLUENE-D8						55.600	111.2
	RDWA*26	W	E O		1,2-D1CHLOROETHANE-D4	19-sep-1991				50.000		68.2
			-	9	4-BROMOFLUOROBENZENE	19-sep-1991				50.000	44.100	90.6
			_	9	TOLUENE-D8	19-sep-1991				50.000	45.300 57.900	115.8
	RDWA*27		-	10	1,2-D1CHLOROETHANE-D4	20-sep-1991				50.000		93.6
				10	4-BROMOFLUOROBENZENE	20-sep-1991				50.000	46.800	
			_	10	TOLUENE-D8	20-sep-1991				50.000	46.200	92.4
	RDWA*29	W	D 00		1,2-D1CHLOROETHANE-D4	13-sep-1991				50,000	54.500	109.0
)4	4-BROMOFLUOROBENZENE	13-sep-1991				50.000	49.500	99.0
)4	TOLUENE-D8	13-sep-1991				50.000	48.100	96.2
	RDWA+30	XI	.9 01		1,2-D1CHLOROETHANE-D4	28- jan-1992				50.000	55.600	111.2
			-	9	4-BROMOFLUOROBENZENE	28- jan- 1992				50.000	44.100	88.2
				9	TOLUENE-D8	28- jan- 1992				50.000	46.200	92.4
	RDWB*11	M.	T O		1,2-D1CHLOROETHANE-D4	29-oct-1991				50.000	57.900	115.8
)3	4-BROMOFLUOROBENZENE	29-oct-1991				50.000	45.000	90.0
			-)3	TOLUENE-DB	29-oct-1991				50.000	46.200	92.4
	RDWB*12			11	1,2-DICHLOROETHANE-D4	30-oct-1991				50.000	56.800	113.6
			-	11	4-BROMOFLUOROBENZENE	30-oct-1991				50.000	44.100	88.2
				11	TOLUENE-D8	30-act-1991				50.000	44.300	88.6
	RDWB*13		_	12	1,2-DICHLOROETHANE-D4	31-oct-1991				50.000	56.800	113.6
					4-BROMOFLUOROBENZENE	31-oct-1991				50.000	45.000	90.0
			-	12	TOLUENE-D8	31-oct-1991				50.000	45.300	90.6
	RDWB*14	W.	X 00		1,2-DICHLOROETHANE-D4	01-nov-1991				50.000	52.200	104.4
				80	4-BROMOFLUOROBENZENE	01-nov-1991				50.000	45.000	90.0
				98	TOLUENE-D8	01-nov-1991				50.000	47.200	94.4
	RDWC*26	XI	U 0		1,2-DICHLOROETHANE-D4	04- feb- 1992				50.000	55.600	111.2
				32	4-BROMOFLUOROBENZENE	04-feb-1992				50.000	42.300	84.6
			Of)2	TOLUENE-DB	04-feb-1992				50.000	45.300	90.6
	RDWC*27	X	T.	12	1,2-DICHLOROETHANE-D4	30- jan- 1992				50.000	55.600	111.2
			01)2	4-BROMOFLUOROBENZENE	30- jan- 1992				50.000	45.000	90.0
			01)2	TOLUENE-D8	30-jan-1992				50.000	47.200	94.4
	RDWC*28		01)3	1,2-DICHLOROETHANE-D4	04-feb-1992	07-feb-	1992	UGL	50.000	55.600	111.2
			0	3	4-BROMOFLUOROBENZENE	04-feb-1992	07-feb-	1992	2 UGL	50.000	46.800	93.6
			0	03	TOLUENE-D8	04-feb-1992	07-feb-	1992	2 UGL	50.000	48,100	96.2
	RDWC*29	XI	Y 0'	17	1,2-D1CHLOROETHANE-D4	28-feb-1992	04-mar-	1992	UGL	50.000	54.500	109.0
			01	17	4-BROMOFLUOROBENZENE	28-feb-1992	04-mar-	1992	. UGL	50.000	41.400	82.8
			01	17	TOLUENE-D8	28-feb-1992	04-mar-	1992	! UGL	50.000	42.500	85.0
	RDWC*30	XI	.U 00)3	1,2-DICHLOROETHANE-D4	06-feb-1992	12-feb-	1992	2 UGL	50.000	53.300	106.6
						-5-						

			:	Sample	•	Semple	Analysis	į	•	Measured	Percent
SiteID	FieldID	Meth	Lot	No.	Name	Date	Date	Units	Spiked Conc.	<u>Value</u>	ISC Recovery
<u> </u>											
	RDMC*30	1 2 0	YER	003	4-BROMOFLUOROBENZENE	06-feb-1992	12-feb-199	22 UGL	50,000	41,400	82.8
	KPMC30	UHCU	ALU	003	TOLUENE-D8	06-feb-1992			50.000	44.300	88.6
	RDWC*42	SB01	vre		MERCURY	06-feb-1992			5.000	4,580	91.6
	RDWC"4Z	3001	ALS	006	MERCURY	06-feb-1992		_	5.000	4.470	89.4
		UN18	VDU		2,4,6-TRIBROMOPHENOL	06- (eb 1992 06- feb- 1992			100.000	61.900	61.9
		UNIO	VDM	800	2-FLUOROBIPHENYL	06-feb-1992			50.000	47.100	94.2
				008	2-FLUOROPHENOL	06- feb- 1992			100.000	113.000	113.0
				800	NITROBENZENE-D5	06-feb-1992			50.000	47,300	94.6
				800	PHENOD6	06-feb-1992			100.000	96.000	96.0
				800	TERPHENYL - D14	06-feb-1992			50.000	52,400	104.8
		LM20	V111		1,2-DICHLOROETHANE-D4	06-feb-1992			50.000	55.600	111.2
		UNCU	ALU	007	4-BROMOFLUOROBENZENE	06-feb-1992			50.000	43,200	86.4
				007	TOLUENE-D8	06-1eb-1992			50.000	44.300	88.6
		UN32	UV0		34DNT	06-feb-1992			4.940	4.820	
	RDWC*53	SD20			LEAD	19-feb-1992			40.000	39.200	98.0
	KUWL-33	άνζυ	VB0	007	LEAD	19-feb-1992			40.000	39.300	98.3
		UM18	VhV		2.4.6-TRIBROMOPHENOL	19-feb-1992			100.000	71.400	71.4
		UMILO	API	006	2-FLUOROBIPHENYL	19-feb-1992			50.000	46.000	92.0
				006	2-FLUOROPHENOL	19-feb-1992			100.000	95.900	95.9
				006	NITROBENZENE-D5	19-feb-1992			50.000	49,700	99.4
				006	PHENOD6	19-feb-1992			100.000	98.000	98.0
				006	TERPHENYL - D14	19-feb-1992			50.000	58.100	116.2
		UM20	XI.U		1,2-DICHLOROETHANE-D4	19-feb-1992			50.000	57,900	115.8
				800	4-BRONDFLUOROBENZENE	19-feb-1992			50.000	45,000	90.0
	•			008	TOLUENE-D8	19-feb-1992			50.000	46.200	92.4
	RDWC*73	LM18	ILY		2,4,6~TRIBROMOPHENOL	10-mar-1992			100,000	71.400	71.4
				006	2-FLUOROBIPHENYL	10-mar-1992			50.000	38.200	76.4
				006	2-FLUOROPHENOL	10-mar-1992	01-apr-19	92 UGL	100.000	98.900	98.9
				006	NITROBENZENE-D5	10-mar-1992			50.000	36.700	73.4
				006	PHENOD6	10-mar-1992			100.000	76.000	76.0
				006	TERPHENYL - D14	10-mar-1992			50.000	41.000	8 2.0
	RDWC*79	UM20	XLV	800	1.2-DICHLOROETHANE-D4	18-feb-1992			50.000	57.900	115.8
				008	4-BROMOFLUOROBENZENE	18-feb-1992	21-feb-19	92 UGL	50.000	45.000	90.0
				800	TOLUENE-D8	18-feb-1992	21-feb-19	92 UGL	50.000	47.200	94.4
	RDWC*80		XLW	007	1,2-DICHLOROETHANE-D4	20-feb-1992	26-feb-199	92 UGL	50.000	56.800	113.6
				007	4-BROMOFLUOROSENZENE	20-feb-1992	26-feb-19	92 UGL	50.000	43,200	86.4
				007	TOLUENE-D8	20-feb-1992	26-feb-19	92 UGL	50.000	45.300	90.6
	RDWC*82		XLV	009	1,2-DICHLOROETHANE-D4	18-feb-1992	21-feb-19	92 UGL	50.000	57.900	115.8
				009	4-BROMOFLUOROBENZENE	18 - feb - 1992	21-feb-19	92 UGL	50.000	45.000	90.0
				009	TOLUENE-D8	18-feb-1992	21-feb-19	92 UGL	50.000	48.100	96.2
	RDWC*83		XLS	002	1,2-DICHLOROETHANE-D4	29-jan-1992	06-feb-19	92 UGL	50.000	55.600	111.2
				002	4-BROMOFLUOROBENZENE	29- jan-1992	06-feb-19	92 UGL	50.000	45.000	90.0
				002	TOLUENE-D8	29- jan-1992	06-feb-199	92 UGL	50.000	47.200	94.4
	RDWC*84		XLY	018	1,2-D1CHLOROETHANE-D4	25 - feb - 1992	04-mar-199	92 UGL	50.000	54.500	109.0
				018	4-BROMOFLUOROBENZENE	25-feb-1992	04-mar-199	92 UGL	50.000	41,400	82.8
				018	TOLUENE-D8	25-feb-1992	04-mar-199	92 UGL	50.000	42.500	85.0
	RDUC*85		XLV	010	1,2-D1CHLOROETHANE-D4	11-feb-1992	21 - feb- 199	92 UGL	50.000	61.300	122.6
				010	4-BROMOFLUOROBENZENE	11-feb-1992	21-feb-199	92 UGL	50.000	45,000	90.0

r

				Sampl	e	Sample	Analysis		ļ	Measured	Percent
SiteID	Field <u>ID</u>	Meth	Lot	No.	Name	Date	Date	<u>Units</u>	Spiked Conc.	Value	ISC Recovery
									•		
	RDWC*85	UM20	V IY	010	TOLUENE-D8	11-feb-1992	21-feb-1992	UGL	50.000	47.200	94.4
	RDWC*86	4,100		019	1,2-DICHLOROETHANE-D4		04-mar-1992		50.000	54,500	109.0
	ADRO GO		~=.	019	4-BROMOFLUOROBENZENE		04-mar-1992	_	50.000	41.400	82.8
				019	TOLUENE-D8		04-mar-1992		50.000	43,400	86.8
	RDWC*87		YI U	006	1,2-DICHLOROETHANE-D4		26-feb-1992		50.000	57.900	115.8
	KDWC O		AL.	006	4-BROMOFLUOROBENZENE		26-feb-1992		50.000	45.000	90.0
				006	TOLUENE-DB		26-feb-1992		50.000	46.200	92.4
	RDWC*88			005	1.2-DICHLOROETHANE-D4		26-feb-1992		50,000	57.900	115.8
	WAR 40			005	4-BROMOFLUOROBENZENE		26-feb-1992		50.000	45.000	90.0
				005	TOLUENE-D8		26-feb-1992		50,000	47.200	94.4
	ROWD*5		YI V	003	1,2-DICHLOROETHANE-D4		21-feb-1992		50,000	59.000	118.0
	NO NO			003	4-BROMOFLUOROBENZENE		21-feb-1992		50.000	46.800	93.6
				003	TOLUENE-D8		21-feb-1992		50.000	48.100	96.2
	RFISL*21	SD21	VYD		SELENTUM		01-nov-1991		37.500	26.600	70.9
	.,		• • •	008	SELENTUM		01-nov-1991		37.500	26.400	70.4
		SD22	VTR	004	ARSENIC		31-oct-1991		37.500	42.400	113.1
				800	ARSENIC		31-oct-1991		37.500	42.800	114.1
	RFISL*26	SD21	VYO	005	SELENIUM		01-nov-1991		37.500	26.700	71.2
				009	SELENIUM	14-sep-1991	01-nov-1991	UGL	37.500	26.300	70.1
		SD22	VTR	005	ARSENIC	14-sep-1991	31-oct-1991	UGL	37.500	42.300	112.8
				009	ARSENIC	14-sep-1991	31-oct-1991	UGL	37.500	42.000	112.0
	RFISL*35	SD21	VYO	006	SELENIUM	14-sep-1991	01-nov-1991	UGL	37.500	26,100	69.6
				010	SELENIUM		01-nov-1991		37.500	25.900	69.1
		\$D22	VTR	006	ARSENIC		31-oct-1991		37.500	41.700	111.2
				010	ARSENIC		31-oct-1991		37. 500	42.800	114.1
	RF1SL*40	SS10	VKY		BARTUM		21-oct-1991		2000.000	1730,000	86.5
				906	BARIUM		21-oct-1991		2000.000	1760.000	88.0
				001	CADMIUM		21-oct-1991		50.000	42.160	84.2
				006	CADMIUM		21-oct-1991		50.000	41.900	83.8
				001	CHROMIUM		21-oct-1991		200.000	192.000	96.0
				006	CHROMIUM		21-oct-1991		200.000	194.000	97.0
				001	SILVER		21-oct-1991		50.000	54.100	108.2
	DE1014/4	co. 14		006	SILVER		21-oct-1991		50.000	54.200	108.4
	RFISL*41	5021	VIU	011	SELENIUM		01-nov-1991		37.500 37.500	24.700 25.200	65.9 67.2
		SD22	WEB		SELENIUM		01-nov-1991		37.500	41.700	111.2
		シリンとと	VIK	011	ARSENIC ARSENIC	• .	31-oct-1991 31-oct-1991		37.500	41.300	110.1
		SS10	w		BARTUM		21-oct-1991		2000.000	1760.000	88.0
		3510	AMI	007	BARIUM		21-oct-1991		2000.000	1690.000	84.5
				002					50.000	48.000	96.0
				007	CADMIUM		21-oct-1991	•	50.000	46.500	93.0
				002	CAPMIUM		21-oct-1991		200.000	185.000	92.5
				002	CHRONIUM		21-oct-1991		200.000	177.000	92.5 88.5
				007	CHROMIUM		21-oct-1991		50.000	56.200	112.4
				007	SILVER SILVER		21-oct-1991		50.000	52.400	104.8
	RFISL*42			007	BARIUM		21-oct-1991 21-oct-1991		2000.000	1550,000	77,5
	KF13L-46			008	BARIUM		21-oct-1991		2000.000	1580.000	79.0
				003	CADMIUM		21-oct-1991		50.000	46.400	92.8
				003	VADITION .	14-2ch-1331	41-001-1391	UGL	20.000	40,400	72.0

				Sample	1	Sample	Analysis	<u> </u>	Measured	Percent
SiteID	<u>FieldID</u>	Meth	Lot	No.	Name	Date	<u> Date Units</u>	Spiked Conc.	Value	ISC Recovery
							<u> </u>	F		
	RFISL*42	5510	VKY	008	CADMIUM	14-sep-1991	21-oct-1991 UGL	50.000	53.000	106.0
	MITGE 7E	40.0	***	003	CHROMIUM	•	21-oct-1991 UGL	200.000	173.000	86.5
				008	CHROMIUM		21-oct-1991 UGL	200.000	173.000	86.5
				003	SILVER		21-oct-1991 UGL	50.000	48.500	97.0
				008	SILVER		21-oct-1991 UGL	50.000	50.200	100.4
	RFISL*43			004	BARIUM		21-oct-1991 UGL	2000.000	1760.000	88.0
	KL12F-43			009	BARIUM		21-oct-1991 UGL	2000.000	1710.000	85.5
				004	CADMIUM		21-oct-1991 UGL	50.000	52,900	105.8
				009	CADMIUM		21-oct-1991 UGL	50.000	46.000	92.0
				004	CHRONIUM		21-oct-1991 UGL	200,000	190.000	95.0
				009	CHROMIUM		21-oct-1991 UGL	200.000	186.000	93.0
				004	SILVER		21-oct-1991 UGL	50.000	55.500	111.0
				009			21-oct-1991 UGL	50.000	53,300	106.6
	RFISL*44			005	SILVER		21-oct-1991 UGL	2000.000	1740.000	87.0
	KL12F44			010	BARIUM Barium		21-oct-1991 UGL	2000.000	1750.000	87.5
				005	CADMIUM	. 1	21-oct-1991 UGL	50.000	44,300	88.6
				010	CADMIUM		21-oct-1991 UGL	50.000	45.800	91.6
				005	CHROMIUM		21-oct-1991 UGL	200.000	185,000	92.5
				010	CHROMIUM		21-oct-1991 UGL	200.000	188.000	94.0
				005	SILVER		21-oct-1991 UGL	50.000	52,800	105.6
				010	SILVER		21-oct-1991 UGL	50.000	53.700	107.4
	RVFS*86	IMIR	UVD		2,4,6-TRIBROMOPHENOL		31-jan-1992 UGG	6.700	4.070	60.7
	KV1 3"00	LHIO	MAI	002	2-FLUOROBIPHENYL		31-jan-1992 UGG	3.300	2.880	87.3
				002	2-FLUOROPHENOL		31-jan-1992 UGG	6.700	7.120	106.3
				002	NITROBENZENE-D5		31-jan-1992 UGG	3.300	2.560	77.6
				002	PHENOD6	•	31-jan-1992 UGG	6.700	6.430	96.0
				002	TERPHENYL - D14		31-jan-1992 UGG	3.300	2.430	73.6
10NW1	RDWA*7	H2	PCN	004	PHENOLICS (NON-SPECIFIC)		09-oct-1991 UGL	50,000	46,100	92.2
1011#1	,,		N.O.	005	PHENOLICS (NON-SPECIFIC)		09-oct-1991 UGL	50.000	46.700	93.4
		UN18	⊌to		2,4,6-TR1BROMOPHENOL		11-oct-1991 UGL	100.000	76.200	76.2
		51110		003	2-FLUOROBIPHENYL		11-oct-1991 UGL	50.000	55.000	110.0
				003	2-FLUOROPHENOL		11-oct-1991 UGL	100.000	111.000	111.0
				003	NITROBENZENE-D5		11-oct-1991 UGL	50.000	48.500	97.0
				003	PHENOD6		11-oct-1991 UGL	100.000	106.000	106.0
				003	TERPHENYL - D14		11-oct-1991 UGL	50.000	61.500	123.0
		UM20	MTD		1,2-D[CHLOROETHANE-04		20-sep-1991 UGL	50.000	54.500	109.0
		0.120		006	4-BROMOFLUOROBENZENE		20-sep-1991 UGL	50.000	49,500	99.0
				006	TOLUENE-D8	•	20-sep-1991 UGL	50,000	48,100	96.2
		UW32	Of N		340NT		01-oct-1991 UGL	4.940	4,180	
10SE1	RADS*10	LM18			2,4,6-TRIBROMOPHENOL		14-sep-1990 UGG	6.700	5.270	78.7
1002		27110		021	2-FLUOROB1PHENYL		14-sep-1990 UGG	3.300	2.440	73.9
				021	2-FLUOROPHENOL	_	14-sep-1990 UGG	6.700	5.110	76.3
				021	NITROBENZENE-D5		14-sep-1990 UGG	3.300	2.330	70.6
				021	PHENOD6		14-sep-1990 UGG	6.700	4.980	74.3
				021	TERPHENYL - D14		14-sep-1990 UGG	3.300	1,960	59.4
		LM19	SVII		1,2-DICHLOROETHANE-D4		04-sep-1990 UGG	0.050	0.043	86.0
		,		011	4-BROMOFLUOROBENZENE		04-sep-1990 UGG	0.050	0.051	102.0
				011	TOLUENE-D8		04-sep-1990 UGG	0.050	0.050	100.0
				711	I VEGETE DO	EE-809-1770	04 9ch 1330 000	0.050	0,070	100.0

Č,

				Sample	•	Sample	Analysis	1	Measured	Percent
<u>SiteID</u>	<u>Field!D</u>	<u> Neth</u>	Lot	No.	Name	<u>Date</u>	Date Units	Spiked Conc.	<u>Value</u>	1SC Recovery
								•		
10881	RADS*9	LM18	SSU	020	2,4,6-TRIBROMOPHENOL	21-aug-1990	14-sep-1990 UGG	6.700	6.040	90.1
				020	2-FLUOROBIPHENYL	21-aug-1990	14-sep-1990 UGG	3.300	3.100	93.9
				020	2-FLUOROPHENOL	21-aug-1990	14-sep-1990 UGG	6.700	5.650	
				020	NITROBENZENE-D5	21-aug-1990	14-sep-1990 UGG	3.300	3.030	91.8
				020	PHENOD6	21-aug-1990	14-sep-1990 UGG	6.700	6.310	9 4.2
				020	TERPHENYL - D14	21-aug-1990	14-sep-1990 UGG	3.300	2.800	84.8
		LM19	SVU	010	1,2-DICHLOROETHANE-D4	21-aug-1990	04-sep-1990 UGG	0.050	0.041	82.0
				010	4-BROMOFLUOROBENZENE	21-aug-1990	04-sep-1990 UGG	0.050	0.042	84.0
				010	TOLUENE-D8	21-aug-1990	04-sep-1990 UGG	0.0 50	0,055	110.0
10\$SZ	RADS*8	LM1B	SSU	019	2,4,6-TRIBROMOPHENOL	21-aug-1990	14-sep-1990 UGG	6.700	7.030	104.9
· · · · · · · ·				019	2-FLUOROBIPHENYL	21-aug-1990	14-sep-1990 UGG	3.300	2.880	87.3
				019	2-FLUOROPHENOL	21-aug-1990	14-sep-1990 UGG	6.700	5.650	
				019	NITROBENZENE-D5	21-aug-1990	14-sep-1990 UGG	3.300	2,910	88.2
				019	PHENOD6	21-aug-1990	14-sep-1990 UGG	6.700	5,700	85.1
				019	TERPHENYL - D14	21-aug-1990	14-sep-1990 UGG	3.300	2.150	
		LN19	SVT	006	1,2-D1CHLOROETHANE-D4	21-aug-1990	01-sep-1990 UGG	0.050	0.052	
				006	4-BROMOFLUOROBENZENE	21-aug-1990	01-sep-1990 UGG	0.050	0.056	112.0
				006	TOLUENE-D8	21-aug-1990	01-sep-1990 UGG	0.050	0.057	
10\$\$3	RADS*7	LM18	SSU	018	2,4,6-TRIBROMOPHENOL	21-aug-1990	14-sep-1990 UGG	6.700	7.360	
				018	2-FLUOROBIPHENYL	21-aug-1990	14-sep-1990 UGG	3.300	3.100	
				018	2-FLUOROPHENOL	21-aug-1990	14-sep-1990 UGG	6.700	6.990	
				018	NITROBENZENE-D5	21-aug-1990	14-sep-1990 UGG	3.300	3.150	
				018	PHENOD6	21-aug-1990	14-sep-1990 UGG	6.700	6.920	
				018	TERPHENYL - D14		14-sep-1990 UGG	3.300	2.620	79.4
		LH19	SVU	009	1,2-DICHLOROETHANE-D4	•	04-sep-1990 UGG	0.050	0.047	94.0
				009	4-BRONOFLUOROBENZENE		04-sep-1990 UGG	0.050	0.055	110.0
				009	TOLUENE-D8		04-sep-1990 UGG	0.050	0.058	
10554	RADS*1	JB01	TMD	005	MERCURY	_	15-sep-1990 UGG	0.869	0.814	93.7
				800	MERCURY	- · · · · ·	15-sep-1990 UGG	0.831	0.841	101.2
		JD15	SUP		SELENIUM		02-oct-1990 UGG	4.360	2.230	
				005	SELENIUM		02-oct-1990 UGG	4,480	2.090	
		JD19	SFZ		ARSEN1C		01-oct-1990 UGG	4.360	3.070	70.4
				005	ARSENIC		01-oct-1990 UGG	4,480	5.050	
		LM18	SSU		2,4,6-TRIBROMOPHENOL		13-sep-1990 UGG	6.700	6.920	
				014	2-FLUOROBIPHENYL		13-sep-1990 UGG	3.300	3.430	
				014	2-FLUOROPHENOL	•	13-sep-1990 UGG	6.700	6.990	
				014	NITROBENZENE-D5		13-sep-1990 UGG	3.300	3.380	
				014	PHENOD6	_	13-sep-1990 UGG	6.700	7.040	
				014	TERPHENYL - D14		13-sep-1990 UGG	3.300	2.340	
		LM19	SVU		1,2-D1CHLOROETHANE-D4		04-sep-1990 UGG	0.050	0.047	
				006	4-BROMOFLUOROBENZENE	**	04-sep-1990 UGG	0.050	0.052	
				800	TOLUENE-D8	•	04-sep-1990 UGG	0.050	0.053	
10555	RADS*2	LM18	SSU		2,4,6-TRIBROMOPHENOL	_	13-sep-1990 UGG	6.700	6.590	
				015	2-FLUOROBIPHENYL		13-sep-1990 UGG	3.300	3.210	
				015	2-FLUOROPHENOL		13-sep-1990 UGG	6.700	6.450	
				015	WITROBENZENE-D5		13-sep-1990 UGG	3.300	3.260	
				015	PHENOD6	_ · · · _ · · · ·	13-sep-1990 UGG	6.700	6.430	
				015	TERPHENYL - D14	21-aug-1990	13-sep-1990 UGG	3.300	2.430	73.6

			:	Sample	:	Sample	Analysis		1	Measured	Percent
SiteID	<u> FieldID</u>	Meth	Lot	No.	Name	Date	<u>Date</u>	Units	Spiked Conc	<u>. Value</u>	ISC Recovery
									1		40.4
10885	RADS*2	LM19	SVT	004	1,2-D1CHLOROETHANE-D4		01-sep-199		0.050	0.053	106.0
				004	4-BROMOFLUOROBENZENE		01-sep-199		0.050	0.058	116.0
				004	TOLUENE-D8	•	0 01-sep-19 9		0.050	0.057	114.0
10SW1	RADW*5	UM18	SRR	012	2,4,6-TRIBROMOPHENOL		0 11-sep-199		100.000	69.800	69.8
				012	2-FLUOROBIPHENYL		0 11-sep-199		50.000	44.900	89.8
				012	2-FLUOROPHENOL		11-sep-199	_	100.000	53.300	53.3
				012	NITROBENZENE-D5	•	0 11-sep-199		50.000	42,600	85.2
				012	PHENOD6	-	0 11-sep-199		100.000	78.000	78.0
				012	TERPHENYL - D14		0 11-sep-199		50.000	49.000	98.0
		UM20	SQŲ		1,2-DICKLOROETHANE-D4		30-aug-199		50.000	57.900	115.8
				800	4-BROMOFLUOROBENZENE	_	0 30-aug-199		50.000	46.800	93.6
				800	TOLUENE-D8	-	0 30-aug-199		50.000	43.400	86.8
13m⊮1	RD¥A*13	UM18	MIX		2,4,6-TR1BROMOPHENOL		1 31-oct-199		100.000	73.800	73.8
				003	2-FLUOROBIPHENYL	•	1 31-oct-199		50.000	46.000	92.0
				003	2-FLUOROPHENOL		1 31-oct-199		100.000	100.000	100.0
				003	NITROBENZENE-D5		1 31-oct-199		50.000	52.100	104.2
				003	PHENOD6		1 31-oct-199		100.000	98.000	98.0
				003	TERPHENYL - 014		1 31-oct-199		50.000	53.500	107.0
		UH20	WTL		1,2-DICHLOROETHANE-D4		1 16-oct-199		50.000	49.900	99.8
				011	4-BRONOFLUOROBENZENE		1 16-oct-199		50.000	47.700	95.4
				011	TOLUENE-D8		1 16-oct-199		50,000	46.200	92.4
		UV32			34DNT		1 25-oct-199		4.940	4.160	
13MW2	RDWA*14	UM18	MIZ		2,4,6-TRIBROMOPHENOL		1 30-oct-199		100.000	60.300	60.3
				003	2-FLUOROBIPHENYL		1 30-oct-199		50.000	49.400	98.8
				003	2-FLUOROPHENOL_		1 30-oct-199		100.000	98.900	98.9
				003	NI TROBENZENE-D5		1 30-oct-199		50.000	47.300	94.6
				003	PHENOD6		1 30-oct-199		100.000	96.000	96.0
				003	TERPHENYL - D14	•	1 30-oct-199	_	50.000	54.700	109.4
		UM20	WTR		1,2-DICHLOROETHANE-D4		1 18-oct-199		50.000	61.300	122.6
				021	4-BROMOFLUOROBENZENE		1 18-oct-199		50.000	46.800	93.6
				021	TOLUENE-D8		1 18-oct-199		50.000	47.200	94.4
		UW32			34DNT		1 25-oct-199		4.940	4.900	7 99.2 96.4
13MW3	RDWA*15	00	WYY	002	TOTAL ORGANIC HALOGENS		1 15-oct-199		100.000	96.400	90.4 110.5
		6504	u	003	TOTAL ORGANIC HALOGENS		1 15-oct-199		200,000	221.000	96.8
		SB01	XCB		MERCURY		1 31-oct-199		2.500	2.420 2.420	96.8
		****		010	MERCURY		1 31-oct-199		2.500	7600.000	101.3
		TF22	MNK		NITRITE, NITRATE		1 05-nov-199		7500.000		
				007	NITRITE, NITRATE		1 05-nov-199		7500.000	7600.000	101.3
		UM18	MIZ		2,4,6-TRIBROMOPHENOL		1 30-oct-199		100.000	57,100	57.1
				004	2-FLUOROBIPHENYL		1 30-oct-199		50.000	47.100	94.2
				004	2-FLUOROPHENOL		1 30-oct-199		100.000	105.000	105.0
				004	NITROBENZENE-D5		1 30-oct-199		50.000	50.900	101.8
				004	PHENOO6		1 30-oct-199		100.000	102.000	102.0
				004	TERPHENYL - D14		1 30-oct-199		50.000	59.200	118.4
		LM20	WTN		1,2-DICHLOROETHANE-D4		1 18-oct-199		50.000	61.300	122.6
				022	4-BROMOFLUOROBENZENE		1 18-oct-199		50.000	47.700	95.4
				022	TOLUENE-D8		1 18-oct-199		50.000	48.100	
		UW32	WLT	019	34DNT	10-oct-199	1 25-oct-199	1 UGL	4.940	4.810	7 97.4

			:	Sample	•	Sample	Analysis		1	Measured	Percent
SiteID	FieldID	Meth	Lot	No.	Name	Date	Date	<u>Units</u>	Spiked Conc	<u>. Value</u>	ISC Recovery
		•							· ·		
13ML/3	RDWAU*15	SB01	XCB	007	MERCURY	10-oct-1991	31-oct-1991	UGL	2.500	2.230	89.2
101123	122			011	MERCURY	10-oct-1991	31-oct-1991	UGL	2.500	2.370	94.8
13MW4	RDWA±16	00	XGR	004	TOTAL ORGANIC CARBON	11-oct-1991	04-nov-1991	UGL	20000,000	22000.000	110.0
,	**-**** **-			005	TOTAL ORGANIC CARBON	11-oct-1991	04-nov-1991	UGL	20000.000	19400.000	9 7.0
		LM18	WIZ		2,4,6-TRIBROMOPHENOL	11-oct-1991	30-oct-1991	UGL	100.000	57.100	57.1
		_,,,		005	2-FLUOROBIPHENYL	11-oct-1991	30-oct-1991	UGL	50.000	47.100	94.2
				005	2-FLUOROPHENOL	11-oct-1991	30-oct-1991	UGL	100.000	89.800	89.8
				005	NITROBENZENE-D5	11-oct-1991	30-oct-1991	UGL	50.000	49.700	99.4
				005	PHENOD6	11-oct-1991	30-oct-1991	UGL	100.000	86,000	86.0
				005	TERPHENYL - D14	11-oct-1991	30-oct-1991	UGL	50.000	60,400	120.8
		UN20	WTN	023	1.2-DICHLOROETHANE-D4	11-oct-1991	18-oct-1991	UGL	50.000	59.000	118.0
				023	4-BROMOFLUOROBENZENE	11-oct-1991	18-oct-1991	UGŁ	50.000	46.800	93.6
				023	TOLUENE-D8	11-oct-1991	18-oct-1991	UGL	50.000	47.200	94.4
		UW32	WLT	020	34DNT	11-oct-1991	26-oct-1991	UGL	4.940	4.550	
13MW5	RDWA*17	UN18	WIX	004	2,4,6-TRIBROMOPHENOL	09-oct-1991	31-oct-1991	UGL	100,000	77.800	77.8
				004	2-FLUOROBIPHENYL	09-oct-1991	31-oct-1991	UGL	50.000	47.100	94.2
				004	2- FLUOROPHENOL	09-oct-1991	31-oct-1991	UGL	100.000	86,800	86.8
				004	NITROBENZENE-DS	09-act-1991	31-oct-1991	UGL	50.000	45.000	90.0
				004	PHENOD6	09-oct-1991	31-oct-1991	UGL	100.000	88.000	88.0
				004	TERPHENYL - D14	09-act-1991	31-oct-1991	UGL	50.000	64.900	129.8
		UM20	WTL	016	1,2-DICHLOROETHANE-D4	09-oct-1991	17-oct-1991	UGL	50.000	51.100	102.2
				016	4-BROMOFLUOROBENZENE		17-oct-1991		50.000	45.000	90.0
				016	TOLUENE-D8		17-oct-1991		50.000	45.300	90.6
		UW32	WLT	021	34DNT		26-oct-1991		4.940	5.100	
13MW6	RDWA*18	UM 18	MIX	005	2,4,6-TRIBROMOPHENOL		31-oct-1991		100.000	77.000	77.0
				005	2-FLUOROB LPHENYL	· · · · · · · · · · · · · · · · · · ·	31-oct-1991		50.000	48.300	96.6
				005	2-FLUOROPHENOL_		31-oct-1991		100.000	97.400	97.4
				005	NITROBENZENE-D5		31-oct-1991		50.000	53.300	106.6
				005	PHENOD6		31-oct-1991		100.000	98.000	98.0
				005	TERPHENYL - D14		31-oct-1991		50.000	63.800	127.6
		UM20	WTL		1,2-DICHLOROETHANE-D4		17-oct-1991		50.000	51.100	102.2
				015	4-BROMOFLUOROBENZENE	·	17-oct-1991		50.000	46.800	93.6
				015	TOLUENE-D8		17-oct-1991		50.000	47.200	94.4
		UW32			34DNT		26-oct-1991		4.940	5.100	
13MW7	RDWA*19	SD09	VRX		THALLIUM		11-nov-1991		10.000	10.500	105.0
				007	THALLIUM		11-nov-1991		10.000	10.500	105.0
		SD20	MEO	-	LEAD		11-nov-1991		40.000	34,200	85.5 84.8
				007	LEAD		11-nov-1991		40.000	33.900 31.600	84.3
		SD21	VII		SELENIUM		1 11-nov-1991		37.500	32.200	85.9
				007	SELENIUM		11-nov-1991		37.500		128.5
		SD22	AIM		ARSENIC		08-nov-1991		37.500	48,200	130.7
		ee 27	ure	007	ARSENIC		08-nov-1991		37.500	49.000	96.3
		SD 23	WFO		SILVER		i 11-nov-1991		4.000	3.850	96.3 96.3
		not?	1176	007	SILVER		11-nov-1991		4.000	3.850	95.0
		5510	WZD		ALUMINIUM		08-nov-1991		2000.000	1900,000 1880,000	94.0
				006	ALUMINIUM		08-nov-1991 081001		2000.000		112.6
				004	ANT IMOMY		08-nov-1991		500.000	563.000	
				006	YHOM1 THA	∪ö-oct-1991	08-nov-1991	UGL	500,000	532.000	106.4

|--|--|--|

				Sample		Sample	Analysis		1	Measured	Percent
<u>SiteID</u>	<u> FieldID</u>	Meth	<u>Lot</u>	No.	Name	Date	Date	Units	<u>Spiked Conc.</u>	<u>Value</u>	ISC Recovery
4 2 1 1 1 1 1	PO14440	ceto	1 17D	007	ČADILIM.	08-oct-1991	08-004-100	na na	2000.000	1740.000	87.0
13MW7	RDWA*19	2210	WZU		BARTUM	08-oct-1991			2000.000	1700.000	85.0
				006	BARIUM	08-oct-1991			50.000	54.200	108,4
				004	BERYLLIUM				50.000	53.000	106.0
				006	BERYLLIUM	08-oct-1991 08-oct-1991			50.000	45.600	91.2
				004	CADMIUM	08-oct-1991			50.000	44.500	89.0
				006	CADHIUM	08-oct-1991			10000.000	9540.000	95.4
				004	CALCIUM	08-oct-1991			10000.000	8150.000	81.5
				006	CALCIUM				• • • • • • • • • • • • • • • • • • • •	188.000	94.0
				004	CHRONIUM	08~oct-1991			200.000		91.0
				006	CHRONIUM	08-oct-1991		:	200.000	182.000	105.6
				004	COBALT	08-oct-1991			500.000	528.000	
				006	COBALT	08-oct-1991			500.000	515.000	103.0
				004	COPPER	08-oct-1991			250.000	237.000	94.8
				006	COPPER	08-oct-1991			250.000	232.000	92.8
				004	I RON	08-oct-1991			1000.000	993.000	99.3
				900	1 RON	08-oct-1991			1000.000	969.000	96.9
				004	MAGNESIUM	08-oct-1991			10000.000	9350.000	93.5
				006	MAGNESTUM	08-oct-1991			10000.000	9080.000	90.8
				004	MANGANESE	08-act-1991			500.000	471.000	94.2
				006	MANGANESE	08-oct-1991			500.000	454.000	90.8
				004	NICKEL	08-oct-1991			500.000	542.000	108.4
				006	NICKEL	08-oct-1991			500.000	523.000	104.6
				004	SODIUM	08-oct-1991			10000.000	10100.000	101.0
				900	SODIUM	08-oct-1991			10000.000	9920.000	99.2
				004	VANADIUM	08-oct-1991			500.000	494.000	98.8
				900	VANADIUM	08-oct-1991			500.000	485.000	97.0
				004	ZINC	08-oct-1991			500.000	495.000	99.0
				906	ZINC	08-oct-1991			500.000	484.000	96.8
		UM18	WIX		2,4,6-TRIBROMOPHENOL	08-oct-1991			100.000	20.600	20.6
				006	2-FLUOROBIPHENYL	08-oct-1991			50.000	47.100	94.2
				906	2-FLUOROPHENOL_	08-oct-1991			100.000	27.400	27.4
				006	NITROBENZENE-D5	08-oct-1991			50.000	49.700	99.4
				006	PHENOD6	08-oct-1991			100.000	36.000	36.0
				900	TERPHENYL - D14	08-oct-1991			50.000	62.600	125.2
		UM20	WTL		1,2-DICHLOROETHANE-D4	08-oct-1991			50.000	52.200	104.4
				010	4-BROMOFLUOROBENZENE	08-act-1991			50.000	47.700	95.4
				010	TOLUENE-DB	08-oct-1991			50.000	46,200	92.4
		UW32			34DNT	08-oct-1991	-		4.940	4.100	
	RDWA*20	UM18	MIX	007	2,4,6-TRIBROMOPHENOL	08-oct-1991	31-oct-199	71 UGL	100.000	22.200	22.2
				007	2-FLUOROBIPHENYL	08-oct-1991	31-oct-199	21 UGL	50.000	48.300	96.6
				007	2-FLUOROPHENOL	08-oct-1991	31-oct-199	71 UGL	100.000	35.000	35.0
				007	NITROBENZENE-D5	08-oct-1991	31-oct-199	71 UGL	50.000	55.600	111.2
				007	PHENOD6	08-oct-1991	31-oct-199	71 UGL	100.000	36.000	36.0
				007	TERPHENYL . D14	08-oct-1991	31-oct-199	71 UGL	50.000	59.200	118.4
		UM20	WTL	009	1,2-DICHLOROETHANE-D4	08-oct-1991			50.000	51.100	102.2
				009	4-BROMOFLUOROBENZENE	08-oct-1991			50.000	46,800	93.6
				009	TOLUENE-D8	08-act-1991			50.000	46, 200	92.4
		UW32	ШΤ		34DNT	08-oct-1991	-	_	4.940	4.280	

			:	Sample		Sample	Analysis	ļ	Measured	Percent
SiteID	FieldID	Meth	Lot	No.	Name	Date	Date Units	Spiked Conc.	<u>Value</u>	1SC Recovery
								T.		
13SB1	RFIS*1	LM18	UGH	003	2,4,6-TRIBROMOPHENOL	20-aug-1991	09-sep-1991 UGG	6.700	7,140	106.6
13361	K113 1		# 4	003	2-FLUOROBIPHENYL		09-sep-1991 UGG	3.300	3,320	100.6
				003	2-FLUOROPHENOL		09-sep-1991 UGG	6.700	6.990	104.3
				003	NITROBENZENE-D5		09-sep-1991 UGG	3.300	3.380	102.4
				003	PHENCO6	_ · · · <u>-</u> · · · · ·	09-sep-1991 UGG	6.700	7.160	106.9
				003	TERPHENYL - D14		09-sep-1991 UGG	3.300	2.800	84.8
		LM19	VOV		1,2-DICHLOROETHANE-D4		28-aug-1991 UGG	0.050	0.048	96.0
		LHIJ		003	4-BROMOFLUOROBENZENE	- · · - ·	28-aug-1991 UGG	0.050	0.053	106.0
				003	TOLUENE-D8		28-aug-1991 UGG	0.050	0.053	106.0
	RFIS*2	LM18	CION		2,4,6-TRIBROMOPHENOL		09-sep-1991 UGG	6.700	6,590	98.4
	KF13"Z	PH 10	wun	004	2-FLUOROSIPHENYL		09-sep-1991 UGG	3.300	3.320	100.6
				004	2-FLUOROPHENOL	· ·	09-sep-1991 UGG	6.700	7.660	114.3
				904	N1TROBENZENE-D5		09-sep-1991 UGG	3.300	3.500	106.1
				004	PHENOD6		09-sep-1991 UGG	6.700	7,520	112.2
				004	TERPHENYL - D14		09-sep-1991 UGG	3.300	2,900	87.9
		LM19	vov		1,2-DICHLOROETHANE-D4		28-aug-1991 UGG	0.050	0.050	100.0
		Pis (A	***	004	4-BROMOFLUOROBENZENE		28-aug-1991 UGG	0.050	0.054	108.0
				004	TOLUENE-D8		28-aug-1991 UGG	0.050	0.050	100.0
	RFIS*3	LN18	нен		2,4,6-TRIBROMOPHENOL		09-sep-1991 UGG	6.700	7.030	104.9
	KF13 3	LHIO	MON	005	2-FLUOROSI PHENYL		09-sep-1991 UGG	3.300	3.430	103.9
				005	2-FLUOROPHENOL		09-sep-1991 UGG	6.700	8,200	122.4
				005	NITROBENZENE-D5		09-sep-1991 UGG	3.300	3.500	106.1
				005	PHENOD6		09-sep-1991 UGG	6.700	7,890	117.8
				005	TERPHENYL - D14		09-sep-1991 UGG	3.300	2.430	73.6
		LM19	VOV		1, 2-DICHLOROETHANE-D4		28-aug-1991 UGG	0.050	0.048	96.0
		21117		005	4-BROMOFLUOROSENZENE	•	28-aug-1991 UGG	0.050	0.053	106.0
				005	TOLUENE-D8		28-aug-1991 UGG	0.050	0.049	98.0
13SB2	RF15*19	LM1B	MGL		2,4,6-TRIBROMOPHENOL		16-sep-1991 UGG	6.700	8.680	129.6
				006	2-FLUOROBIPHENYL		16-sep-1991 UGG	3.300	3.650	110.6
				006	2-FLUOROPHENOL		16-sep-1991 UGG	6.700	7.930	118.4
				006	N1TROBENZENE-D5		16-sep-1991 UGG	3.300	3.730	113.0
				006	PHENOD6		16-sep-1991 UGG	6.700	8,010	119.6
				006	TERPHENYL - D14	· · · · · · · · · · · · · · · · · · ·	16-sep-1991 UGG	3.300	2.620	79.4
		LH19	VQZ	009	1,2-DICHLOROETHANE-D4		04-sep-1991 UGG	0.050	0.048	96.0
				009	4-BROMOFLUOROBENZENE	26-aug-1991	04-sep-1991 UGG	0.050	0.049	98.0
				009	TOLUENE-D8	26-aug-1991	04-sep-1991 UGG	0.050	0.051	102.0
	RF15*4	LM18	WGM	003	2,4,6-TRIBROMOPHENOL	26-aug-1991	17-sep-1991 UGG	6.700	7.140	106.6
				003	2-FLUOROBIPHENYL	26-aug-1991	17-sep-1991 UGG	3.300	3.430	103.9
				003	2-FLUOROPHENOL	26-aug-1991	17-sep-1991 UGG	6.700	8,600	128.4
				003	NITROBENZENE-D5	26-aug-1991	17-sep-1991 UGG	3.300	3,730	113.0
				003	PHENOD6	26-aug-1991	17-sep-1991 UGG	6.700	7.650	114.2
				003	TERPHENYL - D14	26-aug-1991	17-sep-1991 UGG	3.300	3.360	101.8
		LM19	VQZ	004	1,2-DICHLOROETHANE-D4		04-sep-1991 UGG	0.050	0.048	96.0
				004	4-BROMOFLUOROBENZENE		04-sep-1991 UGG	0.050	0.049	98.0
				004	TOLUENE-D8	-	04-sep-1991 UGG	0.050	0.052	104.0
	RF(S*5	LM18	WGM	004	2,4,6-TRIBROMOPHENOL	26-aug-1991	17-sep-1991 UGG	6.700	7.030	104.9
				004	2-FLUOROBIPHENYL	26-aug-1991	17-sep-1991 UGG	3.300	3.430	103.9
				004	2-FLUOROPHENOL	26-aug-1991	17-sep-1991 UGG	6.700	9.410	140.4
						=	•			

			Samp	le	Sample	Analysis		1	Measured	Percent
sitelD	FieldID	Meth L	ot No.	Name	<u> Pate</u>	Date	<u>Units</u>	Spiked Conc.	<u>Value</u>	ISC Recovery
								•		
13582	RF1S*5	LH18 W	GH 004	NITROBENZENE-D5	26-aug-1991	17-sep-19	91 UGG	3.300	3.850	116.7
			004	PHENOD6	26-aug-1991	17-sep-19	91 UGG	6.700	7.890	117.8
			004	TERPHENYL - D14	26-aug-1991		_	3.300	3.270	99.1
		LK19 V		1.2-DICHLOROETHANE-D4	26-aug-1991			0.050	0.048	96.0
		LIII .	005	4-BROMOFLUOROBENZENE	26-aug-1991			0.050	0.050	100.0
			005	TOLUENE-D8	26-aug-1991	-		0.050	0,048	96.0
	RFIS*6	LM18 W		2,4,6-TRIBROMOPHENOL	26-aug-1991		_	6.700	7.250	108.2
	N1.5 0	LAIO N	005	2-FLUOROB1PHENYL	26-aug-1991	•		3,300	3,540	107.3
			005		26-aug-1991	•	_ `	6.700	8.740	130.4
			005	N1TROBENZENE-D5	26-aug-1991		_	3.300	3.730	113.0
			005	PHENOD6	26-aug-1991			6.700	7.400	110.4
			005		26-aug-1991			3.300	3,180	96.4
		1410 1	wz 006	1	26-aug-1991	•		0.050	0.048	
		EMIT V	006		26-aug-1991			0.050	0.053	
			006		26-aug-1991			0.050	0.050	
3S 8 3	RFIS*7	1410 (GM 006		26-aug-1991			6.700	4.290	
2203	KF15"/	TWIG A	000 AD		26-aug-1991			3.300	3.430	103.9
			006		26-aug-1991	• .		6,700	7.660	114.3
			006		26-aug-1991	• .		3.300	3.030	
			006		26-aug-1991			6.700	6.800	
			006		26-aug-1991			3.300	2.990	
		1940 1			26-aug-1991			0.050	0.046	
		LNIY V	27 007 2007		26-aug-1991			0.050	0.047	
			007	, 	26-aug-1991			0.050	0.049	
	061640	1 449 1			26-aug-199			6.700	6.810	
	RFIS*8	THIO A	IGM 007 007	_ • • • · · · · · · · · · · · · · · · ·	26-aug-1991			3.300	3.540	
			007		26-aug-1991			6.700	9.010	
				 	26-aug-1991			3.300	3.610	
			007 007	NITROBENZENE-D5			- 1	6.700	7.520	
				· ··	26-aug-1991			3.300	2.900	
			007	TERPHENYL - D14	26-aug-1991					
		TRIA A	'QY 013	•	26-aug-1991	•		0.050	0.053	
			013		26-aug-1991			0.050	0.058	
	851-46		013		26-aug-1991	•		0.050	0.055	
	RFIS*9	LM18 F	IGL 018		26-aug-1991			6.700	6.150	
			018		26-aug-1991			3.300	3.210	
			018	-	26-aug-1991			6.700	6.990	
			018		26-aug-1991			3.300	3.030	
			018		26-aug-1991			6.700	7.040	
			018		26-aug-1991			3.300	2.620	
		LM19 \	QZ 008		26-aug-1991			0.050	0.047	
			008	• • • • • • • • • • • • • • • • • • • •	26-aug-1991			0.050	0.050	
			008		26-aug-1991	•		0.050	0.048	
35B4	RFIS*10	LM18 1			28-aug-1991			6.700	3.300	
			003		28-aug-1991		1 1	3.300	3.430	103.9
			003	# · #==:::::	28-aug-1991			6.700	6.850	102.2
			003		28-aug-1991			3.300	2.680	81.2
			003		28-aug-1991	•		6.700	5.950	88.8
			003	TERPHENYL - D14	28-aug-1991	16-sep-19	91 UGG	3,300	2.620	79.4

t

				Sample	1	Sample	Analysis			Measured	Percent
<u>SiteID</u>	FieldID	Meth	Lot	No.	Name	Date	Date Un	its	Spiked Conc.	<u>. Value _</u>	ISC Recovery
								i			
13SB4	RF1S*10	LM19	WSA	019	1,2-DICHLOROETHANE-D4		07-sep-1991 ป		0.050	0.051	102.0
				019	4-BROMOFLUOROBENZENE		07-sep-1991 U		0.050	0.056	112.0
				019	TOLUENE-D8		07-sep-1991 U		0.050	0.053	106.0
	RFIS*11	LM18	WGL	004	2,4,6-TRIBROMOPHENOL	_	16-sep-1991 U		6.700	8.570	127.9
				004	2-FLUOROB [PHENYL	-	16-sep-1991 U		3.300	3.650	110.6
				004	2-FLUOROPHENOL	-	16-sep-1991 U		6.700	7.800	116.4
				004	NI TROBENZENE-D5		16-sep-1991 U		3.300	3.610	109.4
				004	PHENOD6	- -	16-sep-1991 U		6.700	7.770	116.0
				004	TERPHENYL - D14	-	16-sep-1991 U		3.300	2.800	84.8
		LM19	WSA		1,2-D1CHLOROETHANE-D4		07-sep-1991 U		0.050	0.048	96.0
				018	4-BROMOFLUOROBENZENE	_	07-sep-1991 U		0.050	0.049	98.0
				018	TOLUENE-D8		07-sep-1991 U		0.050	0.057	114.0 123.0
	RFIS*12	LM18	WGL		2,4,6-TRIBROMOPHENOL	_	16-sep-1991 U		6.700	8.240	
				005	2-FLUOROBIPHENYL	_	16-sep-1991 U		3.300	3,540 7,800	107.3 116.4
				005	2-fluorophenol	-	16-sep-1991 U		6.700 3.300	3.380	102.4
				005	NITROBENZENE-D5		16-sep-1991 U		6.700	7.650	114.2
				005	PHENOD6		16-sep-1991 U		3.300	2.620	79.4
		1 11 10	uca	005	TERPHENYL - D14		16-sep-1991 U		0.050	0.050	100.0
		LM19	MOV		1,2-DICHLOROETHANE-D4		07-sep-1991 U 07-sep-1991 U		0.050	0.053	106.0
				017 017	4-BROMOFLUOROBENZENE TOLUENE-D8		07-sep-1991 U		0.050	0.055	110.0
13685	RFIS*13	1 11 10	ue i		2,4,6-TRIBROMOPHENOL		16-sep-1991 U		6.700	6.700	100.0
1200	KL1217	LMIO	MAD	016	2-FLUOROBIPHENYL		16-sep-1991 U		3.300	2.770	83.9
				016	2-FLUOROPHENOL		16-sep-1991 t		6.700	4.840	72.2
				016	NITROBENZENE-D5		16-sep-1991 U		3.300	1.860	56.4
				016	PHENOD6		16-sep-1991 U		6.700	4,490	67.0
				016	TERPHENYL - D14		16-sep-1991 U		3,300	2.710	82.1
		LM19	vou		1.2-DICHLOROETHANE-D4		29-aug-1991 U		0.050	0.043	86.0
				008	4-BROMOFLUOROBENZENE	22-aug-1991	29-aug-1991 U	IGG .	0.050	0.048	96.0
				800	TOLUENE-D8	22-aug-1991	29-aug-1991 U	IGG	0.050	0.047	94.0
	RF1S*14	LM18	WGJ	003	2,4,6-TRIBROMOPHENOL	22-aug-1991	13-sep-1991 U	IGG	6.700	7.910	118.1
				003	2-FLUOROBIPHENYL	22-aug-1991	13-sep-1991 U	IGG	3.300	3,430	103.9
				003	2-FLUOROPHENOL	22-aug-1991	13-sep-1991 ប	IGG	6.700	5.780	86.3
				003	NITROBENZENE-D5		13-sep-1991 U		3.300	1.980	60.0
				003	PHENOD6	_	13-sep-1991 U		6.700	5.460	81.5
				003	TERPHENYL - D14		13-sep-1991 U		3.300	2.710	82.1
		LM19	AGM		1,2-DICHLOROETHANE-D4		29-aug-1991 U		0.050	0.044	88.0
				009	4-BROMOFLUOROBENZENE	—	29-aug-1991 U		0.050	0.050	100.0
				009	TOLUENE-08		29-aug-1991 U		0.050	0.047	94.0
	RFIS*15	LM18	MC1		2,4,6-TRIBROMOPHENOL		13-sep-1991 U		6.700	8.240	123.0
				004	2-FLUOROBIPHENYL	_	13-sep-1991 U		3.300	3.650	110.6
				004	2-FLUOROPHENOL		13-sep-1991 U		6.700	6.180	92.2
				004	NITROBENZENE-D5	· -	13-sep-1991 U		3.300	1.980	60.0
				004	PHENOD6		13-sep-1991 U		6.700	5.580	83.3
				004	TERPHENYL - D14	-	13-sep-1991 U		3.300	2.800	84.8
		LN19	AGM		1,2-DICHLOROETHANE-D4		30-aug-1991 U		0.050	0.043	86.0
				010	4-BROMOFLUOROBENZENE		30-aug-1991 U		0.050	0.047	94.0
				010	TOLUENE-D8	22-aug-1991	30-aug-1991 U	GG	0.050	0.046	92.0

				Sample	1	Sample	Analysis		į	Measured	Percent
<u> ŞitelD</u>	FieldID	<u>Heth</u>	Lot	No.	Name	<u>Date</u>	Date	<u>Units</u>	Spiked Conc	. Value	ISC_Recovery
									,		
13SB6	RFIS*16	LM18	WGJ		2,4,6-TRIBROMOPHENOL		16-sep-1991		6.700	7.360	109.9
				017	2-FLUOROBIPHENYL		16-sep-1991		3.300	3.210	97.3
				017	2-FLUOROPHENOL		16-sep-1991		6.700	6.180	92.2
				017	NITROBENZENE-D5	21-aug-1991	16-sep-1991	UGG	3.300	1.860	56.4
				017	PHENOD6	21-aug-1991	16-sep-1991	UGG	6.700	5.830	87.0
				017	TERPHENYL - D14	21-aug-1991	16-sep-1991	UGG	3.300	3.270	99.1
		LM19	VQV	006	1,2-D1CHLOROETHANE-D4	21-aug-1991	28-aug-1991	UGG	0.050	0.048	96.0
				006	4-BRONOFLUOROBENZENE	21-aug-1991	28-aug-1991	UGG	0.050	0.051	102.0
				006	TOLUENE-D8	21-aug-1991	28-eug-1991	UGG	0.050	0.047	94.0
	RF15*17	LM18	WGJ	005	2,4,6-TRIBROMOPHENOL		13-sep-1991		6.700	8.130	121.3
				005	2-FLUOROB [PHENYL		13-sep-1991		3.300	3.430	103.9
				005	2-FLUOROPHENOL		13-sep-1991		6.700	5.780	86.3
				005	NITROBENZENE-D5		13-sep-1991		3,300	2.210	67.0
				005	PHENOD6		13-sep-1991		6,700	5.460	81.5
				005	TERPHENYL - D14		13-sep-1991		3.300	2,900	87.9
		LH19	VOL		1,2-DICHLOROETHANE-D4		30-aug-1991		0.050	0.042	84.0
		L		011	4-BRONOFLUOROBENZENE		30-aug-1991		0.050	0.044	88.0
				011	TOLUENE-D8	-	30-aug-1991		0.050	0.047	94.0
	RF15*18	1 1118	uc t		2,4,6-TRIBROMOPHENDL		13-sep-1991		6.700	8.130	121.3
	W1 10 10	ru 10		006	2-FLUOROBIPHENYL		13-sep-1991		3.300	3,430	103.9
				006	2-FLUOROPHENOL		13-sep-1991		6.700	6.320	94.3
				006	NITROBENZENE-D5		13-sep-1991		3.300	1,860	56.4
				006	PHENOD6		13-sep-1991		6.700	6.430	96.0
				006	TERPHENYL - D14				3,300		
		LM19	MOV				13-sep-1991			2.520	76.4
		PMIA	Ama		1,2-DICHLOROETHANE-D4		28-aug-1991		0.050	0.048	96.0
				007	4-BROMOFLUOROBENZENE		28-aug-1991		0.050	0.053	106.0
	UP61 \$404	ann4	V. /*	007	TOLUENE-D8		28-aug-1991		0.050	0.051	102.0
	VFSL*101	2801	TVA		MERCURY		03-spr-1992		5.000	2.420	48.4
				006	MERCURY		03-apr-1992		5.000	2.370	47.4
		UX13	TRB	U05	DECACHLOROBIPHENYL	09-mar-1992	: 27-mar-1992	UGL	1.250	0.170	T 13.6

APPENDIX H
New River Chemical Data

Receiving Water Biological Study No. 32-24-0921-90, 11-15 Sep 89

TABLE F-1. CHEMICAL AND PHYSICAL WATER ANALYSIS OF THE NEW RIVER, RAAP, VIRGINIA, 13 SEPTEMBER 1989

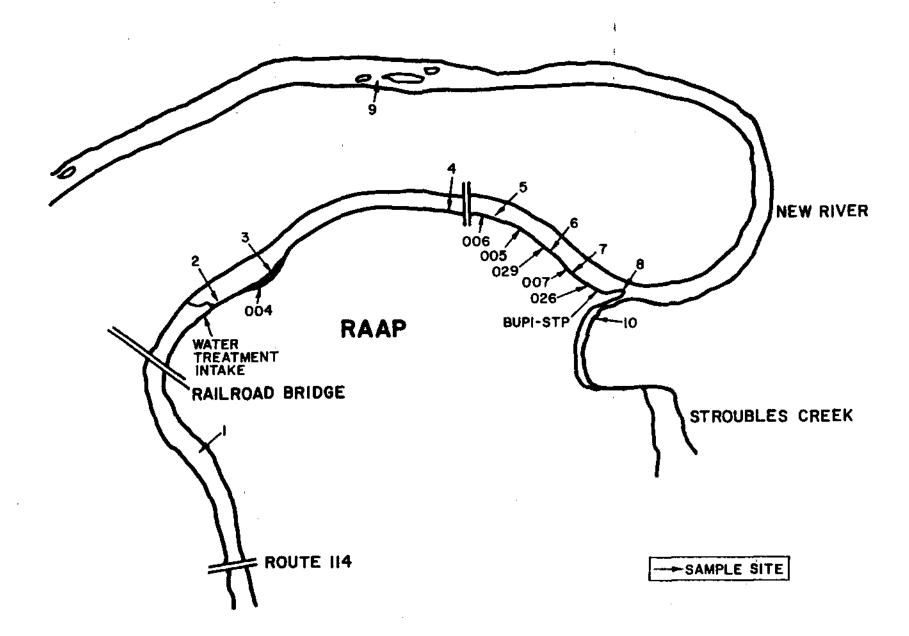
Parameter	Sample Site										
	1	2	<u> </u>	4	5	. 6	7				
		(m	g/L unless	otherwise	e specifie	ed)					
<u>Metals</u>	0.001	-0.001	-0.003	0.0024	-0.001	-0.001	-0.001				
Arsenic	0.001	<0.001	<0.001	0.0034	<0.001	<0.001	<0.001				
Barium	0.022	0.025	0.024	0.021	0.019	0.023	0.022				
Cadmium	0.0002	<0.0001	0.0001	<0.0001	0.0001	<0.0001	<0.0001				
Calcium	9.57	9.49	10.7	9.89	10.3	12.0	12.3				
Chromium	0.0013	<0.001	<0.001	0.001	0.0013	0.0016	<0.001				
Iron	0.128	0.161	0.247	0.216	0.226	0.368	0.283				
Lead	0.001	0.002	0.004	0.004	0.003	0.009	0.004				
Magnesium	4.17	4.18	4.69	4.49	4.29	4.62	4.33				
Manganese	0.032	0.043	0.060	0.069	0.069	0.081	0.096				
Mercury	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001				
Selenium	<0.001	<0.001	0.0018	0.0019	0.0010	0.0013	<0.001				
Silver	<0.001	0.0011	0.0010	<0.001	<0.001	<0.001	<0.001				
Zinc	<0.01	0.018	0.140	0.026	0.029	0.028	0.017				
Nonmetals Par	ameters										
Alkalinity	37	37	40	36	40	44	40				
Hardness	41.0	40.9	46.0	43.2	43.4	49.2	48.5				
Sulfates	5.4	5.8	7.1	5.3	8.6	13	15				
μmhos/cm	109	110	126	113	119	160	190				
TDS	62	63	76	65	71	110	71				
TSS	5.0	10	13	12	8.5	30	19				
TVS	23	33	36	29	31	52	43				
pH SU	7.1	7.1	7.1	7.1	7.1	6.6	7.1				
Temp °C	22.8	22.7	22.7	22.8	23.4	23.2	23.0				
DO C	6.2	6.8	6.9	6.8	6.3	6.4	6.4				
BOD	1.6	<1.0	<1.0	<1.0	<1.0	<1.0					
	35	<25	<25	<25			<1.0				
COD TOC	2.8	3.4	2.7	2.5	<25 2.8	<25 3.7	<25				
		0.61					3.4				
NO ₂ NO ₃ -N	0.43 <0.20	<0.20	0.74	0.51 <0.20	0.50	1.6	0.72				
NH ₃ -N			<0.20		<0.20	0.22	<0.20				
- TKŇ	0.57	0.68	0.49	0.78	0.45	0.95	0.57				
PO ₄ -P	<0.10	0.11	<0.10	<0.10	<0.10	0.20	0.10				
<u>Explosives</u>											
HMX	< 0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100				
RDX	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030				
TNT	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
2,6-DNT	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
2,4-DNT	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001				

Receiving Water Biological Study No. 32-24-0921-90, 11-15 Sep 89

TABLE F-2. CHEMICAL AND PHYSICAL WATER ANALYSIS OF THE NEW RIVER, STROUBLES CREEK, AND OUTFALLS, RAAP, VIRGINIA, 13 SEPTEMBER 1989

arameter			Sample Si				
<u></u>	8	9	10	005	007	026	029
•		(mg/	L unless (otherwise	specified)	1	
<u>letals</u>							
Arsenic	<0.001	0.0013	<0.001	0.002	<0.001	<0.001	0.0033
Barium	0.022	0.025	0.067	0.029	0.041	0.011	0.017
Cadmium	0.0001	<0.0001	0.0001	0.0003		_0.0002	0.0001
Calcium	18.5	9.76	40.5	144	717	79.4	22.2
Chromium	0.002	0.0011	0.0023	0.0107	0.0060	0.0020	0.0039
Iron	0.645	0.285	0.179	0.763	0.210	0.224	0.403
Lead	0.005	0.002	0.002	0.007	<0.001	0.010	0.064
Magnesium	4.55	4.08	17.0	7.01	12.0	13.2	8.22
Manganese	0.091	0.058	0.013	0.039	0.029	0.024	0.026
Mercury	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001
Selenium	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Silver	<0.001	<0.001	<0.0010	<0.001	<0.001	<0.001	<0.001
Zinc	0.028	0.017	0.034	0.041	0.026	0.058	0.091
				_			
Nonmetals Par	ameters						
Alkalinity	40	41	140 '	40	21	32	360
Hardness	64.9	41.2	171	388	1840	253	89.2
Sulfates	18	7.2	27	500	1300		1100
μmhos/cm	246	115	407	890	3050		1890
TDS	100	68	240	680	3000		1200
TSS	22	5.0	6.0	170	9.0	13	22
TVS	62	25	110	320	1100	370	320
UZ Hq	7.2	7.2	7.5	7.1	7.7	6.8	7.7
Temp °C	23.1	23.3	21.5	32.5	31.1	24.5	23.6
DO	6.3	6.4	7.6	6.3	6.1	7.0	5.7
BOD	<1.0	<1.0	<1.0	7.2	2.4	<1.0	15
COD	25	<25	25	110	<25	72	91
TOC	2.5	2.8	4.2	10	4.2	6.2	16
NO ₂ NO ₃ -N	3.0	0.73	0.78	22	170	41	32
NH ₃ -N	<0.20	<0.20	0.31	<0.20	0.21	15	0.22
TKN	0.77	0.59	0.84	1.7	0.29	33	6.2
	0.18	<0.10	0.10	0.10	<0.10	3.8	2.5
PO ₄ -P	0.10	~~.10	0.10	0.10	-0.10	3.0	4.5
<u>Explosives</u>							
	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
HMX		<0.100	<0.100	<0.100			
RDX	<0.030				<0.030	<0.030	<0.030
TNT	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2,6-DNT	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.003
2,4-DNT	<0.001	<0.001	<0.001	0.002	<0.001	0.0074	0.0061

Receiving Water Biological Study No. 32-24-0921-90, 11-15 Sep 89


TABLE F-3. BASE NEUTRAL EXTRACTABLE ORGANICS IN THE NEW RIVER, RAAP, VIRGINIA, 13 SEPTEMBER 1989

13 SEFTEMBER 1909			· - · · · · - · ·				
Parameter		_		le Site		_	_
5-14-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1	2_	3	4	5	6	
Base/Neutral Extractable Organi		g/L)					
N-Nitrosodimethylamine	<20	<20	<20	<20	<20	<20	<20
Bis (2-Chloroethyl) Ether	<20	<20	<20	<20	<20	<20	<20
1,3-Dichlorobenzene	<20	<20	<20	<20	<20	<20	<20
1,4-Dichlorobenzene	<20	<20	<20	<20	<20	<20	<20
1,2-Dichlorobenzene	<20	<20	<20	<20	<20	<20	<20
Hexachloroethane	<20	<20	<20	<20	<20	<20	<20
N-Nitroso-di-n-Propylamine	<20	<20	<20	<20	<20	<20	<20
Nitrobenzine	<20	<20	<20	<20	<20	<20	<20
Isophorone	<20	<20	<20	<20	<20	<20	<20
Bis (2-chloroethoxy) Methane	<20	<20	<20	<20	<20	<20	<20
1,2,4-Trichlorobenzene	<20	<20	<20	<20	<20	<20	<20
Naphthalene	<20	<20	<20	<20	<20	<20	<20
Hexachlorobutadiene	<20	<20	<20	<20	<20	<20	<20
Hexachlorocyclopentadiene	<20	<20	<20	<20	<20	<20	<20
2-Chloronaphthalene	<20	<20	<20	<20	<20	<20	<20
Acenaphthylene	<20	<20	<20	<20	<20	<20	<20
Dimethyl Phthalate	<20	<20	<20	<20	<20	<20	<20
2,6-Dinitrotoluene	<20	<20	<20	<20	<20	<20	<20
Acenaphthene	<20	<20	<20	<20	<20	<20	<20
2,4-Dinitrotoluene	<20	<20	<20	<20	<20	<20	<20
Diethyl Phthalate	<20	<20	<20	<20	<20	<20	<20
Fluorene	<20	<20	<20	<20	<20	<20	<20
4-Chlorophenyl Phenyl Ether	<20	<20	<20	<20	<20	<20	<20
Diethyl Phthalate	<20	<20	<20	<20	<20	<20	<20
1,2-Diphenylhydrrazene	<20	<20	<20	<20	<20	<20	<20
N-Nitrosodiphenylamine	<20	<20	<20	<20	<20	<20	<20
4-Bromophenyl Phenyl Ether	<20	<20	<20	<20	<20	₹ 0	<20
Hexachlorobenzene	<20	<20	<20	<20	<20	₹20	<20
Phenanthrene	<20	<20	<20	<20	<20	₹20	<20
Anthracene	<20	<20	<20	<20	<20	<20	<20
Di-n-Butyl Phthalate	<20	<20	<20	₹20	<20	<20	<20
Fluoranthene	₹20	₹20	<20	₹20	<20	<20	<20
Pyrene	<20	<20	<20	<20	<20	<20	<20
Benzidine	<50	<50	<50	<50	< 5 0	< 50	<50
Butyl Benzyl Phthalate	<20	<20	<20	<20	<20	<20	<20
Benzo (a) Anthracene	<20	<20	<20	<20	<20	<20	<20
Chrysene	<20	<20	<20	<20	<20	20	<20
3,3-Dichlorobenzidine	<50	<50	<50	<50 <50	<50	<50	<50 <50
Bis 2-Ethylhexyl) Phthalate	<20	<20	<20	<20	<20	<20	<20
Di-n-Octyl-Phthalate	<20	<20	<20	<20	<20	<20 <20	<20
	<20	<20	<20	<20	<20	~20	
Benzo (b) Fluoranthene						<20	<20 <20
Benzo (K) Fluoranthene	<20	<20	<20	<20 <20	<20	<20	<20
Benzo (a) Pyrene	<20	<20	<20	<20	<20	<20	<20
Indeno (1,2,3-cd) Pyrene	<20	<20	<20	<20	<20	<20	<20
Dibenzo (a,h) Anthracene	<20	<20	<20	<20	<20	<20	<20
Benzo (ghi) Perylene	<20	<20	<20	<20	<20	<20	<20

Receiving Water Biological Study No. 32-24-0921-90, 11-15 Sep 89 -

TABLE F-4. BASE NEUTRAL EXTRACTABLE ORGANICS IN THE NEW RIVER, STROUBLES CREEK, AND OUTFALLS, RAAP, VIRGINIA, 13 SEPTEMBER 1989

Auto contract to an i		•	<u> </u>	1- 024		<u> </u>	
Parameter	0	n		le Site		025	020
Daga/Nautwal Eytmactable Cogana	8	<u>9</u> q/L)	10	.005	007	026	029
Base/Neutral Extractable Organi			-20	חפי	-20	-20	~20
N-Nitrosodimethylamine	<20	<20	<20	<20	<20 <20	<20	<20 <20
Bis (2-Chloroethyl) Ether	<20	<20 <20	<20 <20	<20 <20	<20 <20	<20	<20
1,3-Dichlorobenzene	<20					<20	
1,4-Dichlorobenzene	<20	<20	<20	<20	<20	<20	<20
1,2-Dichlorobenzene	<20	<20	<20	<20	<20	<20	<20
Hexachloroethane	<20	<20	<20	<20	<20	<20	<20
N-Nitroso-di-n-Propylamine	<20	<20 <20	<20	<20	<20	<20	<20 <20
Nitrobenzene	<20	<20	<20	<20	<20	<20	<20
Isophorone	<20	<20	<20	<20	<20	<20	<20
- Bis (2-chloroethoxy) Methane	<20	<20	<20	<20	<20	<20	<20
1,2,4-Trichlorobenzene	<20	<20 <20	<20	<20	<20	<20	<20
Naphthalene	<20	<20 <20	<20	<20	<20 <20	<20 <20	<20
Hexachlorobutadiene	<20	<20 <20	<20	<20	<20	<20	<20
Hexachlorocyclopentadiene	<20	<20	<20	<20	<20	<20	<20
2-Chloronaphthalene	<20 <20	<20 <30	<20 <20	<20 <20	<20	<20	<20
Acenaphthylene	<20	<20 <20	<20 <20	<20	<20	<20	<20
Dimethyl Phthalate	<20	<20 <20	<20	<20	<20	<20	<20
2,6-Dinitrotoluene	<20	<20	<20	<20	<20	<20	<20
Acenaphthene	<20	<20	<20	<20	<20	<20	<20
2,4-Dinitrotoluene	<20	<20	<20	<20	<20	<20	<20
Diethyl Phthalate	<20	<20	<20	<20	<20	<20	<20
Fluorene	<20	<20	<20	<20	<20	<20	<20
4-Chlorophenyl Pheyl Ether	<20	<20	<20	<20	<20	<20	<20
Diethyl Phthalate	<20	<20	<20	<20	<20	<20	<20
1,2-Diphenylhydrrazene	<20	<20	<20	<20	<20	<20	<20
N-Nitrosodiphenylamine	<20	<20	<20	<20	<20	<20	<20
4-Bromophenyl Phenyl Ether	<20	<20	<20	<20	<20	<20	<20
Hexachlorobenzene	<20	<20	<20	<20	<20	<20	<20
Phenanthrene	<20	<20	<20	<20	<20	<20	<20
Anthracene	<20	<20	<20	<20	<20	<20	<20
Di-n-Butyl Phthalate	<20	<20	<20	<20	<20	<20	<20
Fluoranthene	<20	<20	<20	<20	<20	<20	<20
Pyrene	<20	<20	<20	<20	<20	<20	<20
Benzidine	<50	<50	<50	<50	<50	<50	<50
Butyl Benzyl Phthalate	<20	<20	<20	<20	<20	<20	<20
Benzo (a) Anthracene	<20	<20	<20	<20	<20	<20	<20
Chrysene	<20	<20	<20	<20	<20	<20	<20
3,3-Dichlorobenzidine	<50	<50	<50	<50	<50	<50	<50
Bis 2-Ethylhexyl) Phthalate	<20	<20	<20	<20	<20	<20	<20
Di-n-Octyl-Phthalate	<20	<20	<20	<20	<20	<20	<20
Benzo (b) Fluoranthene	<20	<20	<20	<20	<20	<20	<20
Benzo (K) Fluoranthene	<20	<20	<20	<20	<20	<20	<20
Benzo (a) Pyrene	<20	<20	<20	<20	<20	<20	<20
Indeno (1,2,3-cd) Pyrene	<20	<20	<20	<20	<20	<20	<20
Dibenzo (a,h) Anthracene	<20	<20	<20	<20	<20	<20	<20
Benzo (ghi) Perylene	<20	<20	<20	<20	<20	<20_	<20

SAMPLE SITE LOCATIONS

APPENDIX I Soil Gas Survey Report October 10, 1991

Ms. Grace Wood

DAMES & MOORE

2807 Parham Road

Suite 114

Richmond, VA 23229

Dear Ms. Wood:

Enclosed please find one (1) copy of the field and analytical procedures, and tables for the Soil Gas Survey performed by TARGET at the Radford Army Ammunition Plant in Radford, Virginia.

If you have any questions or comments about the above, please give me or Ken Ranlet a call at (301) 992-6622. We appreciate the opportunity to provide our services to you on this project.

Sincerely,

TARGET ENVIRONMENTAL SERVICES, INC.

Connie Thorne

Project Manager\Engineer

Field Procedures

Soil gas samples were collected at a total of 35 locations at the site, 27 from SWMU "O" and 8 from SWMU 48. To collect the samples a 1/2 inch hole was produced to a depth of approximately 4 feet by using a drive rod. Several samples (Samples 13, 27, 32) were collected at 3' due either to refusal or suction. The entire sampling system was purged with ambient air drawn through an organic vapor filter cartridge, and a stainless steel probe was inserted to the full depth of the hole and sealed off from the A sample of in-situ soil gas was then withdrawn atmosphere. through the probe and used to purge atmospheric air from the sampling system. A second sample of soil gas was withdrawn through the probe and encapsulated in a pre-evacuated glass vial at two atmospheres of pressure (15 psig). The self-sealing vial was detached from the sampling system, packaged, labeled, and taken to TARGET's mobile laboratory for analysis.

At the request of the client, two test samples were collected and analyzed. The first sample was a headspace collected from a sealed jar which contained a sample of contaminated soil. The second sample was the headspace of monitoring well S4W1 in SWMU

Prior to the day's field activities all sampling equipment, slide hammer rods, and probes were decontaminated by washing with soapy water and rinsing thoroughly. Internal surfaces were flushed dry using pre-purified nitrogen or filtered ambient air, and external surfaces were wiped clean using clean paper towels.

Field control samples were collected at the beginning and end

of each day's field activities. These QA/QC samples were obtained by filtering ambient air through a dust and organic vapor filter cartridge and collecting in the same manner as described above.

Laboratory Procedures

All of the samples were analyzed in TARGET's climate controlled mobile laboratory on site according to EPA Method 602 (modified) on a gas chromatograph equipped with a flame ionization detector (GC/FID), but using direct injection instead of purge and trap. Analytes selected for standardization were:

benzene
toluene
ethylbenzene
meta- and para- xylene
ortho-xylene

These compounds were chosen because of their utility in evaluating the presence of petroleum products such as fuels, lubricating oils, and non-halogenated solvents.

The analytical equipment was calibrated using an instrumentresponse curve and injection of known concentrations of the above standards. Retention times of the standards were used to identify the peaks in the chromatograms of the field samples, and their response factors were used to calculate the analyte concentrations.

Total FID Volatiles values were generated by summing the areas of all integrated chromatogram peaks and calculated using the instrument response factor for toluene. Injection peaks, which also contain the light hydrocarbon methane, were excluded to avoid the skewing of Total FID Volatiles values due to injection disturbances and biogenic methane. For samples with low hydrocarbon concen-

trations, the calculated Total FID Volatiles concentration is occasionally lower than the sum of the individual analytes. This is because the response factor used for the Total FID Volatiles calculation is a constant, whereas the individual analyte response factors vary with concentration. It is important to understand that the Total FID Volatiles levels reported are relative, not absolute, values.

The tabulated results of the laboratory analysis of the soil gas samples are reported in micrograms per liter (μ g/l) in Table I. Although "micrograms per liter" is equivalent to "parts per billion (v/v)" in water analyses, they are not equivalent in gas analyses, due to the difference in the mass of equal volumes of water and gas matrices. The xylenes concentrations reported in the data table are the sum of the m- and p-xylene and o-xylene concentrations for each sample.

For QA/QC purposes, a duplicate analysis was performed on every tenth field sample. Laboratory blanks of carrier gas were also analyzed after every tenth field sample.

TABLE 1

ANALYTE CONCENTRATIONS (µg/L) VIA GC/FID IN SAMPLES TAKEN AT SMML **O**

SAMPLE	PEKTANE/ NTSE	BENZENE	TOLUENE	ETHYL- Benzene	XYLENES	TOTAL FID VOLATILES ²
11	<1.0					***************************************
12	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
14	<1.0	<1.0	<1.0	<1.0	<1.0	1.1
15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.8
16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
17	<1.0	<1.0	<1.0	<1.0	<1.0	3.8
18	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
19	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
21	<1.0	<1.0	4.0	<1.0	<1.0	<1.0
22	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		<1.0	<1.0	<1.0	<1.0	<1.0
23 24	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
25	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
27	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
28	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
29	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
- 30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
31	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0
32	<1.0	<1.0	<1.0	<1.0	<1.0	4.3
33	<1.0	<1.0	<1.0	<1.0	<1.0	33
34	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
35	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
- 36	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
37	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
FIELD CONT	OL SAIPLES					
1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4	<1.0	<1.0	<1.8	<1.0	<1.0	<1.0
LABORATORY	DUPLICATE ANALYS	ES				
18	<1.0	<1.0	<1.0	<1.0	<1.0	· <1.0
18R	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		. • •		-,,,	~1.0 V	11.0
28	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
28R	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
32	<1.0	<1.0	<1.0	<1.0	-4 A	, =
32R	<1.0	<1.0	<1.0		<1.0	4.3
				<1.0	<1.0	4.2
36 740	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
36R	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
LABORATORY	BLANKS					
18B	<1.0	<1.0	<1.0	<1.0	. <1.0	<1.0
288	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
368	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TESTB	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		• •	. • -		-140	4140

¹ CONCENTRATIONS BASED ON RESPONSE FACTOR OF MIBE

²CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE

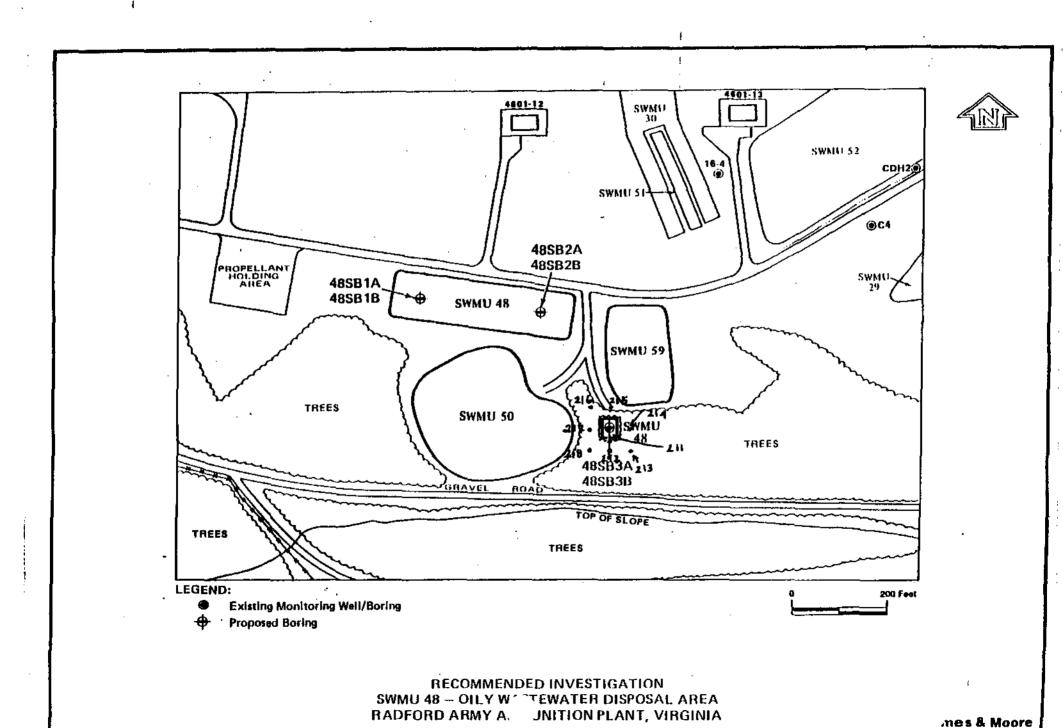
TABLE 2

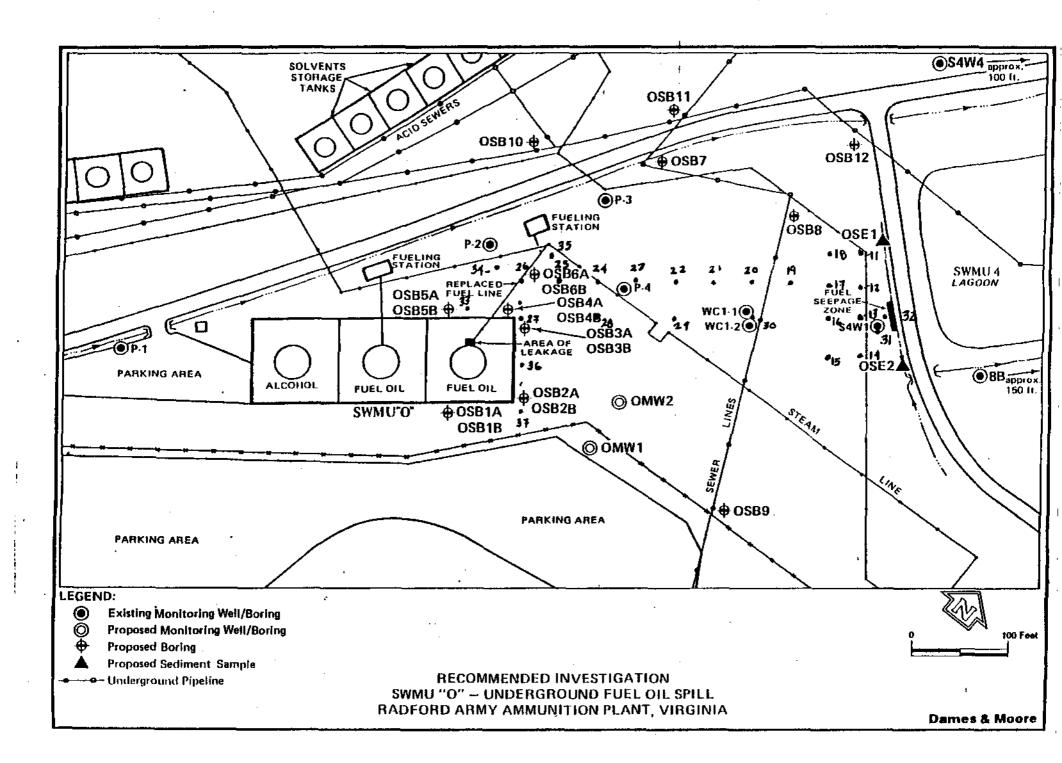
ANALYTE CONCENTRATIONS (#g/l) VIA GC/FID IN SAMPLE TAKEN AT SIMI *48*

	PENTANE/			ETHYL-				
<u>suple</u>	MTBE	BENZENE	TOLUENE	BENZENE	XYLENES	VOLATILES ²		
211	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
212	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
213	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
214	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
215	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
216	<1.0	<1.0	<1.0	<1.0	<1.0	1.1		
217	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
218	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
FIELD CONT	ROL SAMPLES							
201	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
202	<1.0	<1.0	<1.0	<1.0	<1_0	<1.0		

¹ CONCENTRATIONS BASED ON RESPONSE FACTOR OF MIBE

 $^{^2}$ CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE


TABLE 3

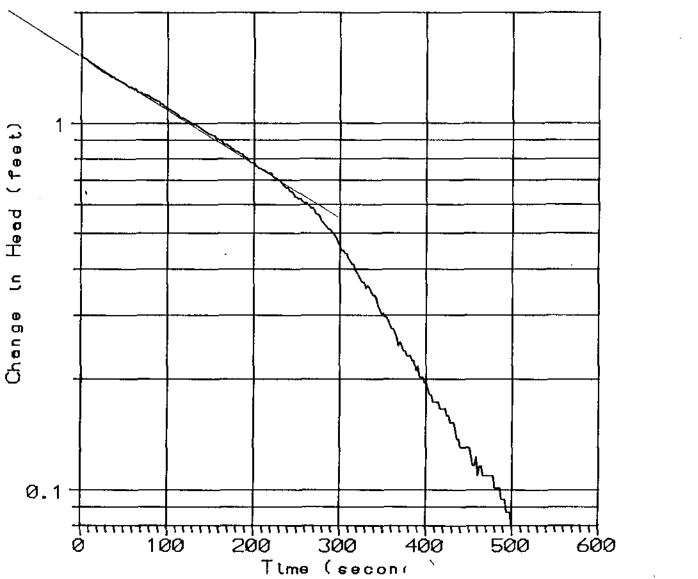

ANALYTE CONCENTRATIONS #g/L) VIA GC/FID IN TEST SAMPLES

	PENTANE/			ETKYL-		TOTAL FIR
SAMPLE	MLBE,	BENZENE	TOLUENE	BENZENE	XYLENES	VOLATILES
TEST SAMPLE 1 TEST SAMPLE 2	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	115 9.9

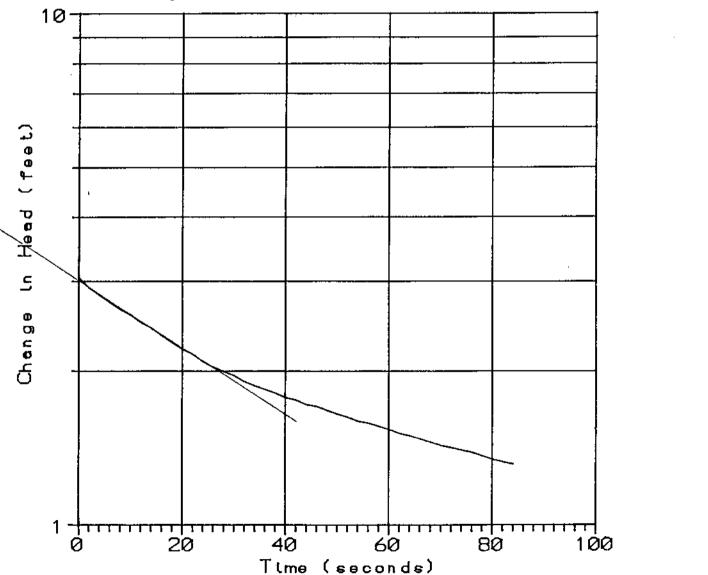
¹ CONCENTRATIONS BASED ON RESPONSE FACTOR OF MTBE

 $^{^2}$ CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE

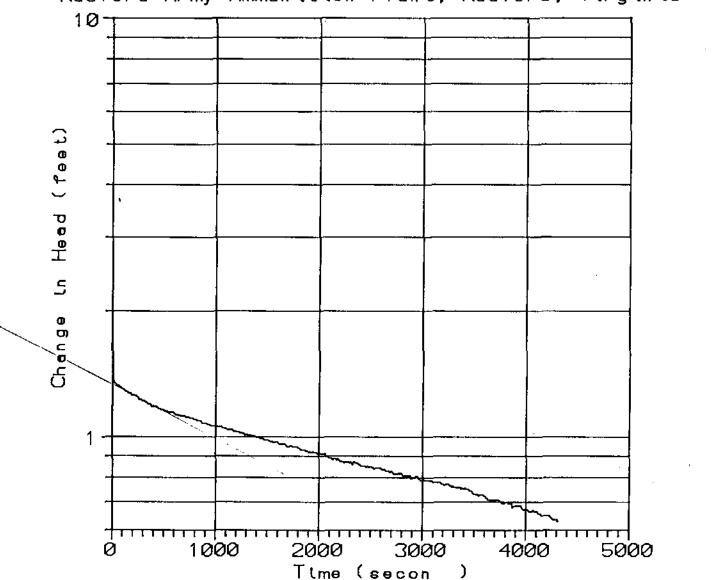
APPENDIX J
Aquifer Characterization Data

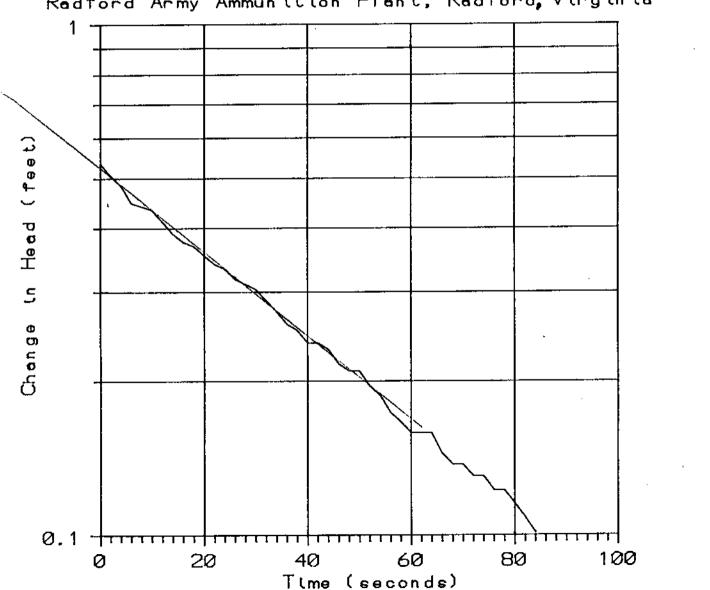

Summary of Falling and Rising Head Slug Test Data SWMU 13 Radford Army Ammunition Plant

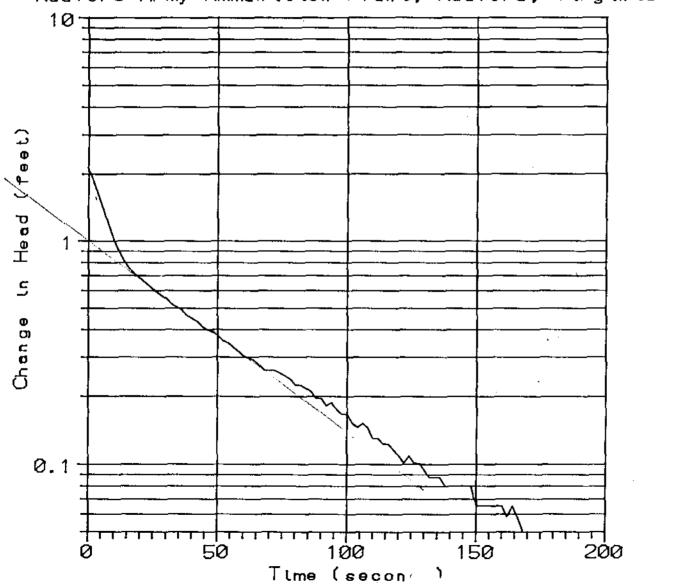
Well No.	к	D	H	L	R _w	Ħ,	t	y,	y,
	(cm/sec)	(H)	(ft)	(f1)	(ft)	(ft)	(sec)	(ft)	(ft)
13MW1FH	4.4E-04	8	5.7	5.7	0.42	0.17	200	1.54	0.78
13MW1RH	2.0E-03	8	5.7	5.7	0,42	0.17	20	3	2.21
13MW2FH	4.7E-05	8	6.96	6.96	0,42	0.17	500	1.4	1.15
13MW2RH	5.2E-05	8	6.96	6.96	0.42	0.17	400	2.2	1.85
13MW3FH	2.6E-03	7	6	6	0.42	0.17	40	0.53	0.24
13MW3RH	1.3E-03	7	6	6	0.42	0.17	100	1	0.38
13MW4FH	7.0E+05	7.5	7.5	7.5	0.42	0.17	1000	0.77	0.44
13MW4RH	8.8E-05	7.5	7.5	7,5	0.42	0.17	300	1.2	0.97
13MW5FH	2.5E-04	5.93	5,93	5.93	0.42	0.17	400	0.87	0.43
13MW5RH	8.1E-04	5.93	8.93	5.93	0.42	0.17	300	2.5	0.46
13MW6FH	1.1E-03	7.22	7.22	7.22	0.42	0.17	100	1.1	0.48
13MW6RH	2.0E-03	7.22	7.22	7.22	0.42	0.17	100	2.58	0.59
13MW7FH	2.0E-03	6.81	6.81	6.81	0.42	0.17	100	0.86	0.19

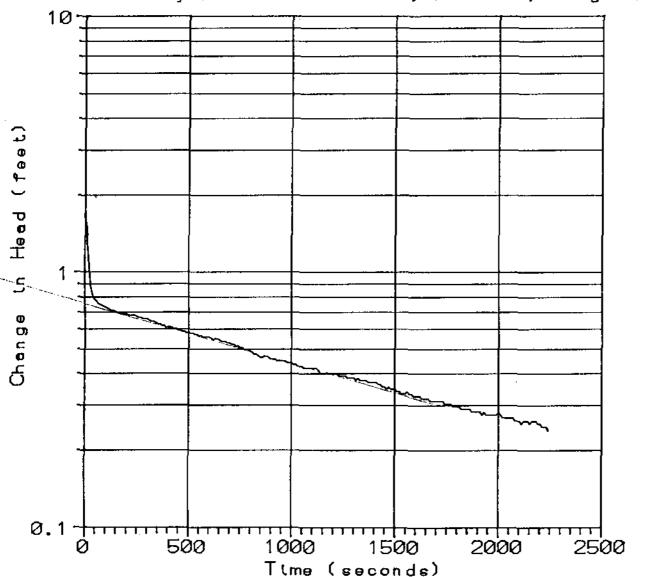

Definition of Terms

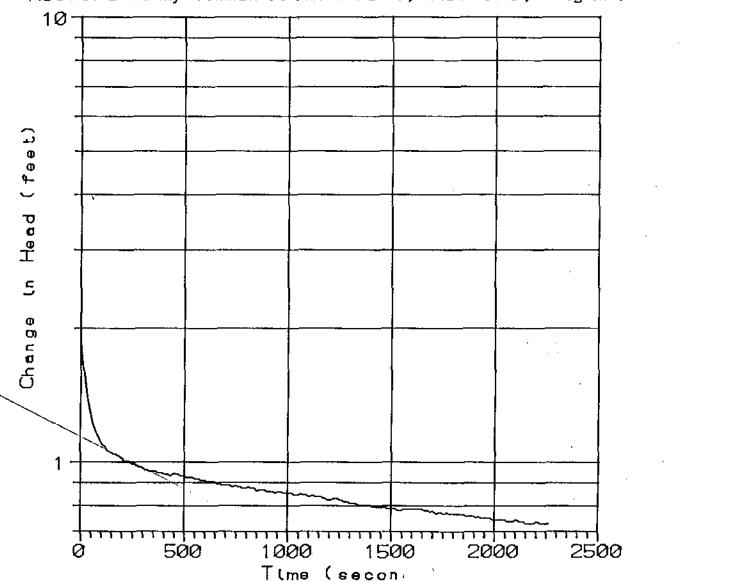
D =	thickness of aquifer in feet											
H ==	thickness of water column in feet											
K =	aquifer hydrautic conductivity											
L #	length of screen in feet											
R ==	effective radius of the well bore											
R = R = t =	radius of well in feet											
=	time since injection or removal											
C =	dimensionless coefficient estimating the radius of influence											
	change in head at time 0											
λ =												
y _t =	change in head at time t											
К =	R,2 ln(R,/r,) 1/t ln(y,/y,) 2(L,)											
IfL < H	then $\ln R_{r}/r_{w} = \{ 1.1 + A + B/n \{ (H-L_{r})/r_{w} \} \}^{-1}$											
	ln(L_/t_) L_/t_											
If $L_w = H$	then $ln(H_a/H_w) = \{1.1 + C\}^{-1}$											
	{ kn(L_/t_) (L_/t}}											

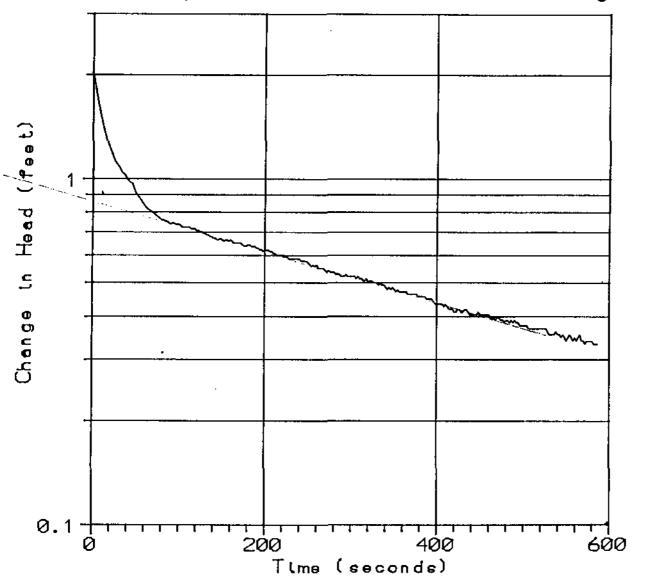

Conceptual Model from Bouwer and Rice 1976 Unconfined Aquifer with partial or fully penetrating wells

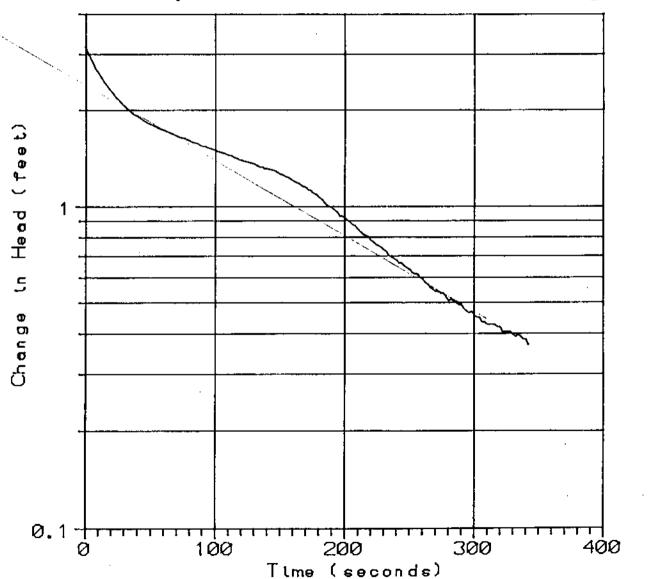

Plot of Rising Head Permeability Test Data - Well 13MW1 Radford Army Ammunition Plant, Radford, Virginia


Plot of Falling Head Permeability Test Data - Well 13MW2 Radford Army Ammunition Plant, Radford, Virginia

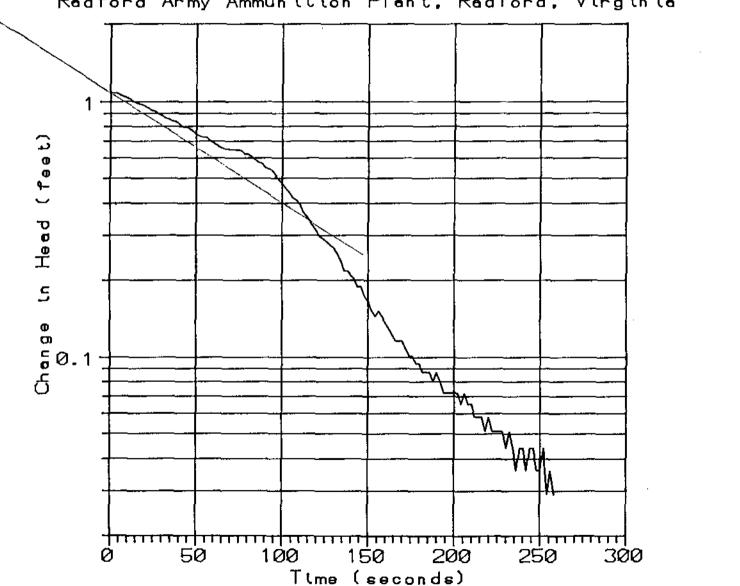

Plot of Falling Head Permisbility Test Data - Well 13MW3 Radford Army Ammunition Plant, Radford, Virginia


Plot of Rising Head Permeability Test Data - Well 13MW3 Radford Army Ammunition Plant, Radford, Virginia

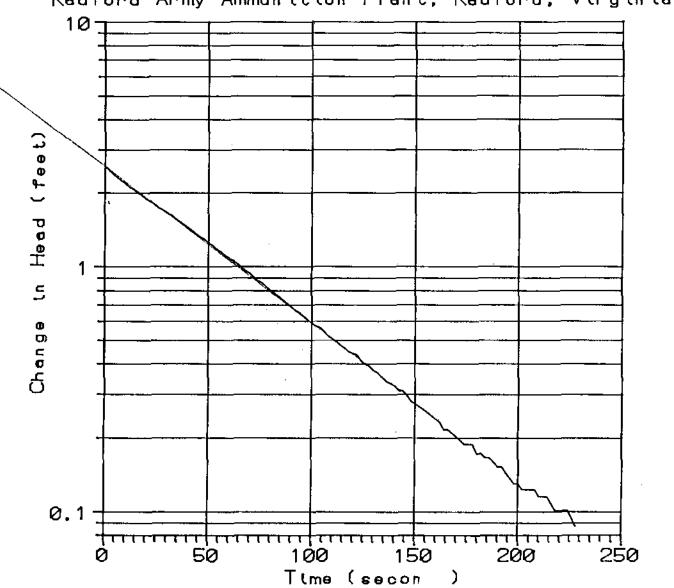

Plot of Falling Head Permeability Test Data - Well 13MW4 Radford Army Ammunition Plant, Radford, Virginia

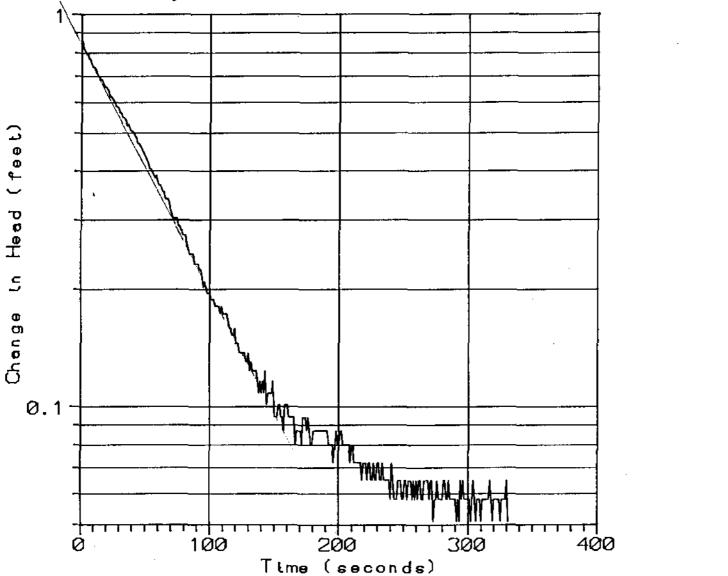


Plot of Rising Head Permeability Test Data - Well 13MW4 Radford Army Ammunition Plant, Radford, Viginia



Plot of Falling Head Permeability Test Data - Well 13MW5 Radford Army Ammunition Plant, Radford, Virginia




Plot of Falling Head Permeablilty Test Data - Well 13MW6 Radford Army Ammunition Plant, Radford, Virginia

Plot of Rising Head Permeability Test Data - Well 13MW6 Radford Army Ammunition Plant, Radford, Virginia

Plot of Falling Head Permeability Test Data - Well 13MW7 Radford Army Ammunition Plant, Radford, Virginia

Summary of Rising Head Slug Test Data Radford Army Ammunition Plant RFI sites

Well No.	K	D	H _o	H _w	L	М	R_w	\mathbf{R}_{i}	P.	R _e	N	С	t	TL
	(cm/sec)	(ft)	(ft)	(fi)	(ft)	(N)	(ft)	(ft)	(f1)	(fl)			(min)	(min)
⊘MW 1	2.50E-03	7.78	3.6	1	22.78	22.78	0.42	0.17	0.25	0.04	0.3	2.5	1.15	0.9
P-1	1.50E-03	5.04	29	0.72	23.04	23.04	0.33	0.08	0.24	0.02	0,3	26	1.5	0.99
P-4	2.20E-05	7.23	3	1.9	7.77	7.77	0.33	80.0	0.24	0.02	0.3	0.75	1.9	7.09
28MW1	1.06E~06	11.9	17.3	8	31.85	31.85	0.42	0.17	0.25	0.04	0.3	3	9	14.3
28MW2	6.27E-07	4.03	9.55	6	19.03	19.03	0.42	0.17	0.25	0.04	0.3	23	15	326
51MW2	4.17E05	0.92	1.1	0.15	6.12	6.12	0.42	0.17	0.25	0.04	0.3	2	1.6	1.31

ţ

Definition of Terms

D = distance from the static water table to the top of the well screen

H = Instantaneous change in head in the well casing due to a removal of water at t=0

H = height of water in the we# above the static water table at time t > 0

K = aquifer hydraulic conductivity

L = vertical distance from the static water table to the bottom of the well screen

M = aquifer saturated thickness

N = porosity of filter material

R = effective radius of the well casing over which the water level in the well changes

R = effective radius of the well bore

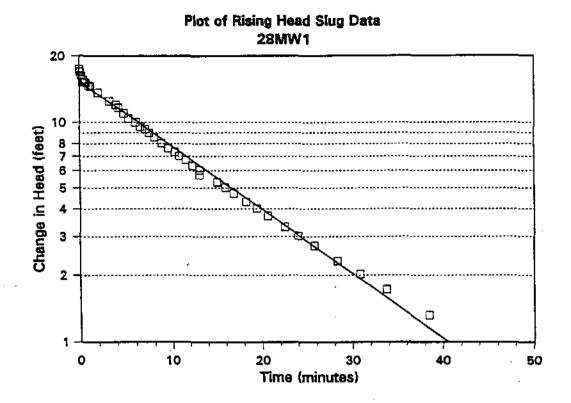
R = Inside radius of well screen

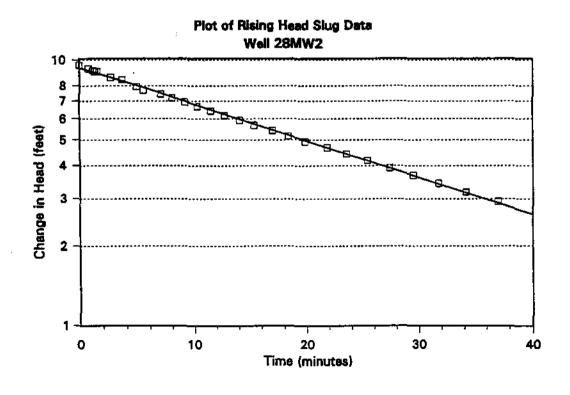
R = outside radius of filter material or developed zone

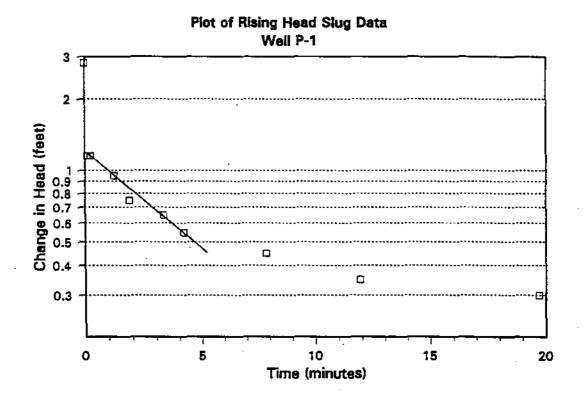
t 🌷 🛎 time since removal

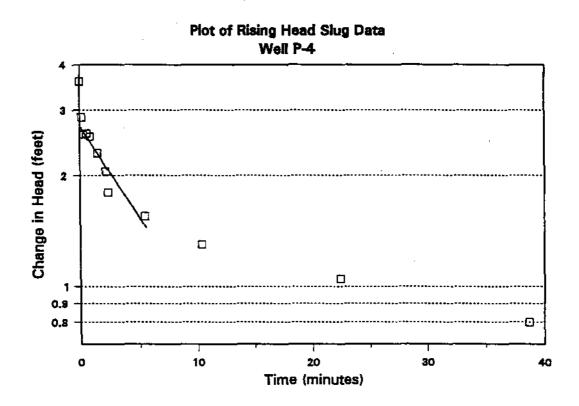
T_L ≈ time lag as defined below

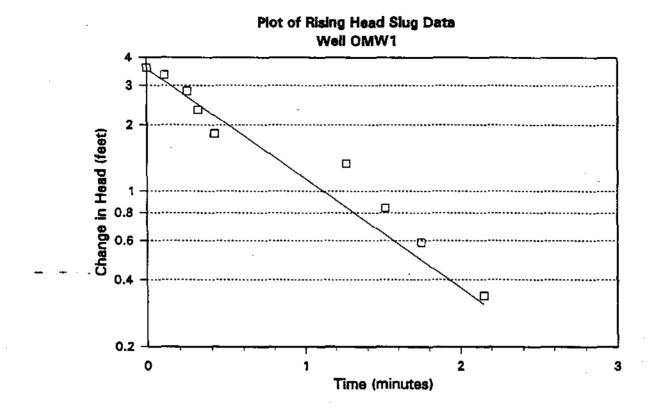
C = dimensionless coefficient estimating the radius of influence


$$K = \frac{R_c^2 \ln(R/r_w) \ln(H_s/H_w)}{2(L-D) t}$$


$$K = R_c^2 \ln(R/r_w)$$


$$\frac{2(L-D)T_L}{r_w}$$


$$R_s^2 = R_s^2(1-n) + nR_s^2$$


$$ln(R/R_{w}) \approx \{ 1.1 + C \}^{-1}$$

 $\{ ln(L/R_{w}) (L-D)/R_{w} \}$

